WorldWideScience

Sample records for synthesized gels starting

  1. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  2. Sol–gel synthesized mesoporous anatase titanium dioxide ...

    Indian Academy of Sciences (India)

    for dye sensitized solar cell (DSSC) applications. R GOVINDARAJ1,∗, M ... DSSC than rutile phase. In this work, we have synthesized hierarchically structured ... Hydrolysis and polycondensation reaction mechanism of sol–gel process. 2.

  3. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  4. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was .... 94·37% CaCO3, hence in order to prepare 1 M Ca2+ ion solu- ... requires an acid or base catalyst hence the pH of the solu-.

  5. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  6. Comparative study of 99Mo/99mTc generators at base of synthesized gels starting from activation and fission 99Mo

    International Nuclear Information System (INIS)

    Lopez M, I.Z.; Monroy G, F.; Rivero G, T.; Rojas N, P.

    2007-01-01

    The 99m Tc is used for diagnostic and therapy. It is produced starting from 99 Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of 99 Mo with high specific activities of 99 Mo, obtained from the 235 U fission. Given these conditions and limitations, new preparation procedures of 99 Mo/ 99m Tc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of 99 Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the 99m Tc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the 99 Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the 99 Mo/ 99m Tc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using 99 Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the 99m Tc eluates. (Author)

  7. Comparative study of 99Mo/99mTc generators at base of synthesized gels starting from 99Mo of activation and of fission

    International Nuclear Information System (INIS)

    Lopez M, I.Z.; Monroy G, F.; Rivero G, T.; Rojas N, P.

    2007-01-01

    At the present time the more used and diffused radionuclide in nuclear medicine it is the Technetium 99 metastable ( 99 mTc) it is used for diagnostic and therapy. It is produced starting from molybdenum 99 ( 99 Mo), which is absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of 99 Mo situation that forces to use high specific activities of 99 Mo that it is obtained starting from the fission of the 235 U. Given these conditions and limitations, new preparation procedures of 99 Mo/ 99m Tc generators, of low or medium specific activity, its have been developed, using gels of zirconium molybdates that incorporates until 30% in weight of 99 Mo in the gel, and also conserve similar characteristics of quality and purity that those obtained by the traditional generator; reducing by this way the cost of production of the 99m Tc, when using 99 Mo of low specific activity, in the preparation of 99 Mo/ 99m Tc generators. The radiochemical characteristics of the elution of 99m Tc, depends strongly on the gel preparation conditions. In particular, the present work has for object to determine the influence of the used type of 99 Mo, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the quality of the 99 Mo/ 99m Tc generators. When diminishing the agitation air flow the efficiency it increases and in the radionuclide purity of the eluates and when using 99 Mo of fission for the gels production it increases in an important way the elution efficiency, the radiochemical purity and radionuclide of the eluates of 99m Tc. (Author)

  8. Gel-combustion-synthesized ZnO nanoparticles for visible light ...

    Indian Academy of Sciences (India)

    Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffractionpattern reveals hexagonal wurtzite structure. The particle size averaged around 45nm with an excellent ...

  9. Characterization of a humic gel synthesized from an activated epoxy silica gel

    International Nuclear Information System (INIS)

    Barbot, C.; Pieri, J.; Durand, J.P.; Goudard, F.; Czerwinski, K.; Vial, M.; Buckau, G.; Kim, J.I.; Moulin, V.

    2002-01-01

    Purified humic acid has been covalently bound on activated epoxy silica gel particles. Determination of physical properties and chemical properties was conducted in order to characterize the material at different stages of the preparation. FTIR spectra and the PEC of the surface bound humic acid is very similar to that of humic acid starting material. This shows that the humic acid was not deteriorated during the surface binding process. This humic gel can be used as an analogue for sediment associated humic acid, with the advantage that covalently bound humic acid does not desorb, and thus allows for simple species separation between non-complexed and humic bound metal ions in batch and column experiments

  10. Sol-gel synthesized ZnO for optoelectronics applications: a characterization review

    Science.gov (United States)

    Harun, Kausar; Hussain, Fayaz; Purwanto, Agus; Sahraoui, Bouchta; Zawadzka, Anna; Azmin Mohamad, Ahmad

    2017-12-01

    The rapid growth in green technology has resulted in a marked increase in the incorporation of ZnO in energy and optoelectronic devices. Research involving ZnO is being given renewed attention in the quest to fully exploit its promising properties. The purity and state of defects in the ZnO system are optimized through several modifications to the synthesis conditions and the starting materials. These works have been verified through a series of characterizations. This review covers the essential characterization outcomes of pure ZnO nanoparticles. Emphasis is placed on recent techniques, examples and some issues concerning sol-gel synthesized ZnO nanoparticles. Thermal, phase, structural and morphological observations are combined to ascertain the level of purity of ZnO. The subsequent elemental and optical characterizations are also discussed. This review would be the collective information and suggestions at one place for investigators to focus on the best development of ZnO-based optical and energy devices.

  11. Enhancement of the electrochemical performance in LiFePO4 cathode materials synthesized by using the sol-gel method

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2010-11-01

    Full Text Available LiFePO4 powders were synthesized by using the sol-gel and the solid-state reaction methods. The chemical states of Fe ions were studied by using XPS, and their electrochemical properties according to the oxidation states of Fe ions were compared. The average oxidation state of Fe ions in LiFePO4 powders synthesized by using the solid-state reaction method was found to be Fe3+, on the other hand, that of Fe ions synthesized by using the sol-gel method was found to be Fe2+. The obtained discharge capacities were 50 mAh/g and 120 mAh/g at a rate 0.1 C in LiFePO4 synthesized by using the solid-state reaction and sol-gel methods, respectively. Relatively a good cycling stability was observed in sol-gel prepared powder.

  12. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  13. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  14. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    International Nuclear Information System (INIS)

    Catauro, M.; Papale, F.; Bollino, F.; Gallicchio, M.; Pacifico, S.

    2014-01-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO 2 /PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line

  15. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  16. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  17. Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, A. Nithya Deva; Vimala, R., E-mail: vimala.r@vit.ac.in

    2016-04-01

    Green synthesis of zinc oxide nanoparticles (ZnO-NPs) is gaining importance as an eco-friendly alternative to conventional methods due to its enormous applications. The present work reports the synthesis of ZnO-NPs using the endosperm of Cocos nucifera (coconut water) and the bio-molecules responsible for nanoparticle formation have been identified. The synthesized nanoparticles were characterized using UV–Visible spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Zeta potential measurement. The results obtained reveal that the synthesized nanoparticles are moderately stable with the size ranging from 20 to 80 nm. The bactericidal effect of the nanoparticles was proved by well diffusion assay and determination of minimum inhibitory concentration (MIC) against marine biofilm forming bacteria. Further the green synthesized ZnO-NPs were doped with TEOS sol–gels (TESGs) in order to assess their antimicrofouling capability. Different volumes of liquid sol–gels were coated on to 96-well microtitre plate and cured under various conditions. The optimum curing conditions were found to be temperature 60 °C, time 72 h and volume 200 μl. Antiadhesion test of the undoped (SG) and ZnO-NP doped TEOS sol–gel (ZNSG) coatings were evaluated using marine biofilm forming bacteria. ZNSG coatings exhibited highest biofilm inhibition (89.2%) represented by lowest OD value against Pseudomonasotitidis strain NV1. - Highlights: • The study reports low cost, and simple procedure for the synthesis of ZnO-NPs using coconut water. • XRD result shows the high crystalline nature of the synthesized ZnO-NPs. • TEM and zeta potential distribution confirms the nanostructure, stability of the synthesized ZnO-NPs. • ZnO-NPs doped with TEOS sol¬-gels (TESGs) exhibited excellent antimicrofouling activity.

  18. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  19. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  20. TiO{sub 2}/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Marciano, S.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO{sub 2}/PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials.

  1. Morphology and properties of silica/novolac hybrid xerogels synthesized using sol–gel polymerization at solvent vapor-saturated atmosphere

    International Nuclear Information System (INIS)

    Seraji, Mohamad Mehdi; Seifi, Azadeh; Bahramian, Ahmad Reza

    2015-01-01

    Highlights: • Sol–gel polymerization in vapor of solvent saturated atmosphere is developed. • Highly porous novolac–silica hybrid xerogels are successfully synthesized. • Novolac–silica hybrid gel was dried in ambient condition with low shrinkage. • Required time for preparation of gel reduced from 5 days to about 5 h. • By incorporation of silica into the novolac xerogel structure, the pore size decreases. - Abstract: Highly porous novolac–silica hybrid xerogels were successfully synthesized via the novel method of sol–gel polymerization in solvent vapor-saturated atmosphere. This method removes the need for supercritical drying and yields the hybrid xerogels with reduced shrinkage in comparison with conventional sol–gel process. Tetraethoxysilane (TEOS) was used as the precursor of silica-based inorganic phase. The chemical and structural characterization of the prepared hybrid xerogels were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis, respectively. Thermal and mechanical properties of the hybrid samples were investigated by differential scanning calorimetry (DSC), and compressive strength analysis. The resultant hybrid xerogels show a nanostructured colloidal hybrid network with high porosity (above 80%) and low density (below 0.25 g cm −3 ). Si mapping images shows the good distribution of silica phase throughout the hybrid structure

  2. Yield of reversible colloidal gels during flow start-up: release from kinetic arrest.

    Science.gov (United States)

    Johnson, Lilian C; Landrum, Benjamin J; Zia, Roseanna N

    2018-06-05

    Yield of colloidal gels during start-up of shear flow is characterized by an overshoot in shear stress that accompanies changes in network structure. Prior studies of yield of reversible colloidal gels undergoing strong flow model the overshoot as the point at which network rupture permits fluidization. However, yield under weak flow, which is of interest in many biological and industrial fluids shows no such disintegration. The mechanics of reversible gels are influenced by bond strength and durability, where ongoing rupture and re-formation impart aging that deepens kinetic arrest [Zia et al., J. Rheol., 2014, 58, 1121], suggesting that yield be viewed as release from kinetic arrest. To explore this idea, we study reversible colloidal gels during start-up of shear flow via dynamic simulation, connecting rheological yield to detailed measurements of structure, bond dynamics, and potential energy. We find that pre-yield stress grows temporally with the changing roles of microscopic transport processes: early time behavior is set by Brownian diffusion; later, advective displacements permit relative particle motion that stretches bonds and stores energy. Stress accumulates in stretched, oriented bonds until yield, which is a tipping point to energy release, and is passed with a fully intact network, where the loss of very few bonds enables relaxation of many, easing glassy arrest. This is immediately followed by a reversal to growth in potential energy during bulk plastic deformation and condensation into larger particle domains, supporting the view that yield is an activated release from kinetic arrest. The continued condensation of dense domains and shrinkage of network surfaces, along with a decrease in the potential energy, permit the gel to evolve toward more complete phase separation, supporting our view that yield of weakly sheared gels is a 'non-equilibrium phase transition'. Our findings may be particularly useful for industrial or other coatings, where weak

  3. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  4. Influence of pH during modified sol-gel process to synthesized pure phased YBCO

    International Nuclear Information System (INIS)

    Barekat Rezaee, S.; Daadmehr, V.; Saeb, F.; Falahati, S.

    2007-01-01

    Full text: Among numerous studies of high-Tc superconductor compound, the YBCO system is the most studied system. During 3 last decades synthesized of high quality pure homogeneous powder were done. One of these methods was modified citrate gel that was widely used to obtain nanosized single phase YBCO. One of the most important factors to yield pure product is adjustment of the pH during the gelation. Then in this work, we adjusted different pH for gelatin and compare phase purity and elemental composition by using XRD and EDS. To synthesize the YBCO, we used Nitrate of metal (Y, Ba, Cu) as precursor. stoichiometric (1:2:3) amount of metal nitrate were solved in distilled water and mixed with constant stirring, (for each equivalent gram of metal nitrate add one equivalent gram of citric acid) and stirred up to have unclear light blue solution and the ethylendiamine was added drop wise to adjust pH from 4.56 to 7.45. Then the solution was heated up 80 C to achieve viscous gel. The color changed from dark blue to purple according to pH. The gel was heated on furnace up to 520 C and kept for 2 hours. During heating the gel swell and filled the baker then special attention is needed to use over sized baker. Obtained powder was calcined for 22h at 900 C to yield homogeneous pure phase and then pellets with 1 sm diameter in 10 ton pressure were produced and sintered for 19 h at 930 C and annealed to room temperature in oxygen. Resistivity measurement using standard four probe technique exhibit Tc (zero) from 90 K to 94 K. The samples were discussed by XRD, SEM and EDS. (authors)

  5. The influence of p H and UV visible absorption on hydrolysis stage and gel behavior of glasses synthesized by sol-gel

    International Nuclear Information System (INIS)

    Khosravi Saghezchi, M.; Sarpoolaky, H.; Heshmatpour, F.

    2008-01-01

    Lead-containing glass borosilicate was synthesized by Sol-gel technique using metal alkoxide such as tetra ethyleorthosilicate, Al-sec-butoxide and trimethyl borate. The sol containing tetra ethyle ortho silicate converts to gel during drop wise addition of Al-alkoxide while inorganic lead salt was added in the last stage of gelation to prepare the alcogels. The specimens were dried at room temperature to set then heated at 600 d eg C quickly to avoid crystallization preparing a glass containing 63 weight percent lead oxide. The influence of p H on absorption behavior of the sols studied by UV visible technique so the characteristic of the gel, alcogel and xerogel were studied in the different acidic concentrations. The UV spectrums show that the higher the acidity of the hydrolysis stages, the higher the absorbance. The results showed the sample with 63 weight percent lead was found fully amorphous. Microstructure and phase analysis of the glass powders were investigated by X-ray diffraction, X-ray fluorescence and scanning electron microscopy equipped with energy dispersive spectroscopy analysis

  6. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine

    KAUST Repository

    Liu, Yan; Qu, Wei; Chang, Weiwei; Pan, Shuxiang; Tian, Zhijian; Meng, Xiangju; Rigutto, Marcello; Made, Alexander van der; Zhao, Lan; Zheng, Xiaoming; Xiao, Feng Shou

    2014-01-01

    Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N2 sorption

  7. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  8. Characterization of SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} hexagonal ferrite synthesized by sol-gel combustion and solid state route

    Energy Technology Data Exchange (ETDEWEB)

    Vinaykumar, R., E-mail: vinaykumar.r1984@gmail.com; Mazumder, R., E-mail: ranabrata@nitrkl.ac.in; Bera, J., E-mail: jbera@nitrkl.ac.in

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19}) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO{sub 2} raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ{sub µ} and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  9. A novel sol–gel process to facilely synthesize Ni{sub 3}Fe nanoalloy nanoparticles supported with carbon and silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.Q. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); School of Physics and Information Technology, Ningxia Teachers University, Guyuan, Ningxia 756000 (China); Chen, L.Y.; Huang, H.F.; Xie, R.; Xia, W.B.; Wei, J.; Zhong, W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Tang, S.L., E-mail: tangsl@nju.edu.cn [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Du, Y.W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Graphical abstract: The TEM and HRTEM images and the magnetization curves taken in both zero-field-cooled (ZFC) and field-cooled (FC) modes of Ni{sub 3}Fe nanoparticles calcined at 300 °C for 2 h under Ar flowing. Display Omitted - Highlights: • Ultrafine Ni{sub 3}Fe nanoalloy nanoparticles were synthesized via a modified novel sol–gel process. • The prepared Ni{sub 3}Fe nanoalloy nanoparticles have a narrow size distribution. • The Ni{sub 3}Fe nanoparticles exhibit superparamagnetic behaviors at room temperature. - Abstract: In this paper, we present a modified novel silica sol–gel process and explored the possibility, for the first time, to synthesize binary nanoalloy nanoparticles. We successfully prepared ultrafine Ni{sub 3}Fe nanoparticles supported with carbon and silica via this simple one-pot reaction without H{sub 2} reduction. X-ray diffraction (XRD) and selected area electron diffraction (SAED) investigations of the Ni{sub 3}Fe nanoparticles show that the nanoparticles have a face-centered-cubic (fcc) crystal structure. The TEM images show that grain sizes of Ni{sub 3}Fe nanoparticles have a narrow size distribution. Moreover, the grain size of the nanoparticles is not very sensitive to the elevated annealing temperature. The Ni{sub 3}Fe nanoparticles exhibit typical superparamagnetic behavior at room temperature, and the blocking temperatures (T{sub B}) are determined by the temperature-dependent magnetization (M–T curves) measurements. This novel silica sol–gel method is expected to have broad applications in synthesizing nanoalloy nanoparticles.

  10. Improvement of the titanium implant biological properties by coating with poly (ε-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy)

    2016-05-18

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  11. Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

    Science.gov (United States)

    Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.

    2018-03-01

    The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

  12. Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Zhang Yun; Li Ruixing; Jiang Yanshan; Zhao Bin; Duan Huiping; Li Junping; Feng Zhihai

    2011-01-01

    Zirconium diboride (ZrB 2 ) nanoparticles were synthesized by sol-gel method using zirconium n-propoxide (Zr(OPr) 4 ), boric acid (H 3 BO 3 ), sucrose (C 12 H 22 O 11 ), and acetic acid (AcOH). Clearly, it was a non-aqueous solution system at the very beginning of the reactions. Here, AcOH was used as both chemical modifier and solvent to control Zr(OPr) 4 hydrolysis. Actually, AcOH could dominate the hydrolysis by self-produced water of the chemical propulsion, rather than the help of outer water. C 12 H 22 O 11 was selected, since it can be completely decomposed to carbon. Thus, carbon might be accounted precisely for the carbothermal reduction reaction. Furthermore, we investigated the influence of the gelation temperature on the morphology of ZrB 2 particles. Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. An in-depth HRTEM observation revealed that the nanoparticles of ZrB 2 were gradually fused together to evolve into a particle chain, finally into a rod-like shape. These crystalline nature of ZrB 2 related to the gelation temperature obeyed the 'oriented attachment mechanism' of crystallography. - Graphical Abstract: Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. Highlights: → ZrB 2 nanoparticles were synthesized by sol-gel method in an non-aqueous solution system. → AcOH was used as both chemical modifier and solvent to control Zr(OPr) 4 hydrolysis. → C 12 H 22 O 11 was selected since it can be completely decomposed to carbon. → Increasing the gelation temperature, the particles changed from sphere-like to rod-like ones. → Crystalline nature of ZrB 2 obeyed the 'oriented attachment mechanism' of crystallography.

  13. Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nano rods

    International Nuclear Information System (INIS)

    Kashif, M.; Hashim, U.; Foo, K.L.; Ali, M.E.; Ali, M.E.; Ali, S.M.U.

    2013-01-01

    ZnO nano rods were grown on thermally oxidized p-type silicon substrate using sol-gel method. The SEM image revealed high-density, well-aligned, and perpendicular ZnO nano rods on the oxidized silicon substrate. The XRD profile confirmed the c-axis orientation of the nano rods. PL measurements showed the synthesized ZnO nano rods have strong ultraviolet (UV) emission. The electrical characterization was performed using interdigitated silver electrodes to investigate the stability in the current flow of the fabricated device under different ultraviolet (UV) exposure times. It was notified that a stable current flow was observed after 60 min of UV exposure. The determination of stable current flow after UV exposure is necessary for UV-based gas sensing and optoelectronic devices.

  14. Influence of secretagogues on asynchronous secretion of newly synthesized pancreatic proteins in the conscious rat

    International Nuclear Information System (INIS)

    Keim, V.; Rohr, G.

    1987-01-01

    The secretion of newly synthesized pancreatic enzymes was studied in pancreatic duct cannulated rats after intravenous injection of 100 microCi of [ 35 S]methionine. Secretion rate was stimulated by intravenous infusion of either cerulein (0.2 microgram/kg h) or carbachol (10 nmol/kg h) starting simultaneously with or 180 min before the injection of the labeled methionine. Secretory proteins were analyzed by sodium dodecyl sulfate (SDS) gel electrophoresis or by nondenaturing gel electrophoresis followed by determination of the radioactivity associated with the individual proteins. Similar to unstimulated controls in all experiments, an early secretion of newly synthesized trypsinogen and chymotrypsinogen was found, whereas amylase and lipase were secreted only after a certain lag period. The results suggest that the intracellular transit of endoproteases is faster than that of other enzymes, irrespective of whether or not secretagogues were applied

  15. Coercivity enhancement mechanism in Dy-substituted Nd–Fe–B nanoparticles synthesized by sol–gel base method followed by a reduction-diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Hamed; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Mozaffarinia, Reza; Tavoosi, Majid

    2017-05-01

    In current work, Nd{sub 15−x}Dy{sub x}Fe{sub 77.5}B{sub 7.5} (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol–gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd–Fe–B nanoparticles have been studied. The coercivity of Nd–Fe–B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd–Fe–B nanoparticle synthesized by sol–gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH){sub max}), lowest-order uniaxial magnetocrystalline anisotropy constant (K{sub u1}), and Curie temperature (T{sub c}) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing x≥2.5. The optimum magnetic properties of Nd–Fe–B nanoparticles with (BH){sub max} =40.38 MGOe, H{sub c}=1663.9 kA/m, B{sub r}=1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd–Fe–B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd–Fe–B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was −0.36, −0.46, −0.41, −0.34, −0.29, −0.24, −0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd

  16. Coercivity enhancement mechanism in Dy-substituted Nd–Fe–B nanoparticles synthesized by sol–gel base method followed by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-01-01

    In current work, Nd 15−x Dy x Fe 77.5 B 7.5 (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol–gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd–Fe–B nanoparticles have been studied. The coercivity of Nd–Fe–B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd–Fe–B nanoparticle synthesized by sol–gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH) max ), lowest-order uniaxial magnetocrystalline anisotropy constant (K u1 ), and Curie temperature (T c ) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing x≥2.5. The optimum magnetic properties of Nd–Fe–B nanoparticles with (BH) max =40.38 MGOe, H c =1663.9 kA/m, B r =1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd–Fe–B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd–Fe–B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was −0.36, −0.46, −0.41, −0.34, −0.29, −0.24, −0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd–Fe–B magnet. Microstructure analysis showed a

  17. Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature

    International Nuclear Information System (INIS)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe 2 O 4 by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe 2 O 4 . ► Enhancement in selectivity of MgFe 2 O 4 towards LPG with sintering temperature. ► Use of MgFe 2 O 4 to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe 2 O 4 material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe 2 O 4 material. It was revealed that MgFe 2 O 4 sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe 2 O 4 sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  18. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute

    International Nuclear Information System (INIS)

    Bera, Tanmay; Vivek, A N; Saraf, S K; Ramachandrarao, P

    2008-01-01

    There is an increasing demand for an affordable and easy-to-fabricate material to help patients having a long bone gap. In this paper, we describe the biomimetic synthesis of Hap-Gel in situ nanocomposite powders with varied proportions. Their biocompatibility and bone regeneration abilities were assessed on a rabbit model. The use of Hap crystals and Gel molecule, the soluble form of bone protein, makes the nanocomposites comparable to natural bone in constituents. The application of biomimetic principles improves crystal morphology and the interaction of Hap crystals with the Gel molecules as seen through in vitro characterizations. Out of the various compositions studied, one with 80:20 proportions of Hap to Gel proved to be closest to the characteristics of natural bone. The immunological response to this composite, assessed through intradermal inoculation, did not reveal any reaction. The in vivo implantation studies in the femoral condyle of the animals, as assessed by serial post-operative follow-up radiography and the histological evaluation, revealed a good biocompatibility and bone-regeneration ability of the material. Thus, nanocomposites of Hap-Gel have a great potential for serving as an effective and affordable biomaterial for bone grafting applications

  19. Variation in Structural and Optical Properties of Al Doped ZnO Nanoparticles Synthesized by Sol-gel Process

    Directory of Open Access Journals (Sweden)

    Vanaja Aravapalli

    2017-04-01

    Full Text Available This article focuses on analyzing structural and optical properties of Al doped ZnO (AZO synthesized with two different precursors aluminum chloride and aluminum nitrate. The nanoparticles were successfully fabricated and characterized at room temperature by sol-gel process. The objective of improving properties of ZnO nanoparticles by introducing dopants was successful with formation of nanoparticles having different crystalline sizes, optical absorption and luminescence properties. The two different sources influenced properties of ZnO. The particles with less crystalline size obtained from aluminum nitrate. Change in morphology from spherical to bar like morphology proved from SEM spectra. Presence of functional groups predicted from FTIR spectra. PL spectra proved UV emission and visible emission for AZO nanoparticles synthesized using dopant sources aluminum chloride and aluminum nitrate respectively. The obtained properties prove successful utilization of AZO nanoparticles as building materials in fabrication of optoelectronic devices.

  20. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    International Nuclear Information System (INIS)

    Adil, Muhammad; Zaid, Hasnah Mohd; Chuan, Lee Kean; Latiff, Noor Rasyada Ahmad; Alta’ee, Ali F.

    2015-01-01

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements

  1. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my; Latiff, Noor Rasyada Ahmad, E-mail: syasya.latiff@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Alta’ee, Ali F., E-mail: ali-mangi@petronas.com.my [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  2. Lanthanum-doped mesostructured strontium titanates synthesized via sol–gel combustion route using citric acid as complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sukpanish, Polthep [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Lertpanyapornchai, Boontawee [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Yokoi, Toshiyuki [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2016-09-15

    In the present work, a series of lanthanum-doped mesostructured strontium titanate (LMST) materials with different La/Sr ratios were synthesized via a sol–gel combustion method in the presence of citric acid as a complexing agent and Pluronic P123 as a templating agent. The effects of the amount of doped La and calcination temperature on the physicochemical properties of the LMSTs were examined using various techniques. Powder X-ray diffraction confirmed the substitution of La{sup 3+} into the SrTiO{sub 3} lattice, generating cubic perovskite La{sub x}Sr{sub 1−x}TiO{sub 3}, for the LMST materials calcined at 600 °C. The purity and crystallinity of the desired perovskite phase were enhanced by citric acid addition. The solubility limit of La{sup 3+} substitution at an La/Sr ratio of 0.43 was determined by structural and morphological studies. Increasing the La doping amount decreased the crystallinity and compositional homogeneity, because an La-rich amorphous phase segregated on the surface, but improved the mesoporosity. N{sub 2} physisorption measurements indicated that the LMSTs had a bimodal pore size distribution, of which the larger one was characterized by the crystallite size of mixed oxides, and the specific surface area of 24.9–37.3 m{sup 2} g{sup −1}. The formation of mesopores in the LMST materials synthesized via sol–gel combustion was explained based on a combination of soft- and hard-templating chemistries. - Highlights: • La-doped mesoporous SrTiO{sub 3} (LMST) was prepared first time via sol-gel combustion. • Pluronic P123 triblock copolymer was used as a cheap templating agent. • Citric acid as a complexing agent enhanced the purity and crystallinity of SrTiO{sub 3}. • The textural properties of LMST were improved by increasing the La doping amount. • Mesopore formation was explained by a combined soft- and hard-templating route.

  3. Silica doped with lanthanum sol–gel thin films for corrosion protection

    International Nuclear Information System (INIS)

    Abuín, M.; Serrano, A.; Llopis, J.; García, M.A.; Carmona, N.

    2012-01-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol–gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: ► Silica sol–gel films doped with lanthanum ions were synthesized. ► Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. ► La-acetate is an affordable chemical reactive preferred for the industry. ► Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. ► An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  4. Crystal structure of superparamagnetic Mg0.2Ca0.8Fe2O4 nanoparticles synthesized by sol–gel method

    International Nuclear Information System (INIS)

    Escamilla-Pérez, A.M.; Cortés-Hernández, D.A.; Almanza-Robles, J.M.; Mantovani, D.; Chevallier, P.

    2015-01-01

    Powders of magnetic iron oxide nanoparticles (Mg 0.2 Ca 0.8 Fe 2 O 4 ) were prepared by a sol–gel method using ethylene glycol and nitrates of Fe, Ca and Mg as starting materials. Those powders were heat treated at different temperatures (573, 673, 773 and 873 K). In order to evaluate the effect of the heat treatment temperature on the nanoferrites properties, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used. It was found that the reaction products exhibit nanometric sizes and superparamagnetic behavior. It is also demonstrated that, as the heat treatment temperature increases, the particle size and the saturation magnetization of the nanoferrites are increased. - Highlights: • Mg 0.2 Ca 0.8 Fe 2 O 4 superparamagnetic nanoparticles were successfully synthesized. • Particle average sizes of Ca–Mg ferrites were within the range of 8–25 nm. • The nanoferrite treated at 873 K showed a stoichiometry close to Mg 0.2 Ca 0.8 Fe 2 O 4 . • The heat treatment temperature has a strong effect on the crystal structure. • These nanoparticles are potential materials for magnetic hyperthermia

  5. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  6. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  7. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    International Nuclear Information System (INIS)

    Pagratis, N.; Revel, H.R.

    1990-01-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription

  8. Analysis of the thermoluminescent signal in the hydroxyapatite synthesized by the sol-gel method

    International Nuclear Information System (INIS)

    Mendoza A, D.; Gonzalez, P.R.; Lobato, M.; Rubio, E.; Rodriguez L, V.; Custodio, E.

    2004-01-01

    The physical properties of the ceramics are related with the chemical bonds and the crystalline structure, because the elements that constitute it can be united by ionic bonds or partially ionic giving a covalent character, this last causes that the outer layer is full of electrons. This property makes that the ceramic ones become interesting materials for thermoluminescent applications, as it demonstrates through the recent works presented on the hydroxyapatite that is a ceramic biomaterials that has shown an interesting thermoluminescent signal when being exposed to gamma radiation. In this sense, this work presents the thermoluminescent signal analysis induced by the UV and gamma radiation in a particular type of hydroxyapatite synthesized by sol gel method in which the temperature synthesis is varied. The final thermoluminescent sensitivity of materials is correlated with the crystalline degree, which is analysed through X-ray diffraction. (Author)

  9. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La

    International Nuclear Information System (INIS)

    Torres-Martinez, Leticia M.; Cruz-Lopez, Arquimedes; Juarez-Ramirez, Isaias; Meza-de la Rosa, Ma. Elena

    2009-01-01

    In this work, NaTaO 3 compounds doped with 1 M% of La and Sm, were prepared by the sol-gel (SG) method and solid state (SS) reaction; and tested as photocatalysts on the degradation of methylene blue (MB) under UV light. The structural characterization by X-ray powder diffraction revealed that the crystallization of the NaTaO 3 phase prepared by the sol-gel method started at 600 deg. C, reaching maximum crystallization at 800 deg. C. It was determined that the presence of Sm and La retard the crystallization of the NaTaO 3 phase. On the other hand, the compounds synthesized in this work showed particle sizes in the nanometric scale, as it was observed by scanning electron microscopy (SEM). The specific surface area of the compounds synthesized by the sol-gel method, showed values 4 times higher than those obtained by the solid state reaction, favoring their functional and photocatalytic performance in the methylene blue degradation. In addition, the best photocatalytic performance was shown by the NaTaO 3 doped with Sm and heated at 600 deg. C, having a half-life time of 65 min.

  10. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    Directory of Open Access Journals (Sweden)

    A. E. Baranchikov

    2015-09-01

    Full Text Available Subject of Study. The paper presents results of characterization for neodymium doped yttrium aluminum garnet nanopowders - YAG:Nd3+ by the method of scanning electronic microscopy. Method. Synthesis of YAG:Nd3+ was carried out by sol-gel method from nitrate or acetate - nitrate solutions with addition of some organic compounds and ammonia as well. Such substances were used as the source ones: oxides of neodymium and yttrium with the content of the basic substance equal to 99.999 %; organic compounds: citric acid with the content of the basic substance not less than 99.0 %; ethylene glycol (99.5%; the ammonium lauryl sulfate (99.0 %; urea (99.0 % of Alfa Aesar, Fluka, Aldrich companies. Oxides of yttrium and neodymium (5 at. % were dissolved in 50% acetic acid, nitrate aluminum was added with a view to the resulting product Y2,85Nd0,15Al5,0O12, the solution was stirred and heated to 60С before reaching its transparency and uniformity. The weight of the portion corresponding to the stoichiometry YAG was 2.0 g. 50 % aqueous solutions of organic substances or 5% NH4OH in a weight ratio of 1:1 to the weight of the garnet were added in aqueous solutions, placed into glass cups. The solutions were thoroughly mixed first using a conventional stirrer, then on ultrasonic installation with simultaneous 60 С heating for 2 hours. Drying of solutions to the consistency of a powder or a thick gel was carried out at 110 С. Then the samples were placed into platinum cups and annealed in a tube furnace at 950 - 1050 С for the period from 0.5 to 2 hours. Additional annealing of the powders in the air at 950 - 1060С were carried out for the purpose of powders clarifying for residual amorphous carbon removal. Main Results. The synthesized powder precursors and powders after annealing were examined using a polarizing microscope to identify anisotropic crystalline phases. X-ray analysis of the synthesized samples was carried out on a DRON - 4 and UDR - 63

  11. Characterization of Microstructure and Performance of YBa2Cu3O7−x Films Synthesized Through Sol–Gel Aqueous Precursors with DEA/TEA Addition

    DEFF Research Database (Denmark)

    Tang, Xiao; He, Dong; Zhao, Yichun

    2013-01-01

    YBa2Cu3O7−x (YBCO) superconducting thin films are synthesized through non-fluorine sol–gel aqueous processes. Diethanolamine (DEA) and triethonalamine (TEA), which have similar molecular structures but different complexation abilities and molecular weights, are separately used as chelating agents...

  12. The structural studies of aluminosilicate gels and thin films synthesized by the sol-gel method using different Al2O3 and SiO2 precursors

    Directory of Open Access Journals (Sweden)

    Adamczyk Anna

    2015-12-01

    Full Text Available Aluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H54 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H93 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics substrates by the dip coating method. Thin films were annealed in air (steel and alundum and in argon (carbon at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations. Additionally, the electron microscopy (SEM together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.

  13. Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol-Gel versus Pechini Syntheses.

    Science.gov (United States)

    Chen, Wen-Fan; Mofarah, Sajjad S; Hanaor, Dorian Amir Henry; Koshy, Pramod; Chen, Hsin-Kai; Jiang, Yue; Sorrell, Charles Christopher

    2018-06-18

    Ce/Cr codoped TiO 2 nanoparticles were synthesized using sol-gel and Pechini methods with heat treatment at 400 °C for 4 h. A conventional sol-gel process produced well-crystallized anatase, while Pechini synthesis yielded less-ordered mixed-phase anatase + rutile; this suggests that the latter method enhances Ce solubility and increases chemical homogeneity but destabilizes the TiO 2 lattice. Greater structural disruption from the decomposition of the Pechini precursor formed more open agglomerated morphologies, while the lower levels of structural disruption from pyrolysis of the dried sol-gel precursor resulted in denser agglomerates of lower surface areas. Codoping and associated destabilization of the lattice reduced the binding energies in both powders. Cr 4+ formation in sol-gel powders and Cr 6+ formation in Pechini powders suggest that these valence changes derive from synergistic electron exchange from intervalence and/or multivalence charge transfer. Since Ce is too large to allow either substitutional or interstitial solid solubility, the concept of integrated solubility is introduced, in which the Ti site and an adjacent interstice are occupied by the large Ce ion. The photocatalytic performance data show that codoping was detrimental owing to the effects of reduced crystallinity from lattice destabilization and surface area. Two regimes of mechanistic behavior are seen, which are attributed to the unsaturated solid solutions at lower codopant levels and supersaturated solid solutions at higher levels. The present work demonstrates that the Pechini method offers a processing technique that is superior to sol-gel because the former facilitates solid solubility and consequent chemical homogeneity.

  14. Influence of the polymer amount on bioactivity and biocompatibility of SiO{sub 2}/PEG hybrid materials synthesized by sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-03-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which differ in polyethylene glycol (PEG) content, were synthesized by sol–gel technique and the characterization of their structure and biological properties was carried out in order to evaluate the possible use in biomedical field. FT-IR spectroscopy detected that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds between the Si–OH groups of the inorganic phase and the terminal alcoholic groups and/or the ethereal oxygen atoms in the repeating units of polymer. X-ray diffraction analysis ascertained the amorphous nature of the gels and the observation of their morphology by SEM microscopy confirmed that the interpenetration of the two phases (organic and inorganic) occurs on nanometric scale. The biological characterization was carried out as a function of the polymer amount to study its influence on material behavior. The results showed that the synthesized materials were bioactive and biocompatible. The formation of a hydroxyapatite layer, indeed, was observed on their surface by SEM/EDX analysis after soaking in simulated body fluid. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed performing MTT and SRB cytotoxicity tests on fibroblast cell NIH 3T3 after 24 and 48 h of exposure, as well as Trypan Blue dye exclusion test. The response to the presence of the investigated materials was positive. The cell growth and proliferation showed dependence on polymer amount and time of exposure to the material extracts. Therefore, the obtained results are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Chemical and morphological characterization of hybrid materials • Chemical interactions between inorganic and organic components • Biological characterizations with MTT and SRB cytotoxicity tests

  15. Films of covalently bonded gold nanoparticles synthesized by a sol–gel process

    International Nuclear Information System (INIS)

    Dell’Erba, Ignacio E.; Hoppe, Cristina E.; Williams, Roberto J. J.

    2012-01-01

    Gold nanoparticles (NPs) with a size close to 1.5 nm, coated with organic ligands bearing Si(OEt) 3 groups, were synthesized and used to obtain self-standing films by a sol–gel process catalyzed by formic acid. Using FESEM images, FTIR, and UV–visible spectra, it was observed that very small gold NPs self-assembled by Si–O–Si covalent bonds forming crosslinked clusters with sizes up to about 50 nm in which NPs preserve their individuality. The possibility of fixing very small gold NPs in a crosslinked film opens a variety of potential applications based on the specific properties of small-size particles. As an example, we illustrated the way in which one can take advantage of the low melting temperature of these NPs to generate tiny gold crystals partially embedded at the surface, a process that might be used for the development of catalysts or sensors. Besides, the shift and change in the intensity of the plasmon band produced by heating to 100 °C may be employed to develop an irreversible sensor of undesirable temperature excursions during the life-time of a specific product.

  16. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  17. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  18. Structural and physicochemical properties of nickel manganite NiMn{sub 2}O{sub 4-δ}synthesized by sol-gel and ultra sound assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Materials Chemistry Department, USACH, Ave L.B.O' Higgins 3363, Santiago 9170022 (Chile); Metallurgy Department, USACH, Ave Ecuador 3469, Santiago 9170124 (Chile); Troncoso, L.; Denardin, J.C. [Physics Department, USACH, Ave. Ecuador 3493, Santiago 9170124 (Chile); Butera, A. [Atomic Center, CNEA, Ito. Balseiro, Bariloche Rio Negro 84000 (Argentina); Padmasree, K.D. [Cinvestav, U.Saltillo, Monterrey Km 13.5, Saltillo CP 25900 (Mexico); Ortiz, J.; Herrera, F. [Materials Chemistry Department, USACH, Ave L.B.O' Higgins 3363, Santiago 9170022 (Chile); Marco, J.F. [Institute of Physical Chemistry “Rocasolano”, CSIC, Serrano 119, Madrid 28006 (Spain); Gautier, J.L., E-mail: juan.gautier@usach.cl [Materials Chemistry Department, USACH, Ave L.B.O' Higgins 3363, Santiago 9170022 (Chile)

    2016-07-05

    In this work we present the structural, magnetic and surface characterization of the ceramic nickel manganite oxide NiMn{sub 2}O{sub 4-δ} synthesized by two methods: sol-gel and ultrasound-assisted sol-gel using nitrate salts as precursors. We have characterized the non-stoichiometric samples NiMn{sub 2}O{sub 4-δ} using different physicochemical analyses. X-ray diffraction and Rietveld refinement of the X-ray data indicated that the samples crystallize in the Fd3m space group characteristic of cubic spinel-related oxides. The specific surface area of the oxides was 1.3 m{sup 2}/g (SG) and 16.3 m{sup 2}/g (UASG). SEM results showed particle agglomerates of 1.05 μm (SG) and 0.85 μm (UASG). Temperature dependence magnetization measurements were performed and a ferrimagnetic transition was identified at 103 K and 105 K depending on the preparation method (SG and UASG, respectively). The observed Curie constant was found to vary from 7.4 to 7.7 cm{sup 3} K mol{sup −1} and hysteretic magnetization vs. applied field curves at different temperatures were obtained. XPS studies of these oxides reveal the presence of Ni{sup 2+}, Mn{sup 2+}, Mn{sup 3+} and Mn{sup 4+} ions at the surface. A probable ionic distribution as a function of the synthesis method is proposed. - Highlights: • Nickel manganite was synthesized by sol gel synthesis and a novel ultrasound-assisted sol gel method. . • Bulk and surface cation distributions are proposed. • Physicochemical properties, including magnetic and surface area measurements, were studied for both types of samples.

  19. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    Science.gov (United States)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  20. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Patil, J.Y. [School of Physical Sciences, Solapur University Solapur-413255 (India); Mulla, I.S. [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology(C-MET) Pune-411 008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University Solapur-413255 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  1. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method

    International Nuclear Information System (INIS)

    Tian Changan; Liu Junliang; Cai Jun; Zeng Yanwei

    2008-01-01

    Single phase La 9.33 Si 6 O 26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol-gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO 3 ) 3 .6H 2 O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA-TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La 9.33 Si 6 O 26 single phase of apatite-type crystal structure can be directly synthesized by sol-gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO 3 - to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m 2 /g. It can be sintered to 90% of its theoretical density at 1500 deg. C for 10 h, about 200 deg. C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 x 10 -6 K -1 between room temperature and 800 deg. C

  2. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Srivastava, Manish; Ojha, Animesh K.; Chaubey, S.; Sharma, Prashant K.; Pandey, Avinash C.

    2010-01-01

    Cobalt doped lithium ferrite nanoparticles were synthesized at different pH by sol-gel method. The effect of pH on the physical properties of cobalt doped lithium ferrite nanoparticles has been investigated. The nanoparticles synthesized at different pH were characterized through X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy (RS), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and vibrating sample magnetometer (VSM). The XRD patterns were analyzed to determine the crystal phase of cobalt doped lithium ferrites nanoparticles synthesized at different pH. The XRD results show the formation of impurity free cobalt doped lithium ferrites having ordered phase spinel structure. A similar kind of conclusion was also drawn through the analysis of Raman spectra of the nanoparticles synthesized at different pH. SEM micrographs show that the structural morphology of the nanoparticles is highly sensitive to the pH during the synthesis process. The magnetic properties such as; saturation magnetization (Ms), remnant magnetization (Mr) and coercivety (Hc) have been also investigated and found to be different for the nanoparticles synthesized at different pH, which may be attributed to the different size and surface morphology of the nanoparticles.

  3. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ali, M., E-mail: m.benali06@gmail.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Maalam, K. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Moussaoui, H.; Mounkachi, O. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Hamedoun, M., E-mail: m.hamedoun@mascir.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco)

    2016-01-15

    Synthesization of zinc-substituted cobalt ferrites nano-particles Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0–0.3) has been achieved by the sol/gel method. The characterization of the synthesized nano-particles has been done by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FITR). The relation between the composition and magnetic properties has been investigated by Magnetic Properties Measurement System (MPMS). The results revealed that the nanoparticles size is in the range of 11–28 nm. It was found that the zinc substitution in cobalt ferrite increases saturation magnetization from 60.92 emu/g (x=0) to 74.67 emu/g (x=0.3). Nevertheless, zinc concentrations cause a significant decrease in coercivity.▪ - Highlights: • The nanocrystals size of synthesized of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} is of 11–28 nm. • The zinc substitution in cobalt ferrite increase saturation magnetization. • The increase of zinc concentration causes a significant decrease in coercivity.

  4. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  5. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  6. Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method

    Science.gov (United States)

    Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan

    2018-04-01

    Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.

  7. Sol-gel auto-combustion synthesis of SiO{sub 2}-doped NiZn ferrite by using various fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China)]. E-mail: khwu@ccit.edu.tw; Ting, T.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Li, M.C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Ho, W.D. [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Taoyuan, Taiwan (China)

    2006-03-15

    A nitrate-chelate-silica gel was prepared from metallic nitrates, citric acid and tetraethoxysilane (TEOS) by sol-gel process with different complexing agents such as glycine, hydrazine and citric acid, and it was further used to synthesize Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}/20 wt% SiO{sub 2} nanocomposites by auto-combustion. The effect of varying complexing agent on the structural and magnetic properties of the composites was studied by FTIR, {sup 29}Si CP/MAS NMR, XRD, TEM, EPR and SQUID measurements. The complexing agent in the starting solution influenced the magnetic interaction between NiZn ferrite and silica, and then determined on the particle size. Further, the complexing agent type had a direct effect on the EPR parameters ({delta}H {sub PP}, g-factor and T {sub 2}) and SQUID parameters (M {sub s}, M {sub r} and H {sub c}) of the as-synthesized powder.

  8. Characterization of Cu–Ni nanostructured alloys obtained by a chemical route. Influence of the complexing agent content in the starting solution

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar [Instituto de Física Enrique Gaviola (IFEG), Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba—CONICET, Medina Allende s/n, Ciudad Universitaria, 5016 Córdoba (Argentina); Cangiano, María de los A.; Ojeda, Manuel W.; Ruiz, María del C. [Instituto de Investigaciones en Tecnología Qumica (INTEQUI), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis—CONICET, Chacabuco y Pedernera, 5700 San Luis (Argentina)

    2015-03-15

    The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. In the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.

  9. gel template method

    Indian Academy of Sciences (India)

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical ...

  10. Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method

    Directory of Open Access Journals (Sweden)

    Yacine Cherif

    2016-09-01

    Full Text Available Fe-doped ZnO nanoparticles were synthesized by sol gel technique. Fine-scale and single phase hexagonal wurtzite structure in all samples were confirmed by SEM and XRD, respectively. The band gap energy depends on the amount of Fe and was found to be in the range of 3.11–2.53 eV. The electric and dielectric properties were investigated using complex impedance spectroscopy. AC conductivity data were correlated with the barrier hopping (CBH model to evaluate the binding energy (Wm, the minimum hopping distance (Rmin and the density of states at Fermi level, N(EF. Fe doping in ZnO also improved the photocatalytic activity. Thus, the sample Zn0.95Fe0.05O showed high degradation potential towards methylene blue (MB, i.e. it degrades 90% of BM in 90 min under UV light.

  11. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  12. Sol-gel synthesis and characterizations of crystalline NaGd(WO4)2 powder for anisotropic transparent ceramic laser application

    Science.gov (United States)

    Durairajan, A.; Thangaraju, D.; Balaji, D.; Moorthy Babu, S.

    2013-02-01

    NaGd(WO4)2 powders were synthesized at different pH (3.5, 4.5, 5.5, 6.5 and 7.5) values by conventional Pechini method. Sodium and gadolinium nitrate salts and ammonium paratungstate are used as starting precursors. Metal cations were chelated by citric acid and individual citrates were bound together with ethylene glycol. Synthesized gel was analyzed using differential thermal analysis (DTA), thermo gravimetric (TG) and FT-IR spectroscopy to understand the degradation of gel and formation of metal citrates. Calcined powders (250, 600, 700 and 800 °C) were characterized by powder XRD, FT-IR, Raman and FE-SEM analysis. The temperature dependent phase formation was examined by powder XRD. The morphological changes at different pH derived powders were observed with FE-SEM micrographs. Stepwise organic liberation with respect to temperature and presence of carbon content in the pre-fired powder were analyzed using FT-IR analysis. Raman spectrum reveals disordered tungstate vibrations in the NGW matrix.

  13. Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    V.T. Srisuvetha

    2017-04-01

    Full Text Available MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

  14. Crystal structure of superparamagnetic Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4} nanoparticles synthesized by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla-Pérez, A.M., E-mail: angel.mep@gmail.com [Cinvestav-Unidad Saltillo, Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Cortés-Hernández, D.A., E-mail: dora.cortes@cinvestav.edu.mx [Cinvestav-Unidad Saltillo, Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Almanza-Robles, J.M. [Cinvestav-Unidad Saltillo, Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Mantovani, D.; Chevallier, P. [Laboratory for Biomaterials and Bioengineering, Department of Materials Engineering and University Hospital Research Center, Laval University, Quebec City, QC (Canada)

    2015-01-15

    Powders of magnetic iron oxide nanoparticles (Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4}) were prepared by a sol–gel method using ethylene glycol and nitrates of Fe, Ca and Mg as starting materials. Those powders were heat treated at different temperatures (573, 673, 773 and 873 K). In order to evaluate the effect of the heat treatment temperature on the nanoferrites properties, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used. It was found that the reaction products exhibit nanometric sizes and superparamagnetic behavior. It is also demonstrated that, as the heat treatment temperature increases, the particle size and the saturation magnetization of the nanoferrites are increased. - Highlights: • Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4} superparamagnetic nanoparticles were successfully synthesized. • Particle average sizes of Ca–Mg ferrites were within the range of 8–25 nm. • The nanoferrite treated at 873 K showed a stoichiometry close to Mg{sub 0.2}Ca{sub 0.8}Fe{sub 2}O{sub 4}. • The heat treatment temperature has a strong effect on the crystal structure. • These nanoparticles are potential materials for magnetic hyperthermia.

  15. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    OpenAIRE

    Sridevi , D.V ,; Ramesh , V; Sakthivel , T; Geetha , K ,; Ratchagar , V ,; Jagannathan , K ,; Rajarajan , K ,; Ramachadran , K ,

    2017-01-01

    International audience; A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP) and 2–propanol as a common starting material and the obtained products were calcined at 450˚C450˚450˚C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functi...

  16. Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation

    KAUST Repository

    Chubar, Natalia

    2013-12-01

    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to plastics and building materials, and other functions. Numerous publications always conclude that the materials (prepared, as a rule, using the oldest synthesis method) are very promising for each investigated application; however, the main chemical industries producing these materials advertise them mainly (or only) as plastic additives. The authors performed extensive research using many of the appropriate methods to compare the structure, surface and adsorptive properties of three Mg-Al LHDs produced by advanced synthesis methods. One industrial sample (by Sasol, Germany) prepared by the alkoxide sol-gel method and two novel Mg-Al LDHs synthesised in-house by alkoxide-free sol-gel and hydrothermal precipitation approaches were investigated. Reasons for the very different adsorptive selectivity of the three LDHs towards arsenate, selenate, phosphate, arsenite and selenite have been provided, highlighting the role of speciation of the interlayer carbonate, aluminium, magnesium, interlayer hydration and moisture content in the adsorptive selectivity towards each toxic anion. This work is the first report presenting the regularities of the LDHs structure, surface and anion exchange properties as a function of their syntheses method. It establishes the links to potential technological applications of each investigated LDH and explains the necessary properties required to make the technological application cost-effective and efficient. The paper might accelerate industrial applications of these advanced materials. © 2013 Elsevier B.V.

  17. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Syed Mohd. Adnan, E-mail: adiaks2004@yahoo.co.in [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Irshad, Kashif, E-mail: alig.kashif@gmail.com [Department of Mechanical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Soleimani, Hassan, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my; Yahya, Noorhana, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my

    2014-10-24

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.

  18. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Naqvi, Syed Mohd. Adnan; Irshad, Kashif; Soleimani, Hassan; Yahya, Noorhana

    2014-01-01

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration

  19. Effects of precursor on the morphology and size of ZrO2 nanoparticles, synthesized by sol-gel method in non-aqueous medium

    Directory of Open Access Journals (Sweden)

    Mohammed Rafiq Hussain Siddiqui

    2012-12-01

    Full Text Available Pure zirconium oxide (ZrO2 nanoparticles with diameters 10-25 nm were synthesized from ZrOCl2.8H2O and Zr(SO42.H2O with benzyl alcohol as non-aqueous solvent medium using sol-gel method. Sodium lauryl sulfate was added as surfactants to control the particle size. The synthesized ZrO2 nanoparticles have a mixture of tetragonal and monoclinic structure. The XRD showed the purity of obtained ZrO2 nanoparticles with tetragonal and monoclinic phase and the crystallite size for ZrOCl2.8H2O precursor was estimated to be 18.1 nm and that from Zr(SO42.H2O was 9.7 nm. The transmission electron microscopy and scanning electron microscopic studies also shows different sizes of nanoparticles and different morphology depending on the precursor used for the synthesis of ZrO2 nanoparticles

  20. Effects of precursor on the morphology and size of ZrO2 nanoparticles, synthesized by sol-gel method in non-aqueous medium

    International Nuclear Information System (INIS)

    Siddiqui, Mohammed Rafiq Hussain; Al-Wassil, Abdulaziz Ibrahim; Mahfouz, Refaat Mohamad; Al-Otaibi, Abdullah Mohmmed

    2012-01-01

    Pure zirconium oxide (ZrO 2 ) nanoparticles with diameters 10-25 nm were synthesized from ZrOCl 2 .8H 2 O and Zr(SO 4 )2.H 2 O with benzyl alcohol as non-aqueous solvent medium using sol-gel method. Sodium lauryl sulfate was added as surfactants to control the particle size. The synthesized ZrO 2 nanoparticles have a mixture of tetragonal and monoclinic structure. The XRD showed the purity of obtained ZrO 2 nanoparticles with tetragonal and monoclinic phase and the crystallite size for ZrOCl 2 .8H 2 O precursor was estimated to be 18.1 nm and that from Zr(SO 4 )2.H 2 O was 9.7 nm. The transmission electron microscopy and scanning electron microscopic studies also shows different sizes of nanoparticles and different morphology depending on the precursor used for the synthesis of ZrO 2 nanoparticles. (author)

  1. The magnetic characterization of Fe doped TiO{sub 2} semiconducting oxide nanoparticles synthesized by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yeganeh, M., E-mail: mahboubeh.yeganeh@yahoo.co.uk [Department of Physics, Kosar University of Bojnord, P.O. Box 94104455 (Iran, Islamic Republic of); Shahtahmasebi, N.; Kompany, A. [Department of Physics, Ferdowsi University of Mashhad (Iran, Islamic Republic of); Karimipour, M. [Department of Physics, Vali-e-Asr University of Rafsanjan (Iran, Islamic Republic of); Razavi, F. [Department of Physics, Brock University (Canada); Nasralla, N.H.S. [Electron Microscope and Thin Film Department, Physics Division, 33 El Buhouth st., Dokki, 12622 Giza (Egypt); Šiller, L. [School of Chemical Engineering and Advanced Materials, Newcastle University, NE1 7RU (United Kingdom)

    2017-04-15

    In this work Fe doped TiO{sub 2} nanoparticles were synthesized at different Fe/Ti molar ratio from 1% to 5% by sol-gel technique. The post annealing of the samples was carried out at T=400, 600, and 800 °C. HRTEM of the samples revealed that the mean size of the nanoparticles increases from about 8 nm to about 100 nm as the annealing temperature increased. SQUID magnetometry of 1% and 5% Fe doped TiO{sub 2} has shown mixed ferromagnetic and paramagnetic phases within the crystal while ferromagnetic order with T{sub c} about 350 K was only observed in 5% Fe:TiO{sub 2} sample annealed at T=800 °C. The oxygen vacancy mediated ferromagnetic (FM) interaction could be responsible for the observed FM.

  2. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  3. Bifunctional ferromagnetic Eu-Gd-Bi-codoped hybrid organo-silica red emitting phosphors synthesized by a modified Pechini sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Naf, S.M., E-mail: sm.abo-naf@nrc.sci.eg [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Abdel-Hameed, S.A.M.; Marzouk, M.A. [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt)

    2017-06-15

    Red phosphor, composed of Eu-Gd-Bi-codoped hybrid organo-silica glass, has been synthesized via a modified Pechini sol-gel process. The synthesized hybrid glass was analyzed with powder X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetry (DTA-TG) and Fourier transform infrared (FTIR) spectroscopy. XRD and DTA-TG confirmed its amorphous structure up to 1000 °C. Magnetic behavior of the produced phosphor was investigated using vibrating specimen magnetometer (VSM) and the obtained results revealed its unsaturated ferromagnetic behavior. Photoluminescence (PL) properties of the obtained phosphor have been investigated under near-UV excitation at 395 nm. The influence of calcination temperature on the PL intensity and its decay behavior as well as on the ferromagnetic characteristics has been studied to determine the optimal reaction temperature of the phosphor. The PL emission spectra show the characteristic emission bands of Eu{sup 3+} ions in the wavelength range from 580 to 700 nm. These emission spectra have been dominated by the electric dipole {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of the Eu{sup 3+} peaked at 610–620 nm producing the red light emission of the phosphors. It was found that the phosphor performance, expressed by its PL intensity and life time, could be significantly improved by increasing of the heat treatment temperature up to 900 °C. Also, calcination at 900 °C for 6 h greatly increased both of the magnetization and retentivity, while decreased the coercivity value. The organic phenomenon of metal citrate-ethylene glycol chelation and its degradation by calcination were well followed by FTIR spectroscopy. The obtained results are promising and could afford a basis for designing of efficient red phosphors for displays, lighting and bifunctional biosensors for biomedical applications. - Highlights: • Eu-Gd-Bi-codoped hybrid organo-silica phosphor was synthesized by sol-gel method. • Inorganic Eu

  4. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  5. Influence of annealing temperature on the electrochemical and surface properties of the 5-V spinel cathode material LiCr0.2Ni0.4Mn1.4O4 synthesized by a sol–gel technique

    DEFF Research Database (Denmark)

    Younesi, Reza; Malmgren, Sara; Edström, Kristina

    2014-01-01

    LiCr0.2Ni0.4Mn1.4O4 was synthesized by a sol–gel technique in which tartaric acid was used as oxide precursor. The synthesized powder was annealed at five different temperatures from 600 to 1,000 °C and tested as a 5-V cathode material in Li-ion batteries. The study shows that annealing at higher...

  6. Zirconia/Hydroxyapatite Composites Synthesized Via Sol-Gel: Influence of Hydroxyapatite Content and Heating on Their Biological Properties

    Science.gov (United States)

    Bollino, Flavia; Armenia, Emilia; Tranquillo, Elisabetta

    2017-01-01

    Zirconia (ZrO2) and zirconia-based glasses and ceramics are materials proposed for use in the dental and orthopedic fields. In this work, ZrO2 glass was modified by adding different amounts of bioactive and biocompatible hydroxyapatite (HAp). ZrO2/HAp composites were synthesized via the sol-gel method and heated to different temperatures to induce modifications of their chemical structure, as ascertained by Fourier transform infrared spectroscopy (FTIR) analysis. The aim was to investigate the effect of both HAp content and heating on the biological performances of ZrO2. The materials’ bioactivity was studied by soaking samples in a simulated body fluid (SBF). FTIR and scanning electron microscopy (SEM)) analyses carried out after exposure to SBF showed that all materials are bioactive, i.e., they are able to form a hydroxyapatite layer on their surface. Moreover, the samples were soaked in a solution containing bovine serum albumin (BSA). FTIR analysis proved that the synthesized materials are able to adsorb the blood protein, the first step of cell adhesion. WST-8 ([2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt]) assay showed that no cytotoxicity effects were induced by the materials’ extract. However, the results proved that bioactivity increases with both the HAp content and the temperature used for the thermal treatment, whereas biocompatibility increases with heating but is not affected by the HAp content. PMID:28773116

  7. Low Temperature Ferromagnetism and Optical Properties of Fe Doped ZnO Nanoparticles Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    B. Sathya

    2017-06-01

    Full Text Available In this present investigation, pure and Fe doped Zinc oxide nanoparticles were successfully synthesized by sol gel method.The structural and optical properties were examined by using X-ray diffraction (XRD, Scanning electron microscope (SEM, Transmission electron microscope (TEM, Ultraviolet spectroscopy and Photoluminescence (PL techniques.The structural characterization of XRD analysis confirmed the phase purity of the samples and crystallite size can be decreased with increasing doping concentrations.SEM image show that nanoparticles in spherical shape. The optical band gap calculated through UV-visible spectroscopy is found to be increasing from 3.48 to 3.57eV. TEM analysis depicted the crystallinity of nanoparticles prepared and chemical composition conformed the EDAX analysis. The PL spectra reveal that, Fe doped ZnO exhibit a decrease in intensity of the band edge emission peak while the intensity of the deep level emission peak increases.The enhancement of low temperature ferromagnetism in ZnO: Fe was achieved.

  8. Analysis of the thermoluminescent signal in the hydroxyapatite synthesized by the sol-gel method; Analisis de la senal termoluminiscente en la hidroxiapatita sintetizada por el metodo sol gel

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza A, D.; Gonzalez, P.R. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Lobato, M.; Rubio, E.; Rodriguez L, V. [Fac. de Ingenieria Quimica, BUAP, Av. San Claudio y 18 Sur, Col. San Manuel, 72570 Puebla (Mexico); Custodio, E. [Universidad Juarez Autonoma de Tabasco, DACB, Carr. Cunduacan-Jalpa Km. 1.5, 86680 Tabasco (Mexico)

    2004-07-01

    The physical properties of the ceramics are related with the chemical bonds and the crystalline structure, because the elements that constitute it can be united by ionic bonds or partially ionic giving a covalent character, this last causes that the outer layer is full of electrons. This property makes that the ceramic ones become interesting materials for thermoluminescent applications, as it demonstrates through the recent works presented on the hydroxyapatite that is a ceramic biomaterials that has shown an interesting thermoluminescent signal when being exposed to gamma radiation. In this sense, this work presents the thermoluminescent signal analysis induced by the UV and gamma radiation in a particular type of hydroxyapatite synthesized by sol gel method in which the temperature synthesis is varied. The final thermoluminescent sensitivity of materials is correlated with the crystalline degree, which is analysed through X-ray diffraction. (Author)

  9. Study of Y{sub 1−x}Er{sub x}FeO{sub 3} (0≤x≤1) powder synthesized by sol–gel method and their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Man; Jiang, Guojian, E-mail: guojianjiang@sit.edu.cn; Yang, Wenqian; Duan, Li; Peng, Wei; Chen, Jiang; Wang, Xiaojian

    2016-11-01

    A series of single phase Y{sub 1−x}Er{sub x}FeO{sub 3} (0≤x≤1) orthoferrite samples were synthesized by sol-gel method and their magnetic properties were studied in detail. The prepared samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The obviously weak ferromagnetic property, which caused by Dzialoshinski Moriya (DM) antisymmetric exchange mechanism, was observed in YFeO{sub 3} for the magnetization jump at H=0 Oe. The magnetization of YFeO{sub 3} was evidently changed by doping Er{sup 3+}. The increase of the Er{sup 3+} content in Y{sub 1−x}Er{sub x}FeO{sub 3} greatly enhanced the paramagnetic component and gradually decreased the ferromagnetic component. - Highlights: • We synthesized a series of single phase Y{sub 1−x}Er{sub x}FeO{sub 3} orthoferrite powder by sol–gel method. • We studied magnetic properties of Y{sub 1−x}Er{sub x}FeO{sub 3} (0≤x≤1) in detail. • The magnetization of YFeO{sub 3} was evidently changed by doping Er{sup 3+}.

  10. Synthesis of Bi4Si3O12 powders by a sol–gel method

    International Nuclear Information System (INIS)

    Xie Huidong; Jia Caixia; Jiang Yuanru; Wang Xiaochang

    2012-01-01

    Highlights: ► Bi 4 Si 3 O 12 were synthesized by a sol–gel method, using stoichiometric materials. ► The calcining process of the as-dried gel was studied by different analyses. ► Phase separation in the sol–gel process was found during the calcination. - Abstract: Micro-crystals of bismuth orthosilicate (Bi 4 Si 3 O 12 ) were synthesized by a sol–gel method, using stoichiometric Si(OC 2 H 5 ) 4 , Bi(NO 3 ) 3 ·5H 2 O as the precursors and acetic acid as the solvent. The calcining process of the as-dried gel was studied by total gravity/differential scanning calory (TG/DSC), X-ray diffraction (XRD) and infrared (IR) spectra. Experiments showed that single phase of Bi 4 Si 3 O 12 could be obtained by sol–gel method at a calcining temperature of 900 °C. Phase separation in the sol–gel process was found during the calcination.

  11. Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol–gel autocombustion for a variety of applications

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Waseem; Ahmad, Ishtiaq; Kanwal, M.; Murtaza, Ghulam; Ali, Ihsan [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Ahmad, Mukhtar, E-mail: ahmadmr25@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-01-15

    A series of M-type hexaferrites with chemical formula Ba{sub 0.25}Sr{sub 0.75}Pr{sub x}Fe{sub 12−x}O{sub 19} (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized using sol–gel autocombustion method. The samples were pre-sintered at a temperature of 800 °C for 3 h and were finally sintered at 1200 °C for 1 h at the heating rate of 10 °C/min. The thermal properties of the specimen have been investigated by thermogravimetric and differential thermal analyses. The structures and micrographs of the samples were systematically examined by X-ray diffraction and scanning electron microscopy, respectively. Vibrating sample magnetometer was also used in order to study the magnetic parameters of these ferrites. The hard magnetic behavior was confirmed by M–H loops for all the samples except for the sample with x=0.10 concentration which exhibits maximum saturation magnetization (M{sub s}) and a few hundred oersteds of coercivity (H{sub c}). Thus high M{sub s} and low H{sub c} cause to increase the permeability of the sample which is favorable for impedance matching in microwave absorption. - Highlights: • M-type ferrites Ba{sub 0.25}Sr{sub 0.75}Pr{sub x}Fe{sub 12−x}O{sub 19} were synthesized using sol–gel autocombustion. • The samples were finally sintered at 1200 °C for 1 h at the rate of 10 °C/min. • The sample with x=0.10 concentration exhibits maximum M{sub s} and a low coercivity (H{sub c}). • These parameters are favorable for impedance matching in microwave absorption. • Hard magnetic nature is revealed by other samples that are suitable for magnetic recording.

  12. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  13. Effects of precursor on the morphology and size of ZrO{sub 2} nanoparticles, synthesized by sol-gel method in non-aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Mohammed Rafiq Hussain; Al-Wassil, Abdulaziz Ibrahim; Mahfouz, Refaat Mohamad [King Saud University, Riyadh (Saudi Arabia). Department of Chemistry, College of Science; Al-Otaibi, Abdullah Mohmmed [King Abdulaziz City for Science and Technology (Saudi Arabia). The NationalProgram for Advanced Materials and Building Systems

    2012-11-15

    Pure zirconium oxide (ZrO{sub 2}) nanoparticles with diameters 10-25 nm were synthesized from ZrOCl{sub 2}.8H{sub 2}O and Zr(SO{sub 4})2.H{sub 2}O with benzyl alcohol as non-aqueous solvent medium using sol-gel method. Sodium lauryl sulfate was added as surfactants to control the particle size. The synthesized ZrO{sub 2} nanoparticles have a mixture of tetragonal and monoclinic structure. The XRD showed the purity of obtained ZrO{sub 2} nanoparticles with tetragonal and monoclinic phase and the crystallite size for ZrOCl{sub 2}.8H{sub 2}O precursor was estimated to be 18.1 nm and that from Zr(SO{sub 4})2.H{sub 2}O was 9.7 nm. The transmission electron microscopy and scanning electron microscopic studies also shows different sizes of nanoparticles and different morphology depending on the precursor used for the synthesis of ZrO{sub 2} nanoparticles. (author)

  14. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Carrasco, L.; Bravo, R.

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells

  15. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Lee, Y.-H.; Hung, I-M.; Wang, M.-C.; Wen, S.-B.; Fung, K.-Z.; Shih, C.-J.

    2008-01-01

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO 2 . The activation energy for the crystallization of the cubic ZrO 2 formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO 2 formation. The TEM examination shows that the cubic ZrO 2 has a spherical-like morphology with a size ranging from 10 to 20 nm

  16. Thermal stability of a modified sol-gel derived hydroxyapatite nanopowders

    Science.gov (United States)

    Herradi, S.; El Bali, B.; Khaldi, M.; Lachkar, M.

    2017-03-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HA) powder was successfully synthesized by a modified sol-gel method using a solution of calcium nitrate in ethanol, along with a solution of diammonium hydrogen phosphate in water and NH4OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The powder was subjected to furnace and microwave heating to compare the decomposition of HA and study the crystallite sizes. It was found that microwave heated powders were pure HAP up to 230°C with absence of secondary phases. However, XRD patterns show that furnace heated powders convert completely to β-TCP when treated at 750°C and 1000°C. This result was confirmed by the absence of hydroxyl bands in the FT-IR spectra for these temperatures.

  17. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  18. Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals

    International Nuclear Information System (INIS)

    Chiriu, Daniele; Stagi, Luigi; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2016-01-01

    The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-doped Y_2SiO_5 sol–gel synthesized crystal powders have been investigated as a function of the Tb dopant concentration (Ce content fixed at 1% atomic). The interaction among different Tb emitting centers and their relation with Ce centers was explained within the Inokuti-Hirayama model for a dipole–dipole energy transfer mechanism in the low-middle Tb concentration range whilst the Forster–Dexter model was applied in the middle-high Tb concentration range. The kinetic model allows elucidating the role of sensitizer and activator ion as a function of Tb concentration, successfully estimating the energy transfer mechanism efficiency and calculating the critical Tb concentration. - Highlights: • The kinetic properties of Ce, Tb recombination in YSO matrix were studied. • The Inokuti-Hirayama and Forster–Dexter models were applied. • At high Tb content, the Ce to Tb energy transfer acts through the dipole−quadrupole. • At low Tb content, the Ce to Tb energy transfer acts through the dipole−dipole. • The presence of Ce reduces the critical Tb concentration (at low Tb content).

  19. Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chiriu, Daniele; Stagi, Luigi; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it

    2016-03-01

    The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-doped Y{sub 2}SiO{sub 5} sol–gel synthesized crystal powders have been investigated as a function of the Tb dopant concentration (Ce content fixed at 1% atomic). The interaction among different Tb emitting centers and their relation with Ce centers was explained within the Inokuti-Hirayama model for a dipole–dipole energy transfer mechanism in the low-middle Tb concentration range whilst the Forster–Dexter model was applied in the middle-high Tb concentration range. The kinetic model allows elucidating the role of sensitizer and activator ion as a function of Tb concentration, successfully estimating the energy transfer mechanism efficiency and calculating the critical Tb concentration. - Highlights: • The kinetic properties of Ce, Tb recombination in YSO matrix were studied. • The Inokuti-Hirayama and Forster–Dexter models were applied. • At high Tb content, the Ce to Tb energy transfer acts through the dipole−quadrupole. • At low Tb content, the Ce to Tb energy transfer acts through the dipole−dipole. • The presence of Ce reduces the critical Tb concentration (at low Tb content).

  20. Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process

    Directory of Open Access Journals (Sweden)

    Shahid Khan Durrani

    2017-12-01

    Full Text Available Crystalline magnesium ferrite (MgFe2O4 spinel oxide powder was synthesized by nitrate–citrate sol–gel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 Å and Fd3m symmetry. UV–visible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050–1450 °C showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Sol–gel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopy

  1. Comparative study of {sup 99}Mo/{sup 99m}Tc generators at base of synthesized gels starting from activation and fission {sup 99}Mo; Estudio comparativo de generadores {sup 99}Mo/{sup 99m}Tc a base de geles sintetizados a partir de {sup 99}Mo de activacion y de fision

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, I Z [UAEM, Paseo Colon esq. Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Monroy G, F; Rivero G, T; Rojas N, P [ININ, Carretera Mexico -Toluca S/N, 52045 La Marquesa Ocoyoacac, Estado de Mexico (Mexico)

    2007-07-01

    The {sup 99m}Tc is used for diagnostic and therapy. It is produced starting from {sup 99}Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of {sup 99}Mo with high specific activities of {sup 99}Mo, obtained from the {sup 235}U fission. Given these conditions and limitations, new preparation procedures of {sup 99}Mo/{sup 99m}Tc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of {sup 99}Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the {sup 99m}Tc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the {sup 99}Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the {sup 99}Mo/{sup 99m}Tc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using {sup 99}Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the {sup 99m}Tc eluates. (Author)

  2. Structural and optical properties of Cu2ZnSnS4 synthesized by ultrasonic assisted sol-gel method

    Science.gov (United States)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    Cu2ZnSnS4 (CZTS) nanocrystals were synthesized by a simple ultrasonic assisted sol-gel method using two different solvents. Structure and purity of the phase formed were investigated using X-ray diffraction (XRD) and Raman measurements. The average crystallite size were estimated by using Scherrer's formula and found to be 2.09 and 7.15 nm. Raman study reveals the kesterite-phase of prepared samples. The influence of solvent in the morphologies of prepared samples was investigated by field emission scanning electron microscopy (FESEM). Ultraviolet-visible-near-infrared absorption measurement was carried out to calculate the optical band gap of samples. Oxidation state of the constitute elements of as-prepared samples were investigated by X-ray photoelectron spectroscopy (XPS) analysis and the results are in good agreement with the literature. The surface area and pore volume were estimated after analysis of nitrogen adsorption-desorption isotherm curves and found to be 16.5 m2/gm and 0.01 cm3/gm respectively.

  3. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Rajan [Department of Chemistry, School of Advanced Sciences, VIT University, Vellore -632014, Tamil Nadu (India); Vecstaudza, Jana [Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga (Latvia); Krishnamurithy, G.; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku [Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur (Malaysia); Swamiappan, Sasikumar, E-mail: ssasikumar@vit.ac.in [Department of Chemistry, School of Advanced Sciences, VIT University, Vellore -632014, Tamil Nadu (India); Locs, Janis [Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga (Latvia)

    2016-11-01

    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, L-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. - Highlights: • Low temperature synthesis of diopside by sol–gel combustion route using different fuels • Eggshell as calcium source provides an effective substitute for synthetic starting materials. • Thermochemistry of fuels was the major reason for change in phase formation temperature. • Circulation of SBF plays a key role in determining bioactive nature of bioceramics. • Cellular studies show increased cell proliferation and formation of extracellular matrix.

  4. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    International Nuclear Information System (INIS)

    Choudhary, Rajan; Vecstaudza, Jana; Krishnamurithy, G.; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku; Swamiappan, Sasikumar; Locs, Janis

    2016-01-01

    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, L-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. - Highlights: • Low temperature synthesis of diopside by sol–gel combustion route using different fuels • Eggshell as calcium source provides an effective substitute for synthetic starting materials. • Thermochemistry of fuels was the major reason for change in phase formation temperature. • Circulation of SBF plays a key role in determining bioactive nature of bioceramics. • Cellular studies show increased cell proliferation and formation of extracellular matrix.

  5. Current and future possibilities of sol-gel process

    International Nuclear Information System (INIS)

    Sakka, Sumio

    2004-01-01

    The sol-gel method is characterized by the low temperature processing. Since this method starts from solutions, the product is essentially nanomaterials. So far, various kinds of microstructures, including dense, porous, hybrid, amorphous and crystalline microstructures have been realized. Accordingly, sol-gel materials cover a wide range of functions, such as optical, electronic, mechanical, chemical and bio-functions. Future perspectives of the sol-gel method are described in the article. (author)

  6. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  7. On the origin of blue emission from ZnO quantum dots synthesized by a sol–gel route

    International Nuclear Information System (INIS)

    Han, Li-Li; Cui, Lan; Du, Xi-Wen; Wang, Wei-Hua; Wang, Jiang-Long

    2012-01-01

    ZnO quantum dots (QDs) with blue emission were synthesized by a sol–gel method. A series of control experiments were conducted to explore the origin of the blue emission. It is found that the blue emission arises from neither the quantum confinement nor intermediate products, and it can be achieved only in the presence of Li + cations and excessive OH − anions. Moreover, the long decay time of the blue emission suggests a defect-related de-excitation process. On the basis of the experimental and calculation results, possible de-excitation paths for light emission were discussed, and the origin of the blue emission was determined as the electron transition from the conduction band to interstitial oxygen defects. Excessive OH − anions are responsible for the formation of interstitial oxygen defects, and Li + ions can stabilize the defects by substituting for Zn atoms. Besides, Li + ions can block the growth of ZnO QDs, broaden their band gap and cause a blue shift of the blue emission. (paper)

  8. Synthesis and characterization of a cryo gel starting from chitosan and their study as adsorbent of Cu (II) ions in aqueous solution

    International Nuclear Information System (INIS)

    Arcos A, A. J.

    2012-01-01

    specific area, so the pores size and the superficial area increase in accordance with the decrease of the speed of materials formation. The obtained material present low crystallinity and the zeta potential shows that the synthesized cryo gels present the existence of amino groups without crosslinking which can interact with the cooper ions. The Ftir and XP S techniques allowed the identification of the principal functional groups presented in the obtained cryo gels like: C-O, C-OH and Nh, as well as the chemical interactions with the copper ions due to the presence of the Cu O, C-N-Cu links after the sorption, respectively. The materials kinetic behavior was correctly described by the pseudo second order model of Ho, for both temperatures, which indicates a chemical sorption process, as well as a sorption of adsorbate in two active sites of the biomass. Obtaining sorption capacities from cryo gels with 56 to 64.9 mg of copper /g of cryo gel, approximately. Finally, the sorption isotherms showed the heterogeneity of the evaluated sorbents for the 25 and 35 C temperatures, since the copper removal process was better described by the Freundlich and Langmuir-Freundlich models, which in addition indicate that a sorption by layer is performed, as well as a general mechanism of sorption that involves a chemical sorption, respectively. According to the obtained results, the cryo gels obtained in this study, are promising sorbents for the metal ions removal. (Author)

  9. Application of phase diagrams to obtain a new surfactant-based fracturing gel; Aplicacao de diagrama de fases para obtencao de um novo gel de fraturamento hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Tereza N. de Castro; Santana, Vanessa C.; Dantas Neto, Afonso A.; Franca Neta, Luzia S. de; Albuquerque, Heraldo S. [Rio Grande do Norte Univ., Natal, RN (Brazil)]. E-mail: tereza@eq.ufrn.br

    2003-07-01

    Through pseudo ternary phases diagram was defined a gel area with the objective of obtaining a new surfactant-based fracturing gel. The surfactant used was synthesized from regional vegetable oil. Fracturing gel properties, like: viscosity, leak off coefficient and proppant-settling rate were analyzed. The obtained results with the surfactant-based gel had its properties compared with a HPG-based gel (hydroxypropyl guar). Rheological tests was accomplished at 100 s{sup -1} being varied the temperature from 26 to 86 deg C, where the surfactant-based gel showed great results. The leak off coefficient was determined by static filtration and the new gel presented smaller coefficient in relation to the HPG gel. The proppant-setting rate was also determined in the gel and, the surfactant-based gel showed good static proppant support. One can conclude that obtained gel presents compatible characteristics when compared with the HPG gel, without the inconvenience of leaving insoluble residues in the well. (author)

  10. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    International Nuclear Information System (INIS)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G.

    2016-01-01

    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  11. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    Energy Technology Data Exchange (ETDEWEB)

    Samanidou, Victoria, E-mail: samanidu@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kehagia, Maria [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kabir, Abuzar, E-mail: akabir@fiu.edu [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); Furton, Kenneth G. [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States)

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  12. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    Science.gov (United States)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  13. Superconducting YBa2Cu3O7-x fibers from the thermoplastic gel method

    International Nuclear Information System (INIS)

    Uchikawa, F.; Mackenzie, J.D.

    1989-01-01

    The successful fabrication of ceramic superconducting YBa 2 Cu 3 O 7-x fibers has been investigated. A new method was proposed for synthesis of the fibers through a solution route. The thermoplastic gels were synthesized using Y, Ba, Cu, ethoxides, and diethylenetriamine. The fibers were drawn from the reheated gels. The fibers were characterized by x-ray diffraction, SEM, and shrinkage ratio measurements. The fired and then annealed fiber is shown to have a superconducting transition temperature of 91 K (onset) and zero resistance temperature of 84 K. With regard to the fired fibers, it is found that the surface area increased and superconducting transition temperature decreased with increasing organic content in the initial gel. The usefulness of this method is shown and the structure of the synthesized gel is discussed

  14. Fluorescence metrology of silica sol–gels – The effect of D2O and ...

    Indian Academy of Sciences (India)

    Administrator

    industrial quality control and helping fundamental research. ... Of all the possible syntheses, sodium silicate (i.e. water glass) production of silica gel, ... fine silica gel powders used in many applications (e.g. chromatography, toothpaste etc).

  15. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.

    Science.gov (United States)

    Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo

    2014-08-01

    Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.

  16. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Far-East Road, Chung-Li, Taoyuan, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: cjshih@kmu.edu.tw

    2008-04-03

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO{sub 2}. The activation energy for the crystallization of the cubic ZrO{sub 2} formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO{sub 2} formation. The TEM examination shows that the cubic ZrO{sub 2} has a spherical-like morphology with a size ranging from 10 to 20 nm.

  17. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  18. Nucleation-growth of salicylic acid-oxoTiO{sub 2} colloids synthesized by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Tieng, S.; Jia, Z. [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue J.-B. Clément, 93430 Villetaneuse (France); Subra-Paternault, P. [Laboratoire de Chimie et Biologie des Membranes et Nanoobjets, CBMN – UMR 5248, Bâtiment, 14B, Allée Geoffroy Saint Hilaire, 33600 Pessac (France); Kanaev, A. [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue J.-B. Clément, 93430 Villetaneuse (France); Chhor, K., E-mail: khay.chhor@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue J.-B. Clément, 93430 Villetaneuse (France)

    2014-12-15

    In this work, the preparation of hybrid oxo-TiO{sub 2} nanoparticles modified by salicylic acid (SA) is reported. The size-selected TiO{sub 2} nanoparticles were synthesized in a sol-gel reactor with rapid micromixing of reagents and binding of SA molecules occurs at the nucleation stage. UV-visible absorption, Raman spectroscopy and Light scattering measurements evidence the formation of a SA–oxo-TiO{sub 2} charge-transfer complex. In particularly, the C=O vibration mode of SA shifts to lower frequencies upon complexation while the C-O vibration modes of both carboxylate and phenolic groups retain their position. The absence of C-O shift comes from two effects that cancel each other, i.e. the hardening of this mode related to the C=O mode changes and its softening due to the replacement of hydrogen in COH group by Ti atoms. Kinetic studies of the oxo-TiO{sub 2} nanoparticles nucleation and growth in presence of SA show that the acidic ligand at the nanoparticle surface acts as an attractor for another oxo-TiO{sub 2} nanoparticle leading to polycondensation. This mechanism is responsible for the acceleration of the nanoparticle aggregation kinetics and shortening of the induction time. The hybrid nanoparticles are stable at pH ≤ 7.7 and release SA molecules at pH ≥ 8.5. - Highlights: • Hybrid oxo-TiO{sub 2} nanoparticles modified by salicylic acid (SA) are prepared. • The synthesis is achieved during the nucleation stage of sol-gel process. • The formation of SA–oxo-TiO{sub 2} charge-transfer complex is evidenced. • Mechanism responsible for the acceleration of the nanoparticle aggregation kinetics is proposed. • SA-TiO{sub 2} nanoparticles are stable at pH ≤ 7.7 and release SA molecules at pH ≥ 8.5.

  19. Nano Hydroxyapatite gel for removal of Nickel ions for environmental applications

    International Nuclear Information System (INIS)

    Abdelfattah, W.I.; Fayed, M.SH.; Gouda, SH.R.; Awwad, S.A.

    2006-01-01

    Hydroxyapatite (HAp) has been investigated for the removal of heavy metals in environmental application. However, little is known about the influences of surface modifications of the HAp. In the present study, nano HAp - polyvinyl alcohol gel was synthesized under ph control and the formed gel was used for removing nickel ions. The influence of nickel ions on the surface of HAp was studied. Reaction mechanisms were followed by ICP-MS and discussed via continuous variations method (CVM), mole ratio method (MRM) and slope ratio method (SRM). The formed gel with nickel ions was studied by various methods including UV, FTIR, XRD and SEM. The ICP-MS was used to analyze the supernatant solution to confirm the presence of Ca and / or Ni ions. The nickel ions were found to reduce the degree of crystallinity of the synthesized HAp phase. The present results indicated that nickel ions were completely adsorbed on the HAp structure with its anion. The validation of the nature of HAp gel as chelating agent or complex formation as well as physical sorption were discussed

  20. Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    International Nuclear Information System (INIS)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi; Mohamed, Abdul Rahman

    2010-01-01

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO 2 /ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO 2 as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO 2 :ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m 2 /g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  1. An investigation on linear optical properties of dilute Cr doped ZnO thin films synthesized via sol-gel process

    International Nuclear Information System (INIS)

    Kandjani, A. Esmaielzadeh; Tabriz, M. Farzalipour; Moradi, O. Mohammad; Mehr, H.R. Rezaeian; Kandjani, S. Ahmadi; Vaezi, M.R.

    2011-01-01

    Highlights: → In current work, ZnO:Cr thin films were synthesized via a simple sol-gel method. → By increasing in dopant concentration the average roughness of the film increases slightly while the thickness of these films remains constant. → By increase in dopant concentration band gap values of thin films show a decrease while the interior microstrain shows an increase based on increase in its Urbach energies. → By increase in annealing temperature band gap values and interior microstrains of thin films show a decrease. → By increase in number of applied dip coating, film thickness increase from 74 nm (after 1 procedure dip coating) to 147 nm (3 procedures dip coating), band gap values and interior microstrains of thin films show a decrease. - Abstract: Cr doped ZnO thin films were prepared via sol-gel method. The effects of dopant concentration (0%, 1.5% and 3%) annealing temperature and film thickness on UV-Vis spectra of prepared films were investigated. Also, the thickness and surface topology of thin films were investigated by thickness profile meter (DEKTAK) and Atomic Force Microscopy (AFM), respectively. In addition, the band gap and Urbach energy of prepared films were calculated completely for the samples. The results showed that by increasing the dopant concentrations, the microstrain of the prepared thin film structures also increases while the band-gap values decrease. Meanwhile, an increase in annealing temperature makes a decrease in band gap and microstrain of thin films. The increase in thickness resulted in red shift in band gap and reduction in interior microstrains.

  2. Energy storage crystalline gel materials for 3D printing application

    Science.gov (United States)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  3. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  4. High Efficient Dye-Sensitized Solar Cells Based on Synthesized SnO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    W. M. N. M. B. Wanninayake

    2016-01-01

    Full Text Available In this study, SnO2 semiconductor nanoparticles were synthesized for DSC applications via acid route using tin(ii chloride as a starting material and hydrothermal method through the use of tin(iv chloride. Powder X-ray diffraction studies confirmed the formation of the rutile phase of SnO2 with nanoranged particle sizes. A quasi-solid-state electrolyte was employed instead of a conventional liquid electrolyte in order to overcome the practical limitations such as electrolyte leakage, solvent evaporation, and sealing imperfections associated with liquid electrolytes. The gel electrolytes were prepared incorporating lithium iodide (LiI and tetrapropylammonium iodide (Pr4N+I− salts, separately, into the mixture which contains polyacrylonitrile as a polymer, propylene carbonate and ethylene carbonate as plasticizers, iodide/triiodide as the redox couple, acetonitrile as the solvent, and 4-tertiary butylpyridine as an electrolyte additive. In order to overcome the recombination problem associated with the SnO2 due to its higher electron mobility, ultrathin layer of CaCO3 coating was used to cover the surface recombination sites of SnO2 nanoparticles. Maximum energy conversion efficiency of 5.04% is obtained for the device containing gel electrolyte incorporating LiI as the salt. For the same gel electrolyte, the ionic conductivity and the diffusion coefficient of the triiodide ions are 4.70 × 10−3 S cm−1 and 4.31 × 10−7 cm2 s−1, respectively.

  5. Structural analysis of fluorine-containing bioactive glass nanoparticles synthesized by sol-gel route assisted by ultrasound energy.

    Science.gov (United States)

    Lins, Carolina E C; Oliveira, Agda A R; Gonzalez, Ismael; Macedo, Waldemar A A; Pereira, Marivalda M

    2018-01-01

    In the last decades, studies about the specific effects of bioactive glass on remineralization of dentin were the focus of attention, due to their excellent regenerative properties in mineralized tissues. The incorporation of Fluorine in bioactive glass nanoparticles may result in the formation of fluorapatite (FAP), which is chemically more stable than hydroxyapatite or carbonated hydroxyapatite, and therefore is of interest for dental applications. The aim of this study was to synthesize and characterize a new system of Fluorine-containing bioactive glass nanoparticles (BGNPF). A sol-gel route assisted by ultrasound was used for the synthesis of BGNPF. The particles obtained were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS). SEM micrographs showed that the particles are quite uniform spherical nanostructures, occurring agglomeration or partial sinterization of the particulate system after heat treatment. XRD and XPS analysis results suggest the formation of fluorapatite crystals embedded within the matrix of the bioactive glass nanoparticles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 360-366, 2018. © 2017 Wiley Periodicals, Inc.

  6. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  7. Raman Spectroscopy of Irradiated Normoxic Polymethacrylic Acid Gel Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Ji Hye; Kwon, Soo Il; Cho, Yu Ra; Park, Chae Hee; Park, Hyung Wook [Kyonggi University, Suwon (Korea, Republic of); Choi, Kyu Seok; Yu, Soo Chang [Kunsan National University, Gunsan (Korea, Republic of)

    2011-02-15

    A quantitative analysis of the decreasing rate of the monomer and increasing rate of the polymerization was made by monitoring radiation level increments using Raman spectroscopy within the therapeutic radiation range for a normoxic polymethacrylic acid gel dosimeter. The gel dosimeter was synthesized by stirring materials such as gelatin, distilled water, methacrylic acid, hydroquinone and tetrakis phosphonium chloride at 50 .deg. C, and the synthesized gel was contained in a 10- mm diameter and 32-mm high vial to conduct measurement. 24 hours after gel synthesis, it was irradiated from 0 Gy to 20 Gy by 2 Gy using a Co-60 radiotherapy unit. With use of the Cryo FE-SEM, structural changes in the 0 Gy and 10 Gy gel dosimeters were investigated. The Raman spectra were acquired using 532-nm laser as the excitation source. In accordance with fitting the changes in C-COOH stretching (801 cm{sup -1}), C=C stretching (1639 cm{sup -1}) and vinyl CH{sub 2} stretching (3114 cm{sup -1}) vibrational modes for monomer and CH{sub 2} bending vibrational mode (1451 cm{sup -1}) for polymer, sensitive parameter S for each mode was calculated. The values of S for monomer bands and polymer band were ranged in 6.0 ± 2.6 Gy and 7.2 ± 2.3 Gy, respectively, which shows a relatively good conformity of the decreasing rate of monomer and the increasing rate of polymerization within the range of error.

  8. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  9. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

    Science.gov (United States)

    Li, Shiyou; Liang, Youwei; Lei, Dan; Xie, Yingchun; Ai, Ling; Xie, Jing

    2018-03-01

    A citric acid assisted sol-gel method is employed for synthesizing Li1.2Mn0.54Ni0.13Co0.13O2 used as a cathode material in lithium-ion batteries. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations prove that materials have a typical a-NaFeO2 structure with primary nano-sized particles. Electrochemical performances have been investigated by charge-discharge test and results show that the synthesized product exhibits excellent electrochemical performance with a high initial discharge capacity of 253.5 mAh g-1 at 0.1 C and a preferable capacity retention of 84.8% after 50 cycles.

  10. Photoluminescence of sol–gel synthesized PZT powders

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Aranda, M.C. [Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología-Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No.550,Col. Lomas 2a. sección, C.P. 78210 San Luis Potosí, SLP, México (Mexico); Calderón-Piñar, F. [Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, C.P. 7623 Querétaro, Qro, México (Mexico); Facultad de Física/IMRE, San Lázaro y L, Universidad de la Habana, C.P. 10400 Habana (Cuba); Hernández-Landaverde, M.A. [Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, C.P. 7623 Querétaro, Qro, México (Mexico); and others

    2016-11-15

    A wide band of photoluminescence (PL) emission in structurally disordered lead zirconate titanate (PZT) powders, prepared by sol–gel route, was observed at room temperature excited with a laser line (488 nm). Powders with PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} nominal composition annealed at different temperatures were studied by X-ray diffraction, Raman spectroscopy, Luminescence, Diffuse Reflectance and Electronic Paramagnetic Resonance Spectroscopy (EPR). Our results indicate that the PL response can be associated to order–disorder degree in the perovskite structure, with the exception of samples annealed at low temperature, where a mixture of oxides precursorsГ—Ві phases was observed. Furthermore, in quasi-crystalline ordered samples (95% of crystallinity) a small generation of PL remains. In these experiments, the band gap increases with the formation of crystalline structure. EPR experiments were conducted in order to follow the evolution of paramagnetic species with thermal treatment from the mixture of oxides precursors to the perovskite phase and paramagnetic point defects were identified (Pb{sup +3} and Ti{sup +3}). EPR data suggest the presence of order–disorder within the lattice network. Paramagnetic species are similar in samples treated at 700 and 800 °C, nevertheless the emission intensity decreases by a factor of 6, indicating that the defects associated with PL are not paramagnetic at both temperatures.

  11. Synthesis and characterization of tough foldable and transparent poly(styrene-co-butyl acrylate/nanoporous cellulose gel (NCG nanocomposites

    Directory of Open Access Journals (Sweden)

    J. S. Borah

    2017-09-01

    Full Text Available Poly (styrene-co-butyl acrylate/nanoporous cellulose gel nanocomposites [P (St/BA/NCG] were synthesized by in-situ polymerization of styrene/butyl acrylate (St/BA monomer mixtures in nanoporous regenerated cellulose gels. The three-dimensional nanoporous cellulose gels (NCGs were fabricated via dissolution and coagulation of cellulose from aqueous sodium hydroxide (NaOH/urea solution. The NCG contents in nanocomposites were controlled between 16 and 44% v/v by changing water content of starting hydrogels via compression dewatering. Scanning electron microscopy (SEM analysis showed that the interconnected nanofibrillar network structure of NCGs was preserved well in the nanocomposites after insitu polymerization. The resulting nanocomposites exhibited excellent transparency (up to 82% in the visible region and high mechanical strength, with a tensile strength of up to 56.0 MPa, Young’s modulus of up to 2195 MPa and elongation at break up to 80.9%. Dynamic mechanical analysis (DMA showed a remarkable improvement (by over 3 orders of magnitude in tensile storage modulus above glass transition temperature of the copolymer. The nanocomposites also showed significant improvements in thermal stability as well as water resistance over NCG.

  12. Characteristics of supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2010-02-15

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO{sub 2} as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO{sub 2}:ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m{sup 2}/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  13. In Situ Formation of Steroidal Supramolecular Gels Designed for Drug Release

    Directory of Open Access Journals (Sweden)

    Hana Bunzen

    2013-03-01

    Full Text Available In this work, a steroidal gelator containing an imine bond was synthesized, and its gelation behavior as well as a sensitivity of its gels towards acids was investigated. It was shown that the gels were acid-responsive, and that the gelator molecules could be prepared either by a conventional synthesis or directly in situ during the gel forming process. The gels prepared by both methods were studied and it was found that they had very similar macro- and microscopic properties. Furthermore, the possibility to use the gels as carriers for aromatic drugs such as 5-chloro-8-hydroxyquinoline, pyrazinecarboxamide, and antipyrine was investigated and the prepared two-component gels were studied with regard to their potential applications in drug delivery, particularly in a pH-controlled drug release.

  14. Porous olivine composites synthesized by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Remskar, M.; Hanzel, D. [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Goupil, J.M. [ENSICAEN, UMR CNRS 6506, Catalyse and Spectrochimie Lab, F-14050 Caen (France); Pejovnik, S. [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2006-02-28

    Porous LiMPO{sub 4}/C composites (where M stands for Fe and/or Mn) with micro-sized particles were synthesised by sol-gel technique. Particles porosity is discussed in terms of qualitative results obtained from SEM micrographs and in terms of quantitative results obtained from N{sub 2} adsorption isotherms. Porous particles could be described as an inverse picture of nanoparticulate arrangement, where the pores serve as channels for lithium supply and the distance between the pores determines the materials kinetics. Tests show that the electrochemical behaviour of porous LiMPO{sub 4}/C composite is comparable with the results from the literature. The best electrochemical results were obtained with a LiFePO{sub 4}/C composite (over 140mAhg{sup -1} at C/2 rate during continuous cycling). The capacity obtained with LiMnPO{sub 4}/C composite is much lower (40mAhg{sup -1} at C/20 rate), although the textural properties are similar to those observed in the LiFePO{sub 4}/C composite. (author)

  15. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  16. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method

    Science.gov (United States)

    Bautista Ruiz, J.; Aperador, W.; Caballero Gómez, J.

    2016-02-01

    The medical science and the engineering, work to improve the materials used in the manufacture of joint implants, since they have a direct impact on the quality of people life. The surgical interventions are increasing worldwide with a high probability of a second or even a third intervention. Around these circumstances, it was evaluated the behaviour against microabrasion-corrosion phenomena on SiO2 TiO2 ZrO2 coatings, synthesized by the sol-gel method with concentration of the Si/Ti/Zr precursors: 10/70/20 and 10/20/70. The coatings were deposited on AISI 316 LVM stainless steel substrates. The morphological characterization of the wear was made by AFM techniques. It was observed that the coatings with higher levels of titanium have a good response to the phenomena of microabrasion-corrosion.

  17. Chemical modification of silica gel with synthesized Schiff base hydrazone derivative and application for preconcentration and separation of U(VI) ions from aqueous solutions

    International Nuclear Information System (INIS)

    Gamze Karayel Incili; Gul Asiye Aycik

    2014-01-01

    Schiff base hydrazone derivative (HL) sorbent was synthesized according to the literature to be used in the adsorption and preconcentration of U(VI) ions from aqueous solution and it was exposed to immobilization, and new solid support material was obtained. For this purpose, Schiff base hydrazone derivative (HL) was chemically bonded to silica gel surface immobilized 3-aminopropyl trimethoxysilane, then analyzed by Fourier transform infrared, Brunauer-Emmett-Teller, scanning electron microscopy and elemental analysis. The influence of the solution pH, amount of sorbent, contact time, temperature, foreign ion effect and initial U(VI) concentration was investigated. The maximum U(VI) uptake capacity was found to be 8.46 mg/g. (author)

  18. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    Directory of Open Access Journals (Sweden)

    Michelina Catauro

    2017-10-01

    Full Text Available Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone/zirconia (PCL/ZrO2 hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications.

  19. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    Science.gov (United States)

    Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio

    2017-01-01

    Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO2) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications. PMID:29039803

  20. Investigation on the utilization of ZrO2-SiO2 composite microspheres for Sr+2 sorption synthesized via sol-gel method

    International Nuclear Information System (INIS)

    Inan, S.; Tel, H.; Altas, Y.; Eral, M.; Sert, S.; Cetinkaya, B.; Kaplan, U.

    2009-01-01

    Sr-90 is a typical fission product with a half life of approximately 30 years. The removal of long lived radiotoxic strontium from liquid radioactive waste is an important issue for the health safety. Besides, it reduces the storage problems and facilitates the disposal of the waste. Several methods are utilized for the removal of strontium from liquid radioactive waste. One of the important methods is adsorption processes using metal oxides. Especially, sorbents such as hydrous oxides of titanium, silicium and zirconium and their mixtures, titanium and zirconium phosphates, crystalline silico-titanate(CST) have a good thermal and radiation stability, chemical stability even in strong acidic media, high sorption capacity and compatibility to immobilisation step. The major disadvantage of synthetic inorganic sorbents is their unsuitable granulometric and mechanical properties to use in column applications. Preparation of homogen and uniform spherical particles of these composite sorbents by sol-gel method improves the flow dynamics for column operation and extends its practical applications in industry. In this study, ZrO 2 -SiO 2 composite microspheres were synthesized by sol-gel method. for the sorption of Sr 2 +. The optimum Sr 2 + adsorption conditions were determined by 'Central Composite Design' (CCD). Thermodynamic parameters related to adsorption such as ΔHo, ΔSo and ΔGo were calculated. The adsorption data have been interpreted in terms of Langmuir, Freundlich and D-R isotherms.

  1. Influence of the Ti concentration and of the Ti:Mo molar ratio, in the efficiency of the 99 Mo - 99m Tc generator, at basis of gels of titanium molybdates

    International Nuclear Information System (INIS)

    Cortes R, O.; Monroy G, F.; Martinez C, T.

    2003-01-01

    The 99m Tc, continues being the radionuclide more used in nuclear medicine to world scale. The production of this radioisotope, is carried out by means of generators 99 Mo/ 99m Tc that get ready commercially with 99 Mo of high specific activity, adsorbed in alumina (2 mg 99 Mo/g alumina) and that they are elutriated every 23 hours. In an alternative way, it is intended to use gels of titanium molybdates, as matrices of this generators. The gels are synthesized starting from solutions of ammonium molybdates and of titanium tetrachloride in aqueous media. These gels allow to incorporate until 25% of molybdenum in their structure, being been able to use 99 Mo of low specific activity that can be obtained starting from the reaction 98 Mo (n, γ) 99 Mo. With the object of producing generators of medium activity, with the base of gels of titanium molybdates, intends in this work, to study the influence of two synthesis parameters of these gels: the concentration of the titanium solutions and the molar ratio Ti: Mo. The decrease of the concentration of the titanium solution, used during the synthesis of the gels, is converted in an efficiency decrease and radionuclide purity of the generators, as well as an increment so much of the volume of elutriation, as of the pH of the elutriates. The gels that contain an major number of titanium moles, regarding the molybdenum moles, present a greater radionuclide purity, but they diminish their efficiency. The best characteristics for the gels synthesis of titanium molybdates are: a molar ratio 1:1 for Ti and Mo, and to use solutions of titanium whose concentration is near at 1 M. (Author)

  2. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  3. Syntheses and absorption-structure relationships of some new ...

    Indian Academy of Sciences (India)

    New biheterocyclic compound was synthesized as starting material to prepare new photosensitizers mono-, tri-, substituted tri-, azadimethine and mixed cyanine dyes. Absorption-structure relationship of the synthesized cyanine dyes were determined by studying their electronic spectral behaviour in ethanol. The structure of ...

  4. A potential green emitting citrate gel synthesized NaSrBO3:Tb3+ phosphor for display application

    Science.gov (United States)

    Bedyal, A. K.; Kumar, Vinay; Swart, H. C.

    2018-04-01

    A potential green emitting NaSrBO3:Tb3+ (1-9 mol%) phosphor was synthesized by a citrate gel combustion method. X-ray diffraction patterns confirmed the monoclinic phase of the phosphor. The phosphor emitted intense green emission under near-UV and electron excitation due to the characteristic transitions 5D4→7F6(488 nm),5D4→7F5(544 nm),5D4→7F4(586 nm) and 5D4→7F3(622 nm) of Tb3+ ions. The optimal molar concentration of Tb3+ ions was found to be 6 mol%, after that concentration quenching occurred. The dipole-dipole interaction was found to be accountable for energy transfer between the Tb3+ ions. X-ray photoelectron spectroscopy was carried out to analyze the chemical states of the elements and suggest that terbium was mostly presented in the (+3) valance state in the phosphor. The approximated Commission Internationale de l‧Eclairage coordinates for the PL (0.31, 0.61) and CL (0.33, 0.57) were found to be very close to the well-known green emitting phosphor. The obtained results suggest that the studied phosphor could be an ultimate choice for green emission in display applications.

  5. Nanomaterial Host Bands Effect on the Photoluminescence Properties of Ce-Doped YAG Nanophosphor Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    L. Guerbous

    2015-01-01

    Full Text Available Cerium trivalent (Ce3+ doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD, thermogravimetry (TG, differential scanning calorimetry (DSC analysis, Fourier transform infrared (FTIR spectroscopy, and steady photoluminescence (PL spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+ 5d1→2F5/2, 2F7/2 transitions and its photoluminescence excitation spectrum contains the two Ce3+ 4f1→5d1, 5d2 bands. The crystal filed splitting energy levels positions 5d1 and 5d2 and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+ 4f1 ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.

  6. Effect of metal ion dopants on photochemical properties of anatase TiO{sub 2} films synthesized by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhangfu [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China)]. E-mail: yuanzhf@home.ipe.ac.cn; Zhang Junling [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Li Bin [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Li Jianqiang [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China)

    2007-06-25

    Anatase TiO{sub 2} films were successfully synthesized by a modified sol-gel method wherein peroxo titanic acid solution was derived from TiCl{sub 4}/ethanol/water solution at room temperature. The as-prepared films were further surface-doped by photodeposited Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} to improve its physicochemical properties. The phase and structure of the films were investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The physicochemical properties of the films were also measured. The results show that both hydrophilicity and photocatalytic activity of the films were remarkably improved by doping transition metal ion Fe{sup 3+}. In case of Cr{sup 3+} doped films, hydrophilicity was also significantly enhanced but photocatalytic activity for methyl orange under UV irradiation was still comparable with the undoped films.

  7. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  8. Synthesis, structural, spectroscopic and thermoanalytical study of sol–gel derived SiO{sub 2}–CaO–P{sub 2}O{sub 5} gel and ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma 29, Aversa (CE) (Italy); Dell’Era, Alessandro [Department D.M.E., ‘Guglielmo Marconi’ University, via Plinio 44, Roma (Italy); Vecchio Ciprioti, Stefano, E-mail: stefano.vecchio@uniroma1.it [Department S.B.A.I., Sapienza University of Rome, via del Castro Laurenziano 7, Roma (Italy)

    2016-02-10

    Highlights: • Four different SiO{sub 2}–CaO–P{sub 2}O{sub 5} gel-glasses were synthesized by the sol–gel method. • FTIR, XRD, SEM-EDS and TG/DTA techniques were used to fully characterize the gels. • Integral isoconversional OFW method was used to study dehydration kinetics. • Appropriate temperatures of 600 and 1200 °C were chosen to thermally treat them. • All amorphous gels at 1200 °C crystallize as wollastonite and pseudowollastonite. - Abstract: In the present work bioactive powders of the ternary SiO{sub 2}·CaO·P{sub 2}O{sub 5} systems, which differ in the Ca/P molar ratio, were synthesized by means of a sol–gel route, using tetraethyl orthosilicate (TEOS, Si(OC{sub 2}H{sub 5}){sub 4}), calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}·4H{sub 2}O) and triethyl phosphate (TEP, OP(OC{sub 2}H{sub 5}){sub 3}) as precursors of SiO{sub 2}, CaO and P{sub 2}O{sub 5}, respectively. In order to investigate the influence of the relative amount of each phase (in this study: SiO{sub 2}, CaO and P{sub 2}O{sub 5}) the thermal properties of the synthesized gel-glass materials were studied as a function of the Ca/P molar ratio using thermogravimetric and differential thermal analysis (TG/DTA). After dehydration (in a single step), described from a kinetic point of view as a simple water evaporation without rupture of chemical bonds, all gels undergo a complex multi-step decomposition with endo and exothermic effects, followed by crystallization of calcium silicate phases at about 950 °C. Furthermore, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy, coupled with energy dispersive spectroscopy (SEM/EDS), allowed us to detect the chemical modifications induced by modifying the Ca/P molar ratio and the sintering. This process is obtained by thermal treatment of the gel-glass precursors after analyzing their thermal behavior in the temperature range 600–1000 °C, with the aim to convert them into

  9. Making MgO/SiO2 Glasses By The Sol-Gel Process

    Science.gov (United States)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  10. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Complexing Agents on Carbon Content and Lithium Storage Capacity of LiFePO4/C Cathode Synthesized via Sol-Gel Approach

    Directory of Open Access Journals (Sweden)

    C. Guan

    2016-01-01

    Full Text Available Olivine-structured LiFePO4 faces its intrinsic challenges in terms of poor electrical conductivity and lithium-ion diffusion capability for application to lithium-ion batteries. Cost-effective sol-gel approach is advantageous to in situ synthesize carbon-coated LiFePO4 (LiFePO4/C which can not only improve electronic conductivity but also constrain particle size to nanometer scale. In this study, the key parameter is focused on the choice and amount of chelating agents in this synthesis route. It was found that stability of complexing compounds has significant impacts on the carbon contents and electrochemical properties of the products. At the favorable choice of precursors, composition, and synthesis conditions, nanocrystalline LiFePO4/C materials with appropriate amount of carbon coating were successfully obtained. A reversible capacity of 162 mAh/g was achieved at 0.2C rate, in addition to good discharge rate capability.

  12. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization

    International Nuclear Information System (INIS)

    Gosavi, Priti V.; Biniwale, Rajesh B.

    2010-01-01

    Three different wet chemistry routes, namely co-precipitation, combustion and sol-gel methods were used to synthesize LaFeO 3 perovskite with improved surface area. The synthesized perovskite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) nitrogen adsorption, ultraviolet diffused reflectance spectroscopy (UVDRS) and Fourier transform infrared (FTIR) spectroscopy techniques. Improved surface area was observed for all three methods as compared to the previously reported values. The perovskite synthesized using sol-gel method yields comparatively pure, crystalline phase of LaFeO 3 and relatively higher surface area of 16.5 m 2 g -1 and porosity. The material synthesized using co-precipitation method yielded other phases in addition to the targeted phase. The morphology of perovskite synthesized using co-precipitation method was uniform agglomerates. Combustion method yields flakes type morphology and that of sol-gel method was open pore type morphology. The selection of method for perovskite synthesis largely depends on the targeted application and the desired properties of perovskites. The results reported in this study are useful for establishing a simple scalable method for preparation of high surface area LaFeO 3 as compared to solid-oxide method. Further, the typical heating cycle followed for calcinations resulted in relatively high surface area in the case of all three methods.

  13. Effect of defect on the nonlinear and dielectric property of Ca(1–x)SrxCu3Ti4O12 ceramics synthesized by sol–gel process

    International Nuclear Information System (INIS)

    Li, Tao; Liu, Dewei; Dai, Haiyang; Xiang, Huiwen; Chen, Zhenping; He, Huifang; Chen, Zhiquan

    2014-01-01

    Highlights: • Ca (1−x) Sr x Cu 3 Ti 4 O 12 ceramics are synthesized by sol–gel process. • Positron annihilation lifetime spectra is used to investigate the defects of samples. • Nonlinear and dielectric properties are controlled by density and defects of samples. - Abstract: Ca (1−x) Sr x Cu 3 Ti 4 O 12 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3 and 0.4) ceramics are synthesized by sol–gel process. The XRD patterns show that weak peaks of Sr 4 Ti 3 O 10 , TiO 2 and Ca 1.7 Sr 0.3 CuO 3 begin to appear at x ⩾ 0.2. Sr-doping is conductive to increase the density and reduce the defect concentration Ca (1−x) Sr x Cu 3 Ti 4 O 12 ceramics as x ⩽ 0.15. With increasing x (0.2 ⩽ x ⩽ 0.4), Sr-doping reduces the density and enhances the concentration of defects for the ceramics. The nonlinear coefficient value increases and reaches a maximum 13.5 at x = 0.15, and then decreases gradually with increasing x. The dielectric properties demonstrate that, as x ⩽ 0.15, Sr-doping not only increases the dielectric permittivity value and decreases the dielectric loss but also reduces the dependence on frequency at low frequencies. With increasing x (0.2 ⩽ x ⩽ 0.4), Sr-doping begins to lead to an inverse result in dielectric behaviors. The nonlinear and dielectric properties of Ca (1−x) Sr x Cu 3 Ti 4 O 12 ceramics are directly controlled by the density and defects

  14. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    International Nuclear Information System (INIS)

    Crespo, M.A. Dominguez; Murillo, A. Garcia; Torres-Huerta, A.M.; Yanez-Zamora, C.; Carrillo-Romo, F. de J

    2009-01-01

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr 6+ has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y 2 O 3 ) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y 2 O 3 coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  15. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, M.A. Dominguez, E-mail: mdominguezc@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Murillo, A. Garcia; Torres-Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Yanez-Zamora, C. [Estudiante del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira, km 14.5, Carr. Tampico-Puerto Industrial. C.P. 89600, Altamira, Tamaulipas (Mexico); Carrillo-Romo, F. de J [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico)

    2009-08-26

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr{sup 6+} has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y{sub 2}O{sub 3}) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y{sub 2}O{sub 3} coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  16. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    Science.gov (United States)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  17. Low- and high-index sol-gel films for planar and channel-doped waveguides

    Science.gov (United States)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  18. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  19. Magnetic properties of sol-gel synthesized C-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Duc, E-mail: dung.nguyenduc@hust.edu.vn [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam); Son, Cao Thai; Loc, Pham Vu; Cuong, Nguyen Huu; Kien, Pham The; Huy, Pham Thanh [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam)

    2016-05-25

    ZnO doping with Carbon (C-doped ZnO) materials were prepared by sol-gel technique following with a heat treatment process. Single phase of Wurtzite crystal structure of ZnO was concluded via x-ray diffraction (XRD) with a large amount of excess C tracking by energy dispersive X-ray spectroscopy (EDX) analysis. Two types of ZnO crystals (twinning particles) with different grain sizes and shapes were identified via scanning electron microscopy (FE-SEM). The first type has a smaller grain size of about 20 nm and hexagonal shape. And the second type has a larger grain size of about 80–120 nm and round shape. C substitutions of both Zn and O sites to form C–O and C–Zn bonds were conclusively confirmed via x-ray photoelectron spectroscope (XPS). Experimental evidences for the co-existence of different ferromagnetic phases in the materials are reported and discussed. Two Curie points at high temperatures (>500 °C) are presented. A metamagnetic transition was observed at magnetic field H = 19.2 kOe which was related to the co-existence of ferromagnetic phases. These involve in the formation of twinning C-doped ZnO nanoparticles. - Highlights: • Formation of sol-gel prepared single phase wurtzite ZnO nanoparticles. • Two morphological C-doped ZnO nanoparticles of different grain sizes. • The room temperature ferromagnetism. • An abnormal metamagnetic transition at magnetic field H = 19.2 kOe. • Two different Curie points (T{sub C}) at 500–600 °C.

  20. Influence of calcination temperature on sol-gel synthesized single-phase bismuth titanate for high dielectric capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiruramanathan, Pandirengan; Marikani, Arumugam [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Physics; Madhavan, Durairaj [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Chemistry; Bharadwaj, Suresh; Awasthi, Anand Mohan [UGC-DAE Consortium for Scientific Research, Indore (India). Thermodynamics Lab.

    2016-05-15

    An inexpensive sol-gel combustion method using citric acid as fuel has been used to synthesize bismuth titanate, Bi{sub 4}Ti{sub 3}O{sub 12} nanopowders. Thermogravimetric analysis proved that a calcination temperature of 900 C is sufficient for the preparation of single-phase bismuth titanate. X-ray diffraction and Fourier transform infrared spectroscopy are used to examine the influence of calcination temperature on the structural growth of the Bi{sub 4}Ti{sub 3}O{sub 12} nanopowder. The average crystallite size estimated by using the Scherrer method and the Williamson-Hall method was found to increase with calcination temperature. Photoluminescence behavior as a function of calcination temperature was observed at two different excitation wavelengths of 300 nm and 420 nm. The morphology of the particles analyzed using images obtained from field emission scanning electron microscopy displayed irregular, random sized, and spherical-shaped structures. The stoichiometry and purity of the nanopowder are confirmed by energy-dispersive spectroscopy. The broadband dielectric results established the highest dielectric constant (ε{sub r} = 450) for a frequency of 100 Hz achieved with a potential capacitance of 138 pF m{sup -2}. This establishes Bi{sub 4}Ti{sub 3}O{sub 12} as a promising dielectric material for achieving high energy density capacitors for the next-generation passive devices.

  1. Sol-gel syntheses of pentaborate β-LaB5O9 and the photoluminescence by doping with Eu3+, Tb3+, Ce3+, Sm3+, and Dy3+

    Science.gov (United States)

    Yang, Ruirui; Sun, Xiaorui; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2018-02-01

    Rare earth (RE) borates have been extensively studied as good photoluminescent materials, however, the target hosts were limited to "RE3BO6", REBO3, and REB3O6 in the RE2O3-B2O3 phase diagram until the recent discovery of rare earth pentaborate. For the first time, the sol-gel method was employed to synthesize β-LaB5O9 doped with Eu3+, Tb3+, Ce3+, Sm3+, Dy3+. In comparison to the previous synthetic methods, the sol-gel method possesses superiorities including easily-controllable doping concentration, high yield and emission efficiency. Solid solutions of phosphors were prepared and carefully analyzed by powder X-ray diffraction. Concentration quenching or saturation was observed in Eu3+, Tb3+ and Ce3+ doped phosphors at round 10 at%. Eu3+, Tb3+, Sm3+, and Dy3+ emit red, green, orange, and close-to-white light, respectively. The absolute emission efficiency of Ce3+ is high and in the UV range, suggesting the function of being sensitizer once combined with other activators.

  2. Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins

    International Nuclear Information System (INIS)

    Ojima, N.; Sakamoto, T.; Yamashita, M.

    1996-01-01

    Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation

  3. High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process

    International Nuclear Information System (INIS)

    Chen, C.-L.; Chiu, K.-F.; Chen, Y.-R.; Chen, C.C.; Lin, H.C.; Chiang, H.Y.

    2013-01-01

    Nano-crystalline LiMn 2 O 4 thin films have been synthesized by the sol–gel process at low temperature (623 K). The low temperature prepared films are treated by a direct current pulsed oxygen plasma, and tested as cathodes for lithium batteries. The plasma treated films are able to sustain charge–discharge cycles under significant high current density of up to 5.4 A/g corresponding to 45 C for battery operation. The capacity ratio for discharging at 1.2 A/g and 0.024 A/g is over 65%, indicating low internal resistance, which meets the requirement of fast charge and discharge for electric vehicles. The stable high current density performances can be attributed to the formation of a dense surface morphology that is induced by the plasma irradiation. The formation of the surface morphology results in the more uniform current distribution on the film surface, which decreases the interface charge transfer resistances as measured by the electrochemical impedance spectra. - Highlights: • A low temperature process has been used to synthesize LiMn 2 O 4 thin films. • Plasma treatment can reduce the interface charge transfer resistances for LiMn 2 O 4 . • LiMn 2 O 4 cathodes treated by plasma treatment can deliver high rate capability

  4. Dielectric properties of Zr doped CaCu{sub 3}Ti{sub 4}O{sub 12} synthesized by sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Jesurani, S. [Department of Physics, Jeyaraj Annapackium College for Women, Periyakulam 625 601, Tamil Nadu (India); Center for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Tamil Nadu (India); Kanagesan, S., E-mail: kanagu1980@gmail.com [Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, M. [Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Physics Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Ismail, I. [Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Zr doped CaCu{sub 3}Ti{sub 4}O{sub 12} samples have been synthesized using sol-gel process. Black-Right-Pointing-Pointer The particle size of the powder ranges from 47 to 85 nm. Black-Right-Pointing-Pointer Less sintering at 1040 Degree-Sign C results in high density and high dielectric constant. - Abstract: Zr substituted CaCu{sub 3}Ti{sub 4-x}Zr{sub x}O{sub 12} (CCTZO) with x = 0.00, 0.02, 0.10, 0.20 and 0.50 mol% were prepared by sol-gel route from the metal nitrate solutions, Titanium isoproxide, and zirconium oxy chloride. XRD analysis confirmed the formation of a single phase material in the samples calcinated at 800 Degree-Sign C for 3 h. The crystal structure did not change on doping with zirconium and it remained cubic in all the four studied compositions. The permittivity and dielectric loss of 0.1 mol% Zr doped CaCu{sub 3}Ti{sub 4}O{sub 12} were improved for K Almost-Equal-To 6020 and tan {delta} Almost-Equal-To 0.52 at 1 kHz after the sample had been sintered at 1040 Degree-Sign C for 4 h. AFM studies showed that the particle size of the CCTZO powder ranged from 47 to 85 nm. FE-SEM micrographs of the CaCu{sub 3}Ti{sub 4-x}Zr{sub x}O{sub 12} samples showed that the grain size was in the range of 250 nm to 5 {mu}m for these samples. EDX studies showed the presence of calcium, copper, titanium, oxygen and zirconium. Remarkably, the dielectric constant increased and dielectric loss had lower values compared to the undoped CCTO.

  5. Dry gel conversion synthesis of SAPO-34 nanocrystals

    International Nuclear Information System (INIS)

    Hirota, Yuichiro; Murata, Kenji; Tanaka, Shunsuke; Nishiyama, Norikazu; Egashira, Yasuyuki; Ueyama, Korekazu

    2010-01-01

    SAPO-34 nanocrystals were synthesized by a dry gel conversion method using tetraethylammonium hydroxide as a structure-directing agent. The crystal growth of SAPO-34 was studied by X-ray diffraction and field-emission scanning electron microscopy. After 3 h, 45-nm SAPO-34 crystals with an amorphous phase were observed. The crystal size increased to 70 nm after 6 h, but did not increase greatly thereafter. The average crystal size of the final product was 75 nm. The nucleation density for SAPO-34 crystals in dry gel conversion appeared to be much higher than that under hydrothermal conditions, resulting in the formation of small crystals.

  6. Preliminary in vitro and in vivo characterizations of a sol–gel derived ...

    Indian Academy of Sciences (India)

    Unknown

    production (where a bioactive surface is colonized by osteogenic ... The material was synthesized by a sol–gel method involving .... Management of animal husbandry and ..... Davies J E 1990 Handbook of bioactive ceramics (eds) J Wilson-.

  7. Synthesis and characterization of Li{sub 4}SiO{sub 4} nano-powders by a water-based sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin, E-mail: zywen@mail.sic.ac.c [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Xu Xiaogang; Wang Xiuyan; Lin Jiu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-08-01

    The water-based sol-gel process for the synthesis of Li{sub 4}SiO{sub 4} nano-powders was reported for the first time. LiOH.H{sub 2}O and aerosil SiO{sub 2} were used as the starting materials with citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) as the chelating agent. Li{sub 4}SiO{sub 4} powders with particle size as small as 100 nm were successfully synthesized at the temperature as low as 675 deg. C. Phase analysis, morphology, sintering behavior of the powders and ionic conductivity of the sintered bodies were investigated systematically. The experimental results showed that the powders obtained by the water-based sol-gel process (SG) possessed excellent sinterability, exhibiting a linear shrinkage of 5.2% while sintered to 900 deg. C, more than 3 times that of the powders obtained by solid state reaction (SSR). The bulk conductivity of the SG sintered bodies was much higher than that of the SSR samples at the same testing temperature.

  8. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  9. Luminescence properties of europium (III) cryptates trapped in sol-gel glass

    International Nuclear Information System (INIS)

    Zaitoun, M.A.; Kim, T.; Jaradat, Q.M.; Momani, K.; Qaseer, H.A.; El-Qisairi, A.K.; Qudah, A.; Radwan, N.E.

    2008-01-01

    The Lanthanide complexes Eu-2.2.1 and Eu-2.2.2 were synthesized and then incorporated into silica based transparent organic-inorganic hybrid material by the sol-gel method as an example of how doped xerogel materials are emerging as an important means of producing new materials. The produced gels were diagnosed to monitor emission spectra of the luminescent trivalent europium (Eu 3+ ) complexes; emissions were compared to those for gels containing uncomplexed Eu 3+ . Results of the experiments (emission and lifetimes) concerning the coordination sphere composition showed that a cryptand ligand with aromatic groups (short range effect) and the hydrophobic gel host (long range effect) settle efficient action in the antenna effect and isolate the central ion from efficient quenchers, as e.g. water molecules. Each ligand imposed a distinct splitting pattern on the europium emission bands that helps identify them

  10. Naturally Abundance Vanillin as Starting Material to Synthesizing 4-(4-Hydroxy-3-methoxyphenyl-6-methyl-3,4-dihydropyrimidin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Masruri MASRURI

    2015-12-01

    Full Text Available Indonesia is the second biggest producer of natural vanillin. Traditionally it was isolated from the bean of vanilla (Vanilla planifolia Andrews. This paper reports on applying vanillin as starting material for synthesizing a biologically important chemical structure 3,4-dihydropyrimidinone. The reaction was undertaken in one step following multi component reaction (MCR. Products determination was undergone using FTIR and UV-Vis spectrophotometry, and also liquid chromatography-mass spectrometry (LCMS. After purification under flash column chromatography in ethyl acetate-hexane, it was found a white solid of 4-(4-hydroxy-3-methoxyphenyl-6-methyl-3,4-dihydropyrimidin-2(1H-one in 67% yield with a few amount of an unreacted vanillin.

  11. New Functionalized Sol-Gel Hybrid Sorbent Coating for Stir Bar Sorptive Extraction of Selected Non-Steroidal Anti Inflammatory Drugs in Human Urine Samples

    International Nuclear Information System (INIS)

    Mashkurah Abd Rahim; Wan Aini Wan Ibrahim; Zainab Ramli; Mohd Marsin Sanagi

    2015-01-01

    A new sol-gel hybrid material, methyltrimethoxysilane-cyanopropyltriethoxysilane (MTMOS-CNPrTEOS) was successfully synthesized and used as a coating material in stir bar sorptive extraction (SBSE) of selected non-steroidal anti-inflammatory drugs (NSAIDs) in urine samples. The MTMOS-CNPrTEOS hybrid was synthesized by hydrolysis and condensation of MTMOS and CNPrTEOS in the presence of trifluoroacetic acid as catalyst via sol-gel method. Several factors influencing the synthesized sol-gel hybrid MTMOS-CNPrTEOS process such as mole ratio of MTMOS-CNPrTEOS, NaOH concentrations as etching solution, etching time, coating time and water content were investigated and optimized in this study. The optimum synthesis conditions obtained were 1:1 mol ratio of MTMOS-CNPrTEOS, 1 M NaOH as etching solution, 60 min etching time, 2 h coating time and 6 mmol water. The sol-gel hybrid MTMOS-CNPrTEOS synthesized under the optimum conditions was used to determine selected NSAIDs in human urine samples using normal stacking mode capillary electrophoresis with ultraviolet detection. MTMOS-CNPrTEOS SBSE method demonstrated good linearity (60 to 20,000 μg L -1 ) with excellent coefficient of determination (r 2 > 0.9990). The sol-gel hybrid MTMOS-CNPrTEOS SBSE method showed low limit of detection (35 - 41 μg L -1 ) with good precision (RSD < 6 %, n = 3) and excellent extraction recoveries (83.5 - 98.9 %) for the selected NSAIDs. The sol-gel hybrid MTMOS-CNPrTEOS SBSE method demonstrated good potential as an alternative sorbent in SBSE method for NSAIDs. (author)

  12. A Pendulum-Like Motion of Nanofiber Gel Actuator Synchronized with External Periodic pH Oscillation

    Directory of Open Access Journals (Sweden)

    Shuji Hasimoto

    2011-02-01

    Full Text Available In this study, we succeeded in manufacturing a novel nanofiber hydrogel actuator that caused a bending and stretching motion synchronized with external pH oscillation, based on a bromate/sulfite/ferrocyanide reaction. The novel nanofiber gel actuator was composed of electrospun nanofibers synthesized by copolymerizing acrylic acid and hydrophobic butyl methacrylate as a solubility control site. By changing the electrospinning flow rate, the nanofiber gel actuator introduced an anisotropic internal structure into the gel. Therefore, the unsymmetrical motion of the nanofiber actuator was generated.

  13. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  14. Surface modification of sol–gel synthesized TiO{sub 2} nanoparticles induced by La-doping

    Energy Technology Data Exchange (ETDEWEB)

    Grujić-Brojčin, M., E-mail: myramyra@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Armaković, S. [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Tomić, N. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Abramović, B. [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Golubović, A.; Stojadinović, B. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kremenović, A. [Faculty of Mining and Geology, Laboratory for Crystallography, University of Belgrade, Đušina 7, 11000 Belgrade (Serbia); Babić, B. [Institute of Nuclear Sciences “Vinča”, University of Belgrade, 11001 Belgrade (Serbia); Dohčević-Mitrović, Z.; Šćepanović, M. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2014-02-15

    The influence of La-doping in the range of 0.5–6.0 mol% on structural and morphological properties of TiO{sub 2} nanopowders synthesized by sol–gel routine has been investigated by XRPD, AFM, EDS and BET measurements, as well as Raman spectroscopy. The XRPD and Raman measurements have revealed the anatase phase as dominant in all nanopowders, with crystallite size decreasing from ∼ 15 nm in pure TiO{sub 2} to ∼ 12 nm in La-doped samples. The BET data suggest that all samples are fully mesoporous, with mean pore diameters in the range of ∼ 6–8 nm. The specific surface area and the complexity of pore structure are greater in doped samples than in pure TiO{sub 2} sample. The spectroscopic ellipsometry has apparently shown that the band gap has been gradually increased with the increase of La content. The STM and STS techniques have been used successfully to evaluate the surface morphology and electronic properties of La-doped nanopowders. All investigated properties have been related to photocatalytic activity, tested in degradation of a metoprolol tartrate salt (0.05 mM), and induced by UV-radiation. All doped samples showed increased photocatalytic activity compared to pure TiO{sub 2}, among which the 0.65 mol% La-doped sample appeared to be the most efficient. - Highlights: • Effects of La-doping on structural, morphological and electronic properties of TiO{sub 2} nanopowders. • Surface morphology and electronic properties of La-doped nanopowders evaluated by STM/STS. • Spectroscopic ellipsometry shown gradual increase of bandgap with the increase of La content. • Photocatalytic activity of samples was tested in degradation of MET under UV light.

  15. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  16. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  17. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    International Nuclear Information System (INIS)

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo; De la Cruz-Hernandez, Wencel; Gomez-Salazar, Sergio

    2014-01-01

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH 3 COO) 2 Cr + ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. 13 C, 29 Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level

  18. Nanosized LaCo0.6Fe0.4O3 perovskites synthesized by citrate sol gel auto combustion method

    Directory of Open Access Journals (Sweden)

    Unikoth Megha

    2014-06-01

    Full Text Available LaCo0.6 Fe0.4 O3 (LCFO nanopowder was synthesized from constituent metal nitrates, citric acid and ethylene glycol by citrate sol gel autocombustion method and calcined at different temperatures. The powders were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX and Fourier transform infrared spectra (FTIR, whereas dielectric properties were investigated with LCR-meter. The FTIR spectra, taken for the xerogel and the sample calcined at 1000 °C, confirm that the organic groups were removed during calcination and oxide structure was formed. The XRD result shows that LCFO has rhombhohedral crystal structure with R-3C space group and forms single phase after calcination at 600 °C. The activation energy of crystallite growth, determined from the Arrhenius plot, was 17±2 kJ/mol. Surface feature studies of the powders were obtained from SEM. At 1000 °C, dense microstructure with well-shaped grain boundaries was obtained and the average grain size was around 400 nm. EDAX confirms the elemental composition. Finally, from the dielectric studies, it was found that the dielectric constant (εr as well as dielectric loss tangent (tan δ decreases with increase in frequency.

  19. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method

    Science.gov (United States)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-12-01

    Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were

  20. A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores The utilization of materials obtained by the sol-gel process in biosensors construction

    Directory of Open Access Journals (Sweden)

    Antonio A. S. Alfaya

    2002-09-01

    Full Text Available The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

  1. Influence of PCL on mechanical properties and bioactivity of ZrO{sub 2}-based hybrid coatings synthesized by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Lamanna, Giuseppe [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy)

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic–inorganic hybrid coatings have been synthesized via sol–gel dip coating. They consist of an inorganic ZrO{sub 2} matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase. - Highlights: • ZrO{sub 2}/PCL organic-inorganic hybrid coatings synthesis via sol-gel dip coating. • Coatings porosity and bioactivity increase in presence of high PCL amount. • Coatings Hardness and Young’s modulus decrease in presence of high PCL amount.

  2. Carbonated hydrocalumite synthesized by the microwave method as a possible antacid

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Carlos F., E-mail: clinares@uc.edu.ve [Unidad de Síntesis de Materiales y Metales de Transición, Facultad de Ciencias y Tecnología, Departamento de Química, Universidad de Carabobo, Valencia, Edo, Carabobo Apartado Postal 3336 (Venezuela, Bolivarian Republic of); Moscosso, Joel; Alzurutt, Victor; Ocanto, Freddy; Bretto, Pablo [Unidad de Síntesis de Materiales y Metales de Transición, Facultad de Ciencias y Tecnología, Departamento de Química, Universidad de Carabobo, Valencia, Edo, Carabobo Apartado Postal 3336 (Venezuela, Bolivarian Republic of); González, Gema [Laboratorio de Materiales, Centro Tecnológico, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana Km 11 Altos de Pipe, Los Teques (Venezuela, Bolivarian Republic of)

    2016-04-01

    A carbonated hydrocalumite was synthesized by the microwave method for being used as antacid. The gel was formed using Ca and Al nitrate solutions in a basic medium (NaOH + Na{sub 2}CO{sub 3}), then, this gel was aged and heated in a domestic microwave for 2.5 min (1250 W). The obtained white solid was washed with distilled water, dried in an oven at 100 °C for 18 h and characterized by different techniques such as: X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), BET surface area measurements, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Finally, the carbonated hydrocalumite was tested as antacid by using a synthetic gastric juice and its activity was compared with a commercial antacid formulated with hydrotalcite. Results showed that the carbonated hydrocalumite was more effective than that commercial antacid. - Highlights: • Carbonated hydrocalumite was synthesized by the microwave method. • The aging time was drastically reduced. • Carbonated hydrocalumite was more active as antacid than a commercial antacid based on hydrotalcites.

  3. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia

    International Nuclear Information System (INIS)

    Li Zhixia; Kawashita, Masakazu; Araki, Norio; Mitsumori, Michihide; Hiraoka, Masahiro; Doi, Masaaki

    2010-01-01

    We have prepared magnetic SiO 2 microspheres with a diameter of 20-30 μm as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO 2 gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH 3 OH) as a dispersant and ammonia (NH 4 OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO 2 gel microspheres with a diameter of approximately 20 μm were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH 3 OH/H 2 O/NH 4 OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe 3 O 4 and showed a higher specific absorption rate (SAR = 27.9-43.8 W g -1 ) than that of the starting IONPs (SAR = 25.3 W g -1 ) under an alternating current magnetic field of 300 Oe and 100 kHz.

  4. Osteoconducting bioglass synthesis via sol-gel process; Biovidro osteocondutor sintetizado pelo processo sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.V.; Aragones, A.; Barra, G.O.M.; Salmoria, G.V.; Fredel, M.C., E-mail: rafaelavpereira@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    The presence of bioglasses in scaffolds has been studied as they promote the osteoconduction in bones. The scaffolds are developed in order to induce the repair and regeneration in bone tissue. An absorbable bioglass from SiO2-CaO-P2O5 system was synthesized by sol-gel process with the intent of producing these scaffolds. Bioglass 58S was define for these work once it presents ions (Ca and P) which assist at the carbonated apatite layer formation when released. The apatite layer presents an important role at the bone regeneration and metabolism, being involved at grow and mineralization of bones. FTIR was realized to characterize the synthesized bioglass on its chemical composition, XRD to analyze the crystalline structure, solubility test to observe the weight variance and SEM to observe the particles morphology. The obtained results confirmed the production of a bioglass with the desired composition to produce osteoconducting scaffolds. (author)

  5. Zr alkoxide chain effect on the sol-gel synthesis of lithium metazirconate

    International Nuclear Information System (INIS)

    Pfeiffer, Heriberto; Bosch, Pedro; Bulbulian, Silvia

    2003-01-01

    Lithium metazirconate (Li 2 ZrO 3 ) was synthesized by the sol-gel method, using four different Zr alkoxides: zirconium ethoxide, zirconium iso-propoxide, zirconium propoxide and zirconium butoxide. The syntheses were made under two different catalytic regimes, acid and basic. The resulting powders were mixtures of Li 2 ZrO 3 and ZrO 2 . The best yield of Li 2 ZrO 3 (100%) was obtained when the sol-gel reaction was developed with lithium methoxide and zirconium ethoxide under acid catalysis regime. This study establishes that, for base-catalyzed reactions the ZrO 2 formation decreases when the alkyl-chain increases in the alkoxides. By contrast, for acid-catalyzed reactions the ZrO 2 formation increases as the alkyl-chain increases. Finally, when Zr propoxide and Zr iso-propoxide were used, the Li 2 ZrO 3 amounts were different due to steric effects

  6. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol−Gel Procedure

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova Rohlfing, D.

    2009-01-01

    Roč. 21, č. 21 (2009), s. 5229-5236 ISSN 0897-4756 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanoparticles * nonaqueous Ssl -gel procedure * oxide materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.368, year: 2009

  7. Superconductive ceramics obtained with sol gel method

    International Nuclear Information System (INIS)

    Arcangeli, A.; Mosci, A.; Nardi, A.; Vatteroni, R.; Zondini, C.

    1988-01-01

    Several sol gel routes have been considered, studied and developed to produce large quantities of granulates which can be processed to obtain ceramics having good superconducting characteristics. In the considered process a mixture of commercial nitrates is atomized, at room temperature, in a solution 1:1 of Primene JMT and Benzene and a pale blue gel of the starting elements is suddently formed. The granulates obtained are free flowing, very reactive and well suited for pressing. For their intrinsic characteristics they could be very good precursors for the production of large quantities of superconductive ceramics in different forms. The precipitated gel is dried, calcinated, pressed in the form of cylindrical pellets which are sintered up to 960 degrees C. No griding or different thermal treatments are needed. The sintered material has low electric resistence, shows a clear Meissner effect and has a transition temperature of between 91 and 95 K

  8. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  9. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    Science.gov (United States)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  10. In vitro⿿in vivo performance of bare and drug loaded silica gel synthesized via optimized process parameters

    Science.gov (United States)

    Chakraborty, Suparna; Biswas, Supratim

    2016-01-01

    Silica xerogel as a potential drug carrier system for the in vivo as well as in vitro delivery of andrographolide was tested. The present study aims to optimize the effective experimental parameters; volume of ethanol, volume of water and drying temperature by applying response surface methodology coupled with Box⿿Behnken experimental design. The in vitro drug release in simulated body fluid at 37 οC from the selected formulation was significantly highest (44.83 ± 0.9%) among rest of the formulations. Results indicate that sol⿿gel method is useful for entrapping andrographolide in the silica gel and for releasing the same via diffusion through the porous matrix under the in vitro/in vivo conditions. Silica gel exhibited slow matrix degradation as well as sustained release of andrographolide within the experimental time frame of 168 h. In vivo study was performed with three increasing doses [2 mg (S1), 8 mg (S2), and 16 mg (S3)] of silica. Histological fates of different organs were executed with those doses.

  11. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  12. Iron doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Shilpi [Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Tyagi, Inderjeet [Department of Chemistry, Indian Institute of Technology Roorkee, 247667 (India); Gupta, Vinod Kumar, E-mail: vinodg@uj.ac.za [Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Sohrabi, Maryam; Mohammadi, Sanaz [Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Golikand, Ahmad Nozad, E-mail: anozad@aeoi.org.ir [Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Jaber Research Laboratory, NSTRI, P.O. Box: 14395-836, Tehran (Iran, Islamic Republic of); Fakhri, Ali, E-mail: ali.fakhri88@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-01-01

    Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV–Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15 min, pH 6 and 0.1 g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites Fe doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites possess greater photocatalytic efficiency. - Graphical abstract: Surface textural and morphological presentation. - Highlights: • Un-doped and Fe-doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites were applied as photocatalyst. • The nanocomposites exhibited photocatalytic property under UV light. • The maximum degradation was observed for Fe-doped SnO{sub 2}/Co{sub 3}O{sub 4} (1:1) photocatalyst. • 0.1 g photocatalyst is sufficient to carry out 98.3% degradation of MTZ.

  13. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  14. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    D.V. Sridevi

    2017-06-01

    Full Text Available A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP and 2–propanol as a common starting material and the obtained products were calcined at 450˚ C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functional groups of the samples were identified by Fourier transform spectroscopy (FT-IR. The UV-Vis-NIR spectra of cobalt doped TiO2 material shows two absorption peaks in the visible region related to d-d transitions of Co2+ in TiO2 lattice. Compared to un-doped TiO2 nanoparticles, the cobalt doped material show a red shift in the band gap.

  15. Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh-Tabrizi, S.A., E-mail: tabrizi1980@gmail.com [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Bigham, Ashkan [Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Rafienia, Mohammad [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2016-01-01

    In the present study, forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB contents and heat treatment on the textural properties and drug release from nanoparticles were investigated. The synthesized powders were studied by X-ray diffraction, Fourier transform infrared spectra, Brunauer–Emmett–Teller surface area analysis and transmission electron microscope images. Mg{sub 2}SiO{sub 4} materials demonstrated mesoporous characteristics and large specific surface area ranging from 159 to 30 m{sup 2}/g. The TEM results showed that forsterite nanorods had diameters about 4 nm and lengths ranging from 10 to 60 nm. It was found that the samples with 6 g CTAB show slower drug release rate than the other specimens, which is due to smaller pore size. This study revealed that the drug delivery of forsterite can be tailored by changing the amount of surfactant. - Highlights: • Forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method. • Nanoparticles were loaded with ibuprofen as a novel drug delivery system. • Synthesized nanoparticles had a rod-like morphology. • CTAB concentration strongly affected the textural properties and drug release of the nanoparticles.

  16. Preparation and characterization of TiO{sub 2} doped and MgO stabilized Na–β″-Al{sub 2}O{sub 3} electrolyte via a citrate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Shi-Jie; Yang, Li-Ping; Liu, Xiao-Min; Wei, Xiao-Ling [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China); Yang, Hui, E-mail: yanghui@njut.edu.cn [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China); Shen, Xiao-Dong [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China)

    2013-06-25

    Highlights: ► TiO{sub 2} doped Na–β″-Al{sub 2}O{sub 3} electrolyte is synthesized via a sol–gel method with C{sub 16}H{sub 36}O{sub 4}Ti as the precursor for TiO{sub 2}. ► The optimized sample contains 90.28% of β″ phase and presents a very high relative density (99.5%). ► The optimized sample exhibits the bending strength up to 180 MPa and an ionic conductivity up to 0.21 S cm{sup −1} (350 °C). -- Abstract: TiO{sub 2} doped and MgO stabilized Na–β″-Al{sub 2}O{sub 3} is synthesized via a citrate sol–gel method starting with Al(NO{sub 3}){sub 3}, NaNO{sub 3}, Mg(NO{sub 3}){sub 2} and C{sub 16}H{sub 36}O{sub 4}Ti (tetrabutyl titanate, abbreviated as TBT). It is found that the TBT amount in the starting materials is the key factor to affect the properties of the final product, therefore, the samples sintered from precursors containing different amounts of TBT are systematically investigated by means of powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Meanwhile, the relative density, mechanical strength and electrical properties of the prepared samples are also measured. The optimized sample contains 90.28% of β″ phase, exhibits a uniform and compact microstructure with a relative density as high as 99.5% of theoretical density (TD). In addition, this sample exhibits a bending strength up to 180 MPa and an ionic conductivity up to 0.21 S cm{sup −1} at 350 °C.

  17. Synthesis and Characterization of ZnO Nanoparticles Using Sol-gel Process

    Directory of Open Access Journals (Sweden)

    Jayasree ALURI

    2016-05-01

    Full Text Available In the Present work structural, morphological and compositional properties of ZnO nanopowders synthesized using Zinc nitrate and NaOH using sol-gel process were reported. The synthesized nanopowders were further analyzed using X-Ray Diffraction (XRD, Scanning electron microscopy (SEM and Fourier Transform Infrared (FTIR spectroscopic characterizations. Crystalline size and Lattice strain determined from XRD spectra. Morphology of Nanopowders viewed from SEM images observed at different magnifications. The presence of Functional groups analyzed from FTIR spectra. From the results it was very clear that particles synthesized using Zinc nitrate and NaOH plays a vital role on crystalline size, surface morphology of Nanopowders. Synthesized nanopowders can be utilized as building materials in fabrication of various optoelectronic devices including solar cells, LED’s etc. due to its significant structural, morphological and optical properties.

  18. Sol-gel synthesis of anatase nanopowders for efficient photocatalytic degradation of herbicide Clomazone in aqueous media

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2017-01-01

    Full Text Available TiO2 nanopowders were produced by sol-gel technique using TiCl4 as a starting material. For the preparation of crystalline anatase with developed surface area, this aqueous solution has been mixed with 0.05 M or 0.07 M (NH42SO4 solution in a temperature-controlled bath. The pH values of the suspension were 7, 8 or 9. According to the x-ray diffraction (XRD analysis the anatase crystallite sizes were about 12 nm, which coincided with the average particle size revealed by scanning electron microscopy (SEM. The Raman scattering measurements have shown the presence of a small amount of highly disordered brookite phase in addition to dominant anatase phase with similar nanostructure in all synthesized powders. BET measurements revealed that all synthesized catalysts were fully mesoporous, except the sample synthesized with 0.07 M (NH42SO4 at pH=9, which had small amount of micropores. The photocatalytic degradation of herbicide Clomazone was carried out for both the pure active substance and as the commercial product (GAMIT 4-EC under UV irradiation. The best photocatalytic efficiency was obtained for the catalyst with the largest specific surface area, confirming this parameter as crucial for enhanced photocatalytic degradation of the pure active substance and commercial product of herbicide Clomazone. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45018

  19. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  20. Magnetic SiO{sub 2} gel microspheres for arterial embolization hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhixia; Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1, Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Araki, Norio [National Hospital Organization Kyoto Medical Center, Kyoto 612-8555 (Japan); Mitsumori, Michihide; Hiraoka, Masahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Doi, Masaaki, E-mail: zhixia@ecei.tohoku.ac.j, E-mail: zhixiali@hotmail.co [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-15

    We have prepared magnetic SiO{sub 2} microspheres with a diameter of 20-30 {mu}m as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO{sub 2} gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH{sub 3}OH) as a dispersant and ammonia (NH{sub 4}OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO{sub 2} gel microspheres with a diameter of approximately 20 {mu}m were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH{sub 3}OH/H{sub 2}O/NH{sub 4}OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe{sub 3}O{sub 4} and showed a higher specific absorption rate (SAR = 27.9-43.8 W g{sup -1}) than that of the starting IONPs (SAR = 25.3 W g{sup -1}) under an alternating current magnetic field of 300 Oe and 100 kHz.

  1. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    Science.gov (United States)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  2. Extraction of metal cations by polyterephthalamide microcapsules containing a poly(acrylic acid) gel.

    Science.gov (United States)

    Laguecir, A; Ernst, B; Frère, Y; Danicher, L; Burgard, M

    2002-01-01

    Polyterephthalamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) were prepared using an original two step polymerization process in a water-in-oil inverse emulsion system. A polyamide microcapsule containing acrylic acid, initiator and cross-linking agent, is formed by interfacial polycondensation of terephthaloyl dichloride with hexamethylenediamine. In situ radical polymerization of the microcapsule core acrylic acid is initiated to obtain encapsulated poly(acrylic acid) gel. Reference polyamide microcapsules, i.e. without ligand (CAPS), were also synthesized. The mean diameter of synthesized microcapsules was 210 microm, and the microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts. The microcapsule water content was determined by thermogravimetric experiments. The extractabilities of Cu(II), Ni(II), Co(II) and Zn(II) into PAA-CAPS were examined. The stripping of the various cations can be promoted in diluted hydrochloric acid solutions.

  3. Impact of Ni substitution on structural, electrical and thermoelectric properties of zinc aluminium chromites synthesized by sol-gel route and their photocatalytic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Seema Pandurang; Helavi, Vasant Baburao [Department of chemistry, Rajaram college, Maharashtra (India); Sanadi, Kallappa Ramchandra, E-mail: sanadikishor@gmail.com [Department of chemistry, Doodhsakhar Mahavidyalaya, Maharashtra (India)

    2017-11-15

    Nanostructured nickel substituted zinc aluminium chromites (Zn{sub 1-x}Ni{sub x} AlCrO{sub 4}, where, x= 0.0, 0.25, 0.50, 0.75, 1.0) were prepared by simple, cost effective, sol-gel auto combustion method. Temperature of phase formation was analyzed by thermogravimetric and differential thermal analysis (TGA/DTA). Crystallographic studies of all the samples show formation of single cubic spinel phase only. The lattice parameter, crystallite size and X-ray density decreases with increase in Nickel content. The surface morphology of Zn1{sub -x}Ni{sub x} AlCrO{sub 4} shows spherical inter linked morphology while elemental studies show desired composition. The nanosize of the synthesized material was confirmed by transmission electron microscopy (TEM) which was lies in between 19-25 nm. The DC conductivity as well as thermoelectric power studies of the samples reveals their semiconducting nature. The nanocrystalline chromite has optimal charge separation, which make them to enhance their photocatalytic efficiency. 0.100gm palladium loaded nickel aluminium chromite shows excellent mineralization in water. (author)

  4. Structural, optical, electrochemical and photovoltaic studies of spider web like Silver Indium Diselenide Quantum dots synthesized by ligand mediated colloidal sol-gel approach

    Science.gov (United States)

    Adhikari, Tham; Pathak, Dinesh; Wagner, Tomas; Jambor, Roman; Jabeen, Uzma; Aamir, Muhammad; Nunzi, Jean-Michel

    2017-11-01

    Silver indium diselenide quantum dots were successively synthesized by colloidal sol-gel method by chelating with organic ligand oleylamine (OLA). The particle size was studied by transmission electron microscopy (TEM) and the size was found about 10 nm. X-ray diffraction (XRD) was used to study crystalline structure of the nanocrystals. The grain size and morphology were further studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elemental composition was studied by X-ray photon electron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDAX). The capping property of OLA in nanocrystal was also demonstrated by Fourier Transform Infrared spectroscopy (FTIR). The band gap was calculated from both cyclic voltammetry and optical absorption and suggest quantum confinement. The solution processed bilayer thin film solar cells were fabricated with n-type Zinc oxide using doctor blading/spin coating method and their photovoltaic performance was studied. The best device sintered at 450 °C showed an efficiency 0.75% with current density of 4.54 mAcm-2, open-circuit voltage 0.44 V and fill factor 39.4%.

  5. Solution-mediated growth of NBA-ZSM-5 crystals retarded by gel entrapment

    Science.gov (United States)

    Aguilar-Mamani, Wilson; Akhtar, Farid; Hedlund, Jonas; Mouzon, Johanne

    2018-04-01

    The synthesis of flat tablet-shaped ZSM-5 crystals from a gel using metakaolin as aluminosilicate source and n-butyl amine as structure directing agent was investigated. The evolution inside the solid phase was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry and mass spectrometry. A kinetic study indicated that the nucleation of the majority crystals occurred concurrently with the formation of the gel upon heating the starting liquid suspension. Microstructural evidences undeniably showed that the gel precipitated on ZSM-5 crystals and mineral impurities originating from kaolin. As a result, crystal growth was retarded by gel entrapment, as indicated by the configuration and morphology of the embedded crystals. The results presented herein are harmonized with a solution-mediated nucleation and growth mechanism. Our observations differ from the autocatalytic model that suggests that the nuclei rest inside the gel until released when the gel is consumed. Our results show instead that it is crystals that formed in an early stage before entrapment inside the gel that rest inside the gel until exposed at the gel surface. These results illustrate the limitation of the classical method used in the field to determine nucleation profiles when the crystals become trapped inside the gel.

  6. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  7. Synthesis of gels with basis of titanium tungstates as matrixes of radioactive generators

    International Nuclear Information System (INIS)

    Galico C, L.

    2005-01-01

    The heteropolyanions, compounds formed by the union of molybdates or tungstates polyanions with atoms of metals like zirconium, titanium, cerium, thorium, tin, etc., have been used as generator matrixes of 99m Tc or 188 Re. Particularly they have been studied and produced successfully in our laboratory, generators of 99 Mo/ 99 m Tc at basis of gels zirconium molybdates and titanium molybdates. Considering that the molybdenum and tungsten, as well as the technetium and the rhenium, its belong to the same groups of transition metals, it is feasible that gels can be synthesized at basis of titanium tungstates, continuing a methodology similar to that of the gels titanium molybdates or zirconium molybdates, to produce generators 188 W/ 188 Re. The 188 Re possess nuclear characteristics that make it attractive for therapeutic applications, since, it emits β - particles of a great energy (2.12 MeV); joined to the possibility of being able to unite to different ligands (bifunctional agents) and biomolecules (antibodies or fragments of proteins), as it makes the 99m Tc, useful in radioimmunotherapy. Commercially the 188 Re generators use a chromatographic column loaded with alumina where the 188 Re, it is adsorbed and eluted the 188 ReO 4 - by means of a saline solution The alumina adsorbs around 0.2% of the 188 Re, situation that forces to use 188 Re of a high specific activity. The use of the gels technology, allows to work with medium or low specific activities of 188 Re, opening the possibility of their production in countries whose nuclear capacity is medium or low. In particular, the synthesized gels with basis of titanium offer the possibility of being synthesized with non active material, for later on to be irradiated and directly produce the generator, since, the titanium 51 Ti, unique radioisotope produced by the titanium, has a half life of 5.79 min. This synthesis method avoids the manipulation of radioactive material during the synthesis of the gels, process

  8. Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing.

    Science.gov (United States)

    Kang, Changjoon; Kim, Eunjoo; Baek, Heeyoel; Hwang, Kyosung; Kwak, Dongwoo; Kang, Youngjong; Thomas, Edwin L

    2009-06-10

    We report a facile way of fabricating hybrid organic/inorganic photonic gels by selective swelling and subsequent infiltration of SiO(2) into one type of lamellar microdomain previously self-assembled from modest-molecular-weight block copolymers. Transparent, in-plane lamellar films were first prepared by assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), and subsequently the P2VP domains were swollen with a selective solvent, methanol. The swollen structures were then fixated by synthesizing SiO(2) nanoparticles within P2VP domains. The resulting frozen photonic gels (f-photonic gels) exhibited strong reflective colors with stop bands across the visible region of wavelengths.

  9. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J., E-mail: joel.faure@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Drevet, R., E-mail: richard.drevet@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Lemelle, A.; Ben Jaber, N.; Tara, A. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); El Btaouri, H. [Université de Reims Champagne-Ardenne UMR CNRS MEDyC, EA 7369, Campus Moulin de la Housse, 51687 REIMS Cedex 2 (France); Benhayoune, H. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France)

    2015-02-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  10. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    International Nuclear Information System (INIS)

    Faure, J.; Drevet, R.; Lemelle, A.; Ben Jaber, N.; Tara, A.; El Btaouri, H.; Benhayoune, H.

    2015-01-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  11. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    Science.gov (United States)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  12. Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ungula, J., E-mail: ungulaj@qwa.ufs.ac.za; Dejene, B.F.

    2016-01-01

    ZnO nanoparticles were synthesized using a sol–gel method. The effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL), UV–vis spectroscopy (UV–vis) and Energy-dispersive X-ray spectroscopy ( EDS). The XRD patterns showed single phase hexagonal structure. The crystallite size of as prepared ZnO nanoparticles was found to decrease from 28.1 nm to 10.8 nm with the increase in volume ratio of ethanol in the solvent as peak intensities and sharpness increase with corresponding increase in volume ratio of water. SEM micrographs showed that samples prepared in water medium are fairly spherical which turned to tiny rods with increasing volume ratios of ethanol. A sharp ultraviolet (UV) emission peak centred about 385 nm and a broad green–yellow emission at about 550 nm are observed with PL measurements. The band gap of ZnO decreased from 3.31 to 3.17 eV with an increase in the ethanol composition in the solvent, implying that the optical properties of these materials are clearly affected by the synthesis medium.

  13. Physical and morphological properties of alumina powders synthesized through sol-gel method

    International Nuclear Information System (INIS)

    Julie Andrianny Murshidi; Choo Thye Foo; Che Seman Mahmood; Meor Yusof Meor Sulaiman

    2006-01-01

    Aluminum oxide powders were prepared by the hydrolysis of aluminum isopropoxide catalysed by hydrochloric acid and in the presence of Sodium Lauryl Sulphate C 1 2H 2 5NaO 4 S as a surface stabilizing agent. After ageing for 24 hours the gel-like products were filtered and calcined at 1200 degree C. The effect of initial concentration of the aluminum precursor, aluminum isopropoxide (0.2 M, 0.1 M, 0.05 M and 0.03 M) and ageing temperature of 28 degree C, 50 degree C, 70 degree C, 85 degree C and 95 degree C on particle size of the powder were studied using Particle Size Analyzer. Shape and morphology of the particles were characterized by using Scanning Electron Microscope (SEM). (Author)

  14. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    Science.gov (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  15. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    International Nuclear Information System (INIS)

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  16. Mullite fibres preparation by aqueous sol-gel process and activation energy of mullitization

    International Nuclear Information System (INIS)

    Tan Hongbin; Ding Yaping; Yang Jianfeng

    2010-01-01

    Mullite fibres were prepared by sol-gel process using aluminum carboxylates (ACs) and silica sol. ACs was synthesized from dissolving aluminum powder in a mixture of formic acid and oxalic acid using aluminum chloride hexahydrate as catalyst. A molar ratio of 1:2:1 for aluminum, formic acid and oxalic acid was optimized to obtain clear solution and viscous ACs sol for fibres synthesis. Thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis were used to characterize the properties of the gel and ceramic fibres. The gel fibres completely transformed to mullite at 1200 o C, with a smooth surface and uniform diameter. The activation energy for mullite formation in precursor gel fibres was determined by means of differential thermal analysis. The value obtained, E a = 741.4 kJ/mol, was lower than most data reported in the literatures, which was attributed to the silica-alumina micro-phase separation when organic acids decomposed during gel fibres heating.

  17. Effect of DCCA on synthesis of inorganic mesoporous gels

    International Nuclear Information System (INIS)

    Nemancha, A.R.

    2004-01-01

    Full text.The porous texture of the monolith inorganic gels plays an important role in the utilization of porous material by control of several properties such as gas diffusion, thermal stability, mechanical strength. the sol gel process provides many possibilities to manufacture porous material with extremely low concentration of impurities at low sinter temperature. The serious problem in the production of the monolith gels is fracture and crack formation which may occur in the conversion of the wet gels to dry gels. This phenomenon is probably due to the capillary forces which appear during the drying steps. in order to reduce the effect of capillary forces a number of methods were applied (hyper critic drying, organic DCCAs). The purpose of the present work, is to understand the chemical changes that result from adding formamide as drying control chemical additives DCCA to the colloidal silica sols in the presence of acid catalyst. Fourier Transformed Infrared spectroscopy and Raman spectroscopy were used to investigate the influence of formamide on gel formation. The Nitrogen adsorption-desorption technique is used to investigate the effect of formamide on gel texture. The results show that the gels with formamide are monolith and obtained during a short time of gelling reaction, the silica particles link formation depend strongly on the formamide concentration. the BET and BJH results show that the presence of formamide promotes the creation of meso porous texture depending on formamide/silica molar ratio in the starting sol. The maximum average diameter of the obtained gel reaches a value close to 25 nm with a bulk density equal to 1.1 g/cm 3

  18. Synthesis and characterization of CdO nano particles by the sol-gel method

    Science.gov (United States)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  19. Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-04-01

    Full Text Available Un-doped and Tb(Sup3+) doped ZnO nanocrystals with different concentrations of Tb(Sup3+) were synthesized by a sol–gel method and their photoluminescence (PL) properties were investigated. The successful incorporation of Tb(sup3+) ions...

  20. A Comprehensive Systematic Study on Thermoresponsive Gels: Beyond the Common Architectures of Linear Terpolymers

    Directory of Open Access Journals (Sweden)

    Anna P. Constantinou

    2017-01-01

    Full Text Available In this study, seven thermoresponsive methacrylate terpolymers with the same molar mass (MM and composition but various architectures were successfully synthesized using group transfer polymerization (GTP. These terpolymers were based on tri(ethylene glycol methyl ether methacrylate (TEGMA, A unit, n-butyl methacrylate (BuMA, B unit, and 2-(dimethylaminoethyl methacrylate (DMAEMA, C unit. Along with the more common ABC, ACB, BAC, and statistical architectures, three diblock terpolymers were also synthesized and investigated for the first time, namely (ABC, A(BC, and B(AC; where the units in the brackets are randomly copolymerized. Two BC diblock copolymers were also synthesized for comparison. Their hydrodynamic diameters and their effective pKas were determined by dynamic light scattering (DLS and hydrogen ion titrations, respectively. The self-assembly behavior of the copolymers was also visualized by transmission electron microscopy (TEM. Both dilute and concentrated aqueous copolymer solutions were extensively studied by visual tests and their cloud points (CP and gel points were determined. It is proven that the aqueous solution properties of the copolymers, with specific interest in their thermoresponsive properties, are influenced by the architecture, with the ABC and A(BC ones to show clear sol-gel transition.

  1. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    Science.gov (United States)

    1982-01-01

    Containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides is discussed. The homogenization of the glass using conventional raw materials is normally achieved on Earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using convectional raw materials is difficult in the space environment. Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation.

  2. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  3. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  4. Gel network shampoo formulation and hair health benefits.

    Science.gov (United States)

    Marsh, J M; Brown, M A; Felts, T J; Hutton, H D; Vatter, M L; Whitaker, S; Wireko, F C; Styczynski, P B; Li, C; Henry, I D

    2017-10-01

    The objective of this work was to create a shampoo formula that contains a stable ordered gel network structure that delivers fatty alcohols inside hair. X-ray diffraction (SAXS and WAXS), SEM and DSC have been used to confirm formation of the ordered Lβ gel network with fatty alcohol (cetyl and stearyl alcohols) and an anionic surfactant (SLE1S). Micro-autoradiography and extraction methods using GC-MS were used to confirm penetration of fatty alcohols into hair, and cyclic fatigue testing was used to measure hair strength. In this work, evidence of a stable Lβ ordered gel network structure created from cetyl and stearyl alcohols and anionic surfactant (SLE1S) is presented, and this is confirmed via scanning electron microscopy images showing lamella layers and differential scanning calorimetry (DSC) showing new melting peaks vs the starting fatty alcohols. Hair washed for 16 repeat cycles with this shampoo showed penetration of fatty alcohols from the gel network into hair as confirmed by a differential extraction method with GC-MS and by radiolabelling of stearyl alcohol and showing its presence inside hair cross-sections. The gel network role in delivering fatty alcohol inside hair is demonstrated by comparing with a shampoo with added fatty alcohol not in an ordered gel network structure. The hair containing fatty alcohol was measured via the Dia-stron cyclic fatigue instrument and showed a significantly higher number of cycles to break vs control. The formation of a stable gel network was confirmed in the formulated shampoo, and it was demonstrated that this gel network is important to deliver cetyl and stearyl alcohols into hair. The presence of fatty alcohol inside hair was shown to deliver a hair strength benefit via cyclic fatigue testing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  6. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Jihye [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Shin, Dongho [Proton Therapy Center, National Cancer Center, Goyang 410-769 (Korea, Republic of); Kwon, Soo-Il, E-mail: sikwon@kyonggi.ac.kr [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of)

    2014-01-21

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  7. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.

    Science.gov (United States)

    Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing

    2014-03-12

    Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple.

  8. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  9. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  10. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-Gonzá lez, R.; Garcí a-Cerda, L. A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  11. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  12. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  13. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  14. Effect of cobalt sources on properties of co-b catalysts synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Figen, Aysel Kantürk; Co ú kuner, Bilge; Özdemir, Özgül Dere [Department of Chemical Engineering, Yildiz Technical University Istanbul (Turkey); Burçin Pi ú kin, Mehmet [Department of Bioengineering, Y Õ ld Õ z Technical University, Istanbul (Turkey)

    2013-07-01

    In this studying, Co-B catalysts were prepared by sol-gel method via kinds of cobalt source for clarifying the effect of these for characteristic properties of Co-B catalysts. Co sources, cobalt(II)chloride (CoCl{sub 2} .6H{sub 2}O), cobalt(II)sulfate (CoSO{sub 4} .7H{sub 2}O) and cobalt(II)nitrate (Co(NO{sub 3}){sub 2} .6H{sub 2}O), were used as a metal source with boron oxide (B{sub 2}O{sub 3} ) while citric acid (C{sub 6}H{sub 8}O{sub 7} ) used as organic ligand to forming sol-gel structure. The crystalline structures of Co-B catalysts were determined by X-ray diffraction. The N{sub 2} sorption technique was used for analyzing catalysts surface area. The variety of Co-B catalysts morphological properties were investigated via scanning electron microscope. By the effect of cobalt sources the Co-B catalyst’s properties were altered that clarified from analysis results. The amorphous Co-B catalyst produced from CoCl{sub 2}.6H{sub 2} O as metal source had the largest porous surface area with 122.7 m 2 .g -1 . Investigation of hydrolysis were performed under variety of temperatures (22, 40 and 60 o C), NaOH concentrations (1-15 wt. %) and NaBH 4 /Co-B catalyst ratio (2-40 wt./wt.) ratios in order to investigate the activation of Co-B catalyst. The maximum hydrogen generation rate 0.84L H 2 .min -1 .g -1 was obtained under 40 °C, 10 wt. % NaOH and 9.52wt./wt. NaBH{sub 4}/Co-B catalyst ratio. Yet the kinetic investigations, the reaction order was found that zero order with 0.9954 coefficient of correlation and 51.83 kJ/mol activation energy. Key words: Sol-gel, Co-B Catalyst, Boron.

  15. Formation of Mg(OH)2 nanowhiskers on LTA zeolite surfaces using a sol–gel method

    KAUST Repository

    Liu, Junqiang; Bae, Tae-Hyun; Esekhile, Omoyemen; Nair, Sankar; Jones, Christopher W.; Koros, William J.

    2011-01-01

    A facile three step sol-gel-precipitation process is used to synthesize Mg(OH)2 nanowhiskers on micron-sized zeolite 5A particle surfaces at room temperature. The putative amorphous gelation product, Mg(OH) n(OR)2-n, forms first by a controlled

  16. Rationale, design and methods of the ESPRIT study: Energy, Sexual desire and body PropoRtions wIth AndroGel, Testosterone 1% gel therapy, in hypogonadal men.

    Science.gov (United States)

    Behre, Hermann M; Heinemann, Lothar; Morales, Alvaro; Pexman-Fieth, Claire

    2008-06-01

    Hypogonadism is associated with a range of disease states that have significant effects on morbidity and mortality, and also affect quality of life. The ESPRIT study (Energy, Sexual desire and body PropoRtions wIth AndroGel, Testosterone 1% gel therapy) is a 6-month, multinational, open label, observational study in hypogonadal men being treated with transdermal AndroGel in usual daily clinical practice; 1,700-2,400 patients will be enrolled in Canada, Germany, Central and Eastern Europe, Russia and the Middle East. The main objective will be to evaluate the effect of AndroGel on symptoms of hypogonadism and quality of life as assessed by the Aging Males' Symptoms scale. Further objectives include evaluating the effect and time to onset of improvement in erectile dysfunction and libido/sexual desire (International Index of Erectile Function), fatigue (Multi-dimensional Fatigue Index) and body composition (waist circumference, body mass index). Subgroup analyses will be performed: or = 50 years; absence versus presence of metabolic syndrome. The safety of AndroGel will also be assessed. The study population will consist of newly diagnosed hypogonadal men (age > or = 18 years), in whom testosterone deficiency has been confirmed by clinical features and biochemical tests according to international guidelines, who are currently being prescribed AndroGel (testosterone 1% gel, starting dose 50 mg testosterone per day).

  17. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol–gel processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Matras-Postolek, Katarzyna [Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow 31-155 (Poland); Song, Xueling; Zheng, Yan; Liu, Yumeng; Ding, Kun; Nie, Shijie [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2015-10-15

    Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.

  18. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques.

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2017-12-19

    Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.

  19. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  20. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    Science.gov (United States)

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  1. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  2. Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes

    Energy Technology Data Exchange (ETDEWEB)

    Guzman V, C.; Pina B, C.; Munguia, N. [IIM-UNAM, A.P. 70-360, 04510 Mexico D.F. (Mexico)]. e-mail: caroguz@servidor.unam.mx

    2005-07-01

    Three methods for obtaining hydroxyapatite (HA) are described. HA is a very interesting ceramic because of its many medical applications. The first two precipitation methods start from calcium and phosphorous compounds, whereas the third method is a sol-gel process that uses alkoxides. The products were characterized and compared. The observed differences are important for practical applications. (Author)

  3. Meso-porous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation

    International Nuclear Information System (INIS)

    Hamd, Wael; Laberty-Robert, Christel; Sanchez, Clement; Cobo, Saioa; Fize, Jennifer; Artero, Vincent; Baldinozzi, Gianguido; Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre; Fontecave, Marc

    2012-01-01

    This work reports a facile and cost-effective method for synthesizing photoactive α-Fe 2 O 3 films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe 2 O 3 meso-porous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 degrees C to 750 degrees C in air. α-Fe 2 O 3 films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe 2 O 3 photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 degrees C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced under potential, although modest photocurrent density values (40 μAcm -2 ) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting. (authors)

  4. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  5. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    Science.gov (United States)

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  6. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, Sandra Raquel; Longhi, Marielen; Zini, Lucas Pandolphi [Universidade de Caxias do Sul (CCET/UCS), Caxias do Sul, RS (Brazil). Centro de Ciências Exatas e Tecnologia; Beltrami, Lilian Vanessa Rossa; Boniatti, Rosiana; Cardoso, Henrique Ribeiro Piaggio; Vega, Maria Rita Ortega; Malfatti, Célia de Fraga, E-mail: lvrossa@yahoo.com.br [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Pesquisa em Corrosão

    2017-07-01

    Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl) methacrylate (TMSPMA), tetraethoxysilane (TEOS) and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG) plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD) nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR). The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior. (author)

  7. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    Science.gov (United States)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  8. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Moreira, Eduardo Ceretta [Laboratório de Espectroscopia, Universidade Federal do Pampa, Campus Bagé, Bagé 96400-970 (Brazil); Dias, Fábio Teixeira; Neves Vieira, Valdemar das [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Brandt, Iuri Stefani; Cas Viegas, Alexandre da; Pasa, André Avelino [Laboratório de Filmes Finos e Superfícies, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis 88.040-900 (Brazil)

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{sub 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.

  9. Effect of defect on the nonlinear and dielectric property of Ca{sub (1–x)}Sr{sub x}Cu{sub 3}Ti{sub 4}O{sub 12} ceramics synthesized by sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tao; Liu, Dewei; Dai, Haiyang; Xiang, Huiwen [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Chen, Zhenping, E-mail: chaodaotai@126.com [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); He, Huifang; Chen, Zhiquan [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072 (China)

    2014-06-25

    Highlights: • Ca{sub (1−x)}Sr{sub x}Cu{sub 3}Ti{sub 4}O{sub 12} ceramics are synthesized by sol–gel process. • Positron annihilation lifetime spectra is used to investigate the defects of samples. • Nonlinear and dielectric properties are controlled by density and defects of samples. - Abstract: Ca{sub (1−x)}Sr{sub x}Cu{sub 3}Ti{sub 4}O{sub 12} (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3 and 0.4) ceramics are synthesized by sol–gel process. The XRD patterns show that weak peaks of Sr{sub 4}Ti{sub 3}O{sub 10}, TiO{sub 2} and Ca{sub 1.7}Sr{sub 0.3}CuO{sub 3} begin to appear at x ⩾ 0.2. Sr-doping is conductive to increase the density and reduce the defect concentration Ca{sub (1−x)}Sr{sub x}Cu{sub 3}Ti{sub 4}O{sub 12} ceramics as x ⩽ 0.15. With increasing x (0.2 ⩽ x ⩽ 0.4), Sr-doping reduces the density and enhances the concentration of defects for the ceramics. The nonlinear coefficient value increases and reaches a maximum 13.5 at x = 0.15, and then decreases gradually with increasing x. The dielectric properties demonstrate that, as x ⩽ 0.15, Sr-doping not only increases the dielectric permittivity value and decreases the dielectric loss but also reduces the dependence on frequency at low frequencies. With increasing x (0.2 ⩽ x ⩽ 0.4), Sr-doping begins to lead to an inverse result in dielectric behaviors. The nonlinear and dielectric properties of Ca{sub (1−x)}Sr{sub x}Cu{sub 3}Ti{sub 4}O{sub 12} ceramics are directly controlled by the density and defects.

  10. Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system.

    Science.gov (United States)

    Zhou, Yifeng; Xu, Miao; Yi, Tao; Xiao, Shuzhang; Zhou, Zhiguo; Li, Fuyou; Huang, Chunhui

    2007-01-02

    Photoresponsive C3-symmetrical trisurea self-assembling building blocks containing three azobenzene groups (LC10 and LC4) at the rim were designed and synthesized. By introducing a trisamide gelator (G18), which can self-aggregate through hydrogen bonds of acylamino moieties to form a fibrous network, the mixture of LC10 (or LC4) and G18 forms an organogel with coral-like supramolecular structure from 1,4-dioxane. The cooperation of hydrogen bonding and the hydrophobic diversity between these components are the main contributions to the specific superstructure. The two-component gel exhibits reversible photoisomerization from trans to cis transition without breakage of the gel state.

  11. Water-based sol-gel synthesis of hydroxyapatite: process development.

    Science.gov (United States)

    Liu, D M; Troczynski, T; Tseng, W J

    2001-07-01

    Hydroxyapatite (HA) ceramics were synthesized using a sol-gel route with triethyl phosphite and calcium nitrate as phosphorus and calcium precursors, respectively. Two solvents, water and anhydrous ethanol, were used as diluting media for HA sol preparation. The sols were stable and no gelling occurred in ambient environment for over 5 days. The sols became a white gel only after removal of the solvents at 60 degrees C. X-ray diffraction showed that apatitic structure first appeared at a temperature as low as 350 degrees C. The crystal size and the HA content in both gels increase with increasing calcination temperature. The type of initial diluting media (i.e., water vs. anhydrous ethanol) did not affect the microstructural evolution and crystallinity of the resulting HA ceramic. The ethanol-based sol dip-coated onto a Ti substrate, followed by calcination at 450 degrees C, was found to be porous with pore size ranging from 0.3 to 1 microm. This morphology is beneficial to the circulation of physiological fluid when the coating is used for biomedical applications. The satisfactory adhesion between the coating and substrate suggests its suitability for load-bearing uses.

  12. Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Rula M. Allaf

    2014-01-01

    Full Text Available The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

  13. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  14. Self-Assembly of Molecular Threads into Reversible Gels

    Science.gov (United States)

    Sayar, Mehmet; Stupp, Samuel I.

    2001-03-01

    Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.

  15. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  16. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by sol-gel process

    Science.gov (United States)

    Bansal, Narottam P.

    1990-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water:TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, x ray diffraction, surface area and pore size distribution measurements.

  17. Influence of starting precursors and synthesis methods on the physiochemical properties of zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Gaydhankar, T.R., E-mail: tr.gaydhankar@ncl.res.in [Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Jha, R.K. [Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Nikalje, M.D. [Department of Chemistry, University of Pune, Pune 411 007 (India); Waghmare, K.J. [Catalysis Division, National Chemical Laboratory, Pune 411008 (India)

    2014-07-01

    Graphical abstract: Crystallite size of tetragonal phase of the zirconia samples prepared using different synthesis parameters and precursors as a function of calcination temperature. Surface area values of the zirconia samples calcined at 500 and 700 °C are in given brackets. - Highlights: • Zirconia prepared with modified sol–gel method is less stable compared with zirconia prepared by precipitation method. • Optimized synthesis conditions shifted the glow exotherm to higher temperature range indicating better thermal stability. • Tetragonal-zirconia could be synthesized in cost-effective manner using zirconium oxy-nitrate. • In our studies no co-relation between the surface area and crystallite size was observed. - Abstract: Under identical and judiciously pre-optimized synthesis conditions, the influence of different combinations of zirconium sources and/or post treatment conditions on structural properties, thermal stability, phase composition and morphology of zirconia has been investigated. High surface area tetragonal zirconia could be synthesized in a cost-effective manner from 1 M solution of zirconium oxy-nitrate at pH 11 using aqueous ammonia solution as a precipitant when calcined at 400 °C for 3 h. Irrespective of the preparation method, pH and starting precursor, zirconia samples prepared without digestion contained dominant monoclinic phase with some traces of tetragonal phase when calcined at 700 °C. Even though there is linear decrease in surface area with increase in the crystallite size for each sample as a function of calcination temperature, no co-relation between the surface area and crystallite size could be achieved. SEM images show agglomerated and irregular shape particles between 10 to 20 μm.

  18. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Directory of Open Access Journals (Sweden)

    Sandra Raquel Kunst

    Full Text Available Abstract Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl methacrylate (TMSPMA, tetraethoxysilane (TEOS and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA, X-ray diffraction (XRD nuclear magnetic resonance spectroscopy (NMR and Fourier transform infrared spectroscopy (FT-IR. The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior.

  19. Influence of the Ti concentration and of the Ti:Mo molar ratio, in the efficiency of the {sup 99} Mo - {sup 99m} Tc generator, at basis of gels of titanium molybdates; Influencia de la concentracion de Ti y de la relacion molar Ti:Mo, en la eficiencia del generador {sup 99} Mo - {sup 99m} Tc a base de geles de molibdatos de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Cortes R, O.; Monroy G, F.; Martinez C, T. [Facultad de Quimica, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: ocielcr@hotmail.com

    2003-07-01

    The {sup 99m} Tc, continues being the radionuclide more used in nuclear medicine to world scale. The production of this radioisotope, is carried out by means of generators {sup 99} Mo/{sup 99m} Tc that get ready commercially with {sup 99} Mo of high specific activity, adsorbed in alumina (2 mg {sup 99} Mo/g alumina) and that they are elutriated every 23 hours. In an alternative way, it is intended to use gels of titanium molybdates, as matrices of this generators. The gels are synthesized starting from solutions of ammonium molybdates and of titanium tetrachloride in aqueous media. These gels allow to incorporate until 25% of molybdenum in their structure, being been able to use {sup 99} Mo of low specific activity that can be obtained starting from the reaction {sup 98} Mo (n, {gamma}) {sup 99} Mo. With the object of producing generators of medium activity, with the base of gels of titanium molybdates, intends in this work, to study the influence of two synthesis parameters of these gels: the concentration of the titanium solutions and the molar ratio Ti: Mo. The decrease of the concentration of the titanium solution, used during the synthesis of the gels, is converted in an efficiency decrease and radionuclide purity of the generators, as well as an increment so much of the volume of elutriation, as of the pH of the elutriates. The gels that contain an major number of titanium moles, regarding the molybdenum moles, present a greater radionuclide purity, but they diminish their efficiency. The best characteristics for the gels synthesis of titanium molybdates are: a molar ratio 1:1 for Ti and Mo, and to use solutions of titanium whose concentration is near at 1 M. (Author)

  20. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  1. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  2. Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol–gel TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Ćurković, Lidija, E-mail: lcurkov@fsb.hr [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb (Croatia); Ljubas, Davor [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb (Croatia); Šegota, Suzana [Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia); Bačić, Ivana [Forensic Science Centre Ivan Vučetić, Ministry of the Interior, Ilica 335, Zagreb (Croatia)

    2014-08-01

    Highlights: • Nanostructured photocatalytic TiO{sub 2} films were prepared by sol–gel methods. • The addition of PEG to the TiO{sub 2} film changes the surface morphology and roughness parameters. • The addition of PEG to the initial sols increases photocatalytic properties of TiO{sub 2}. • LGB water solution could be decolourised within 2 h. • The influence of photolysis and adsorption on the LGB removal from the solution is negligible. - Abstract: Nanostructured sol–gel TiO{sub 2} films were prepared on a glass substrate by means of the dip-coating technique with titanium tetraisopropoxide as a precursor. TiO{sub 2} sols were synthesized with and without the addition of polyethylene glycol (PEG) as a structure-directing agent. The synthesized sol–gel TiO{sub 2} were characterized by XRD, AFM, FTIR and Micro-Raman spectroscopy. The photocatalytic activity of the films was evaluated by the photocatalytic degradation of Lissamine Green B (LGB) dye (dissolved in water) as a model pollutant with the predominant irradiation wavelength of 365 nm (UV-A). It was found that the addition of PEG to the initial sol affects the surface morphology and the photocatalytic properties of prepared sol–gel TiO{sub 2} films. AFM analysis confirmed the presence of nanostructured sol–gel titania films on the glass substrate. Roughness parameters (R{sub a}, R{sub q}, and Z{sub max}) of the sol–gel TiO{sub 2} film with the addition of PEG are higher than the parameters of the sol–gel TiO{sub 2} film without the addition of PEG. The TiO{sub 2} film prepared with the addition of PEG has a higher surface density (a larger active surface area) and better photocatalytic activity in the degradation of the LGB dye solution than the TiO{sub 2} film prepared without the addition of PEG.

  3. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  4. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available Corporation International Journal of Photoenergy Volume 2012, Article ID 189069, 6 pages doi:10.1155/2012/189069 Research Article Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave... International Journal of Photoenergy the sol-gel, hydrothermal process, and pulse laser deposition [22?24]. Although the sol-gel method is widely accepted for the preparation of both ZnO and TiO2 nanostructures, the calcinations process is essential and can...

  5. Mesoscopic objects, porous layers and nanocomposites-Possibilities of sol-gel chemistry

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz

    2009-01-01

    The goal of this study was to prepare mesoscopic objects, thin porous films and nanocomposite coatings with the use of sol-gel technique. Silica nanotubes, titania nanoparticles, porous titania and zirconia coatings as well as titania nanocomposites were successfully synthesized by changing the type of sol-gel precursor, sol composition and applying dip-coating deposition procedure in order to obtain thin films or coatings. All materials were visualized and characterized by the Atomic Force Microcscopy (AFM) technique. Moreover, characterization of titania nanocomposites was extended to the tribological tests performed by means of microtribometer operating in normal loads range of 30-100 mN. The AFM analysis of mesoscopic objects and nanoparticles showed that the diameter of synthesized silica nanotubes was 60-70 nm and the size of titania nanoparticles was 43 nm. In case of porous layers the pore size in titania and zirconia coatings oscillated between 100 and 240 nm, however their shape and distribution were irregular. Microtribological studies of nanocomposites revealed the moderate decrease of the coefficient of friction for samples containing 5, 15 and 5 wt.% of zirconia nanoparticles in titania coatings annealed at 100, 500 and 1000 deg. C respectively. An enhancement of antiwear properties was already observed for 1 wt.% of nanophase content, except the sample annealed at 500 deg. C. It was also found that the annealing at high temperatures is a primary factor which affects the reduction of friction and wear of titania coatings while the presence of nanoparticles has secondary effect. Investigations in this study carried out with the use of the AFM technique highlighted the potential and flexibility of sol-gel approach in designing of various types of advanced materials in a form of mesoscopic objects, porous coatings and composite layers. Results collected in this study clearly demonstrated that sol-gel technique can be applied effectively in preparation of

  6. Characterisation of a new alkoxide sol-gel hydroxyapatite

    International Nuclear Information System (INIS)

    Green, D.D.; Kannangara, G.S.K.; Milev, A.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) coatings have been used to promote bone growth and fixation towards implant surfaces to encourage faster recovery times for the recipient. Current coating processing techniques, capable of producing thin HAp layers are pulsed-laser deposition and sputtering (high-temperature processing). Other technologies are in vitro methods, electrodeposition and sol-gel, due to the fact that these techniques utilise lower processing temperatures they avoid structural instabilities of HAp at elevated temperatures. The term sol-gel encompasses any process of producing ceramic materials (single and mixed oxides, as well as non-oxides e.g. nitrides) from solutions. The sol-gel process was first identified by Ebelman, and has been used to produce ceramic powders, coatings, and bulk materials including glasses. The implementation of a sol-gel methodology enables increased stoichiometry and homogeneity, while having the ability to coat complex shapes. Sol-gel hydroxyapatite reported by Chai et al. employed tri ethyl phosphite [ P(OEt) 3 ] as the staring phosphorus alkoxide precursor, whereby it was established that in order to obtain monophasic hydroxyapatite upon firing there must be a 24 hour ripening period. The ripening period was determined to be an equilibrium step whereby the equilibrium intermediate phase lied in favour of a diethyl phosphite arrangement (species) within the sol. Therefore, the work here under taken was to produce hydroxyapatite using diethyl phosphite [HOP(OEt) 2 ] as a starting alkoxide precursor with a final aim to reduce or eliminate the ageing period as observed by Chai et al in P(OEt) 3 solutions

  7. Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce(3+)/Tb(3+) phosphors.

    Science.gov (United States)

    Sun, Xiaorui; Gao, Wenliang; Yang, Tao; Cong, Rihong

    2015-02-07

    Sol-gel method was applied to prepare homogenous and highly crystalline phosphors with the formulas α-GdB5O9:xTb(3+) (0 ≤ x ≤ 1), α-Gd1-xCexB5O9 (0 ≤ x ≤ 0.40), α-GdB5O9:xCe(3+), 0.30Tb(3+) (0 ≤ x ≤ 0.15) and α-GdB5O9:0.20Ce(3+), xTb(3+) (0 ≤ x ≤ 0.10). The success of the syntheses was proved by the linear shrinkage or expansion of the cell volumes against the substitution contents. In α-GdB5O9:xTb(3+), an efficient energy transfer from Gd(3+) to Tb(3+) was observed and there was no luminescence quenching. The exceptionally high efficiency of the f-f excitations of Tb(3+) implies that these phosphors may be good green-emitting UV-LED phosphors. For α-Gd1-xCexB5O9, Ce(3+) absorbs the majority of the energy and transfers it to Gd(3+). Therefore, the co-doping of Ce(3+) and Tb(3+) leads to a significant enhancement in the green emission of Tb(3+). Our current results together with the study on α-GdB5O9:xEu(3+) in the literature indicate that α-GdB5O9 is a good phosphor host with advantages including controllable preparation, diverse cationic doping, the absence of concentration quenching, and effective energy transfer.

  8. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  9. Carbonated hydrocalumite synthesized by the microwave method as a possible antacid.

    Science.gov (United States)

    Linares, Carlos F; Moscosso, Joel; Alzurutt, Victor; Ocanto, Freddy; Bretto, Pablo; González, Gema

    2016-04-01

    A carbonated hydrocalumite was synthesized by the microwave method for being used as antacid. The gel was formed using Ca and Al nitrate solutions in a basic medium (NaOH+Na2CO3), then, this gel was aged and heated in a domestic microwave for 2.5 min (1250 W). The obtained white solid was washed with distilled water, dried in an oven at 100 °C for 18 h and characterized by different techniques such as: X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), BET surface area measurements, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Finally, the carbonated hydrocalumite was tested as antacid by using a synthetic gastric juice and its activity was compared with a commercial antacid formulated with hydrotalcite. Results showed that the carbonated hydrocalumite was more effective than that commercial antacid. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol-gel process

    Science.gov (United States)

    Bansal, N. P.

    1992-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water: TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, X-ray diffraction, surface area and pore size distribution measurements.

  11. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  12. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  13. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.

    Science.gov (United States)

    Wang, Shuping; Guan, Shui; Xu, Jianqiang; Li, Wenfang; Ge, Dan; Sun, Changkai; Liu, Tianqing; Ma, Xuehu

    2017-09-26

    Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine. Herein, conductive poly(3,4-ethylenedioxythiophene) doped with hyaluronic acid (PEDOT-HA) nanoparticles were firstly synthesized via chemical oxidant polymerization. A three-dimensional (3D) PEDOT-HA/Cs/Gel scaffold was then developed by introducing PEDOT-HA nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. HA, as a bridge, not only was used as a dopant, but also combined PEDOT into the Cs/Gel via chemical crosslinking. The PEDOT-HA/Cs/Gel scaffold was used as a conductive substrate for neural stem cell (NSC) culture in vitro. The results demonstrated that the PEDOT-HA/Cs/Gel scaffold had excellent biocompatibility for NSC proliferation and differentiation. 3D confocal fluorescence images showed cells attached on the channel surface of Cs/Gel and PEDOT-HA/Cs/Gel scaffolds with a normal neuronal morphology. Compared to the Cs/Gel scaffold, the PEDOT-HA/Cs/Gel scaffold not only promoted NSC proliferation with up-regulated expression of Ki67, but also enhanced NSC differentiation into neurons and astrocytes with up-regulated expression of β tubulin-III and GFAP, respectively. It is expected that this electro-active and bio-active PEDOT-HA/Cs/Gel scaffold will be used as a conductive platform to regulate NSC behavior for neural tissue engineering.

  14. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    Science.gov (United States)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  15. Synthesis and characterization of nanosized MgxMn1−xFe2O4 ferrites by both sol-gel and thermal decomposition methods

    International Nuclear Information System (INIS)

    De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco

    2017-01-01

    This work reports the synthesis of Mg x Mn 1−x Fe 2 O 4 (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  16. Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, Hakan, E-mail: hkaraagac@ucdavis.edu [Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616 (United States); Yengel, Emre; Saif Islam, M. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616 (United States)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Undoped and Al doped ZnO (AZO) thin films were successfully prepared using sol-gel technique. Black-Right-Pointing-Pointer Structural analysis has revealed that Al doping has a significant influence on preferential orientation. Black-Right-Pointing-Pointer It has been observed that wrinkles forms on the surface of films when annealed with a fast heat ramp up rate. Black-Right-Pointing-Pointer Optical analysis has revealed that that the band gap energy of ZnO thin film increases with increasing Al doping concentration. Black-Right-Pointing-Pointer The lowest resistivity is observed for 1% Al ZnO thin film, which is 2.2 Multiplication-Sign 10{sup -2} ({Omega} cm). - Abstract: ZnO and some of its ternary wide-bandgap alloys offer interesting opportunities for designing materials with tunable band gaps, strong piezoresistivity and controlled electrical conductance with high optical transparency. Synthesizing these materials on arbitrary substrates using low-cost and unconventional techniques can help in integrating semiconductors with different physical, electrical, and optical characteristics on a single substrate for heterogeneous integration of multifunctional devices. Here we report the successful synthesis of aluminum (Al) doped ZnO (AZO) thin films on soda-lime glass, silicon and fluorine doped tin oxide (FTO) pre-coated glass substrates by using sol-gel deposition method at ambient condition. X-ray diffraction (XRD) analysis revealed that varying degree of Al doping significantly impacts the crystal orientation, semiconductor bandgap and optical transparency of the film. Crystal structure of the film is also found to be strongly correlated to the characteristics of the substrate material. The impact of heating rate during post annealing process is studied and optimized in order to improve the surface morphology of the deposited films. Optical characterizations have revealed that bandgap energy of AZO films can be tuned

  17. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed; Webber, Andrew

    2004-01-01

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO 4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO 4 , heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10 -4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO 4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  18. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  19. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  20. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template

    International Nuclear Information System (INIS)

    Yuan Yuan; Liu Changsheng; Zhang Yuan; Shan Xiaoqian

    2008-01-01

    In this paper, an array of highly ordered hydroxyapatite (HAP) nanotubes was synthesized by sol-gel auto-combustion method with porous anodic aluminum oxide (AAO) template for the first time. Based on thermogravimetry (DTA/TG), Fourier transform infrared (FTIR) and X-ray diffraction (XRD), the dried gel, derived from the sol solution with Ca(NO 3 ) 2 .4H 2 O and PO(CH 3 O) 3 as precursors and ethylene glycol as the polymeric matrix, exhibited a typical self-propagating combustion behavior at low temperature, directly resulting in hexagonal crystalline HAP materials. The resultant HAP arrays fabricated from the above sol-gel in the AAO template were uniformly distributed, highly ordered nanotubes with uniform length and diameter according to the observations of scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electron diffraction (ED), XRD and X-ray photoelectron spectroscopy (XPS) survey proved the formation of HAP phase with polycrystalline structure in the AAO template. Based on these results, a potential mechanism of 'an auto-combustion from dried gel to nanoparticles and a subsequent in situ reaction from nanoparticles to nanotubes' was proposed

  1. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3-xTiO3 with different lithium contents

    International Nuclear Information System (INIS)

    Geng Hongxia; Lan Jinle; Mei Ao; Lin Yuanhua; Nan, C.W.

    2011-01-01

    Li 3x La 2/3-x TiO 3 (LLTO) powder with different lithium contents (nominal 3x = 0.03-0.75) was synthesized via a simple sol-gel route and then calcination of gel-derived precursor at 900 o C which was much below the calcination temperature required for synthesizing the LLTO powder via solid state reaction route. The LLTO powder of sub-micron sized particles, derived from such sol-gel method, showed almost no aggregation. Starting from the sol-gel-derived powder, the LLTO ceramics with different lithium contents were prepared at different sintering temperatures of 1250 and 1350 o C. It demonstrated that our sol-gel route is quite simple and convenient compared to the previous sol-gel method and requires lower temperature for the LLTO. Our results also illustrated that lithium content significantly affects the structure and ionic conductivity of the LLTO ceramics. The dependence of the ionic conductivity on the lithium content, lattice structure, microstructure and sintering temperature was investigated systematically.

  2. Release of newly synthesized nucleoplasmic ribosomal subunits or their precursor particles from isolated nuclei of regenerating rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Usami, K; Ogata, K [Niigata Univ. (Japan). School of Medicine

    1930-06-16

    The authors present the time course of the labeling of RNA and protein moieties of these particles in vivo as well as the pattern of one-dimensional acrylamide gel electrophoresis of their protein moieties labeled with (/sup 35/S)methionine in vivo, which shows that released 60 S particles are newly synthesized ribosomal large subunits or their precursor particles in the nucleoplasm on their way from the nucleolus to the cytoplasm. It appears likely that released 40 S particles contain newly synthesized ribosomal small subunits or their precursors in the nucleoplasm.

  3. Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround

    International Nuclear Information System (INIS)

    Saputra, Hens; Othman, Raihan; Sutjipto, A.G.E.; Muhida, R.; Ani, M.H.

    2012-01-01

    Highlights: ► MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. ► The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40–70 wt. %. ► MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol–gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electron Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.

  4. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  5. Adsorption and Desorption of Na+ and NO3− Ions on Thermosensitive NIPAM-co-DMAAPS Gel in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Eva Oktavia Ningrum

    2017-11-01

    Full Text Available Adsorbent gel with the ability to absorb and to desorb Na+ and NO3− ions simultaneously with temperature swing was synthesized by free radical copolymerization reaction of N-isopropylacrylamide (NIPAM and N,N-dimethyl-(acrylamidopropylammonium propane sulfonate (DMAAPS. In this study, NIPAM acts as a thermosensitive agent and DMAAPS as an adsorbent agent. The purpose of this research is to investigate the effect of temperature and solution concentration on the swelling, adsorption, and desorption behaviors of NIPAM-co-DMAAPS gel. The relationship between adsorption and desorption behaviors of the gel was also elucidated. NaNO3 solution was selected as the target solution in swelling, adsorption, and desorption test. It was observed that the swelling degree of the gel increased as temperature and solution concentration raised. The adsorption amount of ions decreased with the increase of temperature. In contrast, the amount of ions desorbed from the gel increased linearly with temperature.

  6. Coatings of titanium substrates with xCaO·(1 − x)SiO{sub 2} sol–gel materials: characterization, bioactivity and biocompatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it; Papale, F.; Bollino, F.

    2016-01-01

    The objective of this study has been to develop low temperature sol–gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO·(1 − x)SiO{sub 2} (0.0 < x < 0.60) have been prepared by means of the sol–gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM–EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3 T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay. - Highlights: • CaO/SiO{sub 2} biomaterials synthesized by sol–gel method at various molar ratio • Coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of materials and coating • Biocompatibility and bioactivity improvement of coated titanium.

  7. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  8. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  9. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    International Nuclear Information System (INIS)

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with [γ- 32 P]ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 μg can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger α subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines

  10. Synthesis and characterization of cds-p (nipam-co-maa) hybrid micro gels

    International Nuclear Information System (INIS)

    Khan, M.S.; Khan, G.T.; Khan, A.

    2014-01-01

    Copolymer containing both pH and thermo sensitive properties are very much interesting due to their broad nature to various stimuli. Further, the incorporation of inorganic nanoparticles into stimuli responsive copolymers enhances their utility in different applied nature properties. In the present work such an attempt is made to synthesize copolymer of N-isopropyl acrylamide (NIPAM) and Methacrylic acid (MAA) with CdS nanoparticles. The copolymer of N-isopropyl acrylamide (NIPAM) and Methacrylic acid (MAA) was prepared through emulsion polymerization technique with various compositions and characterized by Fourier transform infrared spectroscopy (FTIR). The microspheres thus prepared were employed as micro-reactors for the deposition of semiconductor cadmium sulfide (CdS) nanoparticles. The obtained composite was characterized using optical, structural and thermal techniques. The micro gels were found to be stable up to 200 degree C. The crystal structure and grain size of Cadmium sulfide-poly (isopropylacrylamide-co-methacrylic acid) (CdS-P(NIPAM-co-MAA)) hybrid micro gels was studied by using X - ray Diffraction. UV Visible spectroscopy and photoluminescence spectroscopy was engaged to get the optical properties of the samples. It was found that the synthesized nanoparticles have a blue shift (higher energy) at about 360 nm which may be due to the typical quantum confinement effects. (author)

  11. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  12. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3

    International Nuclear Information System (INIS)

    Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Yasakau, K.A.; Salvado, I.M. Miranda; Ferreira, M.G.S.

    2005-01-01

    Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles. The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements. The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3

  13. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  14. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  15. Novel sol–gel methodology to produce LaCoO3 by acrylamide polymerization assisted by γ-irradiation

    International Nuclear Information System (INIS)

    Carabalí, G.; Chavira, E.; Castro, I.; Bucio, E.; Huerta, L.; Jiménez-Mier, J.

    2012-01-01

    In this paper we report the synthesis of LaCoO 3 (LCO) nano-particles with two methodologies: the conventional sol–gel reaction of acrylamide (AA) polymerization using a cross-linking agent (methylenebisacrylamide or MBA) with the activation of the polymerization reaction by thermo-chemical initiator (azobisisobutyrnitrile or AIBN). The second was a novel sol–gel methodology in which the polymerization of AA monomers was done without MBA and the initiation was achieved by gamma radiation. With thermochemical initiator a xerogel with a foam and porous structure was obtained, while the gamma-irradiation of the mixture leads to the formation of a compact resin with entrapped cations. X-ray diffraction (XRD) shows that formation of the product begins around 500 °C and according to analysis of microscopy images of powders calcined in 700 °C the average sizes of particles are 20 nm and 42 nm for samples obtained using γ-irradiation and AIBN as initiators, respectively. TEM images also show differences in particle morphology. Those synthesized using AIBN as initiator are dispersed, while those with γ-irradiation are in aggregates. - Highlights: ► LaCoO 3 nano-crystallites were synthesized by two different polyacrylamide sol–gel processes. ► Acrylamide polymerization reaction initiated by gamma irradiation and by thermo-chemical agent. ► Polymerization reaction with thermo-chemical initiator produces a porous gel. ► Xerogel obtained using gamma radiation is compact resin. ► LaCoO 3 powders produced by both methods differ in the size and morphology of particles.

  16. Modulation of the thermoluminescence glow curve of sol-gel synthesized SiO2 and Si O-2:Eu through thermal annealing

    International Nuclear Information System (INIS)

    Salas J, Ch. J.; Cruz V, C.; Bernal, R.; Castano, V. M.

    2015-10-01

    Full text: Due to the increasing use of ionizing radiations, is necessary to monitor the radiation fields and exposure doses in facilities in which they are used. Different facilities or applications involve the use of different radiation and doses, and the sort of needed dosimetry also varies. Sometimes a conventional thermoluminescence (Tl) dosimetry satisfy the requirements since the record of the accumulated dose in a time interval is enough, but other cases could require for real-time measurement of a radiation field, being required a non-Tl dosimetric technique. On the other hand, different applications involve the use of different dose ranges, and so dosimeters with different sensitivities are needed. To solve the diverse needs of radiation detectors and dosimeters, a lot of phosphors materials has been characterized concerning their dosimetric capabilities. For medical application, biocompatible materials are desirable. In this work, we present experimental evidence that Sol-Gel synthesized SiO 2 and SiO 2 :Eu phosphors exhibit Tl glow curves composed by the superposition of several individual glow peaks each located at different temperature ranging from values below 100 up to temperatures greater than 400 degrees C, whose relative sensitivities can be modified by subjecting the phosphors to different thermal annealing. By modulating the relative intensities of the individual Tl peaks, glow curves with different shapes are obtained in such a way that SiO 2 and SiO 2 :Eu can be used to develop dosimeters useful for different dose ranges, and for both, conventional thermoluminescence dosimetry and non-thermoluminescence afterglow-based) dosimetry. (Author)

  17. Formulation of Bawang Dayak (Eleutherine bulbosa (Mill. Urb. Extract into a Gel Toothpaste

    Directory of Open Access Journals (Sweden)

    Husnul Warnida

    2016-12-01

    Full Text Available Dental caries is a disease of tooth decay that starts from the surface and evolve in the direction of the tooth, beginning with the process of tooth demineralization. Tooth decay is usually caused by the bacterium Streptococcus mutans. Bawang Dayak (Eleutherine bulbosa (Mill. Urb. has antibacterial activity due to its compound i.e. flavonoid, fenol, triterpenoid, dan antrakuinon. This study aims to formulate the bawang dayak ethanol extract into a stable gel toothpaste. Bawang dayak ethanol extract 2,5% was formulated in 5 formulas with varying degree of sorbitol (5 - 50% and carboxymethyl cellulose (3 - 7%. Physical stability of bawang dayak ethanol extract gel toothpastes were evaluated including organoleptic and homogeneity test, pH measurement, viscosity measurement, spreading test, and freeze-thaw cycling test. The result showed bawang dayak ethanol extract gel toothpastes have pH range of 5.50 - 5.80, spreading area 4.61 - 5.82, viscosity value 17066 - 99877 mPas. Organoleptic and homogeneity in 7 days showed two layers color of gel toothpaste. Consistency test and Freeze-thaw cycling test results showed no change in organoleptic, homogeneity, pH, and viscosity of gel toothpastes.

  18. Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Li Chengshun [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Yujun [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: yujunzhangcn@sdu.edu.cn; Gong Hongyu; Zhang Jingde; Nie Lifang [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-01-15

    Yttrium aluminum garnet (YAG) fiber was prepared by sol-gel method using water as the solvent. The spinnable YAG sol was synthesized using Al powder, Y(CH{sub 3}COOH){sub 3}.4H{sub 2}O and HCl as precursors, polyethylene oxide as viscosity adjusting agent. Gel fibers with diameter of 5-10 {mu}m were prepared from the YAG sol by using centrifugal spinning technique. YAG crystalline fibers were obtained by drying gel fibers and heat-treating at selected temperature. TG/DTA analysis showed an exotherm at 906 deg. C attributed to formation of YAG phase and weight loss of 45% at 1000 deg. C. XRD and FT-IR analysis showed that phase-pure YAG can be formed at 900 deg. C, and no other intermediate was observed. The grain size of YAG fibers increased from 25 to 220 nm and tensile strength decreased rapidly from 970 to 380 MPa when the sintering temperature increased from 900 to 1550 deg. C.

  19. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  20. Photodegradation of diethyl phthalate with PANi/CNT/TiO_2 immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH

    International Nuclear Information System (INIS)

    Hung, Chung-Hsuang; Yuan, Ching; Li, Huei-Wen

    2017-01-01

    Highlights: • Photocatalysts doped with polyaniline and functionalized CNTs onto TiO_2 were developed. • The PANi/CNT/TiO_2 photocatalysts possessed both advantages of PANi and CNTs. • The fabricated PANi/CNT/TiO_2 photocatalysts exhibited high photocatalytic activity under sunlight. • The hydrothermal synthesized PANi/CNT/TiO_2 presented a good photocatalytic activity and the sol–gel ones presented a good photocatalytic stability. - Abstract: Diethyl phthalate (DEP) is one of the most common phthalates for industrial use and has widely spread in environment. A series of PANi/CNT/TiO_2 potocatalysts immobilized on glass plate irradiated with visible light were presented to degrade DEP in this study. The PANi/CNT/TiO_2 potocatalysts were fabricated by co-doping with polyaniline (PANi) and two functionalized CNT (CNT-COCl and CNT-COOH) onto TiO_2 followed by a hydrothermal synthesis and a sol–gel hydrolysis. Doping of PANi resulted in the absorption edge of the fabricated potocatalysts shifting to 421–437 nm and the most distinguished red-shift effect was found in hydrothermal synthesized photocatalysts. The best DEP degradation of 41.5–59.0% and 44.5–67.4% was found in the simulated sunlight system irradiated for 120 min for sol–gel hydrolysis PANi/CNT/TiO_2 photocatalysts and hydrothermal synthesized ones, respectively. The optimum pH was determined at 5.0 and 7.0 for the two PANi/CNT/TiO_2 photocatalysts mentioned above, respectively. The reusability of the sol–gel hydrolyzed photocatalysts up to 5 times was observed no decline in the photodegradation efficiency but less photocatalytic stability of the hydrothermal synthesized ones was found. Meanwhile, the active species of OH radicals generated in the DEP degradation system was identified by free radical scavenging experiments.

  1. Comparison of the properties of simulated synroc synthesized by sol-gel and a novel co - precipitation method

    International Nuclear Information System (INIS)

    Potdar, H.S.; Vijayanand, S.; Khaja Mohaideen, K.; Joy, P.A.; Raja Madhavan, R.; Kutty, K.V.G.; Ambashta, R.D.; Wattal, P.K.

    2009-01-01

    Synroc is a multiphase dense titanate based ceramic designed for the incorporation of high-level waste (HLW) from the reprocessing of spent nuclear fuel. Synroc or synthetic rock consists of four main titanate phases - zirconolite (CaZrTi 2 O 7 ), hollandite (BaAlO 2 Ti 6 O 16 ), perovskite (CaTiO 3 ) and rutile (TiO 2 ), with the matrix composition as shown in Table 1. It is known that these phases have the capacity to incorporate most of the elements into their crystal structures which are present in the HLW derived from the reprocessing of spent nuclear fuel from power reactors. Synroc is considered as the most effective and durable means of immobilising various forms of high-level radioactive wastes for disposal. Synroc is also considered as a low-risk, tailored waste form, offering higher waste loading and over all cost savings. Simulated synroc precursor powders are typically produced by advanced wet chemical methods such as alkoxide hydrolysis and sol-gel routes. These routes were developed to produce powders with well defined physical and chemical characteristics such as correct chemical composition, high degree of homogeneity, reactivity and readily densifiable material to 99% of theoretical density during hot isostatic pressing. However, the reported alkoxide hydrolysis and hydroxide routes suffer from several disadvantages such as use of large quantities of organic solvents and their disposal as effluent, difficulty in maintaining exact chemical composition, use of costly alkoxide precursors which are moisture sensitive and require critical processing conditions to control their rate of hydrolysis, etc. In the present work we report a comparative study the characteristics of synroc-C (14% waste loading) powders and sintered pellets synthesized by the known alkoxide hydrolysis method and a simple chemical co-precipitation route developed by us. The advantages of the co-precipitation route are its simplicity, ease of handling and utilization of cheaper raw

  2. Nano sized La2Co2O6 double perovskite synthesized by sol gel method

    Science.gov (United States)

    Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.

  3. Evaluation of preservative effectiveness of gallic acid derivatives in aluminum hydroxide gel-USP

    Directory of Open Access Journals (Sweden)

    Anurag Khatkar

    2013-01-01

    Full Text Available Background: Preservatives are added to most of the pharmaceutical preparations to prevent them from deterioration throughout their shelf life. Literature reveals that the common synthetic preservatives have many limitations, such as development of microbial resistance (in due course of time and several serious side-effects. Aim: The aim of this study is to find out new preservatives synthesized from natural sources, which may have better efficiency than the existing synthetic preservatives. The derivatives of naturally occurring gallic acid were subjected for their preservative efficacy study. Their preservative efficiency was evaluated and compared with the standard parabens. Materials and Methods: The selected amide, anilide and ester derivatives of gallic acid were subjected to preservative efficacy testing in an official antacid preparation, {aluminum hydroxide gel-USP (United States Pharmacopoeia} against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Candida albicans, and Aspergillus niger as representative challenging microorganisms as per USP 2004 guidelines. Results: The selected derivatives were found to be effective against all selected strains and showed preservative efficacy comparable to that of standard and even better in case E. coli, C. albicans and A. niger. The 8-hydroxy quinoline ester derivative showed better preservative efficacy than standard as well as other derivatives. Conclusion: The newly synthesized gallic acid preservatives were found to be effective in the proposed pharmaceutical preparation (Aluminium Hydroxide Gel - USP. Also, the synthesized preservatives have shown comparative and even better efficacy than the existing parabens and hence they have potential for use in pharmaceutical preparations.

  4. Fine defective structure of silicon carbide powders obtained from different starting materials

    Directory of Open Access Journals (Sweden)

    Tomila T.V.

    2006-01-01

    Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  5. Synthesis and characterization of sugar based low molecular weight gelators and the preparation of chiral sulfinamides

    Science.gov (United States)

    Mangunuru, Hari Prasad Reddy

    Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications. Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D-glucosamine. D-glucosamine is the versatile starting material to make different peptoids and triazoles. Several series of compounds were synthesized using compounds 1-3 as starting material and studied the gelation behavior all the compounds. We have studied the self-assembling properties of a new class of tripeptoids, synthesized by one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, we found that several efficient low molecular weight organogelators were obtained for aqueous DMSO and ethanol mixtures. We have also synthesized and characterized a series of monosaccharide triazole derivatives. These compounds were synthesized from N-acetyl glucosamine and D-glucose via a Cu(I) catalyzed azide/alkyne cycloaddition reaction (CuAAc). The compounds have been screened for their gelation properties and several efficient low molecular weight organo/hydro gelators were obtained, among these compounds, five per-acetyl glucosamine derivatives and one peracetyl glucose derivative were able to form gels in water. These new molecules are expected to be useful in drug delivery and tissue engineering.*. Asymmetric synthesis of chiral amines is a challenging in synthetic organic chemistry. The development of new catalysts for asymmetric organic

  6. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  7. Sol-gel auto-combustion synthesis and properties of Co2Z-type hexagonal ferrite ultrafine powders

    Science.gov (United States)

    Liu, Junliang; Yang, Min; Wang, Shengyun; Lv, Jingqing; Li, Yuqing; Zhang, Ming

    2018-05-01

    Z-type hexagonal ferrite ultrafine powders with chemical formulations of (BaxSr1-x)3Co2Fe24O41 (x varied from 0.0 to 1.0) have been synthesized by a sol-gel auto-combustion technique. The average particle sizes of the synthesized powders ranged from 2 to 5 μm. The partial substitution of Ba2+ by Sr2+ led to the shrinkage of the crystal lattices and resulted in changes in the magnetic sub-lattices, which tailored the static and dynamic magnetic properties of the as-synthesized powders. As the substitution ratio of Ba2+ by Sr2+, the saturation magnetization of the synthesized powders almost consistently increased from 43.3 to 56.1 emu/g, while the real part of permeability approached to a relatively high value about 2.2 owing to the balance of the saturation magnetization and magnetic anisotropy field.

  8. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the

  9. Gas-phase acylation of aminopropyl-silica gel in the synthesis of some chemically bonded silica materials for analytical applications

    International Nuclear Information System (INIS)

    Basiuk, Vladimir; Khil'chevskaya, E.G.

    1991-01-01

    Gas-phase acylation of aminopropyl-silica gel with aliphatic dicarboxylic (succinic, adipic and sebacic) and 4-aminobenzoic acids is proposed as a rapid and efficient one-step method for the synthesis of carboxyalkyl- and 4-aminophenylamidopropyl-silica gels, usually used as zwitterion exchangers for liquid chromatography and matrices for multi-step syntheses of silica-bound aromatic azo reagents for the sorption and chromatographic separation of metal ions. Acylation degrees of 59-90% are achieved after 0.5 h. IR spectra of the acylation products and near-UV-visible spectra for bonded aromatic azo compounds, based on 4-aminobenzamidopropyl-silica gel, are presented. Some positive and negative aspects of the gas-phase acylation are discussed. (author). 34 refs.; 2 figs.; 2 tabs

  10. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine

    KAUST Repository

    Liu, Yan

    2014-03-01

    Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N2 sorption, SEM, TEM, NMR, XPS, NH3-TPD, and TG techniques. The results show that the sample obtained has good crystallinity, hierarchical porosity (mesopores at ca. 10nm and macropores at ca. 50-200nm), high BET surface area (226m2/g), large pore volume (0.25cm3/g), and abundant medium and strong acidic sites (0.36mmol/g). After loading Pt (0.5wt.%) on H-SAPO-11 by using wet impregnation method, catalytic hydroisomerization tests of n-dodecane show that the hierarchical Pt/SAPO-11 zeolite exhibits high conversion of n-dodecane and enhanced selectivity for branched products as well as reduced selectivity for cracking products, compared with conventional Pt/SAPO-11 zeolite. This phenomenon is reasonably attributed to the presence of hierarchical porosity, which is favorable for access of reactants on catalytically active sites. The improvement in catalytic performance in long-chain paraffin hydroisomerization over Pt/SAPO-11-based catalyst is of great importance for its industrial applications in the future. © 2013 Elsevier Inc.

  11. Photodegradation of diethyl phthalate with PANi/CNT/TiO{sub 2} immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chung-Hsuang, E-mail: jeremyh@ccms.nkfust.edu.tw [Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, No. 1, University Rd., Yenchau Dist., Kaohsiung 824, Taiwan (China); Yuan, Ching, E-mail: caroline@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nan-Tzu Dist., Kaohsiung City 811, Taiwan (China); Li, Huei-Wen, E-mail: soillab@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nan-Tzu Dist., Kaohsiung City 811, Taiwan (China)

    2017-01-15

    Highlights: • Photocatalysts doped with polyaniline and functionalized CNTs onto TiO{sub 2} were developed. • The PANi/CNT/TiO{sub 2} photocatalysts possessed both advantages of PANi and CNTs. • The fabricated PANi/CNT/TiO{sub 2} photocatalysts exhibited high photocatalytic activity under sunlight. • The hydrothermal synthesized PANi/CNT/TiO{sub 2} presented a good photocatalytic activity and the sol–gel ones presented a good photocatalytic stability. - Abstract: Diethyl phthalate (DEP) is one of the most common phthalates for industrial use and has widely spread in environment. A series of PANi/CNT/TiO{sub 2} potocatalysts immobilized on glass plate irradiated with visible light were presented to degrade DEP in this study. The PANi/CNT/TiO{sub 2} potocatalysts were fabricated by co-doping with polyaniline (PANi) and two functionalized CNT (CNT-COCl and CNT-COOH) onto TiO{sub 2} followed by a hydrothermal synthesis and a sol–gel hydrolysis. Doping of PANi resulted in the absorption edge of the fabricated potocatalysts shifting to 421–437 nm and the most distinguished red-shift effect was found in hydrothermal synthesized photocatalysts. The best DEP degradation of 41.5–59.0% and 44.5–67.4% was found in the simulated sunlight system irradiated for 120 min for sol–gel hydrolysis PANi/CNT/TiO{sub 2} photocatalysts and hydrothermal synthesized ones, respectively. The optimum pH was determined at 5.0 and 7.0 for the two PANi/CNT/TiO{sub 2} photocatalysts mentioned above, respectively. The reusability of the sol–gel hydrolyzed photocatalysts up to 5 times was observed no decline in the photodegradation efficiency but less photocatalytic stability of the hydrothermal synthesized ones was found. Meanwhile, the active species of OH radicals generated in the DEP degradation system was identified by free radical scavenging experiments.

  12. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  13. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  14. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of preparation methods of microwave, sol-gel, and hydrothermal on structural and optical properties of lanthania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goharshadi, Elaheh K.; Mahvelati, Tahereh; Yazdanbakhsh, Mohammad [Ferdowsi Univ., Mashhad (Iran, Islamic Republic of). Dept. of Chemistry

    2016-01-15

    In this work, the nearly pure hexagonal phase of lanthania nanoparticles (NPs) was successfully synthesized using three methods: microwave, sol-gel, and hydrothermal. The samples were characterized using nine techniques including powder X-ray powder diffraction, thermogravimetry, transmission electron microscopy, scanning electron microscopy, field emission microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, far infrared spectroscopy, and ultraviolet-visible absorption spectroscopy. This study showed that the method of synthesizing lanthania NPs can affect the size, which in turn has impact on structural, morphological, and optical properties.

  16. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  17. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process

    Science.gov (United States)

    Chen, Xu; Fan, Jinglian; Lu, Qiong

    2018-06-01

    TiC nanocrystalline powders were synthesized by in-situ carbothermic reduction of Ti-O-C precursor under vacuum atmosphere. And the Ti-O-C precursor was formed by sol-gel method from titanium butyrate (TBOT) and sucrose. To obtain stable sol, TBOT was directly added into mixed solution which contains water, sucrose, acetic acid (AcOH) and acetylacetone (ACAC). This procedure is more convenient and economical because it avoids the use of alcohol which is used as solvent in most reports of alkoxide hydrolysis sol-gel method. TG-DSC, XRD, FTIR and SEM/TEM were employed to analyze and characterize the product during the entire process. The phase composition and crystalline structure parameters of powders with different C/Ti molar ratio were investigated by Rietveld refinement method, and elemental quantitative analysis of the samples were performed. Furthermore, the optimal parameters of carbothermal reduction were obtained and the grain growth mechanism was demonstrated. The results show that TiC nanocrystalline powders (C/Ti molar ratio is 3.5 in the precursor) were synthesized at 1300 °C for 2 h, which have near standard lattice parameter, well crystallinity and fine average grain size ( 37.4 nm).

  19. Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Hankare, P.P., E-mail: p_hankarep@rediffmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Sanadi, K.R., E-mail: sanadikishor@gmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Garadkar, K.M. [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Patil, D.R. [Material Research Laboratory, Department of Physics, R.L. College, Parola, Jalgaon, Maharashtra 425 111 (India); Mulla, I.S. [Emeritus Scientist-CSIR, Centre for Materials for Electronics and Technology (C-MET), Panchawati, Pune 411 008 (India)

    2013-03-15

    Highlights: ► Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} Mixed Metal oxides. ► Sol–gel auto-combustion method. ► Cubic spinel symmetry. ► Nanocrystaline material. ► Semiconducting nature. -- Abstract: Nanocrystalline Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (where x = 0.0, 0.25, 0.50, 0.75, 1) were successfully synthesized by sol–gel method using citrate–nitrate precursors. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were effectively utilized to investigate the different structural parameters. XRD showed single cubic spinel phase for all the samples. The decrease in lattice parameter and increase in crystallite size of the ferrispinel was observed with increasing nickel content. The surface morphology and elemental composition were studied by Scanning electron microscope (SEM) and Energy Dispersive X-ray analysis (EDAX) respectively. The nanosize of the synthesized material had been identified by TEM investigation and which is lies in between 20–25 nm. The semiconducting nature of the samples was studied by variation of resistivity and thermal emf with temperature.

  20. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  1. A novel gel combustion procedure for the preparation of foam and porous pellets of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R.; Maji, Dasarath [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, Tamil Nadu (India)

    2017-01-15

    In this study, it has been demonstrated for the first time how sucrose gel-combustion could be used for the preparation of UO{sub 2} foam. Further the citrate gel-combustion was gainfully used for preparing porous pellets of UO{sub 2}. The utility of two-step sintering (1073 K for 30 min and 1473 K for 4 h) for obtaining these porous bodies was demonstrated for the first time. The foams and pellets possessed meso and macro pores. A starting mixture with sucrose to nitrate ratio of 2.4 was found to yield urania foam with adequate crush strength. The porous pellets were found to possess better handling strength, lesser carbon residue and higher overall density than the foam. A citric acid to nitrate ratio 0.25 in the starting mixture, 180 MPa compaction pressure were optimal for obtaining a pellet with 40% porosity. - Highlights: • Urania foam was successfully prepared for the first time by using sucrose-gel precursor method. • Porous urania pellets were successfully prepared for the first time by using citrate gel-combustion method. • The foam comprised both meso and macro pores, possessed good crush strength and porosity. • Citric acid to nitrate ratio of 0.25 and a compaction pressure of 180 MPa were best suited for the preparation of porous pellets.

  2. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  3. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Mozetic, P.; Rainer, A.; Trombetta, M.

    2014-01-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO 2 /PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium

  4. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  5. Structural and morphological study of Zn0.9Mn0.05Fe0.05O synthesized by sol-gel wet chemical precipitation route

    Science.gov (United States)

    Jain, S. K.; Dolia, S. N.; Choudhary, B. L.; Prashant, B. L.

    2018-04-01

    Transition metal substituted Zinc oxide (ZnO) has drawn a great deal of attention due to its excellent properties. Zn0.9Mn0.05Fe0.05O sample synthesized was by Sol-gel wet chemical precipitation route at temperature 350°C. The crystallinity and the structure of Zn0.9Mn0.05Fe0.05O was determined by X-ray diffraction by Cu-Kα radiations operated at 40kV and 35mA in the range of 20° to 80°. The pattern gets indexed in wurtzite (hexagonal) structure with lattice constants a=b=3.2525Å and c=5.2071Å and approves the single phase material with no impurity. The values of particle size assessed by Debye Scherer’s (DS) formula lie in the range of 13nm to 33nm indicating the nano-crystalline nature of the sample. The morphological analysis of the sample was performed by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) measurements. The observed size of Zn0.9Mn0.05Fe0.05O nanoparticles by TEM micrograph exhibits the similar trend with the size calculated by Debye-Scherer formula. TEM image show the irregular shape of the nanoparticles and particle size lies in the range of 10-35nm. Similar to SEM image, the slight agglomeration of the nanoparticles have been observed from TEM.

  6. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  7. Modulation of the thermoluminescence glow curve of sol-gel synthesized SiO{sub 2} and Si O-2:Eu through thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Salas J, Ch. J.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: salasjuarez@gimmunison.com [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: Due to the increasing use of ionizing radiations, is necessary to monitor the radiation fields and exposure doses in facilities in which they are used. Different facilities or applications involve the use of different radiation and doses, and the sort of needed dosimetry also varies. Sometimes a conventional thermoluminescence (Tl) dosimetry satisfy the requirements since the record of the accumulated dose in a time interval is enough, but other cases could require for real-time measurement of a radiation field, being required a non-Tl dosimetric technique. On the other hand, different applications involve the use of different dose ranges, and so dosimeters with different sensitivities are needed. To solve the diverse needs of radiation detectors and dosimeters, a lot of phosphors materials has been characterized concerning their dosimetric capabilities. For medical application, biocompatible materials are desirable. In this work, we present experimental evidence that Sol-Gel synthesized SiO{sub 2} and SiO{sub 2}:Eu phosphors exhibit Tl glow curves composed by the superposition of several individual glow peaks each located at different temperature ranging from values below 100 up to temperatures greater than 400 degrees C, whose relative sensitivities can be modified by subjecting the phosphors to different thermal annealing. By modulating the relative intensities of the individual Tl peaks, glow curves with different shapes are obtained in such a way that SiO{sub 2} and SiO{sub 2}:Eu can be used to develop dosimeters useful for different dose ranges, and for both, conventional thermoluminescence dosimetry and non-thermoluminescence afterglow-based) dosimetry. (Author)

  8. Positive electrode for lithium secondary battery of the next generation. Part 3. Positive electrode active material synthesized by soft chemistry; 3 sofutokemisutori de gosei sareru seikyoku katsubusshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, N.; Jo, A [Iwate Univ., Morioka (Japan). Faculty of Engineering

    1997-10-05

    Synthesis of high performance positive electrode material for the lithium secondary battery using soft chemistry methods such as sol-gel method, precipitation method, and ion exchange method as well as the electrochemical properties and the positive electrode material for the metal oxides synthesized by soft chemistry methods are introduced. V2O5 gel is obtained by acidifying aqueous solution of vanadate such as NaVO3. MnO2 exists in various crystalline forms, and the characteristics of the electrode depend strongly on the crystal structure, chemical composition, water content, conditions of powder, and density, which can be controlled by the methods of synthesis and heat treatment. Sol-gel method is applied to the synthesis of MnO2 related compounds. LiCoO2 is synthesized by the precipitation method of the aqueous solution of the mixture of lithium hydroxide and ammonium hydroxide. Tungsten trioxide hydrate and molybdenum trioxide hydrate are obtained as precipitation by adding strong acid for acidification to tungstate or molybdate A2MO4 aqueous solution. 31 refs., 8 figs.

  9. Characterization of silica particles prepared via urease-catalyzed urea hydrolysis and activity of urease in sol–gel silica matrix

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nishida, Masakazu; Ito, Kimiyasu; Tomita, Masahiro

    2012-01-01

    Highlights: ► Silica precipitation occurred via urease-catalytic reactions. ► Higher urease activity for silica synthesis enables mesostructure of silica–urease composites. ► Urease encapsulating in silica matrix retained high activity. - Abstract: Urease templated precipitation of silica synthesized by sol–gel chemistry produces a composite material allowing high urease activity. This study investigates the structural properties of the composite material that allow for the retention of the urease hydrolysis activity. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a mesoporous structure composed of closely packed spherical structures ∼20–50 nm in diameter. Brunauer–Emmett–Teller (BET) analysis revealed that the surface area and pore volume of the composite prepared under the conditions of 50 mM urea and 25 °C is relatively high (324 m 2 /g and 1.0 cm 3 /g). These values are equivalent to those of usual mesoporous silica materials synthesized from the self-assembly of triblock copolymers as organic templates. In addition, after encapsulating in a sol–gel silica matrix, urease retained high activity (∼90% of the activity compared with native urease). Our results suggest a new method for synthesizing mesoporous silica materials with highly tunable pore sizes and shapes under mild conditions.

  10. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Khosravi H.

    2015-03-01

    Full Text Available Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC method for studying the effect of gold nanoparticles (GNPs in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method: A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results: The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion: There was a good agreement between the dose enhancement factors (DEFs estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal

  11. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    Science.gov (United States)

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  12. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    Science.gov (United States)

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  13. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  14. Fast and efficient proteolysis by reusable pepsin-encapsulated magnetic sol-gel material for mass spectrometry-based proteomics applications.

    Science.gov (United States)

    Kayili, H Mehmet; Salih, Bekir

    2016-08-01

    Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and β-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.

    1984-01-01

    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  16. Total syntheses of Prelactone V and Prelactone B.

    Science.gov (United States)

    Raghavendra, S; Tadiparthi, Krishnaji; Yadav, J S

    2017-04-10

    The total syntheses of natural products Prelactone-V and Prelactone-B have been accomplished by a novel Chiron approach starting from d-glucose. The synthesis involves isopropylidene acetal formation of d-glucose using Poly(4-vinylpyridine) supported iodine as a catalyst, Tebbe olefination, Grignard reaction, Wittig olefination, selective mono deprotection of acetal using PMA/SiO 2 , hydrogenation and anti-1,3-diol formation are as key steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. New synthesis parameters of GGG:Nd nanocrystalline powder prepared by sol–gel method: Structural and spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Alshikh Mohamad, Yassin, E-mail: yassinm@mail.ru; Atassi, Yomen; Moussa, Zafer

    2015-09-15

    GGG:Nd nanopowder is synthesized by the sol–gel method using formic acid and acetic acid as chelating agents and ethylene glycol as a cross linking agent. TGA–DSC, XRD, photoluminescence spectroscopy and fluorescence life time analysis (τ) are used to characterize the powder. XRD is used to optimize the synthesis parameters. According to XRD, complete phase of GGG nanopowder is formed at 800 °C for 1 min. Fluorescence life time analyses reveal that the optimum crystallization temperature is 1000 °C. - Highlights: • GGG:Nd nanopowder was prepared using formic acid by the sol gel method. • Optimization of sol gel parameters was done. • GGG phase formation was complete at 800 °C for 1 min • According to τ measurements, optimal temperature treatment is at 1000 °C. • Nanopowder prepared with formic acid was better than that formed with acetic acid.

  19. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  20. Variables of synthesis in obtaining nanosilicas with sol-gel

    International Nuclear Information System (INIS)

    Elia, A; Martin-Aispuro, P; Musante, L; Martin-Martinez, J.M; Vazquez, P

    2008-01-01

    Amorphous silica materials and polycrystalline are now being developed for different applications as optic components, superconductors, nano-particles used as charges in adhesives and paints, among others. Some methods of obtaining these materials involve complex techniques and high costs. Generally, the materials constituents are fused, for example, using the pyrogenic silica technique, widely used industrially. Meanwhile, the sol-gel meted is based on a mixture of liquid reagents at the molecular level, to easily obtain amorphous and polycrystalline materials, even at room temperature. Therefore, the sol-gel way is a promising option for producing new materials, due to its cost advantages compared to the traditional methods. The sol-gel technique consists of the simultaneous reaction of the hydrolysis and the condensation. In this process the precursor solution, the TEOS in our case, becomes a polymeric gel network polymer. The partial hydrolysis of the orthosilicate takes place when it is mixed with water and ethanol (EtOH), the reaction that occurs is: S i(OEt) 4 + H 2 O S i(OEt) 3 (OH) + EtOH. The condensation takes place between two OH groups or between an OH group and an ethoxy to form an oxygen bridge plus water or ethanol. S i(OEt) 4 + H 2 O + S i(OEt) 3 (OH)(EtO) 3 Si-O-Si(OEt) 3 (OH) + H 2 O S i-OH + HO-Si S i-O-Si + H 2 O. The addition of a base or of an acid catalyzes the process and changes the pH of the solution influencing the condensation process and size of the final particle. This work focuses on finding different conditions by varying the pH, using HCI, with and without agitation during the addition of the HCI, and washing the solid obtained with ethanol in order to study its effect. The nanosilicas were characterized by TEM-EDX, DTA-TGA, S BET , FT-IR, DRX, DRS, SEM and pH measurements. The morphology of the nanosilicas was characterized with SEM and TEM. Using these techniques a partial conclusion showed that the samples synthesized with HCI

  1. Low body weight and type of protease inhibitor predict discontinuation and treatment-limiting adverse drug reactions among HIV-infected patients starting a protease inhibitor regimen: consistent results from a randomized trial and an observational cohort

    DEFF Research Database (Denmark)

    Kirk, O; Gerstoft, J; Pedersen, C

    2001-01-01

    OBJECTIVES: To assess predictors for discontinuation and treatment-limiting adverse drug reactions (TLADR) among patients starting their first protease inhibitor (PI). METHODS: Data on patients starting a PI regimen (indinavir, ritonavir, ritonavir/saquinavir and saquinavir hard gel) in a randomi......OBJECTIVES: To assess predictors for discontinuation and treatment-limiting adverse drug reactions (TLADR) among patients starting their first protease inhibitor (PI). METHODS: Data on patients starting a PI regimen (indinavir, ritonavir, ritonavir/saquinavir and saquinavir hard gel....... Low body weight and initiation of ritonavir relative to other PIs were associated with an increased risk of TLADRs. Very consistent results were found in a randomized trial and an observational cohort....

  2. Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation

    Directory of Open Access Journals (Sweden)

    Leonardo Ribeiro Rodrigues

    2012-12-01

    Full Text Available The sol-gel process is a technique used to synthesize materials from colloidal suspensions and, therefore, is suitable for preparing materials in the nanoscale. In this work hydroxyapatite was used due to its known properties in tissue engineering. Hydroxyapatite Ca10(PO46(OH2 is a bioactive ceramic which is found in the mineral phase of bone tissue and is known for its great potential in tissue engineering applications. For this reason, this material can be applied as particle aggregates on ceramic slurry, coating or film on materials with a poorer biological response than hydroxyapatite. In this work, hydroxyapatite gel was obtained by the sol-gel process and applied as nanoparticle aggregation in the mixture of hydroxyapatite and tricalcium phosphate to form a ceramic slurry. This process is the polymer foam replication technique used to produce scaffolds, which are used in tissue engineering. For HA gel characterization it was used enviromental scanning electron microscopy (ESEM, transmission electron microscopy (TEM, electron energy loss spectroscopy (EELS, scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray fluorescence (XRF. The crystallite size was calculated from XRD data using the Scherrer equation. The nanoparticles size before firing was approximately 5nm. The crystallite size calculated after calcination was approximately 63 nm. The EELS results showed that calcium phosphate was obtained before firing. After HA gel calcination at 500 ºC the XRD results showed hydroxyapatite with a small content of beta-TCP. The scaffolds obtained by polymer foam replication technique showed a morphology with adequate porosity for tissue engineering.

  3. Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-05-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs)/nickel oxide (NiO) nanocomposites were successfully prepared by a sol–gel process and coated on an aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels, and magnetic...

  4. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO{sub 2} hybrid materials synthesized by sol–gel route: in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Mozetic, P.; Rainer, A.; Trombetta, M. [Tissue Engineering Lab, Center for Integrated Research, “Università Campus Bio-Medico di Roma”, via Alvaro del Portillo, 00128 Rome (Italy)

    2014-12-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO{sub 2}/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium.

  5. Optical and electrochromic properties of sol-gel deposited Ti- doped vanadium oxide films

    International Nuclear Information System (INIS)

    Oezer, N.; Sabuncu, S.

    1997-01-01

    Because of the yellowish color, vanadium oxide films in the as deposited state is not as favorable as transparent coatings for most elector chromic devices. an interesting possibility to alter the yellowish colours is the doping with other non-absorbing metal oxides. Ti doped vanadium oxide films with various amounts of titanium were synthesized and investigated as transparent counter electrodes for electrochromic transmissive device application. Electrochromic titanium doped vanadium pentoxide (V sub 2 O 5) coatings were prepared by the sol-gel dip coating technique. The coating solutions were synthesized from vanadium tri(isopropoxide) precursors. X-ray diffraction (XRD) studies showed that the sol-gel deposited doped films heat treated at temperatures below 350 degree centigrade, were amorphous, whereas hose heat treated at higher temperatures were slight y crystalline. The optical and electrochemical properties of the Ti doped vanadium oxide films has been investigated in 0.1 m LiClO sub 4 propylene carbonate solution color changes by dropping were noted for all investigated films exhibits good electrochemical cycling (CV) measurements also showed that Ti doped V sub 2 O sub 5 films exhibits good electrochemical cycling reversibility, 'in situ' optical measurement revealed that those films exhibits good electrochemical cycling the spectra range 300 < lambda < 800 nm and change color between yellow and light green. The change in visible transmittance was 25 % for 5% Ti doped film. (author)

  6. Sol – Gel synthesis and characterization of magnesium peroxide nanoparticles

    International Nuclear Information System (INIS)

    Jaison, J; Chan, Y S; Ashok raja, C; Balakumar, S

    2015-01-01

    Magnesium peroxide is an excellent source of oxygen in agriculture applications, for instance it is used in waste management as a material for soil bioremediation to remove contaminants from polluted underground water, biological wastes treatment to break down hydrocarbon, etc. In the present study, sol-gel synthesis of magnesium peroxide (MgO 2 ) nanoparticles is reported. Magnesium peroxide is odourless; fine peroxide which releases oxygen when reacts with water. During the sol-gel synthesis, the magnesium malonate intermediate is formed which was then calcinated to obtain MgO 2 nanoparticles. The synthesized nanoparticles were characterized using Thermo gravimetric -Differential Thermal Analysis (TG- DTA), X-Ray Diffraction studies (XRD) and High Resolution Transmission Electron Microscope (HRTEM). Our study provides a clear insight that the formation of magnesium malonate during the synthesis was due to the reaction between magnesium acetate, oxalic acid and ethanol. In our study, we can conclude that the calcination temperature has a strong influence on particle size, morphology, monodispersity and the chemistry of the particles. (paper)

  7. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review

    Directory of Open Access Journals (Sweden)

    Ales Styskalik

    2017-05-01

    Full Text Available This review is devoted to non-hydrolytic sol-gel chemistry. During the last 25 years, non-hydrolytic sol-gel (NHSG techniques were found to be attractive and versatile methods for the preparation of oxide materials. Compared to conventional hydrolytic approaches, the NHSG route allows reaction control at the atomic scale resulting in homogeneous and well defined products. Due to these features and the ability to design specific materials, the products of NHSG reactions have been used in many fields of application. The aim of this review is to present an overview of NHSG research in recent years with an emphasis on the syntheses of mixed oxides, silicates and phosphates. The first part of the review highlights well known condensation reactions with some deeper insights into their mechanism and also presents novel condensation reactions established in NHSG chemistry in recent years. In the second section we discuss porosity control and novel compositions of selected materials. In the last part, the applications of NHSG derived materials as heterogeneous catalysts and supports, luminescent materials and electrode materials in Li-ion batteries are described.

  8. Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    International Nuclear Information System (INIS)

    Ganjoo, S; Azimirad, R; Akhavan, O; Moshfegh, A Z

    2009-01-01

    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 deg. C and then annealed in a temperature range of 200-500 deg. C. The average water contact angle of the silica films prepared with low water content and annealed at 300 deg. C measured about 5 deg. for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle greater than 60 deg. Atomic force microscopic analysis revealed that the silica films prepared with low water had a rough surface (∼30 nm), while the films prepared with high water had a smoother surface (∼2 nm). Using x-ray photoelectron spectroscopy, we have shown that with a decrease in the surface water on the film, its hydrophilicity increases logarithmically.

  9. Novel Detox Gel Depot sequesters β-Amyloid Peptides in a mouse model of Alzheimer's Disease.

    Science.gov (United States)

    Sundaram, Ranjini K; Kasinathan, Chinnaswamy; Stein, Stanley; Sundaram, Pazhani

    2012-06-01

    Alzheimer's Disease (AD), a debilitating neurodegenerative disease is caused by aggregation and accumulation of a 39-43 amino acid peptide (amyloid β or Aβ) in brain parenchyma and cerebrovasculature. The rational approach would be to use drugs that interfere with Aβ-Aβ interaction and disrupt polymerization. Peptide ligands capable of binding to the KLVFF (amino acids 16-20) region in the Aβ molecule have been investigated as possible drug candidates. Retro-inverso (RI) peptide of this pentapeptide, ffvlk, has been shown to bind artificial fibrils made from Aβ with moderate affinity. We hypothesized that a 'detox gel', which is synthesized by covalently linking a tetrameric version of RI peptide ffvlk to poly (ethylene glycol) polymer chains will act like a 'sink' to capture Aβ peptides from the surrounding environment. We previously demonstrated that this hypothesis works in an in vitro system. The present study extended this hypothesis to an in vivo mouse model of Alzheimer's Disease and determined the therapeutic effect of our detox gel. We injected detox gel subcutaneously to AD model mice and analyzed brain levels of Aβ-42 and improvement in memory parameters. The results showed a reduction of brain amyloid burden in detox gel treated mice. Memory parameters in the treated mice improved. No undesirable immune response was observed. The data strongly suggest that our detox gel can be used as an effective therapy to deplete brain Aβ levels. Considering recent abandonment of failed antibody based therapies, our detox gel appears to have the advantage of being a non-immune based therapy.

  10. Implementation of a gel dosimeter for dosimetric verification of treatments with RapidArc{sup TM}; Implementacion de un dosimetro en gel para verificacion dosimetrica de tratamientos con RapidArc{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, H.; Vasquez, J. [Centro de Control de Cancer Ltda., Carrera 16A No. 83 A-11, 110911 Bogota (Colombia); Plazas, M., E-mail: hhcortess@unal.edu.co [Universidad Nacional de Colombia, Av. Carrera 30 No. 45, 110911 Bogota (Colombia)

    2014-08-15

    The gel dosimetry represents advantages on other dosimetric systems for its potential of analyzing information in third dimension (3D). This work seeks to find another alternative for the verification of treatments of high complexity like the RapidArc{sup TM}. A gel type Magic was prepared and characterized, which was irradiated with base in a plan of RapidArc{sup TM} calculated in the Treatment Planning System (Tps) Eclipse, using the Anisotropic Analytic Algorithm (Aaa) for a beam with an acceleration potential of 6 MV. The dosimeter was characterized using Magnetic Resonance Images starting from the correlation between the T2 and the dose. The dose distribution curves were analyzed in second dimension (2D) using the program Omni Pro-I mrT and were compared with the curves obtained for the Tps under the approach gamma 2D. The comparison showed that the Gel represents a valid option inside the acceptable ranges for Quality Assurance in radiotherapy. (Author)

  11. The Adhesive Capability of Two Lactobacillus Strains and Physicochemical Properties of Their Synthesized Biosurfactants

    Directory of Open Access Journals (Sweden)

    Piotr Gołek

    2011-01-01

    Full Text Available The aim of this study is to describe the adhesive capability of Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 as well as to isolate and evaluate the functional properties of their synthesized biosurfactants. Fourier transform infrared spectroscopy shows that both crude biosurfactants contain three components: protein, polysaccharide and phosphate in different ratio. The crude biosurfactants synthesized by Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 contain 8 and 9 fractions analyzed by capillary gel electrophoresis. Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 strains used in this study synthesize biosurfactants with low effectiveness, critical micelle concentration of 9.0 and 6.0 g/L, and surface tension of (45.1±0.1 and (43.6±0.6 mN/m, respectively. Biosurfactant synthesized by Lactobacillus rhamnosus CCM 1825 demonstrated higher emulsifying and froth-forming activity than that obtained from Lactobacillus fermenti 126, which resulted in better antiadhesive properties. The advantageous adhesive properties of these Lactobacillus strains were confirmed. A positive effect of the impregnation of polystyrene surface with an aqueous solution of biosurfactants on the inhibition of adhesion of Escherichia coli 22, Klebsiella pneumoniae 2 and Pseudomonas aeruginosa W2 to the impregnated surface was found.

  12. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  13. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  14. Structural and physical property study of sol-gel synthesized CoFe2-xHoxO4 nano ferrites

    Science.gov (United States)

    Patankar, K. K.; Ghone, D. M.; Mathe, V. L.; Kaushik, S. D.

    2018-05-01

    CoFe2-xHoxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ferrites were prepared by the suitably modified Sol-Gel technique. X-ray diffraction (XRD) analysis revealed that the substituted samples show phase pure formation till 10% substitution, which is far higher phase pure than the earlier reports. Upon further substitution an inevitable secondary phase of HoFeO3 along with the spinel phase despite regulating synthesis parameters in the sol-gel reaction route. These results are further corroborated more convincingly by room temperature neutron diffraction. Morphological features of the ferrites were studied by Scanning Electron Microscopy (SEM). The magnetic parameters viz. the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) were determined from room temperature isothermal magnetization. These parameters were found to decrease with increase in Ho substitution. The decrease in magnetization is analyzed in the light of exchange interactions between rare earth and transition metal ions. Magnetostriction measurements revealed interesting results and the presence of a secondary phase was found to be responsible for decreased measu-red magnetostriction values. The solubility limit of Ho in CoFe2O4 lattice is also reflected from the X-ray and neutron diffraction analysis and magnetostriction studies.

  15. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour

    DEFF Research Database (Denmark)

    Enrico, Anna; Zhang, Wenjing (Angela); Traulsen, Marie Lund

    2018-01-01

    Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only...

  16. Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths

    DEFF Research Database (Denmark)

    Ji, Xiangling; Jiang, Shichun; Qiu, Xuepeng

    2003-01-01

    Abstract: Hybrid poly(2-hydroxyethyl methacrylate) (PHEMA)/SiO2 monoliths were synthesized via a sol-gel process of the precursor tetraethyl orthosilicate (TEOS) and the in situ free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA). The weight ratio of the starting chemicals, TEOS...

  17. Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation

    OpenAIRE

    Rodrigues, Leonardo Ribeiro; d` Ávila, Marcos Akira; Monteiro, Fernando Jorge Mendes; Zavaglia, Cecília Amélia de Carvalho

    2012-01-01

    The sol-gel process is a technique used to synthesize materials from colloidal suspensions and, therefore, is suitable for preparing materials in the nanoscale. In this work hydroxyapatite was used due to its known properties in tissue engineering. Hydroxyapatite Ca10(PO4)6(OH)2 is a bioactive ceramic which is found in the mineral phase of bone tissue and is known for its great potential in tissue engineering applications. For this reason, this material can be applied as particle aggregates o...

  18. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  19. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  20. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique

    International Nuclear Information System (INIS)

    Jadalannagari, Sushma; More, Sandeep; Kowshik, Meenal; Ramanan, Sutapa Roy

    2011-01-01

    Hydroxyapatite (HAp) nano-rods were successfully synthesized by a modified sol-gel method using a solution of CaCl 2 .2H 2 O in water, along with a solution of H 3 PO 4 in triethylamine and NH 4 OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The sol obtained was dried in an oven for 2 days at 100 deg. C after being dialyzed for 12 h. Pellets were made from the crystalline powders and immersed in simulated body fluid (SBF) to check its biocompatibility after 15, 45 and 180 days of immersion. The HAp powders and pellets were characterized by X-Ray Diffraction crystallography (XRD), Fourier transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The HAp nano-rods had an average diameter of 25 nm and length 110-120 nm. Immersion of the HAp pellets in SBF led to the formation of a highly porous interconnecting HAp layer on the surface. The porosity increased with increase in immersion time. Highlights: → Low temperature synthesis of hydroxyapatite nanorods using Ca and P sources and triethylamine. → The synthesis time was only 0.5 hours. → Crystalline material was obtained after drying at 100oC only in air. → SBF studies showed the HAP bodies to be biocompatible.

  1. Sol-gel synthesis of Bi3.25La0.75Ti3O12 nanotubes

    International Nuclear Information System (INIS)

    Wang Wen; Ke Hua; Rao Jiancun; Feng Jinbiao; Feng Ming; Jia Dechang; Zhou Yu

    2011-01-01

    Research highlights: → One-dimensional (1D) ferroelectrics have been successfully synthesized. The sol-gel template synthesis is a versatile and inexpensive technique for producing nanostructures, and particularly facilitates the fabrication of complex oxide nanotubes or nanowires. Compared with the synthesis of the general nanotubes such as carbon nanotubes with simple crystal structure, the synthesis of ferroelectric compound is difficult due to the multielement and the complex crystal structures of these ferroelectrics. Herein, we report the synthesis of one-dimensional BLT nanotubes on anodic alumina (AAO) templates by immersing a template membrane in sol without polymeric additive. - Abstract: Ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) nanotubes were synthesized by sol-gel technique using nanochannel porous anodic aluminum oxide (AAO) templates, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). BLT nanotubes with diameter of around 240 nm and the wall thickness of about 25 nm exhibited a single orthorhombic perovskite structure and highly preferential crystal growth along the [1 1 7] orientation, which have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. The formation mechanism of BLT nanotubes was discussed.

  2. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  3. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of

  4. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  5. Characterization and photoactivity of Pt/N-doped TiO{sub 2} synthesized through a sol–gel process at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bing-Shun [Feng Chia University, Green Energy Development Center (China); Tseng, Hui-Hsin [Chung Shan Medical University, School of Occupational Safety and Health (China); Su, En-Chin; Chiu, I-Ching; Wey, Ming-Yen, E-mail: mywey@dragon.nchu.edu.tw [National Chung Hsing University, Department of Environmental Engineering (China)

    2015-07-15

    The rates of photocatalytic production of H{sub 2} by Pt/N-doped TiO{sub 2} are significantly affected by the hydrolysis temperature applied during the sol–gel process. Production rates increase as the hydrolysis temperature decreases from 40 to 20 °C. The effects of the hydrolysis temperature on the properties and water-splitting behavior of photocatalysts were investigated. Characterization results showed that hydrolysis temperatures higher than 40 °C induce the formation of the rutile phase and particle agglomeration, reduce the N-dopant content, and decrease the range of visible-light absorption. In this study, a low hydrolysis temperature of about 20 °C is optimal for the sol–gel preparation of N-doped TiO{sub 2}; this temperature favors the formation of high-purity anatase, small particle size, extensive visible-light absorption, and excellent rates of photocatalytic production of H{sub 2} (about 2100 μmol h{sup −1} g{sup −1})

  6. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  7. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  8. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  9. Breath alcohol of anesthesiologists using alcohol hand gel and the "five moments for hand hygiene" in routine practice.

    Science.gov (United States)

    Lindsay, Helen A; Hannam, Jacqueline A; Bradfield, Charles N; Mitchell, Simon J

    2016-08-01

    Appropriate hand hygiene reduces hospital-acquired infections. Anesthesiologists work in environments with numerous hand hygiene opportunities (HHOs). In a prospective observational study, we investigated the potential for an anesthesiologist to return a positive alcohol breath test during routine practice when using alcohol hand gel. We observed ten volunteer anesthesiologists over four hours while they implemented the World Health Organization (WHO) "five moments for hand hygiene" using our hospital's adopted standard 70% ethanol hand gel. We measured the expired alcohol concentration at shift start and every fifteen minutes thereafter with a fuel cell breathalyzer calibrated to measure the percentage of blood alcohol concentration (BAC). Blood alcohol specimens (analyzed with gas chromatography) were collected at shift start and, when possible, immediately after a participant's first positive breathalyzer test. Of the 130 breathalyzer tests obtained, there were eight (6.2%) positive breath alcohol results from six of the ten participants, all within two minutes of a HHO. The highest value breathalyzer BAC recorded was 0.064%, with an overall mean (SD) of 0.023 (0.017)%. Five (62.5%) of the positive breathalyzer tests returned to zero in less than seven minutes. All of three blood specimens obtained immediately after a positive breathalyzer reading tested negative for alcohol. Anesthesia practitioners using alcohol hand gel in a manner that conforms with recommended hand hygiene can test positive for alcohol on a breathalyzer assay. Positive tests probably arose from inhalation of alcohol vapour into the respiratory dead space following gel application. If workplace breath testing for alcohol is implemented, it should be completed more than 15 min after applying alcohol hand gel. Positive results should be verified with a BAC test.

  10. TiO{sub 2}/N-graphene nanocomposite via a facile in-situ hydrothermal sol–gel strategy for visible light photodegradation of eosin Y

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yingliang; Pei, Fuyun, E-mail: xusg@zzu.edu.cn; Lu, Ruijuan; Xu, Shengang; Cao, Shaokui, E-mail: caoshaokui@zzu.edu.cn

    2014-12-15

    Highlights: • TiO{sub 2}/N-graphene is synthesized via in-situ hydrothermal sol–gel strategy. • TiO{sub 2} nanoparticles are chemically anchored on N-graphene nanosheets. • The band gap of TiO{sub 2}/N-graphene is red-shifted from neat TiO{sub 2} nanoparticles. • 5-NGT nanocomposite has the best visible light photodegradation performance. - Abstract: TiO{sub 2}/N-graphene nanocomposites are synthesized via a facile in-situ hydrothermal sol–gel strategy in order to improve the photocatalytic efficiency for pollutant photodegradation under visible light irradiation. The as-prepared nanocomposites are respectively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV–vis diffuse reflectance spectroscopy. Results indicated that neat TiO{sub 2} nanoparticles have an average diameter about 6.70 nm while TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites synthesized through in-situ hydrothermal sol–gel strategy bear an average diameter of ∼1 nm and are anchored on N-graphene nanosheets via chemical bonding. Both neat TiO{sub 2} nanoparticles and chemically anchored TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites take on the crystal type of anatase. The band gap of TiO{sub 2}/N-graphene nanocomposites is red-shifted compared with neat TiO{sub 2} nanoparticles. The evaluation of photodegradation performance under visible light irradiation suggested that the nanocomposite with 5 wt% N-graphene content has the best visible light photodegradation performance.

  11. Preparation of ZrW{sub 2}O{sub 8} xerogel and aerogels by sol-gel chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Noailles, L.; Dunn, B.; Larson, D. [Dept. of Materials Science and Engineering, Univ. of California, Los Angeles, CA (United States); Starkovich, J.; Peng, H. [Northrop Grumman Space Technology, Redondo Beach, CA (United States)

    2004-07-01

    Xerogels and aerogels with the composition ZrW{sub 2}O{sub 8} have been synthesized using sol-gel chemistry. For the xerogel, trigonal phase is formed at 650 C and the cubic phase forms above 1100 C in less than 30 seconds. Aerogels have been prepared with an average pore diameter of 110 Aa and a surface area of 510 m{sup 2}g{sup -1}. (orig.)

  12. Implementation of a gel dosimeter for dosimetric verification of treatments with RapidArcTM

    International Nuclear Information System (INIS)

    Cortes, H.; Vasquez, J.; Plazas, M.

    2014-08-01

    The gel dosimetry represents advantages on other dosimetric systems for its potential of analyzing information in third dimension (3D). This work seeks to find another alternative for the verification of treatments of high complexity like the RapidArc TM . A gel type Magic was prepared and characterized, which was irradiated with base in a plan of RapidArc TM calculated in the Treatment Planning System (Tps) Eclipse, using the Anisotropic Analytic Algorithm (Aaa) for a beam with an acceleration potential of 6 MV. The dosimeter was characterized using Magnetic Resonance Images starting from the correlation between the T2 and the dose. The dose distribution curves were analyzed in second dimension (2D) using the program Omni Pro-I mrT and were compared with the curves obtained for the Tps under the approach gamma 2D. The comparison showed that the Gel represents a valid option inside the acceptable ranges for Quality Assurance in radiotherapy. (Author)

  13. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  14. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  15. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  16. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  17. Synthesis and characterization of nanosized Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} ferrites by both sol-gel and thermal decomposition methods

    Energy Technology Data Exchange (ETDEWEB)

    De-León-Prado, Laura Elena, E-mail: laura.elena.prado@gmail.com [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294, Saltillo, Coahuila, México (Mexico)

    2017-04-01

    This work reports the synthesis of Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  18. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    Science.gov (United States)

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  20. Vacuum ultraviolet excited luminescence properties of sol–gel derived GdP5O14:Eu3+ powders

    International Nuclear Information System (INIS)

    Mbarek, Aïcha; Chadeyron, Geneviève; Boyer, Damien; Avignant, Daniel; Fourati, Mohieddine; Zambon, Daniel

    2014-01-01

    Sol–gel route has successfully been used to synthesize pure and Eu 3+ doped polycrystalline samples of the GdP 5 O 14 pentaphosphates. The as-prepared samples have structurally been characterized using X-ray diffraction. Optical properties in the vacuum ultraviolet (VUV) of Eu 3+ activated GdP 5 O 14 samples prepared either by sol–gel process or solid-state reaction were investigated at room temperature for comparison. In this GdP 5 O 14 host matrix the P 5 O 14 ultraphosphate groups were proved to exhibit an efficient absorption in the VUV range. The excitation spectra recorded in the VUV-UV spectral region from 120 nm to 350 nm have revealed the presence of Gd 3+ 4f–5d interconfiguration transitions, Gd 3+ –O 2− and Eu 3+ –O 2− charge transfer states(CTS)in addition to intraconfiguration transitions of Gd 3+ ions.Furthermore the Gd 3+ →Eu 3+ energy transfer process was investigated and discussed in the framework of the multiphonon relaxation process. Besides, the GdP 5 O 14 :Eu 3+ phosphor led to a strong red emission under 147/172 nm excitation, so that it can be considered as a promising red phosphor for mercury-free lamps and plasma display panels applications. -- Highlights: • Lanthanide pentaphosphates were synthesized by the sol–gel process. • A broad absorption was evidenced in the VUV range for GdP 5 O 14 :Eu 3+ . • An efficient energy transfer was proved from pentaphosphate lattice to Eu 3+ ions

  1. Gel nano-particulates against radioactivity; Des nanoparticules en gel contre la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Deroin, Ph

    2004-11-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  2. Sol-gel preparation of high surface area potassium tetratitanate for the immobilization of nuclear waste metal ions

    International Nuclear Information System (INIS)

    Jung, K.T.; Shul, Y.G.; Moon, J.K.; Oh, W.J.

    1997-01-01

    Potassium tetratinates(K 2 Ti 4 O 9 ) were synthesized by using the sol-gel method to produce ion-exchangeable materials with high surface area. The effects of mole ratios of K/Ti and H 2 O/Ti were examined. K 2 Ti 4 O 9 was obtained at 740 deg. C by the sol-gel method, which uses a lower temperature than the melting method. After calcination at 800 deg. C, K 2 Ti 4 O exhibits a needle shape which is quite different from the shape of K 2 Ti 6 O 13 powder. The surface areas of K 2 Ti 4 O 9 was 15 m 2 /g by the sol-gel method after calcining at 800 C. The enhancement of BET area to 25 m 2 /g was obtained after supercritical drying using EtOH as solvent. By using the sodium alginate method, needle type potassium titanate 10μm in length, the longest aspect ratio of 1,3 x 10 3 could be obtained. There are variations in the Sr 2+ ion exchange rate and capacity according to the preparation method. Larger BET surface area provides fast ion exchange and larger capacity for Sr 2+ ion in the order; sol-gel process with supercritical drying > sol-gel process > melting process. (author). 17 refs, 21 figs, 1 tab

  3. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Jirasek, A; Hilts, M; McAuley, K B

    2010-01-01

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  4. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.

  5. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  6. Composites characterization by sol-gel process using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Minas Gerais Univ., Belo Horizonte, MG; Magalhaes, Wellington F. de; Mohallem, Nelci D.S.

    1997-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mole ratio, with H Cl and HF as catalysts. These silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-propoxide in the starting solution during agitation. The samples were prepared in monolithic shape, dried at 110 0 C for 24 hours and thermally treated for 2 hours at 500, 900 and 110 0 C for 24 hours The structural evolution was studied by X-Ray diffraction, mercury porosimetry and picnometry. In this work it was also used the Positron Annihilation Lifetime Spectroscopy which have been used , now a days, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 0 C and a strong densification process at 1100 0 C. (author). 10 refs., 4 figs., 2 tabs

  7. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy

    Directory of Open Access Journals (Sweden)

    MAJA JOVIC

    2009-01-01

    Full Text Available Sb2Co alloy in powdery form was synthesized via reduction with gaseous hydrogen of the oxide CoSb2O6, obtained by the citrate gel-combustion technique. The precursor was an aqueous solution of antimony nitrate, cobalt nitrate and citric acid. The precursor solution with mole ratio Co(II/Sb(V of 1:2 was gelatinized by evaporation of water. The gel was heated in air up to the temperature of self-ignition. The product of gel combustion was a mixture of oxides and it had to be additionally thermally treated in order to be converted to pure CoSb2O6. The reduction of CoSb2O6 by gaseous hydrogen yielded powdery Sb2Co as the sole phase. The process of oxide reduction to alloy was controlled by thermogravimetry, while X-ray diffractometry was used to control the phase compositions of both the oxides and alloys.

  9. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    Science.gov (United States)

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  10. Novel macroporous amphoteric gels: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    S. Kudaibergenov

    2012-05-01

    Full Text Available Macroporous amphoteric gels based on allylamine, methacrylic acid and acrylamide crosslinked by N,N'-methylenebisacrylamide were synthesized by radical copolymerization of monomers in cryoconditions. The composition of cryogels was determined by combination of potentiometric and conductimetric titrations. The morphology of cryogels was evaluated by scanning electron microscope (SEM. Cryogels exhibited sponge-like porous structure with pore size ranging from 50 to 200 μm. The values of the isoelectric points (IEPs determined from the swelling experiments arranged between 3.5 and 4.3. The high adsorption-desorption capacity of amphoteric cryogels with respect to mM and trace concentrations of copper, nickel, and cobalt ions was demonstrated. It was shown that the macroporous amphoteric cryogels are able to adsorb up to 99.9% of copper, nickel, and cobalt ions from 10–3 mol•L–1 aqueous solution.

  11. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    Science.gov (United States)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  12. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria BC V6R 2B6 (Canada); McAuley, K B, E-mail: jirasek@uvic.c [Department of Chemical Engineering, Queens University, Kingston, ON K7 L 3N6 (Canada)

    2010-09-21

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  13. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Sobhani, Azam [Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-07-15

    The Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites have been successfully synthesized via a new sol–gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe{sub 2}O{sub 4}) and iron (II) oxide (Fe{sub 2}O{sub 3}) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated. - Highlights: • Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites were synthesized for the first time. • A simple, low-cost and friendly route was used to synthesize the nanocomposites. • Effects of amount of onion and chitosan were investigated.

  14. Synthesis and chemistry of chromium in CrAPO-5 molecular sieves

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1994-01-01

    CrAPO-5 molecular sieves were synthesized hydrothermally starting with different Cr precursors and Cr and template contents. The behavior of Cr was investigated spectroscopically by diffuse reflectance spectroscopy (d.r.s.) and electron spin resonance (e.s.r.). In the gels, Cr 3+ and Cr 8+ are

  15. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification

    Science.gov (United States)

    Taghvaei-Ganjali, Saeed; Zadmard, Reza; Saber-Tehrani, Mandana

    2012-06-01

    For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N2 adsorption-desorption, thermal gravimetric analysis (TGA), 29Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H+ determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.

  16. Investigation on the utilization of ZrO2-SiO2 composite microspheres for Sr+2 sorption synthesized via sol-gel method

    International Nuclear Information System (INIS)

    Sert, S.; Tel, H.; Altas, Y.; Eral, M.; Cetinkaya, B.; Inan, S.; Kasap, S.

    2009-01-01

    Multivalence metal ion's oxides and hydro oxides show high adsorption capacity. These are selective to some kind of ions and show thermal, chemical and radiation resistance. Because of these properties they can be used as a adsorbent for radioactive waste management. It is known that the mix oxide's acidic and basic surface sides and textural (surface area, por side and volume) properties related to mix oxide composition. The previously works shown that the ZrO 2 have high adsorption capacity for Sr + 2. Additionally ZrO 2 is used in production of heat resistance materials, glass and ceramic industries due to it's high melting point. Generally inorganic adsorbents which are crystal forms have low surface area. It is needed that the materials have high surface area and appropriate por size to targeted molecules for take inside adsorbent, in the practical adsorption proses. It is thought that the addition of oxide which has high surface area ( SiO 2 etc.) to between material layer increase it's surface area. Some works showed that the silica increase surface area when mixed Ti in materials structure. Sol-jell proses is a method which is show homogen hetero metal oxide bounds distribution and give advantages to prepare multicomponent oxide materials. In this study, ZrO 2 -SiO 2 -TiO 2 composite microspheres were synthesized by sol-gel method. In synthesis proses; peristaltic pump, nozzle-vibrator system and glass column were used. The optimum Sr 2 + adsorption conditions were determined by 'Central Composite Design' (CCD). Thermodynamic parameters related to adsorption such as ΔHo, ΔSo and ΔGo were calculated. The adsorption data have been interpreted in terms of Langmuir, Freundlich and D-R isotherms.

  17. Fabrication and physical and biological properties of fibrin gel derived from human plasma

    Science.gov (United States)

    Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2008-03-01

    The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 °C, which is about 30 °C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of ~50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml-1) and thrombin (5 U ml-1) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.

  18. Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation—Part I: Gel fraction, swelling, and mechanical properties

    International Nuclear Information System (INIS)

    Alcântara, M.T.S.; Brant, A.J.C.; Giannini, D.R.; Pessoa, J.O.C.P.; Andrade, A.B.; Riella, H.G.; Lugão, A.B.

    2012-01-01

    In this work several hydrogels were obtained with two different poly(vinyl alcohol)s/PVAs as the main polymer in aqueous solutions containing 10% of PVA, 0.6% of agar, and 0.6% of κ-carrageenan (KC), cross-linked by gamma-rays from a 60 Co irradiation source. The PVAs tested have different degrees of hydrolysis and viscosities at 4% with values closed to 30 mPa s. The aqueous polymeric solutions were prepared using two distinct processes: the simple process of heating–stirring and that of making use of an autoclave. The purpose of this study was to evaluate the influence of the dissolution process by means of both methods on the hydrogels’ properties obtained. These were investigated by means of degree of cross-linking/gel fraction, degree of swelling in water, and some mechanical properties. The results that are obtained for hydrogels synthesized from solutions of PVA, agar, KC, and blends thereof prepared by both dissolution processes showed higher degrees of swelling for hydrogels from the autoclaved polymer solutions than those from the solutions prepared by simple heating–stirring process. Furthermore, their hydrogels containing totally hydrolyzed PVA displayed higher tensile strength and lower elongation properties. - Highlights: ► Hydrogels from γ-irradiated PVA and PVA-polysaccharide blends were obtained. ► PVA molar mass and degree of hydrolysis play an important role in their hydrogels. ► Dissolution processes of PVAs have influenced on their hydrogel characteristics. ► Degrees of swelling of hydrogels were lower when prepared from autoclaved solutions.

  19. Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop

    International Nuclear Information System (INIS)

    Kolonko, Nadine; Bannach, Oliver; Aschermann, Katja; Hu, Kang-Hong; Moors, Michaela; Schmitz, Michael; Steger, Gerhard; Riesner, Detlev

    2006-01-01

    Viroids are single-stranded, circular RNAs of 250 to 400 bases, that replicate autonomously in their host plants but do not code for a protein. Viroids of the family Pospiviroidae, of which potato spindle tuber viroid (PSTVd) is the type strain, are replicated by the host's DNA-dependent RNA polymerase II in the nucleus. To analyze the initiation site of transcription from the (+)-stranded circles into (-)-stranded replication intermediates, we used a nuclear extract from a non-infected cell culture of the host plant S. tuberosum. The (-)-strands, which were de novo-synthesized in the extract upon addition of circular (+)-PSTVd, were purified by affinity chromatography. This purification avoided contamination by host nucleic acids that had resulted in a misassignment of the start site in an earlier study. Primer-extension analysis of the de novo-synthesized (-)-strands revealed a single start site located in the hairpin loop of the left terminal region in circular PSTVd's secondary structure. This start site is supported further by analysis of the infectivity and replication behavior of site-directed mutants in planta

  20. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    Science.gov (United States)

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  1. Low-temperature sol-gel synthesis of NaZr2P3O12

    International Nuclear Information System (INIS)

    Agrawal, D.K.; Adair, J.H.

    1990-01-01

    The NZP family of new low-expansion materials has attracted wide interest for its potential in advanced technological applications. NaZr 2 P 3 O 12 , which is the parent composition of this family, has been synthesized by the solution sol-gel method using special precursor solutions, which led to its formation (although poorly crystalline) at temperatures as low as 120 degrees C. The lowest temperature of formation of a single phase of NaZr 2 P 3 O 12 with a high degree of crystallinity was found to be 600 degrees C

  2. Synthesis of ceramic powders of La9,56 (SiO4)6O2,34 and La9,8Si5,7MgO,3O26,4 by modified sol-gel process

    International Nuclear Information System (INIS)

    Lira, Sabrina Lopes; Paiva, Mayara Rafaela Soares; Misso, Agatha Matos; Elias, Daniel Ricco; Yamagata, Chieko

    2012-01-01

    Lanthanum silicate oxyapatite materials are promising for application as electrolyte in solid oxide fuel cells because of high ionic conductivity at temperatures between 600 deg C and 800 deg C. In this work, oxyapatites with the composition La 9,56 (SiO 4 ) 6 O 2,34 , and La 9,8 Si 5,7 Mg 0,3 O 26,4 were synthesized by using the sol-gel method, followed by precipitation. Initially, the gel of silica was synthesized from sodium silicate solution, by acid catalysis using lanthanum and magnesium chloride solution. Then, the La and Mg hydroxides were precipitated with NaOH in the gel. The powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and measurements of specific surface area. The crystalline oxyapatite phase of La 9,56 (SiO 4 ) 6 O 2,34 , and was La 9,8 Si 5,7 Mg 0,3 O 26,4 obtained by calcination at 900 deg C for 2 and 1h respectively (author)

  3. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.; Omri, Karim; Zhang, Bei; El Mir, Lassaad; Sajieddine, Mohammed; Alyamani, Ahmed Y.; Bououdina, M.

    2012-01-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  4. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.

    2012-10-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  5. A rapid and efficient two-step gel electrophoresis method for the purification of major rye grass pollen allergens.

    Science.gov (United States)

    Levy, D; Davies, J; O'Hehir, R; Suphioglu, C

    2001-06-01

    Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 microg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.

  6. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  7. Preparation of continuous alumina gel fibres by aqueous sol–gel ...

    Indian Academy of Sciences (India)

    Abstract. Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1·5. Thermogravimetry– differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction ...

  8. Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications

    Directory of Open Access Journals (Sweden)

    Alexis Fischer

    2013-03-01

    Full Text Available TiO2 thin films were synthesized by sol-gel process: titanium tetraisopropoxide (TTIP was dissolved in isopropanol, and then hydrolyzed by adding a water/isopropanol mixture with a controlled hydrolysis ratio. The as prepared sol was deposited by “dip-coating” on a glass substrate with a controlled withdrawal speed. The obtained films were annealed at 350 and 500 °C (2 h. The morphological properties of the prepared films were analyzed by Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. The optical waveguiding properties of TiO2 films were investigated for both annealing temperature using m-lines spectroscopy. The refractive indices and the film thickness were determined from the measured effective indices. The results show that the synthesized planar waveguides are multimodes and demonstrate low propagation losses of 0.5 and 0.8 dB/cm for annealing temperature 350 and 500 °C, respectively.

  9. Structural and magnetic properties of sol-gel derived CaFe2O4 nanoparticles

    Science.gov (United States)

    Das, Arnab Kumar; Govindaraj, Ramanujan; Srinivasan, Ananthakrishnan

    2018-04-01

    Calcium ferrite nanoparticles with average crystallite size of ∼11 nm have been synthesized by sol-gel method by mixing calcium and ferric nitrates in stoichiometric ratio in the presence of ethylene glycol. As-synthesized nanoparticles were annealed at different temperatures and their structural and magnetic properties have been evaluated. X-ray diffraction studies showed that unlike most ferrites, as-synthesized cubic calcium ferrite showed a slow transformation to orthorhombic structure when annealed above 400 °C. Single phase orthorhombic CaFe2O4 was obtained upon annealing at 1100 °C. Divergence of zero field cooled and field cooled magnetization curves at low temperatures indicated superparamagnetic behavior in cubic calcium ferrite particles. Superparamagnetism persisted in cubic samples annealed up to 500 °C. As-synthesized nanoparticles heat treated at 1100 °C exhibited mixed characteristics of antiferromagnetic and paramagnetic grains with saturation magnetization of 0.4 emu/g whereas nanoparticles calcined at 400 °C exhibited superparamagnetic characteristics with saturation magnetization of 22.92 emu/g. An antiferromagnetic to paramagnetic transition was observed between 170 and 190 K in the sample annealed at 1100 °C, which was further confirmed by Mössbauer studies carried out at different temperatures across the transition.

  10. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  11. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  12. Study of poly(N,N-dimethylacrylamide)/CdS nanocomposite organic/inorganic gels.

    Science.gov (United States)

    Bekiari, Vlasoula; Pagonis, Konstantinos; Bokias, Georgios; Lianos, Panagiotis

    2004-09-14

    CdS nanoparticles have been synthesized and stabilized in poly(N,N-dimethylacrylamide) hydrogels. The properties of the composite material have been characterized by UV-vis spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and steady-state and time-resolved luminescence spectroscopy. This material can be obtained in three different states: swollen, shrunk, and freeze-dried. The swollen and the freeze-dried states correspond to a nanocomposite organic/inorganic (wet or dry) gel containing CdS nanoparticles of approximately 50 nm diameter while the shrunk state is a two-phase system containing CdS crystals, which precipitate forming interesting geometrical shapes.

  13. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    Science.gov (United States)

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  14. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    Science.gov (United States)

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Rapid Synthesis and Characterization of Nano sodalite Synthesized using Rice Husk Ash

    International Nuclear Information System (INIS)

    Siti Haslina Ahmad Rusmili; Zainab Ramli

    2012-01-01

    Rice husk ash (RHA) which contains more than 90 percent silica is proven to be an active silica source in zeolite synthesis. In this study, nano sodalite has been successfully synthesized hydrothermally at 60 degree Celsius using RHA as silica source in alkaline medium at various crystallization times. Commercial fumed silica was used as comparison for the silica source. Analysis by XRD has shown that pure nano sodalite was formed in 3 hours and stable up to more than 24 hours when using RHA as silica source. On the other hand, fumed silica produced pure nano sodalite only at 4 hours while a mixture of zeolites was observed outside this time range. FESEM shows a worm-like morphology of nano sodalite in the size range of 50-100 nm while FTIR shows the formation of aluminosilicates bonds. Analysis on the dissolved silica in the gel reaction mixture demonstrates the decreasing mass of silica after prolong time of crystallization which indicates the consumption of the dissolved silica in crystal growth of nano sodalite. This study shows that RHA is a better silica source in stabilizing the nano sodalite phase in oxide gel reaction mixture as compared to fumed silica. (author)

  16. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  17. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Luo, Junming; Tian, Xinlong; Wu, Shoukun; Chen, Chun; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice

  18. Studies on structural, morphological and electroresistance properties of sol–gel grown nanostructured PrMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Keshvani, M.J. [Binoy Hashmukhbhai (B.H.) Gardi College of Engineering and Technology, Rajkot 361 162 (India); Katba, Savan; Jethva, Sadaf; Udeshi, Malay [Department of Physics, Saurashtra University, Rajkot 360 005 (India); Kataria, Bharat; Ravalia, Ashish [Department of Nanoscience and Advanced Materials, Saurashtra University, Rajkot 360 005 (India); Kuberkar, D.G., E-mail: dgkuberkar@gmail.com [Department of Nanoscience and Advanced Materials, Saurashtra University, Rajkot 360 005 (India)

    2017-04-15

    Highlights: • Nanostructured PrMnO{sub 3} was synthesized at ambient temperatures via sol–gel route. • Particle size dependent transport properties were studied. • Large room temperature ER (∼100%) was recorded. • Electric field controlled band gap engineering was investigated. • Better resistive switching and EPIR for smaller particle sizes was observed. - Abstract: We report the results of the studies on structural, microstructural and transport properties of nanostructured PrMnO{sub 3} (PMO) synthesized by acetate precursor based modified sol-gel route. Role of sintering temperature in the modifications in the physical properties of PMO samples has been studied. Structural analysis, using X-ray diffraction (XRD), reveals the single phasic nature of all the PMO samples, while analysis of TEM reveals the uniform sized distribution of nanoparticles, showing agglomeration effect in samples sintered at higher temperatures. SEM micrographs depict the increase in grain size with sharp boundaries in the samples sintered at higher temperatures. Sintering temperature and size dependent resistivity behavior under different applied electric fields has been understood in the context of grain size and boundary nature. PMO have also been studied for their electroresistance (ER) and electric pulse induced resistance (EPIR) change behavior which are highly useful features for spintronic based practical applications.

  19. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure

    International Nuclear Information System (INIS)

    Picasso, Gino; Vega, Jaime; Uzuriaga, Rosario; Ruiz, Gean Pieer

    2012-01-01

    In this work, nanoparticles based on magnetite have been prepared by sol-gel and precipitation methods. In the first case two variants have been applied: by growing of sol starting from nitrate precursor and ethylene glycol as solvent and to control the reduction process and force hydrolysis and steric control prepared from ferrum sulfate precursor and sodium citrate. In the second case the starting material was sulfate precursor, ammonium hydroxide as precipitaing agent and ethylene glycol as surfactant. The samples have been characterized by X-ray diffraction technique (XRD), adsorption-desorption of N 2 (BET equation model) and Moessbauer spectroscopy. XRD patterns of all samples showed typical peaks of magnetite which were detected in the following positions: 30,06 o , 35,42 o , 62,55 o . Average specific surface quantified by BET method was ranging from 40 to 50 m 2 /g with isotherm type IV corresponding to mesoporous surface. Moessbauer spectra of sample prepared from sol-gel (gel growing) carried out at home temperature detected the presence of 2 sextets consisting in 2 type of sites: first one due to octahedral positions (Fe 2+ , Fe 3+ ) and the second one due to tetrahedral positions (Fe 3+ ). Grain size of magnetite samples, evaluated by Scherrer equation and specific surface area, was ranging from 2 to 20 nm. (author).

  20. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    Science.gov (United States)

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P cooking. Gel-setting conditions had a greater (P cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  1. Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabib, Asma; Sdiri, Nasr [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University Tunis El Manar, Tunis 2092 (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2015-02-15

    Highlights: • ZnO nanoparticles doped with Na were prepared from sol-gel method. • Electric conductivity and dielectric properties were investigated. • The ZnO conductivity is estimated to be of p-type for critical Na doping of 1.5% at. - Abstract: Na doped ZnO nanoparticles (NPs) were elaborated by sol gel technique. The X-ray diffraction patterns show that the peaks are indexed to the hexagonal structure without any trace of an extra phase. Electric and dielectric properties were investigated using complex impedance spectroscopy. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). The contribution of grain boundary resistance to the total resistance of the system is remarkable. The AC conductivity increases with temperature following the Arrhenius law, with single apparent activation energy for conduction process. The frequency dependence of the electric conductivity follows a simple power law behavior, in according to relation σ{sub AC}(ω) = σ(0) + A ω{sup s}, where s is smaller than 1. The analysis of dc conductivity indicates that the conduction is ionic in nature. The study of its variation, at fixed temperature, with Na content shows sharp decrease which is explained by the formation of Na{sub Zn} acceptor. It was found that the dc conductivity reaches its minimum value for critical Na concentration of 1.5% at which the conductivity is estimated to be of p-type. Impedance and modulus study reveals the temperature dependent non-Debye type relaxation phenomenon. Dielectric studies revealed a promising dielectric properties (relatively high ε′ at low frequencies and low loss at high frequencies). In the low-frequency region, the values of M′ tends to zero suggesting negligible or absent electrode polarization phenomenon. The frequency dependent maxima in the imaginary modulus are found to obey to Arrhenius law.

  2. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  3. Low yield syntheses of [18F]FDG at CDTN/CNEN-MG: problem diagnosis and corrective actions

    International Nuclear Information System (INIS)

    Dalle, Hugo M.; Silva, Juliana B.; Valente, Eduardo S.; Malamut, Carlos; Nascimento, Leonardo T.C.; Silveira, Marina B.; Ferreira, Soraya M.Z.M.D.; Borges, Leonardo T.; Truong, Phong; Olsson, Ake

    2017-01-01

    The Nuclear Technology Development Center manages, since 2007, a Radiopharmaceuticals Research and Production Unit. In the first months of 2014, the radiopharmaceuticals syntheses yields started to fall well under the nominal values. This paper presents a summary of the tests performed to identify the causes of the low yield syntheses and the actions taken to resolve. By sharing our experience, we aim to help other radiopharmaceuticals producers facing similar situation, as solution may not be trivial, neither fast nor cheap. (author)

  4. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    Science.gov (United States)

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH

    International Nuclear Information System (INIS)

    Maduraiveeran, Govindhan; Ramaraj, Ramasamy

    2011-01-01

    Silver nanoparticles embedded in amine-functionalized silicate sol–gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and β-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 μM for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol–gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

  7. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering

    Science.gov (United States)

    Chan, Wing P.; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+ from Ca–γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  8. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    Science.gov (United States)

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. ZnO-SiO{sub 2} based nanocomposites prepared by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Grigorie, Alexandra Carmen [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Muntean, Cornelia, E-mail: cornelia.muntean@upt.ro [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Vlase, Titus [West University of Timisoara, 4 V. Parvan Blv., RO-300223, Timisoara (Romania); Locovei, Cosmin [Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Politehnica University Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazul Blv., RO-300222, Timisoara (Romania); Stefanescu, Mircea [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania)

    2017-01-15

    This paper presents a study on nanocomposites formation in ZnO-SiO{sub 2} systems with different ZnO:SiO{sub 2} molar ratios (1:4, 1:1, and 4:1), prepared employing a sol-gel method modified by an original procedure. The evolution of ZnO-SiO{sub 2} systems depending on the composition and temperature was studied by thermal analysis, Fourier transform infrared spectroscopy, X-ray diffractometry and transmission electron microscopy. Zn(II) carboxylate was synthesized in situ in hybrid silica gels by redox reaction between zinc nitrate and 1,3-propanediol. Its thermal decomposition at low temperatures led to ZnO dispersed in the pores of silica matrix. Only for the 4:1 system, at 400 and 600 °C, ZnO nanocrystallites (average size ∼9 nm) embedded in the amorphous silica matrix were obtained, the other systems being amorphous. Whatever the mixture composition is, above 600 °C, ZnO reacts with SiO{sub 2} to form zinc silicate. At 800 °C, for both 1:4 and 1:1 systems, poor crystallized β-Zn{sub 2}SiO{sub 4} and α-Zn{sub 2}SiO{sub 4} phases embedded in silica matrix were formed. Increasing the temperature, at 1000 °C, only for 1:1 system, β-Zn{sub 2}SiO{sub 4} phase turned into single phase α-Zn{sub 2}SiO{sub 4} (average crystallites size 28.3 nm). For 4:1 composition, at 800 and 1000 °C, systems consisting of ZnO and α-Zn{sub 2}SiO{sub 4} nanocrystallites dispersed in silica were obtained. - Highlights: • By modified sol-gel method, ZnO/SiO{sub 2} and Zn{sub 2}SiO{sub 4}/SiO{sub 2} nanocomposites were obtained. • ZnO dispersed in silica matrix results from zinc carboxylate thermal decomposition. • Zinc carboxylate was synthesized in situ in hybrid silica gels via redox reaction. • Evolution of ZnO in SiO{sub 2} matrix depends on temperature and system composition.

  10. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  11. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  12. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  13. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  14. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  15. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei-Ganjali, Saeed, E-mail: S-taghvaei@IAU-tnb.ac.ir [Chemistry Department, Islamic Azad University, North Tehran Branch, Postal Code: 1913674711, Tehran (Iran, Islamic Republic of); Zadmard, Reza [Chemistry and Chemical Engineering Research Center of Iran, Postal Code: 1496813151, Tehran (Iran, Islamic Republic of); Saber-Tehrani, Mandana [Chemistry Department, Islamic Azad University, North Tehran Branch, Postal Code: 1913674711, Tehran (Iran, Islamic Republic of)

    2012-06-01

    For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N{sub 2} adsorption-desorption, thermal gravimetric analysis (TGA), {sup 29}Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H{sup +} determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.

  16. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  17. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    Science.gov (United States)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  18. High dose thermoluminescence dosimetry performance of Sol-gel synthesized TiO{sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Salas J, Ch. J.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Castillo U, D. M.; Flores M, K. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: castillouzeta@gmail.com [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: TiO{sub 2} is a ceramic material with many applications due to their different crystalline phases (rutile, anatase and brookite). It has attracted attention in several fields because their high mechanical strength, chemical stability and ion-conducting properties. Moreover, in recent years, some research groups gained interest in the thermoluminescence features of TiO{sub 2} concerning their potential use as thermoluminescence dosimeter. In this work, we present experimental results obtained in the first stage of a long-term research project focused in the synthesis of TiO{sub 2} phosphors for dosimetric applications. The thermoluminescent characterization of samples was carried out after being exposed to beta particle irradiation. TiO{sub 2} was prepared by alkoxide sol-gel route using titanium tetrabutoxide as precursor, ethanol, water and ammonia as catalyst. Pellet-shaped samples were annealed at 700 degrees C for 6 h in air atmosphere followed by slow cooling, and then were exposed to radiation doses from 25 to 400 Gy. The glow curves display maxima located at 103 and 238 degrees C when a 5 C/s heating rate is used. From the experimental results here presented, we conclude that TiO{sub 2} is a promising material to develop high dose Tl dosimeters. (Author)

  19. Comparative analysis of synthesis and characterization of La_0_,_9Sr_0_,_1O_3 via sol-gel and combustion reaction

    International Nuclear Information System (INIS)

    Tarrago, D.P.; Haeser, G.S.; Malfatti, C.F.; Sousa, V.C.

    2011-01-01

    Strontium doped lanthanum manganites (LSM) are potential materials for cathode application in solid oxide fuel cells (SOFC) due to their properties and compatibility with yttria stabilized zirconia. In this work a LSM powder obtained by the sol-gel process is compared others previously obtained combustion synthesis using urea or sucrose as fuel. For the synthesis of LSM the nitrates of lanthanum, strontium and manganese were dissolved in citric acid and ethylene glycol forming a gel that was calcinated at 800 deg C. Both methods allowed the synthesis of a single phase powder, according to the X-ray diffraction patterns. Through gas adsorption it was found a specific surface area of 17m²/g, an intermediary value among the combustion synthesized powders. Scanning electron microscopy (SEM) revealed more compact agglomerates in the sol-gel powder, however, the transmission electron microscope (TEM) showed smaller and more uniform particles in this powder. (author)

  20. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Maznah [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Daik, Rusli [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Adam, Zainah [Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  1. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    OpenAIRE

    A. E. Baranchikov; V. A. Maslov; S. V. Shcherbakov; V. A. Usachyov; N. E. Kononenko; P. P. Fedorov; K. V. Dukelskiy

    2015-01-01

    Subject of Study. The paper presents results of characterization for neodymium doped yttrium aluminum garnet nanopowders - YAG:Nd3+ by the method of scanning electronic microscopy. Method. Synthesis of YAG:Nd3+ was carried out by sol-gel method from nitrate or acetate - nitrate solutions with addition of some organic compounds and ammonia as well. Such substances were used as the source ones: oxides of neodymium and yttrium with the content of the basic substance equal to 99.999 %; organic co...

  2. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  3. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    Science.gov (United States)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  4. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  5. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition.

    Science.gov (United States)

    Wang, Wenjie; Shen, Mingyue; Liu, Suchen; Jiang, Lian; Song, Qianqian; Xie, Jianhua

    2018-07-15

    Effect of different salt ions on the gel properties and microstructure of Mesona blumes polysaccharide (MBP)-soy protein isolates (SPI) mixed gels were investigated. Sodium and calcium ions were chosen to explore their effects on the rheological behavior and gel properties of MBP-SPI mixed gels were evaluated by using rheological, X-ray diffraction, protein solubility determination, and microstructure analysis. Results showed that the addition of salt ions change the crystalline state of gels system, the crystal of gel was enhanced at low ion concentrations (0.005-0.01 M). The two peaks of gel characteristic at 8.9° and 19.9° almost disappeared at high salt ions concentrations (0.015-0.02 M), and new crystallization peaks appeared at around 30° and 45°. The elasticity, viscosity, gel strength, water holding capacity, and thermal stability of gel were increased at low ion concentration. Results showed that the main interactions which promoted gel formation and maintain the three-dimensional structure of the gel were electrostatic interactions, hydrophobic interactions, and disulfide interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  7. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  8. Production optimization of {sup 99}Mo/{sup 99m}Tc zirconium molybate gel generators at semi-automatic device: DISIGEG

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, F., E-mail: fabiola.monroy@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Estado de Mexico (Mexico); Rivero Gutierrez, T., E-mail: tonatiuh.rivero@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Estado de Mexico (Mexico); Lopez Malpica, I.Z.; Hernandez Cortes, S.; Rojas Nava, P.; Vazquez Maldonado, J.C. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Estado de Mexico (Mexico); Vazquez, A. [Instituto Mexicano del Petroleo, Eje Central Norte Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, 07730, Mexico D.F. (Mexico)

    2012-01-15

    DISIGEG is a synthesis installation of zirconium {sup 99}Mo-molybdate gels for {sup 99}Mo/{sup 99m}Tc generator production, which has been designed, built and installed at the ININ. The device consists of a synthesis reactor and five systems controlled via keyboard: (1) raw material access, (2) chemical air stirring, (3) gel dried by air and infrared heating, (4) moisture removal and (5) gel extraction. DISIGEG operation is described and dried condition effects of zirconium {sup 99}Mo- molybdate gels on {sup 99}Mo/{sup 99m}Tc generator performance were evaluated as well as some physical-chemical properties of these gels. The results reveal that temperature, time and air flow applied during the drying process directly affects zirconium {sup 99}Mo-molybdate gel generator performance. All gels prepared have a similar chemical structure probably constituted by three-dimensional network, based on zirconium pentagonal bipyramids and molybdenum octahedral. Basic structural variations cause a change in gel porosity and permeability, favouring or inhibiting {sup 99m}TcO{sub 4}{sup -} diffusion into the matrix. The {sup 99m}TcO{sub 4}{sup -} eluates produced by {sup 99}Mo/{sup 99m}Tc zirconium {sup 99}Mo-molybdate gel generators prepared in DISIGEG, air dried at 80 Degree-Sign C for 5 h and using an air flow of 90 mm, satisfied all the Pharmacopoeias regulations: {sup 99m}Tc yield between 70-75%, {sup 99}Mo breakthrough less than 3 Multiplication-Sign 10{sup -3}%, radiochemical purities about 97% sterile and pyrogen-free eluates with a pH of 6. - Highlights: Black-Right-Pointing-Pointer {sup 99}Mo/{sup 99m}Tc generators based on {sup 99}Mo-molybdate gels were synthesized at a semi-automatic device. Black-Right-Pointing-Pointer Generator performances depend on synthesis conditions of the zirconium {sup 99}Mo-molybdate gel. Black-Right-Pointing-Pointer {sup 99m}TcO{sub 4}{sup -} diffusion and yield into generator depends on gel porosity and permeability. Black

  9. γ-Fe{sub 2}O{sub 3} by sol–gel with large nanoparticles size for magnetic hyperthermia application

    Energy Technology Data Exchange (ETDEWEB)

    Lemine, O.M., E-mail: leminej@yahoo.com [Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh (Saudi Arabia); Omri, K. [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes (Tunisia); Iglesias, M.; Velasco, V. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC (Spain); Crespo, P.; Presa, P. de la [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC (Spain); Dpto. Física de Materiales, Universidad Complutense de Madrid (Spain); El Mir, L. [Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh (Saudi Arabia); Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes (Tunisia); Bouzid, Houcine [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Laboratoire des Matériaux Ferroélectriques, Faculté des Sciences de Sfax, Route Soukra Km 3 5, B.P. 802, F-3018 Sfax (Tunisia); Yousif, A. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Code 123, Al Khoud (Oman); Al-Hajry, Ali [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia)

    2014-09-01

    Highlights: • Iron oxides nanoparticles with different sizes are successfully synthesized using sol–gel method. • The obtained nanoparticles are mainly composed of maghemite phase (γ-Fe{sub 2}O{sub 3}). • A non-negligible coercive field suggests that the particles are ferromagnetic. • A mean heating efficiency of 30 W/g is obtained for the smallest particles at 110 kHz and 190 Oe. - Abstract: Iron oxides nanoparticles with different sizes are successfully synthesized using sol–gel method. X-ray diffraction (XRD) and Mössbauer spectroscopy show that the obtained nanoparticles are mainly composed of maghemite phase (γ-Fe{sub 2}O{sub 3}). XRD and transmission electron microscopy (TEM) results suggest that the nanoparticles have sizes ranging from 14 to 30 nm, which are indeed confirmed by large magnetic saturation and high blocking temperature. At room temperature, the observation of a non-negligible coercive field suggests that the particles are ferro/ferrimagnetic. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of size, frequency and amplitude of the applied magnetic field. A mean heating efficiency of 30 W/g is obtained for the smallest particles at 110 kHz and 190 Oe, whereas further increase of particle size does not improve significantly the heating efficiency.

  10. Study of nuclear glasses alteration gel and synthesis of some model gels

    International Nuclear Information System (INIS)

    Ricol, S.

    1995-01-01

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs

  11. Dapsone gel 5% in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer for the treatment of acne vulgaris: a 12-week, randomized, double-blind study.

    Science.gov (United States)

    Fleischer, Alan B; Shalita, Alan; Eichenfield, Lawrence F; Abramovits, William; Lucky, Anne; Garrett, Steven

    2010-01-01

    To evaluate the safety and efficacy of dapsone gel 5% in the treatment of acne when used in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer. This was a twelve-week, randomized, double-blind study. Patients aged 12 years and older (n=301) applied dapsone gel twice daily and were randomly assigned (1:1:1) to one of three additional treatments, applied once daily. By week 12, dapsone gel combined with any of the three additional treatments reduced the mean number of inflammatory lesions. However, the authors did not detect a significant difference in the reduction of inflammatory lesions when dapsone was used in combination with adapalene gel or with benzoyl peroxide gel compared to the dapsone plus moisturizer combination group (P=0.052 for both versus moisturizer combination). Patients treated with dapsone gel combined with adapalene showed a significantly better response in reduction in non-inflammatory and total acne lesion count than those who received the moisturizer combination. Local adverse reactions in all three treatment groups were minimal and generally mild in severity. Dapsone gel in combination with adapalene gel or benzoyl peroxide gel is safe and well tolerated for the treatment of acne vulgaris.

  12. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Malek, M. F., E-mail: firz-solarzelle@yahoo.com [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, Salman A. H., E-mail: dr.salman@alrokayan.com; Khan, Haseeb A., E-mail: khan-haseeb@yahoo.com [Chair of Targeting and Treatment of Cancer Using Nanoparticles, Deanship of Scientific Research, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  13. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    International Nuclear Information System (INIS)

    Abdullah, M. A. R.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-01-01

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  14. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  15. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    Science.gov (United States)

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  16. Recubrimientos de hidroxiapatita preparados mediante un proceso sol-gel

    Directory of Open Access Journals (Sweden)

    Peón, E.

    2005-12-01

    Full Text Available Hydroxyapatite coatings (HAp have been obtained starting from precursors of sol-gel type. The coatings previously oxidized were deposited on metal surfaces of a based on iron alloy so-called MA956. The alloys were at high temperatures, in order to improve the adhesion with the hydroxyapatite coatings. The sol-gel coating was obtained applying an aqueous route, using triethyl phosphite and aqueous calcium nitrate, as precursors of phosphorous and calcium, respectively. Different sintering thermal treatments were applied on the resulting gels in order to obtain a homogeneous, adherent and crystalline hydroxyapatite coating. The characterization techniques used for this study were optical microscopy, SEM/EDX, XDR and FTIR. Moreover, the adhesion between the hydroxylapatite coating and the substrate was assessed according to the ASTM D 3359-02 standard test method. The results of this study showed that the best thermal treatment is obtained for a sintering temperature of 550 °C during a time of 72 h.

    Se han preparado nuevos recubrimientos de hidroxiapatita (HAp obtenidos a partir de precursores de tipo sol-gel, depositados sobre sustratos metálicos de una aleación de base hierro denominada MA956, previamente oxidados a elevadas temperaturas, para mejorar la adherencia con los recubrimientos de hidroxiapatita. El recubrimiento sol-gel se obtuvo aplicando una ruta acuosa, utilizando como precursores del fósforo y del calcio trietilfosfito y nitrato cálcico tetrahidratado, respectivamente. Sobre los geles resultantes se aplicaron distintos tratamientos térmicos de sinterización, hasta la obtención de recubrimientos de hidroxiapatita homogéneos, adherentes y cristalinos. Las técnicas de caracterización utilizadas para realizar este estudio han sido microscopía óptica, MBE/EDX, DRX y FTIR. Así mismo, se ha determinado la adherencia entre el substrato y el recubrimiento de hidroxiapatita según la norma ASTM D 3359-02. Los resultados

  17. Low yield syntheses of [{sup 18}F]FDG at CDTN/CNEN-MG: problem diagnosis and corrective actions

    Energy Technology Data Exchange (ETDEWEB)

    Dalle, Hugo M.; Silva, Juliana B.; Valente, Eduardo S.; Malamut, Carlos; Nascimento, Leonardo T.C.; Silveira, Marina B.; Ferreira, Soraya M.Z.M.D.; Borges, Leonardo T. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Truong, Phong [GE Healthcare do Brasil, São Paulo, SP (Brazil); Olsson, Ake, E-mail: dallehm@cdtn.br, E-mail: leonardo.borges@ge.com, E-mail: phong.truong@ge.com [GE Healthcare, Uppsala (Sweden)

    2017-07-01

    The Nuclear Technology Development Center manages, since 2007, a Radiopharmaceuticals Research and Production Unit. In the first months of 2014, the radiopharmaceuticals syntheses yields started to fall well under the nominal values. This paper presents a summary of the tests performed to identify the causes of the low yield syntheses and the actions taken to resolve. By sharing our experience, we aim to help other radiopharmaceuticals producers facing similar situation, as solution may not be trivial, neither fast nor cheap. (author)

  18. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  19. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  20. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  1. Thermal and Mechanical Properties of Novolac-Silica Hybrid Aerogels Prepared by Sol-Gel Polymerization in Solvent-Saturated Vapor Atmosphere

    Directory of Open Access Journals (Sweden)

    Mohamad Mehdi Seraji1, Seraji

    2015-05-01

    Full Text Available Nowadays organic–inorganic hybrid aerogel materials have attracted increasing interests due to improved thermal and mechanical properties. In the present research, initially, novolac type phenolic resin-silica hybrid gels with different solid concentrations were synthesized using sol-gel polymerization in solvent-saturatedvapor atmosphere. The hybrid gels were dried at air atmosphere through ambient drying process. This method removed the need for costly and risky supercritical drying process. The yields of the obtained hybrid aerogels increased with less shrinkage in comparison with conventional sol-gel process. The precursor of silica phase in this study was tetraethoxysilane and inexpensive novolac resin was used as a reinforcing phase. The results of FTIR analysis confirmed the simultaneous formation of silica and novolac gels in the hybrid systems. The resultant hybrid aerogels showed a nanostructure hybrid network with high porosity (above 80% and low density (below 0.25 g/cm3. Nonetheless, higher content of silica resulted in more shrinkage in the hybrid aerogel structure due to the tendency of the silica network to shrink more during gelation and drying process. The SEM images of samples exhibited a continuous network of interconnected colloidal particles formed during sol-gel polymerization with mean particle size of less than 100 nanometers. Si mapping analysis showed good distribution of silica phase throughout the hybrid structure. The results demonstrated improvements in insulation properties and thermal stability of novolac-silica aerogel with increasing the silica content. The results of compressive strength showed that the mechanical properties of samples declined with increasing the silica content.

  2. Antimicrobial efficacy of alcohol-based hand gels.

    Science.gov (United States)

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone /starch hydrogels grafted with acrylic acid synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Eid, M.

    2008-01-01

    Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation. Their gel contents, grafting process and swelling were evaluated. The gels were also characterized by thermal gravimetric analysis. The gel content found to be increase with increasing the irradiation dose up to 50 kGy then decrease. The grafting percent increase by increasing the percentage of acrylic acid in the grafted hydrogels. The thermal stability and the rate of the thermal decomposition showed to be changed according to the different composition of the hydrogels. It also showed a decrease in the maximum rate of the thermal decomposition by the increasing of the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B 12 as drug model, demonstrated a decrease release in acidic medium than the neutral one

  4. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  5. Synthesis of polymeric fluorinated sol–gel precursor for fabrication of superhydrophobic coating

    International Nuclear Information System (INIS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Graphical abstract: - Highlights: • A polymeric fluorinated sol–gel precursor PFT is designed to fabricate superhydrophobic coatings. • The superhydrophobicity could be governed by the concentration of PFT. • Bio-mimicking self-cleaning property similar to lotus leaves could also be achieved. - Abstract: A fluorinated polymeric sol–gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol–gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  6. Preparation of zirconium molybdate gel for 99mTc gel generator

    International Nuclear Information System (INIS)

    Aliludin, Z.; Ohkubo, Masatake; Kushita, Kouhei

    1988-09-01

    Zirconium molybdate gel has excellent characteristics for use as column matrix material of 99m Tc generators. In this work, zirconium molybdate gels were prepared under different conditions; pH's of molybdate solutions from 2.5 to 7.0, Mo:Zr molar ratios from 0.7:1.0 to 1.3:1.0, drying temperatures from an ambient temperature to 200 deg C, and drying times from 1 h to 25 h. Contents of water, nitrate, molybdenum and zirconium were measured to examine the fundamental conditions in gel preparation. The Mo:Zr molar ratio was 1.0:1.0 for the most of gels obtained. A 99m Tc generator was prepared with an amorphous zirconium molybdate containing a tracer level of 99 Mo as column matrix material. Elution of 99m Tc was rapid and the average elution efficiency was 90 % for 6 ml elutions. Contents of radionuclidic impurities, Zr and Mo in the eluates, were low enough to meet the pharmacopoeia requirements for human use. (author)

  7. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar

    2013-01-01

    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  8. Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models

    Directory of Open Access Journals (Sweden)

    Oihana Moreno-Arotzena

    2015-04-01

    Full Text Available Hydrogels are used for 3D in vitro assays and tissue engineering and regeneration purposes. For a thorough interpretation of this technology, an integral biomechanical characterization of the materials is required. In this work, we characterize the mechanical and functional behavior of two specific hydrogels that play critical roles in wound healing, collagen and fibrin. A coherent and complementary characterization was performed using a generalized and standard composition of each hydrogel and a combination of techniques. Microstructural analysis was performed by scanning electron microscopy and confocal reflection imaging. Permeability was measured using a microfluidic-based experimental set-up, and mechanical responses were analyzed by rheology. We measured a pore size of 2.84 and 1.69 μm for collagen and fibrin, respectively. Correspondingly, the permeability of the gels was 1.00·10−12 and 5.73·10−13 m2. The shear modulus in the linear viscoelastic regime was 15 Pa for collagen and 300 Pa for fibrin. The gels exhibited strain-hardening behavior at ca. 10% and 50% strain for fibrin and collagen, respectively. This consistent biomechanical characterization provides a detailed and robust starting point for different 3D in vitro bioapplications, such as collagen and/or fibrin gels. These features may have major implications for 3D cellular behavior by inducing divergent microenvironmental cues.

  9. Ophthalmic gels: Past, present and future.

    Science.gov (United States)

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Effect of Improved Crosslink Density on the Properties of Waterborne Polyurethanes Using Sol-Gel Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ryul; Park, Jin Hwan [Pukyong National University, Busan (Korea, Republic of)

    2016-12-15

    Water-based systems are dominating the coating market because of worldwide VOCs regulations. Research is focusing especially on waterborne polyurethane (WPU) because of its unique mechanical and chemical properties. However, commercial WPU consists of linear thermoplastic polymers with polar groups on the main chain, which do not perform as well as solvent-borne PU in a two-pack system. In this study, APTES were used as a chain crosslink agent to overcome commercial WPU's limited performance. WPUs synthesized by using a sol-gel process were evaluated with FT-IR, particle analysis, TGA, tensile tests, pull-off tests, SEM, and EIS. The results showed that WPUs with added APTES had better thermal stability, mechanical properties, and water resistance than did WPUs without added APTES. Consequently, the sol-gel process increased the crosslink density of WPUs and modified the WPU's own properties.

  11. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  12. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  13. Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly.

    Science.gov (United States)

    Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui

    2018-03-23

    This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.

  14. Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Bosi, Stephen; Naseri, Pourandokht; Puran, Alicia; Davies, Justin; Baldock, Clive

    2007-01-01

    There is a need for stable gel materials for phantoms used to validate optical computerized tomography (CT) scanners used in conjunction with radiation-induced polymerizing gel dosimeters. Phantoms based on addition of light-absorbing dyes to gelatine to simulate gel dosimeters have been employed. However, to more accurately simulate polymerizing gels one requires phantoms that employ light-scattering colloidal suspensions added to the gel. In this paper, we present the initial results of using an optical CT scanner to evaluate a novel phantom in which radiation-exposed polymer gels are simulated by the addition of colloidal suspensions of varying turbidity. The phantom may be useful as a calibration transfer standard for polymer gel dosimeters. The tests reveal some phenomena peculiar to light-scattering gels that need to be taken into account when calibrating polymer gel dosimeters

  15. Processing hexavalent uranium gels and their properties

    International Nuclear Information System (INIS)

    Landspersky, H.; Benadik, A.; Spitzer, Z.

    1980-01-01

    The properties of xerogels of ammonium polyuranate prepared by various drying procedures were studied. The individual drying procedures affect differently both the chemical structure of the material (its composition) and the physicochemical properties of the final product (specific surface area, porosity). In addition, the physicochemical properties of xerogels depend on the properties of the starting material, i.e., on the type of the initial gel. The physicochemical properties of xerogels, in particular their porosity, are in turn relevant for their subsequent high-temperature processing. The porous structure is essential for thermal treatment. The structure of xerogels obtained by distillation procedures is affected both by the conditions of azeotropic distillation and by the medium employed. By judicious selection of these two variables it is possible to prepare materials with different pore size distributions. (author)

  16. Characterization of composites prepared by sol-gel process through positrons lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Magalhaes, Welligton F. de; Mohallem, Nelcy D.S.

    1996-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mol ratio, with HCl and HF as catalysts. This silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-prop oxide in the starting solution, during agitation. The samples were prepared in monolithic shape, were dried at 110 deg C for 24 hours and thermally treated for 2 hours at 500, 900 and 1100 deg C. The structural evolution was studied y x-ray diffraction, mercury porosimetry and pycnometry. In this work, it was also used the Position Annihilation Lifetime Spectroscopy which have been used, nowadays, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 deg C and a strong densification process at 1100 deg C. (author)

  17. Influence of sol–gel parameters in the fabrication of ferromagnetic La2/3Ca1/3MnO3 nanotube arrays

    International Nuclear Information System (INIS)

    Kumaresavanji, M.; Sousa, C.T.; Apolinario, A.; Lopes, A.M.L.; Araujo, J.P.

    2015-01-01

    Graphical abstract: - Highlights: • La 2/3 Ca 1/3 MnO 3 nanotube arrays were fabricated by the alumina template assisted sol–gel method. • By varying molarity, viscosity and pH values of sol–gels, their influence was studied. • Sol–gel with 0.8 M, 29 mPa s and 4 pH is found to be suitable for the fabrication of nanotubes. • Such condition can also be applicable to the fabrication of other multicomponent oxide materials. - Abstract: Highly ordered La 2/3 Ca 1/3 MnO 3 nanotube arrays have been synthesized by porous anodic alumina template assisted sol–gel method. Precursor sol–gels with different molar concentration, viscosity and pH values have been used in the fabrication process in order to find the suitable conditions for the fabrication of such multi component oxides. Diverse characterizations such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were done to verify the structural and morphological behavior of as prepared nanotubes. Magnetic properties were also characterized with respect to temperature and field. Based on the obtained results, a possible nanotubes formation mechanism has been discussed. Depends on the percentage of nanopore filling and the morphology of nanotubes, the sol–gel parameters such as molarity, viscosity and pH have been determined as the key factors in the fabrication of nanostructured manganites which can also be applicable to the fabrication process of other multicomponent nanostructured materials

  18. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  19. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  20. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application.

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R; Hamd, Ahmed; Amin, Ragab R; Abdel Khalek, Ahmed

    2017-12-15

    MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni 2 O 3 ). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV-vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni 2 O 3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni 2 O 3 , respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni 2 O 3 as a single component. The adsorption mechanism of MCM-48/Ni 2 O 3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni 2 O 3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol-gel technique

    KAUST Repository

    Omri, Karim; El Ghoul, Jaber; Lemine, O. M.; Bououdina, M.; Zhang, Bei; El Mir, Lassaad

    2013-01-01

    Mn doped ZnO nanoparticles with different doping concentration (1, 2, 3, 4, 5 at.%) were prepared by sol-gel method using supercritical drying conditions of ethyl alcohol. The structural, morphological, optical and magnetic properties of the as-prepared nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV measurements and superconducting quantum interference device (SQUID). The structural properties showed that the undoped and Mn doped ZnO nanoparticles exhibit hexagonal wurtzite structure. From the optical studies, the transmittance in UV region was decreased with the increase of Mn concentration. For Mn doped ZnO nanoparticles the optical band gap varies between 3.34 eV and 3.22 eV. It was found that the doping Mn 2+ ions have a significant influence on the optical properties. The magnetic characterization of the samples with 1% and 5% Mn concentrations reveal diamagnetic behavior for the first one and the presence of both paramagnetic and ferromagnetic behavior for the second. The room ferromagnetic component is due to the presence of the secondary phase ZnOMn3 which is confirmed by XRD study. © 2013 Elsevier Ltd. All rights reserved.

  2. Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol-gel technique

    KAUST Repository

    Omri, Karim

    2013-08-01

    Mn doped ZnO nanoparticles with different doping concentration (1, 2, 3, 4, 5 at.%) were prepared by sol-gel method using supercritical drying conditions of ethyl alcohol. The structural, morphological, optical and magnetic properties of the as-prepared nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV measurements and superconducting quantum interference device (SQUID). The structural properties showed that the undoped and Mn doped ZnO nanoparticles exhibit hexagonal wurtzite structure. From the optical studies, the transmittance in UV region was decreased with the increase of Mn concentration. For Mn doped ZnO nanoparticles the optical band gap varies between 3.34 eV and 3.22 eV. It was found that the doping Mn 2+ ions have a significant influence on the optical properties. The magnetic characterization of the samples with 1% and 5% Mn concentrations reveal diamagnetic behavior for the first one and the presence of both paramagnetic and ferromagnetic behavior for the second. The room ferromagnetic component is due to the presence of the secondary phase ZnOMn3 which is confirmed by XRD study. © 2013 Elsevier Ltd. All rights reserved.

  3. Gel nano-particulates against radioactivity

    International Nuclear Information System (INIS)

    Deroin, Ph.

    2004-01-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  4. Prontonic ceramic membrane fuel cells with layered GdBaCo{sub 2}O{sub 5+x} cathode prepared by gel-casting and suspension spray

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Zhang, Shangquan; Zhang, Linchao; Bi, Lei; Ding, Hanping; Liu, Xingqin; Gao, Jianfeng; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2008-03-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs) with layered GdBaCo{sub 2}O{sub 5+x} (GBCO) cathode, a dense BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte was fabricated on a porous anode by gel-casting and suspension spray. The porous NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY7) anode was directly prepared from metal oxide (NiO, BaCO{sub 3}, ZrO{sub 2}, CeO{sub 2} and Y{sub 2}O{sub 3}) by a simple gel-casting process. A suspension of BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} powders synthesized by gel-casting was then employed to deposit BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) thin layer by pressurized spray process on NiO-BZCY7 anode. The bi-layer with 10 {mu}m dense BZCY7 electrolyte was obtained by co-sintering at 1400 C for 5 h. With layered GBCO cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H{sub 2} as fuel and the static air as oxidant. An open-circuit potential of 0.98 V, a maximum power density of 266 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.16 {omega} cm{sup 2} was achieved at 700 C. (author)

  5. Influence of ionic constituents and electrical conductivity on the propagation of charged nanoscale objects in passivated gel electrophoresis.

    Science.gov (United States)

    Bikos, Dimitri A; Mason, Thomas G

    2018-01-01

    When determining the electric field E acting on charged objects in gel electrophoresis, the electrical conductivity of the buffer solution is often overlooked; E is typically calculated by dividing the applied voltage by a separation distance between electrodes. However, as a consequence of electrolytic reactions, which occur at the electrodes, gradients in the ionic content of the buffer solution and its conductivity can potentially develop over time, thereby impacting E and affecting propagation velocities of charged objects, v, directly. Here, we explore how the types and concentrations of ionic constituents of the buffer solution, which largely control its conductivity, when used in passivated gel electrophoresis (P-gelEP), can influence E, thereby altering v of charged nanospheres propagating through large-pore gels. We measure the conductivity of the buffer solution in the center of the gel region near propagating bands of nanospheres, and we show that predictions of E based on conductivity closely correlate with v. We also explore P-gelEP involving two different types of passivation agents: nonionic polyethylene glycol (PEG) and anionic sodium dodecyl sulfate (SDS). Our observations indicate that using a conductivity model to determine E from the local current density and the conductivity where spheres are propagating can lead to a better estimate than the standard approach of a voltage divided by a separation. Moreover, this conductivity model also provides a starting point for interpreting the complex behavior created by amphiphilic ionic passivation agents, such as SDS, on propagating nanospheres used in some P-gelEP experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Hafeez, Shehla [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2013-12-25

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi{sub 2}V{sub 1−x}Mn{sub x}O{sub 5.5−x/2}; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications.

  7. Sol-gel synthesis of Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen, E-mail: wangwen@hit.edu.cn [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, No. 92 West Da-Zhi Street, Harbin 150001, Heilongjiang (China); Hua, Ke; Jiancun, Rao; Jinbiao, Feng; Ming, Feng; Dechang, Jia; Yu, Zhou [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, No. 92 West Da-Zhi Street, Harbin 150001, Heilongjiang (China)

    2011-04-07

    Research highlights: > One-dimensional (1D) ferroelectrics have been successfully synthesized. The sol-gel template synthesis is a versatile and inexpensive technique for producing nanostructures, and particularly facilitates the fabrication of complex oxide nanotubes or nanowires. Compared with the synthesis of the general nanotubes such as carbon nanotubes with simple crystal structure, the synthesis of ferroelectric compound is difficult due to the multielement and the complex crystal structures of these ferroelectrics. Herein, we report the synthesis of one-dimensional BLT nanotubes on anodic alumina (AAO) templates by immersing a template membrane in sol without polymeric additive. - Abstract: Ferroelectric Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) nanotubes were synthesized by sol-gel technique using nanochannel porous anodic aluminum oxide (AAO) templates, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). BLT nanotubes with diameter of around 240 nm and the wall thickness of about 25 nm exhibited a single orthorhombic perovskite structure and highly preferential crystal growth along the [1 1 7] orientation, which have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. The formation mechanism of BLT nanotubes was discussed.

  8. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    Science.gov (United States)

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  9. A combined effect of freeze--thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels.

    Science.gov (United States)

    Gupta, Siddhi; Goswami, Sudipta; Sinha, Arvind

    2012-02-01

    Transparent poly(vinyl alcohol) (PVA) hydrogel films, derived from aqueous solutions of varying concentration, were synthesized by the cyclic freeze-thaw method (0°-37 °C). This study demonstrates a variation in the transparency, degree of crystallinity, wettability, swelling and mechanical properties of the hydrogels as a function of the solution concentration and the number of freeze-thaw cycles for a given average molecular weight (95,000 Da). The study manifests a strong control of the number of freeze-thaw cycles on the structure-property correlations of the synthesized transparent PVA hydrogels, revealing the possibility of obtaining a window of structural and process parameters for the physically cross-linked hydrogels, making them suitable for cell-gel interactions.

  10. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  11. A sol-gel method for preparing ZnO quantum dots with strong blue emission

    International Nuclear Information System (INIS)

    Chen Zhong; Li Xiaoxia; Du Guoping; Chen Nan; Suen, Andy Y.M.

    2011-01-01

    ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 deg. C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 deg. C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed. - Highlights: → ZnO quantum dots (QDs) with strong blue emission were prepared by sol-gel method. → ZnO QDs had a pure spectral blue with the chromaticity coordinates (0.166, 0.215). → Optimal reaction time and temperature were 7 h and 60 deg. C, respectively.

  12. Novel Detox Gel Depot sequesters β-Amyloid Peptides in a mouse model of Alzheimer’s Disease

    Science.gov (United States)

    Sundaram, Ranjini K.; Kasinathan, Chinnaswamy; Stein, Stanley; Sundaram, Pazhani

    2012-01-01

    Alzheimer’s Disease (AD), a debilitating neurodegenerative disease is caused by aggregation and accumulation of a 39–43 amino acid peptide (amyloid β or Aβ) in brain parenchyma and cerebrovasculature. The rational approach would be to use drugs that interfere with Aβ-Aβ interaction and disrupt polymerization. Peptide ligands capable of binding to the KLVFF (amino acids 16–20) region in the Aβ molecule have been investigated as possible drug candidates. Retro-inverso (RI) peptide of this pentapeptide, ffvlk, has been shown to bind artificial fibrils made from Aβ with moderate affinity. We hypothesized that a ‘detox gel’, which is synthesized by covalently linking a tetrameric version of RI peptide ffvlk to poly (ethylene glycol) polymer chains will act like a ‘sink’ to capture Aβ peptides from the surrounding environment. We previously demonstrated that this hypothesis works in an in vitro system. The present study extended this hypothesis to an in vivo mouse model of Alzheimer’s Disease and determined the therapeutic effect of our detox gel. We injected detox gel subcutaneously to AD model mice and analyzed brain levels of Aβ-42 and improvement in memory parameters. The results showed a reduction of brain amyloid burden in detox gel treated mice. Memory parameters in the treated mice improved. No undesirable immune response was observed. The data strongly suggest that our detox gel can be used as an effective therapy to deplete brain Aβ levels. Considering recent abandonment of failed antibody based therapies, our detox gel appears to have the advantage of being a non-immune based therapy. PMID:22712003

  13. Influence of silane on the structure of polystyrene prepared by sol-gel coatings via UV curing

    Directory of Open Access Journals (Sweden)

    Balbay Senay

    2017-01-01

    Full Text Available Light, heat, oxygen, moisture, ozone, atmospheric pollution and biological effects are the most important effectives wreak to chemical degradation in the polymer structure. In result of chemical degradation on the polymer consist of problems such as discoloration, brittleness, surface cracks, perspiration, crumbling, smell, surface acidity. In this work, it is aimed to improve the problem of the polystyrene (PS material against chemical degradation. For this reason, PS is coated with silica sol-gel hybrid coating. Silica sol-gel was synthesized by using vinyltrimethoxysilane (VTMS as a cross-linker and tetraethylorthosilicate (TEOS as a silica source. Firstly, four different pre-treatment technique (oven, vacuum oven, lyophilizer and freezing was studied to determine the most suitable pre-treatment technique for coating on PS substrate of sol-gel prepared with initial formulation (S1. A freezing technique gave the best results for coating sample. The change of surface colour of coated PS was measured by CIE L*a*b* methods. Secondly, the most suitable curing agent (Irgacure 184, Irgacure 819, Darocur 1173 and TiO2 as crystalline anatase phase was determined to coat the sol-gel on PS. It was determined to the lowest yellowing of PS surface hybrid coated as UV curing of TEOS sol modified by VTMS and TiO2 as photo-initiators. Finally, the chemical and morphological structure of the coated PS samples was determined by FT-IR and SEM instruments, respectively.

  14. Synthesis of gels with basis of titanium tungstates as matrixes of radioactive generators; Sintesis de geles a base de titanio tungstenatos como matrices de generadores radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Galico C, L

    2005-07-01

    The heteropolyanions, compounds formed by the union of molybdates or tungstates polyanions with atoms of metals like zirconium, titanium, cerium, thorium, tin, etc., have been used as generator matrixes of {sup 99m} Tc or {sup 188} Re. Particularly they have been studied and produced successfully in our laboratory, generators of {sup 99} Mo/ {sup 99}m Tc at basis of gels zirconium molybdates and titanium molybdates. Considering that the molybdenum and tungsten, as well as the technetium and the rhenium, its belong to the same groups of transition metals, it is feasible that gels can be synthesized at basis of titanium tungstates, continuing a methodology similar to that of the gels titanium molybdates or zirconium molybdates, to produce generators {sup 188} W/ {sup 188} Re. The {sup 188} Re possess nuclear characteristics that make it attractive for therapeutic applications, since, it emits {beta}{sup -} particles of a great energy (2.12 MeV); joined to the possibility of being able to unite to different ligands (bifunctional agents) and biomolecules (antibodies or fragments of proteins), as it makes the {sup 99m} Tc, useful in radioimmunotherapy. Commercially the {sup 188} Re generators use a chromatographic column loaded with alumina where the {sup 188} Re, it is adsorbed and eluted the {sup 188} ReO{sub 4}{sup -} by means of a saline solution The alumina adsorbs around 0.2% of the {sup 188} Re, situation that forces to use {sup 188} Re of a high specific activity. The use of the gels technology, allows to work with medium or low specific activities of {sup 188} Re, opening the possibility of their production in countries whose nuclear capacity is medium or low. In particular, the synthesized gels with basis of titanium offer the possibility of being synthesized with non active material, for later on to be irradiated and directly produce the generator, since, the titanium {sup 51} Ti, unique radioisotope produced by the titanium, has a half life of 5.79 min. This

  15. Preparation and properties of superconducting Bi-Sr-Ca-Cu-O materials by the alkoxide process

    International Nuclear Information System (INIS)

    Uchikawa, Fusaoki; Kobayashi, Toshio; Usami, Ryo; Yoshizaki, Kiyoshi

    1989-01-01

    Homogeneous starting solutions were synthesized using Bi, Sr, Ca and Cu alkoxides. Powders, thick films and gel fibers were prepared respectively by controlling hydrolysis using the same solutions. The synthesized powder had a homogeneous particle size. The fired powder showed a good crystallization property. The thick film coated on MgO substrate using the synthesized sol solution had a smooth surface and a uniformity of each metal elements. The film showed the c-axis orientation and was shown to have the zero resistance temperature of 90 K and the critical current density of 180 A/cm 2 at 77 K. The fiber drawn from the viscous gel solution showed a comparatively large shrinkage with hear treatment. The fired fiber was brittle and had a low strength. It was also found for the fired fiber that zero resistance temperature was 70 K and the critical current density was 90 A/cm 2 at 77 K

  16. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan; Zhu, Xinhua; Zhou, Shunhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  17. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan

    2013-12-24

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  18. Influence of gel morphology on the corrosion kinetics of borosilicate glass: calcium and zirconium effect

    International Nuclear Information System (INIS)

    Cailleteau, C.

    2008-12-01

    This study is related to the question of the long-term behaviour of the nuclear waste confinement glass. A glass alteration layer (known as the 'gel'), formed at the glass surface in contact with water, can limit the exchanges between the glass and the solution. We studied five oxide based glasses SiO 2 -B 2 O 3 -Na 2 O-CaO-ZrO 2 . Two series of glasses were synthesized by substituting CaO for Na 2 O and ZrO 2 for SiO 2 . The leaching showed that the presence of Ca improves the reticulation of the vitreous network, inducing a decrease in the final degree of corrosion and the presence of Zr prevents the hydrolysis of silicon, which leads to a decrease of the initial dissolution rate. However, the introduction of Zr delays the drop of the alteration rate and leads to an increase in the alteration degree. In order to explain this unexpected behaviour, the gel morphology was investigated by small angle X-ray scattering. These experiments showed that the restructuring of porous network during the glass alteration process is limited by the increase of the Zr-content. Then, the restructuring of gel is at the origin of the major drop in the alteration rate observed for the low Zr-content glasses. Besides, both time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) that provides an evaluation of extraneous element penetration into the gel pores and neutron scattering with index matching showed that the porosity closed during the corrosion in the glass without zirconia, but remained open in the high Zr-content glasses. These experiments, associated to simulations by a Monte Carlo method, establish a relationship between the morphologic transformations of gel and the alteration kinetics. (author)

  19. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    International Nuclear Information System (INIS)

    Zhang Ting; Chai Yaqin; Yuan Ruo; Guo Junxiang

    2012-01-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag + ion ranging from 1.0 × 10 −6 to 1.0 × 10 −1 M with a detection limit of 9.5 × 10 −7 M and a slope of 60.4 ± 0.2 mV dec −1 over a wide pH range (4.0–9.0) with a fast response time (50 s) at 25 °C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl − and Br − ions. - Highlights: ► Functionalized silica gels have become promising materials. ► This work is the first attempt to apply triazene functionalized silica gel. ► The Functionalized silica gels were used to detect silver. ► The response of the previously reported papers are compared with this work. ► The result indicates the proposed electrode is better than reported Ag + electrodes.

  20. Characteristics of ceramic oxide nanoparticles synthesized using radio frequency produced thermal plasma

    International Nuclear Information System (INIS)

    Dhamale, Gayatri D.; Mathe, V.L.; Bhoraskar, S.V.; Ghorui, S.

    2015-01-01

    Thermal plasma devices with their unique processing capabilities due to extremely high temperature and steep temperature gradient play an important role in synthesis of ultrafine powders in the range of 100nm or less. High temperature gas phase synthesis in Radio Frequency (RF) thermal plasma reactor is an attractive route for mass production of refractory nanoparticles, especially in the case of rare earth oxides. Here we report synthesis of Yttrium Oxide (Y_2O_3), Neodymium Oxide (Nd_2O_3) and Aluminum Oxide (Al_2O_3) in an inductively coupled radio frequency thermal plasma reactor. Synthesized nanoparticles find wide application in various fields like gate dielectrics, photocatalytic applications, laser devices and photonics. Nano sized Yttrium oxide, Neodymium Oxide and Aluminum oxide powders were separately synthesized in an RF plasma reactor starting with micron sized irregular shaped precursor powders. The system was operated at 3MHz in atmospheric pressure at different power levels. Synthesized powders were scrapped out from different deposition locations inside the reactor and characterized for their phase, morphology, particle size, crystallinity and other characteristic features. Highly crystalline nature of the synthesized particles, narrow size distribution, location dependent phase formation, and distinct variation in the inherent defect states compared to the bulk are some of the important characteristic features observed