WorldWideScience

Sample records for synthesis structure properties

  1. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  2. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 12. Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(III) coordination polymer with 2,5-pyridinedicarboxylic acid. Kranthi Kumar Gangu Anima S Dadhich Saratchandra Babu Mukkamala. Volume 127 Issue 12 ...

  3. Synthesis, properties and supramolecular structure of ...

    Indian Academy of Sciences (India)

    Synthesis, properties and supramolecular structure of piperazinediium thiosulfate monohydrate. +. BIKSHANDARKOIL R SRINIVASANa*, ASHISH R NAIKa. , SUNDER N DHURIa. ,. CHRISTIAN NÄTHERb and WOLFGANG BENSCHb. aDepartment of Chemistry, Goa University, Goa 403 206, India. bInstitut für ...

  4. Halogenated Symmetrical Tetraazapentacenes: Synthesis, Structures, and Properties.

    Science.gov (United States)

    Engelhart, Jens U; Paulus, Fabian; Schaffroth, Manuel; Vasilenko, Vladislav; Tverskoy, Olena; Rominger, Frank; Bunz, Uwe H F

    2016-02-05

    We herein describe the synthesis and property evaluation of several brominated and chlorinated tetraazapentacenes. The targets were obtained by thermal condensation of 2,5-dihydroxyquinone with 4,5-dichloro-, 2,6-dichloro-, and 4,5-dibromo-1,2-phenylenediamine, followed by oxidation with hot acidic dichromate. Double alkynylation, reductive deoxygenation, and subsequent oxidation using MnO2 furnishes the target compounds. Absorption spectra, electrochemistry, and single crystal structures of the targets are reported. The 1,4,8,11-tetrachlorotetraazapentacene (1,4,8,11-tetrachloroquinoxalino[2,3-b]phenazine) carrying its chlorine atoms in the peri-positions packs in a herringbone type arrangement, while the isomer (2,3,9,10-tetrachloroquinoxalino[2,3-b]phenazine, with the chlorine atoms in the east and west positions) packs in one-dimensional stacks. In all cases, the reduction potentials and the calculated LUMO-positions are decreased by the introduction of the halogen atoms.

  5. Synthesis, structure, and properties of azatriangulenium salts

    DEFF Research Database (Denmark)

    Laursen, B.W.; Krebs, Frederik C

    2001-01-01

    A general synthetic route to novel nitrogen-bridged heterocyclic carbenium ions of the acridinium and triangulenium type has been developed and investigated. The synthetic method is based on nucleophilic aromatic substitution (SNAr) on the tris(2,6-dimethoxyphenyl)carbenium ion (1) with primary...... amines and, by virtue of its stepwise and irreversible nature, provides a powerful tool for the preparation of a wide variety of new heterocyclic carbenium salts. Several derivatives of the three new oxygen- and/or nitrogen-bridged triangulenium salts, azadioxa- (6), diazaoxa- (7......), and triazatriangulenium (4), have been synthesized and their physicochemical properties have been investigated. Crystal structures for compounds 2 b-PF6: 2d-PF6, 4b-BF4, 4c-BF4, 6e-BF4, and 8 are reported. The different packing modes found for the triazatriagulenium salts are discussed in relation to the electrostatic...

  6. Synthesis, structure and luminescence properties of phosphates A1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis, structure and luminescence properties of phosphates A 1 − 3 x Eu x Zr 2 (PO 4 ) 3 (A—alkali metal). ANTON KANUNOV BENOIT GLORIEUX ALBINA ORLOVA ELENA BOROVIKOVA GALINA ZAVEDEEVA. Volume 40 Issue 1 February 2017 pp 7- ...

  7. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    3.4 Luminescence properties of 1. The solid state luminescence property of 1 along with free ligand was investigated at room temperature. On photoexcitation at 365 nm, a characteristic peak at. 583 nm was observed in the emission spectrum of. 1 (figure 6). The yellow luminescence observed at. 583 nm is possibly due to ...

  8. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  9. Synthesis, structure and biological properties of active spirohydantoin derivatives

    Directory of Open Access Journals (Sweden)

    Lazić Anita M.

    2016-01-01

    Full Text Available Spirohidantoins represent an pharmacologically important class of heterocycles since many derivatives have been recognized that display interesting activities against a wide range of biological targets. First synthesis of cycloalkanespiro-5-hydantoins was performed by Bucherer and Lieb 1934 by the reaction of cycloalkanone, potassium cyanide and ammonium-carbonate at reflux in a mixture of ethanol and water. QSAR (Quantitative Structure-Activity Relationship studies showed that a wide range of biological activities of spirohydantoin derivatives strongly depend upon their structure. This paper describes different methods of synthesis of spirohydantoin derivatives, their physico-chemical properties and biological activity. It emphasizes the importance of cycloalkanespiro-5-hydantoins with anticonvulsant, antiproliferative, antipsychotic, antimicrobial and antiinflammatory properties as well as their importance in the treatment of diabetes. Numerous spirohydantoin compounds exhibit physiological activity such as serotonin and fibrinogen antagonist, inhibitors of the glycine binding site of the NMDA receptor also, antagonist of leukocyte cell adhesion, acting as allosteric inhibitors of the protein-protein interactions. Some spirohydantoin derivatives have been identified as antitumor agents. Their activity depends on the substituent presented at position N-3 of the hydantoin ring and increases in order alkene > ester > ether. Besides that, compounds that contain two electron withdrawing groups (e.g. fluorine or chlorine on the third and fourth position of the phenyl ring are better antitumor agents than compounds with a single electron withdrawing group. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  10. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    Science.gov (United States)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  11. Synthesis, structure and properties of decakis(phenylthio)corannulene.

    Science.gov (United States)

    Baldridge, Kim K; Hardcastle, Kenneth I; Seiders, T Jon; Siegel, Jay S

    2010-01-07

    Decakis(phenylthio)corannulene has been prepared from decachlorocorannulene by direct nucleophilic substitution; electronic structure properties and the X-ray crystal structure were determined and compared to predictions made by ab initio quantum chemical calculations.

  12. Synthesis, structure and electrical properties of the thallium ruthenate pyrochlores

    International Nuclear Information System (INIS)

    Kanno, Ryoji; Haung, Jinfan; Sleight, A.W.

    1993-01-01

    The thallium ruthenate pyrochlores, Tl 2 Ru 2 O 7-δ , were synthesized and their structures were determined by neutron diffraction measurements. The low-temperature (LT) and high-temperature (HT) phases were obtained at reaction temperatures of 500 and 900degC, respectively. Neutron diffraction measurements indicated the compositions of Tl 2 Ru 2 O 7 and Tl 2 Ru 2 O 6.71 for the HT phase and the LT phase, respectively. Electrical resistivity measurements showed metallic property for the HT phase and semiconducting property for the LT phase. The relationship between the electrical properties and the structural changes is discussed. (author)

  13. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  14. Synthesis, structural and optical properties of nanoparticles (Al, V ...

    Indian Academy of Sciences (India)

    and aluminium as co-doping element of ZnO nanopowder on structural and optoelectronic properties have been reported. 2. Experimental. 2.1 Sample preparation. Zn0.89Al0.01V0.1O nanocrystals were prepared by the sol–gel method using 16 g of zinc acetate dehydrate as precursor in a 112 ml of methanol. After 10 min ...

  15. Synthesis, structural and property studies of bismuth containing perovskites

    OpenAIRE

    Chen, Wei-tin

    2009-01-01

    Several bismuth-containing transition metal perovskites that are of interest as potential multiferroic materials have been synthesised and studied. These materials have been structurally characterised and their physical properties have been examined at varying temperatures and pressures. The new series of substituted bismuth ferrite perovskites BixCa1-xFeO3, where x = 0.4 - 1.0, has been prepared. A disordered cubic phase (x = 0.4 - 0.67) and the coexistence of rhombohedral ...

  16. (Biodegradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure

    Directory of Open Access Journals (Sweden)

    T. V. Travinskaya

    2017-01-01

    Full Text Available New (biodegradable environmentally friendly film-forming ionomeric polyurethanes (IPU based on renewable biotechnological polysaccharide xanthan (Xa have been obtained. The influence of the component composition on the colloidal-chemical and physic-mechanical properties of IPU/Xa and based films, as well as the change of their properties under the influence of environmental factors, have been studied. The results of IR-, PMS-, DMA-, and X-ray scattering study indicate that incorporation of Xa into the polyurethane chain initiates the formation of a new polymer structure different from the structure of the pure IPU (matrix: an amorphous polymer-polymer microdomain has occurred as a result of the chemical interaction of Xa and IPU. It predetermines the degradation of the IPU/Xa films as a whole, unlike the mixed polymer systems, and plays a key role in the improvement of material performance. The results of acid, alkaline hydrolysis, and incubation into the soil indicate the increase of the intensity of degradation processes occurring in the IPU/Xa in comparison with the pure IPU. It has been shown that the introduction of Xa not only imparts the biodegradability property to polyurethane, but also improves the mechanical properties.

  17. Synthesis, crystal structures and luminescence properties of two metal carboxyphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaonan; Feng, Pingjing; Li, Jintang, E-mail: leejt@xmu.edu.cn; Luo, Xuetao

    2017-05-15

    Two metal carboxyphosphonates, [Co{sub 2}(OOCC{sub 5}H{sub 3}NPO{sub 3}){sub 2·}(H{sub 2}O){sub 3}] (Compound1) and Zn{sub 3}[OOCC{sub 6}H{sub 3}CH(OH)PO{sub 3}]{sub 2·}2H{sub 2}O (Compound2) were successfully synthesized under the hydrothermal reactions. In compound 1, two (Co1-NO{sub 5}) octahedra link the (CPO{sub 3}) by sharing the corner, which link the two (Co2-O{sub 6}) octahedra. From a-axis the six clusters form the layer. Each layer is linked through hydrogen bond. In compound 2, the (Zn-O{sub 4}) tetrahedron and (CPO{sub 3}) tetrahedron are corner-shared, which arrange in line. From a-axis, each line forms the columnar. The thermal and luminescence properties of these compounds were investigated. - Graphical abstract: The synthesis conditions of the two compounds and the crystal morphology. Compound 1 shows the layer and the compound 2 shows the pillared-layer. - Highlights: • Two new carboxyphosphonate ligands have been prepared. • Using the two ligands, two metal carboxyphosphonates have been synthesized. • The two MOFs may be candidates for fluorescent materials.

  18. Synthesis, structure and photocatalytic properties of β-ZrMo2O8

    Indian Academy of Sciences (India)

    Administrator

    Synthesis, structure and photocatalytic properties of β-ZrMo2O8. PRANGYA PARIMITA SAHOO, S SUMITHRA, GIRIDHAR MADRAS and. T N GURU ROW*. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. Abstract. Monoclinic ZrMo2O8 was synthesized via solid state method ...

  19. Synthesis, structural and ferromagnetic properties of La1–x Kx ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Synthesis, structural and ferromagnetic properties of La1–KMnO3 (0.0≤ 0.25) phases by solution combustion method ... Structural parameters were determined by the Rietveld refinement method using powder XRD data. Parent ... The ratio of the Mn3+/Mn4+ was determined by the iodometric titration.

  20. One dimensional aluminum nitride nanostructures: synthesis, structural, and luminescence properties.

    Science.gov (United States)

    Mousavi, S H; Gharavi, M A; Haratizadeh, H; Kitai, A; de Oliveira, P W

    2011-09-01

    Aluminum nitride (AIN) is a direct bandgap semiconductor with a bandgap about 6.1 eV at room temperature, the largest among semiconductors. This paper emphasizes experimental results of the growth and optical properties of AIN nanostructures by direct nitridation. The nitridation process was performed by chemical vapor deposition method with nitrogen (N2) gas flow. AIN nanostructures were analyzed by scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) spectroscope and photoluminescence (PL) spectroscopy. AIN nanowires with different widths from ultrathin to thick were synthesized with this method. All of the samples had high purity without presence of any other material in EDX spectrum. The PL spectra were obtained by a 325-nm helium-cadmium (He-Cd) laser as the excitation source showing high-intensity light emitting visible wavelengths for these structures at room temperature.

  1. Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties.

    Science.gov (United States)

    Zhang, Rufan; Zhang, Yingying; Wei, Fei

    2017-02-21

    Carbon nanotubes (CNTs) have drawn intensive research interest in the past 25 years due to their excellent properties and wide applications. Ultralong CNTs refers to the horizontally aligned CNT arrays which are usually grown on flat substrates, parallel with each other with large intertube distances. They usually have perfect structures, excellent properties, and lengths up to centimeters, even decimeters. Ultralong CNTs are promising candidates as building blocks for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace materials, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. CNTs are typical one-dimensional single-crystal nanomaterials. It has always been a great challenge how to grow macroscale single-crystals with no defects. Thus, the synthesis of ultralong CNTs with no defect is of significant importance from both fundamental and industrial aspects. In this Account, we focus on our progress on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. A deep understanding of the CNT growth mechanism is the first step for the controlled synthesis of ultralong CNTs with high quality. We first introduce the growth mechanism for ultralong CNTs and the main factor affecting their structures. We then discuss the strategies to control the defects in the as-grown ultralong CNTs. With these approaches, ultralong high-quality CNTs with different structures can be obtained. By completely eliminating the factors which may induce defects in the CNT walls, ultralong CNTs with perfect structures can be obtained. Their chiral indices keep unchanged for several centimeters long along the axial direction of the CNTs. The defect-free structures render the ultralong CNTs with excellent electrical, mechanical and thermal properties. The as-grown ultralong CNTs exhibit superhigh mechanical strength (>100 GPa) and their

  2. Synthesis, crystal structure and photo luminescent property of a 3D ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 3. Synthesis, crystal structure and photo luminescent property of a 3D metal-organic hybrid of Cd(II) constructed by two different bridging carboxylate. Biswajit Bhattacharya Rajdip Dey Debajyoti Ghoshal. Volume 125 Issue 3 May 2013 pp 661-666 ...

  3. An approach to analyzing synthesis, structure and properties of bismuth titanate ceramics

    Directory of Open Access Journals (Sweden)

    Lazarević Z.

    2005-01-01

    Full Text Available The family of bismuth titanate, Bi4Ti3O12 (BIT layered-structured ferroelectrics materials is attractive from the viewpoint of their application as electronic materials such as dielectrics, piezoelectrics and pyroelectrics, because they are characterized by good stability of piezoelectric properties, a high Curie temperature and a good resistance vs temperature. Bismuth titanate (Bi4Ti3O12 powders can be prepared using different methods, depending if the creation will be film coating or ceramics. The structure and properties of bismuth titanate materials show a significance dependence on the applied synthesis method. In this review paper, we made an attempt to give an approach to analyzing the structure, synthesis methods and properties of bismuth titanate ferroelectrics materials. .

  4. Synthesis, structure and luminescence properties of phosphates A1 ...

    Indian Academy of Sciences (India)

    rule and the localization of this cation in the structure, which is in agreement with the structural characterization. It appears that europium ... 1. Introduction. Atom isomorphism in complex crystalline compounds with ..... isotropic approx- imation of basis atom positions in the structures of phosphates Na0.7Eu0.1Zr2(PO4)3 and.

  5. Synthesis, structure and thermoelectric properties of La1 ...

    Indian Academy of Sciences (India)

    Structural parameters for all the compounds were confirmed by the Rietveld refinement method usingpowder X-ray diffraction (XRD) data and exhibit the rhombhohedral crystal structure with space group R-3c (No. 167). Thescanning electron microscopy study reveals that the particles are spherical in shape and sizes, in the ...

  6. Synthesis, crystal structure, optical and electrochemical properties of ...

    Indian Academy of Sciences (India)

    Its molecular geometry in the ground state has also been calculated using density functional theory (DFT) at the B3LYP/6-31G∗∗ level and compared with its crystal structure. Results show that the optimized geometry can well reproduce the crystal structure. Furthermore, both absorption and emission spectra of 1 and 2 ...

  7. Synthesis, structure and magnetic properties of the polyoxovanadate ...

    Indian Academy of Sciences (India)

    The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based on the Heisenberg model, in addition to correlating to ...

  8. Synthesis, characterization, X-ray structure, optical properties and ...

    Indian Academy of Sciences (India)

    ESMA LAMERA

    Also, the values of dipole moment μ, the average polarizability ¯α, and the first static hyperpolarizability (β0) were computed. The theoretical and experimental results confirm the NLO behavior of both compounds. Keywords. Condensed phthalazine; DFT calculations; spectroscopic analysis; X-ray structure; NLO. 1.

  9. Synthesis, structure and thermoelectric properties of La1 ...

    Indian Academy of Sciences (India)

    2017-12-07

    Dec 7, 2017 ... All the heat treatments were limited to below 1123 K, in order to retain the. Na stoichiometry. Structural ... Nitrate–citrate gel combustion method; perovskite; monovalent ions doping; semiconductor; thermoelectric. 1. Introduction ... electricity by Terasaki et al [3] on NaCo2O4 single crystal in. 1997, there has ...

  10. Synthesis, crystal structure and properties of magnesium and ...

    Indian Academy of Sciences (India)

    2015-04-01

    Apr 1, 2015 ... 2.3 X-ray crystal structure determination. Single crystal X-ray analysis of compounds 1 and 2 was done at the Sophisticated Analytical Instrument. Table 1. Crystal data and selected refinement results for (1) and (2). Empirical formula. C16H30MgO14 (1). C16H16CaO7 (2). Formula weight (g mol−1). 470.71.

  11. Synthesis, crystal structures and properties of new quinolinium derivatives

    Science.gov (United States)

    Zhang, Xinyuan; Jiang, Xingxing; Li, Yin; Lin, Zheshuai; Zhang, Guochun; Wu, Yicheng

    2015-11-01

    Four phenyl-substituted quinolinium salts with different counter anions, C27H27NO4S, C26H25NO5S, C25H22NO5SCl, and C25H22NO5SBr, were synthesized and their single crystals were successfully grown from methanol solution by slow evaporation. Single crystal X-ray diffraction analyses showed that C27H27NO4S crystal belongs to the noncentrosymmetric orthorhombic space group Pna21, and the other three crystals belong to centrosymmetric monoclinic space group P21/n. Their first order hyperpolarization and macroscopic nonlinearity were analyzed and physical properties were characterized by UV-vis absorption spectroscopy, and differential scanning calorimetric and thermal gravimetric analysis.

  12. Uranium hetero-bimetallic complexes: synthesis, structure and magnetic properties

    International Nuclear Information System (INIS)

    Le Borgne, Th.

    2000-01-01

    The aim of this thesis is to synthesize molecular complexes with uranium and transition metal ions in close proximity, to determine the nature of the magnetic interaction between them. We decided to use Schiff bases as assembling ligands, which are unusual for uranium (IV). Although the simplest Schiff bases, such as H 2 Salen, lead to ligand exchange reactions, the bi-compartmental Schiff base H 4 L 6 (bis(3-hydroxy-salicylidene) - 2,2-dimethyl-propylene) allows the crystal structure determination of the complex [L 6 Cu(pyr)]U[L 6 Cu].2pyr, obtained by reaction of the metallo-ligand H 2 L 6 Cu with U(acac) 4 . In this manner, the complexes [L 6 Co(pyr)] 2 U and [L 6 Ni(pyr)] 2 U.pyr were also isolated, as well as the compounds in which the paramagnetic ions have been exchanged by the diamagnetic ions Zn II , Zr IV and Th IV ': [L 6 Zn(pyr)] 2 U, [L 6 Cu] 2 Zr and [L 6 Cu(pyr)]Th[L 6 Cu].2pyr. These complexes are the first which involve three metallic centres assembling by the means of a hexa-dentate Schiff base. The crystalline structures show, for all these complexes, the outstanding orthogonal arrangement of the two fragments L 6 M around the central atom which is in a dodecahedral environment of eight oxygen atoms of two Schiff bases. The syntheses of the isostructural complexes Cu2 II and Zn 2 U in which the uranium (IV) ion is close, in the first one, to the paramagnetic ion Cu II and, in the second one, to the diamagnetic ion Zn II , has allowed the use of the empiric method to determine the nature of the magnetic interaction between an f element and a transition metal. The comparison of the magnetic behaviour of two complexes Cu 2 U and Zn 2 U, expressed by the variation of χT vs T, reveals the ferromagnetic interaction in the heart of the triad Cu-U-Cu. The magnetic behaviour of the complexes Cu 2 Th et Cu 2 Zr which does not show any coupling between the two copper (II) ions and the weak antiferromagnetic interaction in the Ni 2 U compound, favour the

  13. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    International Nuclear Information System (INIS)

    Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M.

    2015-01-01

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL

  14. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Ngom, B.D. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Park, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nelson Mandela African Institute for Science & Technology, Arusha (Tanzania, United Republic of); Maaza, M., E-mail: Maaza@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2015-10-15

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL.

  15. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    Science.gov (United States)

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812

  16. Aurivillius BaBi4Ti4O15 based compounds: Structure, synthesis and properties

    Directory of Open Access Journals (Sweden)

    Jelena D. Bobić

    2014-09-01

    Full Text Available The discovery of some Aurivillius materials with high Curie temperature or fatigue-free character suggests possible applications in high temperature piezoelectric devices or non-volatile ferroelectric random access memories. Furthermore, increasing concerns for environmental issues have promoted the study of new lead- free piezoelectric materials. Barium bismuth titanate (BaBi4Ti4O15 , an Aurivillius compound, is promising candidate to replace lead-based materials, both as lead-free ferroelectric and high temperature piezoelectric. In this review paper, we report a detailed overview of crystal structure, different synthesis methods and char- acteristic properties of barium bismuth titanate ferroelectric materials.

  17. Carbon Nanotubes Advanced Topics in the Synthesis, Structure, Properties and Applications

    CERN Document Server

    Jorio, Ado; Dresselhaus, Mildred S

    2008-01-01

    The carbon nanotubes field has evolved substantially since the publication of the bestseller "Carbon Nanotubes: Synthesis, Structure, Properties and Applications". The present volume builds on the generic aspects of the aforementioned book, which emphasizes the fundamentals, with the new volume emphasizing areas that have grown rapidly since the first volume, guiding future directions where research is needed and highlighting applications. The volume also includes an emphasis on areas like graphene, other carbon-like and other tube-like materials because these fields are likely to affect and influence developments in nanotubes in the next 5 years.

  18. Structural and ferroelectrical properties of bismuth titanate ceramic powders prepared by mechanically assisted synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2007-01-01

    Full Text Available Nanosized bismuth titanate, Bi4Ti3O12, was prepared via a high-energy ball milling process through mechanically assisted synthesis directly from the oxide mixture of Bi2O3 and TiO2. The Bi4Ti3O12 phase started to form after 1 h of milling. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduce significantly. The grain size was less than 16 nm and showed a strong tendency to agglomeration. The nucleation and phase formation of Bi4Ti3O12, crystal structure, microstructure, powder grain size and specific surface area were followed by XRD, Rietveld refinement analysis, SEM and the BET specific surface area measurements. Raman spectroscopy was used to explain the structural properties of Bi4Ti3O12 powder, prepared by mechanically assisted synthesis. Reduction in grain size with the increase of milling time was also noted (change in the position and relative intensity, which indicated changes in the structure, caused by nanodimension grains. The sample milled for 12 h and subsequently sintered at 1000°C for 24 h exhibited a hysteresis loop, confirming that the synthesized material possesses ferroelectric properties. .

  19. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  20. Nitridomanganates of alkaline-earth metals. Synthesis, structure, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, Alexander

    2016-12-02

    The main goal of the present work was the synthesis of alkaline-earth nitridomanganates (AE{sub x}Mn{sub y}N{sub z}) with extended anionic structures and the characterization of their electronic and magnetic properties. Up to now, only compounds with isolated nitridomanganate anions have been reported in the discussed ternary systems. A systematic exploratory synthesis, employing high-temperature treatment of AE nitrides and Mn under controlled N2 pressure, yielded more than ten new nitridomanganates. Their crystal structures contain anionic building blocks of different dimensionalities, ranging from isolated species to three-dimensional frameworks. In general, the formation of Mn-rich compositions was found to be driven by the emergence of Mn-Mn interactions, which creates a link between nitridometalates and transition-metal-rich binary nitrides. The obtained nitridomanganates display a plethora of interesting phenomena, such as large spin-orbit coupling, magnetic frustration, quenching of magnetism due to Mn-Mn interactions, and metal-insulator transition.

  1. Halogen derivatives of benzo- and dibenzocrown ethers: synthesis, structure, properties and application

    International Nuclear Information System (INIS)

    Pluzhnik-Gladyr, S M

    2016-01-01

    Methods of synthesis of halogenated benzo- and dibenzocrown ether derivatives are surveyed: halogenation of benzo- and dibenzocrown ethers with molecular halogens, N-halosuccinimides in the solid phase and different media (water, ethanol, halohydrocarbons) and hypohalites in water, as well as the 'assembly' method. Reactions of these compounds are considered: synthesis of phosphorus-containing crown ethers, organometallic synthesis, the Heck and Sonogashira reactions, synthesis of acetylene derivatives and other reactions. Special attention is focused on the complexing properties of halogenated benzocrown ethers with respect to ionic guests and neutral organic molecules. The possibility of synthesis of complexes of such compounds in the solid phase is demonstrated. The extraction and sorption properties of halogenated benzo- and dibenzocrown ethers are considered. Examples of practical use of these compounds are presented. The bibliography includes 203 references

  2. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships.

    Science.gov (United States)

    Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David; Hynynen, Jonna; Ryan, Jason D; Yu, Liyang; Müller, Christian

    2016-11-07

    Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure-property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer.

  3. Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig (Turkey); Kom, Mustafa [Department of Surgery, Faculty of Veterinary Medicine, Firat University, 23119 Elazig (Turkey); Eroksuz, Yesari [Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23119 Elazig (Turkey); Dorozhkin, Sergey V. [Kudrinskaja square 1-155, Moscow 123242 (Russian Federation); Ates, Tankut [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Ozercan, Ibrahim H. [Department of Pathology, School of Medicine, Firat University, 23119 Elazig (Turkey); Tatar, Cengiz; Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey)

    2015-10-01

    The objective of this study is to present a detailed report related to the synthesis and characterization of strontium substituted hydroxyapatites. Based on this purpose, hydroxyapatite (HAp) bioceramics with different amounts of strontium (e.g., 0, 0.45, 0.90, 1.35, 1.80 and 2.25 at.%) were prepared using a sol–gel method. The effects of Sr substitution on the structural properties and biocompatibility of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques, in vitro and in vivo tests. All the samples composed of the nanoparticles ranging from 21 to 27 nm. The presence of Sr at low levels influenced the crystal size, crystallinity degree, lattice parameters and volume of the unit cell of the HAp. Both in vitro conditions and soaking period in simulated body fluid (SBF) significantly affected these properties. Especially, the (Ca + Sr)/P molar ratio gradually decreases with increasing soaking period in SBF. Animal experiments revealed the bone formation and osseointegration for all samples, and as compared with other groups, more reasonable, were observed for the sample with the lowest Sr content. - Highlights: • Sr content affects the structural properties of hydroxyapatite. • Bone formation and osseointegration are observed for all the samples. • In vitro conditions cause a significant change in the (Ca + Sr)/P ratio.

  4. Fused 1,2,3-Dithiazoles: Convenient Synthesis, Structural Characterization, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Lidia S. Konstantinova

    2016-05-01

    Full Text Available A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13 featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential.

  5. Synthesis, structure, optical property, and electronic structure of Ba7AgGa5Se15

    International Nuclear Information System (INIS)

    Yin, Wenlong; He, Ran; Feng, Kai; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng

    2013-01-01

    Graphical abstract: -- Highlights: •A new quaternary chalcogenide Ba 7 AgGa 5 Se 15 was synthesized. •It adopts a new structure type in the space group P31c of the trigonal system. •The structure contains a three-dimensional framework built from GaSe 4 and AgSe 4 tetrahedra. •Ba 7 AgGa 5 Se 15 is a direct semiconductor with the band gap of 2.60 (2) eV. •The electronic structure was calculated to explain the optical properties. -- Abstract: A new quaternary chalcogenide Ba 7 AgGa 5 Se 15 was synthesized by solid state reaction. It crystallizes in a new structure type in the noncentrosymmetric space group P31c of the trigonal system. In the structure, three Ga2Se 4 tetrahedra and one Ga1Se 4 tetrahedron are connected to each other by corner-sharing to form [Ga 4 Se 10 ] 8− anion clusters, which are further connected to AgSe 4 tetrahedra by corner-sharing to form a three-dimensional framework with Ba, Se7, and isolated Ga3Se 4 tetrahedra residing in the cavities. The optical band gap of 2.60 (2) eV for Ba 7 AgGa 5 Se 15 was deduced from the diffuse reflectance spectrum. From a band structure calculation, Ba 7 AgGa 5 Se 15 is a direct semiconductor and the transition between Se and Ba plays an important role in the band gap

  6. Dependencies of photoelectric properties of SiC/Si structures grown by the method of atoms substitution on synthesis time

    Science.gov (United States)

    Grashchenko, A. S.; Kukushkin, S. A.; Osipov, A. V.; Feoktistov, N. A.

    2017-07-01

    This paper is dedicated to an exploration of the photoelectric properties of Si-SiC structures grown by the substitution method on silicon substrates of (001) orientation. For the samples with the synthesis times of 40, 60, 90, 120 and 900 s, magnitudes of the saturation currents are determined and the coefficients of efficiency are calculated. The obtained dependencies of the photoelectric characteristics on the synthesis time are explained using the theory of formation of dilatation dipoles during the synthesis by the method of atoms substitution.

  7. Solventless synthesis, morphology, structure and magnetic properties of iron oxide nanoparticles

    Science.gov (United States)

    Das, Bratati; Kusz, Joachim; Reddy, V. Raghavendra; Zubko, Maciej; Bhattacharjee, Ashis

    2017-12-01

    In this study we report the solventless synthesis of iron oxide through thermal decomposition of acetyl ferrocene as well as its mixtures with maliec anhydride and characterization of the synthesized product by various comprehensive physical techniques. Morphology, size and structure of the reaction products were investigated by scanning electron microscopy, transmission electron microscopy and X-ray powder diffraction technique, respectively. Physical characterization techniques like FT-IR spectroscopy, dc magnetization study as well as 57Fe Mössbauer spectroscopy were employed to characterize the magnetic property of the product. The results observed from these studies unequivocally established that the synthesized materials are hematite. Thermal decomposition has been studied with the help of thermogravimetry. Reaction pathway for synthesis of hematite has been proposed. It is noted that maliec anhydride in the solid reaction environment as well as the gaseous reaction atmosphere strongly affect the reaction yield as well as the particle size. In general, a method of preparing hematite nanoparticles through solventless thermal decomposition technique using organometallic compounds and the possible use of reaction promoter have been discussed in detail.

  8. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications.

    Science.gov (United States)

    Hiruma-Shimizu, Kazumi; Shimizu, Hiroki; Thompson, Gary S; Kalverda, Arnout P; Patching, Simon G

    2015-01-01

    Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.

  10. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    Science.gov (United States)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in

  11. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles

    Science.gov (United States)

    Reddy, Ch. Venkata; Shim, Jaesool; Cho, Migyung

    2017-04-01

    CdS, ZnS and CdS/ZnS core/shell nanoparticles were successfully synthesized via two-step synthesis method. The as-prepared CdS, ZnS and CdS/ZnS core/shell nanoparticles were used to study the structural, morphological, and optical properties by PXRD, TEM, HRTEM, UV-vis spectroscopy, N2 adsorption-desorption, FT-IR, PL and Raman spectroscopy measurements. The XRD pattern confirms the crystal structure of the prepared ZnS, CdS, and CdS/ZnS core/shell nanoparticles. The crystallinity of the as-prepared samples is confirmed by PXRD, TEM and HRTEM analysis. The BET analysis showed that the CdS/ZnS core/shell nanoparticles had larger surface area and pore diameter than CdS and ZnS. The Raman and FT-IR spectra confirm the fundamental vibrational modes of CdS and ZnS respectively. Compared to pure CdS and ZnS, CdS/ZnS core/shell nanoparticles exhibited higher photocatalytic activity for the degradation of methyl orange (MO). The enhancement of photocatalytic activity in the CdS/ZnS core/shell nanoparticles is due to the interface actions between CdS and ZnS, which greatly reduces the recombination of photogenerated electrons-holes pair. The proposed mechanism for degradation of MO dye is discussed in detail.

  12. Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite

    Directory of Open Access Journals (Sweden)

    Md. Sazzad Hossain

    2017-10-01

    Full Text Available Zinc ferrite samples were prepared by two different routes which are chemical co-precipitation and standard solid state double sintering method. Structural properties of ZnFe2O4 were determined, and initial particle size was found as 5 nm in the samples prepared by chemical co-precipitation technique. The XRD patterns showed the single phase of ZnFe2O4 spinel structure and confirmed by the lattice parameter and the unmixed hkl values for both the synthesis techniques. M-H curves at room temperature showed superparamagnetic nature of the samples sintered from 200°C to 600°C, synthesized by chemical co-precipitation technique. The Mössbauer analysis at room temperature showed a doublet which is the signature of superparamagnetic nature, and it is in agreement with the acquired M-H curves. The magnetization of ZnFe2O4 synthesized by chemical co-precipitation method was found higher than the magnetization of ZnFe2O4 synthesized by the solid-state double sintering method in the sintering temperature from 1100°C to 1300°C.

  13. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2017-02-01

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles.

  14. Constitutional Isomers of Dendrimer-like Star Polymers: Design, Synthesis and Conformational and Structural Properties

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-22

    The design, synthesis and solution properties of six constitutional isomers of dendrimer-like star polymers is described. Each of the polymers have comparable molecular weights ({approx} 80,000 g/mol), narrow polydispersities (< 1.19) and an identical number of branching junctures (45) and surface hydroxyl functionalities (48). The only difference in the six isomers is the placement of the branching junctures. The polymers are constructed from high molecular weight poly(e-caprolactone) with branching junctures derived from 2,2'-bis(hydroxylmethyl) propionic acid (bis-MPA) emanating from a central core. The use of various generations of dendritic initiators and dendrons coupled with the ring opening polymerization of e-caprolactones allowed a modular approach to the dendrimer-like star polymer isomers. The most pronounced effects on the physical properties/morphology and hydrodynamic volume was for those polymers in which the branching was distributed throughout the sample in a dendrimer-like fashion. The versatility of this approach has provided the possibility of understanding the relationship between architecture and physical properties. Dynamic light scattering and small angle X-ray scattering techniques were used to determine the hydrodynamic radius Rh and radius of gyration Rg respectively. The relationship between Rg and molecular weight was indicative of a compact star-like structure, and did not show advanced bias towards either the dense core or dense shell models. The radial density distribution of the isomers was therefore modeled according to a many arm star polymer, and good agreement was found with experimental measures of Rh/Rg.

  15. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  16. Structural and Optical Properties of White Light Emitting ZnS:Mn(2+) Nanoparticles at Different Synthesis Temperatures.

    Science.gov (United States)

    Bindu, K R; Anila, E I

    2015-07-01

    We report of the synthesis and characterisation of white emitting ZnS:Mn(2+) nanoparticles. The spectroscopic properties and the crystal structure of Mn doped ZnS nanoparticles are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the synthesis temperature. The synthesis of the samples were carried out by the simple wet chemical precipitation method. The influence of synthesis temperature on structure and optical properties were studied at constant Mn concentration. The nanoparticles were structurally characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The XRD studies show the phase singularity of Mn doped ZnS particles having zinc-blende (cubic) structure at all temperatures. The band gap of the doped samples are red shifted with temperature. Electron Paramagnetic Resonance (EPR) spectra exhibited resonance signals, characteristic of Mn(2+). Incorporation of Mn in the ZnS nanoparticles was confirmed by Inductively Coupled Plasma- Atomic Emission Spectroscopic studies (ICP-AES). The samples show an efficient emission of yellow-orange light centred at 590 nm which is characteristic of Mn(2+) along with a blue emission at 435 nm due to sulfur vacancy. The overall emission is white at all temperatures with CIE co-ordinates in close agreement with achromatic white.

  17. Synthesis, structural and dielectric properties of 0.8 PMN–0.2 PT ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Synthesis, structural and dielectric ... S A BAND2. Department of Physics, J D College Of Engineering and Management (JDCOEM), Nagpur 441501, India; Department of Physics, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India ...

  18. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties

    International Nuclear Information System (INIS)

    Palma-Ramírez, D.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Dorantes-Rosales, H.; Ramírez-Meneses, E.; Rodríguez, E.

    2015-01-01

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO 4 is presented. • Microwave energy can replace the energy by convection for obtaining CePO 4 . • CePO 4 demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO 4 morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO 4 ) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO 4 nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO 4 with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO 4 can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic

  19. Microwave-assisted hydrothermal synthesis of CePO{sub 4} nanostructures: Correlation between the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Palma-Ramírez, D. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C.P. 07300 México D.F. (Mexico); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, C.P. 01219 México D.F. (Mexico); Rodríguez, E. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)

    2015-09-15

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO{sub 4} is presented. • Microwave energy can replace the energy by convection for obtaining CePO{sub 4}. • CePO{sub 4} demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO{sub 4} morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO{sub 4}) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO{sub 4} nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO{sub 4} with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO{sub 4} can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic.

  20. Synthesis, electronic structure, elastic properties, and interfacial behavior of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Oliver

    2017-08-01

    Boron-rich solids are commonly characterized by icosahedral clusters, where 12 B atoms form an icosahedron, giving rise to outstanding mechanical and transport properties. However, broader applications are limited due to the high synthesis temperature required to obtain the icosahedra-based crystalline structure. Utilizing high power pulsed magnetron sputtering (HPPMS), the deposition temperature may be lowered as compared to direct current magnetron sputtering by enhanced surface diffusion. Therefore, HPPMS was utilized to investigate the influence of the substrate temperature on the structural evolution of B-rich Al-Y-B thin films. The formation of the intended AlYB{sub 14} phase together with the (Y,Al)B{sub 6} impurity phase, containing 1.8 at.% less B than AlYB{sub 14}, was observed at a growth temperature of 800 C and hence 600 C below the bulk synthesis temperature. Based on density functional theory (DFT) calculations it is inferred that minute compositional variations may lead to formation of competing phases, such as (Y,Al)B{sub 6}. Furthermore, 800 C still limits the usage significantly. Therefore, quantum mechanical material design was applied to identify phases with even higher phase stabilities compared to AlYB{sub 14}. Phase stability of T{sub 0.75}Y{sub 0.75}B{sub 14} (T= Sc, Ti, V, Y, Zr, Nb, Si) critically depends on the exact magnitude of charge transferred by T and Y to the B icosahedra. The highest phase stabilities have been identified for Sc{sub 0.75}Y{sub 0.75}B{sub 14}, Ti{sub 0.75}Y{sub 0.75}B{sub 14}, and Zr{sub 0.75}Y{sub 0.75}B{sub 14}. ln combination with Young's modulus values up to 517 GPa these phases are very interesting from a wear-resistance point of view. Still high synthesis temperatures limit the use of such systems onto technologically relevant substrate materials. However, amorphous B-rich solids, which can be synthesized without additional heating, exhibit attractive mechanical and electrical properties. Within these

  1. Synthesis, Structural Property, Photophysical Property, Photocatalytic Property of Novel ZnBiErO₄ under Visible Light Irradiation.

    Science.gov (United States)

    Luan, Jingfei; Zhuang, Yan

    2018-02-18

    A novel photocatalyst ZnBiErO₄ was firstly synthesized by solid-state reaction method and its structural and photocatalytic properties were analyzed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. The results demonstrated that ZnBiErO₄ crystallized with tetragonal crystal structure with space group I41/A. The lattice parameters for ZnBiErO₄ were proved to be a = b = 10.255738 Å and c = 9.938888 Å. The band gap of ZnBiErO₄ was estimated to be about 1.69 eV. Compared with nitrogen doped TiO₂, ZnBiErO₄ showed excellent photocatalytic activities for degrading methyl blue during visible light irradiation. The photocatalytic degradation of methyl blue with ZnBiErO₄ or N-doped TiO₂ as catalyst followed the first-order reaction kinetics. Moreover, the apparent first-order rate constant of ZnBiErO₄ or N-doped TiO₂ was 0.01607 min -1 or 0.00435 min -1 . The reduction of total organic carbon, formation of inorganic products, such as SO₄ 2- and NO₃ - and the evolution of CO₂ revealed the continuous mineralization of methyl blue during the photocatalytic process. ZnBiErO₄ photocatalyst had great potential to purify textile industry wastewater.

  2. High-pressure synthesis, crystal structure and magnetic properties of TlCrO3 perovskite.

    Science.gov (United States)

    Yi, Wei; Matsushita, Yoshitaka; Katsuya, Yoshio; Yamaura, Kazunari; Tsujimoto, Yoshihiro; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Lekina, Yuliya O; Tsujii, Naohito; Nimori, Shigeki; Takehana, Kanji; Imanaka, Yasutaka; Belik, Alexei A

    2015-06-21

    TlMO(3) perovskites (M(3+) = transition metals) are exceptional members of trivalent perovskite families because of the strong covalency of Tl(3+)-O bonds. Here we report on the synthesis, crystal structure and properties of TlCrO(3) investigated by Mössbauer spectroscopy, specific heat, dc/ac magnetization and dielectric measurements. TlCrO(3) perovskite is prepared under high pressure (6 GPa) and high temperature (1500 K) conditions. The crystal structure of TlCrO(3) is refined using synchrotron X-ray powder diffraction data: space group Pnma (no. 62), Z = 4 and lattice parameters a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å at 293 K. No structural phase transitions are found between 5 and 300 K. TlCrO(3) crystallizes in the GdFeO(3)-type structure similar to other members of the perovskite chromite family, ACrO(3) (A(3+) = Sc, In, Y and La-Lu). The unit cell volume and Cr-O-Cr bond angles of TlCrO(3) are close to those of DyCrO(3); however, the Néel temperature of TlCrO(3) (TN≈ 89 K) is much smaller than that of DyCrO(3) and close to that of InCrO(3). Isothermal magnetization studies show that TlCrO(3) is a fully compensated antiferromagnet similar to ScCrO(3) and InCrO(3), but different from RCrO(3) (R(3+) = Y and La-Lu). Ac and dc magnetization measurements with a fine step of 0.2 K reveal the existence of two Néel temperatures with very close values at T(N2) = 87.0 K and T(N1) = 89.3 K. Magnetic anomalies near T(N2 )are suppressed by static magnetic fields and by 5% iron doping.

  3. Simulating Cellulose Structure, Properties, Thermodynamics, Synthesis, and Deconstruction with Atomistic and Coarse-Grain Models

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, M. F.; Matthews, J.; Beckham, G.; Bomble, Y.; Hynninen, A. P.; Ciesielski, P. F.

    2012-01-01

    Cellulose is still a mysterious polymer in many ways: structure of microfibrils, thermodynamics of synthesis and degradation, and interactions with other plant cell wall components. Our aim is to uncover the details and mechanisms of cellulose digestion and synthesis. We report the details of the structure of cellulose 1-beta under several temperature conditions and report here the results of these studies and connections to experimental measurements and the measurement in-silico the free energy of decrystallization of several morphologies of cellulose. In spatially large modeling, we show the most recent work of mapping atomistic and coarse-grain models into tomographic images of cellulose and extreme coarse-grain modeling of interactions of large cellulase complexes with microfibrils. We discuss the difficulties of modeling cellulose and suggest future work both experimental and theoretical to increase our understanding of cellulose and our ability to use it as a raw material for fuels and materials.

  4. Synthesis, structure and properties of Al-based borohydrides for hydrogen storage

    OpenAIRE

    Dovgaliuk, Iurii

    2015-01-01

    This thesis is dedicated to chemistry and hydrogen storage properties of novel complex hydrides. The main efforts were focused on synthesis and characterization of new Al-based borohydrides and amidoboranes. Somewhat different investigation on the hydrolysis of KBH4 in the atmosphere of CO2 was also performed. The series of mixed-cation M[Al(BH4)4] (M = Li+, Na+, K+, NH4+, Rb+, Cs+) were successfully obtained by a reaction of the corresponding MBH4 with Al(BH4)3. This method provides a high t...

  5. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS2.

    Science.gov (United States)

    Hobbis, Dean; Wei, Kaya; Wang, Hsin; Martin, Joshua; Nolas, George S

    2017-11-20

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. We synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. In addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8 Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that of CuSbS 2 , in addition to investigating the effect of Te alloying on these properties.

  6. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  7. Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties

    Directory of Open Access Journals (Sweden)

    Isabelle Jauberteau

    2015-10-01

    Full Text Available Among transition metal nitrides, molybdenum nitrides have been much less studied even though their mechanical properties as well as their electrical and catalytic properties make them very attractive for many applications. The δ-MoN phase of hexagonal structure is a potential candidate for an ultra-incompressible and hard material and can be compared with c-BN and diamond. The predicted superconducting temperature of the metastable MoN phase of NaCl-B1-type cubic structure is the highest of all refractory carbides and nitrides. The composition of molybdenum nitride films as well as the structures and properties depend on the parameters of the process used to deposit the films. They are also strongly correlated to the electronic structure and chemical bonding. An unusual mixture of metallic, covalent and ionic bonding is found in the stoichiometric compounds.

  8. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  9. Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, Allagui [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Borges, Joao P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Ben Haj Amara, Abdesslam [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Dakhlaoui-Omrani, Amel, E-mail: dakhlaoui_amel@yahoo.fr [Department of Chemistry, Faculty of Sciences and Arts-Khulais, University of Jeddah, Khulais, P. O. Box 355, Postal Code 21921 (Saudi Arabia); Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP 73, 8027 Soliman (Tunisia)

    2017-03-01

    Sub-micrometric Co fibers were prepared via a modified polyol process at 90 °C under an external magnetic field of about 550 Oe, using ethelyne glycol as solvent and hydrazine as reducing agent. The structure, the size and the morphology of the as-elaborated products were highly controlled through properly monitoring the synthesis parameters (amount of NaOH added, the amount of the reducing agent, precursor’ concentration and precursors mixing protocol). The XRD characterization confirmed the formation of pure cobalt powders with either hexagonal compact (hcp) or face-centered-cubic (fcc) structure depending on the concentration of the metal precursor and sodium hydroxide. The scanning electron microscopy observations of the powders shows sub-micrometric fibers with about 0.4–0.6 µm in diameter and a length that could reach 15 µm. Fibers prepared at high reducing ratio were constituted of flower-like spheres that coalesce in the direction of the applied magnetic field. For their high contact surface, these fibers offer new opportunities for catalysis applications. The hysteresis loop measurements show an enhancement of the Hc of the as-obtained fibers compared to their bulk counterparts and permit to confirm the relationship between the structure and the magnetic properties of the materials. - Highlights: • Template free synthesis of cobalt sub-micrometric fibers. • High control of the structure the structure, the size and the morphology of the products through properly monitoring the synthesis parameters. • cobalt sub-micrometric fibers with enhanced magnetic properties compared to bulk cobalt.

  10. SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry

    KAUST Repository

    Baumgardner, William J.

    2010-07-21

    The colloidal synthesis of SnSe nanoparticles is accomplished through the injection of bis[bis(trimethylsilyl)amino]tin(II) into hot trioctylphosphine: selenium in the presence of oleylamine. Through the manipulation of reaction temperature particles are grown with the average diameter reliably tuned to 4-10 nm. Quantum confinement is examined by establishing a relationship between particle size and band gap while the in depth growth dynamics are illuminated through UV-vis-NIR spectroscopy. Surface chemistry effects are explored, including the demonstration of useful ligand exchanges and the development of routes toward anisotropic particle growth. Finally, transient current-voltage properties of SnSe nanocrystal films in the dark and light are examined. © 2010 American Chemical Society.

  11. Synthesis, structure and photoluminescence properties of amine-templated open-framework bismuth sulfates

    International Nuclear Information System (INIS)

    Marri, Subba R.; Behera, J.N.

    2014-01-01

    Two organically-templated bismuth sulfates of the compositions, [C 6 N 2 H 14 ] [Bi(SO 4 ) 2 (NO 3 )], (1) and [C 4 N 2 H 12 ] 4 [Bi 4 (SO 4 ) 10 (H 2 O) 4 ], (2), with open architecture have been synthesized and their structures determined by single crystal X-ray diffraction. 1 has a corrugated layered structure with 8-membered aperture wherein the SO 4 tetrahedra and the BiO 8 polyhedra join together to form (4, 4) net sheets of the metal centers while 2 has a three-dimensional structure possessing 8- and 12-membered channels. Both the compounds show good fluorescence properties exhibiting blue luminescence. Time-resolved fluorescence behavior of 1 and 2 shows mean fluorescence life time of 0.9 and 1.0 ns, respectively. - Graphical abstract: Two open-framework bismuth sulfates with the layered and three-dimensional structures have been synthesized and characterized. Both the compounds show good fluorescence properties exhibiting blue luminescence. Display Omitted - Highlights: • Two organically-templated bismuth sulfates with open architecture have been synthesized and characterized. • One has a corrugated layered structure while the other one has a three-dimensional structure possessing channels. • They are novel in that open-framework three-dimensional main group metal sulfates are first to be reported. • They show good fluorescence properties exhibiting blue luminescence

  12. Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties

    Directory of Open Access Journals (Sweden)

    Matasebia T. Munie

    2011-10-01

    Full Text Available Supramolecular coordination polymers with wavelike structures have been synthesized by self-assembly and their structures analyzed using the sine trigonometric function. Slow evaporation of a methylene chloride-methanol solution of a 1:1 molar mixture of [M(tmhd2], where M = Co or Ni, and quinoxaline; a 1:2:1 molar mixture of [M(acac2], where M = Co or Ni, 2,2,6,6-tetramethyl-3,5-heptadione and quinoxaline; or a 1:2:1 molar mixture of [Co(acac2], dibenzoylmethane, and quinoxaline, yielded the crystalline coordination polymers. In the presence of the nitrogenous base, ligand scrambling occurs yielding the most insoluble product. The synthesis and structures of the following wavelike polymers are reported: trans-[Co(DBM2(qox]n·nH2O (2, trans-[Co(tmhd2(qox]n (3, trans-[Ni(tmhd2(qox]n (4, where DBM− = dibenzoylmethanate, tmhd− = 2,2,6,6-tetramethyl-3,5-heptadionate, and qox = quinoxaline. The wavelike structures are generated by intramolecular steric interactions and crystal packing forces between the chains. Some of the tert-butyl groups show a two-fold disorder. The sine function, φ = A sin 2πx/λ, where φ = distance (Ǻ along the polymer backbone, λ = wavelength (Ǻ, A = amplitude (Ǻ, x = distance (Ǻ along the polymer axis, provides a method to approximate and visualize the polymer structures.

  13. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leicestershire (United Kingdom)

    2012-03-15

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K{sup +} complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P2{sub 1}/c, with lattice parameters a=9.6215(10) A, b=17.4139(19) A, c=9.6119(10) A, {beta}=100.457(2) Degree-Sign and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Novel polymeric potassium complex was prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structure of complex was reported. Black-Right-Pointing-Pointer Electrochemical properties of compound were investigated. Black-Right-Pointing-Pointer Thermal and DSC measurements of complex were examined.

  14. Synthesis, structural characterization and biological properties of phosphorescent iridium(III) complexes.

    Science.gov (United States)

    Bhat, Satish S; Shivalingegowda, Naveen; Revankar, Vidyanand K; Lokanath, N K; Kugaji, Manohar S; Kumbar, Vijay; Bhat, Kishore

    2017-12-01

    Two phosphorescent cyclometalated iridium(III)-triptycenyl-1,10-phenanthroline complexes [Ir(ppy) 2 (tpt-phen)] + (1) and [Ir(bhq) 2 (tpt-phen)] + (2) {ppy=2-phenylpyridine, bhq=Benzo[h]quinoline, tpt-phen=triptycenyl-1,10-phenanthroline} have been synthesized and structurally characterized. The structure of complex 2 has been studied by single crystal X-ray crystallography. The photophysical properties of complexes in a different solvent have also been investigated. The binding of complexes to the double stranded calf thymus (CT-DNA) has been investigated by spectroscopic techniques. These complexes condense originally circular plasmid DNA into particulate structures. The DNA-condensation induced by these complexes have been investigated by electrophoretic mobilty shift assay, dynamic light scattering, and fluorescence microscopy. Furthermore, the cytotoxicity of these complexes towards HeLa cells have been studied and their cellular localisation properties have been investigated by fluorescence microscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Ibuprofen: Synthesis, production and properties

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2003-01-01

    Full Text Available Since its introduction in 1969, ibuprofen has become one of the most common painkillers in the world. Ibuprofen in an NSAID (non-steroidal anti-inflammatory drug and like other drugs of its class it possesses analgetic, antipyretic and anti-inflammatory properties. While ibuprofen is a relatively simple molecule, there is still sufficient structural complexity to ensure that a large number of different synthetic approaches are possible. Since the introduction of pharmaceutical products containing ibuprofen, industrial and academic scientists have developed many potential production processes. This paper describes the history, synthesis and production, as well as the properties and stability of ibuprofen.

  16. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Karthi, S., E-mail: girijaeaswaradas@gmail.com; Girija, E. K., E-mail: girijaeaswaradas@gmail.com [Department of Physics, Periyar University, Salem - 636011 (India)

    2014-04-24

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - Π - acceptor - Π - donor (D-Π-A-Π-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  17. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  18. Synthesis, structure and photoluminescence properties of amine-templated open-framework bismuth sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Marri, Subba R.; Behera, J.N., E-mail: jnbehera@niser.ac.in

    2014-02-15

    Two organically-templated bismuth sulfates of the compositions, [C{sub 6}N{sub 2}H{sub 14}] [Bi(SO{sub 4}){sub 2}(NO{sub 3})], (1) and [C{sub 4}N{sub 2}H{sub 12}]{sub 4}[Bi{sub 4}(SO{sub 4}){sub 10}(H{sub 2}O){sub 4}], (2), with open architecture have been synthesized and their structures determined by single crystal X-ray diffraction. 1 has a corrugated layered structure with 8-membered aperture wherein the SO{sub 4} tetrahedra and the BiO{sub 8} polyhedra join together to form (4, 4) net sheets of the metal centers while 2 has a three-dimensional structure possessing 8- and 12-membered channels. Both the compounds show good fluorescence properties exhibiting blue luminescence. Time-resolved fluorescence behavior of 1 and 2 shows mean fluorescence life time of 0.9 and 1.0 ns, respectively. - Graphical abstract: Two open-framework bismuth sulfates with the layered and three-dimensional structures have been synthesized and characterized. Both the compounds show good fluorescence properties exhibiting blue luminescence. Display Omitted - Highlights: • Two organically-templated bismuth sulfates with open architecture have been synthesized and characterized. • One has a corrugated layered structure while the other one has a three-dimensional structure possessing channels. • They are novel in that open-framework three-dimensional main group metal sulfates are first to be reported. • They show good fluorescence properties exhibiting blue luminescence.

  19. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    Science.gov (United States)

    Si, Zhen-Xiu; Xu, Wei; Zheng, Yue-Qing

    2016-07-01

    An uranium coordination polymer, namely [(UO2(pydc)(H2O)]·H2O (1) (H2pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO22+ ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O-H···O hydrogen bond interactions and π-π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as well as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed.

  20. Fe{sub 3}C/Fe nanoparticles with urea: Synthesis, structure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaobai [College of Chemistry, Jilin University, Changchun, 130012 (China); School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022 (China); Zhang, Daguang [Department of Orthopaedic Surgery, the First Hospital of Jilin University, Changchun, 130021 China (China); Ren, Xiaozhen; Gao, Jiajia [College of Chemistry, Jilin University, Changchun, 130012 (China); Han, Yu [Department of Chemistry, College of Science, Yanbian University, Yanji, 133002 China (China); Chen, Xiaodong [College of Chemistry, Jilin University, Changchun, 130012 (China); Shi, Zhan [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Yang, Hua [College of Chemistry, Jilin University, Changchun, 130012 (China)

    2016-12-15

    Fe{sub 3}C/Fe nanocomposites were synthesized by a sol–gel method. Using urea as carbon source and reduce agent in the reaction process. The CTAB works as the surfactant and the bromine contained in CTAB plays a catalytic role. Appropriate choices of the amount of urea and CTAB, reaction temperature and time are very important to obtain high-quality of products. Above 650 °C, the precursor gel turned into the nanocomposites composed of iron carbide and iron. Their structures and magnetic properties are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The possible formation mechanism of as-prepared nanostructures is discussed. - Highlights: • The Fe{sub 3}C/Fe composites were synthetized by sol–gel method. • Their structure, magnetic properties are researched by XRD, VSM and TEM. • The possible formation mechanisms of the composites is discussed.

  1. Synthesis of magnetically separable Sn doped magnetite/silica core-shell structure and photocatalytic property

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Yao, Jia-Liang

    2010-01-01

    Sn doped Fe 3 O 4 /SiO 2 core-shell structures with the magnetic and photocatalytic properties have been successfully synthesized using Fe 3 O 4 microspheres as the precursor. The morphology, phase and structure of the bifunctional products were investigated by X-ray powder diffraction, transmission electron microscopy, selected-area electron diffraction, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy. The effects of the amount and hydrolysis rate of tetraethyl orthosilicate on the preparation of the Fe 3 O 4 /SiO 2 core-shell structures were investigated. Low concentration and slow hydrolysis rate of tetraethyl orthosilicate were useful to obtain the uniform silica coated Fe 3 O 4 . The magnetic measurements indicated that the Sn doped Fe 3 O 4 /SiO 2 core-shell structures showed ferromagnetic property and the magnetic saturation value slightly decreased after coated the silica layer. The magnetic Sn doped Fe 3 O 4 /SiO 2 core-shell structures exhibited good photocatalytic activity in the degradation of methyl orange and could be separated by applying an appropriate magnetic field.

  2. Synthesis, crystal structure and redox properties of dihydropyrazole-bridged ferrocene-based derivatives

    Science.gov (United States)

    Li, Heng-Dong; Ma, Zai-He; Yang, Kun; Xie, Li-Li; Yuan, Yao-Feng

    2012-09-01

    Dihydropyrazole-bridged ferrocene-based derivatives were prepared by corresponding chalcones with hydrazine hydrate, then acylation with 3-(ethoxycarbonyl)propionyl chloride directly in high yields and purity. All of these compounds were characterized by MS, IR, 1H NMR, 13C NMR and elemental analysis. The relationship between the structure and redox properties was investigated based on the results of single crystal X-ray structure determinations and cyclic voltammetry. The mechanism of the electron transfer for representative compound 4b was verified by density functional theory (DFT) calculations.

  3. Verdazyl-lanthanide(III) one dimensional compounds: synthesis, structure and magnetic properties.

    Science.gov (United States)

    Norel, Lucie; Chamoreau, Lise-Marie; Journaux, Yves; Oms, Olivier; Chastanet, Guillaume; Train, Cyrille

    2009-05-07

    The first one-dimensional compounds where [Ln(hfac)(3)] (Ln = Gd, Tb, Dy) building blocks are bridged by a verdazyl-based radical, namely 3-imidazolyl-1,5-dimethyl-6-oxoverdazyl, were prepared and their structures elucidated; the magnetic properties were measured for all compounds and quantitatively fitted for Ln = Gd(III) using an alternate chain model leading to J(1) = -1.58 cm(-1) and to J(2) = -0.42 cm(-1).

  4. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  5. Synthesis, structure and photoluminescence properties of amine-templated open-framework bismuth sulfates

    Science.gov (United States)

    Marri, Subba R.; Behera, J. N.

    2014-02-01

    Two organically-templated bismuth sulfates of the compositions, [C6N2H14] [Bi(SO4)2(NO3)], (1) and [C4N2H12]4[Bi4(SO4)10(H2O)4], (2), with open architecture have been synthesized and their structures determined by single crystal X-ray diffraction. 1 has a corrugated layered structure with 8-membered aperture wherein the SO4 tetrahedra and the BiO8 polyhedra join together to form (4, 4) net sheets of the metal centers while 2 has a three-dimensional structure possessing 8- and 12-membered channels. Both the compounds show good fluorescence properties exhibiting blue luminescence. Time-resolved fluorescence behavior of 1 and 2 shows mean fluorescence life time of 0.9 and 1.0 ns, respectively.

  6. DEVELOPMENT OF METHOD FOR THE SYNTHESIS OF POLYURETHANES BRANCHED STRUCTURE CONTAINING ISOCYANURATE FRAGMENTS IN MACROCHAINS. STUDY THEIR STRUCTURE AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    S. A. Lukashevich

    2016-11-01

    Full Text Available Based polyoxypropylene glycol, TDI, isocyanurate HDT-90 and a chain extender – adipic acid dihydrazide (ADH at different molar ratio of isocyanurate of TDI and polymeric materials synthesized new branched structure. The physico and mechanical properties of the material depending on the ratio of the isocyanate components. The introduction into the structure of polyurethane (PU isocyanurate heterocyclic moieties of the matrix increases the tensile strength and decrease in elongation at break. The effect of the isocyanurate in the physical and mechanical properties of the new PU material, the dependence on the ratio of the starting components.

  7. Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties

    International Nuclear Information System (INIS)

    Liu Ying; Wang Weimin; Fu Zhengyi; Wang Hao; Wang Yucheng; Zhang Jinyong

    2011-01-01

    Highlights: → Bi 2 WO 6 with 3D nest-like structures was obtained without the presence of templates but after Sr-doping, which represents a marked improvement over previous reports. → The products showed enhanced photocatalytic properties over pure Bi 2 WO 6 . → Samples subsequently thermal treated at 500 deg. C show better photocatalytic activities. - Abstract: A series of Sr-doped Bi 2 WO 6 with three-dimensional (3D) nest-like structures were synthesized through simple hydrothermal route and characterized by XRD, FESEM, TEM, XPS, UV-vis DRS, etc. Morphology observation revealed that the as-synthesized Bi 2 WO 6 were self-assembled three-dimensional (3D) nest-like structures, which were constructed from nanoplates. UV-vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light areas. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under UV and visible light irradiation (λ > 420 nm). The photocatalytic properties were enhanced after Sr doping. Samples subsequently thermal treated at 500 deg. C showed higher photocatalytic activities. The reasons for the differences in the photocatalytic activities of these nest-like Bi 2 WO 6 microstructures were further investigated.

  8. Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties

    Science.gov (United States)

    Quyen, Dinh Thi Ngoc; Loc, Luu Cam; Ha, Huynh Ky Phuong; Nga, Dang Thi Hang; Tri, Nguyen; Van, Nguyen Thi Thuy

    2017-09-01

    There are many researches in the modification of red mud as adsorbent for treatment of wastewater or waste gases. Yet, most of them have to face up with a thorny problem caused by remaining alkali in red mud. In this study, the material with zeolite structure was synthesized by fusion method using red mud with the remaining alkali and rice husk ash as raw materials. It comprised alkaline fusion followed by hydrothermal treatment with step - change of synthesis temperature. The synthesized materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), BET and CO2 adsorption capacity. The influences on the quality of these materialswere investigated under various calcination temperatures, calcination times and the ratios of raw materials (based on SiO2/Al2O3 ratio). The optimum reaction parameters were determined. The results depicted that the sample treated at 600 °C for 2 hours with the ratio of SiO2/Al2O3 of 1.8 had the best adsorption capacity and total specific surface area compared with the others.

  9. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, A.K.; Viswanath, V.; Janu, V.C.

    2009-01-01

    Zinc oxide nanoparticles were synthesized using chemical method in alcohol base. During synthesis three capping agents, i.e. triethanolamine (TEA), oleic acid and thioglycerol, were used and the effect of concentrations was analyzed for their effectiveness in limiting the particle growth. Thermal stability of ZnO nanoparticles prepared using TEA, oleic acid and thioglycerol capping agents, was studied using thermogravimetric analyzer (TGA). ZnO nanoparticles capped with TEA showed maximum weight loss. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization of ZnO nanoparticles. Particle size was evaluated using effective mass approximation method from UV-vis spectroscopy and Scherrer's formula from XRD patterns. XRD analysis revealed single crystal ZnO nanoparticles of size 12-20 nm in case of TEA capping. TEA, oleic acid and thioglycerol capped synthesized ZnO nanoparticles were investigated at room temperature photoluminescence for three excitation wavelengths i.e. 304, 322 and 325 nm, showing strong peaks at about 471 nm when excited at 322 and 325 nm whereas strong peak was observed at 411 for 304 nm excitation.

  10. New chiral zwitterionic phosphorus heterocycles: synthesis, structure, properties and application as chiral solvating agents.

    Science.gov (United States)

    Sheshenev, Andrey E; Boltukhina, Ekaterina V; Grishina, Anastasiya A; Cisařova, Ivana; Lyapkalo, Ilya M; Hii, King Kuok Mimi

    2013-06-17

    A family of new chiral zwitterionic phosphorus-containing heterocycles (zPHC) have been derived from methylene-bridged bis(imidazolines). These structures were unambiguously determined, including single-crystal XRD analysis for two compounds. The stability, acid/base and electronic properties of these dipolar phosphorus heterocycles were subsequently investigated. zPHCs can be successfully employed as a new class of chiral solvating agents for the enantiodifferentiation of chiral carboxylic and sulfonic acids by NMR spectroscopy. The stoichiometry and binding constants for the donor-acceptor complexes formed were established by NMR titration methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and Structures of Reduced Niobates with Four Perovskite-like Layers and Their Semiconducting Properties

    Science.gov (United States)

    Sugimoto, W.; Ohkawa, H.; Naito, M.; Sugahara, Y.; Kuroda, K.

    1999-12-01

    Carriers were successfully doped into RbCa2NaNb4O13 by the substitution of Sr2+ for Na+, yielding electroconducting niobates with a layered structure consisting of four perovskite-like layers. Single-phase products of polycrystalline RbCa2Na1-xSrxNb4O13 (x=0.2 and 0.4) were synthesized by the solid-state reaction of RbCa2Nb3O10, Sr5Nb4O15, Nb2O5, and Nb metal. The solid solutions were indexed based on a tetragonal structure, corresponding to the end-member RbCa2NaNb4O13. With the increase in the amount of strontium substitution, an expansion of the c-axis was observed while the a-axis was essentially constant. The products showed semiconducting properties.

  12. Synthesis, optical properties and growth mechanism of MnO nano structures

    Science.gov (United States)

    Pandey, B. K.; Shahi, A. K.; Gopal, R.

    2013-10-01

    Manganese oxide (MnO) colloidal nanoparticles have been successfully synthesized by pulse laser ablation in double distilled water. Nd: YAG laser with focused output operating at different pulse energies (20, 30, 40, 50 mJ/pulse) was used for ablation. Synthesized MnO nano crystal phase and structure were confirmed by X-ray diffraction and SAED pattern. Optical properties of as synthesized MnO nano colloidal solution were studied by UV-vis absorption spectroscopy. Optical particle size and band gap of as synthesized MnO colloidal nanoparticles were calculated. Particle shape and size were determined by TEM/SEM image. It is observed that MnO nano colloidal particles assembled to make different structures after aging in the liquid media. Aspect ratio has been calculated from SEM picture. MnO nanoparticles show weak antiferromagnetic behavior at room temperature as measured by VSM. A typical mechanism has been proposed for the formation of different nanostructures.

  13. Synthesis, crystal structure and magnetic properties of a novel copper(II) complex with sulfoisophthalic acid

    Science.gov (United States)

    Kurc, Teresa; Videnova-Adrabinska, Veneta; Turowska-Tyrk, Ilona; Duczmal, Marek; Jerzykiewicz, Maria

    2013-12-01

    A new Cu(II) complex, [Cu2(μ2-OH2)2(HSIP)2(H2O)6] (H3SIP = 5-sulfoisophthalic acid), has been synthesized and characterized by single crystal X-ray diffraction, EPR spectroscopy (X- (9.5 GHz) and Q-band (35 GHz)) and magnetic measurements. The solid state structure of the complex consists of coordination dimers [Cu2(μ2-OH2)2(HSIP)2(H2O)6] which are hydrogen bonded into 3D network. The neighbouring metal ions form a rare example of centrosymetric dinuclear core [Cu2(μ2-OH2)2] with equatorial - axial positions of the bridging ligands. The coordination dimers are organized into inorganic monolayers via water-sulfonate hydrogen bond intractions, and further linked in 3D structure via carboxylic-carboxylic hydrogen bond intractions. The magnetic properties and EPR spectra are discussed in terms of crystal structure features. The X- and Q-band EPR spectra exhibit fine structure signals due to S = 1 and the simulated parameters indicate small zero field splitting parameter Dexp (-0.035 cm-1) dominated by Ddip (-0.031 cm-1). A usually forbidden ΔMs = 2 line of lower intensity is observed in the half field region at about 150 mT. The susceptibility data have been analyzed using a spin-ladder model with both ferromagnetic (rungs) and antiferromagnetic (legs) coupling.

  14. A Novel Coordination Polymer Based on 4,4'-(Hexauoroisopropylidene)diphthalic Acid: Synthesis, Structure and Physical Properties

    International Nuclear Information System (INIS)

    Wang, Jun; Tao, Jianqing; Xu, Xiaojuan; Tan, Chunyun

    2012-01-01

    The design and synthesis of coordination polymers is an attractive area of research, not only owing to their diverse topology and intriguing structures but also due to their potential applications in many fields, such as ion-exchange, catalysis, luminescence, magnets, and gas storage. The mainstream method of constructing such coordination polymers is to utilize organic ligands with aromatic polycarboxylate groups, because of their excellent coordination capability and flexible coordination patterns. Among them, aromatic polycarboxylic derivatives, such as 1,2,4,5-benzenetetracarboxylic acid, 4,4'-oxydiphthalic acid, 4,4'-(hexauoroisopropylidene) diphthalic acid (H 4 FA), and so on, have been extensively used to prepare coordination polymers. Meanwhile, the flexible 1,4-bis(1,2,4-triazol-1-ylmethyl)-benzene (BTX) as an excellent derivative of triazole not only possesses the merits of triazole, but also can adopt different conformations compared with the corresponding 1,2,4-triazole ligand on the basis of the relative orientations of its CH 2 groups.10 Taking these into consideration, we explored the self-assembly of Cd(II) ion, H 4 FA, and BTX under hydrothermal conditions, and obtained a novel 3D coordination polymer: [Cd 3 (BTX) 2 (HFA) 2 · 2 H 2 O] n . Herein, we report the synthesis, crystal structure, and physical properties

  15. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Science.gov (United States)

    Kuo, Cheng-Yu; Liu, Yinghao; Yarotski, Dmitry; Li, Hao; Xu, Ping; Yen, Hung-Ju; Tretiak, Sergei; Wang, Hsing-Lin

    2016-12-01

    Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au-S covalent bond. Our UV-Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered-ordered-disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π-π couplings, hydrophobic interaction and the propensity to form Au-S covalent bond. Such hypothesis has been validated by our computational results suggesting different interaction patterns of oligothiophenes with odd numbered and even numbered thiophene repeat units placed in a dimer configuration. Observed correlations between oligomer geometry and structural order of monolayer assembly elucidate important structure-property relationships and have implications for these molecular structures in organic optoelectronic devices and energy

  16. Divinyl BODIPY derivative: Synthesis, photophysical properties, crystal structure, photostability and bioimaging.

    Science.gov (United States)

    Yang, Liutao; Liu, Ying; Liu, Wei; Ma, Chunping; Zhang, Chun; Li, Yang

    2015-12-15

    4,4-Difluoro-3,5-bis(3,3-dimethyl-1-butenyl)-8-anthryl-4-bora-3a,4a-diaza-s-indacene (1), a symmetric fluorescent difluoroboron dipyrromethene dye, was produced in Knoevenagel reaction involving 4,4-difluoro-3,5-bis(methyl)-8-anthryl-4-bora-3a,4a-diaza-s-indacene (2) and pivaldehyde. Its crystal structure was determined by single crystal X-ray diffraction analysis, and the photophysical properties were investigated. The BODIPY 1 exhibits significant bathochromic shifts in both absorption and fluorescence spectrum compared with the BODIPY 2. In addition, the BODIPY 1 exhibited small energy gaps (2.11eV). The extensive π conjugation is responsible for their red-shifted emission. Cell imaging experiments demonstrated its potential application as a biological fluorescent probe due to its excellent imaging contrast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. SYNTHESIS, STRUCTURE AND SPECTRAL PROPERTIES OF POTASSIUMALUMINA- BORATE GLASS WITH NANOCRYSTALS OF MANGANESE FERRITE

    Directory of Open Access Journals (Sweden)

    D. I. Sobolev

    2016-07-01

    Full Text Available Subject of Research.The paper presents research results of optical properties of potassium-alumina-borate glass, activated with ions of iron and manganese. The formation process of nanocrystals of manganese ferrite MnFe2O4 in potassium-alumina-borate glass host was studied. Magneto-optical characteristics were analyzed. Method. The studied glasses were synthesized by the method of charge melting in the crucible. Potassium-alumina-borate glass system was used (K2O-Al2O3-B2O3 proposed by S.A. Stepanov (Vavilov State Institute. Glass system was doped by 3 wt% of Fe2O3 and 2 wt% MnO by weight (composition 1 and 2 wt% Fe2O3 and 1 wt% MnO by weight (composition 2. The glass transition temperature was 430 °C. Segregating of the crystal phase of manganese ferrite MnFe2O4 occurred during heat treatment at 550 °C for 2 hours in a programmable muffle furnace. The absorption spectrum in the wavelength range 200-2000 nm was recorded with Perkin Elmer Lambda 650 and Varian Cary 500 spectrophotometers. The XRD patterns were obtained on Rigaku Ultima IV X-ray diffractometer by copper anode with a wavelength λ (Cu = 0.15418 nm. Magneto-optical Verde constant was measured by the angle of polarization plane rotation of the passing light through the sample when the sample is placed in magnetic field. Main Results. New technological modes of potassium-alumina-borate glass synthesis doped with ions of iron and manganese were developed and studied. It is established that during heat treatment nanocrystals of manganese ferrites are evolved with an average size of 18 nm. These glasses have a Verde constant equal to 0.9 arc.min/(cm·Oe. It is shown that obtained glasses possess high absorbance in ultra-violet and visible light spectrum. Practical Relevance. Proposed and analyzed nanoglass-ceramics could be accepted as a basis for creation of sensing environments for sensors current and magnetic field and for creation of optical isolators based on the Faraday effect.

  18. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    Energy Technology Data Exchange (ETDEWEB)

    Das, Supriyo [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  19. Synthesis, structure and some properties of a manganese(II) benzoate containing diimine

    Science.gov (United States)

    Paul, Pranajit; Roy, Subhadip; Sarkar, Sanjoy; Chowdhury, Shubhamoy; Purkayastha, R. N. Dutta; Raghavaiah, Pallepogu; McArdle, Patrick; Deb, Lokesh; Devi, Sarangthem Indira

    2015-12-01

    A new monomeric manganese(II) benzoate complex containing nitrogen donor 2,2‧-bipyridine, [Mn(OBz)2(bipy)(H2O)] (OBz = benzoate, bipy = 2,2‧-bipyridine) has been synthesized from aqueous methanol medium and characterized by analytical, spectroscopic and single crystal X-ray diffraction studies. The compound exhibits moderate to appreciable antimicrobial activity. The complex crystallizes in space group P21/n. Mn(II) atom is ligated by two N atoms of bipyridine, three O atoms from a monodentate and a bidentate benzoate ligand and a water molecule forming distorted octahedral structure. The coordinated water molecule forms intramolecular hydrogen bonds and links the monomer molecules into hydrogen bonded dimer. The hydrogen bonded dimers are involved in intermolecular C-H···O and π-π stacking interactions. Density functional theory (DFT) computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, the results are in compliance with the experimentally obtained structural and spectral data.

  20. Synthesis, structure and properties of thermoplastic poly(ester–siloxane elastomers

    Directory of Open Access Journals (Sweden)

    VESNA V. ANTIC

    2006-07-01

    Full Text Available Two series of thermoplastic poly(ester–siloxane elastomers (TPES, with hard segments based on poly(butylene terephthalate (PBT and soft segments based on poly(dimethylsiloxane (PDMS, were synthesized by high-temperature, two-step transesterification reaction in the melt. In series I, themass ratio of hard and soft segments was kept constant (57:43, while the length of the segments was varied, whereas in series II, the mass ratio of hard and soft segments was varied in range from 70:30 to 40:60, with a constant length of the soft segments. The segmented structure of the poly(ester–siloxane copolymers was verified by 1H-NMR spectroscopy of the soluble and insoluble fractions, obtained after extraction of the samples with chloroform. The influence of the structure and composition of the TPES on the melting temperatures and degrees of crystallinity was investigated by differential scanning calorimetry (DSC. The rheological properties were investigated by dynamic mechanical analysis (DMA.

  1. A Zn-tib porous framework sandwiched with Keggin Synthesis, structure, photocatalytic and luminescent properties

    Science.gov (United States)

    Zhang, Zhuanfang; Ma, Huiyuan; Pang, Haijun; Zhang, Chunjing; Chai, Dongfeng; Hou, Yan

    2018-02-01

    A novel helical compound, Zn(Htib)(tib)PMo12O40 (1) (tib = 1, 3, 5-tris-(1-imidazolyl)-benzene) was hydrothermally synthesized. The structure has been determined by single-crystal X-ray diffraction analyses and characterized by IR, XPS, UV-Vis and XRD and elemental analyses. Single crystal X-ray analysis reveals that compound 1 possesses entangled double helixes, which is formed by a pair of right- and left- handed double helixes sharing Zn atoms and a part of tib ligands. The adjacent entangled double helixes are further fused together, and thus a wavy Zn-tib metal-organic layer is constructed. Finally, through hydrogen bonds, the neighboring Zn-tib metal-organic layers are interconnected in a staggering peak-load manner to give birth to a porous 3D supramolecular framework with large rhombus-like apertures, in which the [PMo12O40]3- (PMo12) anions were encapsulated into the open channel structure and sandwiched by the Zn-tib layers. Additionally, compound 1 exhibits high efficiency and stability, and well reproducibility towards photocatalytic degradation of RhB dye under UV irradiation. The fluorescence property of 1 was also investigated.

  2. Synthesis and ferroelectric properties of rare earth compounds with tungsten bronze-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, M., E-mail: bouzianemeryem@yahoo.fr [Laboratoire de Chimie du Solide Appliquee, Faculte des Sciences, Avenue Ibn Batouta, BP 1014, Rabat (Morocco); Taibi, M. [Laboratoire de Physico-Chimie des Materiaux, LAF 502, Ecole Normale Superieure, BP 5118, Rabat (Morocco); Boukhari, A. [Laboratoire de Chimie du Solide Appliquee, Faculte des Sciences, Avenue Ibn Batouta, BP 1014, Rabat (Morocco)

    2011-10-03

    Highlights: {center_dot} Polycrystalline materials with the tungsten bronze-type structure have been synthesized and characterized. {center_dot} Effect of the incorporation of rare earth ions and paramagnetic cations (Fe{sup 3+}) into a matrix ferroelectrically active was studied. {center_dot} Ferroelectric transition is pronounced by a large thermal hysteresis during the heating and cooling cycles. {center_dot} Phase transitions around T{sub c} were confirmed by differential scanning calorimetry (DSC) measurements. - Abstract: Polycrystalline materials with a general formula Pb{sub 2}Na{sub 0.8}R{sub 0.2}Nb{sub 4.8}Fe{sub 0.2}O{sub 15} (R = Dy, Eu, Sm, Nd, La) have been synthesized, in air by a high temperature solid state reaction method. X-ray diffraction study, at room temperature, revealed that they crystallize in the tungsten bronze-type structure. Dielectric properties were performed, in the temperature range 25-500 deg. C, at three different frequencies 10, 100 and 1000 kHz. The ferroelectric transition is pronounced by a large thermal hysteresis during the heating and cooling cycles. The determined Curie temperature values T{sub c} were discussed as a function of rare earth size. Phase transitions around T{sub c} for the investigated compounds were confirmed by differential scanning calorimetry (DSC) measurements.

  3. New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties

    Science.gov (United States)

    Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-04-01

    In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.

  4. Synthesis, structural characterization and luminescent properties of a novel europium ternary complex Eu(2-A-4-CBA)3phen

    International Nuclear Information System (INIS)

    Chen, Yongjie; Wu, Shengnan; Xing, Zhenfang; Cao, Shuang; Geng, Xiujuan; Yang, Ying; Xiao, Linjiu

    2015-01-01

    The preparation of a novel europium ternary complex with the formula of Eu(2-A-4-CBA) 3 phen (where, 2-A-4-CBA = 2-amino-4-chlorobenzoic acid, phen = 1,10-phenanthroline) under solvothermal condition is described. The composition and structure of the resulting complex were investigated by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy. The complex is polycrystalline, and the morphology is clean and regular as revealed by scanning electron microscope (SEM). The luminescent and thermal properties of the complex were researched by fluorescence spectroscopy and thermogravimetric analysis, respectively. Of importance here is that, the room-temperature luminescence spectra of the complex show strong characteristic emission of the corresponding Eu 3+ , which is attributed to the energy transfer from ligands to Eu 3+ via an Antenna effect. It is also found that the complex exhibits pure red light and high color purity. In addition, the complex does not decompose until 300 °C, so it exhibits good thermal stability. - Highlights: • A novel Eu(III) complex was synthesized by solvothermal synthesis method. • The structure and properties of complex were studied. • The complex can emits pure red light and has a high color purity. • The complex does not decompose until 300 °C and it has a good thermal stability

  5. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, P. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Silva, F. G. da [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Gomide, G.; Paula, F. L. O. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Campos, A. F. C. [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Perzynski, R. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX (France); Kern, C. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Depeyrot, J. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Aquino, R., E-mail: reaquino@unb.br [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil)

    2016-05-15

    We synthesize Zn-substituted cobalt ferrite (Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}, with 0 ≤ x ≤ 1) magnetic nanoparticles by a hydrothermal co-precipitation method in alkaline medium. The chemical composition is evaluated by atomic absorption spectroscopy and energy-dispersive X-ray spectroscopy techniques. The structure and morphology of the nanopaticles are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD Rietveld refinements reveal the cation distribution among the tetrahedral (A) and octahedral (B) sites. It shows that up to x ~0.5 zinc ions occupy preferably A-sites, above which Zn ions begin also a gradual occupancy of B-sites. TEM images show nanoparticles with different shapes varying from spheres, cubes, to octahedrons. Hysteresis loop properties are studied at 300 and 5 K. These properties are strongly influenced by the Zn and Co proportion in the nanoparticle composition. At 300 K, only samples with high Co content present hysteresis. At 5 K, the reduced remanent magnetization ratio (M{sub R}/M{sub S}) and the coercivity (H{sub C}) suggest that nanoparticles with x < 0.5 have cubic anisotropy. A kink on the hysteresis loop, close to the remanence, is observed at low temperature. This feature is presumably associated to interplay between hard and soft anisotropy regimes in the powder samples.Graphical Abstract.

  6. Synthesis, Structure and Antimicrobial Properties of Novel Benzalkonium Chloride Analogues with Pyridine Rings

    Directory of Open Access Journals (Sweden)

    Bogumił Brycki

    2017-01-01

    Full Text Available Quaternary ammonium compounds (QACs are a group of compounds of great economic significance. They are widely used as emulsifiers, detergents, solubilizers and corrosion inhibitors in household and industrial products. Due to their excellent antimicrobial activity QACs have also gained a special meaning as antimicrobials in hospitals, agriculture and the food industry. The main representatives of the microbiocidal QACs are the benzalkonium chlorides (BACs, which exhibit biocidal activity against most bacteria, fungi, algae and some viruses. However, the misuses of QACs, mainly at sublethal concentrations, can lead to an increasing resistance of microorganisms. One of the ways to avoid this serious problem is the introduction and use of new biocides with modified structures instead of the biocides applied so far. Therefore new BAC analogues P13–P18 with pyridine rings were synthesized. The new compounds were characterized by NMR, FT-IR and ESI-MS methods. PM3 semiempirical calculations of molecular structures and the heats of formation of compounds P13–P18 were also performed. Critical micellization concentrations (CMCs were determined to characterize the aggregation behavior of the new BAC analogues. The antimicrobial properties of novel QACs were examined by determining their minimal inhibitory concentration (MIC values against the fungi Aspergillus niger, Candida albicans, Penicillium chrysogenum and bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. The MIC values of N,N-dimethyl-N-(4-methylpyridyl-N-alkylammonium chlorides for fungi range from 0.1 to 12 mM and for bacteria, they range from 0.02 to 6 mM.

  7. Synthesis, structure and property of diorganotin complexes with chiral N-(5-chlorosalicylidene)valinate ligand

    Science.gov (United States)

    Tian, Laijin; Yao, Yanze; Wang, Yuhua; Liu, Jin

    2018-03-01

    Six new diorganotin N-[(5-chloro-2-oxyphenyl)methylene]valinates, R2SnL (R = Me, 1; Et, 2; L = 5-Cl-2-OC6H3CH = NCH(i-Pr)COO: (S)-, a; (R)-, b; (RS)-, c), have been synthesized from the reaction of R2SnCl2 with the chiral ligand KHL (potassium salt of HL) in different solvents and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra. In benzene, the configuration of the chiral ligand was retained. (S)-Enantiomers (1a and 2a) and (R)-enantiomers (1b and 2b) display discrete molecular structures with distorted trigonal bipyramidal geometries in which two C atoms of organic groups (R) and the imino N atom occupy the equatorial positions and a phenoxide O and an unidentate carboxylate group O atom are in the axial orientation. In the methanol, the chiral ligand was racemized. 1cṡMeOH is a centrosymmetric dimers formed by (R)- and (S)- enantiomers through two Snsbnd OṡṡṡSn bridges. The coordination geometry of the Sn atom can be described as a distorted pentagonal bipyramid with two methyl groups in axial positions. The crystal of 2c is composed of two threefold symmetric trimers, a [Et2SnL-(R)]3 and a [Et2SnL-(S)]3, with a macrocyclic 12-membered ring structure formed by the bidenate bridging coordination of carboxylate group to tin atoms. Each tin atom is six-coordinated in distorted [SnC2NO3] octahedron geometry. The fluorescence properties of ligand KHL and complexes 1 (1a-1c) and 2 (2a-2c) have been measured. The results show the complexes may be explored for potential luminescent materials.

  8. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  9. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  10. Synthesis, Structure and Antimicrobial Properties of Novel Benzalkonium Chloride Analogues with Pyridine Rings.

    Science.gov (United States)

    Brycki, Bogumił; Małecka, Izabela; Koziróg, Anna; Otlewska, Anna

    2017-01-13

    Quaternary ammonium compounds (QACs) are a group of compounds of great economic significance. They are widely used as emulsifiers, detergents, solubilizers and corrosion inhibitors in household and industrial products. Due to their excellent antimicrobial activity QACs have also gained a special meaning as antimicrobials in hospitals, agriculture and the food industry. The main representatives of the microbiocidal QACs are the benzalkonium chlorides (BACs), which exhibit biocidal activity against most bacteria, fungi, algae and some viruses. However, the misuses of QACs, mainly at sublethal concentrations, can lead to an increasing resistance of microorganisms. One of the ways to avoid this serious problem is the introduction and use of new biocides with modified structures instead of the biocides applied so far. Therefore new BAC analogues P13 - P18 with pyridine rings were synthesized. The new compounds were characterized by NMR, FT-IR and ESI-MS methods. PM3 semiempirical calculations of molecular structures and the heats of formation of compounds P13 - P18 were also performed. Critical micellization concentrations (CMCs) were determined to characterize the aggregation behavior of the new BAC analogues. The antimicrobial properties of novel QACs were examined by determining their minimal inhibitory concentration (MIC) values against the fungi Aspergillus niger , Candida albicans , Penicillium chrysogenum and bacteria Staphylococcus aureus , Bacillus subtilis , Escherichia coli and Pseudomonas aeruginosa . The MIC values of N , N -dimethyl- N -(4-methylpyridyl)- N -alkylammonium chlorides for fungi range from 0.1 to 12 mM and for bacteria, they range from 0.02 to 6 mM.

  11. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    Science.gov (United States)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  12. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property

    Directory of Open Access Journals (Sweden)

    Xi-Shi Tai

    2015-11-01

    Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.

  13. Synthesis, structures and electroluminescence properties of CdS:In/Si nanoheterostructure array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling; Cai, Hong Xin; Chen, Liang [Henan Polytechnic University, School of Physics and Electronic Information Engineering, Jiaozuo (China)

    2017-10-15

    An In-doped CdS/Si nanoheterojunction (CdS:In/Si-NPA) is prepared by depositing an In-doped CdS thin film onto a Si nanoporous pillar array (Si-NPA) via a successive ionic layer adsorption and reaction method. Based on the measured J-V characteristic curve, the nanoheterojunction exhibits a good rectifying behavior with a low forward turn-on voltage (2.2 V), a small leakage current density (0.5 mA/cm{sup 2} at - 3 V) and a high reverse breakdown voltage (> 8 V). The electroluminescence (EL) measurements reveal that a broadband emerges between 400 and 700 nm, and this band is confirmed as a white light emission based on the value of the chromaticity coordinate. The EL properties, including the CIE chromaticity coordinates, Colour Rendering Index and correlated color temperature, can be tuned by the applied voltage. The generation mechanism of the EL can be well interpreted depending on the energy band structure of CdS:In/Si-NPA. The green band should be attributed to the band-edge emission of CdS and the yellow emission may be related to Cd interstitial. These results highlight the potential of CdS:In/Si-NPA as a light source for future white light emitting devices. (orig.)

  14. Synthesis, structure, and photoluminescence properties of an organically-templated uranyl selenite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong-Sheng; Kuang, Han-Mao; Chen, Wen-Tong; Luo, Qiu-Yan; Sui, Yan [Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji' an, Jiangxi 343009 (China)

    2015-09-15

    The organically-templated uranyl selenite, (H{sub 2}en)[(UO{sub 2})(SeO{sub 3})(HSeO{sub 3})](NO{sub 3}).0.5H{sub 2}O (1) (en = 1,2-ethylenediamine) was synthesized and characterized by elemental analyses, IR spectroscopy, TG, and single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic system, space group Pbca, with a = 13.170(3) Aa, b = 11.055(2) Aa, c = 18.009(4) Aa, V = 2621.8(9) Aa{sup 3}, M = 1316.19, Z = 4, D{sub cal} = 3.334 g.cm{sup -3}, μ(Mo-K{sub α}) = 17.998 mm{sup -1}, GOF = 1.059, R{sub 1} = 0.0263, wR{sub 2} = 0.0532 [I>2σ(I)]. The X-ray diffraction analysis reveals that compound 1 has a three-dimensional (3D) supramolecular structure. It contains negatively charged [UO{sub 2}(HSeO{sub 3})(SeO{sub 3})]{sup -} inorganic anion layers and is balanced by [H{sub 2}en]{sup 2+} cations and NO{sub 3}{sup -} anions located in the interlayers. Furthermore, the photoluminescence properties of 1 were investigated. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Synthesis, structure, and photoluminescence properties of an organically-templated uranyl selenite

    International Nuclear Information System (INIS)

    Liu, Dong-Sheng; Kuang, Han-Mao; Chen, Wen-Tong; Luo, Qiu-Yan; Sui, Yan

    2015-01-01

    The organically-templated uranyl selenite, (H 2 en)[(UO 2 )(SeO 3 )(HSeO 3 )](NO 3 ).0.5H 2 O (1) (en = 1,2-ethylenediamine) was synthesized and characterized by elemental analyses, IR spectroscopy, TG, and single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic system, space group Pbca, with a = 13.170(3) Aa, b = 11.055(2) Aa, c = 18.009(4) Aa, V = 2621.8(9) Aa 3 , M = 1316.19, Z = 4, D cal = 3.334 g.cm -3 , μ(Mo-K α ) = 17.998 mm -1 , GOF = 1.059, R 1 = 0.0263, wR 2 = 0.0532 [I>2σ(I)]. The X-ray diffraction analysis reveals that compound 1 has a three-dimensional (3D) supramolecular structure. It contains negatively charged [UO 2 (HSeO 3 )(SeO 3 )] - inorganic anion layers and is balanced by [H 2 en] 2+ cations and NO 3 - anions located in the interlayers. Furthermore, the photoluminescence properties of 1 were investigated. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties

    Science.gov (United States)

    Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav

    2015-04-01

    Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.

  17. Synthesis, structural parameters and superconducting properties of 1201-type (Hg,M)Sr{sub 2}CuO{sub 4+{delta}} (M = Cr, Mo or Re): an overview

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S [Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India); Prakash, Om [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India); Padalia, B D [Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India); Selvam, P [Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India)

    2004-10-01

    A brief overview of the current state of development of 1201-type, Ba-free, mercury cuprates, (Hg,M)Sr{sub 2}CuO{sub 4+{delta}} (M = Cr, Mo or Re), is presented. Our focus here is confined to synthesis methods, chemical stabilization, structural parameters and superconducting properties of this Hg/Sr 1201 system. (topical review)

  18. Effects of synthesis conditions on chemical structures and physical properties of copolyesters from lactic acid, ethylene glycol and dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    2009-07-01

    Full Text Available Lactic acid/ethylene terephthalate copolyesters were synthesized by the standard melt polycondensation of lactic acid (L, ethylene glycol (EG and dimethyl-terephthalate (DMT. Effects of reaction temperatures and types of catalysts on the structures and properties of the copolymers were examined. In addition, feasibility of promoting the copolymerization process by a novel synthesis step of using thermo-stabilizers was investigated. The results show that a reaction temperature of higher than 180°C is necessary to produce copolymers with appreciable molecular weight. However, degradation was observed when the reaction temperature is higher than 220°C. Triphenyl phosphate (TPP shows promising results as a potential thermo-stabilizer to minimize this problem. It was found that Sb2O3 and Tin(II octoate are most effective among 4 types of catalysts employed in this study. 1H-NMR results indicate that copolymers have a random microstructure composed mainly of single L units alternately linked with ET blocks at various sequential lengths. The longer ET sequence in the chain structure leads to the increase in melting temperature of the copolymer. TGA results show that the resulting copolymers possessed greater thermal stability than commercially-available aliphatic PLA, as a result of the inclusion of T (terephthalate units in the chain structure.

  19. Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature

    Science.gov (United States)

    Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.

    2018-01-01

    The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.

  20. Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Method

    DEFF Research Database (Denmark)

    Huy, L.T.; Tam, L.T.; Phan, V.N.

    2016-01-01

    In the present work, magnetic manganese ferrite/silver (MnFe2O4-Ag) composite nanoparticles were synthesized by wet chemistry method. This synthesis process consists of two steps: first, the seed of manganese ferrite nanoparticles (MnFe2O4 NPs) was prepared by a coprecipitationmethod; second......, growth of silver nanoparticles (AgNPs) on the MnFe2O4 seed by modified photochemical reaction. We have conducted systematically the effects of synthesis parameters such as pH value, synthesis time, precursor salts concentration, mass ratio and stabilizing agents on the structure and magnetic properties......-prepared MnFe2O4-Ag magnetic nanocomposites display excellent properties of high crystallinity, long-term aggregation stability in aqueous medium, large saturation magnetization in the range of 15-20 emu/g, and small sizes of Ag-NPs similar to 20 nm. These exhibited properties made the MnFe2O4-Ag...

  1. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Pavithradevi, S. [Assistant Professor, Department of Physics, Park College of Engineering and Technology, Coimbatore (India); Suriyanarayanan, N., E-mail: madurasuri2210@yahoo.com [Prof & Head, Department of Physics, Government College of Technology, Coimbatore (India); Boobalan, T. [Lecturer, Department of Physics, PSG Polytechnic College, Coimbatore (India)

    2017-03-15

    Nanocrystalline copper ferrite CuFe{sub 2}O{sub 4} is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe{sub 2}O{sub 4} is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe{sub 2}O{sub 4} nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm{sup −1} and 4000 cm{sup −1}. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25–34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field. - Highlights: • Complete removal of hematite phase along with ethylene glycol at 1050 °C. • Large decrease in particle sizes noticed along with ethylene glycol. • Ethylene glycol improves purity of the

  2. Synthesis, structural characterization and properties of a cubic octa-n-propylsilsesquioxane inorganic-organic hybrid material

    Science.gov (United States)

    Liu, Hui; Zhu, Qingzeng; Feng, Lei; Yao, Bingjian; Feng, Shengyu

    2013-01-01

    Synthesis, structural characterization and property studies were carried out on cubic octa-n-propylsilsesquioxanes (n-Pr-POSS) in this paper. n-Pr-POSS was synthesized by an acid-catalyzed hydrolytic condensation of n-propyltriethoxysilane with a 68.9% yield. Common organic solvents, such as benzene, chloroform, tetrahydrofuran, diethyl ether, dichloromethane, toluene, cyclohexane, hexane and pentane can be used to dissolve n-Pr-POSS; however, n-Pr-POSS is insoluble or poorly soluble in acetone, dichloroethane, chlorobenzene, dimethylformamide, xylene, methanol, alcohol and isopropanol. The cubic structure and crystal morphology of n-Pr-POSS have been investigated by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), optical microscope, 1H, 13C and 29Si nuclear magnetic resonance (NMR), X-ray single crystal diffraction and X-ray powder diffraction (XRD) methods. Crystalline n-Pr-POSS is a triclinic system crystal with a P-1 space group. Thermogravimetric analysis (TGA) indicates that n-Pr-POSS begins to sublimate above 200 °C and does not decompose until 524 °C under a nitrogen atmosphere.

  3. A series of novel lanthanide carboxyphosphonates with a 3D framework structure: synthesis, structure, and luminescent and magnetic properties.

    Science.gov (United States)

    Chen, Kai; Dong, Da-Peng; Sun, Zhen-Gang; Jiao, Cheng-Qi; Li, Chao; Wang, Cheng-Lin; Zhu, Yan-Yu; Zhao, Yan; Zhu, Jiang; Sun, Shou-Hui; Zheng, Ming-Jing; Tian, Hui; Chu, Wei

    2012-08-28

    By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(III) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.

  4. Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, Mette; Kongsgaard, Mads; Holm, Lars

    2009-01-01

    and fibril characteristics were determined by MRI and transmission electron microscopy, whereas tendon biomechanical properties were measured during isometric maximal voluntary contraction by ultrasound recording. Tendon FSR was markedly higher in ERT users (P

  5. Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sookhakian, M., E-mail: m.sokhakian@gmail.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Amin, Y.M. [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Nanotechnology and Catalysis Research Centre (NanoCat), Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Tajabadi, M.T. [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Kamarulzaman, N. [Centre for Nanomaterials Research Institute of Science, Level 3 Block C (Old Engineering Building), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2014-01-15

    We demonstrate a facile one-step method for the preparation of ZnO–ZnS core–shell type-II nanostructures, pure ZnS quantum dots and pure ZnO nanoparticles with different experimental conditions. Treatment with sodium hydroxide as a capping agent is investigated systematically during the synthesis of ZnS quantum dots (QDs). The thickness of the ZnS shell is controlled by the concentration of the sodium sulphide during the synthesis of ZnO–ZnS core–shell nanostructures. The morphology and structure of samples are verified by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX). The UV–vis absorption spectra of the pure ZnS QDs exhibit a blue shift in the absorption edge due to the quantum confinement effect. The PL emission spectra of the ZnO–ZnS core–shell nanostructure are compared with the ZnO nanoparticles. The ZnO–ZnS core–shell nanostructures show decrease in the UV and green emissions with the appearance of a blue emission, which are not found in the ZnO nanoparticles. -- Highlights: • It has synthesised ZnO–ZnS core–shell type II in one-step for the first time. • The as-synthesised samples were characterised by using XRD, UV–vis. • The photoluminescence properties of ZnO–ZnS core–shell was compared with ZnO. • The UV and green emission in the PL spectrum of ZnO–ZnS core–shell decreased. • The blue emission in the PL spectrum of ZnO–ZnS core–shell appeared.

  6. Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure

    International Nuclear Information System (INIS)

    Sookhakian, M.; Amin, Y.M.; Basirun, W.J.; Tajabadi, M.T.; Kamarulzaman, N.

    2014-01-01

    We demonstrate a facile one-step method for the preparation of ZnO–ZnS core–shell type-II nanostructures, pure ZnS quantum dots and pure ZnO nanoparticles with different experimental conditions. Treatment with sodium hydroxide as a capping agent is investigated systematically during the synthesis of ZnS quantum dots (QDs). The thickness of the ZnS shell is controlled by the concentration of the sodium sulphide during the synthesis of ZnO–ZnS core–shell nanostructures. The morphology and structure of samples are verified by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX). The UV–vis absorption spectra of the pure ZnS QDs exhibit a blue shift in the absorption edge due to the quantum confinement effect. The PL emission spectra of the ZnO–ZnS core–shell nanostructure are compared with the ZnO nanoparticles. The ZnO–ZnS core–shell nanostructures show decrease in the UV and green emissions with the appearance of a blue emission, which are not found in the ZnO nanoparticles. -- Highlights: • It has synthesised ZnO–ZnS core–shell type II in one-step for the first time. • The as-synthesised samples were characterised by using XRD, UV–vis. • The photoluminescence properties of ZnO–ZnS core–shell was compared with ZnO. • The UV and green emission in the PL spectrum of ZnO–ZnS core–shell decreased. • The blue emission in the PL spectrum of ZnO–ZnS core–shell appeared

  7. Synthesis, structural, and field electron emission properties of quasi-aligned carbon nanotubes from gutter oil

    International Nuclear Information System (INIS)

    Suriani, A.B.; Dalila, A.R.; Mohamed, A.; Soga, T.; Tanemura, M.

    2015-01-01

    Quasi-aligned carbon nanotubes (CNTs) have been successfully synthesised from the simple pyrolysis of gutter oil as starting material and ferrocene as a catalyst. The synthesis process was performed at synthesis and vaporisation temperatures of 800 and 250 °C, respectively, in a thermal chemical vapour deposition furnace. The CNTs synthesised using gutter oil have an overall diameter of about 30–50 nm, length of 30 μm, I D /I G ratio of 0.66, and purity of 81%, comparable to those obtained using conventional carbon sources. A field electron emission study of the CNTs exhibited a low turn-on and threshold field of 1.94 and 2.94 V μm −1 , which corresponded to current densities of 100 μA cm −2 and 1.0 mA cm −2 , respectively which indicate that the CNTs synthesised are suitable candidates for use as field electron emitters. The synthesised CNTs from gutter oil also open up potential mass production applications in energy storage devices. This study demonstrates that gutter oil, a low-cost and readily available resource, can be used as an inexpensive carbon source for the mass production of CNTs. - Highlights: • Gutter oil was used as starting material to synthesise CNTs by TCVD method. • CNTs of good quality (I D /I G  ∼ 0.66 and purity ∼ 81%) were successfully produced. • The synthesised CNTs show a potential for field electron emission application.

  8. Synthesis, Structure and Properties of Melamine-Based pTHF-Urethane Supramolecular Compounds

    NARCIS (Netherlands)

    Öjelund, Karin; Loontjens, Ton; Steeman, Paul; Palmans, Anja; Maurer, Frans

    2003-01-01

    The properties of melamine based supramolecular compounds have been studied with rheological, thermal, mechanical, dielectric and scattering techniques and compared with similar covalently bonded materials. The complexes are based on a linear pTHF-diol (M¯n=1 000) connected via a diisocyanate with

  9. Synthesis of Zn{sup 2+} substituted maghemite nanoparticles and investigation of their structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M. [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Shatooti, S. [Department of Physics, Razi University, Kermanshah 67149-67346 (Iran, Islamic Republic of); Jafarzadeh, M., E-mail: mjafarzadeh1027@yahoo.com [Faculty of Chemistry, Razi University, Kermanshah 67149-67346 (Iran, Islamic Republic of); Niyaifar, M. [Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Mohammadpour, H. [Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Amiri, Sh. [Department of Physics, Razi University, Kermanshah 67149-67346 (Iran, Islamic Republic of)

    2015-05-15

    Maghemite and Zn{sup 2+} substituted maghemite (γ-Fe{sub 2−y} Zn{sub 3y/2}O{sub 3}, y=0.0, 0.11, 0.24, 0.36, 0.50 and 0.66) nanoparticles were prepared by coprecipitation method. The effect of Zn{sup 2+} substitution on the structural, morphological and magnetic properties of the nanoparitcles were studied by different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), magnetometry, magnetic thermogravimetry and Mössbauer spectroscopy. The results of XRD showed that all samples have spinel structure with an increase in lattice parameter by increasing the content of Zn{sup 2+}. FTIR spectra were proved the synthesis of maghemite and Zn{sup 2+} substituted maghemite with appearance of the related absorption bands and band shift upon Zn{sup 2+} substitution. Morphological studies by FESEM demonstrated that the nanoparticles were uniform and spherical with average particle size in range of 20–24 nm. Room temperature magnetic measurements showed that as Zn{sup 2+} content increases, saturation magnetization initially increase up to 75.34 emu/g for y=0.11 and then decrease to 3.65 emu/g for y=0.66, due to substitution of magnetic Fe{sup 3+} by non-magnetic Zn{sup 2+}. Decrease in Curie temperature of the samples, from 510 for maghemite to 250 °C for y=0.36, by increasing the Zn{sup 2+} substitution was a result of reduction of superexchange interactions between different sites. Then, the Curie temperature increased up to 680 °C for y=0.66 which was due to migration of some Zn{sup 2+} ions from A to B sites in the structure of spinel. Room temperature Mössbauer spectra exhibited that the sample with y=0.0 was superparamagnetic, while by increasing the content of Zn{sup 2+}, relaxation effect increased by weakening of A–B exchange interaction. - Highlights: • Synthesis of Zn{sup 2+}-substituted maghemite via co-precipitation/oxidation method. • Increase in lattice

  10. A novel rhombohedron-like nickel ferrite nanostructure: Microwave combustion synthesis, structural characterization and magnetic properties

    Directory of Open Access Journals (Sweden)

    G. Suresh Kumar

    2016-09-01

    Full Text Available Research on nickel ferrite nanostructures has drawn a great interest because of its inherent chemical, physical and electronic properties. In this study, we have synthesized rhombohedron – like nickel ferrite nanostructure by a rapid microwave assisted combustion method using ethylenediamminetetraacetic acid as a chelating agent. X-ray diffraction, Fourier transform infrared spectrometer, transmission electron microscope and energy dispersive X-ray microanalyser were used to characterize the prepared sample. The magnetic behaviour was analysed by means of field dependent magnetization measurement which indicates that the prepared sample exhibits a soft ferromagnetic nature with saturation magnetization of 63.034 emu/g. This technique can be a potential method to synthesize novel nickel ferrite nanostructure with improved magnetic properties.

  11. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    Science.gov (United States)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  12. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes

    Science.gov (United States)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena

    2017-08-01

    Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.

  13. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    Science.gov (United States)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  14. Anthracene-Based Lanthanide Metal-Organic Frameworks: Synthesis, Structure, Photoluminescence, and Radioluminescence Properties

    Directory of Open Access Journals (Sweden)

    Stephan R. Mathis

    2018-01-01

    Full Text Available Four anthracene-based lanthanide metal-organic framework structures (MOFs were synthesized from the combination of the lanthanide ions, Eu3+, Tb3+, Er3+, and Tm3+, with 9,10-anthracenedicarboxylic acid (H2ADC in dimethylformamide (DMF under hydrothermal conditions. The 3-D networks crystalize in the triclinic system with P-1 space group with the following compositions: (i {{[Ln2(ADC3(DMF4·DMF]}n, Ln = Eu (1 and Tb (2} and (ii {{[Ln2(ADC3(DMF2(OH22·2DMF·H2O]}n, Ln = Er (3 and Tm (4}. The metal centers exist in various coordination environments; nine coordinate in (i, while seven and eight coordinate in (ii. The deprotonated ligand, ADC, assumes multiple coordination modes, with its carboxylate functional groups severely twisted away from the plane of the anthracene moiety. The structures show ligand-based photoluminescence, which appears to be significantly quenched when compared with that of the parent H2ADC solid powder. Structure 2 is the least quenched and showed an average photoluminescence lifetime from bi-exponential decay of 0.3 ns. On exposure to ionizing radiation, the structures show radioluminescence spectral features that are consistent with the isolation of the ligand units in its 3-D network. The spectral features vary among the 3-D networks and appear to suggest that the latter undergo significant changes in their molecular and/or electronic structure in the presence of the ionizing radiation.

  15. Synthesis, crystal structure, spectral and thermal properties of 4-dimethylaminopyridinium salicylate monohydrate

    Science.gov (United States)

    Arunkumar, A.; Ramasamy, P.

    2013-06-01

    4-dimethylaminopyridinium salicylate monohydrate (DMAPSA) was synthesized and its crystal structure was determined using single crystal X-ray diffraction analysis. From the crystal structure analysis it can be inferred that the crystal belongs to monoclinic system with space group of P21/n. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by FTIR spectral studies. 1H and 13C FT-NMR has been recorded to elucidate the molecular structure. The molecular mass of DMAPSA has been measured using mass spectroscopic analysis. The thermal stability and thermal decomposition of DMAPSA have been investigated by means of thermogravimetric analysis and differential thermal analysis. The melting point of crystal was observed as 172 °C by melting point apparatus. Fluorescence spectra were taken for the excitation wavelength of 240 nm.

  16. Core-satellite ZnS-Ag nanoassemblies: Synthesis, structure, and optical properties.

    Science.gov (United States)

    Rohani, Parham; Sharma, Munish K; Swihart, Mark T

    2016-02-01

    We synthesized hollow core-satellite nanoassemblies comprised of hollow zinc sulfide (ZnS) shells decorated with silver nanoparticles (Ag NPs). This was achieved by solution-phase attachment of Ag NPs to hollow ZnS nanospheres (NSs) prepared by spray pyrolysis. This produces an aqueous dispersion of ZnS-Ag hybrid structures, 50-500nm in overall diameter. We characterized the nanostructures by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX) to elucidate the ZnS (core)-Ag (satellite) morphology and optimize conditions for producing such structures. Optical spectroscopy showed that photoluminescence of ZnS was quenched by Ag while absorbance was enhanced. This work provides a simple and general means of producing hollow core-satellite structures that could be of broad applicability. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Synthesis, structural and ferromagnetic properties of La1–x Kx ...

    Indian Academy of Sciences (India)

    MnO3 (0.0 ≤ ≤ 0.25) perovskite phases, which is a low temperature initiated, rapid route to prepare metal oxides. As-synthesized compounds are amorphous in nature; crystallinity was observed on heating at 800°C for 5 min. Structural ...

  18. Synthesis, crystal structure and photo luminescent property of a 3D ...

    Indian Academy of Sciences (India)

    isonicotinate)2(suc)2]n. Empirical formula. C20H16Cd3N2O12. Formula weight. 813.58 ..... SMART and SAINT, Bruker AXS Inc, Madison, WI. 1998. 47. Sheldrick G M 1997 SHELXS-97 Program for solution of crystal structures, University of Gottingen, ...

  19. Synthesis, crystal structure and spectroscopic properties of ethanol solvated α-Keggin heteropolymolybdate

    Science.gov (United States)

    Tümer, Ferhan; Köse, Muhammet; Tümer, Mehmet

    2017-11-01

    In this study, the ethanol solvated α-Keggin heteropolymolybdate (A) was prepared and characterized by the spectroscopic methods such as single-crystal X-ray diffraction, Uv-vis, FT-IR and photoluminescence methods. Thermal analysis of the compound (A) was performed in the 20-1000 °C range in the N2 atmosphere and electrochemical studies were carried out in the 100-1000 mV/s scan rate range. The ethanol solvated α-Keggin compound exhibits three irreversible anodic and cathodic peak potentials. The structure of the Keggin type polyoxometalate compound was solved in trigonal unit cell and R-3 space group with Rfinal value of 0.0507. The structure of the compound contains H4[SiMo12O40] molecule and three ethanol solvates. The Hirshfeld surface for H4[SiMo12O40]·3EtOH was obtained to determine the interaction sites within the crystal structure. A cyclic hydrogen bond pattern was shown by a large number of fused spots in the fingerprint plot and these hydrogen bond contacts link the other symmetry-related molecules forming a 3D hydrogen bond networks. Hydrogen bond interactions resulted in the formation of honey comb structure.

  20. Synthesis, structure and properties of highly elastic poly(dimethylsiloxane)/graphene oxide composite elastomer membranes

    Science.gov (United States)

    Ha, Heonjoo; Park, Jaesung; Freeman, Benny D.; Ellison, Christopher J.

    This study illustrates that amine functional groups on the ends of telechelic poly(dimethylsiloxane) (PDMS) can undergo post-processing reactions with surface epoxy groups on graphene oxide (GO) to form a robust elastomer during simple heating. In these materials, GO acts as a nanofiller that reinforces the mechanical properties and participates as a multifunctional crosslinker that promotes elastic properties. Experiments indicate that the telechelic PDMS/GO elastomer is highly crosslinked (e.g., more than 75 wt % is a non-dissolving crosslinked gel) but highly flexible such that it can be stretched up to 300% of its original length. After processing these materials into membranes, the permeability for some common gases was studied as a function of GO concentration. Due to the macromolecular network and tortuous pathways formed during the curing reaction, factor of two enhancements in gas selectivities were observed for CO2/N2 and CO2/CH4 compared to neat PDMS membranes. Considering the expected thermal and chemical tolerance of the PDMS/GO composite membrane detailed in this work suggests these membranes could be useful in applications such as post-combustion CO2 capture, CO2 removal from natural gas and in other industries that use or process CO2.

  1. Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation.

    Science.gov (United States)

    Das, Sumanta; Souliman, Beshoy; Stone, David; Neithalath, Narayanan

    2014-06-11

    This paper explores, for the first time, the possibility of carbonating waste metallic iron powder to develop sustainable binder systems for concrete. The fundamental premise of this work is that metallic iron will react with aqueous CO2 under controlled conditions to form complex iron carbonates which have binding capabilities. Chosen additives containing silica and alumina are added to facilitate iron dissolution and to obtain beneficial rheological and later-age properties. Water is generally only a medium for mass transfer in these systems thereby making the common reaction schemes in portland cement concretes inapplicable. The compressive and flexural strengths of the chosen iron-based binder systems increase with carbonation duration and the specimens carbonated for 4 days exhibit mechanical properties that are comparable to those of companion ordinary portland cement systems that are most commonly used as the binder in building and infrastructural construction. The influence of the additives, carbonation duration, and the air curing duration after carbonation are explored in detail. Thermogravimetric analysis demonstrate the presence of an organic carbonate complex (the dissolution agent used to dissolve iron is organic), the amount of which increases with carbonation duration. Thermal analysis also confirms the participation of some amount of limestone powder in the reaction product formation. The viability of this binder type for concrete applications is proved in this study.

  2. A porous cadmium(II) framework. Synthesis, crystal structure, gas adsorption, and fluorescence sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Pingping [College of Sciences, Agricultural University of Hebei, Baoding (China)

    2017-05-18

    The Cd{sup II} compound, namely [Cd(Tppa)(SO{sub 4})(H{sub 2}O)]{sub n} (1) [Tppa = tris(4-(pyridyl)phenyl) amine], was synthesized by the reaction of CdSO{sub 4}.8H{sub 2}O and Tppa under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D inorganic -[Cd-SO{sub 4}-Cd]{sub n}- chains. Topological analysis reveals that compound 1 represents a trinodal (3,4,6)-connected topological network with the point symbol of {6.7"2}{sub 2}{6"4.7.10}{6"4.7"5.8"4.10"2}. Gas adsorption properties investigations indicate that compound 1 exhibits moderate adsorption capacities for light hydrocarbons at room temperature. Luminescence property studies revealed that this Cd{sup II} compound exhibits high fluorescence sensitivity for sensing of CS{sub 2} molecule. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Synthesis, structure and fluorescence properties of a novel 3D Sr(II) coordination polymer

    Science.gov (United States)

    Tan, Yu-Hui; Xu, Qing; Gu, Zhi-Feng; Gao, Ji-Xing; Wang, Bin; Liu, Yi; Yang, Chang-Shan; Tang, Yun-Zhi

    2016-09-01

    Solvothermal reaction of 2,2‧-bipyridine-5,5‧-dicarboxylic acid (H2bpdc) and SrCl2 affords a novel coordination polymer [Sr(Hbpdc)2]n1. X-ray structure determination shows that 1 exhibits a novel three-dimensional network. The unique Sr II cation sits on a two-fold axis and coordinated by four O-atom donors from four Hbptc- ligands and four N-atom donors from two Hbptc- ligands in distorted dodecahedral geometry. In 1 each Sr II cation connects to six different Hbptc- ligands and each Hbptc- ligand bridges three different Sr II cations which results in the formation of a three-dimensional polymeric structure. Corresponding to the free ligand, the fluorescent emission of complex 1 display remarkable "Einstain" shifts, which may be attributed to the coordination interaction of Sr atoms, thus reduce the rigidity of pyridyl rings.

  4. Na3Tb(PO4)2: Synthesis, crystal structure and greenish emitting properties

    Science.gov (United States)

    Zhao, Dan; Ma, Zhao; Liu, Bao-Zhong; Zhang, Rui-Juan; Wu, Zhi-Qiang; Wang, Jian; Duan, Pei-Gao

    2018-03-01

    A anhydrous orthoborate Na3Tb(PO4)2 has been prepared and its crystal structure was determined by X-Ray diffraction of a non-merohedral twinned single crystal. The results show that the compound crystallizes in monoclinic space group C2/c and the structure features a 3D framework containing PO4, NaO6, NaO7, NaO8 and TbO8 polyhedra. Under near-UV excitation (370 nm), Na3Tb(PO4)2 shows intense characteristic emission bands of Tb3+ (490 nm, 543 nm, 585 nm and 620 nm) with the CIE coordinate of (0.3062, 0.5901), corresponding to greenish color. The excitation spectrum covers a wide range from 340 nm to 390 nm, which indicates that phosphor Na3Tb(PO4)2 can be efficiently activated by near-UV LED ship.

  5. Synthesis and Properties of Layered-Structured Mn5O8 Nanorods

    DEFF Research Database (Denmark)

    Gao, Tao; Norby, Poul; Krumeich, Frank

    2010-01-01

    Mn5O8 nanorods were prepared by a topotactic conversion of γ-MnOOH nanorod precursors in nitrogen at 400 °C. The as-prepared Mn5O8 nanorods crystallized in a monoclinic structure (space group C2/m) with unit cell dimensions a = 10.3784(2) Å, b = 5.7337(7) Å, c = 4.8668(6) Å, and β = 109.491(6)°, ......Mn5O8 nanorods were prepared by a topotactic conversion of γ-MnOOH nanorod precursors in nitrogen at 400 °C. The as-prepared Mn5O8 nanorods crystallized in a monoclinic structure (space group C2/m) with unit cell dimensions a = 10.3784(2) Å, b = 5.7337(7) Å, c = 4.8668(6) Å, and β = 109...

  6. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    OpenAIRE

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the inco...

  7. A monomeric copper-phosphoramide complex: synthesis, structure, and electronic properties

    Czech Academy of Sciences Publication Activity Database

    Henriques, Margarida Isabel Sousa; Gorbunov, D.I.; Ponomaryov, A.Y.; Saneei, A.; Pourayoubi, M.; Dušek, Michal; Zvyagin, S.; Uhlarz, M.; Wosnitza, J.

    2016-01-01

    Roč. 118, Nov (2016), s. 154-158 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA14-03276S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : phosphoramide * magnetization * EPR * mononuclear copper complex * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.926, year: 2016

  8. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Synthesis, crystal structure, and optical properties of the noncentrosymmetric sulfide Ce8Sb2S15

    Science.gov (United States)

    Zhao, Hua-Jun; Zhong, Xiao-Ai

    2017-07-01

    The new noncentrosymmetric sulfide Ce8Sb2S15 has been prepared at 1223 K in an evacuated silica tube. It crystallizes in the RE8Sb2S15 (RE=La, Pr, Nd) structure type with a=15.7871(6) Å, c=19.7992(16) Å, V=4934.6(5) Å3. The structure contains the discrete [SbS3]3- trigonal pyramids, which are packed in a noncentrosymmetric pseudolayer motif perpendicular to the c direction and lead to a polar structure. The Ce3+ cations and S2- anions located between them. It exhibits a weak SHG response in the IR region. UV/Vis diffuse reflectance spectroscopy study indicates that the optical gap of Ce8Sb2S15 is about 1.99 eV, showing a red shift with respect to the corresponding ternary sulfides: La8Sb2S15, which was attributed to the allowed electronic transfer from the narrow Ce 4 f level to the conduction band, mainly built from the empty Ce 5d orbitals.

  10. Synthesis, growth, structural modeling and physio-chemical properties of a charge transfer molecule: Guanidinium tosylate

    Science.gov (United States)

    Era, Paavai; Jauhar, RO. MU.; Vinitha, G.; Murugakoothan, P.

    2018-05-01

    An organic nonlinear optical material, guanidinium tosylate was synthesized adopting slow evaporation method and the crystals were harvested from aqueous methanolic medium with dimensions 13 × 9 × 3 mm3. Constitution of crystalline material was confirmed by single crystal X-ray diffraction study. The title compound crystallizes in the monoclinic crystal system with space group P21/c. The UV-vis-NIR spectral study of the grown crystal exhibits high transparency of 80% in the entire visible region with lower cut-off wavelength at 282 nm. Optimized molecular geometry of the grown crystal was obtained using density functional theory (DFT) and the frontier energy gaps calculated from the DFT aids to understand the charge transfer taking place in the molecule. The dielectric properties were studied as a function of temperature and frequency to find the charge distribution within the crystal. The titular compound is thermally stable up to 230 °C assessed by thermogravimetric and differential thermal analysis. Anisotropy in the mechanical behavior was observed while measuring for individual planes. The laser induced surface damage threshold of the grown crystal was measured to be 0.344 GW/cm2 for 1064 nm Nd:YAG laser radiation. Z-scan technique confirms the third-order nonlinear optical property with the ascertained nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)). Optical limiting study divulges that the transmitted output power step-up linearly with the increase of the input power at lower power realms and saturates from the threshold 24.95 mW/cm2 and amplitude 0.23 mW/cm2.

  11. Synthesis, physical properties, and band structure of the layered bismuthide PtBi2

    Science.gov (United States)

    Xu, C. Q.; Xing, X. Z.; Xu, Xiaofeng; Li, Bin; Chen, B.; Che, L. Q.; Lu, Xin; Dai, Jianhui; Shi, Z. X.

    2016-10-01

    We report details of single-crystal growth of stoichiometric bismuthide PtBi2 whose structure consists of alternate stacking of a Pt layer and Bi bilayer along the c axis. The compound crystallizes in space group P 3 with a hexagonal unit cell of a =b =6.553 Å,c =6.165 Å . Its T -dependent resistivity is typical of a metal whereas a large anisotropy was observed for the in-plane and interplane electrical transport. The magnetization data show opposite sign for fields parallel and perpendicular to the Pt layers, respectively. The magnetic field response of this material shows clearly two types of charge carriers, consistent with the multiple Fermi surfaces revealed in our band structure calculations. The hydrostatic pressure is shown to suppress the resistivity at high T systematically but has little bearing on its low-T transport. Through calorimetric measurements, the density of states at the Fermi level and the Debye temperature are determined to be 0.94 eV-1 per molecule and 145 K, respectively. In addition, the electronic structures and parity analyses are also presented. We find a minimum value of 0.05 eV gap opening at around 2 eV under the Fermi level by invoking spin-orbit interaction. A slab calculation further indicates a surface Dirac cone appearing in the gap of bulk states. We discuss the possibility of PtBi 2 being a candidate for a bulk topological metal, in analogy to the recently proposed topological superconductor β -PdBi2 .

  12. Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Compagnini, Giuseppe [Dipartimento di Scienze Chimiche, Universita di Catania, Laboratorio Film Sottili e Nanostrutture, Viale A.Doria 6, Catania 95125 (Italy)], E-mail: gcompagnini@unict.it; Messina, Elena; Puglisi, Orazio [Dipartimento di Scienze Chimiche, Universita di Catania, Laboratorio Film Sottili e Nanostrutture, Viale A.Doria 6, Catania 95125 (Italy); Nicolosi, Valeria [Department of Physics, University of Dublin, Trinity College, Dublin 2 (Ireland)

    2007-12-15

    We have successfully synthesized Au/Ag colloidal nano-alloys with a wide range of compositions by laser ablation of single metal targets in water and a re-irradiation of mixed colloidal suspensions. The optical extinction spectra have been obtained in the plasmon resonance region and their analysis by using the Mie-Gans approach has lead to a quantitative estimation of a number of different structural features for the sols. Some of the obtained results are supported by X-ray photoelectron data and transmission electron microscopy, while others are used to investigate the kinetics of formation of the nano-alloys under laser irradiation.

  13. Synthesis, structure and magnetic properties of CoFe2O4 nanomaterial by coprecipitation method

    International Nuclear Information System (INIS)

    Nguyen Anh Tien; Hoang Thi Tuyet

    2015-01-01

    CoFe 2 O 4 spinel nanomaterial has been synthesized by coprecipitation method through the hydrolysis of Co(II) and Fe(III) cations in boiling water. The results of DTA/TGA/DrTGA, XRD, TEM methods showed that CoFe 2 O 4 crystals formed after a calcination at 700 °C exhibited structure of cubic with the particles size of 30-50 nm, H c = 1526.89 Oe, M s = 41.703 emu/g, M r = 19.545 emu/g. (author)

  14. Synthesis, properties, and crystal structure of complex Cp2Yb(DAD)

    International Nuclear Information System (INIS)

    Trifonov, A.A.; Kirillov, E.N.; Bochkarev, M.N.; Shumani, G.; Myule, S.

    1999-01-01

    Diazadiene complex of trivalent ytterbium Cp 2 Yb(DAD) (1) (DAD = Bu 1 -N CH-CH = N-Bu 1 ) was obtained by three routes: the oxidation of Cp 2 Yb(THF) 2 by diazadiene in tetrahydrofuran (THF), the reaction of Cp 2 YbCl with DAD 2- Na 2 + (2:1), and the reaction of Cp 2 YbCl(THF) with DAD - K + in the 1:1 ratio. Complex 1 was characterized by microanalysis, IR spectroscopy, magnetochemistry, and X-ray structural analysis [ru

  15. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2015-12-01

    Full Text Available ZnxCu1−xO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol% hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  16. Synthesis, X-ray Structure, Spectroscopic Properties and DFT Studies of a Novel Schiff Base

    Directory of Open Access Journals (Sweden)

    Kew-Yu Chen

    2014-10-01

    Full Text Available A series of Schiff bases, salicylideneaniline derivatives 1–4, was synthesized under mild conditions and characterized by 1H NMR, HRMS, UV-Vis and fluorescence spectra, and single-crystal X-ray diffraction. In solid and aprotic solvents 1–4 exist mainly as E conformers that possess an intramolecular six-membered-ring hydrogen bond. A weak intramolecular C–H×××F hydrogen bond is also observed in fluoro-functionalized Schiff base 4, which generates another S(6 ring motif. The C–H×××F hydrogen bond further stabilizes its structure and leads it to form a planar configuration. Compounds 1–3 exhibit solely a long-wavelength proton-transfer tautomer emission, while dipole-functionalized Schiff base 4 shows remarkable dual emission originated from the excited-state intramolecular charge transfer (ESICT and excited-state intramolecular proton transfer (ESIPT states. Furthermore, the geometric structures, frontier molecular orbitals (MOs and the potential energy curves for 1–4 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT and time-dependent DFT calculations.

  17. Synthesis, X-ray structure, spectroscopic properties and DFT studies of a novel Schiff base.

    Science.gov (United States)

    Chen, Kew-Yu; Tsai, Hsing-Yang

    2014-10-17

    A series of Schiff bases, salicylideneaniline derivatives 1-4, was synthesized under mild conditions and characterized by 1H NMR, HRMS, UV-Vis and fluorescence spectra, and single-crystal X-ray diffraction. In solid and aprotic solvents 1-4 exist mainly as E conformers that possess an intramolecular six-membered-ring hydrogen bond. A weak intramolecular C-H···F hydrogen bond is also observed in fluoro-functionalized Schiff base 4, which generates another S(6) ring motif. The C-H···F hydrogen bond further stabilizes its structure and leads it to form a planar configuration. Compounds 1-3 exhibit solely a long-wavelength proton-transfer tautomer emission, while dipole-functionalized Schiff base 4 shows remarkable dual emission originated from the excited-state intramolecular charge transfer (ESICT) and excited-state intramolecular proton transfer (ESIPT) states. Furthermore, the geometric structures, frontier molecular orbitals (MOs) and the potential energy curves for 1-4 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT) and time-dependent DFT calculations.

  18. Synthesis, Structure and Solid State Properties of Cyclohexanemethylamine Substituted Phenalenyl Based Molecular Conductor

    Directory of Open Access Journals (Sweden)

    Robert C. Haddon

    2012-05-01

    Full Text Available We report the preparation, crystallization and solid state characterization of a cyclohexanemethylamine substituted spirobiphenalenyl radical; in the solid state the compound is iso-structural with its dehydro-analog (benzylamine-substitued compound, and the molecules packed in a one-dimensional fashion that we refer to as a π-step stack. Neighboring molecules in the stack interact via the overlap of one pair of active (spin bearing carbon atoms per phenalenyl unit. The magnetic susceptibility measurement indicates that in the solid state the radical remains paramagnetic and the fraction of Curie spins is 0.75 per molecule. We use the analytical form of the Bonner-Fisher model for the S = 1/2 antiferromagnetic Heisenberg chain of isotropically interacting spins with intrachain spin coupling constant J = 6.3 cm−1, to fit the experimentally observed paramagnetism [χp (T] in the temperature range 4–330 K. The measured room temperature conductivity (σRT = 2.4 × 10–3 S/cm is comparable with that of the iso-structural benzyl radical, even though the calculated band dispersions are smaller than that of the unsaturated analog.

  19. Synthesis, structural and vibrational properties of 1-(adamantane-1-carbonyl)-3-halophenyl thioureas

    Science.gov (United States)

    Saeed, Aamer; Erben, Mauricio F.; Bolte, Michael

    2013-02-01

    1-(Adamantane-1-carbonyl)-3-(2,4-dichlorophenyl)thiourea (1) and 1-(adamantane-1-carbonyl)-3-(2-bromo-4,6-difluorophenyl)thiourea (2) were synthesized by the reaction of adamantane-1-carbonyl chloride with ammonium thiocyanate to afford the adamantane-1-carbonylisothiocyanate in situ followed by treatment with suitable halogenated anilines. The structures of the products were established by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), mass spectroscopy and single crystal X-ray diffraction study. Bond lengths and angles show the usual values. All of three condensed cyclohexane rings of the adamantane residues adopt the usual chair conformation. The molecular conformation of 1 and 2 is stabilized by an intramolecular (Nsbnd H⋯Odbnd C) hydrogen bond which forms a pseudo-six-membered ring. Structural features have been complemented with the joint analysis of the FTIR and FT-Raman spectra along with quantum chemical calculations at the B3LYP/6-311++G** level.

  20. Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate

    Science.gov (United States)

    Selvakumar, E.; Chandramohan, A.; Anandha Babu, G.; Ramasamy, P.

    2014-09-01

    A new organic non-linear optical salt 3-nitroanilinium trichloroacetate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at room temperature using methanol as the solvent. The 1H and 13C Nuclear magnetic resonance spectra were recorded to establish the molecular structure of the title salt. The crystal structure of the title crystal has been determined by single crystal X-ray diffraction analysis and it belongs to monoclinic crystal system with non-centrosymmetric space group P21. Fourier transform infrared spectral study has been carried out to confirm the presence of various functional groups. The optical transmittance spectrum was recorded in the range 200-2500 nm, to find the optical transmittance window and lower cut off wavelength. The thermo gravimetric and differential thermal analyses were carried out to establish the thermal stability of the title crystal. The second harmonic generation in the title crystal was confirmed by the modified Kurtz-Perry powder test employing the Nd: YAG laser as the source for infrared radiation.

  1. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  2. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    C−H⋅⋅⋅O bonds leading to an intricate hydrogen bonding network. Keywords. Synthesis .... in the refinement riding on their respective parent atoms. ..... nent peaks at 326 and 255 nm which can be assigned to transitions of the intramolecularly hydrogen-bon- ded salicylidenimino chromophore. Cotton effects of negative ...

  3. Synthesis, crystal structure and adsorption properties of a novel Mn(II) coordination polymer

    Science.gov (United States)

    Cui, Lian-Sheng; Gan, Yong-Le; Li, Yuan-Cheng; Meng, Jun-Rong

    2017-11-01

    A novel Mn(II) coordination polymer based on a "V"-shaped 1,3-di(4‧-carboxyl-phenyl)benzene acid (H2dpb, dpb = 1,3-di(4‧-carboxyl-phenyl)benzene), namely {[Mn(dpb)(4,4‧-bibp)]·H2O}n (4,4‧-bibp = 4,4‧-bis(imidazol-1-yl)biphenyl) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction and further characterized by elemental analysis, IR spectra, and thermogravimetric analysis (TGA). Furthermore, CO2 and SO2 adsorption properties of the complex were tested by high-pressure adsorption instrument under different pressure. The results show that the adsorption performance of CO2 is far superior to SO2 on the same conditions. The adsorption capacity increases with temperature rising. Very interestingly, the saturated adsorption amount (5.5 mmol/g) at 100 °C is less than the one at 80 °C (7.20 mmol/g). This phenomenon is caused by the escape of water vapor.

  4. Synthesis, crystal structure and photoluminescence property of Eu/Tb MOFs with mixed polycarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lu; Zhang, Sheng; Qu, Xiaoni; Yang, Qi [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127 (China); Liu, Xiangyu [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127 (China); School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021 (China); Wei, Qing; Xie, Gang [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127 (China); Chen, Sanping, E-mail: sanpingchen@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127 (China)

    2015-11-15

    Lanthanide MOFs, [Eu(TCA)(NDC)·H{sub 2}O]{sub n} (1) and [Tb(TCA)(NDC)·H{sub 2}O]{sub n} (2), have been prepared with the mixed aromatic carboxylate ligands, namely, 4,4′,4″-tricarboxytriphenylamine (H{sub 3}TCA) and 1,4-naphthalenedicarboxylate (H{sub 2}NDC). Single-crystal X-ray diffraction analysis reveals that isomorphic 1 and 2 present pillar-layered 3D framework that Eu/Tb(III) bond with carboxylate in various coordination fashions. Optical investigation indicates that the as-prepared compounds feature characteristic luminescence emission bands of Eu/Tb ions in the visible regions at room temperature. Moreover, compound 2 shows a relatively longer luminescence lifetime (τ=0.342 ms) and significantly enhanced quantum yield (Φ{sub overall}=11%) comparing with those of 1 (τ=0.335 ms, Φ{sub overall}=0.06%). - Graphical abstract: Synoptic: Two Ln-MOFs (Ln=Eu{sup III}, Tb{sup III}) with mixed polycarboxylate ligands present different luminescent properties. - Highlights: • Two Eu/Tb-MOFs with H{sub 3}TCA and H{sub 2}NDC ligands have been obtained. • The ancillary ligand is employed to decrease water molecule coordinate numbers. • 2displays superior quantum yield and lifetime than those of 1.

  5. A White-Light-Emitting Small Molecule: Synthesis, Crystal Structure, and Optical Properties

    Directory of Open Access Journals (Sweden)

    Sin-Kai Fang

    2014-01-01

    Full Text Available A white-light-emitting small molecule (1 was synthesized and characterized by single-crystal X-ray diffraction. Compound 1 undergoes an excited-state intramolecular proton transfer (ESIPT reaction, resulting in a tautomer that is in equilibrium with the normal species and exhibiting a dual emission that covers almost all of the visible spectrum, and consequently generates white light. Furthermore, the geometric structures, the frontier molecular orbitals (MOs, and the potential energy curves for 1 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT and time-dependent DFT calculations. The results show that the forward ESIPT and backward ESIPT may happen on the same timescale, enabling the excited-state equilibrium to be established.

  6. Ionothermal synthesis, structures, properties of cobalt-1,4-benzenedicarboxylate metal–organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zong-Hui [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fsuzhou, Fujian 350002 (China); Xu, Ling, E-mail: xuling@snnu.edu.cn [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province (China); Jiao, Huan, E-mail: jiaohuan@snnu.edu.cn [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province (China)

    2016-06-15

    Eight kinds of 1-methyl-3-alkylimidazolium halide [RMI]X (R=ethyl (E), propyl (P), butyl (B) and amyl (A); MI = imidazolium; X= Cl{sup −}, I{sup −}) ionic liquids (ILs) were used as reaction media and obtained a series of 2D [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] frameworks through the ionothermal reactions of 1,4-benzenedicarboxylic acid (H{sub 2}BDC) with Co(NO{sub 3}){sub 2}·6H{sub 2}O. The 2D [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] frameworks exhibit a same (3,6) topology network with [RMI]{sup +} cations locating in the interlayer space. [RMI]{sup +} cations play a template role in the structure constructions, whose influence combining with the effect of X{sup −} anions pass to the TG behaviors. The decomposition temperatures of the [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] frameworks decrease with the alkyl chains in [RMI]{sup +} cations, and the compounds containing Cl{sup −} show higher thermal stabilities than those with I{sup −}. However, compounds 1–8 exhibit two similar broad emissions at ca. 380 and 390 nm, assigned to ILCT. The RMI{sup +} templates and the X{sup −} anions do not exert their influence on the fluorescence. - Graphical abstract: Eight 2D [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] compounds were synthesized through ionothermal reactions. [RMI]{sup +} cations play a template role in the structure constructions, and tune the TG behaviors combining with the effect of X{sup −} anions. Display Omitted.

  7. Synthesis, crystal structure, and properties of two modifications of MgB(12)C(2).

    Science.gov (United States)

    Adasch, Volker; Hess, Kai-Uwe; Ludwig, Thilo; Vojteer, Natascha; Hillebrecht, Harald

    2007-01-01

    Single crystals of two modifications of the new magnesium boride carbide MgB(12)C(2) were synthesized from the elements in a metallic melt by using tantalum ampoules. Crystals were characterized by single-crystal X-ray diffraction and electron microprobe analysis (energy-dispersive (EDX) and wavelength-dispersive (WDX) X-ray spectroscopy). Orthorhombic MgB(12)C(2) is formed in a Cu/Mg melt at 1873 K. The crystal structure of o-MgB(12)C(2) (Imma, Z=4, a=5.6133(10), b=9.828(2), c=7.9329(15) A, 574 reflections, 42 variables, R(1)(F)=0.0208, wR(2)(I)=0.0540) consists of a hexagonal primitive array of B(12) icosahedra with Mg atoms and C(2) units in trigonal-prismatic voids. Each icosahedron has six exohedral B--B and six B--C bonds. Carbon is tetrahedrally coordinated by three boron atoms and one carbon atom with a remarkably long C--C distance of 1.727 A. Monoclinic MgB(12)C(2) is formed in an Al/Mg melt at 1573 K. The structure of m-MgB(12)C(2) (C2/c, Z=4, a=7.2736(11), b=8.7768(13), c=7.2817(11) A, beta=105.33(3) degrees , 1585 reflections, 71 variables, R(1)(F)=0.0228, wR(2)(I)=0.0610) may be described as a distorted cubic close arrangement of B(12) icosahedra. Tetrahedral voids are filled by C atoms and octahedral voids are occupied by Mg atoms. The icosahedra are interconnected by four exohedral B--B bonds to linear chains and by eight interstitial C atoms to form a three-dimensional covalent network. Both compounds fulfill the electron-counting rules of Wade and Longuet-Higgins.

  8. Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles

    Science.gov (United States)

    Swapna, P.; Venkatramana Reddy, S.

    2018-02-01

    We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.

  9. New 1,3,4-thiadiazole compounds including pyrazine moiety: Synthesis, structural properties and antimicrobial features

    Science.gov (United States)

    Gür, Mahmut; Şener, Nesrin; Muğlu, Halit; Çavuş, M. Serdar; Özkan, Osman Emre; Kandemirli, Fatma; Şener, İzzet

    2017-07-01

    In the study, some new 1,3,4-thiadiazole compounds were synthesized and we have reported identification of the structures by using UV-Vis, FT-IR, 1H NMR, 13C NMR and Mass spectroscopic methods. Antimicrobial activities of the compounds against three microorganisms, namely, Candida albicans ATCC 26555, Staphylococcus aureus ATCC 9144, and Escherichia coli ATCC 25922 were investigated by using disk diffusion method. These thiadiazoles exhibited an antimicrobial activity against Staphylococcus aureus and Candida albicans. The experimental data was supported by the quantum chemical calculations. Density functional theory (DFT) calculations were carried out to obtain the ground state optimized geometries of the molecules using the B3LYP, M06 and PBE1PBE methods with 3-21 g, 4-31 g, 6-311++g(2d,2p), cc-pvtz and cc-pvqz basis sets in the different combinations. Frontier molecular orbitals (FMOs) energies, band gap energies and some chemical reactivity parameters were calculated by using the aforementioned methods and basis sets, and the results were also compared with the experimental UV-Vis data.

  10. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Alqahtani, Mohammed S. [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia); Hadia, N.M.A.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2017-04-15

    CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor-solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices. (orig.)

  11. Zn-complex based on oxadiazole/carbazole structure: Synthesis, optical and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Concilio, Simona, E-mail: sconcilio@unisa.it [Department of Industrial Engineering, DIIn, University of Salerno (Italy); Bugatti, Valeria; Neitzert, Heinz C. [Department of Industrial Engineering, DIIn, University of Salerno (Italy); Landi, Giovanni [Faculty of Mathematics and Computer Science, Fernuniversität Hagen (Germany); De Sio, Antonietta; Parisi, Jürgen [Institute of Physics, Carl-von-Ossietzky Universität Oldenburg (Germany); Piotto, Stefano; Iannelli, Pio [Department of Pharmacy, DIFARMA, University of Salerno (Italy)

    2014-04-01

    A mononuclear Zn(II) complex containing two carbazole/oxadiazole moieties, Zn(OC){sub 2}, was synthesized and characterized by means of elemental and thermal analyses and infrared spectroscopy. Current–voltage measurements of Ag/Zn(OC){sub 2}/p-Si and Ag/Zn(OC){sub 2}/n-Si heterostructures have been performed and compared to that of reference structures with the same metal contacts but without the insertion of the Zn(OC){sub 2} layer. Good rectification behavior has been observed for both hetero-diodes, independent of the silicon substrate doping type, confirming that the metal–organic layer can act both as electron or hole-conductor. Zn(OC){sub 2} complex displayed blue photo-luminescence in solution and in film. - Highlights: • A Zn complex with two carbazole/oxadiazole moieties, Zn(OC){sub 2}, was synthesized. • We made electric measurements of Ag/Zn(OC){sub 2}/p-Si and Ag/Zn(OC){sub 2}/n-Si hetero-diodes. • We observed good rectification behavior for both hetero-diodes, with p-Si and n-Si. • The metal–organic layer can act as electron or hole-conductor.

  12. Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper(II) complex.

    Science.gov (United States)

    Ferreira, B J M Leite; Brandão, P; Meireles, M; Martel, Fátima; Correia-Branco, Ana; Fernandes, Diana M; Santos, T M; Félix, V

    2016-08-01

    In this study a novel dinuclear copper(II) complex with adenine and phenanthroline has been synthesized and its structure determined by single crystal X-ray diffraction. In the dinuclear complex [Cu₂(μ-adenine)₂(phen)₂(H2O)2](NO3)4·0.5H2O (phen=1,10-phenanthroline) (1) the two Cu(II) centres exhibit a distorted square pyramidal coordination geometry linked by two nitrogen donors from adenine bridges leading to a Cu-Cu distance of 3.242(3)Å. Intramolecular and intermolecular π⋯π interactions as well as an H-bonding network were observed. The antitumor capacity of the complex has been tested in vitro against human cancer cell lines, cervical carcinoma (HeLa) and colorectal adenocarcinoma (Caco-2), by metabolic tests, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide as reagent. The complex 1 has remarkable low IC50 values of 0.87±0.06μM (HeLa) and 0.44±0.06μM (Caco-2), when compared with values for cisplatin against the same cell lines. The interaction of complex 1 with calf thymus DNA (CT DNA) was further investigated by absorption and fluorescence spectroscopic methods. A binding constant of 5.09×10(5)M(-1) was obtained from UV-vis absorption studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Synthesis, X-ray Structure, Optical, and Electrochemical Properties of a White-Light-Emitting Molecule

    Directory of Open Access Journals (Sweden)

    Jiun-Wei Hu

    2016-01-01

    Full Text Available A new white-light-emitting molecule (1 was synthesized and characterized by NMR spectroscopy, high resolution mass spectrometry, and single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pnma, with a = 12.6814(6, b = 7.0824(4, c = 17.4628(9 Å, α = 90°, β = 90°, γ = 90°. In the crystal, molecules are linked by weak intermolecular C-H···O hydrogen bonds, forming an infinite chain along [100], generating a C(10 motif. Compound 1 possesses an intramolecular six-membered-ring hydrogen bond, from which excited-state intramolecular proton transfer (ESIPT takes place from the phenolic proton to the carbonyl oxygen, resulting in a tautomer that is in equilibrium with the normal species, exhibiting a dual emission that covers almost all of the visible spectrum and consequently generates white light. It exhibits one irreversible one-electron oxidation and two irreversible one-electron reductions in dichloromethane at modest potentials. Furthermore, the geometric structures, frontier molecular orbitals (MOs, and the potential energy curves (PECs for 1 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT and time-dependent DFT calculations. The results demonstrate that the forward and backward ESIPT may happen on a similar timescale, enabling the excited-state equilibrium to be established.

  14. Synthesis, X-ray Structure, Optical, and Electrochemical Properties of a White-Light-Emitting Molecule.

    Science.gov (United States)

    Hu, Jiun-Wei; Wu, Ying-Hsuan; Tsai, Hsing-Yang; Chen, Kew-Yu

    2016-01-14

    A new white-light-emitting molecule ( 1 ) was synthesized and characterized by NMR spectroscopy, high resolution mass spectrometry, and single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pnma , with a = 12.6814(6), b = 7.0824(4), c = 17.4628(9) Å, α = 90°, β = 90°, γ = 90°. In the crystal, molecules are linked by weak intermolecular C-H···O hydrogen bonds, forming an infinite chain along [100], generating a C (10) motif. Compound 1 possesses an intramolecular six-membered-ring hydrogen bond, from which excited-state intramolecular proton transfer (ESIPT) takes place from the phenolic proton to the carbonyl oxygen, resulting in a tautomer that is in equilibrium with the normal species, exhibiting a dual emission that covers almost all of the visible spectrum and consequently generates white light. It exhibits one irreversible one-electron oxidation and two irreversible one-electron reductions in dichloromethane at modest potentials. Furthermore, the geometric structures, frontier molecular orbitals (MOs), and the potential energy curves (PECs) for 1 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT) and time-dependent DFT calculations. The results demonstrate that the forward and backward ESIPT may happen on a similar timescale, enabling the excited-state equilibrium to be established.

  15. Hydrothermal synthesis, structure, and catalytic properties of UO2Sb2O4

    International Nuclear Information System (INIS)

    Sykora, Richard E.; King, Joseph E.; Illies, Andreas J.; Albrecht-Schmitt, Thomas E.

    2004-01-01

    A new uranyl antimonite, UO 2 Sb 2 O 4 (1), has been prepared from the hydrothermal reaction of UO 3 with Sb 2 O 3 and KCl. The structure of 1 consists of neutral two-dimensional ∞ 2 [UO 2 Sb 2 O 4 ] layers. The U(VI) centers are ligated by two trans oxo ligands and four square pyramidal antimonite anions. In addition, the U(VI) also forms long contacts with two additional oxygen atoms that are distorted by 12.7(2) degree sign out of the equatorial plane perpendicular to the uranyl unit. These long interactions are significant owing to evidence supplied by bond valence sum calculations. The two-dimensional layers found in 1 are built from one-dimensional chains formed from edge-sharing UO 6 octahedra that run along the b-axis, and are linked together by [Sb 2 O 4 ] 2- chains. A flow microreactor system has been used to study the catalytic activity of 1, and these results show that it can be used as a catalyst in the conversion of propene and O 2 to acrolein. Crystallographic data: 1, monoclinic, space group C2/m, a=13.490(2) A, b=4.0034(6) A, c=5.1419(8) A, β=104.165(3) deg., Z=2, MoKα, λ=0.71073, R(F)=1.74% for 30 parameters with 365 reflections with I>2σ(I)

  16. A new large - Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties

    Science.gov (United States)

    Al-Hazmi, Faten; Alnowaiser, Fowzia; Al-Ghamdi, A. A.; Al-Ghamdi, Attieh A.; Aly, M. M.; Al-Tuwirqi, Reem M.; El-Tantawy, Farid

    2012-08-01

    Large-scale one-dimensional magnesium oxide (MgO) nanowires with diameters of 6 nm and lengths of 10 μm have been successfully synthesized by a new facile and simple reaction. This production was performed via a microwave hydrothermal approach at low temperature growth of 180 °C for 30 min. The structure of as synthesized MgO nanowires were investigated by means of X-ray diffraction (X-ray), Fourier Transformation Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED) and Energy Dispersive X-ray (EDS). The antibacterial behavior of MgO nanowires concentration in solid media against Gram negative and Gram positive for different bacteria has been tested in details. The results show that the MgO nanowires have bacteriostatic activity against Escherichia coli and Bacillus sp. The antibacterial activity increases with increasing MgO nanowires concentration. Furthermore, the presence of one-dimensional MgO nanowires has high antibacterial efficacy and damages the membrane wall of bacteria. Finally, this study offered the prospect of developing ultrafine nanoscale devices utilizing MgO nanowires and implementing their useful potential in biological control.

  17. The Synthesis, Structures, and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, Abraham [Texas A & M Univ., College Station, TX (United States)

    2014-11-01

    In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above and below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.

  18. Halide/pseudohalide complexes of cadmium(II) with benzimidazole: Synthesis, crystal structures and fluorescence properties

    Science.gov (United States)

    Zhao, Hai-Yan; Yang, Fu-Li; Li, Na; Wang, Xiao-Jing

    2017-11-01

    Two new dinuclear Cd(II) complexes, [CdL1Cl2]2·H2O (1) and [CdL1(N3)2]2·CH3OH (2) and one dicyanamide bridged one-dimensional polynuclear network [CdL1(μ1,5-dca)dca]n (3) of the potentially tridentate NNN-donor Schiff base 2-((1H-benzimidazol-2-yl-ethylimino)-methyl)pyridine (L1) and another dinucler Cd(II) complex [CdL2Cl(dca)]2 (4) of a similar NNN-donor Schiff base ligand 2-((1H-benzimidazol-2-yl-propylimino)-methyl)pyridine (L2), have been synthesized and characterized by elemental analyses, IR and single crystal X-ray crystallography. The ligands L1 and L2 are [1 + 1] condensation products of pyridine-2-carbaldehyde with 2-aminoethyl-1H-benzimidazole and 2-aminopropyl-1H-benzimidazole, respectively. In the complexes 1 and 4 the two Cd(II) centers are held together by the bridged chloride ligands, while in 2 the two Cd(II) centers are bridged by μ1,1-azide ions. Complex 3 has a one-dimensional infinite chain structure in which Cd(II) ions are bridged by single dicyanamide groups in end-to-end fashion. All the metal centers have a distorted octahedral geometry and H-bonding or π⋯π interactions are operative to bind the complex units in the solid state. Furthermore, these complexes have been investigated by thermogravimetric analyses and fluorescence spectra.

  19. Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties.

    Science.gov (United States)

    Lyu, Lian-Ming; Wang, Wei-Ching; Huang, Michael H

    2010-12-17

    We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.

  20. Synthesis, Crystal Structural Characterization and Biological Properties of Thiosemicarbazones of Schiff Bases Derived from 4-Acyl-2-pyrazoline-5-one

    Directory of Open Access Journals (Sweden)

    Arjunsinh Rana

    2011-01-01

    Full Text Available A novel synthesis, single crystal and biological activity of 4-acylthiosemicarbazone-3-methyl-1-(4`-methylphenyl-2-pyrazolin-5-one by condensation of 4-acyl-3-methyl-1-(4`-methylphenyl-2-pyrazolin-5-one with thiosemicarbazide was carried out. The compounds were characterized on the basis of elemental analysis, IR, 1H NMR, Mass, DSC and 13C NMR spectral data. The compounds were tested for their antibacterial activity against various gram +ve and -ve bacteria. The results were compared with the marketed drugs. The crystal structure was determined by single x-ray diffraction. 4-Acetyl thiosemicarbazone-3-methyl-1-(4`-methylphenyl-2-pyrazolin-5-one(AcPTMP-ths crystallizes in the monoclinic system, space group P21/n with a=6.0828(7Å, b=29.547(4Å, c=7.9101(15Å, α=90°, γ=95.602(15°, γ=90°, V=1414.9(4 Å3, Z=4, Dc=1.429 mg/m3 and 4-Propionylthiosemicarbazone-3-methyl-1-(4`-methylphenyl-2-pyrazolin-5-one (PropPTMP-ths crystallizes in the monoclinic system, space group P21/c with a=13.5622(10Å, b=13.3671(12Å, c=22.151(2Å, α=90°, β=93.13(7°, γ=90°, V=4010.1(6 Å3, Z=8, Dc=1.310 mg/m3. The compounds were screened for antibacterial properties and exhibited potential activity.

  1. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Lenka Kucková

    2015-01-01

    Full Text Available Mixed ligand copper(II complexes containing derivatives of salicylic acid and heterocyclic ligands with nitrogen donor atoms have been the subject of various studies and reviews. In this paper, synthesis and characterization of the ternary copper(II complexes of neocuproine (2,9-dimethyl-1,10-phenanthroline, Neo and salicylate ligands (Sal are reported. In addition, the crystal structures of ([Cu(H2O(5-Cl-Sal(Neo] (1, [Cu(μ-Sal(Neo]2 (2, Cu2(μ-5-Cl-Sal(5-Cl-HSal2(Neo2]·EtOH (3 were determined. In order to compare structural and biological properties of the prepared complexes, spectroscopic and biological studies were performed. Results of X-ray diffraction show that prepared complexes form three types of crystal structures in a given system: monomeric, dimeric and dinuclear complex. The preliminary study on the DNA cleavage activity has shown that the complexes under study behave as the chemical nucleases in the presence of added hydrogen peroxide with slight differences in the activity (1 > 2 > 3. The complexes 1 and 2 exhibited nuclease activity itself indicating the interaction of complexes with the DNA. It has been proposed that the enhanced destructive effect of the complexes 1 and 2 on the DNA is a result of two possible mechanisms of action: (i the conversion of closed circular DNA (form I to the nicked DNA (form II caused by the copper complex itself and (ii damage of DNA by Reactive Oxygen Species (ROS—products of the interaction of copper with hydrogen peroxide by means of Fenton reaction (hydroxyl radicals. Thus the biological activity of the prepared Cu(II complexes containing derivatives of salicylic acid and phenanthroline molecules is substantiated by two independent mechanisms. While derivatives of salicylic acids in the coordination sphere of copper complexes are responsible for radical-scavenging activity (predominantly towards superoxide radical anion, the presence of chelating ligand 2,9-dimethyl-1,10-phenanthroline

  2. Synthesis, properties, structure and thermochemistry of hexa-aqua-tris (N,N-dimethylformamide) lanthanide tri fluoro methane sulfonates

    International Nuclear Information System (INIS)

    Araujo Melo, D.M. de.

    1989-01-01

    Addition compounds between several lanthanide salts and dimethylformamide (DMF) have been described in the literature. This thesis reports the synthesis and characterization of the compounds of general composition Ln (C H 3 SO 3 ) 3 . 3 DMF.6 H 3 O) (Ln = La - Ho) and Ln (C H 3 SO 3 ) 3 DMF.6 H 2 O (Ln = Er - Lu). The structure of the neodymium compound, isomorphous with the series, is also described. The enthalpy variations were determined by solution calorimetry. (author)

  3. Synthesis, crystal structure, and transport properties of Fe substituted rhombohedral skutterudite derivatives Co4−xFexGe6Se6

    KAUST Repository

    Wei, Kaya

    2014-11-01

    We report on the synthesis and low temperature transport properties of rhombohedral derivatives of the cubic skutterudite CoSb3, namely Co4-xFexGe6Se6 with x = 0, 1, 1.5. Rietveld refinement and elemental analyses were used to identify the structure and stoichiometry of the compositions. The thermal conductivity was investigated by employing the Debye model with different phonon-scattering parameters. This investigation demonstrates that Fe substitution is feasible in these skutterudite derivatives and can significantly affect the transport properties as compared with Co4Ge6Se6. © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis of C-di-saccharidic compounds by radical cyclisation. Study of biological, structural and dynamic properties

    International Nuclear Information System (INIS)

    Rubinstenn, Gilles

    1996-01-01

    The synthesis of carbohydrate mimics and particularly of C-disaccharides, molecules in which the inter-glycosidic oxygen atom has been replaced by a methylene group, has become, this past two decades, an important challenge in organic chemistry. In the first chapter we present the synthesis of C-disaccharides from the neutral series by a silaketal tethering. The key step of this C-glycosylation is a radical macro-cyclisation. This strategy is applied to the synthesis of two analogues of natural, biologically active, products, the lactose and the Lewis x tri-saccharide. The biological activity of this mimetics is then evaluated. A new tethering strategy, based on the use of phosphorus III compounds, is applied, in the second chapter, to the building of C-disaccharides of the 2'-amino 2'- deoxy series. The third chapter deals with the structural and dynamics study of the C-glycosides prepared in chapter 1 by Nuclear Magnetic Resonance. A new methodology, studying the dipolar relaxation along an effective field, generated through an off-resonance RF field, allowed the precise measurement of longitudinal and transverse cross-relaxation rates. Structural and dynamics parameter thus derived are used as restraints for molecular modeling. The results of this study are then compared to those of the biological tests. (author) [fr

  5. Synthesis, structure and low temperature study of electric transport ...

    Indian Academy of Sciences (India)

    Synthesis, structure and low temperature study of electric transport and magnetic properties of GdSr2MnCrO7. Devinder ... Keywords. Chemical synthesis; X-ray diffraction; electrical properties; magnetic properties. Abstract. The layered perovskite oxide, GdSr2MnCrO7, has been prepared by the standard ceramic method.

  6. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shutesh, E-mail: shutesh.k@onsemi.com [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia); ON Semiconductor Package Innovation and Development Center, 70450 Seremban (Malaysia); Haseeb, A.S.M.A.; Johan, Mohd Rafie [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-15

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1{sup ¯}11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications.

  7. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The open air reaction of the chiral Schiff base ligand H2L, prepared by the condensation of L- ... Single- crystal X-ray analysis revealed that compound 1 crystallises in the monoclinic P21 space group with six ... structure, each Mn(IV) complex, acting as the building unit, undergoes supramolecular linking through.

  8. Polyfuran Conducting Polymers: Synthesis, Properties, and Applications.

    OpenAIRE

    González-Tejera, M.J.; Sánchez de la Blanca, Emilia; Carrillo Ramiro, Isabel

    2008-01-01

    In this review, polyfuran (PFu) synthesis methods and the nucleation mechanism; the electrochemical, structural, morphological, and magnetic properties of PFu; thermal behavior; theoretical calculations on PFu, as well as its applications reported to date, have been compiled. Not only PFu homopolymers have been reviewed, but also PFu co-polymers, PFu bipolymers, and PFu composites. The results are listed, discussed, and compared. It is hoped that this assembly of all the relevant data might e...

  9. Perovskite-type SrTi1-xNbx(O,N)3 compounds: Synthesis, crystal structure and optical properties

    International Nuclear Information System (INIS)

    Maegli, Alexandra; Yoon, Songhak; Otal, Eugenio; Karvonen, Lassi; Mandaliev, Peter; Weidenkaff, Anke

    2011-01-01

    The synthesis, crystal structure, thermal stability and absorbance spectra of perovskite-type oxynitrides with the general formula SrTi 1-x Nb x (O,N) 3 (x=0.05, 0.10, 0.20, 0.50, 0.80, 0.90, 0.95) have been investigated. Oxide samples were prepared by a polymerized complex synthesis route and post-treated under ammonia at 850 o C for 24 h to substitute nitrogen for oxygen. Synchrotron X-ray powder diffraction (XRD) evidenced that the mixed oxide phases were all transformed into oxynitrides with perovskite-type structure during a thermal ammonolysis. SrTi 1-x Nb x (O,N) 3 with compositions x≤0.80 crystallized in a cubic and samples with x≥0.90 in a tetragonal structure. The Rietveld refinement indicated a continuous enlargement of the lattice parameters towards higher niobium content of the samples. Thermogravimetric analysis (TGA) and hotgas extraction revealed the dependence of the nitrogen incorporation upon the degree of niobium substitution. It showed that more nitrogen was detected in the samples with higher niobium content. Furthermore, TGA disclosed stability for all oxynitrides at T≤400 o C. Diffuse reflectance spectroscopy indicated a continuous decrease of the band gap's width from 3.24 eV (SrTi 0.95 Nb 0.05 (O,N) 3 ) to 1.82 eV (SrTi 0.05 Nb 0.95 (O,N) 3 ) caused by the increasing amount of nitrogen towards the latter composition. -- Graphical Abstract: The system SrTi 1-x Nb x (O,N) 3 is described and the changes in crystal structure, nitrogen content and width of the band gap are discussed. Display Omitted Research highlights: → Synthesis of SrTi 1-x Nb x (O,N) 3 perovskite-type oxynitrides via thermal ammonolysis. → Co-substitution of Nb 5+ enabled to adjust the amount nitrogen insertion. → Tuning of the optical band gap through nitrogen.→ Changes of crystal structure from cubic to tetragonal with increasing niobium content.

  10. Synthesis, crystal structure, thermal analysis and dielectric

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis, crystal structure, thermal analysis and dielectric properties of two mixed trichlorocadmiates (II).

  11. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  12. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  13. A simple route to synthesize mesoporous titania from TiOSO4: Influence of the synthesis conditions on the structural, pigments and photocatalytic properties

    Science.gov (United States)

    Yang, Guang; Ding, Hao; Chen, Daimei; Ao, Weihua; Wang, Jian; Hou, Xifeng

    2016-07-01

    The work obtained mesoporous TiO2 white pigments using titanyl sulfate as titanium source with a simple, low-temperature method simplifying the synthesis process and reducing the energy consumption. We investigated the effects of the aging temperature and aging time on the structure and pigments properties of the samples. The structure and morphology of mesoporous samples were characterized by X-ray diffraction and transmission electron microscopy. The obtained mesoporous TiO2 showed excellent pigments properties of whiteness (93.91%), hiding power (12.37 g m-2), and lightness value (97.89), respectively. Moreover, such materials showed outstanding photodegradation performance of organic dyes under UV light irradiation. The current research provided an alternative route to prepare mesoporous TiO2 micspheres white pigments with well photocatalytic performance for indoor purification on industrial scale. It has great significance in titania white pigments field.

  14. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  15. Synthesis and Crystal Structure of Diaqua(1,10-Phenanthroline-N,N′)(Thiosulfato-O,S)Manganese(II). Biological Properties.

    OpenAIRE

    Brezeanu, Maria; Badea, Mikaela; Morgant, Georges; Viossat, Bernard; Bouttier, Sylvie; Fourniat, Jacky; Marinescu, Dana; Huy, Dung Nguyen

    1998-01-01

    The synthesis of diaqua(1,10-phenanthroline-N,N′)(thiosulfato-O,S)manganese(ll) [Mn(phen)(S2O3)(H2O)2] was investigated. Its structure was determined by single crystal X-ray diffraction from 2418 reflections (I > 3 σ(I)) to a final value of R = 0.047 and Rw = 0.054. Crystal data are as follows : space group P2 1; a = 10.356(3), b = 7.097(3), c = 20.316(2) Å, β = 94.29(2)°, V = 1489.1(8) , Å3, Z = 2. There are two independent title compounds in the asymetric unit. Each manganese atom has a dis...

  16. Iron(iii) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations.

    Science.gov (United States)

    Gajewska, Małgorzata J; Bieńko, Alina; Herchel, Radovan; Haukka, Matti; Jerzykiewicz, Maria; Ożarowski, Andrzej; Drabent, Krzysztof; Hung, Chen-Hsiung

    2016-09-27

    The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(iii) complex with the formula [Fe 10 (bdtbpza) 10 (μ 2 -OCH 3 ) 20 ] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0-300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(iii) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was proved using a broken-symmetry approach within the density functional method at the B3LYP/def2-TZVP(-f)/def2-SVP level of theory.

  17. Synthesis and magnetic properties of one-dimensional metal ...

    Indian Academy of Sciences (India)

    Unknown

    Molecular-based magnets; magnetic properties; one-dimensional metal oxalate; synthesis and structure of metal-oxalates. 1. Introduction. Synthesis and characterization of the polymetallic com- plexes with a goal to report .... an asymmetric ν(C=O) vibration at 1700 and δ(CO) at ca. 800 cm– 1. In the infrared spectra (figures ...

  18. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  19. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    Science.gov (United States)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  20. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in [Department of Physics, SSN College of Engineering, Kalavakkam (India); Baby, C. [Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai (India); Gopalakrishnan, R. [Crystal Research Lab, Department of Physics, Anna University, Chennai (India)

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  1. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  2. Properties and synthesis of milrinone

    Directory of Open Access Journals (Sweden)

    Mirković Jelena M.

    2013-01-01

    Full Text Available Milrinone, 1,6-dihydro-2-methyl-6-oxo-[3,4’-bipyridine]-5-carbonitrile, is a positive inotropic cardiotonic agent with vasodilator properties that acts as selective phosphodiesterase 3 inhibitor in cardiac and vascular smooth muscle. Trade names of milrinone are Primacor, Corotrop, Corotrope, and Milrila. Milrinone, an amrinone derivative, is 20 to 50 times more active than amrinone and possesses reduced propensity to side effects. The use of milrinone has created controversy in the medical as the result of increased mortality rate among patients that received high amounts of milrinone in oral form. Reaserch show that it can be benifitial for patients with severe congestive heart failure when used as short-time intravenous therapy. Milrinone properties, stability, as well as mechanism of action and synthesis under laboratory and industry conditions have been described in this paper. For industrial purposes milrinone is synthesized by condensation of cyanoacetamide with 4-(dimethylamino-3-(4-pyridinyl-3-buten-2-one and 4-ethoxy-3-(4-pyridinyl-3-buten-2-one in presence of a base, or by the reaction of 1-(4-pyridinyl- 2-propanone with ethoxymethylenmalononitrile or 4-alkoxy-3-(4-pyridinyl-3-buten-2-one with malononitrile without the use of external base. The starting compound for these syntheses is 4-picoline. Alternative synthesis of milrinone starts from 2-methyl-3-(4-pyridylidiene-1,1,5-tricyano-1,4-pentadiene-5-carboxamide and 2-methyl-6-oxo-1,6-dihydro-3,4’-bipyridine-5-carboxamide. Lastly, methods for milrinone synthesis in laboratory, injection preparation and purification have been summarized.

  3. Highly stable new organic-inorganic perovskite (CH₃NH₃)₂PdBr₄: synthesis, structure and physical properties.

    Science.gov (United States)

    Liu, Xixia; Huang, Tang Jiao; Zhang, Liuyang; Tang, Baoshan; Zhang, Nengduo; Shi, Diwen; Gong, Hao

    2018-01-11

    Lead halide perovskite has attracted striking attention recently due to their appealing properties. However, toxicity and stability are two main factors restricting its application. In this work, we experimentally synthesized less toxic and highly stable Pd-based hybrid perovskite after exploring different experimental conditions. This new hybrid organic-inorganic perovskite (CH₃NH₃)₂PdBr₄ was found to be an orthorhombic crystal (Cmce, Z=4) with lattice parameters a=8.00 Å, b=7.99 Å, c= 18.89 Å. The Cmce symmetry and lattices parameters were confirmed using Pawley refinement. The atoms positions were testified based on DFT calculation. This perovskite compound was determined to be a p-type semiconductor, with a resistivity of 102.9 kΩ*cm, a carrier concentration of 3.4 ×1012 /cm³ and a mobility of 23.4 cm² /(V*S). Interestingly, XRD and UV-vis measurements indicated that the phase of this new perovskite was maintained with an optical gap of 1.91 eV after leaving in air with a high humidity of 60% for 4 days, and unchanged for months in N₂ ambiance, much more stable than most existing organic-inorganic perovskites. The synthesis and various characterizations of this work further the understanding of this (CH₃NH₃)₂PdBr₄ organic-inorganic hybrid perovskite material. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of Fe3O4@Ag core-shell: structural, morphological, and magnetic properties

    Directory of Open Access Journals (Sweden)

    Mahdi Ghazanfari

    2014-12-01

    Full Text Available This paper is a report on the synthesis of the Fe3O4@Ag core-shell with high saturation magnetization of magnetite nanoparticles as the core, by using polyol route and silver shell by chemical reduction. X-ray diffraction (XRD and Fourier transform infrared spectroscopy analyses confirmed that the particles so produced were monophase. The magnetic properties of the product were investigated by using a vibrating sample magnetometer. Magnetic saturation of magnetite was 91 emu/g that around about bulk magnetization. This high saturation magnetization can be attributed to the thin dead layer. By using polyethylene glycol as a surfactant to separate and restrict the growth of the particles, magnetostatic interactions are in good agreement with the remanence ratio analysis. Morphology and the average size of the particles were determined with field emission scanning electron microscope (FESEM. Spherical aggregates of Fe3O4 (size around 73 nm are composed of a small primary particle size of about 16 nm. Silver deposition was done using butylamine as the reductant of AgNO3 in ethanol with different ratio. The silver layers were estimated using statistical histogram images of FESEM. Silver-coated iron oxide nanohybrids have been used in a broad range of applications, including chemical and biological sensing, due to the broad absorption in the optical region associated with localized surface plasmon resonance.

  5. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  6. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  7. Synthesis, structure, photophysical and electroluminescent properties of a blue-green self-host phosphorescent iridium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Wang, Hua [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, Huixia, E-mail: xuhuixiatyut@163.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Li, Jie; Wu, Yuling; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, Bingshe, E-mail: xubs@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-07-15

    A kind of blue-green self-host phosphorescent iridium(III) complex, (CzPhBI){sub 2}Ir(tfmptz) [CzPhBI = 9-(6-(2-phenyl-1-benzimidazolyl)hexyl)-9-carbazole; tfmptz = 2-(5-trifluoromethyl-1,2,4-triazolyl)pyridine], was designed and synthesized. The synthesized iridium(III) complex was characterized by {sup 1}H NMR, {sup 19}F NMR, FT-IR, elemental analysis and X-ray single-crystal diffraction, respectively. Its thermal properties, optical properties and electrochemical properties were also investigated. The host-free organic electroluminescent devices with the configuration of ITO/MoO{sub 3} (3 nm)/NPB (30 nm)/TAPC (15 nm)/(CzPhBI){sub 2}Ir(tfmptz) (30 nm)/TBPI (30 nm)/LiF (1 nm)/Al (100 nm) had been fabricated. The devices exhibited excellent performance indicating that (CzPhBI){sub 2}Ir(tfmptz) was a promising phosphorescent material. - Highlights: • A blue-green self-host phosphorescent iridium(III) complex was synthesized. • The molecular structure, and photophysical properties were investigated. • Electroluminescent performance in host-free devices were discussed. • The maximum current efficiency 8.2 cd A{sup −1} and the maximum brightness 5420 cd m{sup −2} were achieved.

  8. Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture.

    Science.gov (United States)

    Zhu, Yan-Yu; Sun, Zhen-Gang; Tong, Fei; Liu, Zhong-Min; Huang, Cui-Ying; Wang, Wei-Nan; Jiao, Cheng-Qi; Wang, Cheng-Lin; Li, Chao; Chen, Kai

    2011-05-28

    Eleven new lanthanide oxalatophosphonate hybrids with a 2D layered structures, namely, [Ln(H(3)L)(C(2)O(4))]·2H(2)O (Ln = La-Dy, Er and Y, H(4)L = C(6)H(5)CH(2)N(CH(2)PO(3)H(2))(2)), have been synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy, elemental analysis and thermogravimetric analysis. Compounds 1-11 are isomorphous and they exhibit a 2D framework structure. Two {LnO(8)} polyhedra and four {CPO(3)} tetrahedra are interconnected into a unit via corner-sharing, and the so-built units are bridged by the oxalate anions into a layer. The result of connections in this manner is the formation of a 24-atom window. The thermal stabilities and guest desorption-sorption properties of compounds 1-11 have been investigated. The luminescent properties of compounds 5, 6, 8 and 9 have also been studied.

  9. Laser-assisted synthesis, and structural and thermal properties of ZnS nanoparticles stabilised in polyvinylpyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Onwudiwe, Damian C. [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Krüger, Tjaart P.J. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Jordaan, Anine [Laboratory for Electron Microscopy, CRB Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Strydom, Christien A., E-mail: christien.strydom@nwu.ac.za [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2014-12-01

    Graphical abstract: - Highlights: • Zinc sulphide (ZnS) nanoparticles were synthesised by laser irradiation. • The structural and morphological properties of the prepared samples were analysed. • Larger particles were obtained by using Na{sub 2}S instead of TAA as the sulphur source. • Phonon softening and line broadening of the peaks were observed. • Size reduction occurred in the samples obtained from both sources. - Abstract: Zinc sulphide (ZnS) nanoparticles have been synthesised by a green approach involving laser irradiation of an aqueous solution of zinc acetate (Znac{sub 2}) and sodium sulphide (Na{sub 2}S·9H{sub 2}O) or thioacetamide (TAA) in polyvinylpyrrolidone (PVP). The structural and morphological properties of the prepared samples were analysed using a transmission electron microscope, TEM, a high resolution transmission electron microscope, HRTEM, X-ray diffraction, and Raman spectroscopy. The thermal properties were studied using a simultaneous thermal analyser (SDTA). Better dispersed and larger particles were obtained by using sodium sulphide (Na{sub 2}S) instead of TAA as the sulphur source. X-ray diffraction (XRD) analyses and Raman measurement show that the particles have a cubic structure, which is usually a low temperature phase of ZnS. There were phonon softening and line broadening of the peaks which are attributed to the phonon confinement effect. The average crystallite size of the ZnS nanoparticles estimated from the XRD showed a reduction in size from 13.62 to 10.42 nm for samples obtained from Na{sub 2}S, and 9.13 to 8.16 nm for samples obtained from TAA, with an increase in the time of irradiation. The thermal stability of PVP was increased due to the incorporation of the ZnS nanoparticles in the matrices. The absorption spectra showed that the nanoparticles exhibit quantum confinement effects.

  10. Synthesis and Crystal Structure of Diaqua(1,10-Phenanthroline-N,N')(Thiosulfato-O,S)Manganese(II). Biological Properties.

    Science.gov (United States)

    Brezeanu, M; Badea, M; Morgant, G; Viossat, B; Bouttier, S; Fourniat, J; Marinescu, D; Huy, D N

    1998-01-01

    The synthesis of diaqua(1,10-phenanthroline-N,N')(thiosulfato-O,S)manganese(ll) [Mn(phen)(S(2)O(3))(H(2)O)(2)] was investigated. Its structure was determined by single crystal X-ray diffraction from 2418 reflections (I > 3 sigma(I)) to a final value of R = 0.047 and Rw = 0.054. Crystal data are as follows : space group P(2) (1); a = 10.356(3), b = 7.097(3), c = 20.316(2) A, beta = 94.29(2) degrees , V = 1489.1(8) , A(3), Z = 2. There are two independent title compounds in the asymetric unit. Each manganese atom has a distorted octahedral Mn(SO)N(2)O(2) geometry with the S and O atoms (from two neighbouring thiosulfate ligands) mutually trans, two N atoms from the 1,10-phenanthroline ligand and two water oxygen. The thiosulfate group behaves as a bridging ligand, connecting, through sulfur and oxygen, Mn atoms related by the binary b translation, thus forming infinite chains running parallel to this axis. Infrared and electronic spectra are reported.

  11. Synthesis and Crystal Structure of Diaqua(1,10-Phenanthroline-N,N′)(Thiosulfato-O,S)Manganese(II). Biological Properties.

    Science.gov (United States)

    Brezeanu, Maria; Badea, Mikaela; Morgant, Georges; Viossat, Bernard; Bouttier, Sylvie; Fourniat, Jacky; Marinescu, Dana

    1998-01-01

    The synthesis of diaqua(1,10-phenanthroline-N,N′)(thiosulfato-O,S)manganese(ll) [Mn(phen)(S2O3)(H2O)2] was investigated. Its structure was determined by single crystal X-ray diffraction from 2418 reflections (I > 3 σ(I)) to a final value of R = 0.047 and Rw = 0.054. Crystal data are as follows : space group P21; a = 10.356(3), b = 7.097(3), c = 20.316(2) Å, β = 94.29(2)°, V = 1489.1(8) , Å3, Z = 2. There are two independent title compounds in the asymetric unit. Each manganese atom has a distorted octahedral Mn(SO)N2O2 geometry with the S and O atoms (from two neighbouring thiosulfate ligands) mutually trans, two N atoms from the 1,10-phenanthroline ligand and two water oxygen. The thiosulfate group behaves as a bridging ligand, connecting, through sulfur and oxygen, Mn atoms related by the binary b translation, thus forming infinite chains running parallel to this axis. Infrared and electronic spectra are reported. PMID:18475862

  12. Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: control of structure and functional properties

    Science.gov (United States)

    D’Addato, Sergio; Chiara Spadaro, Maria

    2018-03-01

    Experimental activity on core@shell, metal@oxide, and oxide nanoparticles (NPs) grown with physical synthesis, and more specifically by low pressure gas aggregation sources (LPGAS) is reviewed, through a selection of examples encompassing some potential applications in nanotechnology. After an introduction to the applications of NPs, a brief description of the main characteristics of the growth process of clusters and NPs in LPGAS is given. Thereafter, some relevant case studies are reported: • Formation of native oxide shells around the metal cores in core@shell NPs. • Experimental efforts to obtain magnetic stabilization in magnetic core@shell NPs by controlling their structure and morphology. • Recent advancements in NP source design and new techniques of co-deposition, with relevant results in the realization of NPs with a greater variety of functionalities. • Recent results on reducible oxide NPs, with potentialities in nanocatalysis, energy storage, and other applications. Although this list is far from being exhaustive, the aim of the authors is to provide the reader a descriptive glimpse into the physics behind the growth and studies of low pressure gas-phase synthesized NPs, with their ever-growing potentialities for the rational design of new functional materials.

  13. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    Science.gov (United States)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  14. Structural synthesis of parallel robots

    CERN Document Server

    Gogu, Grigore

    This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators.  This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1.  Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...

  15. Water-assisted and controllable synthesis of core/shell/shell structured carbon-based nanohybrids, and their magnetic and microwave absorption properties.

    Science.gov (United States)

    Qi, Xiaosi; Yang, Erqi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2017-08-29

    By controlling the pyrolysis temperature, core/shell/shell structured Fe/Fe 5 C 2 /carbon nanotube bundles (Fe/Fe 5 C 2 /CNTBs), Fe/Fe 3 C/helical carbon nanotubes (Fe/Fe 3 C/HCNTs) and Fe/Fe 3 C/chain-like carbon nanospheres (Fe/Fe 3 C/CCNSs) with high encapsulation efficiency could be selectively synthesized in large-scale by water-assisted chemical vapor deposition method. Water vapor was proved to play an important role in the growth process. Because of α-Fe nanoparticles tightly wrapped by two layers, the obtained core/shell/shell structured nanohybrids showed high stabilities and good magnetic properties. The minimum reflection loss values of the as-prepared nanohybrids reached approximately -15.0, -46.3 and -37.1 dB, respectively. The excellent microwave absorption properties of the as-prepared core/shell/shell structured nanohybrids were considered to the quarter-wavelength matching model. Moreover, the possible enhanced microwave absorption mechanism of the as-prepared Fe/Fe 3 C/HCNTs and Fe/Fe 3 C/CCNSs were discussed in details. Therefore, we proposed a simple, inexpensive and environment-benign strategy for the synthesis of core/shell/shell structured carbon-based nanohybrids, exhibiting a promising prospect as high performance microwave absorbing materials.

  16. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yong Hong [Huaibei Normal Univ., Huaibei (China)

    2013-04-15

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH{sub 2}){sub n}, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures.

  17. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian [College of Pharmacy, Third Military Medical University, Chongqing 400038 (China); Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu [School of Biomedical Engineering, Third Military Medical University, Chongqing 400038 (China); Yang, Xiaochao, E-mail: xcyang@tmmu.edu.cn [School of Biomedical Engineering, Third Military Medical University, Chongqing 400038 (China)

    2017-04-30

    Highlights: • The CNPs synthesized by microwave irradiation have more reactive hot spots than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation exhibited higher SOD activity than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress. - Abstract: Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  18. Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2008-01-01

    Full Text Available Abstract A novel octahedron-like hierarchical structure of Bi2WO6has been fabricated by a facile hydrothermal method in high quantity. XRD, SEM, TEM, and HRTEM were used to characterize the product. The results indicated that this kind of Bi2WO6crystals had an average size of ~4 μm, constructed by quasi-square single-crystal nanosheets assembled in a special fashion. The formation of octahedron-like hierarchical structure of Bi2WO6depended crucially on the pH value of the precursor suspensions. The photocatalytic activity of the hierarchical Bi2WO6structures toward RhB degradation under visible light was investigated, and it was found to be significantly better than that of the sample fabricated by SSR. The better photocatalytic property should be strongly associated with the high specific surface area and the abundant pore structure of the hierarchical octahedron-like Bi2WO6.

  19. Synthesis, structure, and properties of randomly mixed and layer-ordered SrMn1-xGaxO3-δ perovskites

    International Nuclear Information System (INIS)

    Caspi, E.N.; Avdeev, M.; Short, S.; Jorgensen, J.D.; Dabrowski, B.; Chmaissem, O.; Mais, J.; Kolesnik, S.

    2004-01-01

    We report the synthesis of SrMn 1-x Ga x O 3-δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques, we have extended the solubility limit of Ga 3+ in the cubic perovskite phase to x∼0.33. Higher Ga concentrations lead to mixed phases until a single-phase ordered double-perovskite structure is obtained at x=0.5, i.e., Sr 2 MnGaO 6-δ . In the cubic perovskite phase the maximum oxygen content is 3-x/2, which corresponds to 100% Mn 4+ . All maximally oxygenated solid solution compounds are found to order antiferromagnetically, with the transition temperature linearly decreasing as Ga content increases. Reducing the oxygen content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn 0.7 Ga 0.3 O 2.5 below 30 K. The brownmillerite phase at low oxygen content, Sr 2 MnGaO 5 , is found to have Icmm crystallographic symmetry. At 12 K its magnetic structure is found to order in the Icm'm' magnetic symmetry corresponding to a G-type antiferromagnetic structure of Mn 3+ ions. At higher oxygen content, Sr 2 MnGaO 5.5 is found to have Cmmm crystallographic symmetry with disordered oxygen vacancies. At 12 K two competing long-range magnetic structures are found for the Mn 4+ sublattice having C I m'm'm symmetry (G-type), and C P m'm'm symmetry (C-type), together with a G-type short-range magnetic correlations

  20. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs2NaBi(MoO4)3

    International Nuclear Information System (INIS)

    Savina, A.A.; Atuchin, V.V.; Solodovnikov, S.F.; Solodovnikova, Z.A.; Krylov, A.S.; Maximovskiy, E.A.; Molokeev, M.S.; Oreshonkov, A.S; Pugachev, A.M.

    2015-01-01

    New ternary molybdate Cs 2 NaBi(MoO 4 ) 3 is synthesized in the system Na 2 MoO 4 –Cs 2 MoO 4 –Bi 2 (MoO 4 ) 3 . The structure of Cs 2 NaBi(MoO 4 ) 3 of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å 3 , Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs 2 NaBi(MoO 4 ) 3 up to the melting point at 826 K. The compound shows an SHG signal, I 2w /I 2w (SiO 2 )=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs 2 NaBi(MoO 4 ) 3 is defined. • The molybdate Cs 2 NaBi(MoO 4 ) 3 is stable up to melting point at 826 K. • Vibrational properties of Cs 2 NaBi(MoO 4 ) 3 are evaluated by Raman spectroscopy

  1. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  2. Facile one-step synthesis and photoluminescence properties of Ag–ZnO core–shell structure

    International Nuclear Information System (INIS)

    Zhai, HongJu; Wang, LiJing; Han, DongLai; Wang, Huan; Wang, Jian; Liu, XiaoYan; Lin, Xue; Li, XiuYan; Gao, Ming; Yang, JingHai

    2014-01-01

    Graphical abstract: The PL of the Ag–ZnO core-shell nanostructure showed obvious increase of UV emission and slight decrease of visible light emission compared to that of the pure ZnO. With the calcination temperature increasing from 300 to 600 °C, the primary peak located at 380 nm became stronger and sharper, indicating that the increasing calcination temperature made the samples crystallize better. - Highlights: • Ag-ZnO core-shell structure was obtained via a simple one-step solvothermal process. • The approach was simple, mild, low cost, reproducible and easy-to-handle. • The obvious enhancement of UV luminescent has been observed. • Effects of the calcining temperature to luminescence were investigated in detail. - Abstract: Ag–ZnO core–shell structures were gained via one-step solvothermal process. The products were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, photoluminescence (PL) and UV–vis spectroscopy, respectively. It was shown that the properties were greatly changed compared to pure ZnO from the PL and Raman spectra, which indicated the strong interfacial interaction between ZnO and Ag. The work provides a feasible method to synthesize Ag–ZnO core–shell structure photocatalyst, which is promising in the further practical application of ZnO-based photocatalytic materials

  3. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih

    2016-12-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  4. Unprecedented Hexanuclear Cobalt(II Nonsymmetrical Salamo-Based Coordination Compound: Synthesis, Crystal Structure, and Photophysical Properties

    Directory of Open Access Journals (Sweden)

    Zong-Li Ren

    2018-03-01

    Full Text Available A novel hexanuclear Co(II coordination compound with a nonsymmetrical Salamo-type bisoxime ligandH4L, namely [{Co3(HL(MeO(MeOH2(OAc2}2]·2MeOH, was prepared and characterized by elemental analyses, UV–vis, IR and fluorescence spectra, and X-ray single-crystal diffraction analysis. Each Co(II is hexacoordinated, and possesses a distorted CoO6 or CoO4N2 octahedrons. The Co(II coordination compound possesses a self-assembled infinite 2D supramolecular structure with the help of the intermolecular C–H···O interactions. Meanwhile, the photophysical properties of the Co(II coordination compound were studied.

  5. Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties

    Directory of Open Access Journals (Sweden)

    Mesut ÖZDİNÇER

    2017-05-01

    Full Text Available Spinel-type metal oxide nanoparticles were synthesized via co-precipitation approach. Mono ethylene glycol (MEG was used as a capping agent to stabilize the particles and prevent them from agglomeration. The structural, morphological and thermal properties of the calcined sample were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, raman spectroscopy and thermal analysis. Energy-dispersive X-ray analysis (EDX has also proved that the element composition was composed of pure single phase and contained Co, Fe and O elements. The mean crystallite size of the prepared ferrite nanoparticles was determined to be in the range of 30-345 nm based on the SEM images. The magnetic measurements of the CoFe2O4 nanoparticles were examined with a vibrating sample magnetometer (VSM at room temperature to determine their magnetic behavior and the magnetic parameters were found.

  6. Synthesis, structure and physicochemical properties of zinc and copper complexes based on sulfonamides containing 8-aminoquinoline ligands

    Directory of Open Access Journals (Sweden)

    Luiz Everson da Silva

    2008-01-01

    Full Text Available Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa2], [Cu(qibsa2] and [Zn(qibsa2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.

  7. Synthesis, structure and physicochemical properties of zinc and copper complexes based on sulfonamides containing 8-aminoquinoline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Everson da; Sousa Junior, Paulo Teixeira de [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Quimica; Joussef, Antonio Carlos; Piovezan, Clovis; Neves, Ademir [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica]. E-mail: ademir@qmc.ufsc.br

    2008-07-01

    Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with Cu{sup II} and Zn{sup II} with a ML{sub 2} composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa){sub 2}], [Cu(qibsa){sub 2}] and [Zn(qibsa){sub 2}] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa){sub 2}] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed. (author)

  8. Synthesis, growth, structural, optical, thermal, electrical and mechanical properties of hydrogen bonded organic salt crystal: Triethylammonium-3, 5-dinitrosalicylate

    Science.gov (United States)

    Rajkumar, Madhu; Chandramohan, Angannan

    2017-04-01

    Triethylammonium-3, 5-dinitrosalicylate, an organic salt was synthesized and single crystals grown by slow solvent evaporation solution growth technique using methanol as a solvent. The presence of various functional groups and mode of vibrations has been confirmed by FT-IR spectroscopic technique. The UV-vis-NIR Spectrum was recorded in the range 200-1200 nm to find optical transmittance window and lower cut off wavelength of the title crystal. The formation of the salt and the molecular structure was confirmed by NMR spectroscopic technique. Crystal system, crystalline nature, cell parameters and hydrogen bonding interactions of the grown crystal were determined by single crystal x-ray diffraction analysis. The thermal characteristics of grown crystal were analyzed by thermo gravimetric and differential thermal analyses. Dielectric studies were carried out to study the distribution of charges within the crystal. The mechanical properties of the title crystal were studied by Vicker's microhardness technique.

  9. SYNTHESIS, STRUCTURE AND PHOTOLUMINESCENCE OF ...

    African Journals Online (AJOL)

    Preferred Customer

    dimensional supramolecular framework. ... The growing interest in the field of the crystal engineering of inorganic-organic hybrid materials .... Synthesis, structure and photoluminescence of (HgCl3)n(C6NO2H6)n(C6NO2H5)n nH2O. Bull. Chem.

  10. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  11. Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties.

    Science.gov (United States)

    Zhu, Rong; Wang, Yiyu; Zhang, Zongrui; Ma, Daiwei; Wang, Xinyu

    2016-06-01

    In this study, to obtain biomedical polyurethane elastomers with good mechanical properties and biocompatibility, a series of polycarbonate urethanes were synthesized via a two-step solution of polymerization method using the poly(1,6-hexanediol)carbonate diols (PCDL) as the soft segment, 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI), 1,6-hexamethylene diisocyanate (HDI) and 1,4-butanediol (BDO) as the hard segment with dibutyltin dilaurate as the catalyst. In this article, we illustrated the physical behaviors were obviously influenced by synthetic routes. And their chemical and physical structures were investigated by gel permeation chromatograph (GPC), differential scanning calorimeter (DSC), fourier transform infrared spectrography (FT-IR) and mechanical properties tests. The surface wettability were studied by contact angle measurement (CA). As a kind of short-term implant biomaterial, the results of the hemolysis and platelet adhesive tests were recorded by spectrophotometer and scanning electron microscopy (SEM), indicating the materials have a great potential for developments and applications in biomedical field.

  12. Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties

    Directory of Open Access Journals (Sweden)

    Rong Zhu

    2016-06-01

    Full Text Available In this study, to obtain biomedical polyurethane elastomers with good mechanical properties and biocompatibility, a series of polycarbonate urethanes were synthesized via a two-step solution of polymerization method using the poly(1,6-hexanediolcarbonate diols (PCDL as the soft segment, 4,4′-methylenebis(cyclohexyl isocyanate (H12MDI, 1,6-hexamethylene diisocyanate (HDI and 1,4-butanediol (BDO as the hard segment with dibutyltin dilaurate as the catalyst. In this article, we illustrated the physical behaviors were obviously influenced by synthetic routes. And their chemical and physical structures were investigated by gel permeation chromatograph (GPC, differential scanning calorimeter (DSC, fourier transform infrared spectrography (FT-IR and mechanical properties tests. The surface wettability were studied by contact angle measurement (CA. As a kind of short-term implant biomaterial, the results of the hemolysis and platelet adhesive tests were recorded by spectrophotometer and scanning electron microscopy (SEM, indicating the materials have a great potential for developments and applications in biomedical field.

  13. Synthesis of Zn1-xCuxO Nanoparticles by Coprecipitation and Their Structure and Electrical Property

    Science.gov (United States)

    Ayu Daratika, Dyah; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    The Zn1-xCuxO (x = 0 - 6% wt) nanoparticles has been synthesized by coprecipitation method using zinc acetate dihydrate, and copper powder were employed with HCl and NH4OH respectively as solvent and precipitating agents. The effect of Cu concentration on structural, optical, and electrical properties of Zn1-xCuxO nanoparticles were investigated. The diffraction patterns of XRD indicate that Zn1-xCuxO phase crystallized in the wurtzite structure having crystal size which was evaluated by using MAUD software, in the range of 28 - 79 nm. Electron microscope analysis shows the morphology of Zn1-xCuxO is nanowires, having finer grains with the increasing content of Cu. The Cu doping reduced the optical band gap energy from 3.10 eV to 2.80 eV, while the electrical conductivity increased from 1.18 × 10-8 to 24.25 × 10-8 S/cm. This result implies that Cu+ or Cu2+ ions have substituted Zn2+ ions. However, doping of Cu more than 4% wt increase optical band gap which makes the electrical conductivity decrease. The electrical conductivity obtained from this study is significantly higher than that reported previously.

  14. Synthesis, crystal structure and physical properties of europium - manganese fluoride pnictides, EuMnPnF (Pn = P, As, Sb)

    Science.gov (United States)

    Plokhikh, I. V.; Charkin, D. O.; Verchenko, V. Yu.; Kuznetsov, A. N.; Tsirlin, A. A.; Kazakov, S. M.; Shevelkov, A. V.

    2018-02-01

    The quaternary compounds EuMnPnF (Pn = P, As, Sb) have been prepared via solid state route at 1173 K, and their crystal and electronic structures as well as magnetic and transport properties have been elucidated. These compounds belong to the widespread LaAgSO structure type and crystallize in tetragonal (P4/nmm) unit cells with a = 4.0292(1) Å, c = 8.9505(2) Å for EuMnPF, a = 4.1227(1) Å, c = 9.0846(2) Å for EuMnAsF, and a = 4.3120(1) Å, c = 9.4356(2) Å for EuMnSbF. At low temperatures, the magnetic response is dominated by Eu2+. Contrary to previous reports, we do not observe any magnetic transitions in EuMnPF down to 2 K, whereas its arsenide and antimonide analogs exhibit Eu2+ ordering around 3 K. According to the electrical resistivity measurements and density-functional calculations, all three compounds are narrow-gap semiconductors.

  15. Synthesis, structure and spectroscopic properties of luminescent GdVO4:Dy3+ and DyVO4 particles

    Science.gov (United States)

    Jovanović, Dragana J.; Chiappini, Andrea; Zur, Lidia; Gavrilović, Tamara V.; Lam Tran, Thi Ngoc; Chiasera, Alessandro; Lukowiak, Anna; Smits, Krisjanis; Dramićanin, Miroslav D.; Ferrari, Maurizio

    2018-02-01

    In this work, we focused on the syntheses, structure and spectroscopic properties of GdVO4:Dy3+ and DyVO4 (nano)particles of different sizes and shapes (spherical nanoparticles of 2 nm, 4 nm, and 20 nm in size, nanorods with a few nanometers in diameter and up to 10-20 nm in length and microparticles of 1-8 μm) obtained by four synthetic methods. The size effect on the structure, Raman active modes, and photoluminescence emission intensities was analyzed by X-ray diffraction, Raman and photoluminescence spectroscopy, scanning and transmission electron microscopy, and diffuse reflection spectroscopy. All X-ray diffraction patterns clearly indicated presence of a single tetragonal zircon-type phase; absence of impurity phases indicate that the dopant Dy3+ ions were successfully and uniformly incorporated into the GdVO4 host lattice due to the equal valence and similar ionic radii. Micro-Raman measurements support the XRD measurements and showed Raman-active modes of the REVO4 systems (RE = Gd, Dy). The difference between the two hosts in the diffuse reflectance spectra was observed and it could be attributed to more effective Gd3+ ions on the charge transfer bands and different polarization (compared to bulk material) in smaller nanoparticles. Photoluminescence spectroscopy showed several bands in the visible and near-infrared regions which can be exclusively attributed to the f-f transitions of Dy3+ ions.

  16. Four Mixed-Ligand Zn(II Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-11-01

    Full Text Available Assemblies of four three-dimensional (3D mixed-ligand coordination polymers (CPs having formulas, {[Zn2(bdc2(4-bpdh]·C2H5OH·2H2O}n (1, [Zn(bdc(4-bpdh]n (2, {[Zn2(bdc2(4-bpdh2]·(4-bpdh}n (3, and {[Zn(bdc(4-bpdh]·C2H5OH}n (4 (bdc2− = dianion of 1,4-benzenedicarboxylic acid, 4-bpdh = 2,5-bis(4-pyridyl-3,4-diaza-2,4-hexadiene have been synthesized and structurally characterized by single-crystal X-ray diffraction method. Structural determination reveals that the coordination numbers (geometry of Zn(II ions in 1, 2, 3, and 4 are five (distorted square-pyramidal (SP, six (distorted octahedral (Oh, five (trigonal-bipyramidal (TBP, and four (tetrahedral (Td, respectively, and are bridged by 4-bpdh with bis-monodentate coordination mode and bdc2− ligands with bis-bidentate in 1, chelating/bidentate in 2, bis-monodentate and bis-bidentate in 3, and bis-monodentate in 4, to generate two-fold interpenetrating 3D cube-like metal-organic framework (MOF with pcu topology, non-interpenetrating 3D MOF, two-fold interpenetrating 3D rectangular-box-like MOF with pcu topology and five-fold interpenetrating diamondoid-like MOF with dia topology, respectively. These different intriguing architectures indicate that the coordination numbers and geometries of Zn(II ions, coordination modes of bdc2− ligand, and guest molecules play important roles in the construction of MOFs and the formation of the structural topologies and interpenetrations. Thermal stabilities, and photoluminescence study of 1–4 were also studied in detail. The complexes exhibit ligands based photoluminescence properties at room temperature.

  17. Synthesis, structure and magnetic properties of distorted Y{sub x}La{sub 1-x}FeO{sub 3}: Effects of mechanochemical activation and composition

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal, A.A. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina); Botta, P.M., E-mail: pbotta@fi.mdp.edu.ar [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina); Aglietti, E.F.; Conconi, M.S. [Centro de Tecnologia de Recursos Minerales y Ceramica, CETMIC (CIC-CONICET), Camino P. Centenario y 506 B1897ZCA, Gonnet (Argentina); Bercoff, P.G. [Facultad de Matematica, Astronomia y Fisica, FaMAF UNC and IFEG (CONICET), Ciudad Universitaria (5000), Cordoba (Argentina); Porto Lopez, J.M. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina)

    2011-11-01

    Highlights: {yields} Y{sub x}La{sub 1-x}FeO{sub 3} phases (0 {<=} x {<=} 1) were prepared at RT by mechanochemical treatment. {yields} The obtained materials showed an anisotropic distortion of its crystal structure. {yields} Combination of Y-doping and mechanochemistry produced weak ferromagnetic materials. {yields} Thermal treatments improved the structural order, leading to antiferromagnetic solids. {yields} Neel temperature decreased with x due to less stable magnetic structures. - Abstract: The influence of mechanochemical treatment on the synthesis and properties of Y{sub x}La{sub 1-x}FeO{sub 3} (0 {<=} x {<=} 1) orthoferrites is studied. Solid mixtures of the corresponding metal oxides were treated in a high-energy ball-mill. X-ray diffraction revealed that during the milling the disappearance of the reactants and a fast conversion to orthoferrite phase take place. Magnetic measurements showed a weak ferromagnetic behavior of the obtained materials, observing higher magnetization for larger x. The activated powders heated at 600 and 800 deg. C showed a progressive crystalline ordering together with a significant drop of magnetization. Thermal treatments at 1000 deg. C produced the formation of the phase Y{sub 3}Fe{sub 5}O{sub 12} for the samples richer in yttrium, increasing the magnetization. Rietveld refinements of the diffraction patterns and dynamical scanning calorimetry were used respectively to determine the lattice parameters and Neel temperatures for the formed orthoferrites. The effect of the composition on the structure and magnetic behavior is discussed.

  18. Reverse micellar synthesis, structural characterization and dielectric properties of Sr-doped BaZrO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Ubaidullah, Mohd [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Department of Chemistry, Banasthali University, Tonk, Rajasthan, 304022 (India); School of Science and Technology, Glocal University, Mirzapur, Saharanpur, 247121, Uttar Pradesh (India); Shahazad, Mohd [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Kumar, Dinesh [Department of Chemistry, Banasthali University, Tonk, Rajasthan, 304022 (India); Al-Hartomy, Omar A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia)

    2017-01-01

    Sr-doped BaZrO{sub 3} nanoparticles with strontium content varying from 5 to 20 mol % were successfully synthesized by reverse micellar method at 900 °C for the first time. Systematic studies have been carried out to establish the structural and electrical properties of the as prepared nanoparticles. These nanoparticles were characterized using powder X-ray diffraction, transmission electron microscopy, BET surface area and dielectric measurements. X-ray diffraction analysis showed the formation of monophasic and highly crystalline nanoparticles which could be indexed in cubic BaZrO{sub 3} with contraction of lattice on strontium substitution. A monotonic shift of diffraction pattern towards higher angel confirms the formation of solid solutions of Ba{sub 1−x}Sr{sub x}ZrO{sub 3} (0.05 ≤ x ≤ 0.20) which was corroborating well with lattice parameter studies. Transmission electron microscopic studies showed the formation of cubic, spherical and hexagonal nanoparticles with an average grain size of 40–65 nm. Energy dispersive X-ray spectroscopic studies confirmed the presence of dopant (Sr{sup 2+}) in the BaZrO{sub 3} matrix and estimated chemical species corroborate well with the loaded composition. Specific surface area of the solid solution comes out to be in the range of 104–244 m{sup 2} g{sup -1}. Smallest particle of size 40 nm shows highest surface area 244 m{sup 2} g{sup -1} for 20 mol% Sr-doped BaZrO{sub 3}. Dielectric and impedance studies were also carried out as a function of frequency and temperature to explore the electrical properties of Sr-doped BaZrO{sub 3}. The dielectric constant of Ba{sub 1−x}Sr{sub x}ZrO{sub 3} (0.05 ≤ x ≤ 0.20) was found to be in the range of 13–25 for x = 0.05 to x = 0.20 with nearly similar dielectric loss of the order of 0.02. The conductance increases linearly with increase in frequency at room temperature, however the impedance has an inverse effect. - Highlights: • Monophasic nanocrystalline Ba{sub 1

  19. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    Science.gov (United States)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  20. synthesis and structures

    Indian Academy of Sciences (India)

    Priya Saxena

    2017-08-29

    Aug 29, 2017 ... complexes as well as for biological applications.16–24. Of particular mention here are the nickel and palladium complexes of ..... tion and indexing were performed with CrysAlisPro software suite.42 WinGX module was used to perform all the cal- culations.43 The structures were solved by direct methods.

  1. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    Science.gov (United States)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  2. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  3. Three 3D metal coordination polymers based on triazol-functionalized rigid ligand: Synthesis, topological structure and properties

    Science.gov (United States)

    Meng, Lingkun; Liu, Kang; Liang, Chen; Guo, Xiaolei; Han, Xu; Ren, Siyuan; Ma, Dingxuan; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2018-02-01

    By using a triazol-functionalized tricarboxylate, three novel metal coordination polymers, namely, [Zn2L(OH)]·0.5H2O (1), [Co2L(OH)(H2O)]·5.5H2O (2), [Cu2(HL)] (3) L = [5-(3-(4-carboxyphenyl)-5-methyl-4H-1,2,4-triazol-4-yl)isophthalate] were synthesized under hydrothermal reactions. All the compounds were characterized by element analysis, IR spectroscopy, thermogravimetric analysis, power X-ray diffrcation and single-crystal X-ray diffrcation. Structural analysis reveals that compounds 1 and 2 have 3D networks with flu topologies where rigid trizaol-functionalized ligands as 4-connected nodes and Zn4(COO)6 or Co4(COO)6 clusters serves as 8-connected secondary building units. Compound 3 has 3D network with pcu topology where Cu4(COO)4 clusters serve as 6-connected secondary building units. Gas adsorption studies reveal that desolvated compoud 1 exhibits high H2 absorption capacity at 77 K and highly selective separation abilities of CO2 and C3H8 over CH4 at room temperature. The results suggest that 1 has potential application in gas storage and separation. In addition, the magnetic properties of compound 2 were also investigated.

  4. Synthesis and effect of copper incorporation on the thermoluminescence and structural properties of SiO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Burruel I, S. E.; Cruz V, C.; Salas J, Ch. J. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Centro de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Garcia H, A. R. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, 83000 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: silvia@gimmunison.com [UNAM, Instituto de Fisica, Departamento de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: In this work, we evaluated the effect of Cu-dopant concentration in SiO{sub 2} particles on structural and thermoluminescence (Tl) properties, prepared by the sol-gel technique. Tl studies in silica samples containing Cu show an important enhancement of their Tl response when compared with pure silica samples. In the copper doped silica a prominent Tl peak is observed, the glow curve was observed between 70 and 450 degrees C after exposure to beta irradiation. The maximum temperature of the glow peak centered at around 140 degrees C shifts to higher values and the intensity enhancement with increasing Cu content, this glow curve is surely composed of several overlapped individual Tl peaks. Also, the particle size is affected by the concentration of Cu dopant. In the case SiO{sub 2}, only is observed a glow peak centered to 95 degrees C, which is interesting for non-Tl dosimetry of ionizing radiation, which is based in detecting the afterglow response following exposure to radiation. The dose response of SiO{sub 2}:Cu showed a linear behaviour in the interval studied with no saturation evidence until 6.4 kGy, which makes this material suitable and promising for medical, industrial and also space dosimetry applications. (Author)

  5. Synthesis, X-ray crystal structure and optical properties research of novel diphenyl sulfone-based bis-pyrazoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhongliang; Zheng Liangwen [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhao Baoxiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-02-15

    A series of novel bis-pyrazoline derivatives were synthesized by the reaction of chalcone and (sulfonylbis(3,1-phenylene))bis(hydrazine) in 20-34% yields. The structures of the compounds were determined by IR, {sup 1}H NMR, HRMS spectra, and a representative compound 3b was confirmed based on the X-ray crystallographic analysis. Absorption and fluorescence spectra of these compounds in dichloromethane solution were investigated. The results showed that the emission maxima varied from 415 to 444 nm mainly depending on C3 substituents of pyrazoline moiety. The compounds had higher quantum yields, when C3 substituent was an electron-withdrawing p-chlorophenyl group. Moreover, absorption spectra and emission spectra exhibited a blue-shift and a red-shift with increasing the polarity of solvents, respectively. Fluorescent molecules happened to collide with each other and resulted in quench of the fluorescence when the concentration increased over to 10{sup -5} M. - Highlights: Black-Right-Pointing-Pointer A series of novel diphenyl sulfone-based bis-pyrazoline derivatives were designed and synthesized. Black-Right-Pointing-Pointer Their UV-vis absorption and fluorescence emission spectra were investigated. Black-Right-Pointing-Pointer The relationship of substituents and the optical properties were discussed. Black-Right-Pointing-Pointer With increasing the solvent polarity, fluorescence emission displayed a red-shift and fluorescence quantum yields decreased. Black-Right-Pointing-Pointer Fluorescence was quenched when the concentration increased over to 10{sup -5} M.

  6. New mixed valence defect dicubane cobalt(II)/cobalt(III) complex: Synthesis, crystal structure, photoluminescence and magnetic properties

    Science.gov (United States)

    Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin

    2018-02-01

    A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.

  7. Synthesis, X-ray crystal structure and optical properties research of novel diphenyl sulfone-based bis-pyrazoline derivatives

    International Nuclear Information System (INIS)

    Gong Zhongliang; Zheng Liangwen; Zhao Baoxiang

    2012-01-01

    A series of novel bis-pyrazoline derivatives were synthesized by the reaction of chalcone and (sulfonylbis(3,1-phenylene))bis(hydrazine) in 20–34% yields. The structures of the compounds were determined by IR, 1 H NMR, HRMS spectra, and a representative compound 3b was confirmed based on the X-ray crystallographic analysis. Absorption and fluorescence spectra of these compounds in dichloromethane solution were investigated. The results showed that the emission maxima varied from 415 to 444 nm mainly depending on C3 substituents of pyrazoline moiety. The compounds had higher quantum yields, when C3 substituent was an electron-withdrawing p-chlorophenyl group. Moreover, absorption spectra and emission spectra exhibited a blue-shift and a red-shift with increasing the polarity of solvents, respectively. Fluorescent molecules happened to collide with each other and resulted in quench of the fluorescence when the concentration increased over to 10 −5 M. - Highlights: ► A series of novel diphenyl sulfone-based bis-pyrazoline derivatives were designed and synthesized. ► Their UV–vis absorption and fluorescence emission spectra were investigated. ► The relationship of substituents and the optical properties were discussed. ► With increasing the solvent polarity, fluorescence emission displayed a red-shift and fluorescence quantum yields decreased. ► Fluorescence was quenched when the concentration increased over to 10 −5 M.

  8. Synthesis, crystal structures, luminescence and catalytic properties of two d¹⁰ metal coordination polymers constructed from mixed ligands.

    Science.gov (United States)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-15

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb=1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph=homophthalic acid, H3btc=1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 6(6) topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synthesis, molecular structure, spectroscopic properties and stability of (Z)-N-methyl-C-2,4,6-trimethylphenylnitrone

    Science.gov (United States)

    Lasri, Jamal; Ismail, Ali I.; Haukka, Matti; Soliman, Saied M.

    2015-02-01

    New N-methyl-C-2,4,6-trimethylphenylnitrone 1 has been synthesized starting from N-methylhydroxylamine and mesitaldehyde. The product was fully characterized using different spectroscopic techniques; FTIR, NMR, UV-Vis, high resolution mass spectrometry and X-ray diffraction. The relative stability and percent of population of its two possible isomers (E and Z) were calculated using the B3LYP/6-311++G(d,p) method in gas phase and in solution. In agreement with the X-ray results, it was found that Z-isomer is the most stable one in both gas phase and solution. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO), and chemical shift values were also calculated using the same level of theory. The TD-DFT results of the studied nitrone predicted a π-π∗ transition band at 285.1 nm (fosc = 0.3543) in the gas phase. The rest of the spectral bands undergo either hyperchromic or hypsochromic shifts in the presence of solvent. Polarizability and HOMO-LUMO gap values were used to predict the nonlinear optical properties (NLO) of the studied compound. NBO analysis has been used to determine the most accurate Lewis structure of the studied molecule.

  10. Structure-Processing-Property Relationship of Poly(Glycolic Acid for Drug Delivery Systems 1: Synthesis and Catalysis

    Directory of Open Access Journals (Sweden)

    Vineet Singh

    2010-01-01

    Full Text Available Till date, market is augmented with a huge number of improved drug delivery systems. The success in this area is basically due to biodegradable polymers. Although conventional systems of drug delivery utilizing the natural and semisynthetic polymers so long but synthetic polymer gains success in the controlled drug delivery area due to better degradation profile and controlled network and functionality. The polyesters are the most studied class group due the susceptible ester linkage in their backbone. The Poly(glycolic Acid (PGA, Poly(lactic acid (PLA, and Polylactide-co-glycolide (PLGA are the best profiled polyesters and are most widely used in marketed products. These polymers, however, still are having drawbacks which failed them to be used in platform technologies like matrix systems, microspheres, and nanospheres in some cases. The common problems arose with these polymers are entrapment inefficiency, inability to degrade and release drugs with required profile, and drug instability in the microenvironment of the polymers. These problems are forcing us to develop new polymers with improved physicochemical properties. The present review gave us an insight in the various structural elements of Poly(glycolic acid, polyester, with in depth study. The first part of the review focuses on the result of studies related to synthetic methodologies and catalysts being utilized to synthesize the polyesters. However the author will also focus on the effect of processing methodologies but due some constraints those are not included in the preview of this part of review.

  11. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  12. Synthesis, structure, magnetic and catalytic properties of new dinuclear chromium(III) complexes with oxazoline alcoholate ligands.

    Science.gov (United States)

    Jie, Suyun; Pattacini, Roberto; Rogez, Guillaume; Loose, Claudia; Kortus, Jens; Braunstein, Pierre

    2009-01-07

    The dinuclear chromium complexes [Cr(2)(N,O)(3)Cl(3)] (6) (N,O = 4,4-dimethyl-2-oxazolylmethanolate), [Cr(2)(N,O(Me2))(2)(EtOH)(2)Cl(4)] (7) and [Cr(2)(N,O(Me2))(2)(H(2)O)(2)Cl(4)] (8) (N,O(Me2) = 4,4-dimethyl-2-oxazolyldimethylmethanolate) have been prepared and characterized, including by single-crystal X-ray diffraction. Complex 6 is unsymmetrical, with two chloride ligands terminally bound to one Cr atom, whereas 7 and 8 (in 8 x C(4)H(8)O) which contain two molecules of coordinated ethanol or water, respectively, are centrosymmetric. These chromium complexes are paramagnetic, and the magnetic properties of 6 and 7 in the solid state correspond to antiferromagnetic behaviour, which was confirmed by DFT calculations of their electronic structures. Complexes 6-8 were evaluated in the catalytic oligomerization and/or polymerization of ethylene with different aluminium-based cocatalysts, and MMAO proved to be the most effective one. In the presence of MMAO, the influence of different reaction parameters, such as the Al/Cr molar ratio, reaction temperature and ethylene pressure, was investigated. Complex 7 showed the highest activity for ethylene polymerization at both 1 atm and 10 atm of ethylene pressure, up to 620 000 g mol(-1)(Cr) h(-1) in the latter case.

  13. Synthesis, surface structure and optical properties of double perovskite Sr{sub 2}NiMoO{sub 6} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lei; Wan, Yingpeng [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (China); Xie, Hongde, E-mail: xiehongde@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (China); Huang, Yanlin; Yang, Li [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737 (Korea, Republic of)

    2016-12-15

    Highlights: • Double perovskite Sr{sub 2}NiMoO{sub 6} nanoparticles were prepared via sol-gel route. • The nanoparticles have efficient optical absorption in visible light. • The band structure and energy positions were determined. • The perovskite has efficient photocatalytic on RhB photodegradation. • Multivalent Mo and Ni-ions on the surfaces were investigated. - Abstract: Double perovskite Sr{sub 2}NiMoO{sub 6} nanoparticles were synthesized via the chemical sol-gel route. The phase formation was investigated through X-ray polycrystalline diffraction (XRD) and Rietveld refinements. The perovskite crystallized in worm-like nano-grains with the diameter of 20–50 nm. The optical properties were measured by the optical absorption spectra. The nanoparticles present an indirect allowed transition with a narrow band gap of 2.1 eV. Sr{sub 2}NiMoO{sub 6} nanoparticles have obvious photocatalytic ability on the degradation of Rhodamine B (RhB) solutions under the irradiation of visible light. The transport behaviors of the excitons were investigated from the photoluminescence spectra and the corresponding decay lifetimes. Sr{sub 2}NiMoO{sub 6} nanoparticles present several advantages for photocatalysis such as the appropriate band energy positions, the quenched luminescence, and the coexistence of multivalent ions in the lattices.

  14. Mixed thio/oxo orthovanadates Na3[VSxO4-x] (x = 2, 3): Synthesis - crystal structures - properties

    International Nuclear Information System (INIS)

    Schnabel, S.; Roehr, C.

    2005-01-01

    Mixed sodium thio/oxo orthovanadates(V), dark red Na 3 [VS 3 O] and orange red Na 3 [VS 2 O 2 ], were synthesized via reactions in the melt starting from V, Na, Na 2 S, Na 2 O and sulfur. The structure of the low temperature phase of Na 3 [VS 3 O] (space group Pnma, a = 589.5(3), b = 962.8(5), c = 1186.6(6) pm, Z = 4, R1 = 0.0494) contains anions [VS 3 O] 3- almost identical to those known from the high temperature form, β-Na 3 [VS 3 O] (space group Cmc2 1 , a = 968.4(4), b = 1194.6(4), c = 590.5(2) pm, Z = 4, R1 = 0.0291). The second order phase transition between these two forms at 536 C was studied by temperature dependent powder diffraction and explained on the basis of a comparison of the anion packing in the two related structures. The packing of the dithiodioxovanadate anions in Na 3 [VS 2 O 2 ] (space group Pbca, a = 1162.7(2), b = 592.71(12), c = 1766.7(4) pm, Z = 8, R1 = 0.0312) is also closely related. The chemical bonding in the anions [VS 3 O] 3- and [VS 2 O 2 ] 3- of approximately ideal C 3v and C 2v symmetry is discussed on the basis of FP-LAPW band structure calculations and force constants obtained from Raman spectroscopy. The decrease of the calculated band gaps with increasing S content x in Na 3 [VS x O 4-x ] is in accordance with the optical properties showing a gradually deepening of the crystal and solution colour. Discernible trends in the chemical bonding in this series of mixed thio-oxo anions also include the amount of π bonding of the V-O and V-S bonds and the corresponding variation of force constants and V-O/V-S distances. (orig.)

  15. Synthesis, Structures and Luminescence Properties of Metal-Organic Frameworks Based on Lithium-Lanthanide and Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammed S. M. Abdelbaky

    2016-03-01

    Full Text Available Metal-organic frameworks assembled from Ln(III, Li(I and rigid dicarboxylate ligand, formulated as [LiLn(BDC2(H2O·2(H2O] (MS1-6,7a and [LiTb(BDC2] (MS7b (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid, were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a and a new monoclinic C2/c phase (MS7b. All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA, vibrational spectroscopy (FTIR, and scanning electron microscopy (SEM-EDX. The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex and O6-O7 (edge. Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3 edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6 are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

  16. Synthesis, crystal and electronic structures and optical properties of (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium)

    Science.gov (United States)

    Nhalil, Hariharan; Whiteside, Vincent R.; Sellers, Ian R.; Ming, Wenmei; Du, Mao-Hua; Saparov, Bayrammurad

    2018-02-01

    We report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm)2Hg3Cl8 crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg2Cl6]2- units and linear [HgCl2]0 molecules. (HIm)HgI3 crystallizes in the monoclinic P21/c space group featuring anionic [HgI3]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm)2Hg3Cl8 has an indirect band gap, whereas (HIm)HgI3 has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm)2Hg3Cl8 and (HIm)HgI3 are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. Following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.

  17. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. C V MYTHILI, A MALAR RETNA and S GOPALAKRISHNAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. MS received 28 August 2003; revised 19 February 2004.

  18. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    –1 dry exchanger, respectively. The material ... been found to have better properties than the simple salts of metals. The selectivity may be enhanced ... capacity and higher stability at elevated temperature. This paper deals with the synthesis, ...

  19. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    Science.gov (United States)

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  20. Synthesis, Crystal Structure and Luminescent Property of Cd (II Complex with N-Benzenesulphonyl-L-leucine

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2012-09-01

    Full Text Available A new trinuclear Cd (II complex [Cd3(L6(2,2-bipyridine3] [L = N-phenylsulfonyl-L-leucinato] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The results show that the complex belongs to the orthorhombic, space group P212121 with a = 16.877(3 Å, b = 22.875(5 Å, c = 29.495(6 Å, α = β = γ = 90°, V = 11387(4 Å3, Z = 4, Dc= 1.416 μg·m−3, μ = 0.737 mm−1, F (000 = 4992, and final R1 = 0.0390, ωR2 = 0.0989. The complex comprises two seven-coordinated Cd (II atoms, with a N2O5 distorted pengonal bipyramidal coordination environment and a six-coordinated Cd (II atom, with a N2O4 distorted octahedral coordination environment. The molecules form one dimensional chain structure by the interaction of bridged carboxylato groups, hydrogen bonds and p-p interaction of 2,2-bipyridine. The luminescent properties of the Cd (II complex and N-Benzenesulphonyl-L-leucine in solid and in CH3OH solution also have been investigated.

  1. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  2. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles.

    Science.gov (United States)

    Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii

    2017-12-01

    Two sets of Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.

  3. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    Science.gov (United States)

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  4. Structural and electromechanical properties of Na0.5Bi0.5TiO3 ceramics produced by different synthesis routes

    Science.gov (United States)

    Hussain, A.; Maqbool, A.; Malik, R. A.; Kim, M. H.; Song, T. K.; Kim, W. J.

    2016-08-01

    Sodium bismuth titanate, Na0.5Bi0.5TiO3 (NBT) ceramics were produced by three different methods; conventional mixed-oxide (CMO) route, molten salt synthesis (MSS) and topochemical microcrystal conversion (TMC) and then sintered at 1150 oC for 2 h in air atmosphere. The crystal structure, dielectric, ferroelectric and field-induced strain properties were investigated for all samples. All samples showed a single phase perovskite structure without any evidences of unwanted secondary phases. The NBT ceramics synthesized by the TMC method show slightly better dielectric, ferroelectric and field induced strain response as compared with CMO and MSS synthesized ceramics. The room temperature dielectric constant measured at 1 kHz increased from 218 for NBT ceramics synthesized by MSS method to 271 and 330 for CMO and TMC synthesized ceramics, respectively. Similarly, the dynamic piezoelectric coefficient (d 33*) enhanced from 91 pm/V for CMO synthesized to 97 pm/V and 107 pm/V for MSS and TMC synthesized ceramics, respectively.

  5. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    Science.gov (United States)

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines. © 2015 Wiley Periodicals, Inc.

  6. A novel zinc(II) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties

    Czech Academy of Sciences Publication Activity Database

    Almáši, M.; Zeleňák, V.; Zukal, Arnošt; Kuchár, J.; Čejka, Jiří

    2016-01-01

    Roč. 45, č. 3 (2016), s. 1233-1242 ISSN 1477-9226 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : synthesis * gas adsorption properties * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.029, year: 2016

  7. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  8. Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures.

    Science.gov (United States)

    Inaguma, Yoshiyuki; Tanaka, Kie; Tsuchiya, Takeshi; Mori, Daisuke; Katsumata, Tetsuhiro; Ohba, Tomonori; Hiraki, Ko-ichi; Takahashi, Toshihiro; Saitoh, Hiroyuki

    2011-10-26

    We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.

  9. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Kováč, J.; Voigt, A.; Raschman, P.

    2013-01-01

    Roč. 341, september (2013), s. 93-99 ISSN 0304-8853 Institutional support: RVO:61388980 Keywords : Precipitation in microemulsions * Ferrite nano-powder * Magnetic properties * ZFC * FC measurements Subject RIV: CA - Inorganic Chemistry Impact factor: 2.002, year: 2013

  10. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    International Nuclear Information System (INIS)

    Guan, Lei; Wang, Ying

    2015-01-01

    A novel cobalt phosphonate, [Co(HL)(H 2 O) 3 ] n (1) (L=N(CH 2 PO 3 H) 3 3− ) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO 6 octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis

  11. Synthesis and spectroscopic properties of homo- and ...

    Indian Academy of Sciences (India)

    Unknown

    Mehrotra. Synthesis and spectroscopic properties of homo- and heterobimetallic complexes of oxovanadium(V). † ... Spectroscopic (IR, UV–Vis and (1H, 27Al, 51V) NMR) properties of the new com- plexes have been investigated and their ... refluxed under a fractionating column (10 cm), fol- lowed by continuous azeotropic ...

  12. Synthesis, structures, and properties of alkali and alkaline earth coordination polymers based on V-shaped ligand

    Czech Academy of Sciences Publication Activity Database

    Cheng, P. C.; Tseng, F. S.; Yeh, C. T.; Chang, T. G.; Kao, C. C.; Lin, C. H.; Liu, W. R.; Chen, J. S.; Zima, Vítězslav

    2012-01-01

    Roč. 14, č. 20 (2012), s. 6812-6822 ISSN 1466-8033 Institutional support: RVO:61389013 Keywords : metal organic frameworks * structure * carboxylates Subject RIV: CA - Inorganic Chemistry Impact factor: 3.879, year: 2012

  13. Synthesis, structural and electrical properties of [C{sub 2}H{sub 10}N{sub 2}][(SnCl(NCS){sub 2}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Karoui, Sahel [Laboratoire genie de materiaux et environnement, ENIS, BP.1173,3038- Sfax, Universite de Sfax (Tunisia); Kamoun, Slaheddine, E-mail: slah.kamoun@gmail.com [Laboratoire genie de materiaux et environnement, ENIS, BP.1173,3038- Sfax, Universite de Sfax (Tunisia); Jouini, Amor [Laboratoire de Chimie du Solide, Departement de Chimie, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2013-01-15

    Synthesis, structural and electrical properties are given for a new organic stannous pseudo halide material. The structure of the [C{sub 2}H{sub 10}N{sub 2}][(SnCl(NCS){sub 2}]{sub 2} reveals that the adjacent Sn(II) centres are bridged by a pair of SCN{sup -} anions to form a 1-D array giving rise to the anionic chains (SnCl(NCS){sub 2}){sub n}{sup n-}. These chains are themselves interconnected by means of N-H Horizontal-Ellipsis Cl(S) hydrogen bonds originating from the organic cation [(NH{sub 3}){sub 2}(CH{sub 2}){sub 2}]{sup 2+}. The AC impedance measurements were performed as a function of both frequency and temperature. The electrical conduction and dielectric relaxation have been studied. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found close to that of the activation energy obtained for DC conductivity. The conduction mechanisms are attributed to the quantum mechanical tunneling model in phase I and to the proton hopping among hydrogen vacancies in phase II. - Graphical abstract: Atomic coordination in [C2H10N2][SnCl(NCS)2)2]. Highlights: Black-Right-Pointing-Pointer X-ray diffraction analysis shows the 1D network character of the structure. Black-Right-Pointing-Pointer DSC experiments show a phase transition at 336 K. Black-Right-Pointing-Pointer The AC conductivity is interpreted in terms of Jonsher's law. Black-Right-Pointing-Pointer Two conduction mechanisms are proposed for phase I and II.

  14. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiaoyun; Chen Dianyu; He Minghua [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Yang Gaowen, E-mail: ygwsx@126.com [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China)

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.

  15. Synthesis, structural, thermal and optical properties of TeO2-Bi2O3-GeO2-Li2O glasses

    Science.gov (United States)

    Dimowa, Louiza; Piroeva, Iskra; Atanasova-Vladimirova, S.; Petrova, Nadia; Ganev, Valentin; Titorenkova, Rositsa; Yankov, Georgi; Petrov, Todor; Shivachev, Boris L.

    2016-10-01

    In this study, synthesis and characterization of novel quaternary tellurite glass system TeO2-Bi2O3-GeO2-Li2O is presented. The compositions include TeO2 and GeO2 as glass formers while different proportion of Bi2O3 and Li2O act as network modifiers. Differential thermal analysis, X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, laser ablation inductively coupled plasma mass spectrometry, UV-Vis and Raman spectroscopy are applied to study the structural, thermal and optical properties of the studied glasses. Obtained glasses possess a relatively low glass transition temperature (around 300 °C) if compared to other tellurite glasses, show good thermal transparency in the visible and near infra-red (from 2.4 to 0.4 μm) and can double the frequency of laser light from its original wavelength of 1064 nm to its second-harmonic at 532 nm (i.e. second harmonic generation).

  16. Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2

    International Nuclear Information System (INIS)

    Jaramillo, J; Garzón, B A; Mejía, L Tirado

    2016-01-01

    The photocatalysis process using semiconductor materials, in particular TiO 2 , is one of the most attractive treatment for polluted waters decontamination because of its advantages over other oxidation processes [1-6]. In this study the effect on the physical properties of TiO 2 due to the pH used during the manufacturing of the semiconductor is studied. Different samples were synthesized using ammonium hydroxide (NH 4 OH) and nitric acid (HNO 3 ) as catalysts to provide basic and acid pH environments, respectively. Changes in composition, structure and morphology of the samples were studied and its dependence with the pH of the synthesis is discussed. Results indicate that the base catalysis favours the formation of anatase TiO 2 crystalline phase with crystallite size ∼ 26nm obtained by Rietveld refinement; the spherical particles formed agglomerates of ∼100nm; the average pore size is in the range of mesopores and the surface area increases with the amount of NH 4 OH added in the process. On the other hand, with acid catalysis, a mixture of two crystalline phases, anatase and rutile, was obtained with crystallite sizes around 26 and 49nm, respectively. The grain size is several orders of magnitude higher than those obtained by basic catalysis. The photocatalytic activity was measured using methylene blue solutions to determine their degradation with radiation. Greater efficiency was observed in the photocatalysts synthesized with NH 4 OH. (paper)

  17. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    Science.gov (United States)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  18. Carbon Domains on MoS2/TiO2 System via Catalytic Acetylene Oligomerization: Synthesis, Structure, and Surface Properties

    Directory of Open Access Journals (Sweden)

    Sara Cravanzola

    2017-11-01

    Full Text Available Carbon domains have been obtained at the surface of a MoS2/TiO2 (Evonik, P25 system via oligomerization and cyclotrimerization reactions involved in the interaction of the photoactive material with acetylene. Firstly, MoS2 nanosheets have been synthesized at the surface of TiO2, via sulfidation of a molybdenum oxide precursor with H2S (bottom-up method. Secondly, the morphology and the structure, the optical and the vibrational properties of the obtained materials, for each step of the synthesis procedure, have been investigated by microscopy and spectroscopy methods. In particular, transmission electron microscopy images provide a simple tool to highlight the effectiveness of the sulfidation process, thus showing 1L, 2L, and stacked MoS2 nanosheets anchored to the surface of TiO2 nanoparticles. Lastly, in-situ FTIR spectroscopy investigation gives insights into the nature of the oligomerized species, showing that the formation of both polyenic and aromatic systems can be taken into account, being their formation promoted by both Ti and Mo catalytic sites. This finding gives an opportunity for the assembly of extended polyenic, polyaromatic, or mixed domains firmly attached at the surface of photoactive materials. The presented approach, somehow different from the carbon adding or doping processes of TiO2, is of potential interest for the advanced green chemistry and energy conversion/transport applications.

  19. Investigation on synthesis, growth, structure and physical properties of AgGa0.5In0.5S2 single crystals for Mid-IR application

    Science.gov (United States)

    Karunagaran, N.; Ramasamy, P.

    2018-02-01

    Silver Gallium Indium Sulfide (AgGa0.5In0.5S2) belongs to the family of AIBIIIC2VI ternary compound semiconductors which crystallize in the chalcopyrite structure. Synthesis of the polycrystalline material from the starting elements is achieved using melt temperature oscillation method. The AgGa0.5In0.5S2 single crystals have been grown by the vertical Bridgman technique. The synthesized AgGa0.5In0.5S2 polycrystalline charge was confirmed by powder XRD. The peak positions are in good agreement with the powder diffraction file. Thermal property was analyzed using differential scanning calorimetry (DSC) technique. The melting point of the crystal is 896 °C and freezing point is 862 °C. The unit cell parameters were confirmed by single crystal X-ray. The transmittance of the grown crystal is 55% in the NIR region and 60% in the mid-IR region. The optical band gap was found to be 2.0 eV. The stoichiometric composition of AgGa0.5In0.5S2 was measured using energy dispersive spectrometry (EDS). The photoluminescence behavior of AgGa0.5In0.5S2 has been analyzed. The resistivity of the grown single crystal has been measured.

  20. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  1. Two coordination polymers based on semicarbazone Schiff base and azide: synthesis, crystal structure, electrochemistry, magnetic properties and biological activity

    Czech Academy of Sciences Publication Activity Database

    Shaabani, B.; Khandar, A.A.; Dušek, Michal; Pojarová, Michaela; Mahmoudi, F.; Feher, A.; Kajňaková, M.

    2013-01-01

    Roč. 66, č. 5 (2013), s. 748-762 ISSN 0095-8972 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : Schiff bases * semicarbazone * coordination polymer * structure analyses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.224, year: 2013

  2. Synthesis, structures and magnetic properties of two chiral mixed-valence iron(ii,iii) coordination networks.

    Science.gov (United States)

    Xue, Yun-Shan; Tan, Xu; Zhou, Mengjie; Mei, Hua; Xu, Yan

    2017-12-21

    Two rare chiral mixed-valence iron(ii,iii) coordination networks d-and l-{[Fe II FeO(BTC) 3 (DEF) 3 ]·0.5H 2 O} n (d-1 and l-1) (H 3 BTC = 1,3,5-benzenetricarboxylic acid; DEF = N,N-diethylformamide) have been synthesized without any chiral auxiliary under the solvothermal conditions and structurally characterized by single crystal X-ray crystallography. Structural analysis indicates that these two polymers d-1 and l-1 are enantiomers. The only difference between d-1 and l-1 is that the framework of compound l-1 consists of left-handed double helical chains, while d-1 consists of right-handed double helical chains. Two distinct subunits (SBUs), {(μ 3 -O)Fe(COO) 6 (DEF) 3 } and {Fe II (COO) 6 }, are observed in both structures simultaneously. The integration of two distinct SBUs leads to a trinodal (3,3,6)-connected net with an unusual structural topology. Interestingly, despite the achiral nature of H 3 BTC, the resulting framework exhibits rare chiral helical channels. The experiments show that dodecatungstosilic acid acts as a catalyst which could increase the conversion of the initial reactant. The magnetic studies indicate antiferromagnetic interactions between Fe 3+ ions. Additionally, the luminescence studies revealed that the compound exhibited strong photoluminescence emissions at room temperature with a peak at 457 nm, owing to the strong interactions between organic linkers and metal clusters.

  3. Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties

    Czech Academy of Sciences Publication Activity Database

    Król, P.; Król, B.; Pielichowska, K.; Špírková, Milena

    2015-01-01

    Roč. 293, č. 2 (2015), s. 421-431 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane films * surface structure * AFM microscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2015

  4. Synthesis, structure and properties of heavily Mn-doped perovskite-type SrTiO.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Trepakov, Vladimír; Makarova, Marina; Stupakov, Oleksandr; Tereshina, Evgeniya; Drahokoupil, Jan; Čerňanský, Marian; Potůček, Zdeněk; Borodavka, Fedir; Valvoda, V.; Lynnyková, Anna; Jäger, Aleš; Jastrabík, Lubomír; Dejneka, Alexandr

    2014-01-01

    Roč. 143, č. 2 (2014), s. 570-577 ISSN 0254-0584 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941; GA ČR GBP108/12/G043; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : nanostructures * oxides * ferroelectricity * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.259, year: 2014 http://www.sciencedirect.com/science/article/pii/S0254058413007141

  5. Novel 1D coordination polymer {Tm(Piv)3}n: Synthesis, structure, magnetic properties and thermal behavior

    International Nuclear Information System (INIS)

    Fomina, Irina; Dobrokhotova, Zhanna; Aleksandrov, Grygory; Emelina, Anna; Bykov, Mikhail; Malkerova, Irina; Bogomyakov, Artem; Puntus, Lada; Novotortsev, Vladimir; Eremenko, Igor

    2012-01-01

    The new 1D coordination polymer {Tm(Piv) 3 } n (1), where Piv=OOCBu t− , was synthesized in high yield (>95%) by the reaction of thulium acetate with pivalic acid in air at 100 °S. According to the X-ray diffraction data, the metal atoms in compound 1 are in an octahedral ligand environment unusual for lanthanides. The magnetic and luminescence properties of polymer 1, it’s the solid-phase thermal decomposition in air and under argon, and the thermal behavior in the temperature range of −50…+50 °S were investigated. The vaporization process of complex 1 was studied by the Knudsen effusion method combined with mass-spectrometric analysis of the gas-phase composition in the temperature range of 570–680 K. - Graphical Abstract: Novel 1D coordination polymer {Tm(Piv) 3 } n was synthesized and studied by X-ray diffraction. The magnetic, luminescence properties, the thermal behavior and the volatility for the compound {Tm(Piv) 3 } n were investigated.▪ Highlights: ► We synthesized the coordination polymer {Tm(Piv) 3 } n . ► Tm atoms in polymer have the coordination number 6. ► Polymer exhibits blue-color emission at room temperature. ► Polymer shows high thermal stability and volatility. ► Polymer has no phase transitions in the range of −50…+50 °S.

  6. Synthesis, structures and properties of the new lithium cobalt(II) phosphate Li4Co(PO4)2

    International Nuclear Information System (INIS)

    Glaum, R.; Gerber, K.; Schulz-Dobrick, M.; Herklotz, M.; Scheiba, F.; Ehrenberg, H.

    2012-01-01

    α-Li 4 Co(PO 4 ) 2 has been synthesized and crystallized by solid-state reactions. The new phosphate crystallizes in the monoclinic system (P2 1 /a, Z=4, a=8.117(3) Å, b=10.303(8) Å, c=8.118(8) Å, β=104.36(8) Å) and is isotypic to α-Li 4 Zn(PO 4 ) 2 . The structure of α-Li 4 Co(PO 4 ) 2 has been determined from single-crystal X-ray diffraction data {R 1 =0.040, wR 2 =0.135, 2278 unique reflections with F o >4σ(F o )}. The crystal structure, which might be regarded as a superstructure of the wurtzite structure type, is build of layers of regular CoO 4 , PO 4 and Li1O 4 tetrahedra. Lithium atoms Li2, Li3 and Li4 are located between these layers. Thermal investigations by in-situ XRPD, DTA/TG and quenching experiments suggest decomposition followed by formation and phase transformation of Li 4 Co(PO 4 ) 2 : α-Li 4 Co(PO 4 ) 2 ⟹ 442°C β-Li 3 PO 4 +LiCoPO 4 ⇌ 773°C β-Li 4 Co(PO 4 ) 2 ⟹ quenchingto25°C α-Li 4 Co(PO 4 ) 2 According to HT-XRPD at θ=850°Cβ-Li 4 Co(PO 4 ) 2 (Pnma, Z=2, 10.3341(8) Å, b=6.5829(5) Å, c=5.0428(3) Å) is isostructural to γ-Li 3 PO 4 . The powder reflectance spectrum of α-Li 4 Co(PO 4 ) 2 shows the typical absorption bands for the tetrahedral chromophore [Co II O 4 ]. - Graphical abstract: The complex formation and decomposition behavior of Li 4 Co(PO 4 ) 2 with temperature has been elucidated. The crystal structure of its α-phase was determined from single crystal data, HT-XRPD allowed derivation of a structure model for the β-phase. Both modifications belong to the Li 3 PO 4 structure family. Highlights: ► Li 4 Co(PO 4 ) 2 exhibits complex thermal behavior. ► The new phosphate belongs to the Li 3 PO 4 structure family. ► A single-crystal structure analysis is provided for the metastable α-Li 4 Co(PO 4 ) 2 . ► From HT-XRPD data a cation distribution model is developed for β-Li 4 Co(PO 4 ) 2 . ► No electrochemical delithiation is observed up to 5 V.

  7. Synthesis, crystal structures, spectral, thermal and antimicrobial properties of new Zn(II) 5-iodo- and 5-bromosalicylates

    Science.gov (United States)

    Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela

    2018-03-01

    Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.

  8. Effects of size reduction on the structure and magnetic properties of core-shell Ni3Si/silica nanoparticles prepared by electrochemical synthesis

    Czech Academy of Sciences Publication Activity Database

    Pigozzi, G.; Mukherji, D.; Elerman, Y.; Strunz, Pavel; Gilles, R.; Hoelzel, M.; Barbier, B.; Schmutz, P.

    2014-01-01

    Roč. 584, JAN (2014), s. 119-127 ISSN 0925-8388 Institutional support: RVO:61389005 Keywords : intermetallics * nanostructured materials * transition metal alloys and compounds * electrochemical synthesis * crystal structure * magnetic measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  9. Synthesis, structure, spectral properties and theoretical studies of two half-sandwich titanium-complexes with adamantoxy ligands

    Czech Academy of Sciences Publication Activity Database

    Varga, Vojtěch; Mach, Karel; Pinkas, Jiří; Kubišta, Jiří; Szarka, K.; Gyepes, R.

    2017-01-01

    Roč. 1142, AUG 2017 (2017), s. 248-254 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GAP207/12/2368; GA ČR(CZ) GA14-08531S Institutional support: RVO:61388955 Keywords : half- sandwich complex * ionic complex * solid-state structure Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.753, year: 2016

  10. Hydrothermal Synthesis and Structural Characterization of NiO/SnO2 Composites and Hydrogen Sensing Properties

    OpenAIRE

    Wei, Chao; Bo, Bin; Tao, Fengbo; Lu, Yuncai; Peng, Shudi; Song, Wei; Zhou, Qu

    2015-01-01

    Pure SnO2 and NiO doped SnO2 nanostructures were successfully synthesized via a simple and environment-friendly hydrothermal method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectra (XPS) were used to investigate the crystalline structures, surface morphologies and microstructures, and element components and their valences of the as-synthesized samples. Furthermore, planar chemical gas sensors based...

  11. Two Organic Cation Salts Containing Tetra(isothiocyanatecobaltate(II: Synthesis, Crystal Structures, Spectroscopic, Optical and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2017-03-01

    Full Text Available Single crystals of two hybrid organic-inorganic molecular solids, benzyl pyridinium tetra(isothiocyanatecobalt ([BzPy]2[Co(NCS4] (1 and benzyl quinolinium tetra(isothiocyanatecobalt ([BzQl]2[Co(NCS4] (2, were grown using a slow evaporation growth technique at room temperature and their IR, UV-Vis, X-ray crystal structures, luminescence, and magnetism were reported. The crystal structural analysis revealed that two molecular solids crystallize in the monoclinic space group P21/c of 1 and P21/n of 2. The cations form a dimer through weak C–H···π/π···π interactions in 1 and 2, and the adjacent cation (containing N(6 atom in 2 forms a columnar structure through π···π weak interactions between the quinoline and benzene rings, while the anions in 1 form a layer structure via short S···Co interactions. The anions (A and cations (C are arranged alternatively into a column in the sequence of ···A–CC–A–CC–A··· for 1, while the two anions and cationic dimer in 2 form an alliance by the C–H···π, C–H···S and C–H···N hydrogen bonds. A weak S···π interaction was found in 1 and 2. The two molecular solids show a broad fluorescence emission around 400 nm in the solid state at room temperature, and weak antiferromagnetic coupling behavior when the temperature is lowered.

  12. Synthesis, structure, spectral properties and theoretical studies of two half-sandwich titanium-complexes with adamantoxy ligands

    Czech Academy of Sciences Publication Activity Database

    Varga, Vojtěch; Mach, Karel; Pinkas, Jiří; Kubišta, Jiří; Szarka, K.; Gyepes, R.

    2017-01-01

    Roč. 1142, AUG 2017 (2017), s. 248-254 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GAP207/12/2368; GA ČR(CZ) GA14-08531S Institutional support: RVO:61388955 Keywords : half-sandwich complex * ionic complex * solid-state structure Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.753, year: 2016

  13. Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH43Bi2I9

    Directory of Open Access Journals (Sweden)

    Shijing Sun

    2016-03-01

    Full Text Available Organic-inorganic halide perovskites, especially methylammonium lead halide, have recently led to remarkable advances in photovoltaic devices. However, due to environmental and stability concerns around the use of lead, research into lead-free perovskite structures has been attracting increasing attention. In this study, a layered perovskite-like architecture, (NH43Bi2I9, is prepared from solution and the structure solved by single crystal X-ray diffraction. The band gap, which is estimated to be 2.04 eV using UV-visible spectroscopy, is lower than that of CH3NH3PbBr3. The energy-minimized structure obtained from first principles calculations is in excellent agreement with the X-ray results and establishes the locations of the hydrogen atoms. The calculations also point to a significant lone pair effect on the bismuth ion. Single crystal and powder conductivity measurements are performed to examine the potential application of (NH43Bi2I9 as an alternative to the lead containing perovskites.

  14. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  15. Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9

    Science.gov (United States)

    Sun, Shijing; Tominaka, Satoshi; Lee, Jung-Hoon; Xie, Fei; Bristowe, Paul D.; Cheetham, Anthony K.

    2016-03-01

    Organic-inorganic halide perovskites, especially methylammonium lead halide, have recently led to remarkable advances in photovoltaic devices. However, due to environmental and stability concerns around the use of lead, research into lead-free perovskite structures has been attracting increasing attention. In this study, a layered perovskite-like architecture, (NH4)3Bi2I9, is prepared from solution and the structure solved by single crystal X-ray diffraction. The band gap, which is estimated to be 2.04 eV using UV-visible spectroscopy, is lower than that of CH3NH3PbBr3. The energy-minimized structure obtained from first principles calculations is in excellent agreement with the X-ray results and establishes the locations of the hydrogen atoms. The calculations also point to a significant lone pair effect on the bismuth ion. Single crystal and powder conductivity measurements are performed to examine the potential application of (NH4)3Bi2I9 as an alternative to the lead containing perovskites.

  16. Synthesis, crystal structures, luminescence properties of two metal coordination polymers derived from 5-substituted isophthalate and flexible bis (triazole) ligands.

    Science.gov (United States)

    Ming, Chun-lun; Wang, Li-na; Van Hecke, Kristof; Cui, Guang-hua

    2014-08-14

    Two new metal complexes, [Ni(btx)(nip)(H2O)]n (1), {[Cd(btx)(mip)(H2O)]·H2O}n (2) (btx=1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, H2nip=5-nitroisophthalic acid, H2mip=5-methyisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. Complex 1 features a 3D metal-organic framework with three-fold interpenetrating CdSO4-type topology. Complex 2 exhibits a 2D network with square grid units, which is further extended into a rare 3,5T1 three-dimensional supramolecular network via three modes of classical OH⋯O hydrogen bonds. In addition, luminescence properties of 1 and 2 have also been investigated in the solid state. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    Science.gov (United States)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  18. Flux synthesis, modulated crystal structures, and physical properties of REMn0.5SeO (RE = La, Ce)

    International Nuclear Information System (INIS)

    Peschke, Simon; Johrendt, Dirk; Nitsche, Fabian

    2015-01-01

    The selenide oxides REMn 0.5 SeO (RE = La, Ce) were synthesized by heating RE 2 O 3 , RE, Mn, and Se in a NaI/KI flux at 800 C, and their modulated crystal structures determined by X-ray single crystal and powder diffraction {P 1 1 2/n(αβ1/2)0s, Z = 2, LaMn 0.5 SeO: a = 405.7(1), b = 405.7(1), c = 915.2(1) pm, γ = 90 , q = [1/10, -1/10, 1/2]; CeMn 0.5 SeO: a = 402.0(1), b = 401.8(1), c = 910.7(1) pm, γ = 90.000(4) , q = [0.0789(2), -0.0783(2), 1/2]}. The structures are related to the ZrCuSiAs-type structure with ordered vacancies at the manganese sites. The resulting modulations of the checkerboard pattern in the [Mn 0.5 Se] layers can be approximated by 10a x 10b x 2c and 51a x 51b x 2c supercells in LaMn 0.5 SeO and CeMn 0.5 SeO, respectively. Both compounds are insulators. The optical bandgap of LaMn 0.5 SeO was determined to 2.13 eV from the Kubelka-Munk function. Magnetic measurements indicate antiferromagnetic ordering of the Mn 2+ moments with Neel points well above room temperature, as known from related manganese compounds. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Hybrid compounds of Keggin polyoxotungstate with transition metal ion as the central atom. Synthesis, structure and properties

    Science.gov (United States)

    Li, Xiao-Min; Chen, Ya-Guang; Shi, Tian

    2016-02-01

    The compounds (Hbipy)2[Co(bipy)2(H2O)4]2(CoW12O40)·2bipy·7H2O (1) and [Ni2(Hbipy)2(bipy)(H2O)4(H2W12O40)]·5H2O (2) (bipy = 4,4-bipyridine) were synthesized hydrothermally and characterized by elemental analysis, IR spectroscopy, TG analyses, solid ultraviolet diffuse spectroscopy and single crystal X-ray diffraction method. In 1 the complex ions, [Co(bipy)2(H2O)4]2+, construct a supramolecular layer through π-π stacking interaction. The heteropolyanions with central Co atom and supramolecular layers are linked by hydrogen bonds. In 2 a 2D structure is formed from metatungstate anions and binuclear Ni-bipy complexes through the coordination of metatungstate anions and bipy to Ni ions. Between the layers and bipyridine molecules are the hydrogen bond interactions. The formation of 1 and 2 shows that the solution acidity and metal ions influence greatly the structure of the compounds. Solid ultraviolet diffusion results indicate that the compounds 1 and 2 are potential semiconductor materials. In 1 and 2 there exists a weak antiferromagnetic interaction.

  20. Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis

    International Nuclear Information System (INIS)

    Gonzalez-Reyes, L.; Hernandez-Perez, I.; Diaz-Barriga Arceo, L.; Dorantes-Rosales, H.; Arce-Estrada, E.; Suarez-Parra, R.; Cruz-Rivera, J.J.

    2010-01-01

    Anatase TiO 2 nanocrystalline (6 nm) with BET specific surface area of 300 m 2 /g and direct bandgap of 3.31 eV were prepared sonochemically and then it was subjected to thermal treatment from 400 to 900 deg. C for 2 h, in order to produce variable anatase-rutile ratio. Three stages were considered in the samples thermally treated: (i) anatase grains coarsening as a result of heat treatment temperature increasing the structural homogeneity and crystallinity and both phenomena produce a reduction in the specific surface area, (ii) coexistence of two phases (anatase and rutile) separated by a transition region, called an interface, and (iii) process where the rutile grains evolve into a new equilibrium shape without the presence of anatase phase, minimizing the total surface and the grain boundary energies, by mass transport diffusion. In this last stage the rutile phase has the sole function of growth and densification. The structure evolution, morphology and microstructure characteristics were obtained by X-ray diffraction (XRD) and transmission electron microscopy (TEM). All the stages of phase transformation are subject to thermal effects that stem from the redistribution of energy in the system. The UV-vis absorption spectra show that direct and indirect transitions can take place in the same sample simultaneously. This is attributed to the combined effect of samples with variable anatase-rutile ratio and particle size effect.

  1. A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan1974@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ao, Ke-Hou [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-09-15

    A pair of novel 3D homochiral metal−organic frameworks (HMOFs), namely [Cd{sub 2.5}((R)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-D), [Cd{sub 2.5}((S)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs. - Graphical abstract: Using lactic acid derivative ligands ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB to assemble with Cd{sup 2+} ions, a pair of novel 3D homochiral metal-organic frameworks (HMOFs) with cage substructures have been synthesized. Display Omitted - Highlights: • Lactic acid derivative ligands • Cage substructure • Enantiomers.

  2. Synthesis, crystal structure and photo physical properties of isomeric fluorinated s-shaped polyaromatic dibenzo[c,l]chrysene derivatives

    Science.gov (United States)

    Moriguchi, Tetsuji; Tabuchi, Daichi; Yakeya, Daisuke; Tsuge, Akihiko; Jalli, Venkataprasad; Yoza, Kenji

    2018-01-01

    Two s-shaped fluorinated isomeric polyaromatic dibenzo[c,l]chrysene derivatives have been synthesized by a two step process using the Wittig, Heck and iodine promoted cyclization reactions. These cyclized compounds were characterized by 1H NMR and EI-MS. Further, absolute configurations of isomeric 4a and 4b were determined by X-ray diffraction analysis. Compound 4a crystallized under monoclinic system with space group P21/c and compound 4b crystallized under monoclinic system with space group Cc. They have good solubility in common organic solvents such as dichloromethane, chloroform and THF. Photophysical properties of 4a and 4b were evaluated by using UV-Visible and Fluorescence spectrophotometer. Compounds 4a and 4b showed strong absorption maximum wavelength at 317 nm. The emission spectra of 4a and 4b displayed sharp peaks in the visible region from 417 to 441 nm. The shape of the UV-Visible and Fluorescence spectra of 4a and 4b looks almost identical. But compound 4a exhibited better fluorescence intensity than compound 4b. This difference may be due to the difference in the configuration of compounds 4a and 4b.

  3. A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties

    International Nuclear Information System (INIS)

    Xu, Zhong-Xuan; Ao, Ke-Hou; Zhang, Jian

    2016-01-01

    A pair of novel 3D homochiral metal−organic frameworks (HMOFs), namely [Cd 2.5 ((R)-CIA) 6 (1,4-DIB)(H 2 O) 2 ]·((CH 3 ) 2 NH 2 )·H 2 O (1-D), [Cd 2.5 ((S)-CIA) 6 (1,4-DIB)(H 2 O) 2 ]·((CH 3 ) 2 NH 2 )·H 2 O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H 3 CIA and (S)-H 3 CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs. - Graphical abstract: Using lactic acid derivative ligands ((R)-H 3 CIA and (S)-H 3 CIA) and 1,4-DIB to assemble with Cd 2+ ions, a pair of novel 3D homochiral metal-organic frameworks (HMOFs) with cage substructures have been synthesized. Display Omitted - Highlights: • Lactic acid derivative ligands • Cage substructure • Enantiomers

  4. New in situ generated acylhydrazidate-coordinated complexes and acylhydrazide molecules: Synthesis, structural characterization and photoluminescence property

    Science.gov (United States)

    Wang, Yan-Ning; Huo, Qi-Sheng; Zhang, Ping; Yu, Jie-Hui; Xu, Ji-Qing

    2016-10-01

    By utilizing the hydrothermal in situ acylation of organic acids with N2H4, three acylhydrazidate-coordinated compounds [Mn(L1)2(H2O)2] (L1 = 2,3-quinolinedicarboxylhydrazidate; HL1 = 2,3-dihydropyridazino[4,5-b] quinoline-1,4-dione) 1, [Mn2(ox)(L2)2(H2O)6]·2H2O (L2 = benzimidazolate-5,6-dicarboxylhydrazide; HL2 = 6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; ox = oxalate) 2, and [Cd(HL3)(bpy)] (L3 = 4,5-di(3‧-carboxylphenyl)phthalhydrazidate; H3L3 = 6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; bpy = 2,2‧-bipyridine) 3, as well as two acylhydrazide molecules L4 (L4 = oxepino[2,3,4-de:7,6,5-d‧e‧]diphthalazine-4,10(5H,9H)-dione) 4 and L5 (L5 = 4,5-dibromophthalhydrazide; L5 = 6,7-dibromo-2,3-dihydrophthalazine-1,4-dione) 5 were obtained. X-ray single-crystal diffraction analysis reveals that (i) 1 only possesses a mononuclear structure, but it self-assembles into a 2-D supramolecular network via the Nhydrazinesbnd H ⋯ Nhydrazine and Owsbnd H ⋯ Ohydroxylimino interactions; (ii) 2 exhibits a dinuclear structure. Ox acts as the linker, while L2 just serves as a terminal ligand; (iii) In 3, L3 acts as a 3-connected node to propagate the 7-coordinated Cd2 + centers into a 1-D double-chain structure; (iv) 4 is a special acylhydrazide molecule. Two sbnd OH groups for the intermediates 3,3‧-biphthalhydrazide further lose one water molecule to form 4; (v) 5 is a common monoacylhydrazide molecule. Via the Nhydrazinesbnd H ⋯ Ohydrazine, Ohydroxyliminosbnd H ⋯ Oacylamino and the π ⋯ π interactions, it self-assembles into a 2-D supramolecular network. The photoluminescence analysis reveals that 4 emits light with the maxima at 510 nm.

  5. Synthesis, crystal structure and properties of a new lead fluoride borate, Pb{sub 3}OBO{sub 3}F

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wenwu [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Pan, Shilie, E-mail: slpan@ms.xjb.ac.cn [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Dong, Xiaoyu [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li, Junjie; Tian, Xuelin; Fan, Xiaoyun [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Chen, Zhaohui [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Physical and Chemical Detecting Center, Xinjiang University, Urumqi 830046 (China); Zhang, Fangfang [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China)

    2012-04-15

    Graphical abstract: The structure of Pb{sub 3}OBO{sub 3}F consists of two distortional Pb-centered tetrahedra and BO{sub 3} triangles which are all symmetrical with each other respectively in the gestalt structure to the extent that the Pb{sub 3}OBO{sub 3}F compound crystallizes in the symmetrical space group. Highlights: Black-Right-Pointing-Pointer Pb{sub 3}OBO{sub 3}F has been grown from PbO-PbF{sub 2}-B{sub 2}O{sub 3} system for the first time. Black-Right-Pointing-Pointer It crystallizes in the orthorhombic system, space group Pbcm. Black-Right-Pointing-Pointer Pb{sub 3}OBO{sub 3}F consists of Pb(1)O{sub 3}F tetrahedra, Pb(2)O{sub 4} tetrahedra and BO{sub 3} triangles. -- Abstract: A new compound, Pb{sub 3}OBO{sub 3}F, has been grown by the high temperature solution method from the PbO-PbF{sub 2}-B{sub 2}O{sub 3} system. It crystallizes in the orthorhombic system, space group Pbcm with unit-cell parameters a = 7.6313(14) Angstrom-Sign , b = 6.5229(12) Angstrom-Sign , c = 11.906(2) Angstrom-Sign , Z = 4, volume = 592.66(19) Angstrom-Sign {sup 3}. The structure of the compound is solved by the direct methods and refined to R{sub 1} = 0.0528 and wR{sub 2} = 0.1400. Pb{sub 3}OBO{sub 3}F consists of Pb(1)O{sub 3}F tetrahedra, Pb(2)O{sub 4} tetrahedra and BO{sub 3} triangles which build up the symmetrical chains extended along the c-axis. The powder X-ray diffraction pattern of the Pb{sub 3}OBO{sub 3}F has been measured. Functional groups presented in the sample were identified by Fourier transform infrared spectrum.

  6. Synthesis, structure, and properties of SrC(NH)3 , a nitrogen-based carbonate analogue with the trinacria motif.

    Science.gov (United States)

    Missong, Ronja; George, Janine; Houben, Andreas; Hoelzel, Markus; Dronskowski, Richard

    2015-10-05

    Strontium guanidinate, SrC(NH)3 , the first compound with a doubly deprotonated guanidine unit, was synthesized from strontium and guanidine in liquid ammonia and characterized by X-ray and neutron diffraction, IR spectroscopy, and density-functional theory including harmonic phonon calculations. The compound crystallizes in the hexagonal space group P63 /m, constitutes the nitrogen analogue of strontium carbonate, SrCO3 , and its structure follows a layered motif between Sr(2+) ions and complex anions of the type C(NH)3 (2-) ; the anions adopt the peculiar trinacria shape. A comparison of theoretical phonons with experimental IR bands as well as quantum-chemical bonding analyses yield a first insight into bonding and packing of the formerly unknown anion in the crystal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine

    Directory of Open Access Journals (Sweden)

    Amah Colette Benedicta Yuoh

    2015-01-01

    Full Text Available A novel one-dimensional coordination polymer bis(2-aminopyridine-μ-bis(dicyanamido cobaltate(II has been synthesized and characterized by elemental analyses and infrared and ultraviolet visible spectroscopies and the structure has been determined by single crystal X-ray diffraction. Co(II ion in the complex is coordinated to two axial 2-aminopyridine ligands through the pyridine N-atom and four equatorial dicyanamide ligands to give a CoN6 slightly distorted octahedral coordination environment around the metal ion. The amino N-atom forms intrachain hydrogen bonds. Antimicrobial screening of the complex against eight pathogenic microorganisms (four bacteria and four fungi isolated from humans, indicates that the complex is moderately active.

  8. Synthesis, Structural and Morphological Property of BaSnO3 Nanopowder Prepared by Solid State Ceramic Method

    Science.gov (United States)

    John, Jibi; Mahadevan Pillai, V. P.; Thomas, Anitta Rose; Philip, Reji; Joseph, Jaison; Muthunatesan, S.; Ragavendran, V.; Prabhu, Radhakrishna

    2017-05-01

    BaSnO3 is a cubic perovskite-type oxide that behaves as an n-type semiconductor with a wide band gap of 3.4 eV and remains stable at temperatures up to 1000°C. It has wide applications such as thermally stable capacitors, humidity sensors, gas sensors, etc. Barium stannate has also been used in optical applications, in capacitors and ceramic boundary layers, and as a promising material to produce gas phase sensors for the detection of carbon monoxide and carbon dioxide. BaSnO3 powder was prepared by solid state ceramic method. X-ray diffraction pattern of the prepared sample presents all the characteristic peaks of cubic phase of BaSnO3 (JCPDScard no: 15 -0780). The lattice constant for the compound was calculated and found to be 4.101A0 which is in agreement with the reported value (4.112A0). The average size of the crystallites estimated by Debye Scherrer’s formula was found to be 49 nm shows the nanostructured nature. The Raman bands observed ~ 139, 833 and 1122 cm-1 can be assigned on the basis of the fundamental vibrations of SnO6 octahedron which has Oh symmetry, in the distorted perovskite structure. The SEM image shows a porous surface morphology with grains of cuboidal structure with well-defined grain boundaries. UV-Visible spectra shows BaSnO3powder exhibit high reflectance in the 400-700 nm range.

  9. 2-Hetaryl-1,3-tropolones based on five-membered nitrogen heterocycles: synthesis, structure and properties

    Directory of Open Access Journals (Sweden)

    Yury A. Sayapin

    2015-11-01

    Full Text Available A series of derivatives of 2-hetaryl-1,3-tropolone (β-tropolone was prepared by the acid-catalyzed reaction of 2-methylbenzoxazoles, 2-methylbenzothiazoles and 2,3,3-trimethylindoline with 3,4,5,6-tetrachloro-1,2-benzoquinone. The molecular structures of the three representative compounds were determined by X-ray crystallography. In crystal and (as shown by the DFT PBE0/6-311+G** calculations in solution, 2-hetaryl-4,5,6,7-tetrachloro- and 2-hetaryl-5,6,7-trichloro-1,3-tropolones exist in the NH-tautomeric form with a strong resonance-assisted intramolecular N–H···O hydrogen bond. The mechanism of the formation of 1,3-tropolones in the reaction of methylene-active five-membered heterocycles with o-chloranil in acetic acid solution has been studied using density functional theory (DFT methods. The reaction of 2-(2-benzoxa(thiazolyl-5,6,7-trichloro(4,5,6,7-tetrachloro-1,3-tropolones with alcohols leads to the contraction of the seven-membered tropone ring with the formation of 2-(2-benzoxa(thiazolyl-6-alkoxycarbonylphenols. The molecular structure of 2-(2-ethoxycarbonyl-6-hydroxy-3,4,5-trichlorophenylbenzoxazole has been determined by X-ray diffraction. 2-(2-Benzoxa(thiazolyl-6-alkoxycarbonylphenols display intense green fluorescence with anomalous Stokes shifts caused by the excited state intramolecular proton transfer (ESIPT effects.

  10. Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure

    Science.gov (United States)

    Kataoka, Kunimitsu; Akimoto, Junji

    2016-02-01

    Polycrystalline sample of sodium titanium oxide Na2Ti4O9 with the tunnel-type structure was prepared by topotactic sodium extraction in air atmosphere from the as prepared Na3Ti4O9 sample. The starting Na3Ti4O9 compound was synthesized by solid state reaction at 1273 K in Ar atmosphere. The completeness of oxidation reaction from Na3Ti4O9 to Na2Ti4O9 was monitored by the change in color from dark blue to white, and was also confirmed by the Rietveld refinement using the powder X-ray diffraction data. The sodium deficient Na2Ti4O9 maintained the original Na2.08Ti4O9-type tunnel structure and had the monoclinic crystal system, space group C2/m, and the lattice parameters of a = 23.1698(3) Å, b = 2.9406(1) Å, c = 10.6038(2) Å, β = 102.422(3)°, and V = 705.57(2) Å3. The electrochemical measurements of thus obtained Na2Ti4O9 sample showed the reversible sodium insertion and extraction reactions at 1.1 V, 1.5 V, and 1.8 V vs. Na/Na+, and reversible lithium insertion and extraction reactions at around 1.4 V, 1.8 V, and 2.0 V vs. Li/Li+. The reversible capacity for the lithium cell was achieved to be 104 mAh g-1 at the 100th cycle.

  11. Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Arunachalam Thirunavukkarasu

    2018-03-01

    Full Text Available Cerium oxide nanoparticles (CONPs were prepared using ultrasound assisted leaf extract of Prosopis juliflora acting as a reducing as well as stabilizing agent. The synthesized CONPs were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis, particle size analyzer (PSA, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and high-resolution transmission electron microscopy (HRTEM. From the UV-Vis analysis, the optical band gap of the prepared CONPs (Eg = 3.62 eV was slightly increased as compared to the bulk ceria (Eg = 3.19 eV. The phytochemicals in the extract reduced the particle size to 3.7 nm ± 0.3 nm, as it is evident from the PSA. FT-IR results confirmed the Ce-O stretching bands by showing the peaks at 452 cm-1. The Raman spectrumshowed a characteristic peak shift for CONPs at 461.2 cm-1. XRD analysis revealed the cubic fluorite structure of the synthesizednanoparticles with the lattice constant, a of 5.415 Å and unit cell volume, V of 158.813 Å3. XPS signals were used to determine the concentration of Ce3+ and Ce4+ in the prepared CONPs and it was found that major amount of cerium exist in the Ce4+ state. HRTEM images showed spherical shaped particles with an average size of 15 nm. Furthermore, the antibacterial activity of the prepared CONPs was evaluated and their efficacies were compared with the conventional antibiotics using disc diffusion assay against a set of Gram positive (G+ bacteria (Staphylococcus aureus, Streptococcus pneumonia and Gram negative (G- bacteria (Pseudomonas aeruginosa, Proteus vulgaris. The results suggested that CONPs showed antibacterial activity with significant variations due to the differences in the membrane structure and cell wall composition among the two groups tested.

  12. Mixed sulfoisophthalate and 1,2,4-triazole directed d10 metal coordination polymers: Synthesis, property and structural diversity

    Science.gov (United States)

    Liu, Bing; Guo, Kai; Feng, Hui-Jun; Miao, Wei-Ni; He, Ting-Ting; Xu, Ling

    2017-10-01

    This work presents six d10-metal coordination polymers based on mixed ligands of 5-sulfoisophthalate (H2SIP-) and 1,2,4-triazoles (1H-1,2,4-triazole (Htr), 3-amino-1H-1,2,4-triazole (Hatr)), 3D [Zn7(SIP)2(tr)8(H2O)4]·4H2O (1), 3D [Zn4(SIP)(atr)5(H2O)2]·3H2O (2), 2D [Zn2(SIP)(atr)(H2O)3]·2H2O (3), 2D [Ag(H2SIP)(Hatr)] (4 and 5), and 3D [Cd3(SIP)(tr)2(OH)]·H2O (6) under hydrothermal conditions. The structural analysis indicates a ligand directed structural diversity in the metal-(H)SIP-triazole system. The characterizations of 1-6 indicate that the bulk samples are pure phases, the thermal decomposition temperatures are beyond 300 °C, and the fluorescence are blue. The maximum emissions of 1-3 and 6 at around 410 nm are related with the intraligand π→π* transitions of 1,2,4-triazole moieties, and those at ca. 350 nm in 4 and 5 are assigned to intraligand transitions of (H)SIP ligands. The temperature-dependent fluorescence of 1-6 show thermal quenchings with fluorescence quenching rates ranging 22.9-74.2%, and the fluorescence cannot recover fully when it is back to ambient temperature.

  13. Synthesis, Crystal Structure, and Magnetic Properties of a New Mixed Metal (Co(II, Ni(II Cubane

    Directory of Open Access Journals (Sweden)

    Ramadan Mohamed Elmehdawi

    2017-02-01

    Full Text Available The mixed Co(II/Ni(II complex, [Co2.67Ni1.33L4(CH3COO2][BPh4]2·0.75H2O where HL = 4-(salicylaldimineantipyrine, was isolated as an orange solid from the reaction of 4-(salicylaldimineantipyrine, with mixed cobalt(II acetate and nickel(II acetate in ethanol. The complex was characterized by Frustrated Total Internal Reflection (FTIR, UltraViolet Visible spectroscopy (UV-Vis, X-ray single crystal diffraction, and by elemental analysis. The complex is composed of two symmetry independent cationic units, A and B. The two units are essentially isostructural; nevertheless, small differences exist between them. The units contain four metal atoms, arranged at the corners of a distorted cubane-like core alternately with phenoxy oxygen of the Schiff base. The overall eight corners occupied by metal ions in the asymmetric unit are shared between cobalt and nickel in a 5.33:2.67 ratio. Each metal divalent cation binds three coordinated sites from the corresponding tridentate Schiff base ligand, the fourth one is bound by the acetate oxygen, the fifth and the sixth donor sites come from the phenolate oxygens of other Schiff base ligands. Intermolecular hydrogen bonds join the complexes to the water molecules present in the crystal packing. The magnetic characterization was carried out for this new complex and for its isostructural counterpart containing only cobalt ions. The magnetic measurements for the cobalt(II/nickel(II mixed compound indicate either antiferromagnetic interactions among the two cubanes or an anisotropic contribution, whereas a ferromagnetic interaction is observed within the cubane, for both the complexes, as expected by geometrical considerations. A comparison between the magnetic properties of the pure cobalt(II derivative and similar systems discussed in literature, is presented.

  14. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The V atoms in the complexes are in octahedral coordination. Thermal stabilities of the complexes have also been studied. KEY WORDS: Oxovanadium complex, Aroylhydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. INTRODUCTION. Coordination chemistry of vanadium has attracted considerable ...

  15. Synthesis, crystal structure and magnetic properties of two oxalato-bridged dimetallic trinuclear complexes combined with a polar cation.

    Science.gov (United States)

    Pardo, Emilio; Train, Cyrille; Lescouëzec, Rodrigue; Boubekeur, Kamal; Ruiz, Eliseo; Lloret, Francesc; Verdaguer, Michel

    2010-05-28

    Two isostructural heterometallic trinuclear oxalato-bridged complexes of formula C(4)[MCr(2)(ox)(6)(H(2)O)(2)]·nH(2)O (C(+) = 4-aminopyridinium; ox(2-) = oxalate dianion; M(2+) = Mn(2+), n = 3, 1; M(2+) = Co(2+), n = 3.25, 2) have been synthesized by using direct self-assembly methods combining C(3)[Cr(ox)(3)] and the chloride salts of the corresponding metal ion. The crystal structures of both compounds have been resolved by single-crystal X-ray diffraction. They crystallize in the C2/c space group [a = 11.5113(15) Å, b = 20.250(3) Å, c = 21.810(4) Å, beta = 100.447(10) degrees, V = 5161.6(3) Å(3), and Z = 4 for 1, and a = 11.4334(16) Å, b = 20.243(2) Å, c = 21.805(3) Å, beta = 101.113(9) degrees, V = 4951.9(11) Å(3), and Z = 4 for 2]. The structures of 1 and 2 consist of discrete linear [MCr(2)(ox)(6)](4-) bimetallic trinuclear units, pyridinium cations and crystallization water molecules. The linear trinuclear unit is built from a central trans-diaquametal(II), linked to two Cr(ox)(3)](3-) entities by oxalate bridges. One of the oxalate ions is coordinated to the central metal ion whereas the other two oxalate ligands are non-bridging. In the crystal, intermolecular hydrogen bonds involving oxalate ligands, water molecules and pyridinium cations, build a complex three-dimensional network. Variable-temperature magnetic susceptibility measurements for 1 and 2 indicate a weak ferromagnetic interaction (J = +1.16 and +2.62/+2.70 cm(-1) for 1 and 2, respectively) between the two terminal Cr(III) (S(Cr) = 3/2) and the central high-spin Mn(II) (S(Mn) = 5/2) and Co(II) (S(Co) = 3/2) ions. The nature and the amplitude of the exchange interaction are rationalized using DFT calculations and orbital interpretations.

  16. Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Chen, D.; Shao, G.-Q.; Li, B.; Zhao, G.-G.; Li, J.; Liu, J.-H.; Gao, Z.-S.; Zhang, H.-F.

    2014-01-01

    Highlights: • Tavorite-structured LiFePO 4 F with high purity is successfully synthesized by a two-step solid-state route. • Rietveld refinement shows that open pathways for 3D ion transport exist in LiFePO 4 F and its discharged state (Li 2 FePO 4 F). • The voltage plateaus on 2.71 / 2.86 V, in galvanostatic discharge-charge cycling, indicate a low electrode polarization of 0.15 V. • This work attained the largest initial discharge capacity at the highest rate (1 C) reported to date. • This work attained almost the same capacity retention at a tenfold higher rate (1 C) than that (0.1 C) within the maximum cycles of 100 reported to date. - Abstract: Tavorite-structured lithium-metal-fluorophosphates for Li + transition have been recognized as a good alternative to olivine-type cathodes for lithium-ion batteries. They show an exceptional ionic conductivity, excellent thermal stability and capacity retention. In this work, LiFePO 4 F with high purity is successfully synthesized by a two-step solid-state route. Rietveld refinement shows that open pathways for 3D ion transport exist in LiFePO 4 F and its discharged state (Li 2 FePO 4 F). Cyclic voltammetry data exhibit a clear indication of the Fe 3+/2+ redox couple that involves a two-phase transition. Galvanostatic discharge-charge cycling was examined at the rates 0.1 - 5 C up to 1000 cycles. The voltage plateaus on 2.71 / 2.86 V indicate a low electrode polarization of 0.15 V. This work attained the largest initial discharge capacity at the highest rate (1 C) reported to date, and almost the same capacity retention at a tenfold higher rate (1 C) than that (0.1 C) within the maximum cycles of 100 reported to date

  17. Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties

    Science.gov (United States)

    Malleshappa, J.; Nagabhushana, H.; Kavyashree, D.; Prashantha, S. C.; Sharma, S. C.; Premkumar, H. B.; Shivakumara, C.

    2015-06-01

    CeO2:Ho3+ (1-9 mol%) nanopowders have been prepared by efficient and environmental friendly green combustion method using Aloe vera gel as fuel for the first time. The final products are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR). Bell, urchin, core shell and flower like morphologies are observed with different concentrations of the A. vera gel. It is apparent that by adjusting the concentration of the gel, considerable changes in the formation of CeO2:Ho3+ nano structures can be achieved. Photoluminescence (PL) studies show green (543, 548 nm) and red (645, 732 nm) emissions upon excited at 400 nm wavelength. The emission peaks at ∼526, 548, 655 and 732 nm are associated with the transitions of 5F3 → 5I8, 5S2 → 5I8, 5F5 → 5I8 and 5S2 → 5I7, respectively. Three TL glow peaks are observed at 118, 267 and 204 °C for all the γ irradiated samples which specify the surface and deeper traps. Linear TL response in the range 0.1-2 kGy shows that phosphor is fairly useful as γ radiation dosimeter. Kinetic parameters associated with the glow peaks are estimated using Chen's half width method. The CIE coordinate values show that phosphor is quite useful for the possible applications in WLEDs as orange red phosphor.

  18. Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Azhagu Raj

    2017-04-01

    Full Text Available In this paper, using Coriandrum sativum L., a leaf-extracted, assisted microwave method (MM was used to synthesize nickel oxide formation. We synthesized nickel oxide nanoparticles (NiO with a crystal size in the range of 15–16 nm by a Coriandrum sativum leaf-assisted microwave method (LAMM. The synthesized materials show that an X-ray diffraction (XRD study confirmed the formation of a single phase structure exhibiting a crystallite size in the range of 15–16 nm using Scherrer’s method. The nickel oxide prepared by the MM had a surface area of 60.35 m2/g, pore volume of 0.9427 cm3/g and an average pore diameter of 13.27 Å. Surface morphology was analyzed by the scanning electron microscope (SEM, X-ray photoelectron spectroscope, Brunauer-Emmett-Teller (BET analysis, and the vibrating sample magnetometer (VSM. Catalytic activity (CA tended toward the oxidation of styrene to benzaldehyde. The inexpensive catalyst tested is likely effective as a catalyst due to synergistic interactions between metal oxides with high dispersion. In comparison with other findings, LAMM is easy and eco-friendly. The current study obtained nanocrystalline NiO that was suitable for potential applications in catalysis. The synthesized NiO could potentially be used in therapeutic field due to their competent antibacterial activity.

  19. Synthesis, crystal structure and electrical properties of the new organic-inorganic hybrid compound bis(1-chlorido-4-aminopyridinium) octachlorodiantimoinate

    Science.gov (United States)

    Fersi, Mohamed Amine; Hajji, Rachid; Chaabane, Iskandar; Gargouri, Mohamed

    2017-10-01

    Bis(1-chlorido-4-aminopyridinium) octachlorodiantimoinate has been synthesized and characterized by a single-crystal X-ray diffraction at 296 K and impedance spectroscopy. At room temperature, the title compound is crystallized in the triclinic system (P 1 ̅ space group) with Z = 2 and the following unit cell dimensions: a = 7.919 (1) Å, b = 9.624 (1) Å, c = 17.692 (3) Å, α = 101.81 (1)°, β = 95.12 (1)°and γ = 112.48 (1)°. The crystal structure of the [C10H12Cl2N4]Sb2Cl8 compound is built of two un-equivalent monoprotonated cations [C5H6N2Cl] + and two un-equivalent tetrachloroantimonate (III) anions noted which are [Sb(1)Cl4]- and [Sb(2)Cl4]-. The arrangement of this compound can be described by an alternation of organic and inorganic layers stacked along [010] direction. The cohesion of compound entities is ensured by hydrogen bonding (N-H…. Cl) and Van Der Waals interaction (C-H…. Cl). The temperature dependence of the σdc conductivity exhibits an Arrhenius type behavior described by the following expression σdc T = Aexp(-Ea/kβT). The Ac conductivity and the dielectric loss suggest that the correlated barrier hopping is the appropriate model for the conduction mechanism.

  20. Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Felts, Ashley C.; Abboud, Khalil A. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2016-12-15

    A novel metal-organic framework, (H{sub 2}pip){sub n}[Sm{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (1) (H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) has been synthesized under hydrothermal conditions and characterized by the elemental analysis, inductively coupled plasma (ICP) spectrometer, fourier transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). The structure of 1 was determined to be three-dimensional, linked along Sm-O-Sm chains. The asymmetric unit consisted of one singly anionic fragment consisting of Sm(III) coordinated to two H{sub 2}pydc ligands and one water, and one half of a protonated H{sub 2}pip, which sits on an inversion center. 1 exhibited luminescence emission bands at 534 nm at room temperature when excited at 440 nm. Its thermal behavior and catalytic performance were investigated and the selectivity was measured as 100% for the oxidation of thymol to thymoquinone. - Graphical abstract: A novel 3D lanthanide-organic framework has been synthesized under hydrothermal conditions. The thermal behavior and catalytic performance of 1 were investigated and its selectivity was measured as 100% for the oxidation of thymol to thymoquinone.

  1. Hydrothermal Synthesis and Structural Characterization of NiO/SnO2 Composites and Hydrogen Sensing Properties

    Directory of Open Access Journals (Sweden)

    Chao Wei

    2015-01-01

    Full Text Available Pure SnO2 and NiO doped SnO2 nanostructures were successfully synthesized via a simple and environment-friendly hydrothermal method. X-ray powder diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, and X-ray photoelectron spectra (XPS were used to investigate the crystalline structures, surface morphologies and microstructures, and element components and their valences of the as-synthesized samples. Furthermore, planar chemical gas sensors based on the synthesized pure SnO2 and NiO/SnO2 composites were fabricated and their sensing performances to hydrogen, an important fault characteristic gas dissolved in power transformer oil, were investigated in detail. Gas sensing experiments indicate that the NiO/SnO2 composites showed much higher gas response and lower working temperature than those of pure SnO2, which could be ascribed to the formation of p-n heterojunctions between p-type NiO and n-type SnO2. These results demonstrate that the as-synthesized NiO/SnO2 composites a promising hydrogen sensing material.

  2. Synthesis, X-ray structure, spectroscopic properties and DFT studies of some dithiocarbazate complexes of nickel(II)

    Science.gov (United States)

    Takjoo, Reza; Centore, Roberto

    2013-01-01

    Two nickel(II) complexes with formulae NiL2 (1) and NiL'Im (2) (HL = allyl 2-benzylidene-hydrazinecarbodithioate, H2L' = allyl 2-(2-hydroxybenzylidene)hydrazinecarbodithioate, Im = Imidazole) have been synthesized and characterized by elemental analysis, molar conductivities, FT-IR, 1H NMR and UV/Vis spectroscopy. The crystal structure of the complexes has been determined by single crystal X-ray diffractometry. Both L and L' ligands are coordinated to the metal in the thiolate form. In 1, the square planar coordination of the metal is achieved by coordination of two bidentate ligand units acting through azomethine nitrogen and the thiolato sulfur donor atoms. The complex 2 has a square-planar geometry with the tridentate ligand coordinated to the metal through salicylate oxygen, azomethine nitrogen and the thiolato sulfur atoms, while the fourth coordination position is occupied by one N atom of imidazole. Also natural bond orbitals (NBOs), frontier molecular orbitals (FMOs) and Mulliken charge computational studies on complexes carried out in the ground state with the DFT and theory at B3LYP/6-31G(d,p) level of theory.

  3. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    Bisson, J.

    2011-01-01

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO 3 . To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H 2 O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu 3+ , Nd 3+ , Am 3+ , Pu 4+ and NpO 2 + ). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author) [fr

  4. Synthesis, crystal structure, electric and magnetic properties of LaVO2.78N0.10

    International Nuclear Information System (INIS)

    Yoon, Songhak; Maegli, Alexandra E.; Karvonen, Lassi; Shkabko, Andrey; Populoh, Sascha; Sagarna, Leyre; Aguirre, Myriam H.; Pokrant, Simone; Galazka, Krzysztof; Jakes, Peter; Eichel, Ruediger A.; Ebbinghaus, Stefan G.; Weidenkaff, Anke

    2014-01-01

    Perovskite-type LaVO 2.78 N 0.10 powder was synthesized by thermal ammonolysis of the oxide precursor LaVO 4 . By X-ray, neutron, and electron diffraction an orthorhombic crystal structure with space group Pnma was identified. XANES spectra showed that the oxidation state of vanadium changes from 5+ in LaVO 4 to approximately 3+ in LaVO 2.78 N 0.10 . The temperature dependence of the electrical conductivity revealed an Arrhenius-type behavior with an activation energy of 0.103 eV in the temperature range of 119-302 K indicating that the conduction process is thermally activated band transition. Based on the positive Seebeck coefficient, holes were identified as the dominant charge carriers in the temperature range of 100-302 K. Both the Seebeck coefficient and the thermal conductivity showed an anomaly at 138 K, which is attributed to the Neel temperature for antiferromagnetic ordering according to magnetic susceptibility measurements. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Morphologically controlled synthesis, structural and optical properties of CeO2/SnO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    S. Usharani

    2017-09-01

    Full Text Available CeO2/SnO2 nanocomposites with different dimensional nanostructures were synthesized by a wet chemical method, using various surfactants such as SDS, CTAB and Triton X-100. The prepared CeO2/SnO2 samples were analyzed by X-ray diffraction (XRD, Fourier transform infrared (FTIR, Transmission electron microscopy (TEM, UV-Diffuse Reflectance Spectroscopy (UV-DRS, and Photoluminescence (PL spectroscopy. The XRD patterns reveal the presence of a mixed phase of SnO2 and CeO2; The TEM analysis showed the mixed morphology of uniformly dispersed spherical with ellipsoidal shape in the SDS assisted CeO2/SnO2 nanocomposites; whereas the nanostructure with spherical with hexagonal shapes was observed for the Triton X-100 assisted CeO2/SnO2 nanocomposites. The one dimensional (1D nanorod like structure observed for the CTAB assisted CeO2/SnO2 nanocomposites shows CTAB acting as a face-specific capping agent to form rod-shaped micelles. The room temperature photoluminescence emission studies of the CeO2/SnO2 nanocomposites showed strong peaks in the UV region, and several peaks in the visible region, which are likely to have originated from the oxygen vacancies and are potential materials for optoelectronic device applications. The UV results showed the absorption edges shifted to a high energy region and the blue shifts that occurred in all the samples.

  6. Synthesis, Crystal Structure, and Physical Properties of New Layered Oxychalcogenide La2O2Bi3AgS6

    Science.gov (United States)

    Hijikata, Yudai; Abe, Tomohiro; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Goto, Yosuke; Miura, Akira; Tadanaga, Kiyoharu; Wang, Yongming; Miura, Osuke; Mizuguchi, Yoshikazu

    2017-12-01

    We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) Å and c = 19.412(1) Å, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ˜ 20 Å). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.

  7. Nanostructured nitrogen and carbon codoped TiO2 thin films: Synthesis, structural characterization and optoelectronic properties

    Science.gov (United States)

    Ruzybayev, Inci

    TiO2 is widely used in applications like photocatalysis, sensors, solar cells, and memory devices because it is inexpensive, abundant, nontoxic and stable in aqueous solution. Another exciting application where TiO 2 has the potential to be a very useful catalyst is the clean hydrogen generation using solar radiation. Energy consumption is increasing every year and, as a result, renewable and sustainable alternative energy sources are becoming increasingly important. Therefore, clean hydrogen generation research is becoming more and more important. This study aims at the preparation and characterization of nitrogen and carbon (N-C) codoped TiO2 photoanode material that could potentially be used in photoelectrochemical cells for hydrogen generation. The solar spectrum peaks around 500 nm (2.48 eV) which is in the visible part of the spectrum. The photoanode material to be used for solar hydrogen generation should absorb visible light photons to yield high efficiency. The challenge with TiO2 is that the wide band gap (3.00--3.20 eV) absorbs only ultra-violet (UV) photons and only a small percentage of the solar spectrum is in the UV range. There are various ways to overcome the challenge of sensitizing the material to visible light absorption and this study focuses on one of the most promising ways: band modification of TiO2 by N-C codoping. The role of pure oxygen pressure on pulsed laser deposited N-C codoped TiO2 films were investigated. At low pressures rutile phase of TiO2 was dominant and a microstructure with densely packed grains was obtained. However, at high pressures anatase phase became dominant and columnar structure was favored. Therefore, the anatase-rutile phase ratio as well as the microstructure of the films can be controlled by adjusting oxygen pressure and introducing N and C into the TiO2 matrix. Optimized oxygen pressure and higher doping concentrations yielded films with more effective absorption in the visible region. The preparation and

  8. Synthesis, Crystal Structures, and Photoluminescent Properties of Two Supramolecular Architectures Based on Difunctional Ligands Containing Imidazolyl and Carboxyl Groups

    Directory of Open Access Journals (Sweden)

    Mei-An Zhu

    2017-07-01

    Full Text Available Two new supramolecular architectures, namely, [Cd(L12(H2O]n (1 and [Ni(L22(H2O]n (2, were synthesized by the reaction of corresponding metal salts of CdCl2·2.5H2O and NiCl2·6H2O with 2-(1H-imidazol-4-ylbenzoic acid (HL1 and 3-(1H-imidazol-4-ylbenzoic acid (HL2 respectively, and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and powder X-ray diffraction (PXRD. Both HL1 and HL2 ligands are deprotonated to be L1- and L2- anions that coordinate with Cd(II and Ni(II atoms to form two-dimensional (2D layer structure. Topologically, complex 1 is a 2D network with (4, 4 sql topology, while 2 is a typical 63-hcb topology net. Complex 1 exhibits intense light blue emission in the solid state at room temperature.

  9. High-pressure synthesis, crystal structure and magnetic properties of double perovskite oxide Ba2CuOsO6

    International Nuclear Information System (INIS)

    Feng, Hai L.; Arai, Masao; Matsushita, Yoshitaka; Tsujimoto, Yoshihiro; Yuan, Yahua; Sathish, Clastin I.; He, Jianfeng; Tanaka, Masahiko; Yamaura, Kazunari

    2014-01-01

    A new compositional double perovskite oxide Ba 2 CuOsO 6 was synthesized under high-pressure (6 GPa) and high-temperature (1500 °C) conditions. The polycrystalline Ba 2 CuOsO 6 was characterized by synchrotron X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility, isothermal magnetization, and specific heat measurements. The oxide crystallizes in a double-perovskite structure with an I4/m space group, in which Os(VI) and Cu(II) are ordered in the perovskite B-site. Ba 2 CuOsO 6 is electrically insulating with an activation energy of 0.813(2) eV and shows antiferromagnetic-like characteristics at temperatures of ∼55 K and ∼70 K. The results of the first-principle calculation suggested that the spin–orbit interaction of Os(VI) plays a substantial role in the insulating state. The Jahn–Teller distortion of CuO 6 octahedra influences the magnetic characteristics with regard to possible two-dimensional magnetic correlations. - Graphical abstract: A new compositional double perovskite oxide Ba 2 CuOsO 6 synthesized by a high-pressure (6 GPa) and high-temperature (1500 °C) method. - Highlights: • A new compositional double perovskite oxide Ba 2 CuOsO 6 was synthesized. • Ba 2 CuOsO 6 is electrically insulating and antiferromagnetic below ∼70 K. • The Jahn–Teller distortion of CuO 6 has relevance to possible magnetic anisotropy

  10. Synthesis, structure and magnetic properties of La{sub 3}Co{sub 2}SbO{sub 9}: A double perovskite with competing antiferromagnetic and ferromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.G.; Fuertes, V.C.; Blanco, M.C. [INFIQC (CONICET), Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Fernandez-Diaz, M.T. [Institute Laue-Langevin (ILL) 156X, F-38042 Grenoble Cedex 9 (France); Sanchez, R.D., E-mail: rodo@cab.cnea.gov.ar [Centro Atomico Bariloche, CNEA and Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Rio Negro (Argentina); Carbonio, R.E., E-mail: carbonio@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2012-10-15

    The synthesis, structural characterization, and magnetic properties of La{sub 3}Co{sub 2}SbO{sub 9} double perovskite are reported. The crystal structure has been refined by X-ray and neutron powder diffraction data in the monoclinic space group P2{sub 1}/n. Co{sup 2+} and Sb{sup 5+} have the maximum order allowed for the La{sub 3}Co{sub 2}SbO{sub 9} stoichiometry. Rietveld refinements of powder neutron diffraction data show that at room temperature the cell parameters are a=5.6274(2) A, b=5.6842(2) A, c=7.9748(2) A and {beta}=89.999(3) Degree-Sign . Magnetization measurements indicate the presence of ferromagnetic correlations with T{sub C}=55 K attributed to the exchange interactions for non-linear Co{sup 2+}-O-Sb{sup 5+}-O-Co{sup 2+} paths. The effective magnetic moment obtained experimentally is {mu}{sub exp}=4.38 {mu}{sub B} (per mol Co{sup 2+}), between the theoretical one for spin only (3.87 {mu}{sub B}) and spin-orbit value (6.63 {mu}{sub B}), indicating partially unquenched contribution. The low magnetization value at high magnetic field and low temperature (1 {mu}{sub B}/f.u., 5 T and 5 K) and the difference between ZFC and FC magnetization curves (at 5 kOe) indicate that the ferromagnetism do not reach a long range order and that the material has an important magnetic frustration. - Graphical abstract: Co-O-Co (Yellow octahedra only) rich zones (antiferromagnetic) are in contact with Co-O-Sb-O-Co (Red and yellow octahedra) rich zones (Ferromagnetic) to give the peculiar magnetic properties, as a consequence, a complex hysteresis loop can be observed composed by a main and irreversible curve in all the measured range, superimposed with a ferromagnetic component at low fields. Highlights: Black-Right-Pointing-Pointer La{sub 3}Co{sub 2}SbO{sub 9} has small Goldschmidt Tolerance Factor (t) due to the small size of La{sup 3+}. Black-Right-Pointing-Pointer Small t determines an angle for the path Co{sup 2+}-O-Sb{sup 5+}-O-Co{sup 2+} of 153 Degree-Sign . Black

  11. Synthesis, structure and magnetic properties of La3Co2SbO9: A double perovskite with competing antiferromagnetic and ferromagnetic interactions

    International Nuclear Information System (INIS)

    Franco, D.G.; Fuertes, V.C.; Blanco, M.C.; Fernández-Díaz, M.T.; Sánchez, R.D.; Carbonio, R.E.

    2012-01-01

    The synthesis, structural characterization, and magnetic properties of La 3 Co 2 SbO 9 double perovskite are reported. The crystal structure has been refined by X-ray and neutron powder diffraction data in the monoclinic space group P2 1 /n. Co 2+ and Sb 5+ have the maximum order allowed for the La 3 Co 2 SbO 9 stoichiometry. Rietveld refinements of powder neutron diffraction data show that at room temperature the cell parameters are a=5.6274(2) Å, b=5.6842(2) Å, c=7.9748(2) Å and β=89.999(3)°. Magnetization measurements indicate the presence of ferromagnetic correlations with T C =55 K attributed to the exchange interactions for non-linear Co 2+ –O–Sb 5+ –O–Co 2+ paths. The effective magnetic moment obtained experimentally is μ exp =4.38 μ B (per mol Co 2+ ), between the theoretical one for spin only (3.87 μ B ) and spin-orbit value (6.63 μ B ), indicating partially unquenched contribution. The low magnetization value at high magnetic field and low temperature (1 μ B /f.u., 5 T and 5 K) and the difference between ZFC and FC magnetization curves (at 5 kOe) indicate that the ferromagnetism do not reach a long range order and that the material has an important magnetic frustration. - Graphical abstract: Co–O–Co (Yellow octahedra only) rich zones (antiferromagnetic) are in contact with Co–O–Sb–O–Co (Red and yellow octahedra) rich zones (Ferromagnetic) to give the peculiar magnetic properties, as a consequence, a complex hysteresis loop can be observed composed by a main and irreversible curve in all the measured range, superimposed with a ferromagnetic component at low fields. Highlights: ► La 3 Co 2 SbO 9 has small Goldschmidt Tolerance Factor (t) due to the small size of La 3+ . ► Small t determines an angle for the path Co 2+ –O–Sb 5+ –O–Co 2+ of 153°. ► Ferromagnetism is attributed to exchange interactions for Co 2+ –O–Sb 5+ –O–Co 2+ paths. ► Ferromagnetic nanoclusters are embedded in an antiferromagnetic

  12. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane K.; Souza, Viviane P. de; Luz, Leonis L. da [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Menezes Vicenti, Juliano R. de [Escola de Química e Alimento, FURG, 96203-900 Rio Grande, RS (Brazil); Burrow, Robert A. [Departamento de Química, UFSM, 97105-900 Santa Maria, RS (Brazil); Severino Alves; Longo, Ricardo L. [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Malvestiti, Ivani, E-mail: ivani@ufpe.br [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil)

    2016-02-15

    The extended structures [Ln{sub 2}(L){sub 6}(OH{sub 2}){sub 4}] with L=2-(methylthio)benzoato (2-CH{sub 3}S–C{sub 6}H{sub 4}COO{sup −}) and Ln=Tb (1), Eu (2) and Gd (3) were successfully synthesized and characterized. The single crystal structure of compound 1 was determined and showed an extended structure made up of asymmetrical dinuclear units with the formula catena-poly[{Tb(H_2O)_4}-(μ-L-1κO:2κO'){sub 2}-{Tb(L-κO,O')_2}-(μ-L-1κO:2κO'){sub 2}]. In the molecule of 1, there are two distinct metal sites. The Tb atom in site 1 is bound to four coordinated water molecules and four oxygen atoms from four different benzoate ligands, two of which bridge to site 2 Tb atoms on one side and two to site 2 Tb atoms on the other side. The site 2 Tb atom is bound to four oxygen atoms from two chelating benzoate ligands and four oxygen atoms from four different benzoate ligands, two of which bridge to site 1 Tb atoms on one side and two to site 1 Tb atoms on the other side. The bridging benzoate ligands extend the framework in one-dimension with alternating site 1/site 2 Tb atoms. The luminescent properties of these asymmetric dinuclear extended structures are quite peculiar and showed a single emitting lanthanide center. The quantum yields of 1 (ca. 50–55%) is practically independent of the excitation energy, whereas those of 2 are vanishing small (<1%) when excited at the ligand states and become sizable (ca. 10–20%) upon excitation at the intra-4f manifold. To reconcile these experimental observations in conjunction with the spectral data for compounds 1 and 3, a strong interaction between the lanthanide emitting states at sites 1 and 2 was proposed. For compound 1, the numerical solutions of the rate equations provided evidences that when the transition rates between the emitting states at both sites are larger than the highest decaying rate of these states, the system becomes an effective single emitter. This establishes, for the first time

  13. Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3‧-tricarboxylate blocks: Synthesis, structural features and properties

    Science.gov (United States)

    You, Ao; Li, Yu; Zhang, Ze-Min; Zou, Xun-Zhong; Gu, Jin-Zhong; Kirillov, Alexander M.; Chen, Jin-Wei; Chen, Yun-Bo

    2017-10-01

    Biphenyl-2,5,3‧-tricarboxylic acid (H3L) was selected as an unexplored tricarboxylate building block and applied for the hydrothermal synthesis of three novel coordination compounds, namely a 0D tetramer [Co4(HL)2(μ3-HL)2(phen)6(H2O)2]·3H2O (1) and two 3D metal-organic frameworks (MOFs) [Cd3(μ5-L)(μ6-L)(py)(μ-H2O)2(H2O)]n·H2O (2) and [Zn3(μ4-L)2(2,2‧-bpy)(μ-4,4‧-bpy)]n·2H2O (3). These products were easily generated in aqueous medium from the corresponding metal(II) chlorides, H3L, and various N-donor ancillary ligands, selected from 1,10-phenanthroline (phen), pyridine (py), 2,2‧-bipyridine (2,2‧-bpy), and 4,4‧-bipyridine (4,4‧-bpy). Compounds 1-3 were isolated as stable crystalline solids and were fully characterized by IR and UV-vis spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a discrete tetracobalt(II) structure, which is extended into a 3D H-bonded network with the pcu topology. In contrast, MOF 2 discloses a very complex trinodal 4,5,12-connected net with an undocumented topology, while MOF 3 features the nce/I topological framework. The magnetic (for 1) and luminescence (for 2 and 3) properties were also studied and discussed. The present study thus widens a still very limited family of metal-organic and supramolecular frameworks driven by flexible biphenyl-2,5,3‧-tricarboxylate building blocks.

  14. 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid as linker for Co(II)/Ni(II)/Cu(II) coordination polymers: Synthesis, structures and properties

    Science.gov (United States)

    Wang, Duo-Zhi; Wang, Xin-Fang; Du, Jia-Qiang; Dong, Jun-Liang; Xie, Fei

    2018-02-01

    We report the synthesis and characterization of five transition metal coordination polymers (CPs) based on M(II) (M: Co, Ni and Cu), 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L) ligand. They are formulated as {[Co2(HL)2(H2O)3(SO4)]·H2O}n (1), {[Co2(HL)2(H2O)2]·SiF6}n (2), {[Ni2(HL)2(H2O)3(SO4)]·2H2O}n (3), {[Ni2(HL)2(H2O)4]·H2O·SiF6}n (4), {[Cu2(HL)2(H2O)2]·SiF6}n (5). The complexes 1-5 structure were characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complexes 1-5 are two-dimensional (2D) network type coordination polymers that 1-3, 5 crystallize in monoclinic system within the centrosymmetric space group P2(1)/c, and 4 in triclinic system P-1 space group, they show the same coordination modes (κ1-κ1)-(κ1)-(κ1)-μ3 in coordination polymers. Complexes 1 and 3 expand to three-dimensional framework by means of hydrogen bond interactions, and can be rationalized to be three-connected {63} topological network, while 2, 4, 5 exhibit the topological network with a four-connected {44·62} topological sql network. The luminescent properties (for complexes 1, 2) and UV diffuse reflectance (for complexes 1-5) in the solid state at room temperature were also investigated and discussed. Complexes 1-5 act as effective heterogeneous catalysts, under mild conditions, for the homocoupling reaction of 4-substituted aryl iodides bearing electron-donating groups (-CH3, -OCH3).

  15. Hydrothermal synthesis and electrochemical properties of a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 5. Hydrothermal synthesis and electrochemical properties of a coordination polymer based on dinuclear (Pyrazinyl tetrazolate) Copper(II) cations and βOctamolybdate Anions. SHAOBIN LI LI ZHANG HUIYUAN MA HAIJUN PANG. Regular Article Volume ...

  16. Microwave Assisted Synthesis and Photoluminescence Properties of ...

    Indian Academy of Sciences (India)

    46

    Microwave Assisted Synthesis and Photoluminescence Properties of. ZnS:Pb2+ Nanophosphor for Solid State Lighting. D.N.Game1*, C.B. Palan3, N.B.Ingale2 and S.K.Omanwar3. 1Cusrow Wadia Institute of Technology, Pune, India. 2 Prof. Ram Meghe Institute of Technology and Research, Badnera, Amravati, India.

  17. Controlled synthesis and electrochemical properties of vanadium ...

    Indian Academy of Sciences (India)

    Vanadium oxides; nanostructured materials; chemical synthesis; electrochemical property; VO2(M). 1. Introduction. In the past decade, much attention has been paid on low dimensional nanomaterials with novel morphologies includ- ing nanobelts, nanotubes, nanowires, nanosheets, etc. They exhibit specific physical and ...

  18. Synthesis, microstructure, and physical properties of metallic barcode nanowires

    Science.gov (United States)

    Park, Bum Chul; Kim, Young Keun

    2017-05-01

    With rapid progress in nanotechnology, nanostructured materials have come closer to our life. Single-component nanowires are actively investigated because of their novel properties, attributed to their nanoscale dimensions and adjustable aspect ratio, but their technical limitations cannot be resolved easily. Heterostructured nanomaterials gained attention as alternatives because they can improve the existing single-component structure or add new functions to it. Among them, barcode nanowires (BNWs), comprising at least two different functional segments, can perform multiple functions for use in biomedical sensors, information encoding and security, and catalysts. BNW applications require reliable response to the external field. Hence, researchers have been attempting to improve the reliability of synthesis and regulate the properties precisely. This article highlights the recent progress and prospects for the synthesis, properties, and applications of metallic BNWs with focus on the dependence of the magnetic, optical, and mechanical properties on material, composition, shape, and microstructure.

  19. Synthesis, structural characterization and study of blue shift in optical properties of zinc oxide nano particles prepared by chemical route method

    Science.gov (United States)

    Taunk, P. B.; Das, R.; Bisen, D. P.; Tamrakar, Raunak Kumar

    2015-12-01

    We report the synthesis and optical properties of ZnO nano particle using TEA (Tri Ethanol Amine) and without TEA by chemical route method. By decreasing the concentration of TEA, reaction rate is decreases and inter planner spacing d is increases, band gap is increased from 4.1 to 4.8 eV. In case of without TEA band gap is obtained 3.4 eV. Morphology, growth and the nature of crystalline of the powder samples were performed by X- ray Diffraction (XRD); UV spectrophotometer, scanning electron microscope (SEM) and Photoluminescence (PL). Luminescence properties are discussed by probing the photoluminescence properties of ZnO nano particles with TEA at different molar concentrations.

  20. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties

    OpenAIRE

    Huang, X.; Willinger, M.; Fan, H.; Xie, Z.; Wang , L.; Klein-Hoffmann, A.; Girgsdies, F.; Lee, C.; Meng, X.

    2014-01-01

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucia...

  1. Synthesis and properties of porous SiC ceramics

    Science.gov (United States)

    Kiselov, V. S.; Lytvyn, P. M.; Yukhymchuk, V. O.; Belyaev, A. E.; Vitusevich, S. A.

    2010-05-01

    Porous silicon carbide (SiC) ceramics are produced using carbon matrices derived from natural wood. Such material is especially promising as it is environmentally friendly with attractive physical properties, including a high level of biocompatibility, chemical inertness, and mechanical strength. We have developed a forced impregnation process with further synthesis of SiC using natural wood as well as a variety of industrial carbon materials and compared the properties of these ceramics. The structure and composition of the materials obtained were investigated by Raman scattering spectroscopy. The hardness of the samples was estimated using the Vickers technique. It was shown that the phase composition and mechanical properties of synthesized SiC ceramics can be effectively controlled by the initial Si contents and temperature of the synthesis process. A large variety of options are demonstrated for materials development taking into account an optimal porosity selection for various practical applications.

  2. Synthesis, spectroscopic characterization and electronic structure of ...

    Indian Academy of Sciences (India)

    Unknown

    Copper(I) carbene complex; carbene complex synthesis; Cu(I)–carbene electronic structure. 1. Introduction. Metal carbene complexes are arguably the most ver- satile organometallic reagents that have been devel- oped for organic synthesis.1 Different reactions of these complexes have been reported since their dis-.

  3. Synthesis and structure refinement of layered double hydroxides of ...

    Indian Academy of Sciences (India)

    Administrator

    )-oxygen bond in this compound as opposed to the Co–Ga hydroxide. These observations are supported by IR spectra. Keywords. Layered double hydroxide; Rietveld refinement; urea hydrolysis. 1. Introduction. The synthesis, structure and properties of layered double hydroxides (LDHs) have been widely studied in recent.

  4. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes

    International Nuclear Information System (INIS)

    Nikolin, A A; Negrebetsky, V V

    2014-01-01

    The state of the art of the chemistry of hypercoordinate silicon compounds is analyzed. Published data on the current top-priority approaches to the preparative synthesis of these compounds and on their properties, structures and reactivity are summarized and generalized. Relying on the results obtained by modern physicochemical methods, the possible mechanisms of stereodynamic processes occurring in the coordination units of hypercoordinate silicon complexes are discussed. The bibliography includes 157 references

  5. Synthesis and properties of antimonide nanowires

    Science.gov (United States)

    Mattias Borg, B.; Wernersson, Lars-Erik

    2013-05-01

    Antimonide semiconductors are suitable for low-power electronics and long-wavelength optoelectronic applications. In recent years research on antimonide nanowires has become a rapidly growing field, and nano-materials have promising applications in fundamental physics research, for tunnel field-effect transistors, and long-wavelength detectors. In this review, we give an overview of the field of antimonide nanowires, beginning with a description of the synthesis of these nano-materials. Here we summarize numerous reports on antimonide nanowire growth, with the aim to give an overall picture of the distinctive properties of antimonide nanowire synthesis. Secondly, we review the data on the physical properties and emerging applications for antimonide nanowires, focusing on applications in electronics and optics.

  6. Thin metal nanostructures: synthesis, properties and applications

    OpenAIRE

    Fan, Zhanxi; Huang, Xiao; Tan, Chaoliang; Zhang, Hua

    2014-01-01

    Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. I...

  7. Synthesis, structure and properties of nickel-iron-tungsten alloy electrodeposits - Part II: Effect of microstructure on hardness, electrical and magnetic properties

    Directory of Open Access Journals (Sweden)

    Ćirović Nataša

    2016-01-01

    Full Text Available Nanostructured nickel-iron-tungsten alloys were produced by electrodeposition from an ammoniacal citrate bath. The tungsten content of the alloy ranged from 0.8 wt.% to 11 wt.%, and the crystal grain size of the FCC phase of the solid solution of iron and tungsten in nickel was between 14 nm and 3.3 nm. The amorphous phase content of the alloy increases with decreasing crystal grain size. As the amorphous phase content increases, the magnetization, electrical conductivity and hardness of the alloy decrease. Annealing the alloy to crystallization temperature results in structural relaxation during which the alloy undergoes short-range ordering in conjunction with decreases in the density of chaotically distributed dislocations and internal microstrain level, which increases the exchange integral value, the electronic density of states at the Fermi level, the mean free path of electrons, the ordering and the mean size of cluster in the sliding plane and results in more uniform orientation of dipole moments of certain nanoparticles. These changes: a increase the mobility of magnetic domain walls, facilitate the orientation of domains in the external magnetic field and cause an increase in magnetization; b cause a decrease in electrical resistance, and c impede the sliding of grain boundaries and increase the hardness of the alloy. Annealing the alloys at temperatures above 400ºC results in amorphous phase crystallization and larger crystal grains of the FCC phase, along with a decrease in the density of chaotically distributed dislocations and a decrease in internal microstrain level. The formation of larger crystal grains reduces the hardness of the alloy, decreases its specific electrical resistance and impedes both the orientation of certain magnetic domains and the shift of walls of already oriented domains, thus inducing a decrease in magnetization. The heat released during the milling of Ni87.3Fe11.3W1.4 alloy with FCC-phase crystal grains 8

  8. Synthesis, characterization, and wear and friction properties of variably structured SiC/Si elements made from wood by molten Si impregnation

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Rana, Kuldeep; Bengu, Erman

    2012-01-01

    We have synthesized pre-shaped SiC/Si ceramic material elements from charcoal (obtained from wood) by impregnation with molten silicon, which takes place in a two-stage process. In the first process, a porous structure of connected micro-crystals of β-SiC is formed, while, in the second process......, molten Si totally or partly infiltrates the remaining open regions. This process forms a dense material with cubic (β-)SiC crystallites, of which the majority is imbedded in amorphous Si. The synthesis of preshaped “sprocket” elements demonstrates that desired shapes of such a dense SiC/Si composite...

  9. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete and the p...... and the properties of lime mortar....

  10. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of NiII-LnIII-WVHeterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    Science.gov (United States)

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni II -Ln III -W V trimetallics, [(CN) 7 W(CN)Ni(H 2 O)(valpn)Ln(H 2 O) 4 ]·H 2 O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy III and Tb III metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W V Ni II Ln III ] core structure, [(CN) 7 W(CN)Ni(dmf)(valdmpn)Ln(dmf) 4 ]·H 2 O (Ln = Gd III 7, Tb III 8a, Dy III 9, Ho III 10), [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Tb(dmf) 2.5 (H 2 O) 1.5 ]·H 2 O·0.5dmf 8b, and [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Er(dmf) 3 (H 2 O) 1 ]·H 2 O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel

  11. Synthesis and atomic scale characterization of Er2O3nanoparticles: enhancement of magnetic properties and changes in the local structure.

    Science.gov (United States)

    Corrêa, Eduardo L; Bosch-Santos, Brianna; Freitas, Rafael S; da Penha A Potiens, Maria; Saiki, Mitiko; Carbonari, Artur W

    2018-05-18

    In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er 2 O 3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O 2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111 Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.

  12. In situ powder X-ray diffraction, synthesis, and magnetic properties of the defect zircon structure ScVO(4-x).

    Science.gov (United States)

    Shafi, Shahid P; Kotyk, Matthew W; Cranswick, Lachlan M D; Michaelis, Vladimir K; Kroeker, Scott; Bieringer, Mario

    2009-11-16

    We report the formation pathway of ScVO(4) zircon from ScVO(3) bixbyite with emphasis on the synthesis and stability of the novel intermediate defect zircon phase ScVO(4-x) (0.0 situ powder X-ray diffraction. The oxidation of ScVO(3) to ScVO(4) involves two intermediates of composition ScVO(3.5+y) (0.00 diffraction, neutron diffraction, and bulk magnetic susceptibility data as well as (45)Sc and (51)V solid state NMR spectroscopy. ScVO(4-x) can only be obtained by oxidation of ScVO(3) or ScVO(3.5+y) while the reduction of ScVO(4) does not yield the novel defect structure. Mechanistic insights into the oxidative formation of ScVO(4) via the defect structure are presented.

  13. Synthesis and atomic scale characterization of Er2O3 nanoparticles: enhancement of magnetic properties and changes in the local structure

    Science.gov (United States)

    Corrêa, Eduardo L.; Bosch-Santos, Brianna; Freitas, Rafael S.; Potiens, Maria da Penha A.; Saiki, Mitiko; Carbonari, Artur W.

    2018-05-01

    In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er2O3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.

  14. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    Science.gov (United States)

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

    KAUST Repository

    Alhilaly, Mohammad J.

    2016-10-13

    Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag-67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag-67(SPhMe2)(32)(PPh3)(8)](3+). The crystal structure shows an Ag-23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag-13, core was formed through an unprecedented centered cuboctahedron, i.e., Ag-13, unlike the common centered Ag-13 icosahedron geometry. Two types of ligand motifs, eight AgS3P and eight bridging thiols, were found to stabilize the whole cluster. The optical spectrum of this NC displayed highly structured multiple absorption peaks. The electronic structure and optical spectrum of Ag-67 were computed using time-dependent density functional theory (TDDFT) for both the full cluster [Ag-67(SPhMe2)(32)(PPh3)(8)](3+) and a reduced model [Ag-67(SH)(32)(PH3)(8)](3+). The lowest metal-to-metal transitions in the range 500-800 nm could be explained by considering the reduced model that shows almost identical electronic states to 32 free electrons in a jellium box. The successful synthesis of the large box-shaped Ag-67 NC facilitated by the combined use of phosphine and thiol paves the way for synthesizing other metal clusters with unprecedented shapes by judicious choice of thiols and phosphines.

  16. Antibacterial Barbituric Acid Analogues Inspired from Natural 3-Acyltetramic Acids; Synthesis, Tautomerism and Structure and Physicochemical Property-Antibacterial Activity Relationships

    Directory of Open Access Journals (Sweden)

    Yong-Chul Jeong

    2015-02-01

    Full Text Available The synthesis, tautomerism and antibacterial activity of novel barbiturates is reported. In particular, 3-acyl and 3-carboxamidobarbiturates exhibited antibacterial activity, against susceptible and some resistant Gram-positive strains of particular interest is that these systems possess amenable molecular weight, rotatable bonds and number of proton-donors/acceptors for drug design as well as less lipophilic character, with physicochemical properties and ionic states that are similar to current antibiotic agents for oral and injectable use. Unfortunately, the reduction of plasma protein affinity by the barbituric core is not sufficient to achieve activity in vivo. Further optimization to reduce plasma protein affinity and/or elevate antibiotic potency is therefore required, but we believe that these systems offer unusual opportunities for antibiotic drug discovery.

  17. Design, Synthesis, and Structure-Property Relationships of Er3+-Doped TiO₂ Luminescent Particles Synthesized by Sol-Gel.

    Science.gov (United States)

    Lopez-Iscoa, Pablo; Pugliese, Diego; Boetti, Nadia G; Janner, Davide; Baldi, Giovanni; Petit, Laeticia; Milanese, Daniel

    2018-01-02

    Titania particles doped with various concentrations of Erbium were synthesized by the sol-gel method followed by different heat treatments. The shape and the grain growth of the particles were noticeably affected by the concentration of Erbium and the heat treatment conditions. An infrared emission at 1530 nm, as well as green and red up-conversion emissions at 550 and 670 nm, were observed under excitation at 976 nm from all of the synthesized particles. The emission spectra and lifetime values appeared to be strongly influenced by the presence of the different crystalline phases. This work presents important guidelines for the synthesis of functional Er 3+ -doped titania particles with controlled and tailored spectroscopic properties for photonic applications.

  18. Constrained saccharides: a review of structure, biology, and synthesis.

    Science.gov (United States)

    Rodriguez, Jacob; O'Neill, Sloane; Walczak, Maciej A

    2018-03-01

    Review primarily covers from 1995-2018Carbohydrate function, recognized in a multitude of biological processes, provides a precedent for developing carbohydrate surrogates that mimic the structure and function of bioactive compounds. In order to constrain highly flexible oligosaccharides, synthetic tethering techniques like those exemplified by stapled peptides are utilized to varying degrees of success. Naturally occurring constrained carbohydrates, however, exist with noteworthy cytotoxic and chemosensitizing properties. This review highlights the structure, biology, and synthesis of this intriguing class of molecules.

  19. Uranium hetero-bimetallic complexes: synthesis, structure and magnetic properties; Complexes heterobimetalliques de l'uranium: synthese, structure et proprietes magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Le Borgne, Th

    2000-10-04

    The aim of this thesis is to synthesize molecular complexes with uranium and transition metal ions in close proximity, to determine the nature of the magnetic interaction between them. We decided to use Schiff bases as assembling ligands, which are unusual for uranium (IV). Although the simplest Schiff bases, such as H{sub 2}Salen, lead to ligand exchange reactions, the bi-compartmental Schiff base H{sub 4}L{sup 6} (bis(3-hydroxy-salicylidene) - 2,2-dimethyl-propylene) allows the crystal structure determination of the complex [L{sup 6}Cu(pyr)]U[L{sup 6}Cu].2pyr, obtained by reaction of the metallo-ligand H{sub 2}L{sup 6}Cu with U(acac){sub 4}. In this manner, the complexes [L{sup 6}Co(pyr)]{sub 2}U and [L{sup 6}Ni(pyr)]{sub 2}U.pyr were also isolated, as well as the compounds in which the paramagnetic ions have been exchanged by the diamagnetic ions Zn{sup II}, Zr{sup IV} and Th{sup IV}': [L{sup 6}Zn(pyr)]{sub 2}U, [L{sup 6}Cu]{sub 2}Zr and [L{sup 6}Cu(pyr)]Th[L{sup 6}Cu].2pyr. These complexes are the first which involve three metallic centres assembling by the means of a hexa-dentate Schiff base. The crystalline structures show, for all these complexes, the outstanding orthogonal arrangement of the two fragments L{sup 6}M around the central atom which is in a dodecahedral environment of eight oxygen atoms of two Schiff bases. The syntheses of the isostructural complexes Cu2{sup II} and Zn{sub 2}U in which the uranium (IV) ion is close, in the first one, to the paramagnetic ion Cu{sup II} and, in the second one, to the diamagnetic ion Zn{sup II}, has allowed the use of the empiric method to determine the nature of the magnetic interaction between an f element and a transition metal. The comparison of the magnetic behaviour of two complexes Cu{sub 2}U and Zn{sub 2}U, expressed by the variation of {chi}T vs T, reveals the ferromagnetic interaction in the heart of the triad Cu-U-Cu. The magnetic behaviour of the complexes Cu{sub 2}Th et Cu{sub 2}Zr which does not

  20. IONOTHERMAL SYNTHESIS, STRUCTURES AND SUPRAMOLE

    African Journals Online (AJOL)

    Preferred Customer

    2Department of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal. (Received October 14 ... The principal feature of ionothermal synthesis is that the ionic liquids (ILs) act as both the “designed” green solvents ... purification except [EMI]Br. [EMI]Br was synthesized from the reaction of ethylbromide with.

  1. Synthesis, microstructure and mechanical properties of ceria ...

    Indian Academy of Sciences (India)

    Unknown

    Zirconia; ceria stabilized zirconia; nanocrystalline; spray drying; toughened ceramics; mechanical properties. 1. Introduction. Ceria stabilized tetragonal zirconia polycrystalline cera- mics possess distinct advantages over other conventional structural ceramic materials (Garvie et al 1975; Evans and. Cannon 1986) because ...

  2. Hydrothermal synthesis and electrochemical properties of a ...

    Indian Academy of Sciences (India)

    Coordination polymers are a new generation of solid- state materials that have promising applications in gas storage, catalysis, and porous materials due to their unique structural and functional properties.7–9 In virtue of their special properties, it is appealing to construct. POM-based coordination polymers, which may com-.

  3. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  4. Multifunctional Nanomaterials: Design, Synthesis and Application Properties

    Directory of Open Access Journals (Sweden)

    Marisa Martinelli

    2017-02-01

    Full Text Available The immense scope of variation in dendritic molecules (hyper-branching, nano-sized, hydrophobicity/hydrophilicity, rigidity/flexibility balance, etc. and their versatile functionalization, with the possibility of multivalent binding, permit the design of highly improved, novel materials. Dendritic-based materials are therefore viable alternatives to conventional polymers. The overall aim of this work is to show the advantages of dendronization processes by presenting the synthesis and characterization of three different dendronized systems: (I microbeads of functionalized chitosan; (II nanostructuration of polypropylene surfaces; and (III smart dendritic nanogels. The particular properties yielded by these systems could only be achieved thanks to the dendronization process.

  5. Synthesis, structure, solid-state thermolysis, and thermodynamic properties of new heterometallic complex Li2Co2(Piv)6(NEt3)2

    International Nuclear Information System (INIS)

    Dobrohotova, Zn.V.; Sidorov, A.A.; Kiskin, M.A.; Aleksandrov, G.G.; Gavrichev, K.S.; Tyurin, A.V.; Emelina, A.L.; Bykov, M.A.; Bogomyakov, A.S.; Malkerova, I.P.; Alihanian, A.S.; Novotortsev, V.M.; Eremenko, I.L.

    2010-01-01

    The reaction of lithium pivalate, polymeric cobalt pivalate [Co(Piv) 2 ] n , and triethylamine in THF at 60 o S afforded the new heterometallic antiferromagnetic complex Li 2 Co 2 (Piv) 6 (NEt 3 ) 2 (2). The molecular and crystal structure of complex 2 was established and its magnetic behavior was studied. The vaporization and solid-state thermolysis of 2 were investigated. The thermodynamic characteristics of complex 2 were determined. The results of the present study show that complex 2 can be used as a potential molecular precursor for the synthesis of thin films of lithium cobaltate LiCoO 2 . - Graphical abstract: The solid-state thermolysis, study of the vaporization process, and temperature dependence of S p for the new heterometallic complex Co 2 Li 2 (Piv) 6 (NEt 3 ) 2 were performed. Decomposition of Co 2 Li 2 (Piv) 6 (NEt 3 ) 2 results in the formation of LiCoO 2 .

  6. Synthesis and catalytic properties of metal and semiconductor nanoclusters

    Science.gov (United States)

    Wilcoxon, J. P.; Martino, T.; Klavetter, E.; Sylwester, A. P.

    Synthesis of metal or semiconductor nanoclusters in microheterogeneous oil-continuous inverse micelle systems is discussed. We focus on synthesis and catalytic properties of palladium, iron, and iron sulfide nanoclusters. Cluster size-control is achieved by changing the micelle size which is determined by small angle neutron scattering (SANS) and chosen to produce cluster in size range of 1-20 nm. Cluster sizes were determined by either transmission electron microscopy (TEM) or small-angle x-ray scattering (SAXS). Cluster structure was determined by either x-ray or electron diffraction. In the case of Fe nanoclusters, the crystal structure depended on the chemical nature of the surfactant micelle used in the synthesis, illustrating the important role of the surfactant during the growth process. Results of in-situ pyrene hydrogenation using size-selected Pd clusters show a significant increase in activity/total surface area as the size decreases. These clusters also proved effective as unsupported catalysts for direct coal hydropyrolysis, even at very low metal concentrations. Synthesis and optical features of a new semiconductor cluster material, FeS2, are discussed with regard to its use in photocatalysis. Application of FeS2 in coal hydrogenolysis reactions has improved yields of short chain hydrocarbons significantly compared to conventional FeS2 powders.

  7. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Martirosyan, K.S.; Galstyan, E.; Hossain, S.M.; Wang Yiju; Litvinov, D.

    2011-01-01

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m 2 /g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO 2 . The activation energy for carbon combustion synthesis of BaFe 12 O 19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H c ∼3000 Oe and M s ∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  9. Er{sup 3+}-doped Y{sub 2}O{sub 3} obtained by polymeric precursor: Synthesis, structure and upconversion emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Perrella, Rafael V.; Santos, Daniela P. dos [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); Poirier, Gael Y. [Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Cidade Universitária, 37715400 Poços de Caldas, MG (Brazil); Góes, Márcio S. [Universidade Federal da Integração Latino-Americana (UNILA), Av. Tancredo Neves, 6731 – Bloco 4, Cx P. 2044, CEP: 85867-970 Foz do Iguaçu, PR (Brazil); Ribeiro, Sidney José L. [Instituto de Química, UNESP, P.O. Box 355, 14800-970 Araraquara, SP (Brazil); Schiavon, Marco A. [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2014-05-01

    The relentless pursuit for materials containing rare earth ions with photoluminescent properties has led to several studies with applications in the development of new technologies. The main focus of this work is the preparation of Er{sup 3+}-doped polycrystalline Y{sub 2}O{sub 3} with photoluminescent properties using PEG as an organic precursor and heat-treated at different temperatures. The methodology used in this synthesis is highly attractive due to its high feasibility for improved technology and low cost for preparing materials. The behavior of the viscous resin has been evaluated and the final compounds exhibited the formation of a cubic polycrystalline phase, which is able to support variations in Er{sup 3+} doping concentrations up to 10 mol%, without significant changes in the polycrystalline parameters. The values of the nanocrystallite size calculated by Scherrer's equation showed direct dependence on the heat-treatment temperature as well as the Er{sup 3+} concentration. Intense emission in the visible region under excitation at 980 nm was attributed to an upconversion phenomenon assigned to the intraconfigurational f–f transitions of Er{sup 3+} ions. The upconversion mechanism was investigated and it was demonstrated that the higher intense emission in the red region in comparison to the emission in the green region is related to the crystallite size. The studies about the intensity showed the dependence of upconversion emission of power source, indicating that two-photon are responsible for the green and red photoluminescence. These polycrystalline materials exhibit properties that make them promising for use in solar energy systems, C-telecom band or solid-state laser devices. - Highlights: • Intense red upconversion emission. • Very easy way to prepare the material. • Potential application in solar cells. • Application for C-telecom band.

  10. The Structures & Properties of Carbon

    Science.gov (United States)

    Castellini, Olivia M.; Lisensky, George C.; Ehrlich, Jennifer; Zenner, Greta M.; Crone, Wendy C.

    2006-01-01

    The four main forms of carbon--diamond, graphite, buckyballs, and carbon nanotubes (CNTs)--are an excellent vehicle for teaching fundamental principles of chemical bonding, material structure, and properties. Carbon atoms form a variety of structures that are intrinsically connected to the properties they exhibit. Educators can take advantage of…

  11. Green Synthesis of a New Al-MOF Based on the Aliphatic Linker Mesaconic Acid: Structure, Properties and In Situ Crystallisation Studies of Al-MIL-68-Mes.

    Science.gov (United States)

    Reinsch, Helge; Homburg, Thomas; Heidenreich, Niclas; Fröhlich, Dominik; Hennninger, Stefan; Wark, Michael; Stock, Norbert

    2018-02-09

    A new aluminium metal-organic framework (MOF), based on the short aliphatic linker molecule mesaconic acid (H 2 Mes; methylfumaric acid) is reported. Al-MIL-68-Mes with composition [Al(OH)(O 2 C-C 3 H 4 -CO 2 )]⋅n H 2 O is obtained after short reaction times of 45 minutes under mild, aqueous synthesis conditions (95 °C). It exhibits a kagome-like framework structure with large hexagonal, and small trigonal channels (diameters of ≈6 and ≈2 Å, respectively) and a specific surface area of S BET ≈1040 m 2  g -1 (V MIC =0.42 cm 3  g -1 ). A sigmoidal vapour sorption isotherm for water, and uptakes of water and methanol above 30 wt. % were observed. Al-MIL-68-Mes is stable against water ad-/desorption and its thermal stability is 350 °C in air. The proton conductivity for the hydrated MOF showed values up to 1.1×10 -5  S cm at 130 °C and 100 % relative humidity, which exceeds the values observed for the non-hydrated compound by up to four orders of magnitude. Using synchrotron radiation the crystallisation of the MOF by in situ PXRD was also studied at temperatures from 80 to 100 °C. Kinetic evaluation revealed that the induction periods and crystallization times vary depending on the synthesis batch, but the rate limiting steps are consistently observed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanochemical synthesis, structure and properties of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba)

    Science.gov (United States)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2018-03-01

    The paper deals with the mechanochemical synthesis of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba) by high-energy ball milling. Several metal precursors and fluorinating agents were tested for synthesizing M0.5Pb0.5F2. Metal acetates and ammonium fluoride as precursors show the most promising results and were therefore used for the formation of MxPb1-xF2 with different metal cationic ratios. The characterization of the local fluorine coordination and the crystal structure was performed by 19F MAS NMR spectroscopy and X-ray diffraction. Additional calculations of 19F chemical shifts using the superposition model allow a deeper insight into the local structure of the compounds. The fluoride ion conductivity was followed by temperature dependent DC conductivity measurements. Significantly higher conductivities were found in comparison with those of the corresponding binary fluorides. The highest values were observed for samples with high lead content M0.25Pb0.75F2, bearing in mind the much higher conductivity of PbF2 compared to MF2.

  13. The comparative study of the structural and the electrical properties of the nano spinel ferrites prepared by the soft mehanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Sekulić D.L.

    2014-01-01

    Full Text Available Nano spinel ferrites MFe2O4 (M=Ni, Mn, Zn were obtained by soft mechanochemical synthesis in a planetary ball mill. The appropriate mixture of oxide and hydroxide powders was used as initial compounds. All of this mixture of powders was mechanically activated, uniaxial pressed and sintered at 1100°C/2h. The phase composition of the powders and sintered samples were analyzed by XRD and Raman spectroscopy. Morphologies were examined by SEM. In this study, the AC-conductivity and DC-resistivity of sintered samples of MFe2O4 (M= Ni, Mn, Zn ferrites were measured at different frequencies and at room temperature. The values of the electrical conductivities show an increase with increasing temperature, which indicated the semiconducting behavior of the studied ferrites. The conduction phenomenon of the investigated samples could be explained on the basis of hopping model. The complex impedance spectroscopy analysis was used to study the effect of grain and grain boundary on the electrical properties of all three obtained ferrites [Projekat Ministarstva nauke Republike Srbije, br. III 45003

  14. Effects of size reduction on the structure and magnetic properties of core–shell Ni3Si/silica nanoparticles prepared by electrochemical synthesis

    International Nuclear Information System (INIS)

    Pigozzi, Giancarlo; Mukherji, Debashis; Elerman, Yalçin; Strunz, Pavel; Gilles, Ralph; Hoelzel, Markus; Barbier, Bruno; Schmutz, Patrik

    2014-01-01

    Highlights: • β 1 -Ni 3 Si nanoparticles were produced by electrochemical selective phase dissolution. • A core–shell structure with ordered Ni 3 Si core and silica shell is obtained. • The ordered L1 2 crystal structure is maintained upon size reduction down to 20 nm. • Bulk Ni 3 Si is ferromagnetic below 260 K with low saturation magnetization (2 emu/g). • Nanoparticles are superparamagnetic (T B ∼ 9–11 K) with magnetization >20 emu/g. -- Abstract: Nanostructured nickel silicides find application in electronics, high-temperature alloys, electrode materials and catalysis. In this work, the effect of size reduction on the structure and magnetic properties of β 1 -Ni 3 Si intermetallic phase nanoparticles is studied. Electrochemical selective phase dissolution (ESPD) was used to produce the β 1 -Ni 3 Si nanoparticles of different sizes (from 20 to 215 nm) by extracting β 1 nano-size precipitates from two-phase Ni–Si and Ni–Si–Al precursor alloys. The extracted nanoparticles have a core–shell structure with β 1 -Ni 3 Si core and an amorphous silica shell. Particles size and shape are controlled by the composition and thermal treatment of the precursor alloys. Precipitates size is scaled without modifying the ordered L1 2 lattice structure. The bulk β 1 -Ni 3 Si is ferromagnetic below 260 K with low saturation magnetization (2 emu/g), while the core–shell Ni 3 Si/silica nanoparticles are superparamagnetic at low temperatures ( 20 emu/g at 5 T. It is suggested that weak particle magnetic moments and low magnetic anisotropy of the L1 2 structure are responsible for these properties. The shell on one hand protects the core from degradation; however the oxidation of the core/shell interface region can influence the magnetic behavior of the nano-powders

  15. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(II)-EDTA complex and sodium linker: Synthesis, crystal structures, and magnetic properties

    International Nuclear Information System (INIS)

    Liu Hong; Xu Lin; Gao Guanggang; Li Fengyan; Yang Yanyan; Li Zhikui; Sun Yu

    2007-01-01

    Reaction of Keggin polyoxotungstate with copper(II)-EDTA (EDTA=ethylenediamine tetraacetate) complex under mild conditions led to the formation of hybrid inorganic-organic compounds Na 4 (OH)[(Cu 2 EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [(Cu 2 EDTA)SiW 12 O 40 ].19H 2 O (2). The single-crystal X-ray diffraction analyses reveal their two structural features: (1) one-dimensional chain structure consisting of Keggin polyoxotungstate and copper(II)-EDTA complex; (2) Two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker. The results of magnetic measurements in the temperature range 300-2 K indicated the existence of ferromagnetic exchange interactions between the Cu II ions for both compounds. In addition, TGA analysis, IR spectra, and electrochemical properties were also investigated to well characterize these two compounds. - Graphical abstract: Two new polyoxometalate-based hybrids, Na 4 (OH)[Cu 2 (EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [Cu 2 (EDTA)SiW 12 O 40 ].19H 2 O (2), have been synthesized and structurally characterized, which consist of one-dimensional chain structure assembled by Keggin polyoxotungstate and copper(II)-EDTA complex. The chains are further connected to form two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker

  16. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  17. Assembling Metal Ions Induced Cyanide-Bridged Heterometallic 1D and Ion-Pair Complexes: Synthesis, Crystal Structures and Magnetic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingqian [Liaocheng Univ., Liaocheng (China); Zhao, Zengdian; Chen, Kexun; Wang, Ping; Zhang, Daopeng [Shandong Univ. of Technology, Zibo (China)

    2013-07-15

    We obtained a heterobimetallic one-dimensional cyanide-bridged Mn(II)-Ni(II) complex and an Co(III)-Ni(II) ion-pair complex with [Ni(CN){sub 4}]{sup 2-} as building block and M(II)-phenanthroline (M = Mn, Co) compounds as assembling segment. The different structural types of complexes 1 and 2 indicate that the property of the metal ions the assembling segment contained have obvious influence on the structure of the cyanide-bridged complex. Investigation over the magnetic properties of complex 1 reveals an overall weak antiferromagnetic coupling between the adjacent Mn(II) ions bridged by the antiferromagnetic [-NC-Ni-CN-] unit. Among of all the molecular magnetism systems, for the well known reasons, cyanide-containing complexes have been widely employed as bridges to assemble homo/hetero-metallic molecular magnetic materials by using the cyanide bridge transferring magnetic coupling between the neighboring paramagnetic ions, in whichsome showed interesting magnetic properties, such as high-Tc magnets, spin crossover materials, single-molecule magnets (SMMs) and single-chain magnets (SCMs)

  18. Synthesis and formation process of SrSO4:Sm3+ phosphors with hierarchical structures and its electron trapping luminescence properties

    International Nuclear Information System (INIS)

    Sun, Jiayue; Sun, Guangchao; Xue, Bing; Cui, Dianpeng

    2013-01-01

    Highlights: •SrSO 4 flower-like structures were synthesized by a aqueous solution route. •The as-prepared SrSO 4 crystals have high crystalline. •The flower-like structures are composed of well aligned microtablets. •SrSO 4 nuclei spontaneous attach by an “oriented attachment” process. •The SrSO 4 crystals have excellent electron trapping luminescence properties. -- Abstract: Novel three-dimensional (3D) flower-like Strontium sulfate (SrSO 4 ) microstructures with hierarchical architecture were successfully fabricated by using Sr(NO 3 ) 2 react with Na 2 SO 4 aqueous solution under ambient conditions at room temperature. The SrSO 4 flower-like microcrystals have a uniform diameter of about 10 μm, which are composed of numerous well-aligned single tablet-like SrSO 4 crystals oriented radially to their center. The growth mechanism of the flower-like hierarchical celestine particles is discussed to obtain a better understanding on their formation process. XRD patterns confirm the single crystal phase of SrSO 4 . In the photoluminescence property investigations of SrSO 4 :Sm 3+ , narrow bands observed are well identified with the electronic transition configurations of Sm 3+ . The temperature-dependent photoluminescence spectra show that the temperature of maximum emission intensity is 25 °C. The thermal stability and electron trapping luminescence properties were also characterized

  19. Carborane-containing organophosphorus compounds. Synthesis and properties

    Science.gov (United States)

    Godovikov, Nikolai N.; Balema, Viktor P.; Rys, Evgenii G.

    1997-12-01

    Published data on the synthesis, chemical properties and practical use of carborane-containing organophosphorus compounds are surveyed. Their properties are compared with those of similar organophosphorus derivatives devoid of carboranyl groups. The bibliography includes 89 references.

  20. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 116; Issue 5. Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. Bikash Kumar Panda. Volume 116 ... Keywords. Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium.

  1. Open-chain poly(organophosphazenes). Synthesis and properties

    International Nuclear Information System (INIS)

    Vinogradova, Svetlana V; Tur, Dzidra R; Vasnev, Valery A

    1998-01-01

    Various methods for the synthesis of open-chain poly(organophosphazenes) are considered. The mechanism of polymerisation of hexachlorocyclotriphosphazene and the basic principles of formation of poly(organophosphazene) macromolecules by polymeranalogous reactions of poly(dichloro-phosphazene) with various nucleophilic reagents are analysed from a new viewpoint. The potential of this synthetic method for targeted design of poly(organophosphazenes) of various structures is shown. The possibility of synthesising poly(organophosphazenes) by polymerisation of cyclophosphazenes is also discussed. The problem of unit non-uniformity of poly(organophosphazenes) and its influence on the properties of these polymers are considered. The properties of poly(organophosphazenes) are considered in detail and it is shown that these polymers possess unusual valuable properties, which provide opportunities for their successful practical application. The bibliography includes 276 references.

  2. Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams

    Directory of Open Access Journals (Sweden)

    Agda Aline Rocha de Oliveira

    2009-06-01

    Full Text Available Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of these glasses with the flexibility of polymers. In this work it was evaluated the effect of increasing the PVA content of the on structural characteristics and mechanical properties of hybrid. The hybrids were prepared with 70 wt. (% SiO2-30 wt. (% CaO and PVA fractions of 20 to 60 wt. (% by the sol-gel method. The structural and mechanical characterization was done by FTIR, SEM and compression tests. To reduce the acidic character of the hybrids due to the catalysts added, different neutralization solutions were tested. The calcium acetate alcoholic solution was the best neutralizing method, resulting in foams with final pH of about 7.0 and small sample contraction. The foams presented porosity of 60-85 wt. (% and pore diameters of 100-500 μm with interconnected structure. An increase of PVA fraction in the hybrids improved their mechanical properties. The scaffolds produced provided a good environment for the adhesion and proliferation of osteoblasts.

  3. Synthesis, magnetic properties and electronic structure of the S  =  ½ uniform spin chain system InCuPO5

    Science.gov (United States)

    Koteswararao, B.; Hazra, Binoy K.; Rout, Dibyata; Srinivasarao, P. V.; Srinath, S.; Panda, S. K.

    2017-07-01

    We have studied the structural and magnetic properties and electronic structure of the compound InCuPO5 synthesized by a solid state reaction method. The structure of InCuPO5 comprises S  =  ½ uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility (χ(T)) data show a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The χ(T) data are fitted to the coupled S  =  ½ Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/k B) between nearest-neighbor Cu2+ ions as  -100 K and the ratio of inter-chain to intra-chain coupling (J‧/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the values computed from the electronic structure calculations based on the density functional theory  +  Hubbard U (DFT  +  U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S  = ½ uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 µ B/Cu.

  4. Synthesis and characterization of the crystal and magnetic structures and properties of the hydroxyfluorides Fe(OH)F and Co(OH)F.

    Science.gov (United States)

    Ben Yahia, Hamdi; Shikano, Masahiro; Tabuchi, Mitsuharu; Kobayashi, Hironori; Avdeev, Maxim; Tan, Thiam Teck; Liu, Samuel; Ling, Chris D

    2014-01-06

    The title compounds were synthesized by a hydrothermal route from a 1:1 molar ratio of lithium fluoride and transition-metal acetate in an excess of water. The crystal structures were determined using a combination of powder and/or single-crystal X-ray and neutron powder diffraction (NPD) measurements. The magnetic structure and properties of Co(OH)F were characterized by magnetic susceptibility and low-temperature NPD measurements. M(OH)F (M = Fe and Co) crystallizes with structures related to diaspore-type α-AlOOH, with the Pnma space group, Z = 4, a = 10.471(3) Å, b = 3.2059(10) Å, and c = 4.6977(14) Å and a = 10.2753(3) Å, b = 3.11813(7) Å, and c = 4.68437(14) Å for the iron and cobalt phases, respectively. The structures consist of double chains of edge-sharing M(F,O)6 octahedra running along the b axis. These infinite chains share corners and give rise to channels. The protons are located in the channels and form O-H···F bent hydrogen bonds. The magnetic susceptibility indicates an antiferromagnetic ordering at ∼40 K, and the NPD measurements at 3 K show that the ferromagnetic rutile-type chains with spins parallel to the short b axis are antiferromagnetically coupled to each other, similarly to the magnetic structure of goethite α-FeOOH.

  5. Structure and properties of atomic nanoclusters

    CERN Document Server

    Alonso, Julio A

    2005-01-01

    Atomic clusters are the bridge between molecules and the bulk matter. Following two key experiments - the observation of electronic shells in metallic clusters and the discovery of the C60 fullerence - the field of atomic clusters has experienced a rapid growth, and is now considered a mature field. The electrons of the cluster are confined to a small volume, hence, quantum effects are manifested on many properties of the clusters. Another interesting feature is that the properties often change in a non-smooth way as the number of atoms in the cluster increases. This book provides an updated overview of the field, and presents a detailed description of the structure and electronic properties of different types of clusters: Van der Waals clusters, metallic clusters, clusters of ionic materials and network clusters. The assembling of clusters is also considered, since specially stable clusters are expected to play a role in the future design and synthesis of new materials.

  6. Synthesis, Structure and Fluorescence Properties of 5,17-Distyryl-25,26,27,28-tetraproproxycalix[4]arenes in the Cone Conformation

    DEFF Research Database (Denmark)

    Larsen, Mogens; Krebs, Frederik C; Jørgensen, Mikkel

    1998-01-01

    The HWE (Horner-Wadsworth-Emmons) reaction performed on the easily obtainable 5,17-diformyl- calix[4]arenes (cone) with arylmethyl phosphorus ylides yielded 5,17-distyryl-25,26,27, 28-tetrapropoxycalix[4]arenes (cone) in high yield and purely in the E/E configuration. Compounds 2-5 were prepared...... this way containing bromine. Subsequent bromine-lithium exchange and reaction with trimethoxyborane yielded the boryl- substituted 5,17-distyrylcalix[4] arenes 6-7a. The structures of 3, 5, and 7a were determined by X-ray diffraction. The photophysical properties of 2 were established by absorption...

  7. Structured synthesis of MEMS using evolutionary approaches

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Achiche, Sofiane

    2008-01-01

    In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-level lumped...... the integrated design automation idea using these evolutionary approaches....

  8. Synthesis, spectroscopy and supramolecular structures of two ...

    Indian Academy of Sciences (India)

    TECS

    2007-05-16

    May 16, 2007 ... Indian Academy of Sciences. 243. #. Dedicated to Prof. Dr. Werner Weisweiler on the occasion of his 69th birthday. *For correspondence. Synthesis, spectroscopy and supramolecular structures of two magnesium 4-nitrobenzoate complexes. #. BIKSHANDARKOIL R SRINIVASAN,. 1,. * JYOTI V SAWANT,.

  9. Synthesis, crystal structure and magnetic properties of a new pillared perovskite La5Mo2.75V1.25O16

    International Nuclear Information System (INIS)

    Ramezanipour, Farshid; Derakhshan, Shahab; Greedan, John E.; Cranswick, Lachlan M.D.

    2008-01-01

    A new pillared perovskite compound La 5 Mo 2.76(4) V 1.25(4) O 16 , has been synthesized by solid-state reaction and its crystal structure has been characterized using powder X-ray and neutron diffraction. The magnetic properties of this compound have been investigated using SQUID magnetometry, and the magnetic structure has been studied using neutron diffraction data. A theoretical calculation of relative strengths of spin interactions among different magnetic ions and through different pathways has been performed using extended Hueckel, spin dimer analysis. The crystal structure of this material contains perovskite-type layers that are connected through edge-sharing dimeric units of octahedra. The structure is described in space group C2/m with unit cell parameters a=7.931(2) A, b=7.913(2) A, c=10.346(5) A and β=95.096(5) o . The material shows both short-range ferrimagnetic correlations from ∼200 to 110 K and long-range antiferromagnetic order below T c ∼100 K. The magnetic structure was investigated by neutron diffraction and is described by k=(0 0 1/2 ) as for other pillared perovskites. It consists of a ferrimagnetic arrangement of Mo and V within the layers that are coupled antiferromagnetically between layers. This is the first magnetic structure determination for any Mo-based pillared perovskite. - Graphical abstract: Long-range magnetic order below 100 K in the pillared perovskite La 5 Mo 2.75 V 1.25 O 16 . The magnetic structure is shown in the inset

  10. Synthesis, electronic structure and luminescent properties of a new red-emitting phosphor GdBiW2O9:Eu3+

    Science.gov (United States)

    Xie, Zhi; Zhou, Weiwei; Zhao, Wang; Zhang, Hao; Hu, Qichang; Xu, Xuee

    2017-10-01

    Red phosphor of GdBiW2O9:Eu3+ was prepared by solid-state reaction method. The phase purity and structure of the samples were characterized by XRD. The electronic structures of GdBiW2O9 host were estimated by DFT calculation. The PLE and PL spectra were also investigated. The optimal luminescent properties of GdBiW2O9:Eu3+ phosphors were obtained at 900 °C with 40 mol% of Eu3+ concentration. The phosphors can be excited efficiently by 396 nm NUV light and emit intense red light peaking at 618 nm. The results indicate GdBiW2O9:Eu3+ can act as a potential red-emitting phosphor for LEDs application.

  11. Synthesis, structure and optical limiting property of Co II, Mn II and Cd II complexes with di-Schiff base and reduced di-Schiff base ligands

    Science.gov (United States)

    Kong, Ling-Yan; Li, Zhen-Wu; Okamura, Taka-aki; Ma, Guo-Hong; Chu, Qian; Zhu, Hui-Fang; Tang, Sing-Hai; Sun, Wei-Yin; Ueyama, Norikazu

    2005-11-01

    Three coordination polymers [Co(L) 2(SCN) 2] ( 1), [Mn(L) 2(SCN) 2] ( 2) and [Cd(H 4L) 2Cl 2] ( 3), were obtained by the reaction of Co II, Mn II, Cd II salts with di-Schiff base ligand N, N'-bis(3-pyridylmethyl)-4,4'-biphenylenedimethyleneimine (L) and its reduced form (H 4L), respectively and their structures were determined by X-ray crystallography. In the solid state, complexes 1 and 2 feature 1D hinged chains, while complex 3 has a 2D network structure. Complex 2 was found to show optical limiting property with a 3 ns pulsed laser at 532 nm in DMF solution.

  12. Donor-acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics

    Science.gov (United States)

    Takahashi, Takehiro; Shizu, Katsuyuki; Yasuda, Takuma; Togashi, Kazunori; Adachi, Chihaya

    2014-06-01

    A new series of luminescent 1,4-diazatriphenylene (ATP) derivatives with various peripheral donor units, including phenoxazine, 9,9-dimethylacridane and 3-(diphenylamino)carbazole, is synthesized and characterized as thermally activated delayed fluorescence (TADF) emitters. The influence of the donor substituents on the electronic and photophysical properties of the materials is investigated by theoretical calculations and experimental spectroscopic measurements. These ATP-based molecules with donor-acceptor-donor (D-A-D) structures can reduce the singlet-triplet energy gap (0.04-0.26 eV) upon chemical modification of the ATP core, and thus exhibit obvious TADF characteristics in solution and doped thin films. As a demonstration of the potential of these materials, organic light-emitting diodes containing the D-A-D-structured ATP derivatives as emitters are fabricated and tested. External electroluminescence quantum efficiencies above 12% and 8% for green- and sky-blue-emitting devices, respectively, are achieved.

  13. New Synthesis, Structure and Analgesic Properties of Methyl 1-R-4-Methyl-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxylates

    Directory of Open Access Journals (Sweden)

    Liliana Azotla-Cruz

    2017-01-01

    Full Text Available According to the principles of the methodology of bioisosteric replacements a series of methyl 1-R-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates has been obtained as potential analgesics. In addition, a fundamentally new strategy for the synthesis of compounds of this chemical class involving the introduction of N-alkyl substituent at the final stage in 2,1-benzothiazine nucleus already formed has been proposed. Using nuclear magnetic resonance (NMR spectroscopy, mass spectrometry and X-ray diffraction analysis it has been proven that in the DMSO/K2CO3 system the reaction of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and alkyl halides leads to formation of N-substituted derivatives with good yields regardless of the structure of the alkylating agent. The peculiarities of NMR (1Н and 13С spectra of the compounds synthesized, their mass spectrometric behavior and the spatial structure are discussed. In N-benzyl derivative the ability to form a monosolvate with methanol has been found. According to the results of the pharmacological testing conducted on the model of the thermal tail-flick it has been determined that replacement of 4-ОН-group in methyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates for the methyl group is actually bioisosteric since all methyl 1-R-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates synthesized demonstrated a statistically significant analgesic effect. The majority of the substances can inhibit the thermal pain response much more effective than piroxicam in the same dose. Under the same conditions as an analgesic the N-methyl-substituted analog exceeds not only piroxicam, but more active meloxicam as well. Therefore, it deserves in-depth biological studies on other experimental models.

  14. Synthesis, crystal structure, thermal and luminescence properties of CuX(2,3-dimethylpyrazine) (X=Cl, Br, I) coordination polymers.

    Science.gov (United States)

    Jess, Inke; Taborsky, Petr; Pospísil, Jirí; Näther, Christian

    2007-06-14

    Three new coordination polymers based on CuI and 2,3-dimethylpyrazine (2,3-dmpyz) were prepared, structurally characterized and investigated for their thermal and luminescence properties. In the ligand rich 2:3 compound [(CuI)2(2,3-dmpyz)3] (CuI)2 dimers are found, which are connected by the N-donor ligands into chains, whereas in the structure of the 1:1 intermediate [(CuI)(2,3-dmpyz)] (CuI)4 tetramers are found, which are also connected into chains. The crystal structure of the ligand deficient 2:1 compound [(CuI)2(2,3-dmpyz)] is built up of CuI double chains, which are connected by the 2,3-dmpyz ligands into layers. Thermal decomposition of results in its direct transformation into the ligand deficient compound , without the formation of the 1:1 compound as an intermediate. A similar thermal reactivity is found for compound , which transforms into on heating. Stirring of a crystalline suspension of pure or in acetonitrile, always leads to a transformation into the ligand deficient compound indicating that compound is the most stable of all the coordination polymers, whereas compounds and are metastable. The luminescence properties of the CuCl and CuI coordination polymers were investigated at 298 and 77K. It was observed that the emission maxima strongly depends on the nature of the halide atom and the composition and structure of the coordination polymers. In addition, several of these compounds show luminescence thermochromism. These results are compared with those obtained for the previously reported CuCl and CuBr(2,3-dimethylpyrazine) coordination polymers.

  15. Structural Properties of Ferroelectric Perovskites

    National Research Council Canada - National Science Library

    Vanderbilt, David

    1998-01-01

    Under this research grant, we carried out realistic first-principles computer calculations of the ground-state and finite-temperature structural and dielectric properties of cubic perovskite materials...

  16. Synthesis, crystal structure and optical properties of two new layered cadmium iodates: Cd(IO3)X (X=Cl, OH)

    International Nuclear Information System (INIS)

    Yang, Bing-Ping; Mao, Jiang-Gao

    2014-01-01

    Systematic explorations of new compounds in the cadmium iodate system by hydrothermal reactions led to two layered iodates, namely, Cd(IO 3 )X (X=Cl, OH). Cd(IO 3 )Cl crystallizes in the orthorhombic space group Cmca (No. 64) whereas Cd(IO 3 )(OH) crystallizes in the orthorhombic space group Pnma (No. 62). Cd(IO 3 )Cl displays a unique double layered structure composed of 1 ∞ [Cd−O 3 Cl] n chains. Cadmium octahedrons form a 1D chain along the a-axis through edge sharing, and such chains are further interconnected via IO 3 groups to form a special double layer on (020) plane. Cd(IO 3 )(OH) also exhibits a layered structure that is composed of cadmium cations, IO 3 groups and hydroxyl ions. Within a layer, chains of CdO 6 edge-shared octahedra are observed along the b-axis. And these chains are connected by IO 3 groups into a layer parallel to the bc plane. Spectroscopic characterizations, elemental analysis, and thermogravimetric analysis for the reported two compounds are also presented. - Graphical abstract: Two new layered cadmium iodates Cd(IO 3 )X (X=Cl, OH) are reported. Cd(IO 3 )Cl features a unique double layered structure whereas Cd(IO 3 )(OH) displays an ordinary layered structure. - Highlights: • Two new layered cadmium iodates Cd(IO 3 )X (X=Cl, OH) are reported. • Cd(IO 3 )Cl features a unique double layered structure. • Cd(IO 3 )(OH) displays an ordinary layered structure. • The spectroscopic and thermal properties have been studied in detail

  17. Thiocyanate cadmium(II) complexes of 2,4,6-tri(2-pyridyl)-1,3,5-triazine – Synthesis, structure and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Nawrot, I. [Department of Crystallography, Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Machura, B., E-mail: basia@ich.us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Kruszynski, R., E-mail: rafal.kruszynski@p.lodz.pl [Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź (Poland)

    2014-12-15

    Two new thiocyanate cadmium(II) complexes of 2,4,6-tri(2-pyridyl)-1,3,5-triazine were synthesized and characterized. The resulted complexes [Cd(SCN)(NO{sub 3})(tptz)(H{sub 2}O)] (1) and [Cd(SCN){sub 2}(tptz)(MeOH)] (2) were studied by IR, UV–vis spectroscopy and single crystal X-ray analysis. The luminescent properties of 1 and 2 were studied in solution and solid state and compared with the free ligand. To get detailed insight into the electronic structure and spectroscopic properties of [Cd(SCN)(NO{sub 3})(tptz)(H{sub 2}O)] and [Cd(SCN){sub 2}(tptz)(MeOH)], the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. - Highlights: • Two novel thiocyanate cadmium(II) compounds of 2,4,6-tri(2-pyridyl)-1,3,5-triazine were synthesized. • The compounds were identified by IR, UV–vis spectroscopy and X-ray analysis. • The fluorescence properties of the complexes were examined and compared with the free ligand. • The electronic spectra were investigated at the TD-DFT level employing B3LYP/LANL2DZ.

  18. A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2, 5-dicarboxylic acid: Synthesis, structure and ferroelectric property

    Science.gov (United States)

    Lin, Jian-Di; Rong, Cheng; Lv, Ri-Xin; Wang, Zu-Jian; Long, Xi-Fa; Guo, Guo-Cong; Pan, Chun-Yang

    2018-01-01

    Self-assembly reaction of Pb(NO3)2 with thiophene-2, 5-dicarboxylic acid (H2TDC) led to an acentric three-dimensional (3D) metal-organic framework under solvothermal conditions, namely, Pb(TDC) (1). The 3D framework of 1 is a pillared-layer structure with the I2O1 type which is composed of a 2D inorganic Pb-O-Pb substructural layer and two independent μ6-TDC2- anions pillars. This 3D framework shows a six-connected pcu topological net according to the topological analysis. Compound 1 crystallizes in an acentric space group and displays potential ferroelectric property which could be due to the swing of the thiophene rings. The remnant polarization (Pr), coercive field (Ec) and saturation spontaneous polarization (Ps) of 1 are ca. 0.034 μC cm-2, 15.7 kV cm-1 and 0.0997 μC cm-2, respectively. Among the H2TDC-based MOFs, the present compound is the first example which shows ferroelectric property. In addition, 1 also exhibits photoluminescent property which can be attributed to ligand-to-metal charge transfer.

  19. Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescence properties

    Science.gov (United States)

    Ansari, Anees A.; Labis, Joselito P.; Aslam Manthrammel, M.

    2017-09-01

    GdPO4:Eu3+ (core) and GdPO4:Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared by urea based co-precipitation process at ambient conditions which was followed by coating with amorphous silica shell via the sol-gel chemical route. The role of surface coating on the crystal structure, crystallinity, morphology, solubility, surface chemistry and luminescence properties were well investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier Transform Infrared (FTIR), UV-Vis, and photoluminescence spectroscopy. XRD pattern revealed highly purified, well-crystalline, single phase-hexagonal-rhabdophane structure of GdPO4 crystal. The TEM micrographs exhibited highly crystalline and narrow size distributed rod-shaped GdPO4:Eu3+ nanostructures with average width 14-16 nm and typical length 190-220 nm. FTIR spectra revealed characteristic infrared absorption bands of amorphous silica. High absorbance in a visible region of silica modified core/shell/Si NRs in aqueous environment suggests the high solubility along with colloidal stability. The photoluminescence properties were remarkably enhanced after growth of undoped LaPO4 layers due to the reduction of nonradiative transition rate. The advantages of presented high emission intensity and high solubility of core/shell and core/shell/Si NRs indicated the potential applications in monitoring biological events.

  20. Synthesis and structures of metal chalcogenide precursors

    Science.gov (United States)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  1. Structural and magnetic properties of yttrium iron garnet (YIG and yttrium aluminum iron garnet (YAlG nanoferrite via sol-gel synthesis

    Directory of Open Access Journals (Sweden)

    Makiyyu Abdullahi Musa

    Full Text Available The structural and magnetic properties of yttrium iron garnet (YIG and yttrium aluminum iron garnet (Y3AlxFe5−xO12, YAIG (x = 0.2, 0.6, 1, 1.4, 1.8, and 2.2 nanoparticles were investigated. The samples were prepared via auto combustion sol-gel technique, using citric acid as chelating agent and fuel for the combustion process. The obtained powder was heated at 950 °C. X-ray diffraction peaks confirmed the garnet phase formation. Crystallite size increases with Al from 28.5894 to 28.6170 nm. Lattice constant of the samples was found to decrease from 12.4674 Å to 12.3233 Å as Al increase from 0.0 to 2.2. FTIR was used to confirm the garnet structure, the main vibrating modes were observed to shift to higher wave number with increasing Al concentration. Saturation magnetization, Ms shows a decreasing trend from 20.721 to 0.7586 emu/g with increasing Al from 0.0 to 2.2. Furthermore, the decreasing trends in the static magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. High content of Al substitution on YIG leads to paramagnetic behavior of the ferrite. The grain size decreased from 0.64 μm to 0.32 μm, while the bulk density decreased from 5.058 gcm−3 to 4.233 gcm−3 as Al increase from 0.0 to 2.2. Keywords: YIG, YAIG, Sol-gel, Phase composition, Magnetic properties

  2. Coordination-organometallic hybrid materials based on the trinuclear M(II)-Ru(II) (M=Ni and Zn) complexes: Synthesis, structural characterization, luminescence and electrochemical properties

    Science.gov (United States)

    Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2018-02-01

    A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.

  3. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN)4]2-: Synthesis, crystal structure, magnetic properties and ESR studies

    International Nuclear Information System (INIS)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-01-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4 Ni(Im) 3 ] ∞ 1, [Hg(SCN) 4 Mn(Im) 2 ] ∞ 2, and [Hg(SCN) 4 Cu(Me-Im) 2 Hg(SCN) 4 Cu(Me-Im) 4 ] ∞ 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4 ] 2- anion connects three [Ni(Im) 3 ] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4 ] 2- and [Mn(Im) 2 ] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4 Ni(Im) 3 ] ∞ 1, [Hg(SCN) 4 Mn(Im) 2 ] ∞ 2, and [Hg(SCN) 4 Cu(Me-Im) 2 Hg(SCN) 4 Cu(Me-Im) 4 ] ∞ 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN -1 anions. Their structural difference is mainly caused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure

  4. Nanopowders of YAl{sub 3}(BO{sub 3}){sub 4} doped by Nd, Yb and Cr obtained by sol-gel method: Synthesis, structure and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Szysiak, A., E-mail: agnieszka.szysiak@itme.edu.pl [Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Lipinska, L. [Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Ryba-Romanowski, W.; Solarz, P. [Institute of Low Temp. and Struct. Research, Polish Ac. Sc., P.O. Box 1410, 50-950 Wroclaw (Poland); Diduszko, R.; Pajaczkowska, A. [Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland)

    2009-12-15

    Structure, morphology and luminescence properties of nanocrystalline samples of YAl{sub 3}(BO{sub 3}){sub 4} (YAB) undoped and doped with neodymium, ytterbium and chromium obtained by the sol-gel method are presented. The best results of synthesis are obtained for mannitol as polymerizing agent. Single phase of nanopowder is obtained for pure YAB. Dopants destroy the compound structure; two other compounds, namely Al{sub 18}B{sub 4}O{sub 33} and YBO{sub 3}, were revealed by X-ray investigation. Nanopowders show isometric and needles forms, the calculated size of crystallites is about 60 nm. Their optical properties are determined and results are compared to data obtained for single crystal counterparts. It is shown that the influence of rare earth ions incorporated into YBO{sub 3} phase on luminescent spectra and excited state relaxation dynamics of the nanopowders is negligibly small when the YBO{sub 3} content is of the order of several wt%. Residual impurity phases do not affect significantly spectroscopic properties of YAB nanopowders.

  5. Synthesis, structure and electrochemical properties of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, Stanislav S. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); Kuzovchikov, Sergey M.; Khasanova, Nellie R.; Drozhzhin, Oleg A.; Filimonov, Dmitriy S. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Karakulina, Olesia M.; Hadermann, Joke [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Abakumov, Artem M. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Antipov, Evgeny V. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)

    2016-10-15

    LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by {sup 57}Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F cathode material demonstrated a reversible activity of the Fe{sup 3+}/Fe{sup 2+} redox couple at the electrode potential near 3.4 V and minor activity of the Co{sup 3+}/Co{sup 2+} redox couple over 5 V vs Li/Li{sup +}. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe{sup 3+}/Fe{sup 2+} in the 2.4÷4.6 V vs Li/Li{sup +} potential range. - Graphical abstract: The ball-polyhedral representation of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F crystal structure. The MO{sub 4}F{sub 2} units are depicted as blue octahedra, PO{sub 4} units as orange tetrahedra, sodium atoms are designated as yellow (Na1), lithium – red and brown (Li2, Li3 resp.), fluorine – green, oxygen – violet spheres. - Highlights: • Freeze-drying method was successfully applied to the synthesis of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F. • The crystal structure of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F was refined based on NPD and validated by ED and HRTEM. • LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F demonstrated a reversible Li de/intercalation in the 2.5÷4.6 V vs Li/Li{sup +} range.

  6. High-pressure synthesis and structural, transport, and magnetic properties of rutile-type C r2Re O6 and CrRe O4

    Science.gov (United States)

    Jiao, Y. Y.; Cui, Q.; Shahi, P.; Wang, N. N.; Su, N.; Wang, B. S.; Fernández-Díaz, M. T.; Alonso, J. A.; Cheng, J.-G.

    2018-01-01

    We have synthesized the cation ordered rutile-type C r2Re O6 and CrRe O4 under high-pressure and high-temperature conditions and performed detailed characterizations on their structural, transport, and magnetic properties via x-ray and neutron powder diffraction, resistivity, magnetic susceptibility, and specific heat measurements. C r2Re O6 crystallizes in the inverse trirutile structure with lattice parameters a =b =4.552 21 (5 )Å and c =8.8934 (1 )Å in the space group P 42/m n m . It undergoes a second-order antiferromagnetic transition at TN≈67 K with the magnetic structure described by the propagation vector k =[0.5 ,0 ,0.5 ] . For CrRe O4 , it adopts a monoclinically distorted rutile-like structure with unit-cell parameters a =9.3393 (2 )Å , b =5.6869 (1 )Å , c =4.6243 (1 )Å , and β =92.043 (8) ∘ in the space group C 2 /m . It also exhibits an antiferromagnetic order at TN=98 K with the magnetic structure described by the propagation vector k =[1 ,0 ,0.5 ] . Interestingly, a large paramagnetic Weiss temperature of θCW=-478 K is evidenced from the Curie-Weiss fitting to the inverse magnetic susceptibility. The temperature dependence of resistivity ρ(T ) for both compounds can be described with Mott's variable range hopping mechanism in the one-dimensional model for C r2Re O6 and the three-dimensional model for CrRe O4 , respectively. For both compounds, a weak resistivity anomaly can be discerned around TN from the temperature derivative curves, signaling the interplay of charge and spin degrees of freedom for these 3 d (Cr)-5 d (Re) coupled electron systems.

  7. Synthesis, structure, and electrochemistry and magnetic properties of a novel 1D homochiral MnIII(5-Brsalen) coordination polymer with left-handed helical character

    Science.gov (United States)

    Dong, Dapeng; Yu, Naisen; Zhao, Haiyan; Liu, Dedi; Liu, Jia; Li, Zhenghua; Liu, Dongping

    2016-01-01

    A novel homochiral manganese (III) Mn(5-Brsalen) coordination polymer with left-handed helical character by spontaneous resolution on crystallization by using Mn(5-Brsalen) and 4,4-bipyridine, [MnIII(5-Brsalen)(4,4-bipy)]·ClO4·CH3OH (1) (4,4-bipy = 4,4-bipyridine) has been synthesized and structurally characterized by X-ray single-crystal diffraction, elemental analysis and infrared spectroscopy. In compound 1, each manganese(III) anion is six-coordinate octahedral being bonded to four atoms of 5-Brsalen ligand in an equatorial plane and two nitrogen atoms from a 4,4-bipyridine ligand in axial positions. The structure of compound 1 can be described a supramolecular 2D-like structure which was formed by the intermolecular π-stacking interactions between the neighboring chains of the aromatic rings of 4,4-bipyridine and 5-Brsalen molecules. UV-vis absorption spectrum, electrochemistry and magnetic properties of the compound 1 have also been studied.

  8. Synthesis, crystal structures, and properties of two novel cadmium(II)-organic frameworks based on asymmetric dicarboxylate and N-donor ligands

    Science.gov (United States)

    Chen, Xiaoli; Gao, Loujun; Zhang, Xiaoge; Han, Xuhua; Wang, Yao; Sun, Rong

    2014-08-01

    Two novel cadmium(II)-organic frameworks with asymmetric dicarboxylate and N-donor ligands, namely [Cd(cpa)(phen)]n (1) and {[Cd2(cpa)2(bpy)1.5]·0.5H2O}n (2) (H2cpa = 3-(4-benzoic)propionic acid, phen = 1,10-phenanthroline, bpy = 4,4";-bipyridine) have been hydrothermally synthesized and characterized by elemental analyses, FT-IR spectra, single-crystal X-ray diffraction analyses, TGA, powder XRD and fluorescent measurements. 1 displays a double zigzag chain structure containing 8-number and 22-number circles. 2 Shows a 6-connected 3D polymer network based on tetranuclear cadmium cluster units. The most striking feature of 2 is that a pair of identical 3D networks are interlocked with each other to the form a 2-fold interpenetrated 3D α-Po structural topology. The diverse structures of two complexes indicate that the skeleton of N-donor ligands plays a great role in the assembly of such different frameworks. In addition, the thermal stabilities, XRD and photoluminescence properties of 1-2 were also studied.

  9. Synthesis and structure of a new layered oxyfluoride Sr{sub 2}ScO{sub 3}F with photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan; Wang, Dake; Hao, Qiaoyan; Wang, Yan

    2015-05-15

    Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizes in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.

  10. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhu-Qing, E-mail: zqgao2008@163.com [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Li, Hong-Jin [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, Qing-Hua [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Kirillov, Alexander M. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon (Portugal)

    2016-09-15

    Four new crystalline solids, namely [Co{sub 2}(µ{sub 2}-5-Clnic){sub 2}(µ{sub 3}-5-Clnic){sub 2}(µ{sub 2}-H{sub 2}O)]{sub n} (1), [Co(5-Clnic){sub 2}(H{sub 2}O){sub 4}]·2(5-ClnicH) (2), [Pb(µ{sub 2}-5-Clnic){sub 2}(phen)]{sub n} (3), and [Cd(5-Clnic){sub 2}(phen){sub 2}]·3H{sub 2}O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1–4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed. - Graphical abstract: A new series of crystalline solids was self-assembled and fully characterized; their structural, topological, luminescent and magnetic features were investigated. Display Omitted.

  11. Structural and optical properties of silicon layers with InSb and InAs nanocrystals formed by ion-beam synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F.; Vlasukova, L.; Greben, M.; Milchanin, O. [Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Zuk, J., E-mail: jotzet@hektor.umcs.lublin.pl [Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Wesch, W.; Wendler, E. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Togambaeva, A. [Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty (Kazakhstan)

    2013-07-15

    We have studied the formation of InSb and InAs precipitates with sizes of several nanometers in Si and SiO{sub 2}/Si by means of implantation of (Sb + In) or (As + In) ions with energies from 170 to 350 keV and fluencies from 2.8 to 3.5 × 10{sup 16} cm{sup −2} at 500 °C and subsequent annealing at 1050–1100 °C for 3–30 min. RBS, TEM/TED, RS and PL techniques were employed to characterize the implanted layers. A broad band in the region of 1.2–1.6 μm has been registered in the low-temperature PL spectra of both (Sb + In) and (As + In) implanted and annealed silicon crystals. It was shown that structural and optical properties of oxidized silicon crystals strongly depend on type of implanted species in silicon crystals.

  12. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Cg1, Cg2 and Cg3 are the centroids of Mo1-O2-C8-N2-N1, C9-C14 and. C1-C6 benzene rings. Figure 1. Molecular structure of the complex at 30% probability displacement. IR spectra. The hydrazone ligands showed stretching bands attributed to C=O, C=N, C–OH and NH at. 1656, 1637, 1155 and 1237, and 3211 cm–1, ...

  13. Synthesis of nanoparticles of manganese MnFe2O4 by co-precipitation micellar ferrite: structural and magnetic properties

    International Nuclear Information System (INIS)

    Alvarez-Paneque, A.; Diaz, S.; Diaz, C.; Santiago-Jacinto, E.; Reguera, E.

    2008-01-01

    Full text: The microemulsion method was used in reverse, shaped micelles by dodecyl of sodium (NaDBS) in toluene/water system, for MnFe2O4 manganese ferrite magnetic nanoparticles. Were also variants of heat treatments to improve the crystallinity of the material obtained. These were, treatments to reflux to 100 ° C or treatments in an inert atmosphere at temperatures that were varied between 350 and 600 ° C. The retrieved material was characterized by x-ray diffraction (XRD), transmission electron microscopy of high and low resolution (HR-TEM and TEM, respectively), Mössbauer Spectroscopy and vibrational magnetometry. Powder XRD patterns revealed the formation of phase MnFe2O4, cubic type Spinel, of space group Fd3m, accompanied by the minority phase Hematite (a-Fe203) group spatial R-3 c. The size of the nanoparticles was estimated from the profile setting from the pattern of powder by the method of Le Bail, obtaining sizes mean that varied between 5 and 25 mn depending on the heat treatment to which they were subjected. This result was corroborated from TEM micrographs. The vibrational magnetometer showed that the smaller MnFe2O4 nanoparticles, prepared following this route of synthesis They presented a superparamagnetic behavior at room temperature (coercive field and) remanence approximately zeros), which was also confirmed by the study of Mössbauer Spectroscopy. Was also the magnetically inactive layer thickness, of around 0.9 nm, responsible for the decrease in the values of saturation magnetization (as) to decrease the size of nanoparticles. Was obtained a set of nanoparticles with superparamagnetic behavior based in the MnFe2O4 around 5.9 NM in diameter and a-Fe203 around 6.6 NM, as phase secondary. They managed to get this material and the desired magnetic properties optimum crystallinity, applying heat treatment variant proposed in this work, and that It consists of making a reflux at 100 ° C, before the treatment on solid phase under flow N2

  14. Synthesis, structure and electromagnetic properties of mesoporous Fe{sub 3}O{sub 4} aerogels by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Chai, C.P.; Luo, Y.J., E-mail: yjluo@bit.edu.cn; Wang, L.; Li, G.P.

    2014-10-15

    Highlights: • Fe{sub 3}O{sub 4} aerogels possess quite low density and large specific surface area. • The porous Fe{sub 3}O{sub 4} aerogels show superparamagnetism and high saturation magnetization. • We study the influences of concentration, molar ratios of reactants and calcinations on the textural and magnetic properties. • The porous material with electromagnetic properties can be a microwave absorbent. - Abstract: The Fe{sub 3}O{sub 4} aerogels have been prepared by the sol–gel method and subsequent supercritical drying with CO{sub 2}, FeCl{sub 3}·6H{sub 2}O, FeCl{sub 2}·4H{sub 2}O and propylene oxide was used as precursor and gelling accelerator, respectively. The result from XRD indicated that the aerogels were composed of nano-crystals. XPS was employed to further characterize the structure of products and confirmed the existence of Fe and O. SEM and TEM showed a fine microstructure of the as-prepared aerogels with three dimensional network, and the skeletons of aerogels were consist of interconnected nanoparticles. The Fe{sub 3}O{sub 4} aerogels also possessed quite low density (0.249–0.393 m{sup 2} g{sup −1}), large specific surface area (60.26–330.20 m{sup 2} g{sup −1}) and superior saturation magnetization (14.64–52.28 emu g{sup −1}). Moreover, the textural and magnetic properties of the aerogels could be controlled by solution concentration, molar ratio of propylene oxide (PO) to Fe{sup 3+} and calcination temperature. The fabricated Fe{sub 3}O{sub 4} aerogels exhibited certain electromagnetic properties in the frequency range of 2–18 GHz, and the maximum value of tan δ{sub e} and tan δ{sub m} is 0.07 and 0.27, respectively.

  15. Synthesis, structures and properties of Cu(II) and Mn(II) complexes with 1,10-phenanthroline-2-carboxylic acid and 2,2'-bipyridine ligands.

    Science.gov (United States)

    Sun, Jingya; Xu, Huanzhi

    2010-11-15

    Four new 2,2'-bipyridine and 1,10-phenanthroline complexes, namely [Mn(phenca)(2)]·(H(2)O)(2) (1), [Cu(4)(phen)(4)(OH-)(4)(H(2)O)(2)](DMF)(4)(ClO(4)-)(4)(H(2)O) (2), [Cu(2)(2,2-bipy)(2)(C(2)O(4)2-)(H(2)O)(2)(NO(3))(2)] (3) and [Cu(2,2-bipy)(2)(ClO(4)-)](ClO(4)-) (4) (2,2'-bpy = 2,2'-bipyridine, Hphenca = 1,10-phenanthroline-2-carboxylic acid) have been synthesized by a hydrothermal reaction. The products were characterized by elemental analysis, infrared spectroscopy and X-ray crystal diffraction. While strong hydrogen bonds play central roles in the formation of the 3D structure, the combined influence of the weak interactions such as π···π interactions is also evident in the structures. A preliminary investigation on the ion exchange properties of the complexes is presented.

  16. A zero dimensional hybrid organic-inorganic perovskite ZnCl4 based: Synthesis, crystal structure, UV-vis, and electronic properties

    Science.gov (United States)

    El Mrabet, Rajae; Kassou, Said; Tahiri, Obaida; Belaaraj, Abdesselam; El Ammari, Lahcen; Saadi, Mohamed

    2017-08-01

    A low dimensional hybrid perovskite-like system [H3Nsbnd (CH2)8sbnd NH3]ZnCl4 was synthesized by slow evaporation method at room temperature. Single crystal X-ray diffraction was used to characterize the crystal structure. The compound crystallizes into triclinic system P-1 space group with mutually surrounded inorganic (ZnCl4)-2 organic (H3Nsbnd (CH2)8sbnd NH3) entities, and the following unit cell parameters: a = 6.9998(1) Å, b = 10.7846(2) Å, c = 11.0332(2) Å, α = 83.1730(10)°, β = 82.0490(10)°, γ = 73.2820(10)°, V = 787.27(2) Å3 and Z = 2. The optical band gap deduced from UV-visible spectroscopy was found to be 4.9 eV. Hirshfeld surface analysis shows the importance of hydrogen bonding interactions to ensure the cohesion of the studied crystal. The band structures and electronic properties, such as total and partial densities of state, were investigated by density functional theory (DFT) using a local LDA and semi local GGA approaches. The obtained results reveal the insulating behavior of the material.

  17. Synthesis, structure and magnetic properties of Y3Fe5-xAlxO12 garnets prepared by the soft chemical method

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Silva Ortega

    2014-12-01

    Full Text Available A study was undertaken about the structural, morphological and magnetic properties at room temperature of crystalline aluminium substituted yttrium iron garnet, YIG (Y3Fe5-xAlxO12 with 1.5< x <1.7 nanoparticles prepared by polymeric precursor method at the temperature of 700 °C for 2 hours. The single-phase character and the well-defined structure of YIG nanoparticles were confirmed by X-ray diffraction, excluding the presence of any other phases. The Raman spectra showed that the changes of lattice vibration would influence interaction between the Fe ion and the host. Mean crystallite size of the single-phase powder was about 46–65 nm. Particles’ morphology was investigated by high-resolution transmission electron microscopy, which shows that the particles were agglomerated. From hysteresis loops, particles’ efficiency range from 91.4% to 95.9% as Fe/Al ratio decreases. Saturation magnetization was affected by the particle size and Fe/Al stoichiometric ratio. We observe that the saturation magnetization increases as the Fe/Al ratio is raised due to enhancement of the surface spin effects.

  18. Synthesis and thermoelectric properties of Re3As6.6In0.4 with Ir3Ge7 crystal structure

    Science.gov (United States)

    Verchenko, Valeriy Y; Vasiliev, Anton S; Tsirlin, Alexander A; Kulbachinskii, Vladimir A; Kytin, Vladimir G

    2013-01-01

    Summary The Re3As7− xInx solid solution was prepared for x ≤ 0.5 by heating the elements in stoichiometric ratios in evacuated silica tubes at 1073 K. It crystallizes with the Ir3Ge7 crystal structure, space group Im−3m, with a unit-cell parameter a ranging from 8.716 to 8.747 Å. The crystal structure and properties were investigated for a composition with x = 0.4. It is shown that indium substitutes arsenic exclusively at one crystallographic site, such that the As–As dumbbells with d As–As = 2.54 Å remain intact. Re3As6.6In0.4 behaves as a bad metal or heavily doped semiconductor, with electrons being the dominant charge carriers. It possesses high values of Seebeck coefficient and low thermal conductivity, but relatively low electrical conductivity, which leads to rather low values of the thermoelectric figure of merit. PMID:23946913

  19. Synthesis and thermoelectric properties of Re3As6.6In0.4 with Ir3Ge7 crystal structure

    Directory of Open Access Journals (Sweden)

    Valeriy Y. Verchenko

    2013-07-01

    Full Text Available The Re3As7−xInx solid solution was prepared for x ≤ 0.5 by heating the elements in stoichiometric ratios in evacuated silica tubes at 1073 K. It crystallizes with the Ir3Ge7 crystal structure, space group Im−3m, with a unit-cell parameter a ranging from 8.716 to 8.747 Å. The crystal structure and properties were investigated for a composition with x = 0.4. It is shown that indium substitutes arsenic exclusively at one crystallographic site, such that the As–As dumbbells with dAs–As = 2.54 Å remain intact. Re3As6.6In0.4 behaves as a bad metal or heavily doped semiconductor, with electrons being the dominant charge carriers. It possesses high values of Seebeck coefficient and low thermal conductivity, but relatively low electrical conductivity, which leads to rather low values of the thermoelectric figure of merit.

  20. Effect of reduction enhancer on a radiolytic synthesis of carbon-supported Pt–Cu nanoparticles and their structural and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, Junichiro, E-mail: jkugai@kobe-kosen.ac.jp [Kobe City College of Technology, Department of Applied Chemistry (Japan); Kubota, Chihiro; Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization, Institute of Materials Structure Science (IMSS) (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2015-06-15

    In order to clarify the effect of reduction enhancer on the nanoparticle formation process and their structural and catalytic properties, carbon-supported Pt–Cu nanoparticles were synthesized by electron beam irradiation on an aqueous precursor solution in the presence/absence of reduction enhancer. In the absence of reduction enhancer, tetravalent platinum oxide particles of approximately 1 nm in diameter were formed on carbon support with copper barely precipitated, while in the presence of 2-propanol or ethylene glycol or glucose both platinum and copper precipitated as few-nanometer-sized alloy particles together with copper oxides. It was suggested that the metal nuclei produced upon electron beam irradiation do not have enough lifetime without reduction enhancer due to fast oxidation of the nuclei by oxidizing radicals, while the reduction enhancer scavenges these oxidizing radicals preventing oxidation of metallic clusters and prolonging their lifetime. Ethylene glycol gave smaller and better alloyed particles with less copper oxides compared to 2-propanol since the carbonyl compounds derived from oxidation of ethylene glycol protect metallic clusters from oxidation further prolonging their lifetime. In the electrochemical measurements, the methanol oxidation activities of Pt–Cu/C catalysts were well explained by their structural characteristics.

  1. Effect of reduction enhancer on a radiolytic synthesis of carbon-supported Pt-Cu nanoparticles and their structural and electrochemical properties

    Science.gov (United States)

    Kugai, Junichiro; Kubota, Chihiro; Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Nitani, Hiroaki; Yamamoto, Takao A.

    2015-06-01

    In order to clarify the effect of reduction enhancer on the nanoparticle formation process and their structural and catalytic properties, carbon-supported Pt-Cu nanoparticles were synthesized by electron beam irradiation on an aqueous precursor solution in the presence/absence of reduction enhancer. In the absence of reduction enhancer, tetravalent platinum oxide particles of approximately 1 nm in diameter were formed on carbon support with copper barely precipitated, while in the presence of 2-propanol or ethylene glycol or glucose both platinum and copper precipitated as few-nanometer-sized alloy particles together with copper oxides. It was suggested that the metal nuclei produced upon electron beam irradiation do not have enough lifetime without reduction enhancer due to fast oxidation of the nuclei by oxidizing radicals, while the reduction enhancer scavenges these oxidizing radicals preventing oxidation of metallic clusters and prolonging their lifetime. Ethylene glycol gave smaller and better alloyed particles with less copper oxides compared to 2-propanol since the carbonyl compounds derived from oxidation of ethylene glycol protect metallic clusters from oxidation further prolonging their lifetime. In the electrochemical measurements, the methanol oxidation activities of Pt-Cu/C catalysts were well explained by their structural characteristics.

  2. Crystal engineering: structure, property and beyond

    OpenAIRE

    Desiraju, Gautam R.

    2017-01-01

    Crystal engineering, which was considered to be crystal structure engineering, is now transforming into crystal property engineering. The same or similar crystal structures could have different properties while different crystal structures could have similar properties.

  3. Synthesis and characterization of p-xylylenediaminium bis(nitrate). Effects of the coordination modes of nitrate groups on their structural and vibrational properties

    Science.gov (United States)

    Gatfaoui, S.; Issaoui, N.; Brandán, Silvia Antonia; Roisnel, T.; Marouani, H.

    2018-01-01

    The p-xylylenediaminium bis(nitrate) compound have been synthesized and then, it was characterized by using Fourier Transform infrared (FT-IR) in the solid phase and, by using the Ultraviolet-Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H- and 13C-NMR) spectra in aqueous solution and in dimethylsulfoxide solvent. In this work, two monodentate and bidentate coordination modes were considered for the nitrate ligands in both media in order to study the structural and vibrational properties of that salt. Hence, the natural bond orbital (NBO), atoms in molecules (AIM), Merz-Kollman (MK) charges, molecular electrostatic potentials (MEP) and frontier orbitals studies were performed for p-xylylenediaminium bis(nitrate) and their cation and anion species taking into account for the salt those two coordination modes for the nitrate ligands. The intermolecular interactions of this salt were also evaluated by Hirshfeld surface analysis. The B3LYP calculations performed by using the hybrid method and the 6-311G* and 6-311++G** basis sets generate monodentate and bidentate structures with Ci and C2 symmetries, respectively. The force fields and the force constants values for these two structures were also computed and their complete vibrational assignments were performed by using those both levels of theory. The strong band at 1536 cm-1, the bands between 2754 and 2547 cm-1 and the bands between 1779 and 1704 cm-1 support clearly the presence of the dimeric species while the IR bands at 1986/1856 cm-1 could justify the presence of the bidentate species in the solid phase.

  4. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    Science.gov (United States)

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  5. Synthesis, structure, and luminescence property of a series of Ag–Ln coordination polymers with the N-heterocyclic carboxylato ligand

    International Nuclear Information System (INIS)

    Jin, Jing; Chen, Chong; Gao, Yan; Zhao, Ran; Wang, Xiuyan; Lü, Chunxin; Chi, Yuxian; Niu, Shuyun

    2016-01-01

    Six Ln–Ag coordination polymers {[LnAg 2 (IN) 4 (H 2 O) 5 ]·NO 3 ·2H 2 O} n (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg 2 (IN) 4 (H 2 O) 2 ]·NO 3 ·H 2 O} n (3), [LnAg(pdc) 2 ] n (Ln=Eu(4) and Pr (5), H 2 pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc) 2 (H 2 O) 4 ] n (6) (H 2 bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or in the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions.

  6. Synthesis, crystal structure and magnetic properties of the two polymorphs of novel S=1 osmate; Li{sub 4}MgOsO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phoung-Hieu T. [Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Blvd., Long Beach, CA 90840-3903 (United States); Kemei, Moureen C. [Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121 (United States); Tan, Malinda S. [Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Blvd., Long Beach, CA 90840-3903 (United States); Derakhshan, Shahab, E-mail: shahab.derakhshan@csulb.edu [Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Blvd., Long Beach, CA 90840-3903 (United States)

    2016-10-15

    Li{sub 4}MgOsO{sub 6} was synthesized by two different solid-state reaction procedures. The crystal structures were determined by X-ray powder diffraction technique and it was revealed that Li{sub 4}MgOsO{sub 6} crystallizes in two different crystal symmetries in ordered rock salt structure type, namely monoclinic C2/m and orthorhombic Fddd. The unit cell constants for the monoclinic system are a=5.1074(4) Å, b=8.8182(4) Å, c=5.0902(2) Å, and β=109.845(4)° and those of the orthorhombic structure are a=5.8485(1) Å, b=8.3821(1) Å, and c=17.6212(3) Å. In both systems, Os{sup 6+} ions reside exclusively in a specific crystallographic position while Li{sup +} and Mg{sup 2+} ions exhibit mix occupancy. The temperature dependent magnetic susceptibility data for both S=1 osmate systems do not support the occurrence of any magnetic transition down to 2 K. The Curie–Weiss fit to the paramagnetic regime of the magnetic susceptibility data reveal highly negative θ value (−114.81 K and −121.87 K for C2/m and for Fddd systems, respectively), which are indicative of predominant antiferromagnetic (AFM) interactions in both systems. The experimental effective magnetic moment (μ{sub eff}) value for the monoclinic phase is 2.13 μB and that of the orthorhombic system is 2.34 μB. Due to the rather strong AFM interactions and lack of magnetic transition down to 2 K, both of these novel osmates are placed in the class of highly frustrated magnets. Low temperature magnetic susceptibility (below 2 K) and dynamic magnetic properties studies (μsr studies) are in order to better understand the magnetic ground states of these two polymorphs of Li{sub 4}MgOsO{sub 6}. - Graphical abstract: The structural transformation between two modifications of highly frustrated Li{sub 4}MgOsO{sub 6}. - Highlights: • Li4MgOsO{sub 6} was synthesized in two different crystal systems. • The monoclinic variant crystallizes in C2/m space group, while the orthorhombic version forms in Fddd

  7. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  8. Synthesis, characterization and luminescence properties of zinc oxide nanostructures

    Science.gov (United States)

    Khan, Aurangzeb

    Zinc oxide (ZnO) represents an important semiconductor material due to its wideband gap (3.37 eV at room temperature), large exciton binding energy (60 meV), high optical gain, and luminescence as well as piezoelectric properties [1]. From the 1960s, ZnO thin films have been extensively studied because of their applications as sensors, transducers and catalysts [2]. Since a few decades, one-dimensional nanostructures have become the focus point in nanoscience and nanotechnology. Nanostructures are considered to have unique physical, chemical, catalytic and optical properties that are profoundly different from their bulk counterparts. Since the discovery of carbon nanotubes (CNTs) in 1991, a string of research activities led to the growth and characterization of nanostructures of various materials including semiconductors such as Si, Ge and also compound semiconductors such as InP, GaAs, GaN and ZnO. ZnO is a versatile material and has shown potential for the synthesis of various types of nanostructures such as nanocombs, nanorings, nanohelices/nanosprings, nanobelts, nanowires and nanocages under specific growth conditions and probably has the richest family of nanostructures among all materials, both in structure and properties. This dissertation presents the synthesis, characterization and luminescence properties of ZnO nanostructures with the development of a PVD system. The nanostructures of ZnO are synthesized on various kinds of substrates such as Silicon, Sapphire and Alumina. We have synthesized a large family of nanostructures such as nanowires, nanorods, nanobelts, aligned nanorods, nanosheets, nanospheres, nanocombs, microspheres, hexagons etc. The nanostructures are then characterized by SEM, EDX, TEM, HRTEM, XRD, Raman Spectroscopy, PL and CL. From the characterization of the materials, we observed that these nanostructures are of good crystalline quality. PL and CL spectra reveal that all the nanostructures emit a ˜380 nm (UV) usually called the near

  9. Seven new Zn(II)/Cd(II) coordination polymers with 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid: Synthesis, structures and properties

    Science.gov (United States)

    Wang, Xin-Fang; Zhou, Sheng-Bin; Du, Ceng-Ceng; Wang, Duo-Zhi; Jia, Dianzeng

    2017-08-01

    Using a new simi-rigid multitopic ligand 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L), seven new coordination polymers [Zn3(L)2(μ2-OH)2]n (1), {[Zn2(HL)2(H2O)2]·SiF6}n (2), [Zn(HL)(SCN)]n (3), {[Zn2(HL)2(SO4)]·(4,4‧-bpy)}n (4) [4,4‧-bpy =4,4‧-bipyridine], {[Zn(HL)2]·2H2O}n (5), {[Cd(HL)2]·2H2O}n (6) and [Cd2(HL)2(H2O)2(SO4)]n (7) have been successfully obtained from H2L ligand under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. In addition, UV-vis diffuse-reflectance spectra demonstrate wide band gaps. Complex 1 features a 3D topological net of {412·63} with the stoichiometry (6-c), contains 1D channels with the accessible solvent volume of 42.1%. 3, 4, 5 and 6 have a 1D chain structure, 5 and 6 further assemble to form 2D sheet and 3D supramolecular frameworks by hydrogen-bonding interactions, respectively. Complexes 2 and 7 possess a 2D layered structure, and the 2D supramolecular network of 2 can be rationalized to be four-connected {44·62} topological sql network with the dinuclear units, while 7 shows a 3-nodal 2D net with a point symbol of {63}. Moreover, the fluorescent emission, fluorescence lifetimes of 1-7 have been investigated and discussed. Interesting enough, complex 1 showed high efficiency for catalyzing the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile as selective heterogeneous catalyst. The CPs combining catalytic and fluorescent properties could further meet the requirement as a multifunctional material. Seven new Zn(II)/Cd(II) coordination polymers with simi-rigid multitopic ligand, [(2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid) (H2L)] have been successfully obtained and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR

  10. Synthesis, structural and electrical properties of a new cobalt arsenate NaCo{sub 2}As{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Ben Smida, Y., E-mail: youssef_smida@yahoo.fr [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia); Marzouki, R. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia); Guesmi, A. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia); Université de Tunis El Manar, Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar, El Manar II, 2092 Tunis (Tunisia); Georges, S. [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Zid, M.F. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia)

    2015-01-15

    The title compound sodium dicobalt triarsenate NaCo{sub 2}As{sub 3}O{sub 10} has been synthesized by solid state reaction. Crystal structure and electrical properties were studied by X-ray diffraction and complex impedance spectroscopy, respectively. The obtained structural model is supported by charge-distribution (CHARDI) analysis and bond-valence-sum (BVS) validations tools. The structure (triclinic, P−1, a=6.800 (8) Å, b=7.816 (9) Å, c=8.718 (3) Å, α=108.03 (2)°, β=108.48 (3)°, γ=100.11 (2)°) can be described as a three-dimensional framework resulted from corner-connection between cobalt metallic chains running along [−110] and As{sub 3}O{sub 10} groups; the negative charge is balanced by Na{sup +} ions which house the two tunnels parallel to a and b axes. Ball milling was used as mechanical means to reduce the particles sizes of the synthesized powder. At the optimal sintering temperature of 650 °C, 85% of the relative density was obtained. The conductivity measurements show that NaCo{sub 2}As{sub 3}O{sub 10} is a cationic conductor with an activation energy of 0.48 eV and a conductivity of σ=1.2×10{sup −5} S cm{sup −1} at 310 °C. The BVS model is extended to simulate the ionic migration pathways of alkali cations in the anionic framework. - Graphical abstract: 1D pathways link Na atoms along the a-axis with bond valence mismatch |ΔV(Na)|=0.64 v.u. - Highlights: • A new single crystal NaCo{sub 2}As{sub 3}O{sub 10} was grown by solid state reaction and its structure determined by single-crystal X-ray diffraction. • The purity of the powder sample was verified by Rietveld refinement. • The CIS measurements were optimized and the obtained spectra were fitted by electrical equivalent circuits. • The conduction pathways for Na{sup +} cations are simulated by means of the bond valence sum model.

  11. Synthesis and photophysical properties of a novel soluble polyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Simas, Emanuelle R. [Centro Politecnico da UFPR, Caixa Postal 19011, CEP 81531-990, Curitiba, PR (Brazil); Instituto Tecnologico para o Desenvolvimento, LACTEC, Centro Politecnico da UFPR, Caixa Postal 19607, CEP 81531-990, Curitiba, PR (Brazil); Martins, Tatiana D.; Atvars, Teresa D.Z. [Instituto de Quimica, Caixa Postal 6154, Unicamp, Campinas, 13084-971 SP (Brazil); Akcelrud, Leni [Centro Politecnico da UFPR, Caixa Postal 19011, CEP 81531-990, Curitiba, PR (Brazil); Departamento de Quimica, Centro Politecnico da UFPR, Universidade Federal do Parana UFPR, Caixa Postal 19081, CEP 81531-990, Curitiba, PR (Brazil)], E-mail: leni@leniak.net

    2009-02-15

    Synthesis, characterization and photophysical properties of the poly{l_brace}[(2,2'-bis-(4-phenylquinoline)-1,4-phenylene]-alt-phenoxy{r_brace}{sub n}, a novel quinoline derived copolymer with ether linkages, are described. Polymerization reaction occurred through nucleophilic aromatic substitution between an aromatic halogen and a phenol. Structural characterization was made by FTIR, NMR, DSC, TGA and GPC. Ultraviolet, fluorescence and excitation spectroscopy were used for analysis of photophysical properties. The ether linkages, apart from providing better solubility compared to full conjugated quinoline copolymers, made it possible to access the photophysical properties of the quinoline moiety as a constituent of a polymer backbone, since these linkages are responsible for the confinement of the chromophoric unit. The role played by protonation in photophysical behavior was also considered, since this class of polymers is only soluble in strong acid media. This work comprised the study of the photophysical properties of nitrogen containing polymers with confined conjugation and the role of this element in some interesting properties.

  12. Coligand-directed synthesis of five Co(II)/Ni(II) coordination polymers with a neutral tetradentate ligand: syntheses, crystal structures, and properties.

    Science.gov (United States)

    Qin, Ling; Wang, Zhong-Jie; Wang, Ting; Zheng, He-Gen; Chen, Jin-Xi

    2014-09-07

    The solvothermal reactions of 1,1'-oxybis[3,5-di-4-pyridine]-benzene (L) and transition metal cations (Co and Ni) afford five novel coordination polymers in the presence of flexible bridging ligands (4,4'-H2nba = 4,4'-dicarboxydiphenylamine, H2cam = d-camphoric acid, 4,4'-H2sdb = 4,4'-sulfonyldibenzoic acid, H2chdc = 1,4-trans-cyclohexanedicarboxylic acid), namely {[Co2L2(OH)2(nba)]·2DMF}n (), {[CoL(cam)(H2O)]}n (), {[Co3(L)(4,4'-sdb)3(H2O)]·1.5CH3CN·4H2O}n (), {[Ni3(L)(4,4'-sdb)3(H2O)]·1.5CH3CN·4H2O}n (), and {[Ni2L2(chdc)2(H2O)2]·(H2O)3}n () (DMF = N,N-dimethylformamide). Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, and powder X-ray diffraction. Complex reveals a 2-fold interpenetrating three-dimensional (3D) framework with the Schläfli symbol {4·8·10(4)}{4·8·10} topology. Compound crystallizes in the achiral space group with the d-camphorate ligand racemized. Compounds and reveal similar structure with the {3·4(4)·6}{3(2)·4(8)·5(9)·6(9)} topology based on a linear trinuclear building block M3(OOCR)6 (M = Co(ii) or Ni(ii)). Compound is a wavy sheet, where both carboxylate and L ligands act as bidentate ligands. Moreover, UV-Visible absorption spectra of complexes , and the magnetic properties of have been investigated.

  13. Synthesis and radioactive properties of the heaviest nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1996-01-01

    Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs

  14. Acridones as antiviral agents: synthesis, chemical and biological properties.

    Science.gov (United States)

    Sepúlveda, C S; Fascio, M L; García, C C; D'Accorso, N B; Damonte, E B

    2013-01-01

    Acridones are a class of compounds that have attracted attention in recent years for their wide range of biological properties, including selective inhibition of diverse human pathogenic viruses. The wide spectrum of antiviral activity includes DNA and RNA viruses, such as herpes simplex virus, cytomegalovirus, adenovirus, hepatitis C virus, dengue virus, and Junin virus, among others, indicative of the involvement of cellular factors as potential targets of acridone derivatives. At the present, their precise mode of action is not clearly determined, although the predominant action seems to be centered on the synthesis of nucleic acids. Regarding this point, inhibitory activity against cellular and viral enzymes and the ability to intercalate into nucleic acid molecules was demonstrated for some acridone compounds. Then, the possibility of a multiple effect on different targets renewed interest in these agents for virus chemotherapy allowing a potent inhibitory effectiveness associated to less feasibility of generating antiviral resistance. This review summarizes the current knowledge regarding the methods of synthesis, the antiviral properties of acridone derivatives, their mechanism of action, and structural characteristics related to antiviral activity as well as the perspectives of this class of compounds for clinical application against human viral infections.

  15. Synthesis and properties of novel 4,5-diaminonaphthalimides

    International Nuclear Information System (INIS)

    Morris, I.P.

    1999-07-01

    This thesis presents work carried out into the synthesis and properties of Novel 4,5-diaminonaphthalimides. Previous work had identified that these compounds could be synthesised through a short reaction sequence but a very limited number of examples had been produced. With some modifications, the structure of 4,5-diaminonaphthalimides suggests a number of applications. The diamine functionality suggests the formation of complexes and if chiral amines were used asymmetric synthesis is a possibility. Naphthalimides are known to intercalate into DNA and so compounds of this nature may have interesting anti-cancer activity. Finally diaminonaphthalimides are strongly fluorescent and this in combination with the chelation potential of the diamine functionality may afford ion and molecular sensors. The first section of this thesis reviews these areas of research and demonstrates how diaminonaphthalimides might contribute to these areas. The second section describes the synthesis of 4,5-diaminonaphthalimides and illustrates the variety of compounds that may be synthesised. In addition this section explores the applications to fluorescence sensing and asymmetric synthesis. 4,5-Diaminonaphthalimides are shown to undergo chelation enhanced quenching (CHEQ) and chelation enhanced fluorescence (CHEF) with various transition metal ions. The precise features are shown to be dependent on the metal ion present. The mass spectroscopic results discussed in this section show 4,5-diaminonaphthalimides to be a new class of supramolecular compound as they show pre-assembly around alkali earth metal ions. 4,5-Diaminonaphthalimides were also used as catalysts in asymmetric reactions where they show some catalytic activity in the addition of diethylzinc to benzaldehyde. (author)

  16. Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Ri-Ming Huang

    2014-12-01

    Full Text Available Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.

  17. Synthesis and character investigation of new collagen Hydrolysate/polyvinyl alcohol/hydroxyapatite Polymer-Nano-Porous Membranes: I. Experimental design optimization in thermal and structural properties.

    Science.gov (United States)

    Imanieh, Hossein; Aghahosseini, Hamideh

    2013-12-01

    Development of bioorganic-inorganic composites has drawn eyes to extensive attention in biomedical fields and tissue engineering. So many attempts to prepare hydroxyapatite (HA), in conjunction with various binders including polyvinyl alcohol (PVA), and collagen has performed for late 20 years. We applied a method based on the phase separation for making of polymer porous membranes. This procedure is induced through the addition of a small quantity of water (polymer-rich phase) to a solution with HA precursors (polymer-poor phase). Thermal and structural composite properties of collagen Hydrolysate (CH)-PVA/HA Polymer-Nano-Porous Membranes were analyzed by Design of experiment that was undertaken using D-optimal approach, to select the optimal combination of nano composites precursor. The resulted composite characters were investigated by Fourier transform infrared, scanning electron microscopy (SEM) and thermal gravimetric analysis. Based on the SEM images, this new method could be clearly concluded to porous CH-PVA/HA hybrid materials. Finally the hemocompatibility of nanocomposite membranes were evaluated by the hemolysis study.

  18. New mixed ligand cobalt(II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties

    Science.gov (United States)

    Abu Ali, Hijazi; Abu Shamma, Amani; Kamel, Shayma

    2017-08-01

    New cobalt valproate complexes with different nitrogen based ligands were synthesized and characterized using various techniques such as IR, UV-Vis, single crystal X-ray diffraction as well as other physical properties. The general formula of the prepared complexes is [Con(valp)m(L)z], (n = 1, 2 …; m = 1, 2, …; Z = 1, 2 …). The complexes [Co2(valp)4] (1), [Co(valp)2(2-ampy)2] (2) and [Co2(valp)4(quin)2] (3) showed different carboxylate coordination modes. The crystal structures of the complexes 2 and 3 were determined using single crystal X-ray diffraction. Kinetic studies of hydrolysis reactions of BNPP [bis-(p-nitrophenyl)phosphate] with complexes 2 and 3 were performed. The hydrolysis rate of BNPP was studied at different temperatures, pH and concentrations by UV-Vis spectrophotometric method. The results showed that the hydrolysis rate of BNPP was 7.70 × 102 L mol-1 s-1 for (3) and 2.60 × 10-1 L mol-1 s-1 for (2).

  19. Amino acids (L-arginine and L-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties

    Science.gov (United States)

    Talwatkar, S. S.; Tamgadge, Y. S.; Sunatkari, A. L.; Gambhire, A. B.; Muley, G. G.

    2014-12-01

    CdS nanoparticles (NPs) passivated with amino acids (L-alanine and L-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with L-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV-vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with L-alanine and L-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.

  20. Four unprecedented cobalt(II) and cadmium(II) metal-organic frameworks based on a rigid tricarboxylate ligand: Synthesis, crystal structures, magnetic and fluorescence properties

    Science.gov (United States)

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Wu, Jie

    2018-03-01

    A Co(II) MOF {[Co3(L)2(H2O)4](DMF)2}n (1) and three Cd(II) MOFs [Cd3(L)2(H2O)7]n (2), [Cd3(L)2(H2O)11]n (3) and [Cd3(L)2(DMF)2(H2O)]n (4) are synthesized based on the promising multifunctional tricarboxylate ligand 6-(3, 5-dicarboxyl phenyl) nicotinic acid (H3L). 1 exhibits a 3D framework with 1D channels which contains opposite-handedness helical chains based on the trinuclear Co(II) clusters. 2-4 are obtained depend on different reaction conditions. 2 displays a 3D framework, which is composed of two kinds of 2D layers linked with each other. 3 shows a rare tongue-and-groove-type bilayer structure. And 4 is an interesting 3D framework containing infinite 1D inorganic Cdsbnd Osbnd Cd chains. In these MOFs, the H3L ligand shows the versatile coordination modes and strong coordination ability. Furthermore, the magnetic and solid-state luminescent properties of the MOFs have been investigated.

  1. Synthesis and some spectral properties of diphenylsilicon salicylate ...

    African Journals Online (AJOL)

    Synthesis and some spectral properties of diphenylsilicon salicylate and a comparision of the antifungal efficacy of diphenylsilicon chloride, acetate and salicylate and diphenyltin chloride, acetate and salicylate on Candida albicans.

  2. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Taş, Murat [Department of Science Education, Education Faculty, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2017-01-15

    Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi

  3. Synthesis, structure, and properties of compounds with a chalcogen-nitrogen bond. VIII. N-sulfonylaryltellurimides - effective catalysts for the condensation of aromatic aldehydes with sulfonamides

    Energy Technology Data Exchange (ETDEWEB)

    Naddaka, V.I.; Anavesyan, K.V.; Cherkinskaya, M.L.; Minkin, V.I.

    1988-08-20

    N-Sulfonyldiaryltellurimides and diaryl telluroxides are effective catalysts in the synthesis of N-sulfonylazomethines from aromatic aldehydes and sulfonamides. The catalytic activity of these compounds in the investigated. The reaction is based on the reaction of the aromatic aldehydes with the N-sulfonyldiaryltellurimides, leading to the formation of N-sulfonylazomethines and diaryl telluroxides. The latter in turn react with the sulfonamides, giving the tellurimides, and this gives rise to the cyclic nature of the processes.

  4. Hydrothermal synthesis and influence of later heat treatment on the structural evolution, optical and electrical properties of nanostructured α-MoO3 single crystals

    Science.gov (United States)

    Badr, A. M.; El-Anssary, E. H.; Elshaikh, H. A.; Afify, H. H.

    2017-12-01

    In the current study, α-MoO3 nanocrystals were successfully synthesized from ammonium heptamolybdate tetrahydrate using a simple hydrothermal route. The influence of calcination temperature on the structural, optical and electrical properties was systematically investigated for the MoO3 powder products. The XRD results were analyzed for these powders, revealing the formation of a mixed phase (β- and α-MoO3) at calcination temperatures ranging from 350 °C–450 °C, and hence a residual monoclinic phase still exists in the samples at the calcination temperature of 450 °C. Subsequently, the mixed phase was completely converted to a pure single phase of α-MoO3 at a calcination temperature of 500 °C. The optical properties of the MoO3 powders were investigated using the transformed diffuse reflectance technique according to Kubelka–Munk theory. For such a powder product, the results of the optical measurements demonstrated the realization of indirect and direct allowed transitions at the spectral ranges 3.31–3.91 eV and 3.66–4.27 eV, respectively. The indirect- and direct-allowed band-gaps of the MoO3 products were found to increase from 2.69–3.12 eV and from 3.43–3.64 eV, respectively, by increasing the calcination temperature from 350 °C–600 °C. The MoO3 powders calcined at different temperatures were converted into five dense tablets for performing the electrical measurements. These measurements were carried out at different working temperatures using a system operating under high vacuum conditions. The results revealed that the dc-conductivity of such a tablet typically increases by more than five orders of magnitude with an increase in the working temperature from 77–300 K. These results also demonstrated a high dependence of dc-conductivity on the calcination temperature for the MoO3 products. The dc-conductivity as a function of the operating temperature revealed the presence of at least three different electrical conduction

  5. Sol-gel synthesis of xTiO{sub 2}(100 − x)SiO{sub 2} nanocomposite thin films: Structure, optical and antireflection properties

    Energy Technology Data Exchange (ETDEWEB)

    Kermadi, S., E-mail: kermadisalim@yahoo.fr [CRTSE—Division DDCS, 02 Bd Dr. Frantz Fanon BP, 140, les 07 merveilles, 16038, Algiers (Algeria); Agoudjil, N. [Department of Chemistry, Laboratory of Physico-Chemistry of Materials and Environment, USTHB, BO Box 32 El Alia, 16111 Algiers (Algeria); Sali, S.; Boumaour, M. [CRTSE—Division DDCS, 02 Bd Dr. Frantz Fanon BP, 140, les 07 merveilles, 16038, Algiers (Algeria); Bourgeois, S.; Marco de Lucas, M.C. [Interdisciplinary Laboratory Carnot of Bourgogne, University of Bourgogne, 9 Av. A. Savary, PO Box 47 870, F-21078 Dijon (France)

    2014-08-01

    Sol-gel xTiO{sub 2}(100 − x)SiO{sub 2} nanocomposite thin films with x = 0, 25, 50, 75 and 100 mol % were dip-coated on glass and silicon substrates. The influence of the composition on structure, morphology and optical properties was studied by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electronic microscopy, monochromatic ellipsometry at λ = 632.8 nm and ultraviolet–visible absorbance spectroscopy. The optical properties were discussed on the basis of the microstructure. After annealing at 500 °C, results showed high pure materials, homogenous crack-free surfaces with good adherence and high optical qualities. The 100% TiO{sub 2} crystallizes in the anatase phase and exhibits nanograins of 6 to 10 nm in size. However, all the other compositions are amorphous with comparable grains around 4 nm in size. The averaged transmittance decreases with increasing the TiO{sub 2} content but remains higher than 90%. Whatever the composition, the coating thickness increases linearly as the withdrawal speed increases from 10 to 54 mm/minute. The relationship between refractive index and composition was analyzed by fitting the experimental data to different theoretical models for the refractive index of mixed films. Results showed that depending on the withdrawal speed, the data can properly fit either the Drude or the linear models. Thus, the film thickness can be adjusted by the control of the withdrawal speed. However, the control of the composition allows easily the tuning of the refractive index from 1.48 to 2.18 at λ = 632.8 nm to achieve optimum anti-reflection characteristics. Different anti-reflection designs of both single and double layers were experimentally examined. Gains (assigned to the reduction of reflection losses) up to 54 and 63% were predicted with 75% TiO{sub 2} single-coating and SiO{sub 2}/TiO{sub 2} double-coatings respectively. - Highlights: • Stable sol for dip-coating xTiO{sub 2}(100 − x

  6. Synthesis, crystal structure, thermal analysis and dielectric properties of Rb4(SO4)(HSO4)2(H3AsO4) compound

    Science.gov (United States)

    Belhaj Salah, M.; Nouiri, N.; Jaouadi, K.; Mhiri, T.; Zouari, N.

    2018-01-01

    A new inorganic Rb4(SO4)(HSO4)2(H3AsO4) compound was prepared. It was found to crystallize in the monoclinic system (P21 space group) with the following lattice parameters: a = 5868 (1) Å, b = 13,579(2) Å, c = 11,809 (3) Å and β = 94,737 (1)°. The structure is characterized by SO42-, HSO4- and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimmer (H(8)S(2)O4- … S(1)O42- and H(12)S(2)O4- … H3AsO4). These dimmers are interconnected by both hydrogen bonds O(14)sbnd H(14)· · ·O(4) and O(15)sbnd H(15)· · ·O(2). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4⋯H3AsO4 which are parallel to the ''a'',direction. The rubidium cations are coordinated by eight oxygen atoms with Rbsbnd O distance ranging from 2893(8) to 3.415(6) Å. The existence of Osbnd H and (S/As)sbnd O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000-400 cm-1and 1200 - 50 cm-1, respectively. Thermal analysis of Rb4(HSO4)(HSO4)2(H3AsO4) showed that the transformation to high temperature phase occurs at 407 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 522 K. The first transition detected by differential scanning calorimetry (DSC) was also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The conductivity in the high temperature phase at 428 K is 1.04 × 10-3 Ω-1 cm-1, and the activation energy for the proton transport is 0.36 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M"/M"max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism. The obtained results show that this transition is protonic by nature.

  7. Synthesis, structure and spectroscopic properties of Re(I) complexes incorporating 5-arylazo-8-hydroxyquinoline: a density functional theory/time-dependent density functional theory investigation.

    Science.gov (United States)

    Sarkar, Rupa; Mondal, Pallab; Rajak, Kajal Krishna

    2014-02-21

    Dinuclear rhenium(I) complexes having a fac-[Re(CO)3](+) moiety of general formula fac-[Re2(CO)6(hq)2] have been synthesized in excellent yield by reacting [Re(CO)5Cl] with Hhq in a ratio of 1 : 1 in toluene in an argon atmosphere. Here hq(-) is the deprotonated form of 5-phenylazo-8-hydroxyquinoline (Hhq(1)), 5-(2-naphthylazo)-8-hydroxyquinoline (Hhq(2)) and 5-(2-fluorineazo)-8-hydroxyquinoline (Hhq(3)). The reaction of synthesized dinuclear complexes with imidazole (Im) and N-methylimidazole (N-MeIm) in dry dichloromethane under argon atmosphere afforded the mononuclear complexes of general formula fac-[Re(CO)3(hq)(Im)] and fac-[Re(CO)3(hq)(N-MeIm)] respectively in high yield. The elemental analysis and ESI mass spectroscopic measurements confirm the formation of the desired complexes. Molecular structures of fac-[Re(CO)3(hq(1))(Im)] and fac-[Re(CO)3(hq(1))(N-MeIm)] were confirmed by single-crystal X-ray diffraction. The complexes were also characterized by different spectroscopic techniques. The complexes displayed bathochromically shifted intramolecular charge transfer (CT) bands as compared to complexes with unsubstituted 8-hydroxyquinoline complexes. The ground and excited-state geometries, NMR, absorption, and phosphorescence properties of nine Re(i) complexes were examined by DFT and TDDFT methods. The natural transition orbital (NTO) and spin density difference map analysis reveals the nature of excitations. The lowest lying triplet excited is associated with the (3)IL excited state (ligand-localized) having a cis conformation of the pendant arylazo moiety. The emission-like transition is consistent with the strong (3)ILCT character.

  8. Synthesis, characteristic and theoretical investigation of the structure, electronic properties and second-order nonlinearity of salicylaldehyde Schiff base and their derivatives.

    Science.gov (United States)

    Tang, Guo-Dong; Zhao, Jian-Ying; Li, Rong-Qing; Yuan-Cao; Zhang, Zai-Chao

    2011-01-01

    A series of asymmetric donor-acceptor substituted salen-type Schiff-bases have been synthesized and their structures, electronic properties and second order nonlinearities were investigated by DFT methods. In order to verify the stable of these Schiff-base derivates, the IR spectrum of these Schiff-base derivates were calculated, the result showed that these compounds are stable. The results of TD-DFT calculation indicate that the derivatives with the electron-donating group (CH3, OCH3 or N(C2H5)2) have a red shift absorption compared to derivatives with the electron-withdrawing group (NO2). The analysis of MOS indicates that the CN group has contribution to the LUMO orbital while the groups of OCH3, N(C2H5)2 and NO2 have contribution to the HOMO orbital. OCH3, N(C2H5)2 as electron rich groups, made the derivates have a larger first static hyperpolarizability. However, the compound (II) with a NO2 substituent, also has a large first static hyperpolarizability. This is probably because of the special transition model, namely the values of two oscillator strength f (fHOMO-1-LUMO=0.405, fHOMO-LUMO=0.321) are almost equal. In order to understand the influence of the energy gap (ΔE) between the HOMO and the LUMO orbitals on the first static hyperpolarizability, we calculated the energy gap (ΔE) of all Schiff-base compounds. The results show that the smaller the HOMO-LUMO energy gap is, the larger the first static hyperpolarizability is. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Heteronuclear, mixed-metal Ag(I)-Mn(II) coordination polymers with bridging N-pyridinylisonicotinohydrazide ligands: synthesis, crystal structures, magnetic and photoluminescence properties.

    Science.gov (United States)

    Bikas, Rahman; Hosseini-Monfared, Hassan; Vasylyeva, Vera; Sanchiz, Joaquín; Alonso, Javier; Barandiaran, Jose Manuel; Janiak, Christoph

    2014-08-21

    Mixed-metal dicyanoargentate-bridged coordination polymers of Ag(i)-Mn(ii) have been prepared and their structure and magnetic properties were determined. Reaction of manganese(ii) chloride and potassium dicyanoargentate(i) with (X)(pyridin-2-ylmethylene)isonicotinohydrazide ligands (HL(1) X = Ph, HL(2) X = Me, HL(3) X = H) produced the coordination polymer 2D-[Mn(μ-L(1))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]n (), 1D-{[Mn(L(2))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]CH3OH}n () and [Mn(L(3))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]n () in good yields. Trinuclear {Mn(μ-L(1))Mn(μ-L(1))Mn} and [Ag(CN)2](-) building units form a two-dimensional slab in and 1D strands in . Variable temperature magnetic susceptibility measurements showed that despite the long distance among the high spin Mn(ii) ions [10.4676(12) Å and 10.522(1) Å, for and , respectively], weak antiferromagnetic coupling takes place through the long NC-Ag-CN bridge. The best fit parameters to the model led to the magnetic coupling constant of J = -0.1 and J = -0.47 cm(-1) for and , respectively. The photoluminescence behaviour of compounds and was studied. The spectrum of compound shows a broad emission centered at about 450 nm and two excitation maxima at 270 and 310 nm.

  10. Effects of synthesis conditions on structure and surface properties of SmMn{sub 2}O{sub 5} mullite-type oxide

    Energy Technology Data Exchange (ETDEWEB)

    Thampy, Sampreetha; Ibarra, Venessa; Lee, Yun-Ju [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); McCool, Geoffrey [Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA 94063 (United States); Cho, Kyeongjae [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Hsu, Julia W.P., E-mail: jwhsu@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-11-01

    Highlights: • Investigate the effects of calcination temperature and precipitation pH on crystallinity, phase purity, particle size, surface composition, and NO adsorption capacity of SmMn{sub 2}O{sub 5}. • High calcination temperature increases mullite phase purity but decreases specific surface area (SSA). • Mullite phase purity is independent of pH while SSA monotonically increases. • SSA and surface Mn/Sm ratio determine NO uptake. - Abstract: A mixed-phase compound that contains SmMn{sub 2}O{sub 5} mullite-type oxides has been reported to display excellent catalytic activity for nitric oxide (NO) oxidation. Here we investigate the effects of calcination temperature and precipitation pH on structural, physical, chemical, and surface properties of SmMn{sub 2}O{sub 5}. As the calcination temperature increases from 750 °C to 1000 °C, mullite phase purity increases from 74% to 100%, while specific surface area (SSA) decreases from 23.6 m{sup 2}/g to 5.1 m{sup 2}/g with particle size increases correspondingly. Mullite phase purity (87%) is independent of pH between 8.5–10.4, whereas SSA monotonically increases from 12.5 m{sup 2}/g at pH 8.1 to 27.4 m{sup 2}/g at pH 13. X-ray photoelectron spectroscopy (XPS) studies reveal that the surface Mn/Sm ratio is similar to the bulk value and is unaffected by calcination temperature and pH values up to 10.4, whereas sample precipitated at pH 13 is surface-rich in Sm. NO chemisorption studies show that the SSA and surface Mn/Sm ratio determine NO uptake by SmMn{sub 2}O{sub 5} mullite oxides.

  11. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    Science.gov (United States)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  12. Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A

    DEFF Research Database (Denmark)

    Nielsen, Daniel S; Hoang, Huy N; Lohman, Rink-Jan

    2012-01-01

    The first total synthesis and three-dimensional solution structure are reported for sanguinamide A, a thiazole-containing cyclic peptide from the sea slug H. sanguineus. Solution phase fragment synthesis, solid phase fragment assembly, and solution macrocyclization were combined to give (1) in 10......% yield. Spectral properties were identical for the natural product, requiring revision of its structure from (2) to (1). Intramolecular transannular hydrogen bonds help to bury polar atoms, which enables oral absorption from the gut....

  13. Synthesis, Optical Properties and Applications for New Trianguleniums Derivatives

    DEFF Research Database (Denmark)

    Santella, Marco

    The development of new types of emissive organic dyes is an exciting area of research due to the applicability of these compounds in a wide range of disciplines. Cationic triangulenium salts are highly stable carbenium ions with a planar conformation. The convenient and versatile synthetic proced...... focused on the synthesis of thioether para substituted dyes, where the reactivity of various para-methoxy substituted propeller shaped cations towards different alkyl thiols was examined. Furthermore, ringclosure reactions of these thioether bearing propellers in order to obtain trioxa...... structures. These dyes possess excellent emissive properties with possible applications as cell staining agents or as fluorescent probes. Lastly, I focused on the use of triangulenes as binding group for molecular electronics. It has been shown that TATA can form self-assembled monolayers (SAMs) on a gold...

  14. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  15. Synthesis, structures and magnetic properties in 3d-electron-rich isostructural complexes based on chains with sole syn-anti carboxylate bridges.

    Science.gov (United States)

    Su, Feng; Lu, Liping; Feng, Sisi; Zhu, Miaoli; Gao, Zengqiang; Dong, Yuhui

    2015-04-28

    To evaluate magnetic properties of isostructural compounds, a series of 3D carboxylate coordination polymers [M(H2bpta)]n, (H4bpta = 2,2',4,4'-biphenyltetracarboxylic acid, M = Fe(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4)), was synthesized in H2O-CH3CN or H2O solvents, respectively. Structurally, complexes 1-4 have isostructural features with (5,5)-connected 3D framework, wherein the M(II) centre takes an octahedral coordination environment consisting of six oxygen atoms from carboxylates of ligands. The M(II) sites are linked by syn-anti carboxylates to form chains with an M···M separation of 4.880(2) (M = Fe), 4.784(2) (M = Ni), 4.541(2) (M = Cu), and 4.607(2) Å (M = Zn), respectively. The shortest M···M distances between interchains locate 9.122(4), 9.077(3), 9.361(3), and 8.767(2) Å, respectively. Magnetically, the isostructural polymers show different magnetic behaviors due to different spins of central ions. Theoretical analysis indicates that couplings between magnetic ions obey uniform chain models. The magnetic susceptibility of 1 and 2 are perfectly fitted by the modified Fisher model to yield an effective intra-chain exchange coupling constant of -0.81(1) and 3.67(2) cm(-1), respectively. For 3, a Heisenberg ferromagnetic S = 1/2 chain included the intra-chain magnetic exchange interaction (J = 9.28(1) cm(-1), and zj' = -0.068(3) cm(-1)), weak ferromagnetic interactions in intra-chains, and weak antiferromagnetic interactions between interchains. The phenomena of 1-3 accord with the common view that the exchange interaction between two magnetic M(II) ions bridged by the syn-anti carboxylate bridge is dominantly weak ferro- or anti-ferromagnetic interactions. In addition, the M-O-C-O-M spin exchange interactions |J| of M2(CO2)2 (M = Mn(3d(5))(20), Fe(3d(6)), Co(3d(7))(20), Ni(3d(8)), Cu(3d(9))) decrease in strength with Cu2(CO2)2 > Ni2(CO2)2 > Co2(CO2)2 > Fe2(CO2)2 > Mn2(CO2)2, consistent with orbit order.

  16. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  17. Synthesis of Structures Related to Antifreeze Glycoproteins

    OpenAIRE

    Fyrner, Timmy

    2005-01-01

    In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzo...

  18. Synthesis, structure and optical properties of thin films form GeS2-In2S3 system deposited by thermal co-evaporation

    Czech Academy of Sciences Publication Activity Database

    Todorov, R.; Petkov, K.; Kincl, Miloslav; Černošková, E.; Vlček, Milan; Tichý, Ladislav

    2014-01-01

    Roč. 558, 2 May (2014), s. 298-305 ISSN 0040-6090 Institutional support: RVO:61389013 Keywords : chalcogenide glass es * thin films * optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 1.759, year: 2014

  19. Synthesis and structure of two-dimensional transition-metal dichalcogenides

    KAUST Repository

    Shi, Yumeng

    2015-07-13

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

  20. The synthesis and decay properties of the heaviest elements

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    2000-01-01

    The synthesis and the study of radioactive properties of new elements is considered with respect to the existence of the 'islands of stability' of hypothetical superheavy elements predicted by the theory more than 35 years ago. Experimental data demonstrating an enhanced stability of nuclei in the vicinity of deformed shells with Z=108 and N=162 is discussed from the point of view of advent into more heavy and much more stable nuclides near the predicted spherical shells Z=114-122 and N=184 following after the doubly magic nucleus 208 Pb. The author presents the results of experiments on the synthesis of isotopes of elements 114 and 116 in the fusion reactions with 48 Ca. In these reactions the decay chains of heavy atoms consisting of sequential α-decays interrupted by spontaneous fission have been observed. The decay energies and probabilities are compared with predictions of different theoretical models describing the structure of heavy nuclei. The obtained results are considered as the first experimental evidence of the existence of domains of stability of superheavy nuclei which substantially extends the boundaries of existence of chemical elements

  1. Synthesis and Properties of Group IV Graphane Analogues

    Science.gov (United States)

    Goldberger, Joshua

    Similar to how carbon networks can be sculpted into low-dimensional allotropes such as fullerenes, nanotubes, and graphene with fundamentally different properties, it is possible to create similar ligand terminated sp3-hybridized honeycomb graphane derivatives containing Ge or Sn that feature unique and tunable properties. Here, we will describe our recent success in the creation of hydrogen and organic-terminated group IV graphane analogues, from the topochemical deintercalation of precursor Zintl phases, such as CaGe2. We will discuss how the optical, electronic, and thermal properties of these materials can be systematically controlled by substituting either the surface ligand or via alloying with other Group IV elements. Additionally, we have also developed an epitopotaxial approach for integrating precise thicknesses of germanane layers onto Ge wafers that combines the epitaxial deposition of CaGe2 precursor phases with the topotactic interconversion into the 2D material. Finally, we will describe our recent efforts on the synthesis and crystal structures of Sn-containing graphane alloys in order to access novel topological phenomena predicted to occur in these graphanes.

  2. Wall grid structure for interior scene synthesis

    KAUST Repository

    Xu, Wenzhuo

    2015-02-01

    We present a system for automatically synthesizing a diverse set of semantically valid, and well-arranged 3D interior scenes for a given empty room shape. Unlike existing work on layout synthesis, that typically knows potentially needed 3D models and optimizes their location through cost functions, our technique performs the retrieval and placement of 3D models by discovering the relationships between the room space and the models\\' categories. This is enabled by a new analytical structure, called Wall Grid Structure, which jointly considers the categories and locations of 3D models. Our technique greatly reduces the amount of user intervention and provides users with suggestions and inspirations. We demonstrate the applicability of our approach on three types of scenarios: conference rooms, living rooms and bedrooms.

  3. Synthesis and investigation of optical properties of ZnS nanostructures

    Indian Academy of Sciences (India)

    Synthesis and investigation of optical properties of ZnS nanostructures. NESLIHAN ÜZAR. ∗ and M ÇETIN ARIKAN. Physics Department, Science Faculty, Istanbul University, Vezneciler, 34134 Istanbul, Turkey. MS received 27 July 2010; revised 20 September 2010. Abstract. Structural characterizations of wurtzite zinc ...

  4. Synthesis, photophysics, structure-tunable photoluminescence, and electrochemical properties of soluble poly(p-phenylenevinylene)-based polymers with adjacent 1,3,4-oxadiazoles in the backbone

    Czech Academy of Sciences Publication Activity Database

    Mikroyannidis, J. A.; Hlídková, Helena; Výprachtický, Drahomír; Cimrová, Věra

    2005-01-01

    Roč. 43, č. 14 (2005), s. 3079-3090 ISSN 0887-624X R&D Projects: GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrochemical properties * Heck coupling * light emitting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.027, year: 2005

  5. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  6. Synthesis, crystal structures, DNA binding and photoluminescence properties of [Cu(pzta)2Cl]ClṡH2O for DNA detection

    Science.gov (United States)

    Duan, Ran-ran; Wang, Lu; Huo, Wei-qiang; Chen, Shi; Zhou, Xiao-hua

    2014-07-01

    We report here the synthesis of a new copper(II) complex of 2,4-diamino-6-(2‧-pyrazin)-1,3,5-triazine [Cu(pzta)2Cl]Cl·H2O and its characterization using UV and IR spectroscopy, elemental analysis, and X-ray diffraction. Fluorescence spectroscopy revealed that the complex was sensitive to oxygen and to the polarity of nonaqueous solvents. Binding of the complex to DNA was investigated using UV spectroscopy, ethidium bromide displacement from DNA, cyclic voltammetry, and viscometry. The results revealed the DNA binding mode was intercalation together with external static-electricity. However, the complex can be also used to DNA detection as DNA fluorescence probe with a LOD of 4.21 ng mL-1 for the relative wide linear range between 0.2 and 17 μg mL-1. In conclusion, that synthetic method of the complex was easy with low expense and was relatively rapid and sensitive compared to most toxic fluorescence dyes. This finding would indicate the complex may be a potential DNA-targeted probes and optical probes for oxygen-free environments in nonaqueous form.

  7. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  8. Synthesis, crystal and electronic structures and optical properties of (HIm)2 Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium)

    Energy Technology Data Exchange (ETDEWEB)

    Nhalil, Hariharan [Univ. of Oklahoma, Norman, OK (United States). Dept. of Chemistry and Biochemistry; Whiteside, Vincent R. [Univ. of Oklahoma, Norman, OK (United States). Homer L. Dodge Dept. of Physics & Astronomy; Sellers, Ian R. [Univ. of Oklahoma, Norman, OK (United States). Homer L. Dodge Dept. of Physics & Astronomy; Ming, Wenmei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Du, Mao-Hua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Saparov, Bayrammurad [Univ. of Oklahoma, Norman, OK (United States). Dept. of Chemistry and Biochemistry

    2017-11-22

    Here, we report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm)2Hg3Cl8 crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg2Cl6]2- units and linear [HgCl2]0 molecules. (HIm)HgI3 crystallizes in the monoclinic P21/c space group featuring anionic [HgI3]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm)2Hg3Cl8 has an indirect band gap, whereas (HIm)HgI3 has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm)2Hg3Cl8 and (HIm)HgI3 are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. In conclusion, following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.

  9. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vallejos, Javier [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Brito, Iván, E-mail: ivanbritob@yahoo.com [Departamento de Quimica, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Cárdenas, Alejandro [Departamento de Física, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Llanos, Jaime [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Bolte, Michael [Institut für Anorganische Chemie der Goethe—Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main (Germany); López-Rodríguez, Matías [Instituto de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez N° 2, La Laguna, Tenerife (Spain)

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differences in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.

  10. The synthesis of porous Co{sub 3}O{sub 4} micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Saba, E-mail: saba_hrb@yahoo.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Li, Songnan; Liu, Jingyuan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Zhang, Milin [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Micro cuboid Co{sub 3}O{sub 4} particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co{sub 3}O{sub 4} from cuboid CoCO{sub 3}. • Investigation of gas sensing properties of porous Co{sub 3}O{sub 4}. • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co{sub 3}O{sub 4} with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co{sub 3}O{sub 4} are also investigated.

  11. The synthesis of porous Co3O4 micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    International Nuclear Information System (INIS)

    Jamil, Saba; Jing, Xiaoyan; Wang, Jun; Li, Songnan; Liu, Jingyuan; Zhang, Milin

    2013-01-01

    Graphical abstract: - Highlights: • Micro cuboid Co 3 O 4 particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co 3 O 4 from cuboid CoCO 3 . • Investigation of gas sensing properties of porous Co 3 O 4 . • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co 3 O 4 with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co 3 O 4 are also investigated

  12. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  13. Synthesis, characterization and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    Synthesis of a new nano hybrid of 5,10,15,20-mesotetra(4-aminophenyl) porphyrin (TAP) functionalized with multi-walled carbon nanotubes (MWCNTs) through an amide linkage is reported for the first time. ThisMWCNT-TAP hybrid was characterized by Raman, Fourier transform infrared (FT-IR), Transmissionelectron ...

  14. Topotactic synthesis, structure and magnetic properties of a new hexagonal polytype of silver cobaltate(III) AgCoO2+δ

    International Nuclear Information System (INIS)

    Muguerra, Herve; Colin, Claire; Anne, Michel; Julien, Marc-Henri; Strobel, Pierre

    2008-01-01

    A new form of delafossite-type AgCoO 2+δ was prepared using ion exchange from Na 0.75 CoO 2 in molten AgNO 3 -NH 4 NO 3 at 175 deg. C. Its structure was determined by the Rietveld refinement from X-ray powder diffraction measurements (XRD) data; it is hexagonal, space group P6 3 /mmc, a=2.871 and c=12.222 A. Its structure differs from previously reported AgCoO 2 (R3-barm, 3R polytype) by the stacking of Co-O layers; in the new phase, the 2H stacking of the precursor Na 0.75 CoO 2 is consistent with a topotactic ion exchange of Na by Ag. The new phase is found to contain a slight oxygen excess (δ=0.06). Magnetic susceptibility measurements show the absence of magnetic transition and a weak Curie term, consistent with the non-magnetic character of Co 3+ ions. - Graphical abstract: Comparison of the structures of high-temperature AgCoO 2 (left, 3R structure) and of new AgCoO 2+∂ (IE) (right, 6H structure). The latter is obtained topotactically from Na 0.7 CoO 2 by ion exchange in molten nitrates. Detailed studies showed that AgCoO 2+∂ (IE) is slightly over-stoichiometric in oxygen (∂=0.06)

  15. Synthesis, Crystal Structure, and Magnetic Properties of Giant Unit Cell Intermetallics R117Co52+δSn112+γ (R = Y, La, Pr, Nd, Ho

    Directory of Open Access Journals (Sweden)

    Ping Chai

    2016-12-01

    Full Text Available Ternary intermetallics R117Co52+δSn112+γ (R = Y, La, Pr, Nd, and Ho have been prepared by arc-melting followed by annealing at 800 °C. All the compounds belong to the Tb117Fe52Ge112 structure type (space group Fm 3 ¯ m characterized by a complex giant cubic unit cell with a ~ 30 Å. The single-crystal structure determination of Y- and La-containing compounds reveals a significant structural disorder. A comparison of these and earlier reported crystal structures of R117Co52+δSn112+γ suggests that more extensive disorder occurs for structures that contain larger lanthanide atoms. This observation can be explained by the need to maintain optimal bonding interactions as the size of the unit cell increases. Y117Co56Sn115 exhibits weak paramagnetism due to the Co sublattice and does not show magnetic ordering in the 1.8–300 K range. Ho117Co55Sn108 shows ferromagnetic ordering at 10.6 K. Both Pr117Co54Sn112 and Nd117Co54Sn111 exhibit antiferromagnetic ordering at 17 K and 24.7 K, respectively, followed by a spin reorientation transition at lower temperature.

  16. Synthesis, Characterization, and Enhanced Magnetic Properties of Iron Carbide Nanomaterials

    Science.gov (United States)

    Williams, Brent M.

    Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet alternative with magnetic properties comparable to that of hexaferrite materials. Unfortunately, CoxC magnets have a low magnetic saturation (50 emu g-1) which drastically lowers its energy product. Alternatively, iron carbide has a rather high bulk magnetization value of 140 emu g-1 and is composed of naturally abundant materials. The sole issue of iron carbide is that it is considered an intermediate magnet with properties between those of a hard and a soft magnetic material. The main focus of this work is the enhancement of the hard magnetic properties of iron carbide through size effect, shape anisotropy, magnetocrystalline anisotropy and exchange anisotropy. First a wet synthesis method was developed which utilized hexadecyltrimethylammonium chloride to control particle size, shape, and crystal structure to manipulate the magnetic properties of iron carbide. With this method a semi-hard 50 nm orthorhombic Fe3C phase and a magnetically soft single crystal hexagonal Fe7C3 structure with texture-induced magnetic properties were developed. The properties for both materials were further enhanced through formation of exchange bias Fe3C/CoO nanoaggregates and spring exchange coupling of the ferromagnetically hard and soft phases of Fe7C3/SrFe 12O19. A 33% increase in coercivity

  17. Synthesis, structure and magnetic properties of a new one-dimensional iron phosphite, $[fe^{III}(1,10-phenanthroline)(HPO_{3})(H_{2}PO_{3})]$

    OpenAIRE

    Mandal, Sukhendu; Green, Mark A; Natarajan, Srinivasan

    2005-01-01

    A new iron phosphite, $[fe^{III}(1,10-phenanthroline)(HPO_{3})(H_{2}PO_{3})]$,1, has been synthesized hydrothermally from a mixture containing iron powder, phosphorous acid, 1,10-phenanthroline and water at 125 degrees C for 7 days. The structure consists of an edge-shared four-membered rings formed by the connectivity between $FeO_{4}N_{2}$ octahedra and pseudo pyramidal $HPO_{3}$ units, connected through their edges forming a one-dimensional structure. The 1,10-phenanthroline molecules and ...

  18. Synthesis, crystal structures and spectral properties of 6'-phenyl-2,2'-bipyridine derivatives and their CdLI(2) complexes.

    Science.gov (United States)

    Zhao, Xuesong; Chen, Yanxin; Luo, Junshan; Wang, Hui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-04-05

    Two novel 6'-phenyl-2,2'-bipyridine ligands (L1, L2) and their CdL(1,2)I2 complexes (1, 2) were synthesized and characterized by elemental analysis, (1)H NMR, IR, MALDI-TOF spectroscopy, and single crystal X-ray diffraction analysis. The results reveal that the central cadmium(II) atom in the complexes was coordinated by two iodide ions and two nitrogen atoms from L1, L2, forming a distorted coordination geometry. The electronic absorption properties of them were investigated on the basis of theoretical calculations (TD-DFT). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd

    DEFF Research Database (Denmark)

    Payandeh Gharibdoust, Seyedhosein; Ravnsbæk, Dorthe B.; Černý, Radovan

    2017-01-01

    Formation, stability and properties of new metal borohydrides within RE(BH4)3-NaBH4, RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH4)4, NaPr(BH4)4 and NaEr(BH4)4 are formed based on an addition reaction between NaBH4 and halide free rare-earth...... to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state....

  20. Synthesis, Crystal Structure, Gas Absorption, and Separation Properties of a Novel Complex Based on Pr and a Three-Connected Ligand

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2017-12-01

    Full Text Available A novel Pr complex, constructed from a rigid three-connected H3TMTA and praseodymium(III ion, has been synthesized in a mixed solvent system and characterized by X-ray single crystal diffraction, infrared spectroscopy, a thermogravimetric analysis, an element analysis, and powder X-ray diffraction, which reveals that complex 1 crystallizes in a three-dimensional porous framework. Moreover, the thermal stabilities and the fluorescent and gas adsorption and separation properties of complex 1 were investigated systematically.

  1. Synthesis, structure, and properties of Cs(4)Th(4)P(4)Se(26): a quaternary thorium selenophosphate containing the (P(2)Se(9))(6-) anion.

    Science.gov (United States)

    Briggs Piccoli, P M; Abney, K D; Schoonover, J D; Dorhout, P K

    2001-09-10

    Orange crystals of Cs(4)Th(4)P(4)Se(26) were grown from the reaction of (232)Th and P in a Cs(2)Se(3)/Se molten salt flux at 750 degrees C. Cs(4)Th(4)P(4)Se(26) crystallizes in the orthorhombic space group Pbca with the unit cell parameters: a = 12.0130(6), b = 14.5747(7), c = 27.134(1) A; Z = 8. The compound exhibits a three-dimensional structure, consisting of dimeric [Th(2)Se(13)] polyhedral units. The two crystallographically independent, nine-coordinate, bicapped trigonal prismatic thorium atoms share a triangular face to form the dimer, and each dimer edge-shares two selenium atoms with two other dimers to form kinked chains along the [010] direction. While this structure shares features of the previously reported Rb(4)U(4)P(4)Se(26), including phosphorus in the 5+ oxidation state, careful inspection of the structure reveals that the selenophosphate anion that knits the structure together in three directions in both compounds is a unique (P(2)Se(9))(6-) anion. The formula may be described best as [Cs(2)Th(2)(P(2)Se(9))(Se(2))(2)](2). The (P(2)Se(9))(6-) anion features a nearly linear Se-Se-Se backbone with an angle of 171 degrees and Se-Se distances that are approximately 0.2-0.3 A longer than the typical single Se-Se bond. Magnetic studies confirm that this phase contains Th(IV). Raman data for this compound is reported, and structural comparisons will be drawn to its uranium analogue, Rb(4)U(4)P(4)Se(26).

  2. Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: jbartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-07-15

    In this paper, we describe a new approach for producing metal oxide nano- and microparticles via sol–gel processing in confined media (sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles), in which the chemical and physical properties of the polar aqueous core of the reverse micelles are modulated by the inclusion of a second polar co-solvent. The co-solvents were selected for their capacity to solubilise compounds with low water solubility and included dimethylsulfoxide, dimethylformamide, ethylene glycol, n-propanol, dimethylacetamide and N-methylpyrrolidone. A broad range of processing conditions across the sodium bis(2-ethylhexyl)sulfosuccinate/cyclohexane/water phase diagram were identified that are suitable for preparing particles with dimensions <50 to >500 nm. In contrast, only a relatively narrow range of processing conditions were suitable for preparing such particles in the absence of the co-solvents, highlighting the role of the co-solvent in modulating the properties of the polar core of the reverse micelles. A mechanism is proposed that links the interactions between the various reactive sites on the polar head group of the surfactant and the co-solvent to the nucleation and growth of the particles.

  3. Synthesis of quinoline derivatives containing pyrazole group and investigation of their crystal structure and spectroscopic properties in relation to acidity and alkalinity of mediums.

    Science.gov (United States)

    Ren, Tiegang; Wang, Jie; Li, Guihui; Cheng, Hongbin; Li, Yongzhe

    2014-08-14

    Two series of quinoline derivatives containing pyrazole group were synthesized and characterized by means of (1)H NMR, FT-IR, MS, elemental analysis and X-ray single crystal diffraction, and their UV-vis absorption behavior and fluorescence properties were also measured. Moreover, the effects of acetic acid and triethylamine on the spectroscopic properties of synthesized products were examined with compounds 3a and 5a as examples. It has been found that all synthesized quinoline derivatives show maximum absorption peak at 303 nm and emission peaks around 445 nm. Besides, both acetic acid and triethylamine can change the acidity of the medium, thereby influencing the UV-vis absorption spectra and fluorescence spectra of synthesized products. Moreover, theoretical investigations indicate that the integration of H(+) and N atom of quinoline ring favors the formation of a new product in the presence of acetic acid, and the product obtained in this case shows a new UV-vis absorption peak at 400 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Three Novel Lanthanide Metal-Organic Frameworks (Ln-MOFs Constructed by Unsymmetrical Aromatic Dicarboxylatic Tectonics: Synthesis, Crystal Structures and Luminescent Properties

    Directory of Open Access Journals (Sweden)

    Ya-Pan Wu

    2014-09-01

    Full Text Available Three novel Ln(III-based coordination polymers, {[Ln2 (2,4-bpda3 (H2Ox]·yH2O}n (Ln = La (III (1, x = 2, y = 0, Ce (III (2, Pr (III (3, x = 4, y = 1 (2,4-H2bpda = benzophenone-2,4-dicarboxylic acid have been prepared via a solvothermal method and characterized by elemental analysis, IR, and single-crystal X-ray diffraction techniques. Complex 1 exhibits a 3D complicated framework with a new 2-nodal (3,7-connected (42·5 (44·51·66·8 topology. Complexes 2 and 3 are isomorphous, and feature a 3D 4-connected (65·8-CdSO4 network. Moreover, solid-state properties such as thermal stabilities and luminescent properties of 1 and 2 were also investigated. Complex 1 crystallized in a monoclinic space group P21/c with a = 14.800 (3, b = 14.500 (3, c = 18.800 (4 Å, β = 91.00 (3, V = 4033.9 (14 Å3 and Z = 4. Complex 2 crystallized in a monoclinic space group Cc with a = 13.5432 (4, b = 12.9981 (4, c = 25.7567 (11 Å, β = 104.028 (4, V = 1374.16 (7 Å3 and Z = 4.

  5. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  6. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    Science.gov (United States)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  7. Synthesis, Structure, and Properties of BaGe 2: A Study of Tetrahedral Cluster Packing and Other Three-Connected Nets in Zintl Phases

    Science.gov (United States)

    Vaughey, J. T.; Miller, Gordon J.; Gravelle, Steven; Alejandro Leon-Escamilla, E.; Corbett, John D.

    1997-11-01

    BaGe2crystallizes in the BaSi2structure type; space groupPnma(No. 62);a=9.078(3) Å,b=6.829(2) Å,c=11.653(3) Å;Z=8;R=0.022;Rw=0.025 (I>3σ(I)) for 542 reflections with 2θmax=50° measured on a single-crystal diffractometer. Magnetic susceptibility measurements confirm its closed shell behavior (diamagnetic), and electrical resistivity measurements place a lower bound on its room temperature resistivity at ca. 1 mΩ·cm. Lattice energy calculations rationalize the observed packing arrangement of [Ge4]4-tetrahedra and Ba2+cations, while extended Hückel calculations are utilized to compare the electronic structures of various three-connected nets common to Zintl ions with five valence electrons per atom.

  8. Topotactic synthesis, structure and magnetic properties of a new hexagonal polytype of silver cobaltate(III) AgCoO2+\\delta

    OpenAIRE

    Muguerra, Hervé; Colin, Claire; Anne, Michel; Julien, M. -H.; Strobel, Pierre

    2008-01-01

    International audience; A new form of delafossite-type AgCoO2+δ was prepared using ion exchange from Na0.75CoO2 in molten AgNO3-NH4NO3 at 175°C. Its structure was determined by Rietveld refinement from XRD data; it is hexagonal, space group P63/mmc, a = 2.871 and c = 12.222 Å. Its structure differs from previously reported AgCoO2 (R-3m, 3R polytype) by the stacking of Co-O layers; in the new phase the 2H stacking of the precursor Na0.75CoO2, consistent with a topotactic ion exchange of Na by ...

  9. Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: Structure and luminescence properties

    Science.gov (United States)

    Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng

    2018-02-01

    A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.

  10. Mild hydrothermal synthesis, crystal structure, thermal behaviour, spectroscopic and magnetic properties of (NH4)0.80Li0.20[Fe(AsO4)F

    International Nuclear Information System (INIS)

    Berrocal, Teresa; Mesa, Jose L.; Larrea, Edurne S.; Bazan, Begona; Pizarro, Jose L.; Lezama, Luis; Rojo, Teofilo; Arriortua, Maria I.

    2011-01-01

    The (NH 4 ) 0.80 Li 0.20 [Fe(AsO 4 )F] compound has been synthesized under mild hydrothermal conditions. The compound crystallize in the orthorhombic Pna2 1 space group, with cell parameters a=13.352(9), b=6.7049(9), c=10.943(2) A and Z=8. The compound belongs to the KTiO(PO 4 ) structure type, with chains alternating FeO 4 F 2 octahedra and AsO 4 tetrahedra, respectively, running along the 'a' and 'b' crystallographic axes. The diffuse reflectance spectrum in the visible region shows the forbidden electronic transitions characteristic of the Fe(III) d 5 -high spin cation in slightly distorted octahedral geometry. The Moessbauer spectrum at room temperature is characteristic of iron (III) cations. The ESR spectra, carried out from room temperature to 200 K, remain isotropic with variation in temperature; the g-value being 1.99(1). Magnetic measurements indicate the predominance of strong antiferromagnetic interactions. - Graphical Abstract: Three-dimensional structure of (NH 4 ) 0.80 Li 0.20 [Fe(AsO 4 )F], a fluoroarsenate containing lithium and ammonium in the structural cavities. Highlights: → (NH 4 ) 0.80 Li 0.20 [Fe(AsO 4 )F] has been synthesized by mild hydrothermal technique. → The compound exhibits a three-dimensional structure. → Moessbauer spectrum indicates the existence of Fe(III) cations. → Visible spectroscopy confirms the hexacoordination of Fe(III). → Magnetic measurements indicate the existence of a global antiferromagnetic ordering.

  11. Synthesis, structure and properties of layered iron-oxychalcogenides Nd2Fe2Se2−xSxO3

    International Nuclear Information System (INIS)

    Liu, Y.; Zhang, S.B.; Tan, S.G.; Yuan, B.; Kan, X.C.; Zu, L.; Sun, Y.P.

    2015-01-01

    A new series of sulfur-substituted iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 (0≤x≤0.4) was synthesized by solid state reaction method, and investigated by structure, transport, magnetic and specific heat measurements. The compounds crystallize in the layered tetragonal structure with I4/mmm space group, and show semiconducting behavior. The large discrepancy between the activation energies for conductivity, E ρ (152–202 meV), and thermopower, E S (15.6–39.8 meV), indicates the polaronic transport mechanism of the carrier. The parent compound Nd 2 Fe 2 Se 2 O 3 exhibits a frustrated antiferromagnetic (AFM) ground state, and the S-substitution induces an enhanced ferromagnetic (FM) component and possible increased degree of frustration. - Graphical abstract: The crystal structure of Nd 2 Nd 2 Fe 2 Se 2−x S x O 3 is built up by stacking fluorite-like Nd 2 O 2 layers and anti-CuO 2 -type Fe 2 O(Se/S) 2 layers with Fe 2+ cations coordinated by two in-plane O 2- and four Se 2- above and below the square Fe 2 O plane. - Highlights: • We have synthesized a new series of layered iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 . • They crystallize in layered tetragonal structure and show semiconducting behavior. • The transport analysis indicates the polaronic transport mechanism of the carrier. • The parent compound shows a frustrated antiferromagnetic (AFM) ground state. • The S-substitution induces an enhanced ferromagnetic (FM) component

  12. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors

    Science.gov (United States)

    Feng, Haobin; Hu, Hang; Dong, Hanwu; Xiao, Yong; Cai, Yijin; Lei, Bingfu; Liu, Yingliang; Zheng, Mingtao

    2016-01-01

    Bagasse-derived hierarchical structured carbon (BDHSC) with tunable porosity and improved electrochemical performance is prepared via simple and efficient hydrothermal carbonization combined with KOH activation. Experimental results show that sewage sludge acts as a cheap and efficient structure-directing agent to regulate the morphology, adjust the porosity, and thus improve the supercapacitive performance of BDHSC. The as-resulted BDHSC exhibits an interconnected framework with high specific surface area (2296 m2 g-1), high pore volume (1.34 cm3 g-1), and hierarchical porosity, which offer a more favorable pathway for electrolyte penetration and transportation. Compared to the product obtained from bagasse without sewage sludge, the unique interconnected BDHSC exhibits enhanced supercapacitive performances such as higher specific capacitance (320 F g-1), and better rate capability (capacitance retention over 70.8% at a high current density of 50 A g-1). Moreover, the BDHSC-based symmetric supercapacitor delivers a maximum energy density of over 20 Wh kg-1 at 182 W kg-1 and presents an excellent long-term cycling stability. The developed approach in the present work can be useful not only in production of a variety of novel hierarchical structured carbon with promising applications in high-performance energy storage devices, but also in high-value utilization of biomass wastes and high-ash-content sewage sludge.

  13. Synthesis, structure, terahertz spectroscopy and luminescent properties of copper (I) complexes with bis(diphenylphosphino)methane and N-donor ligands

    Science.gov (United States)

    Fan, Wei-Wei; Li, Zhong-Feng; Li, Jiao-Bao; Yang, Yu-Ping; Yuan, Yuan; Tang, Han-Qin; Gao, Ling-Xiao; Jin, Qiong-Hua; Zhang, Zhen-Wei; Zhang, Cun-Lin

    2015-11-01

    The reactions of copper(I) salts CuX [X = Cl, OTf (OTf = CF3SO3) and ClO4] and bis(diphenylphosphino)methane (dppm) with 4,4-bipyridine (4,4-bipy), 2,2-bipyridine (2,2-bipy), isoquinoline (i-C9H7N) and 1,10-phenanthroline (phen) lead to five new copper(I) complexes: [CuCl(dppm)(i-C9H7N)]2 (1), {[CuCl(dppm)(phen)]2•5H2O}n (2), [Cu2Cl2(dppm)2(4,4-bipy)]•4CH3CN (3), [Cu(dppm)(2,2-bipy)]2(OTf)2 (4), {[Cu2Cl(dppm)2(4,4-bipy)](ClO4)}n (5). Complexes 1, 3 and 4 are of dinuclear structure with eight-membered Cu2P4C2 rings. The structure of compound 2 can be simplified as three-dimensional topology. Complex 5 is of infinite chain structure linked by 4,4-bipy. All these complexes are characterized by IR, elemental analyses, single-crystal X-ray diffraction analysis, luminescence, NMR and terahertz time-domain spectroscopy.

  14. New Cu (II), Co(II) and Ni(II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies

    Science.gov (United States)

    Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni

    2018-03-01

    The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.

  15. SYNTHESIS, CRYSTAL STRUCTURE AND LUMINESCENT PROPERTY OF A DINUCLEAR Tb(II COMPLEX WITH HOMOPHTHALIC ACID AND 2,2’-BIPYRIDYL

    Directory of Open Access Journals (Sweden)

    LI-HUA WANG

    2015-07-01

    Full Text Available A novel dinuclear Tb(III complex, [Tb(bpy2L2] (bpy = 2,2’-bipyridine, H2L = homophthalic acid, has been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Tb(III complex is monoclinic, space group P21/c with a = 9.368(2 Å, b = 15.948(4 Å, c = 12.216(3 Å, β = 103.023(4º, V= 1778.2(7 Å3, Z = 2, Dc = 1.910 mg·m-3, μ = 4.011 mm-1, F(000 = 996, and final R1 = 0.0602, ωR2 = 0.2192. The result shows that the Tb(III center is seven-coordination with a N2O5 distorted pengonal bipyramidal geometry. The luminescent property of Tb(III complex was investigated.

  16. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    Science.gov (United States)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  17. Synthesis, crystal structures and properties of three coordination polymers based on semi-rigid bis(benzimidazole-1-ylmethyl)biphenyl ligand

    Science.gov (United States)

    Liang, Lili; Xue, Hongbao; Chen, Feijian; Zhang, Manli; Zhang, Bingyuan; Tao, Zhaolin

    2017-11-01

    Solvothermal reactions of three metal salts with a linear semi-rigid ligand 4,4‧-bis(benzimidazol-1-ylmethy1)biphenyl) (bbmb) and terephthalic acid (H2TA), lead to three metal-organic coordination polymers, namely, {[Co(bbmb)(TA)] 4H2O} 1, [Zn2(bbmb)2(TA)(NO2)2] 2 and [Cd(bbmb)(TA)(H2O)] 3. Single-crystal X-ray diffraction analyses reveal that compound 1 exhibits a zigzag-shaped 1-D chain, which extended into a three-dimensional supermolecular framework through π-π interactions, compound 2 exhibits a thick two-dimensional sheet, while compound 3 exhibits a unique 3D two-fold interpenetrated network of irl topology. Moreover, IR spectroscopy, powder X-ray diffraction, thermogravimetric analyses, and the properties of the three compounds were studied.

  18. Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties.

    Science.gov (United States)

    Datcu, Angela; Roques, Nans; Jubera, Véronique; Imaz, Inhar; Maspoch, Daniel; Sutter, Jean-Pascal; Rovira, Concepció; Veciana, Jaume

    2011-03-21

    A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sound Synthesis and Musical Composition by Physical Modelling of Self-Sustained Oscillating Structures

    OpenAIRE

    Poyer, François; Cadoz, Claude

    2007-01-01

    Paper 3 - Audio Synthesis (Oral Presentations); International audience; In this paper, we present the first results of a study that is carried out with the sound synthesis and musical creation environment GENESIS on self-sustained oscillating structures models. Based on the mass-interaction CORDIS-ANIMA physical modelling formalism, GENESIS has got the noteworthy property that it allows to work both on sound itself and on musical composition in a single coherent environment. By taking as a st...

  20. Synthesis, crystal structures and thermodynamic properties of two novel lanthanide complexes based on 3,4-diethoxybenzoic acid and 2,2′-bipyridine

    International Nuclear Information System (INIS)

    Jin, Cheng-Wei; Wang, Ye; Ren, Ning; Geng, Li-Na; Zhang, Jian-Jun

    2016-01-01

    Highlights: • Two novel complexes crystal structures are obtained. • The 1-D chain and 2D layer structures were formed via π–π stacking interactions. • The pathway of thermal decomposition for title complexes were investigated. • The molar heat capacities and thermodynamic functions were calculated. - Abstract: Two binuclear lanthanide complexes [Ln(3,4,-DEOBA) 3 DIPY] 2 DIPY (Ln = Tb (1), Dy (2); 3,4,-DEOBA = 3,4-diethoxybenzoate; DIPY = 2,2′-bipyridine) have been synthesized and characterized. The single crystals of complexes 1 and 2 were obtained. And the two complexes are isostructural with a coordination number of eight to form a distorted square antiprism. Carboxylic groups adopt two modes coordinating with Ln(III) ions: bidentate chelate, and bridging bidentate. Binuclear complexes 1 and 2 are stitched together via π–π stacking interactions to form 1D chain and 2D layer supramolecular structures. The two complexes were characterized by elemental analysis, IR spectra, and powder X-ray diffraction. The luminescence spectra of complexes 1 and 2 show the characteristic emissions of Tb 3+ ( 5 D 4 → 7 F 6-3 ) and Dy 3+ ( 4 F 9/2 → 6 H 15/2 , 6 H 13/2 ). The thermal decomposition mechanisms for title complexes were studied by the technology of TG-FTIR. And the heat capacities of two complexes were measured by DSC in the temperature range from 258.15 to 343.15 K. The smoothed heat capacities and thermodynamic functions for complexes 1 and 2 were calculated by fitted polynomial and thermodynamic equations.