WorldWideScience

Sample records for synthesis spectroscopic characterization

  1. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  2. Synthesis, spectroscopic and DFT characterization of 4 β -(4- tert ...

    African Journals Online (AJOL)

    Synthesis, spectroscopic and DFT characterization of 4 β -(4-tert-butylphenoxy) phthalocyanine positional isomers for non-linear optical absorption. Denisha Gounden, Grace N. Ngubeni, Marcel S. Louzada, Samson Khene, Jonathan Britton, Nolwazi Nombona ...

  3. Synthesis, spectroscopic characterization and electronic structure of ...

    Indian Academy of Sciences (India)

    Unknown

    Copper(I) carbene complex; carbene complex synthesis; Cu(I)–carbene electronic structure. 1. Introduction. Metal carbene complexes are arguably the most ver- satile organometallic reagents that have been devel- oped for organic synthesis.1 Different reactions of these complexes have been reported since their dis-.

  4. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes ..... 6. Benzyl alcohol. Benzaldehyde. 57. 1-Phenylethanol. Acetophenone. 65. Cyclohexanol. Cyclohexanone. 49 a Reaction time, 5 h. b Yields based on substrate.

  5. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    tion in the development of catalysis, magnetism, molec- ular architectures and materials chemistry. Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes used for oxidation reactions are cytochrome P-450, per- oxidases ...

  6. Electrochemical synthesis and spectroscopic characterization of ...

    African Journals Online (AJOL)

    phenylpyrrole) coatings in an organic medium on iron and platinum electrodes. ... XPS measurements, infrared (FT-IR) and electronic absorption (UV-vis) spectroscopies were used to characterize the iron and platinum-coated electrodes. Finally the ...

  7. Synthesis, crystal structures, spectroscopic characterization and in ...

    Indian Academy of Sciences (India)

    Both the complexes were structurally characterized by single crystal XRD. The crystal structure of complex 1 displays a distorted square pyramidal geometry in which Schiff base is coordinated to the Cu(II) ion via ONO-donor in the axial mode, whereas, the chelating diamine displays axial and equatorial mode of binding via ...

  8. Synthesis and spectroscopic characterization of palladium-doped ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we reported synthesis of palladium (Pd)-doped titanium dioxide (TiO2) (Pd-TiO2) nanopar- ticles by the sol–gel-assisted method. The synthesized Pd-doped TiO2 nanoparticles were characterized using X-ray diffraction, transmission electronic microscopy, energy-dispersive spectroscopy, Fourier ...

  9. Synthesis and Spectroscopic Characterization of Two Tetrasubstituted Cationic Porphyrin Derivatives

    Directory of Open Access Journals (Sweden)

    Newton M. Barbosa Neto

    2011-07-01

    Full Text Available An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II complex with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by 1H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.

  10. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  11. Synthesis, characterization, spectroscopic properties and DFT study of a new pyridazinone family

    Science.gov (United States)

    Arrue, Lily; Rey, Marina; Rubilar-Hernandez, Carlos; Correa, Sebastian; Molins, Elies; Norambuena, Lorena; Zarate, Ximena; Schott, Eduardo

    2017-11-01

    Nitrogen compounds are widely investigated due to their pharmacological properties such as antihypertensive, antinociceptive, antibacterial, antifungal, analgesic, anticancer and inhibition activities and lately even as pesticide. In this context, we present the synthesis of new compounds: (E)-6-(3,4-dimethoxyphenyl)-3-(3-(3,4-dimethoxyphenyl)acryloyl)-1-(4-R-phenyl)- 5,6-dihydropyridazin-4(1H)-one (with R = sbnd H(1), -Cl(2), -Br(3), sbnd I(4) and sbnd COOH(5)) that was carried out by reaction of (1E, 6E)-1,7-bis(3,4-dimethoxyphenyl)hepta-1,6-diene-3,5-dione with a substituted phenylamine with general formula p-R-C6H4sbnd NH2 (R = sbnd H (1), sbnd Cl (2), -Br(3), sbnd I(4) and sbnd COOH(5)). This is the first synthesis report of a pyridazinone using as precursors a curcuminoid derivative and a diazonium salt formed in situ. All compounds were characterized by EA, FT-IR, UV-Vis, Emission,1H- and13C-NMR spectroscopy and the crystalline and molecular structure of 4 was solved by X-rays diffraction method. DFT and TD-DFT quantum chemical calculations were also employed to characterize the compounds and provide a rational explanation to the spectroscopic properties. To assess the biological activity of the systems, we focused on pesticide tests on compound 2, which showed an inhibitory effect in plant growth of Agrostis tenuis Higland.

  12. Spectroscopic Characterization of Copper-Chitosan Nanoantimicrobials Prepared by Laser Ablation Synthesis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Maria Chiara Sportelli

    2016-12-01

    Full Text Available Copper-chitosan (Cu-CS nanoantimicrobials are a novel class of bioactive agents, providing enhanced and synergistic efficiency in the prevention of biocontamination in several application fields, from food packaging to biomedical. Femtosecond laser pulses were here exploited to disrupt a Cu solid target immersed into aqueous acidic solutions containing different CS concentrations. After preparation, Cu-CS colloids were obtained by tuning both Cu/CS molar ratios and laser operating conditions. As prepared Cu-CS colloids were characterized by Fourier transform infrared spectroscopy (FTIR, to study copper complexation with the biopolymer. X-ray photoelectron spectroscopy (XPS was used to elucidate the nanomaterials’ surface chemical composition and chemical speciation of the most representative elements. Transmission electron microscopy was used to characterize nanocolloids morphology. For all samples, ξ-potential measurements showed highly positive potentials, which could be correlated with the XPS information. The spectroscopic and morphological characterization herein presented outlines the characteristics of a technologically-relevant nanomaterial and provides evidence about the optimal synthesis parameters to produce almost monodisperse and properly-capped Cu nanophases, which combine in the same core-shell structure two renowned antibacterial agents.

  13. Synthesis, Spectroscopic and Pharmacological Studies of Bivalent ...

    African Journals Online (AJOL)

    Synthesis, Spectroscopic and Pharmacological Studies of Bivalent Copper, Zinc and Mercury Complexes of Thiourea. ... All the metal complexes were characterized by elemental chemical analysis, molar conductance, magnetic susceptibility measurements and IR spectroscopy. Cu(II) complexes were additionally ...

  14. Synthesis, spectroscopic characterization and DFT calculations of novel Schiff base containing thiophene ring

    Science.gov (United States)

    Ermiş, Emel

    2018-03-01

    In this study, a new Schiff base derivative, 2-[(2-hydroxy-5-thiophen-2-yl-benzylidene)-amino]-6-methyl-benzoic acid (5), which has a thiophene ring and N, O donor groups, was successfully prepared by the condensation reaction of 2-hydroxy-5-(thiophen-2-yl)benzaldehyde (3) and 2-amino-6-methylbenzoic acid (4). The characterization of a Schiff base derivative (5) was performed by experimentally the UV-Vis., FTIR, 1H and 13C NMR spectroscopic methods and elemental analysis. Density Functional Theory (DFT/B3LYP/6-311+G(d, p)) calculations were used to examine the optimized molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-Vis. spectroscopic parameters, HOMO-LUMO energies and molecular electrostatic potential (MEP) map of the compound (5) and the theoretical results were compared to the experimental data. In addition, the energetic behaviors such as the sum of electronic and thermal free energy (SETFE), atomic charges, dipole moment of the compound (5) in solvent media were investigated using the B3LYP method with the 6-311+G(d, p) basis set. The obtained experimental and theoretical results were found to be compatible with each other and they were supported the proposed molecular structure for the synthesized Schiff base derivative (5).

  15. Synthesis, Characterization, Thermal Analyses, and Spectroscopic Properties of Novel Naphthyl-Functionalized Imidazolium Ionic Liquids

    Science.gov (United States)

    Yao, Meihuan; Li, Qing; Xia, Yanqiu; Liang, Yongmin

    2018-03-01

    A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf- 2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF- 6, BF- 4, and Br- decreases the thermal stabilities of such ionic liquids. Fluorescence and UV-Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV-Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.

  16. Synthesis, structural, and spectroscopic characterization and reactivities of mononuclear cobalt(III)-peroxo complexes.

    Science.gov (United States)

    Cho, Jaeheung; Sarangi, Ritimukta; Kang, Hye Yeon; Lee, Jung Yoon; Kubo, Minoru; Ogura, Takashi; Solomon, Edward I; Nam, Wonwoo

    2010-12-01

    Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)-peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+), were synthesized by reacting [Co(12-TMC)(CH(3)CN)](2+) and [Co(13-TMC)(CH(3)CN)](2+), respectively, with H(2)O(2) in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized by various spectroscopic techniques and X-ray crystallography, and the structural and spectroscopic characterization demonstrated unambiguously that the peroxo ligand is bound in a side-on η(2) fashion. The O-O bond stretching frequency of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) was determined to be 902 cm(-1) by resonance Raman spectroscopy. The structural properties of the CoO(2) core in both complexes are nearly identical; the O-O bond distances of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) were 1.4389(17) Å and 1.438(6) Å, respectively. The cobalt(III)-peroxo complexes showed reactivities in the oxidation of aldehydes and O(2)-transfer reactions. In the aldehyde oxidation reactions, the nucleophilic reactivity of the cobalt-peroxo complexes was significantly dependent on the ring size of the macrocyclic ligands, with the reactivity of [Co(13-TMC)(O(2))](+) > [Co(12-TMC)(O(2))](+). In the O(2)-transfer reactions, the cobalt(III)-peroxo complexes transferred the bound peroxo group to a manganese(II) complex, affording the corresponding cobalt(II) and manganese(III)-peroxo complexes. The reactivity of the cobalt-peroxo complexes in O(2)-transfer was also significantly dependent on the ring size of tetraazamacrocycles, and the reactivity order in the O(2)-transfer reactions was the same as that observed in the aldehyde oxidation reactions.

  17. Spectroscopic characterizations of a mixed surfactant mesophase and its application in materials synthesis

    Science.gov (United States)

    Liu, Limin

    A viscous lyotropic crystalline mesophase containing bis (2-ethylhexyl) sodium sulfosuccinate (AOT), alpha-phosphatidylcholine (lecithin), with comparable volume fractions of isooctane and water was characterized by Fourier-transform 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. Shear alignment on the reverse hexagonal mesophase was reflected through both 31P NMR and 1H NMR spectra. A complicated 31P spectrum was observed as a result of superposition of chemical shifts according to the distribution of crystalline domains prior to shear. The initially disordered samples with polydomain structures became macroscopically aligned after Couette shear and the alignment retained for a long period of time. 31P NMR chemical shift anisotropy characteristics were used to elucidate orientation of the hexagonal phase. Interestingly, 1H NMR of the water, methyl and methylene groups exhibited spectral changes upon shear alignment closely corresponding with that of 31P NMR spectra. A reverse hexagonal to lamellar phase transition was manifested as an expanding of the expressed 31P NMR chemical shift anisotropy and an apparent reversal of the powder pattern with increasing water content and/or temperature. Correspondingly, 1H NMR spectra also experienced a spectral pattern transition as the water content or temperature was increased. These observations complement the findings of mesophase alignment obtained using small angle neutron scattering (SANS) and imply that 31P and 1H NMR spectroscopy can be used as probes to define microstructure and monitor orientation changes in this binary surfactant system. This is especially beneficial if these mesophases are used as templates for materials synthesis. The mesophase retains its alignment for extended periods allowing materials synthesis to be decoupled from the application of shear. Highly aligned string-like silica nanostructures were obtained through templated synthesis in the columnar hexagonal structure of the viscous

  18. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    Science.gov (United States)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  19. Synthesis, XRD and spectroscopic characterization of pharmacologically active Cu(II) and Zn(II) complexes

    Science.gov (United States)

    Gull, Parveez; Hashmi, Athar Adil

    2017-07-01

    The present contribution accounts for the synthesis and structural elucidation of a newly synthesised copper and zinc containing schiff base compounds obtained by the condensation of 1, 2-diphenylethane-1, 2-dione and dinitrophenyl hydrazine as main ligand and benzene-1,2-diamine as co-ligand respectively. The synthesised compounds were characterized by several techniques, including elemental analysis, molar conductance and electronic, FT-IR, XRD, mass and 1H NMR spectral studies. The analytical and molar conductance values indicated that the complexes have square planar and tetrahedral geometry respectively. X-ray powder diffraction illustrates that they are crystalline in nature. The copper and zinc complexes were screened for their antimicrobial potential against some bacterial and fungi strains and the assay indicate that these complexes are good antimicrobial agents against these tested pathogens.

  20. Synthesis and spectroscopic characterization of super-stable rhenium(V)porphyrins

    Science.gov (United States)

    Bichan, N. G.; Tyulyaeva, E. Yu.; Khodov, I. A.; Lomova, T. N.

    2014-03-01

    The preparation of rhenium(V) porphyrin complexes {μ-oxo-bis[(oxo)(5,10,15,20-tetraphenyl-21H,23H-porphinato)rhenium(V)] [OReTPP]2O (1), (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(PhO)MPOEP (2), (cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5,15-diphenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)5,15DPOEP (4), and (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(PhO)OEP (5)} by the interaction of H2ReCl6 with corresponding porphyrin in boiling phenol is described. (Cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)MPOEP (3) and (oxo)(chloro)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(Cl)OEP (6) have been prepared by the reaction of axial-ligand substitution from (2) and (5), respectively. Compounds (2-4) were newly synthesized. Characterization of the compounds (1-6) reported herein was made mainly by UV-Visible, IR, 1Н NMR, 1H1H 2D COSY, 1H1H 2D DOSY, 1H1H 2D ROESY, 1H1H 2D TOCSY spectroscopic techniques and elemental analysis. The stability of the complexes in solutions when exposed to strong acids at the presence of atmospheric oxygen has been estimated. Compounds (2-4) and (6) show them super-stable since they do not undergo dissociation along MN bonds in concentrated H2SO4 under heating up to 363 K. Compounds (3) and (4) undergo one-electron oxidation to form stable π-cation radicals ORe(HSO)P under these conditions. The products of the reaction between all studied porphyrins and concentrated H2SO4 were isolated in CHCl3 by reprecipitation onto ice and proved to be rhenium(V) complexes ORe(HSO4)P.

  1. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study.

    Science.gov (United States)

    Patil, Siddappa A; Medina, Phillip A; Antic, Aleks; Ziller, Joseph W; Vohs, Jason K; Fahlman, Bradley D

    2015-09-05

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods ((1)H NMR, (13)C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization and spectroscopic studies of some boron-containing hydrogen storage materials

    Science.gov (United States)

    Jash, Panchatapa

    In this dissertation the synthesis and characterization of boron-related nanostructures and dehydrogenation studies of metal borohydrides using FTIR are reported. Boron-related nanostructures are of interest because of their potential applications in nanoelectronics and in hydrogen storage. A low pressure chemical vapor deposition (LPCVD) apparatus was built in order to grow boron nanostructures. Various techniques, namely, Auger electron spectroscopy (AES), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used to characterize the synthesized boron and boride nanostructures, and boron coated carbon nanotubes (CNTs). By the uncatalyzed pyrolysis of diborane, at relatively low temperature, crystalline boron nanoribbons were synthesized. Nickel-catalyzed growth also produced Ca, Sr and Y boride nanowires that were found to be crystalline. Amorphous boron coated CNTs were synthesized by LPCVD. Two growth mechanisms, vapor-liquid-solid (VLS) and vapor-solid (VS) were invoked to explain the observed nanostructures. A high vacuum apparatus for FTIR studies was built. The capabilities of the apparatus were first tested by acquiring low temperature and room temperature spectra of sodium and lithium borohydrides. The metal borohydrides are of high hydrogen content and dehydrogenation studies using FTIR were done. NaBH 4 and the K2B12H12 salt were studied. It was found that above its melting point (673 K), NaBH4 is probably converted to its B12H12-2 salt, which then loses all hydrogen to produce amorphous boron. This conversion of B 12H12-2 to boron clusters was confirmed through dehydrogenation studies of K2B12H12. Both SIMS and AES are surface sensitive techniques to study thin film surfaces and interfaces at nano-dimentions. Thin (9-10 mum) cadmium telluride films have application as the buffer layer on silicon substrates to form high

  3. An efficient synthesis and spectroscopic characterization of Schiff bases containing 9,10-anthracenedione moiety

    Directory of Open Access Journals (Sweden)

    Fareed Ghulam

    2013-01-01

    Full Text Available A new method has been developed for the synthesis of novel Schiff bases containg anthraquinone moiety using dodeca-Tungstosilicic acid/P2O5 under solvent free conditions at room temperature. The reaction was completed in 1-3 minutes with excellent yields. This method was found to be more efficient, easy and hazardous free for the synthesis of azomethines. The development of these type of methadologies in synthetic chemistry may contribute to green chemistry. The structures of synthesized novel Schiff bases was elucidated using 1H-NMR, 13C-NMR, LCMS, FTIR and CHN analysis.

  4. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique

    OpenAIRE

    N. Khatoon; H. M. Yasin; M. Younus; W. Ahmed; N. U. Rehman; M. Zakaullah; M. Zafar Iqbal

    2018-01-01

    Fabrication of non-functionalized gold nanoparticles is interesting owing to their potential applications in sensing and biomedicine. We report on the synthesis of surfactant-free gold nanoparticles (AuNPs) by Plasma-Liquid Interaction (PLI) technique, using micro-atmospheric pressure D.C. plasma. The effects of discharge parameters, such as discharge current, precursor concentration and gas flow rates on the structure and morphology of AuNPs have been investigated. Optical Emission Spectrosc...

  5. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique

    Science.gov (United States)

    Khatoon, N.; Yasin, H. M.; Younus, M.; Ahmed, W.; Rehman, N. U.; Zakaullah, M.; Iqbal, M. Zafar

    2018-01-01

    Fabrication of non-functionalized gold nanoparticles is interesting owing to their potential applications in sensing and biomedicine. We report on the synthesis of surfactant-free gold nanoparticles (AuNPs) by Plasma-Liquid Interaction (PLI) technique, using micro-atmospheric pressure D.C. plasma. The effects of discharge parameters, such as discharge current, precursor concentration and gas flow rates on the structure and morphology of AuNPs have been investigated. Optical Emission Spectroscopy (OES) was employed to estimate the UV radiation intensity and OH radical density. Scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) optical spectroscopy were employed to study the morphology and structure of AuNPs. The normalized intensities of UV radiation and OH radical density found to increase with increase in discharge current. We observed that the particle size can be tuned by controlling any of the following parameters: intensity of the UV radiation, OH radical density, and concentration of the Au precursor. Interestingly, we found that addition of 1% Ar in the feedstock gas results in formation of relatively uniform size distribution of nanoparticles. The surfactant-free AuNPs, due to their bare-surface, exhibit excellent surface-enhanced Raman scattering (SERS) properties. The SERS study of Rhodamine 6G using AuNPs as substrates, shows significant Raman enhancement and fluorescence quenching, which makes our technique a potentially powerful route to detection of trace amounts of dangerous explosives and other materials.

  6. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique

    Directory of Open Access Journals (Sweden)

    N. Khatoon

    2018-01-01

    Full Text Available Fabrication of non-functionalized gold nanoparticles is interesting owing to their potential applications in sensing and biomedicine. We report on the synthesis of surfactant-free gold nanoparticles (AuNPs by Plasma-Liquid Interaction (PLI technique, using micro-atmospheric pressure D.C. plasma. The effects of discharge parameters, such as discharge current, precursor concentration and gas flow rates on the structure and morphology of AuNPs have been investigated. Optical Emission Spectroscopy (OES was employed to estimate the UV radiation intensity and OH radical density. Scanning electron microscopy (SEM and ultraviolet-visible (UV-Vis optical spectroscopy were employed to study the morphology and structure of AuNPs. The normalized intensities of UV radiation and OH radical density found to increase with increase in discharge current. We observed that the particle size can be tuned by controlling any of the following parameters: intensity of the UV radiation, OH radical density, and concentration of the Au precursor. Interestingly, we found that addition of 1% Ar in the feedstock gas results in formation of relatively uniform size distribution of nanoparticles. The surfactant-free AuNPs, due to their bare-surface, exhibit excellent surface-enhanced Raman scattering (SERS properties. The SERS study of Rhodamine 6G using AuNPs as substrates, shows significant Raman enhancement and fluorescence quenching, which makes our technique a potentially powerful route to detection of trace amounts of dangerous explosives and other materials.

  7. Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation.

    Science.gov (United States)

    Gopi, D; Ansari, M Thameem; Shinyjoy, E; Kavitha, L

    2012-02-15

    Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28kHz and 35kHz at the power of 150 and 320W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35kHz at 320W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization (M(s)) value of the functionalized magnetic hydroxyapatite. The M(s) value is found to be much less than that of pure magnetite nanoparticle and this decrement in M(s) is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation

    Science.gov (United States)

    Gopi, D.; Ansari, M. Thameem; Shinyjoy, E.; Kavitha, L.

    2012-02-01

    Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28 kHz and 35 kHz at the power of 150 and 320 W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35 kHz at 320 W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization ( Ms) value of the functionalized magnetic hydroxyapatite. The Ms value is found to be much less than that of pure magnetite nanoparticle and this decrement in Ms is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications.

  9. Synthesis, Structural and Spectroscopic Characterization, and Reactivities of Mononuclear Cobalt(III)-Peroxo Complexes

    OpenAIRE

    Cho, Jaeheung; Sarangi, Ritimukta; Kang, Hye Yeon; Lee, Jung Yoon; Kubo, Minoru; Ogura, Takashi; Solomon, Edward I.; Nam, Wonwoo

    2010-01-01

    Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)- peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O2)]+ and [Co(13-TMC)(O2)]+, were synthesized by reacting [Co(12-TMC)(CH3CN)]2+ and [Co(13-TMC)(CH3CN)]2+, respectively, with H2O2 in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized ...

  10. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    International Nuclear Information System (INIS)

    Ngo, Vo Ke Thanh; Huynh, Trong Phat; Nguyen, Dang Giang; Nguyen, Hoang Phuong Uyen; Lam, Quang Vinh; Huynh, Thanh Dat

    2015-01-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO 3 as capping agents. The product was characterized by ultraviolet–visible spectroscopy (UV–vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found. (paper)

  11. Synthesis and characterization of a series of isoniazid hydrazones. Spectroscopic and theoretical study

    Science.gov (United States)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.

    2017-04-01

    A family of hydrazones of isoniazid and a group of hydroxybenzalaldehydes (vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde) were obtained and fully characterized. The results, including theoretical data, are comparatively analyzed along with the already reported hydrazone of o-vanillin. The crystal structures of three compounds were determined. The hydrazones obtained from halogenated aldehydes are isomorphic and chiral to each other. Structures are further stabilized by (pyr)NH+⋯Cl- and OwH⋯Cl- bonds. The vanillin hydrazone shows a conformer that differs from the previously reported. Neighboring molecules are linked to each other through OH⋯N(pyr) bonds, giving rise to a nearly planar polymeric structure. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by DFT. Results are extended to describe the 5-bromovanillin hydrazone. FTIR, NMR and electronic spectra were measured and assigned with the help of computational calculations.

  12. Synthesis, spectroscopic characterization and antibacterial screening of novel Mannich bases of Ganciclovir

    Directory of Open Access Journals (Sweden)

    Sheela Joshi

    2017-02-01

    Full Text Available Biologically active Mannich bases with heteroaromatic ring system of substituted guanine derivative (2-amino-9 [{(1,3 di hydroxy propane-2yl oxy} methyl] 6-9 dihydro-3H-purine-6-one (ganciclovir, have been synthesized via Mannich reaction. The aminomethylation of ganciclovir with various biologically potent sulphonamides was carried out and then characterized by elemental analysis and spectral studies – UV, IR, 1H NMR, powder X-ray diffraction and Scanning Electron Microscopy. The compounds were screened for their antibacterial activity against various pathogenic bacteria at varying concentrations. The antibacterial activity of derived Mannich bases was compared with parent sulphonamides. The toxicity of synthesized Mannich bases was ascertained by LD50 test.

  13. Synthesis, spectroscopic characterization, DFT study and antimicrobial activity of novel alkylaminopyrazole derivatives

    Science.gov (United States)

    Zalaru, Christina; Dumitrascu, Florea; Draghici, Constantin; Tarcomnicu, Isabela; Tatia, Rodica; Moldovan, Lucia; Chifiriuc, Mariana-Carmen; Lazar, Veronica; Marinescu, Maria; Nitulescu, Mihai George; Ferbinteanu, Marilena

    2018-03-01

    A new series of substituted N,N-bis-[(1H-pyrazol-1-yl)methyl]-aminohexadecane Mannich bases were synthesized, characterized by IR, 1H NMR 13C NMR, UV-Vis, MS and elemental analysis, and tested for their biological activity. All the synthesized compounds were tested for in vitro antimicrobial activity against a panel of selected bacterial and fungal strains using erythromycin and clotrimazole as standards. Most of the synthesized compounds demonstrated very good activity at minimum inhibitory concentrations (MICs). Compound 3b with an halogen atom into the pharmacophore structure exhibited the most significant activity against Bacillus subtilis (MIC = 0.007 μgmLL-1) versus erythromycin as standard. In vitro cytotoxicity of the new compounds was studied using MTT assay. The analysis of the test cells showed that the newly synthesized alkylaminopyrazoles derivatives were biocompatible until a concentration of 5 μgmL-1; two compounds presented a high degree of biocompatibility on the studied concentration range.

  14. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones

    Science.gov (United States)

    Miguel, Fábio Balbino; Dantas, Juliana Arantes; Amorim, Stefany; Andrade, Gustavo F. S.; Costa, Luiz Antônio Sodré; Couri, Mara Rubia Costa

    2016-01-01

    In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, 1H and 13C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(Cdbnd S)NH2 and R(Cdbnd O)NH2 species are more stable than the R(Cdbnd NH)SH and R(Cdbnd NH)OH species. Additionally, results found for the 1H NMR shifting, pointed out to which structure is present.

  15. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  16. SYNTHESIS, SPECTROSCOPIC CHARACTERIZATION AND ...

    African Journals Online (AJOL)

    userpc

    ABSTRACT. A tridendatate Schiff base,L, 2-((2-hydroxynaphthalen-1-yl) methyleneamino)benzoic acid was prepared by condensation of 2-aminobenzoic acid with 2-hydroxy-1-naphthaldehyde.The prepared ligand was used to synthesize Sm(III) and Dy(III) complexes [LnL(NO3)2]NO3.2H2O,. (Ln=Sm(III) and Dy(III)).

  17. Synthesis and spectroscopic properties of homo- and ...

    Indian Academy of Sciences (India)

    Unknown

    Mehrotra. Synthesis and spectroscopic properties of homo- and heterobimetallic complexes of oxovanadium(V). † ... Spectroscopic (IR, UV–Vis and (1H, 27Al, 51V) NMR) properties of the new com- plexes have been investigated and their ... refluxed under a fractionating column (10 cm), fol- lowed by continuous azeotropic ...

  18. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    Science.gov (United States)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  19. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent.

    Science.gov (United States)

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2015-01-25

    The vanadyl(IV) adenine complex; [VO(Adn)2]⋅SO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  1. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    Energy Technology Data Exchange (ETDEWEB)

    Soudani, S. [Université de Carthage, Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Ferretti, V. [Department of Chemical and Pharmaceutical Sciences and Center for Structural Diffractometry, via Fossato di Mortara 17, I-44121 Ferrara (Italy); Jelsch, C. [CRM2, CNRS, Institut Jean Barriol, Université de Lorraine, Vandoeuvre les Nancy CEDEX (France); Lefebvre, F. [Laboratoire de Chimie Organométallique de Surface (LCOMS), Ecole Supérieure de Chimie Physique Electronique, 69626 Villeurbanne Cedex (France); Nasr, C. Ben, E-mail: cherif_bennasr@yahoo.fr [Université de Carthage, Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna (Tunisia)

    2016-05-15

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd{sub 4}Cl{sub 10}(C{sub 6}H{sub 14}NO){sub 2}·2H{sub 2}O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl{sub 6} and CdCl{sub 5}O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O–H⋯Cl and O–H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C–H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the H{sub C}⋯Cl and H{sub C}⋯H{sub C} intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The {sup 13}C and {sup 15}N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  2. Synthesis, structural analysis, Hirshfeld surface, spectroscopic characterization and, in vitro, antioxidant activity of a novel organic cyclohexaphosphate

    Science.gov (United States)

    Fezai, Ramzi; Mezni, Ali; Rzaigui, Mohamed

    2018-02-01

    The new hybrid [4-Cl-2-(CH3)C6H3NH3]6P6O18·2H2O was synthesized under normal conditions of temperature and pressure. Single crystal X-ray diffraction study was used to identify its structure. It revealed that this organic cyclohexaphosphate crystallized in the P 1 bar triclinic space group with a = 10.41 (10) Å b = 10.94 (7) Å, c = 15.45 (10) Å, α = 77.37 (8), β = 89.75 (8)°, γ = 61.69 (7)°, V = 1501 (2) Å3 and Z = 1. In the crystal framework, the assembling of the three dimensional (3D) structure is formed by intermolecular hydrogen bonds and Van Der Waals interactions. A spectroscopic characterization was carried out to elucidate the structure (UV-Vis, FTIR, 31P MAS-NMR and fluorescent properties). The thermal stability was studied by TG-DTA diagrams under argon atmosphere. Furthermore, 3-D Hirshfeld surfaces in combination with 2-D fingerprint plots were carried out. This compound was also evaluated for its antioxidant activity; four tests were done, in vitro, 1,1-diphenyl-2-picrylhydrazyl (DPPH•), hydroxyl scavenging ability (OH•), ferric reducing power (FRP) and ferrous ion chelating (FIC) ability, using ascorbic acid as a control.

  3. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  4. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  5. Electrochemical synthesis and spectroscopic characterization of poly(N-phenylpyrrole coatings in an organic medium on iron and platinum electrodes

    Directory of Open Access Journals (Sweden)

    A.K.D. Diaw

    2008-12-01

    Full Text Available The electrochemical synthesis of poly(N-phenylpyrrole film was achieved on pretreated iron and platinum electrodes in acetonitrile solutions containing 0.1 M N-phenylpyrrole as the monomer and 0.1 M tetrabutylammonium trifluoromethane sulfonate (Bu4NCF3SO3 as the supporting-salt. The results showed that a surface treatment by 10 % aqueous nitric acid inhibits iron dissolution without preventing the N-phenylpyrrole oxidation. Very strongly adherent films were obtained at constant-potential, constant-current and cyclic voltammetry. XPS measurements, infrared (FT-IR and electronic absorption (UV-vis spectroscopies were used to characterize the iron and platinum-coated electrodes. Finally the anticorrosion properties of the PΦP film were evidenced.

  6. Synthesis, Spectroscopic and Pharmacological Studies of Bivalent ...

    African Journals Online (AJOL)

    NICO

    Synthesis, Spectroscopic and Pharmacological Studies of. Bivalent Copper, Zinc and Mercury Complexes of Thiourea. Shikha Parmar*, Yatendra Kumar and Ashu Mittal. I.T.S Paramedical College (Pharmacy), Delhi Meerut Road, Muradnagar, Ghaziabad 201206, India. Received 4 June 2010, revised 14 June 2010, ...

  7. Synthesis, Spectroscopic Characterization, and Biological Activities of Metal Complexes of 4-((4-Chlorophenyldiazenyl-2-((p-tolyliminomethylphenol

    Directory of Open Access Journals (Sweden)

    C. Anitha

    2013-01-01

    Full Text Available Azo Schiff base complexes of VO(II, Mn(II, Co(II, Ni(II, Cu(II, and Zn(II have been synthesized from 4-((4-chlorophenyldiazenyl-2-((p-tolyliminomethylphenol (CDTMP. The nature of bonding and the structural features of the complexes have been deduced from elemental analysis, molar conductance, magnetic susceptibility measurements, IR, UV-Vis, 1H-NMR, EPR, mass, SEM, and fluorescence spectral studies. Spectroscopic and other analytical studies reveal square-planar geometry for copper, square-pyramidal geometry for oxovanadium, and octahedral geometry for other complexes. The EPR spectra of copper(II complex in DMSO at 300 K and 77 K were recorded, and its salient features are reported. Antimicrobial studies against several microorganisms indicate that the complexes are more potent bactericides and fungicides than the ligand. The electrochemical behavior of the copper(II complex was studied by cyclic voltammetry. All the synthesized compounds can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic conversion efficiency of the synthesized azo Schiff base was found to be higher than that of urea and KDP (potassium dihydrogen phosphate. SEM image of copper(II complex implies the crystalline state and surface morphology of the complex.

  8. Synthesis, spectroscopic characterization, X-ray structure and evaluation of binding parameters of new triorganotin(IV) dithiocarboxylates with DNA

    NARCIS (Netherlands)

    Rehman, Zia-ur; Shah, Afzal; Muhammad, Niaz; Ali, Saqib; Qureshi, Rumana; Meetsma, Auke; Butler, Ian Sydney

    2009-01-01

    Three new triorganotin(IV) dithiocarboxylates (1-3) with general formula R(3)SnL, where R=C(4)H(9) (1), C(6)H(11) (2), C(6)H(5) (3) and L=4-(4-nitrophenyl)piperazine-1-carbodithioate, have been synthesized and characterized by elemental analysis, Raman, FT-IR, multinuclear NMR ((1)H, (13)C and

  9. Synthesis, spectroscopic characterization and antibacterial studies of lanthanide(III) Schiff base complexes containing N, O donor atoms

    Science.gov (United States)

    Lekha, L.; Raja, K. Kanmani; Rajagopal, G.; Easwaramoorthy, D.

    2014-01-01

    A series of six Ln(III) Schiff base complexes, Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III), were synthesized using sodium salt of Schiff base, 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-3-hydroxy-propionic acid, derived from L-serine and 5-bromosalicylaldehyde. These complexes having general formula [Ln(L)(NO3)2(H2O)]·NO3 were characterized by elemental analysis, conductivity measurements, UV-Vis, FT-IR, mass spectrometry and fluorescence studies. Elemental analysis and conductivity measurements suggest the complexes have a 1:1 stoichiometry. From the spectral studies it has been concluded that Ln(III) complexes display eight coordination. The Schiff base and its Ln(III) metal complexes have also been screened for their antibacterial activities by Agar diffusion method.

  10. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    Science.gov (United States)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  11. Electrochemical synthesis of Poly[3, 4-Propylenedioxythiophene-co-N-Phenylsulfonyl Pyrrole]: Morphological, electrochemical and spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Electroactive random copolymers of 3,4-Propylenedioxythiophene (ProDOT and N-Phenylsulfonyl Pyrrole (PSP were electrochemically synthesized on single carbon fiber microelectrode (SCFME by cyclic voltammetry (CV. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR measurements indicate the inclusion of PSP into the copolymer structure. The influence of feed ratios on the copolymers was studied by CV and electrochemical impedance spectroscopy (EIS and equivalent circuit modelling (ECM. The morphologies and film thicknesses of copolymers were characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. The results have shown that the principal changes in morphology, conductivity, porous nature and thickness of Poly(ProDOT-co-PSP film depend on the concentration of PSP. The strong electron-withdrawing sulfonyl group substitution on PSP significantly inhibited electrochemical copolymerization. Semicircular characteristics at Nyquist plots reflected an increasing trend with the increase of PSP concentration in the feed at high frequency. The semicircular characteristic of the copolymer film is useful for the bioelectrochemical sensor applications.

  12. C2O4(SnPh32 ISOMERS AND SOME OF THEIR ADDUCTS: SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    YAYA SOW

    2015-05-01

    Full Text Available The study of the interactions between C2O4(SnPh32 and a Lewis base (Ph3PO or salts such as Ph4PCl, (Bu2NH22C2O4.3H2O, (Pr2NH22C2O4(Cy2NH22C2O4.2H2O have yielded seven new adducts, infrared and Mossbauer studies which have been carried out. The suggested structures are discrete or of infinite chain type. Most of the structures contain C2O4(SnPh32 with cis coordinated SnPh3 residues characterized for the first time in this work. In Ph3PO containing adducts the Lewis base coordinates a SnPh3 residue. The oxalate behaves as a mo- or bidentate, a mono- or bichelating, a only hydrogen bonds involved ligand. In the structures of the compounds containing a non symmetrical cation, this one is involved in N-H…O hydrogen bonds.

  13. Synthesis and characterization of CdS doped TiO{sub 2} nanocrystalline powder: A spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Priya [Department of Chemistry, University of Pune, Pune 411007 (India); Chadha, Ridhima; Biswas, Nandita; Sarkar, Sisir K.; Mukherjee, Tulsi [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Joshi, Satyawati S., E-mail: ssjoshi@chem.unipune.ac.in [Department of Chemistry, University of Pune, Pune 411007 (India); Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-07-15

    Graphical abstract: Raman spectra of TiO{sub 2} sample doped with 50% CdS and annealed at 600 °C. Highlights: ► Transformation from anatase to rutile is prohibited in doped TiO{sub 2}. ► FTIR study indicates that TiO{sub 2} lattice has been modified in the presence of CdS. ► Raman spectroscopy is found to be more sensitive as compared to XRD. -- Abstract: This report aimed to study the effect of CdS doping in TiO{sub 2} on the phase transformation of TiO{sub 2} from anatase to rutile using X-ray diffraction (XRD) and Raman spectroscopy. CdS-doped TiO{sub 2} nanocomposites have been prepared and characterized using Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). We have observed that contrary to bare TiO{sub 2}, phase transformation of TiO{sub 2} from anatase to rutile is hindered when doped with CdS at high temperature. Raman spectroscopy is found to be more sensitive for detection of the surface of TiO{sub 2} as compared to XRD.

  14. Synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity of 5-hydroxycoumarin derivatives and their copper complexes

    Science.gov (United States)

    Ostrowska, Kinga; Maciejewska, Dorota; Drzewiecka-Antonik, Aleksandra; Klepka, Marcin T.; Wolska, Anna; Dobrzycki, Łukasz; Sztokfisz, Alicja; Czajkowska, Agnieszka; Młynarczuk-Biały, Izabela

    2017-10-01

    We have synthesized a series of bromo derivatives of 5-hydroxycoumarin and two new Cu(II) complexes with 6-acetyl-8-bromo-5-hydroxy-4,7-dimethylcoumarin (L2) and 6-acetyl-3,8-dibromo-5-hydroxy-4,7-dimethylcoumarin (L3) ligands, designed as potential active compounds against human cancer cell lines. The elemental analysis, mass spectroscopy, NMR and infrared spectroscopy have been used for basic characterization of analyzed compounds. The X-ray crystal structure analysis for one representative organic compound, 3,6,8-tribromo-5-hydroxy-4,7-dimethylcoumarin (c) has been performed. It has shown that coumarin system is nearly planar and the Br⋯Br interaction is a very characteristic feature of the molecular association for organic ligands. The complexes, Cu(L2)2·3H2O and Cu(L3)(ClO4)·2.5H2O, have been found as four-coordinated and contain copper in the +2 oxidation state according to X-ray absorption spectroscopy. All the compounds have been screened in vitro for their cytotoxic activity against mouse fibroblast and human prostate cancer cells. The coordination products of brominated ligands have shown to be more active than the free ligands and demonstrate significant in-vitro cytotoxicity against human prostate cancer cells (DU145).

  15. Synthesis, characterization, spectroscopic study and thermal analysis of rare-earth picrate complexes with L-arginine

    International Nuclear Information System (INIS)

    Martins, T.S.; Araujo, A.A.S.; Silva, S.M. da; Matos, J.R.; Isolani, P.C.; Vicentini, G.

    2003-01-01

    Rare-earth picrate complexes with L-arginine were synthesized and characterized. Analysis of carbon, hydrogen, nitrogen and thermal analysis data suggest a general formula Ln(pic) 3 ·2L-Arg·2H 2 O (Ln=La-Lu, Y, pic=picrate, L-Arg=arginine). IR spectra indicate the presence of water molecules and suggest that L-arginine is coordinated to the central ion through the nitrogen of the amine group. Bands due to picrate ions also indicate that at least in part they are coordinated as bidentate through the phenoxo group and one oxygen of an ortho-nitro group. X-ray diffraction powder pattern results indicate that these complexes are very similar in structure. The parameters obtained from the absorption spectrum of the solid Nd compound indicated that the metal-ligand bonds present weak covalent character. The emission spectra of the Eu compound indicate the existence of different europium coordinaton environments. Thermal analyses results indicated that all the compounds present a similar behavior

  16. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents

    Science.gov (United States)

    Rizk, Sameh A.; El-Naggar, Abeer M.; El-Badawy, Azza A.

    2018-03-01

    A series of 5-cyano-2-thiouracil derivatives, containing diverse hydrophobic groups in the 2-, 4- and 6-positions, were synthesized through one pot reaction of thiophene 2-carboxaldehyde, ethylcyanoacetate and thiourea using classic reflux-based method as well as microwave-assisted methods. Such prepared compounds were reacted with different electrophilic reagents to synthesize potent anti-microbial agents, e.g. 1,3,4-thiadiazinopyrimidine, hydrazide and triazolopyrimidine derivatives (compounds 4a-e, 9 and 10-12) respectively. The density functional theory (DFT) was then applied to explore the structural and electronic characteristics of these materials. It is found that compound 12 exhibited the highest antibacterial and antifungal activity against C. Albicans showing six-fold increasing biological affinity compared to that of Colitrimazole drug with MIC values 7.8 and 49 μg/mL, respectively. All the synthesized compounds have been characterized based on their elemental analyses and spectral data. Such compounds can be submitted to in vivo antimicrobial studies in future works.

  17. Simple and Efficient One-Pot Synthesis, Spectroscopic Characterization and Crystal Structure of Methyl 5-(4-Chlorobenzoyloxy-1-phenyl-1H-pyrazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Imtiaz Khan

    2012-07-01

    Full Text Available A facile one-pot synthesis of methyl 5-(4-chlorobenzoyloxy-1-phenyl-1H-pyrazole-3-carboxylate (4 is described. The title compound was efficiently synthesized by the reaction of phenyl hydrazine, dimethyl acetylenedicarboxylate and 4-chlorobenzoyl chloride in dichloromethane under reflux in good yield. The structure of the target compound was deduced by modern spectroscopic and analytical techniques and unequivocally confirmed by a single crystal X-ray diffraction analysis. The crystal of the title compound belongs to orthorhombic system, space group P 21 21 21 with cell parameters a = 6.6491(3 Å, b = 7.9627(6 Å, c = 30.621(5 Å, α = β = γ = 90° and Z = 4. The crystal packing of the compound (4 is stabilized by an offset π-stacking between the planar benzoyl-substituted diazole moieties.

  18. Synthesis and spectroscopic analysis of Schiff Bases of Imesatin ...

    African Journals Online (AJOL)

    Synthesis and spectroscopic analysis of Schiff Bases of Imesatin and Isatin derivatives. Olubunmi S. Oguntoye, Abdulmumeen A. Hamid, Gabriel S. Iloka, Sunday O. Bodede, Samson O. Owalude, Adedibu C. Tella ...

  19. Synthesis, characterization, in silico ADMET prediction, and protein binding analysis of a novel zinc(II) Schiff-base complex: Application of multi-spectroscopic and computational techniques.

    Science.gov (United States)

    Shahraki, Somaye; Shiri, Fereshteh; Saeidifar, Maryam

    2017-06-22

    By reaction of 1,2-diaminocyclohexane with the 2,3-butanedione monoxime in the presence of ZnCl 2 , a new Schiff base complex was obtained. This complex was characterized by elemental analyses, FT-IR, 1 H NMR, UV-Vis, and conductivity measurements. The reactivity of this complex to human serum albumin (HSA) under simulative physiological conditions was studied by spectroscopic and molecular docking analysis. Experimental results at various temperatures indicated that the intrinsic fluorescence of protein was quenched through a static quenching mechanism. The negative value of enthalpy change and positive value of entropy change indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of Zn(II) complex to HSA. FT-IR, three-dimensional fluorescence, and UV-Vis absorption results showed that the secondary structure of HSA changed after Zn(II) complex bound to protein. The binding distance was calculated to be 4.96 nm, according to fluorescence resonance energy transfer. Molecular docking results confirmed the spectroscopic results and showed that above complex is embedded into subdomain IIA of protein. All these experimental and computational results clarified that Zn(II) complex could bind with HSA effectively, which could be a useful guideline for efficient Schiff-base drug design.

  20. Synthesis, characterization and spectroscopic studies of the dihydrobis(1,2,3-benzotriazolylborate anion and its complexes with MCl2·py2

    Directory of Open Access Journals (Sweden)

    KHWAJA S. SIDDIQI

    2006-11-01

    Full Text Available The preparation of sodium dihydrobis(1,2,3-benzotriazolylborate was realised by refluxing one mole of sodium borohydride with two moles of 1,2,3-benzotriazole in toluene over a period of 12 h. Its complexes with MCl2·py2 [whereM=Mn(II, Fe(II, Co(II, Ni(II, Cu(II and py=pyridine] were characterized by elemental analysis as well as magnetic, spectroscopic and conductivity measurements. On the basis of these studies, it is proposed that the geometry of all the complexes is octahedral. The ligand field parameters 10 Dq, B and b show extensive overlap between the M–L orbital. The molar conductance of 10-3 M solutions of the complexes in DMSO suggest them to be non-ionic in nature.

  1. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    The spectroscopic properties of the title compound have beeninvestigated by using IR, UV–Vis and ¹H NMR techniques. The molecular geometry and spectroscopic data of the title compound have been calculated by using the density functional method (B3LYP) invoking 6-311G(d,p) basis set. UV-Vis spectra of the two ...

  2. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    E-mail: a-ahmadi@kiau.ac.ir; ahmadikiau@yahoo.com. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL EVALUATION OF. SOME NOVEL DERIVATIVES OF 2-BROMOMETHYL-BENZIMIDAZOLE. Abbas Ahmadi*. Department of Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University,.

  3. Versatile and green synthesis, spectroscopic characterizations, crystal structure and DFT calculations of 1,2,3‒triazole‒based sulfonamides

    Science.gov (United States)

    Saeidian, Hamid; Sadighian, Hamed; Abdoli, Morteza; Sahandi, Morteza

    2017-03-01

    A green, and practically reliable method for the synthesis of novel 1,2,3‒triazole-based sulfonamides via copper (I)‒catalyzed azide‒alkyne [3 + 2] cycloaddition reaction was reported. The desired products were characterized by CHN analysis, FT-IR, 1H and 13C NMR, ESI-MS spectroscopy, single crystal X-ray diffraction and density functional theory (DFT) geometry optimization and molecular orbital calculations. Mild and green reaction conditions, atom-economic and high yields (61-91%) make this protocol an attractive option for the synthesis of 1,2,3‒triazoles bearing sulfonamide moiety. Geometrical structures, vibrational frequencies, 1H and 13C chemical shift values, Mulliken charge distribution and electrophilicity index (HOMO-LUMO analysis) of the characterized structure of 3f in the ground state have been calculated with the aid of DFT studies. The calculated chemical shifts (NMR) and vibrational frequencies (FT-IR) are in compliance with the experimental findings. The aim of the DFT study was to make a reasonable assignment of vibrational bands and chemical shifts.

  4. Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, and DFT calculations of 1,4-dimethyl-2-oxo-pyrimido[1,2-a]benzimidazole hydrate

    Science.gov (United States)

    El Bakri, Youness; Anouar, El Hassane; Ramli, Youssef; Essassi, El Mokhtar; Mague, Joel T.

    2018-01-01

    Imidazopyrimidine derivatives are organic synthesized compounds with a pyrimido[1,2-a]benzimidazole as basic skeleton. They are known for their various biological properties and as an important class of compounds in medicinal chemistry. A new 1,4-dimethyl-2-oxo-pyrimido[1,2-a]benzimidazole hydrate derivative of the tilted group has been synthesized and characterized by spectroscopic techniques NMR and FT-IR; and by a single crystal X-ray diffraction. The X-ray results showed that the tricyclic core of the title compound, C12H11N3O·H2O, is almost planar. The molecules stack along the a-axis direction in head-to- tail fashion through π-stacking interactions involving all three rings. The stacks are tied together by direct Csbnd H⋯O hydrogen bonds and by Osbnd H⋯O, Osbnd N⋯N and Csbnd H⋯O hydrogen bonds with the lattice water. DFT calculations at B3LYP/6-311++G(d,p) in gas phase an polarizable continuum model have been carried out to predict the spectral and geometrical data of the tilted compound. The obtained results showed relatively good correlations between the predicted and experimental data with correlation coefficients higher than 98%.

  5. Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands

    Science.gov (United States)

    Vyas, Komal M.; Joshi, Rushikesh G.; Jadeja, R. N.; Ratna Prabha, C.; Gupta, Vivek K.

    2011-12-01

    Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.

  6. Synthesis, spectroscopic characterization and structural investigations of a new charge transfer complex of 2,6-diaminopyridine with 3,5-dinitrobenzoic acid: DNA binding and antimicrobial studies

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq; Kumar, Sarvendra

    2013-03-01

    A new charge transfer (CT) complex [(DAPH)+(DNB)-] consisting of 2,6-diaminopyridine (DAP) as donor and 3,5-dinitrobenzoic acid (DNB-H) as acceptor, was synthesized and characterized by FTIR, 1H and 13C NMR, ESI mass spectroscopic and X-ray crystallographic techniques. The hydrogen bonding (N+-H⋯O-) plays an important role to consolidate the cation and anion together. CT complex shows a considerable interaction with Calf thymus DNA. The CT complex was also tested for its antibacterial activity against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and two Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa strains by using Tetracycline as standard, and antifungal property against Aspergillus niger, Candida albicans, and Penicillium sp. by using Nystatin as standard. The results were compared with standard drugs and significant conclusions were obtained. A polymeric net work through H-bonding interactions between neighboring moieties was observed. This has been attributed to the formation of 1:1 type CT complex.

  7. Nondestructive spectroscopic characterization of building materials

    Science.gov (United States)

    Kassu, Aschalew; Walker, Lauren; Sanders, Rachel; Farley, Carlton; Mills, Jonathan; Sharma, Anup

    2017-04-01

    The purpose of this research project is to demonstrate the application of Raman spectroscopy technique for characterization and identification of the distinct Raman signatures of construction materials. The results reported include the spectroscopic characterization of building materials using compact Raman system with 785 nm wavelength laser. The construction materials studied include polyblend sanded grout, fire barrier sealant, acrylic latex caulk plus and white silicone. It is found that, both fire barrier sealant and acrylic latex caulk plus has a prominent Raman band at 1082 cm-1, and three minor Raman signatures located at 275, 706 and 1436 cm-1. On the other hand, sand grout has three major Raman bands at 1265, 1368 and 1455 cm-1, and four minor peaks at 1573, 1683, 1762, and 1868 cm-1. White silicone, which is a widely used sealant material in construction industry, has two major Raman bands at 482 and 703 cm-1, and minor Raman characteristic bands at 783 and 1409 cm-1.

  8. Spectroscopic studies, theoretical models and structural characterization. II. Synthesis and X-ray powder diffraction of the elpasolites Cs2NaSmCl6

    International Nuclear Information System (INIS)

    Poblete, V.; Acevedo, R.

    1998-01-01

    In this research work, we report the synthesis and structural characterization of the stoichiometric elpasolite Cs 2 NaSmCl 6 . The synthesis was performed under a solid state reaction in nitrogen atmosphere from the chemicals CsCl, NaCl and SmCl 3 weighted stoichiometrically. The best possible crystallization temperature was obtained using thermal studies of the type DTA/TGA (the thermal treatment was allowed to proceed for 2.5 hours at 755 Centigrade, showing a temperature gradient of 10 Centigrade/minute). The structural characterization by powder X-ray diffraction (XDR) indicates that this elpasolite belongs to the Fm 3m (O h 5 ) space group and the optimized structural parameters are as follows: a 0 = 10.8342 Armstrong, V 1271.72 Armstrong 3 , Z=4, M=651.88, D x =3.406 y D exp=3.41 ± 0.01. The profile refinement, using the Rietveld method, allowed us to fit the experimental and the calculated intensities of a total of 32 lines. The above result indicates that the condition R exp 2+ + 3Cl -1 and the counter ions filling the octahedral holes, in full agreement with anti fluorite type crystal. According to the above description, these elpasolite adopt the form (M 1/3 □ 2/3 ) 4 X 2 , where M labels the central metal, X stand for the chlorine ions and □ represent the vacancies, which may accommodate a significant amount of defects without collapsing. This experimental study provides the necessary input to test theoretical models against experimental data. (Author)

  9. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    Science.gov (United States)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  10. Expedient and click synthesis, spectroscopic characterizations and DFT calculations of novel 1,5-bis(N-substituted 1,2,3‒triazole) benzodiazepinedione scaffolds

    Science.gov (United States)

    Paghandeh, Hossein; Saeidian, Hamid

    2018-04-01

    A practically reliable procedure for synthesis of new 1,5-bis(N-substituted 1,2,3‒triazole) benzodiazepinedione derivatives was reported by sequential amidation, propargylation and a click azide‒alkyne [3 + 2] cycloaddition reaction in a one pot fashion. The desired products were characterized by CHN analysis, 1H and 13C NMR and ESI-MS spectroscopy. Short reaction time, good yields (55-91%), mild reaction conditions and easily available and less expensive starting materials are advantages of this protocol. Natural bond orbital charge distribution and HOMO-LUMO analysis of the characterized structure of 4e have been also calculated by density functional theory (DFT) calculations. The Li+ and Na+ ion affinities of 4e have been also investigated by DFT studies to find the applicability of these products as ligand in coordination chemistry. Sodium ion affinity of 4e was determined as 60 kJ mol-1 is less than its lithium ion affinity, indicating that the lithiation of 4e is more exothermic than the sodiation.

  11. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand

    Science.gov (United States)

    Shebl, Magdy; Khalil, Saied M. E.; Ahmed, Saleh A.; Medien, Hesham A. A.

    2010-09-01

    Condensation of o-acetoacetylphenol and 1,2-diaminopropane in 1:1 molar ratio under condition of high dilution yielded the mono-condensed dibasic Schiff base ligand with a N 2O 2 donors. The mono-condensed ligand has been used for further condensation with 2-hydroxy-5-nitrobenzaldehyde to obtain the new asymmetrical dicompartmental Schiff base ligand, H 3L, with N 2O 3 donors. The structure of the ligand was elucidated by analytical and spectroscopic tools (IR, 1H and 13C NMR spectra) which indicated that the coordinating sites are oxygen atoms of the phenolic OH groups, nitrogen atoms of the azomethine groups and the oxygen atom of the ketonic group. Reactions of the ligand with metal salts yielded mono- and homo-bi-nuclear complexes formulated as [M(HL)], where M dbnd Co(II), Ni(II) and Cu(II), [Fe(H 2L)Cl 2(H 2O)]ṡ2½H 2O, [Fe 2(HL)(ox)Cl 3(H 2O) 2]ṡ5H 2O, [UO 2(H 2L)(OAc)(H 2O) 2], [VO(H 3L)(SO 4)(H 2O)]ṡH 2O, [M 2(L)Cl(H 2O) 2]ṡ½H 2O, where M dbnd Co(II) and Ni(II) and [Cu(H 2L)Cl]. The mononuclear Ni(II) complex, [Ni(HL)], was used to synthesize homo- and hetero-bi- and tri-nuclear complexes with the molecular formulae [Ni 2(L)Cl(H 2O) 2], [Ni 2(L) 2FeCl(H 2O)]ṡH 2O and [Ni 2(HL) 2CoCl 2]. The structures of the complexes were characterized by various techniques such as elemental and thermal analyses, IR, 1H and 13C NMR, mass and electronic spectra as well as conductivity and magnetic moment measurements. Square-planar and octahedral geometries are suggested for the Cu(II), Co(II) and Ni(II) complexes, octahedral geometry for the Fe(III) and VO 2+ complexes while uranium(VI) ion is octa-coordinated in its complex. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli) and fungi ( Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active.

  12. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    Science.gov (United States)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  13. Synthesis and spectroscopic and structural characterization of the monomeric diborylphosphine and diphosphinoborane compounds PhP(BMes2)2 and MesB(PPh2)2 (Mes = 2,4,6-Me3C6H2)

    International Nuclear Information System (INIS)

    Bartlett, R.A.; Dias, H.V.R.; Power, P.P.

    1988-01-01

    The synthesis and spectroscopic and first x-ray structural characterization of a diborylphosphine, PhP(BMes 2 ) 2 (1), and a diphosphinoborane, MesB(PPh 2 ) 2 (2), are described. The structure of 1 has a planar core that involves the phosphorus and two boron atoms and also the five substituent carbons. In addition, the B-P bond lengths are shortened, which suggests a close structural analogy between 1 and the allyl cation. In the case of 2, although the boron remains planar, both phosphorus centers are pyramidal with slightly longer B-P bonds than in 1. Both 1 and 2 are the first examples of their respective classes of compound to be well characterized. Crystal data with Mo Kα radiation (λ = 0.71069 /angstrom/) at 130 K are as follows. 1: a = 14.302 (4) /angstrom/, b = 15.701 (3) /angstrom/, c = 16.601 (6) /angstrom/, β = 109.61 (2)/degrees/; monoclinic, space group C2/c, Z = 4, R = 0.059. 2: a = 7.815 (2) /angstrom/, b = 8.723 (2) /angstrom/, c = 40.147 (10) /angstrom/, β = 94.90 (2)/degrees/; monoclinic, space group P2 1 /n, Z = 4, R = 0.041. A listing of available 11 B and 31 P NMR data on compounds involving triply connected boron and phosphorus centers is also provided and discussed in the context of the data for 1 and 2. 25 references, 2 figures, 4 tables

  14. Spectroscopic characterization of alkaline earth uranyl carbonates

    International Nuclear Information System (INIS)

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-01-01

    A series of alkaline uranyl carbonates, M[UO 2 (CO 3 ) 3 ].nH 2 O (M=Mg 2 , Ca 2 , Sr 2 , Ba 2 , Na 2 Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2 [UO 2 (CO 3 ) 3 ].6H 2 O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2 )(CO 3 ) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90+/-0.02A.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces

  15. Spectroscopic Characterization of Omeprazole and Its Salts

    Directory of Open Access Journals (Sweden)

    Tomislav Vrbanec

    2017-01-01

    Full Text Available During drug development, it is important to have a suitable crystalline form of the active pharmaceutical ingredient (API. Mostly, the basic options originate in the form of free base, acid, or salt. Substances that are stable only within a certain pH range are a challenge for the formulation. For the prazoles, which are known to be sensitive to degradation in an acid environment, the formulation is stabilized with alkaline additives or with the application of API formulated as basic salts. Therefore, preparation and characterization of basic salts are needed to monitor any possible salinization of free molecules. We synthesized salts of omeprazole from the group of alkali metals (Li, Na, and K and alkaline earth metals (Mg, Ca. The purpose of the presented work is to demonstrate the applicability of vibrational spectroscopy to discriminate between the OMP and OMP-salt molecules. For this reason, the physicochemical properties of 5 salts were probed using infrared and Raman spectroscopy, NMR, TG, DSC, and theoretical calculation of vibrational frequencies. We found out that vibrational spectroscopy serves as an applicable spectroscopic tool which enables an accurate, quick, and nondestructive way to determine the characteristic of OMP and its salts.

  16. Organometallic indolo[3,2-c]quinolines versus indolo[3,2-d]benzazepines: synthesis, structural and spectroscopic characterization, and biological efficacy

    Science.gov (United States)

    Filak, Lukas K.; Mühlgassner, Gerhard; Jakupec, Michael A.; Heffeter, Petra; Berger, Walter; Keppler, Bernhard K.

    2010-01-01

    The synthesis of ruthenium(II) and osmium(II) arene complexes with the closely related indolo[3,2-c]quinolines N-(11H-indolo[3,2-c]quinolin-6-yl)-ethane-1,2-diamine (L1) and N′-(11H-indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine (L2) and indolo[3,2-d]benzazepines N-(7,12-dihydroindolo-[3,2-d][1]benzazepin-6-yl)-ethane-1,2-diamine (L3) and N′-(7,12-dihydroindolo-[3,2-d][1]benzazepin-6-yl)-N,N-dimethylethane-1,2-diamine (L4) of the general formulas [(η6-p-cymene)MII(L1)Cl]Cl, where M is Ru (4) and Os (6), [(η6-p-cymene)MII(L2)Cl]Cl, where M is Ru (5) and Os (7), [(η6-p-cymene)MII(L3)Cl]Cl, where M is Ru (8) and Os (10), and [(η6-p-cymene)MII(L4)Cl]Cl, where M is Ru (9) and Os (11), is reported. The compounds have been comprehensively characterized by elemental analysis, electrospray ionization mass spectrometry, spectroscopy (IR, UV–vis, and NMR), and X-ray crystallography (L1·HCl, 4·H2O, 5, and 9·2.5H2O). Structure–activity relationships with regard to cytotoxicity and cell cycle effects in human cancer cells as well as cyclin-dependent kinase (cdk) inhibition and DNA intercalation in cell-free settings have been established. The metal-free indolo[3,2-c]quinolines inhibit cancer cell growth in vitro, with IC50 values in the high nanomolar range, whereas those of the related indolo[3,2-d]benzazepines are in the low micromolar range. In cell-free experiments, these classes of compounds inhibit the activity of cdk2/cyclin E, but the much higher cytotoxicity and stronger cell cycle effects of indoloquinolines L1 and 7 are not paralleled by a substantially higher kinase inhibition compared with indolobenzazepines L4 and 11, arguing for additional targets and molecular effects, such as intercalation into DNA. Electronic supplementary material The online version of this article (doi:10.1007/s00775-010-0653-y) contains supplementary material, which is available to authorized users. PMID:20369265

  17. A Facile Route to the non-IPR Fullerene Sc3N@C68: Synthesis, Spectroscopic Characterization and DFT Computations

    Czech Academy of Sciences Publication Activity Database

    Yang, S.; Kalbáč, Martin; Popov, A.; Dunsch, L.

    2006-01-01

    Roč. 12, č. 29 (2006), s. 7856-7863 ISSN 0947-6539 Grant - others: Volkswagen Foundation(DE) I-77/855 Institutional research plan: CEZ:AV0Z40400503 Keywords : synthesis * spectroscopy * DFT calculation Subject RIV: CG - Electrochemistry Impact factor: 5.015, year: 2006

  18. Synthesis, spectroscopic, electrochemical and luminescence studies ...

    Indian Academy of Sciences (India)

    hydrazino-5-mercapto-1,2,4-triazole (LH2) as co-ligand were synthesised and characterized by elemental analysis, IR, UV/Vis, 1H NMR spectra and FAB-mass data. The electrochemical and luminescent properties of the complexes were also ...

  19. Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential

    Science.gov (United States)

    Kuppurangan, Gunaseelan; Karuppasamy, Balaji; Nagarajan, Kanipandian; Krishnasamy Sekar, Rajkumar; Viswaprakash, Nilmini; Ramasamy, Thirumurugan

    2016-10-01

    Natural synthesis of metal nanoparticles is gaining more attention in recent years. This article demonstrates the phytochemical synthesis of silver nanoparticles (AgNPs) by using Indoneesiella echioides (L) leaf extract as a reducing and stabilizing agent. Biosynthesis of AgNPs was monitored by UV-visible spectroscopy which revealed intense surface plasmon resonance bands at 420 nm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction were employed to identify various functional groups and crystalline nature of AgNPs. High-resolution transmission electron microscopy studies demonstrated that synthesized particles were spherical with average size of ~29 nm. In vitro antioxidant effects were analyzed by 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), which exhibited 69 and 71 % of scavenging activity, respectively. The antimicrobial activity of green AgNPs displayed better zone of inhibition against selected human pathogens. The present study also investigated the toxicity effect of biogenic AgNPs against human lung adenocarcinoma cancer cells (A549) and normal human epithelial cells (HBL-100) in vitro, and the inhibitory concentrations (IC50) were found to be 30 and 60 µg/mL, respectively. Herein, we propose a previously unexplored medicinal plant for the biological synthesis of AgNPs with potent biomedical applications.

  20. Synthesis and Characterization of a Novel Ligand and Spectroscopic Study of the Formation of its Complexes with Different Cations and Their Sensory Characteristics

    Science.gov (United States)

    Shariati-Rad, M.; Karimi, M.; Rezaeivala, M.

    2018-01-01

    A new ligand (L), N,N'-bis(2-hydroxybenzyl)-1,2-diaminoethane, was synthesized and characterized. The sensing behavior of L toward various metal ions was investigated by spectrofluorometric and UV-Vis spectrophotometric methods. The sensor displayed selective and sensitive recognition toward Fe3+ and Fe2+ in acetonitrile. The fluorescence of L was quenched mainly by Fe3+, and a considerable enhancement of fluorescence was observed in the presence of Zn2+. Using multivariate hard modeling and stoichiometry, the concentration, spectral profiles, and formation constants of the studied complexes were calculated.

  1. SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY Zn2+, Cu2+ ...

    African Journals Online (AJOL)

    The work extended to synthesis the Zn2+, Ni2+, Cu2+, Co2+, Mn2+, Ru3+, Fe3+,. VO2+ and UO2. 2+ complexes with the prepared ligand to evaluate the effect of azo group on the microbicides activities of the prepared compounds. All compounds were characterized by spectroscopic and analytical tools like elemental and ...

  2. Synthesis, structural characterization and biological activity of a ...

    Indian Academy of Sciences (India)

    3.1 Synthesis and formulation. Schiff base ligand H2L was synthesized by 1:1 conden- sation of O-aminophenol and O-vanillin in dehydrated alcohol. 1 was prepared using reaction among Zn(II) salt and the ligand in methanol. Coordination geo- metry of 1 was determined by different spectroscopic characterization.

  3. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  4. First Synthesis of a Binuclear [Mn(II)(bipy)-Fe(III)(porphyrin)] Complex: Spectroscopic Characterization and First Evidence of Reversible Formation of Manganese(III) as Manganese Peroxidase.

    Science.gov (United States)

    Policar, Clotilde; Artaud, Isabelle; Mansuy, Daniel

    1996-01-03

    A [(P)Fe(III)-Mn(II)] bimetallic complex, mimicking the active site of manganese peroxidase, has been synthesized. A modified highly fluorinated porphyrin, 5,10,15-tris(pentafluorophenyl)-20-(o-aminophenyl)porphyrin, has been used to introduce, through a short spacer linked to the amino function, a manganese auxiliary ligand, 6-aminomethyl-2,2'-bipyridine. Two successive metalations by FeCl(2) and MnCl(2) afforded the [(P)Fe(III)-Mn(II)] bimetallic complex that has been characterized by elemental analysis and FAB(+) mass spectrometry. X-band EPR spectroscopy and magnetic susceptibility measurements were in agreement with two high spin Fe(III) and Mn(II) centers without magnetic exchange interaction. Moreover, there is no higher intermolecular association through &mgr;-chloro bridging as observed by EPR with a simpler chloromanganese complex, Mn(bipy)(2)Cl(2), at high concentration. Addition of pentafluoroiodosobenzene in methanol at 0 degrees C led to the progressive and complete disappearance of the EPR Mn(II) signals, that were recovered after addition of a phenol. This result is consistent with Mn(III) formation. This production of Mn(III) requires the presence of the iron porphyrin and is proposed to occur through the intermediate formation of a Fe(IV) dimethoxide species which can be related to the oxidation of Mn(II) catalyzed by manganese peroxidase compound II.

  5. New transition metal complexes of 2,4-dihydroxybenzaldehyde benzoylhydrazone Schiff base (H2dhbh): Synthesis, spectroscopic characterization, DNA binding/cleavage and antioxidant activity

    Science.gov (United States)

    Aboafia, Seyada A.; Elsayed, Shadia A.; El-Sayed, Ahmed K. A.; El-Hendawy, Ahmed M.

    2018-04-01

    New complexes [VO2(Hdhbh)] (1), [VO(phen)(dhbh)].1.5H2O (2), [Zn(Hdhbh)2] (3), [MoO2(dhbh)(D)] (D = H2O (4) or MeOH (5)), [Ru(PPh3)(dhbh)Cl(H2O)] (6), and [Pd(Hdhbh)Cl]·H2O (7) (H2dhbh = Schiff base derived from 2,4-dihydroxybenzaldehyde and benzoylhydrazone) have been isolated and characterized by IR, 1H NMR, Mass, UV-Visible and ESR spectroscopy. They were also investigated by cyclic voltammetry, thermal and magnetic measurements and the structure of complex cis-[MoO2(dhbh)(H2O)] (4) was solved by X-ray crystallography. Analytical data showed that H2dhbh behaves as monobasic/or dibasic tridentate ligand via phenolate O, azomethine N and amide O/or deprotonated amide O atoms. Antioxidant activity of the complexes has been evaluated against DPPH (2,2-diphenyl-1-picrylhydrazyl) radical and it has been found that oxovandium (IV) complex (2) displays the highest radical scavenging potency comparable to ascorbic acid as a standard antioxidant. The DNA binding properties of the ligand and its complexes have been investigated by electronic spectroscopy together with DNA cleavage by gel electrophoresis whose results showed also that vanadium (IV) complex (2) has a significant oxidative cleavage among other complexes.

  6. Synthesis, crystal structure, Hirshfeld surface analysis, spectroscopic characterization, reactivity study by DFT and MD approaches and molecular docking study of a novel chalcone derivative

    Science.gov (United States)

    Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-05-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in monoclinic crystal system in P21/c space group, unit cell parameters a = 16.7629 (12) Å, b = 13.9681 (10) Å, c = 5.8740 (4) Å, β = 96.3860 (12)° and Z = 4. Hirshfeld surface analysis revealed that the molecular structure is dominated by H⋯H, C⋯H/H⋯C, Br⋯F/F⋯Br and F⋯F contacts. The FT-IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. Average local ionization energies (ALIE) and Fukui functions have been used as quantum-molecular descriptors to locate the molecule sites that could be of importance from the aspect of reactivity. Degradation properties have been assessed by calculations of bond dissociation energies (BDE) for hydrogen abstraction and the rest of the single acyclic bonds, while molecular dynamics (MD) simulations were used in order to calculate radial distribution functions and determine the atoms with significant interactions with water. In order to understand how the title molecule inhibits and hence increases the catalytic efficiency of MOA-B enzyme, molecular docking study was performed.

  7. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synthesis, spectroscopic characterization, antimicrobial and antitumor studies of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand derived from o-acetoacetylphenol

    Science.gov (United States)

    Adly, Omima M. I.; Shebl, Magdy; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.

    2017-12-01

    New mono-, bi- and trinuclear metal complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(VI) with a new Schiff base ligand H3L; ((E)-2-hydroxy-N‧-(4-(2-hydroxyphenyl)-4-oxobutan-2-ylidene)) benzohydrazide (H3L) have been synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The metal complexes exhibited octahedral and tetrahedral geometrical arrangements. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. Structural parameters of the synthesized compounds were calculated on the basis of DFT level implemented in the Gaussian 09 program and Hyperchem 7.52 and correlated with the experimental data. The antimicrobial activity of the present compounds was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.

  9. Synthesis, spectroscopic characterization, DFT calculations and biological evaluation of benzothiazole derivative bearing Mn(II) and Ni(II) metal ions

    Science.gov (United States)

    El-Gamel, Nadia E. A.; Ali, Korany A.

    2017-11-01

    N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide ligand and its Nickel and Manganese complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance, mass and UV-Vis spectra, molar conductance and magnetic moment measurements. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method. N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide is a neutral bidentate ligand coordinating metal ions via thiazole ring nitrogen and amide carbonyl O forming high spin octahedral complexes with Mn(II) (2) and distorted square planar in case of Ni(II) (1). Natural bond orbital analysis and geometry optimization were carried out at DFT/B3LYP/6-31G(d) level of theory for the ligand and the mentioned complexes. Ab inito computations at the HF/6-31G(d) level of the theory is conducted in order to detect any probability of a hydrogen bond formation in the ligand. The dipole moment of the Ni(II) and Mn(II) complexes is recorded to be 9.69 and 7.39 Debye, respectively, indicating that the complexes are more polarized than the ligand 2.39 Debye. The in vitro biological activity of the metal chelates is screened against the Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), fungus (Aspergillus flavus, Candida albicans). Ni(II) complexes displayed the highest activity against Candida albicans and Staphylococcus aureus with MIC values of 13, 30 μg/cm3, respectively.

  10. Osmium(III) analogues of KP1019: Electrochemical and chemical synthesis, spectroscopic characterization, x-ray crystallography, hydrolytic stability, and antiproliferative activity

    KAUST Repository

    Kuhn, Paul-Steffen

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[OsIVCl4(Hazole)2], where Hazole = 1H-pyrazole ([1]0), 2H-indazole ([2]0), 1H-imidazole ([3]0), and 1H-benzimidazole ([4]0), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-OsIIICl4(Hazole)2], where cation = H2pz+ (H2pz[1]), H2ind+ (H2ind[2]), H2im+ (H2im[3]), Ph4P+ (Ph4P[3]), nBu4N+ (nBu4N[3]), H2bzim+ (H2bzim[4]), Ph4P+ (Ph4P[4]), and nBu4N+ (nBu4N[4]). All complexes were characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1]- and [4]- are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5′-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3]. (Chemical Equation Presented).

  11. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity

    Science.gov (United States)

    Mohamed, Gehad G.; Soliman, Madiha H.

    2010-08-01

    Sulpiride (SPR; L) is a substituted benzamide antipsychotic which is reported to be a selective antagonist of central dopamine receptors and claimed to have mood-elevating properties. The ligation behaviour of SPR drug is studied in order to give an idea about its potentiality towards some transition metals in vitro systems. Metal complexes of SPR have been synthesized by reaction with different metal chlorides. The metal complexes of SPR with the formula [MCl 2(L) 2(H 2O) 2]· nH 2O [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); n = 0-2] and [FeCl 2(HL)(H 2O) 3]Cl·H 2O have been synthesized and characterized using elemental analysis (CHN), electronic (infrared, solid reflectance and 1H NMR spectra) and thermal analyses (TG and DTA). The molar conductance data reveal that the bivalent metal chelates are non-electrolytes while Fe(III) complex is 1:1 electrolyte. IR spectra show that SPR is coordinated to the metal ions in a neutral monodentate manner with the amide O. From the magnetic and solid reflectance spectra, octahedral geometry is suggested. The thermal decomposition processes of these complexes were discussed. The correlation coefficient, the activation energies, E*, the pre-exponential factor, A, and the entropies, Δ S*, enthalpies, Δ H*, Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves. The synthesized ligand and its metal complexes were also screened for their antibacterial and antifungal activity against bacterial species ( Escherichia coli and Staphylococcus aureus) and fungi ( Aspergillus flavus and Candida albicans). The activity data show that the metal complexes are found to have antibacterial and antifungal activity than the parent drug and less than the standard.

  12. Synthesis, spectroscopic characterization and biological activities of ...

    African Journals Online (AJOL)

    The elemental and spectral analysis show that ligand coordinate to the central lanthanide(III)ion by its imine nitrogen, phenolic oxygen and carboxylic oxygen in 1:1 stoichemetry. The complexes were found to be electrolytic in nature on basis of ...

  13. Synthesis, crystal structures, spectroscopic characterization and in ...

    Indian Academy of Sciences (India)

    Diabetes mellitus is an endocrine disorder, which causes 9% of deaths worldwide. A survey reported that diabetes mellitus is affecting 10% of the population every year in developing countries.1 WHO predicted that the morbidity and mortality rate is increasing rapidly due to diabetes.2 To prevent this death rate many.

  14. electrochemical synthesis and spectroscopic characterization of poly ...

    African Journals Online (AJOL)

    a

    on Pt and Fe electrodes in an aqueous micellar medium containing sodium dodecylsulfate and. 10-3 M bithiophene (BT) ... phenylpyrrole) electrosynthesized on Pt, in organic and micellar media. However, to the .... the iron oxides and/or hydroxides formed because of the presence of residual amounts of water in acetonitrile ...

  15. Synthesis, spectroscopic and structural characterization of new ...

    Indian Academy of Sciences (India)

    CH complexes, [{RC6H4CO{(C6H5)3P}CH}2Ag(NO3)], (R = CH3 (C1), Br (C2), Cl (C3), NO2 (C4) and OCH3 (C5)), which contain one NO3 and two phosphorus ylides coordinated via the ylidic carbon atom. The silver complexes were ...

  16. Synthesis, crystal structures, spectroscopic characterization and in ...

    Indian Academy of Sciences (India)

    that the morbidity and mortality rate is increasing rapidly due to diabetes.2 To prevent this death rate many ... elling and biological studies.11 Until now, amino acid. Schiff base copper(II) complexes containing .... In vitro antidiabetic activity of amino acid based Cu(II) complexes. 1097 information. Mercury 3.7 version was ...

  17. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.

    Science.gov (United States)

    Khani, Omid; Rajabi, Hamid Reza; Yousefi, Mohammad Hasan; Khosravi, Ali Azam; Jannesari, Mohammad; Shamsipur, Mojtaba

    2011-07-01

    This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k

  18. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four ...

  19. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione

    Science.gov (United States)

    Avdović, Edina H.; Milenković, Dejan; Dimitrić Marković, Jasmina M.; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D.; Jevtić, Verica V.; Trifunović, Srećko R.; Potočňák, Ivan; Marković, Zoran

    2018-04-01

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.

  20. Spectroscopic characterizations of organic/inorganic nanocomposites

    Science.gov (United States)

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  1. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  2. Preliminary spectroscopic characterization of PEGylated mucin, a ...

    African Journals Online (AJOL)

    The matrices were characterized with respect to compatibility using the Fourier transform infrared (FT-IR) spectroscopy. Results of the qualitative tests performed on the snail mucin showed that carbohydrates, proteins and trace amounts of fats were present; the extracted mucin was light-brownish in colour, with a pleasant ...

  3. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: characterization, spectroscopic and isothermal titration calorimetry measurements of M2+ binding and sensing (M2+=Ca2+, Mg2+).

    Science.gov (United States)

    Dixit, Namrata; Mishra, Lallan; Mustafi, Sourajit M; Chary, Kandala V R; Houjou, Hirohiko

    2009-07-01

    Bis-[methylsalicylidine-4'benzoic acid]-ethylene (LH2) complexed with cis-Ru(bpy)2Cl(2).2H2O provides a complex of composition [Ru(bpy)2L].2NH4PF6 (1), which has been characterized spectroscopically. Its binding behaviour towards Mg2+ and Ca2+ ions is monitored using 1H NMR titration, isothermal titration calorimetry (ITC) and luminescence microscopy. The luminescent ruthenium complex binds Ca2+ in a more selective manner as compared to Mg2+.

  4. Opto-nanomechanical spectroscopic material characterization

    Science.gov (United States)

    Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.; Davison, B. H.

    2015-10-01

    The non-destructive, simultaneous chemical and physical characterization of materials at the nanoscale is an essential and highly sought-after capability. However, a combination of limitations imposed by Abbe diffraction, diffuse scattering, unknown subsurface, electromagnetic fluctuations and Brownian noise, for example, have made achieving this goal challenging. Here, we report a hybrid approach for nanoscale material characterization based on generalized nanomechanical force microscopy in conjunction with infrared photoacoustic spectroscopy. As an application, we tackle the outstanding problem of spatially and spectrally resolving plant cell walls. Nanoscale characterization of plant cell walls and the effect of complex phenotype treatments on biomass are challenging but necessary in the search for sustainable and renewable bioenergy. We present results that reveal both the morphological and compositional substructures of the cell walls. The measured biomolecular traits are in agreement with the lower-resolution chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. These results should prove relevant in other fields such as cancer research, nanotoxicity, and energy storage and production, where morphological, chemical and subsurface studies of nanocomposites, nanoparticle uptake by cells and nanoscale quality control are in demand.

  5. Spectroscopic characterization of matrix isolated transient species

    Science.gov (United States)

    Lue, Christopher J.

    short lived fluorescence was assigned to UCl 4, and the long-lived fluorescence was assigned to UOCl x. A low resolution map for the electronic levels in UOCl x was created. One of the first LIF studies of actinide containing molecules was performed by Grzybowski and Andrews[1] for UF6. While, the same group later recorded IR spectra for the UFx fragements[2], no fluorescence spectra were recorded. Spectra were recorded here of UF x fragments trapped in solid formed by either passing UF 6 through a microwave discharge or ablating U atoms into an F2 /Ar mixture. At the time of these experiments, the IR spectrometer was not available, and the molecules producing the fluorescence could not be deduced solely from the LIF spectra. A comparison with previous IR spectra[2] gave some indication of possible candidates. In all the experiments that investigated uranium containing matrices with IR spectroscopy, UN2 was observed. A search was undertaken to observe fluorescence from UN2. To insure a good yield of UN 2, 1% N2 was added to the carrier gas. The fluorescence spectra observed in these experiments was very intriguing, but was determined not to be coming from UN2, rather it appears to be coming from U atom clusters. However further experiments are necessary to confirm how many atoms are in the clusters. The final part of this thesis focuses on the electronic spectra of Xe-OH isolated solid Ar. Rare gas radical systems (Rg-X) such as Rg-OH are a good model system for studying weak, long range intermolecular interactions. It is known that when Rg=Xe, the strength of the interaction is much larger. For most Rg-OH complexes, the spectroscopic constants have been determined previously[3]. However, the constants for Xe-OH ares currently undetermined. Gas-phase studies were undertaken to determined these constants.[4] However, these experiments were in conflict with previous LIF spectra recorded in a matrix in which Goodman and Brus[5] observed that the A → X emission band for

  6. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    C−H⋅⋅⋅O bonds leading to an intricate hydrogen bonding network. Keywords. Synthesis .... in the refinement riding on their respective parent atoms. ..... nent peaks at 326 and 255 nm which can be assigned to transitions of the intramolecularly hydrogen-bon- ded salicylidenimino chromophore. Cotton effects of negative ...

  7. Spectroscopic characterization of Antarctic marine aerosol

    Science.gov (United States)

    Paglione, Marco; Zanca, Nicola; Rinaldi, Matteo; Dall'osto, Manuel; Simo, Rafel; Facchini, Maria Cristina; Decesari, Stefano

    2017-04-01

    Marine aerosol constitutes an important and not thoroughly investigated natural aerosol system. In particular, the poor knowledge of the physical-chemical properties of primary (sea-spray) and secondary particles, especially over biologically active seawaters, affects the current capability of modeling the effect of marine aerosol on climate (O'Dowd et al., 2004). In polar regions, surface seawater composition and its exchanges with the atmosphere is complicated also by the presence of sea-ice and of the variety of micro-organisms (viruses, prokaryotes and microalgae) living within it (Levasseur,2013). In the framework of the Spanish project PEGASO (Plankton-derived Emission of Gases and Aerosols in the Southern Ocean) submicron aerosol samples were collected during a 6 weeks long oceanographic cruise (2nd January 2015 - 11th February 2015) conducted in the regions of Antarctic Peninsula, South Orkney and South Georgia Islands, an area of the Southern Ocean characterized every summer by both large patches of productive waters (phytoplankton blooms) and sea-ice cover. The collected samples were analyzed by means of proton-Nuclear Magnetic Resonance (H-NMR) spectroscopy with aim of organic compounds characterization in terms of functional groups and specific molecular tracers identification (Decesari et al., 2011). H-NMR spectral features resulted quite variable among the different samples both in terms of relative abundance of main functional groups and in terms of presence of specific compounds. In all the samples were found biogenic markers, like low-molecular-weight alkyl-amines and methanesulphonate (MSA), of secondary origin (formed by the condensation of vapors onto particles). Resonance signals of other aliphatic compounds of possible primary origin, like lipids, aminoacids (e.g. alanine) and sugars (e.g. sucrose) are present in variable concentrations in the samples. A hierarchical cluster analysis applied on the NMR spectra allowed to identify similarities

  8. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  9. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA HAQ NAWAZ SHEIKH. Volume 39 Issue 4 August 2016 pp 943-952 ...

  10. SHORT COMMUNICATION SYNTHESIS, CHARACTERIZATION ...

    African Journals Online (AJOL)

    Preferred Customer

    oxazine-. 2-ol methyl-2,3-diphenyl-2H-1,4-oxazine-2-ol (2). Characterization was performed using elemental analysis, UV-Vis and 1HNMR spectroscopy. The structure of this oxazine compound was determined by X-ray crystallography, and we ...

  11. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    Science.gov (United States)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has

  12. Synthesis and Characterization of Pyridine Functionalized ...

    African Journals Online (AJOL)

    picolyl) imidazolium salts (1). Treatment of the synthesized imidazolium salt with silver(I) oxide resulted in the formation of bis NHC silver(I) complex (2). The compound was characterized spectroscopically (NMR, mass spectrometry), by elemental ...

  13. Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...

    Indian Academy of Sciences (India)

    L1) identifies its molecular structure and reveals π-π stacking. The synthetic mechanisms for L2, L3 were studied by density functional theory calculations. And a comprehensive study of spectroscopic properties involving experimental data and ...

  14. Spectroscopic characterization of uranium in evaporation basin sediments

    Science.gov (United States)

    Duff, M. C.; Morris, D. E.; Hunter, D. B.; Bertsch, P. M.

    2000-05-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the containment of irrigation drainage waters contain elevated levels of uranium (U) resulting from the extensive leaching by carbonate-rich irrigation waters of the local agricultural soils that contain low levels of naturally-occurring U. The SJV ponds are subjected to changes in redox chemistry with cycles of drying and flooding. Our past studies have shown that U in the SJV Pond 14 surface sediments is present as mostly the oxidized and soluble form, U(VI). However, we were uncertain whether the U in the soil was only present as a U oxide of mixed stoichiometry, such as U 3O 8(s) (pitchblende) or other species. Here we present characterization information, which includes wet chemical and in situ spectroscopic techniques (X-ray absorption near-edge structure (XANES) and low temperature time-resolved luminescence spectroscopies) for samples from two SJV Pond sediments. Surface sediments from SJV Pond 16 were characterized for average oxidation state of U with XANES spectroscopy. The fraction of U(VI) to U(IV) in the Pond 16 sediments decreased with depth with U(IV) being the dominant oxidation state in the 5 cm to 15 cm depth. Two luminescent U(VI) species were identified in the surface sediments from Pond 14; a U(VI)-tricarbonate phase and another phase likely comprised of U(VI)-hydroxide or hydroxycarbonate. The luminescent U(VI) population in the Pond 16 sediments is dominated by species with comparable spectral characteristics to the U(VI)-hydroxide or hydroxycarbonate species found in the Pond 14 sediments. The luminescence spectroscopic results were complemented by wet chemical U leaching methods, which involved the use of carbonate and sulfuric acid solutions and oxidizing solutions of peroxide, hypochlorite and Mn(IV). Leaching was shown to decrease the total U concentration in the sediments in all cases. However, results from luminescence studies of the residual fraction in the leached

  15. Ionothermal synthesis and structural characterization of [Cu ...

    Indian Academy of Sciences (India)

    bSchool of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Shida Road Limin development Zone, Harbin 150025, P. R. China e-mail: caiqinghai@yahoo.com. MS received 29 December 2014; revised 2 April 2015; accepted 3 April 2015. Abstract. The ionothermal synthesis and spectroscopic, thermal ...

  16. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    Science.gov (United States)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  17. Synthesis, Characterization, and Biological Activity of Nickel (II) and Palladium (II) Complex with Pyrrolidine Dithiocarbamate (PDTC)

    OpenAIRE

    Sk Imadul Islam; Suvendu Bikash Das; Sutapa Chakrabarty; Sudeshna Hazra; Akhil Pandey; Animesh Patra

    2016-01-01

    The synthesis of square planar Ni(II) and Pd(II) complexes with pyrrolidine dithiocarbamate (PDTC) was characterized by elemental, physiochemical, and spectroscopic methods. Two complexes were prepared by the reaction of nickel acetate and palladium acetate with pyrrolidine dithiocarbamate (PDTC) in 1 : 2 molar ratio. The bovine serum albumin (BSA) interaction with complexes was examined by absorption and fluorescence spectroscopic techniques at pH 7.4. All the spectral data suggest that coor...

  18. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  19. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  20. Spectroscopic characterization of novel fluorescent lipid membrane probes

    International Nuclear Information System (INIS)

    Knapp, M.

    2001-11-01

    The aim of this thesis was the spectroscopic characterization of new, so far not described fluorescence markers which incorporate into ordered systems and provide information about their structure, the phase transition and aggregation. Bianthryl, Anthracen and Coumarin 6 were incorporated into liposomes formed from Lecithine, DMPC or DPPC as well as β-Cyclodextrin. The systems were characterized by means of classical-spectroscopic methods, laser-induced fluorescence and fluorescence correlation spectroscopy (FCS). Because of the prospective phyto-physical characteristics of bianthryl, i.e. the formation of a charge-separated electronic exited state this probe is particularly suitable to detect small changes of micro viscosity and local polarity of liposomes. Due to three clearly separated fluorescence lifetimes of the excited singlet state, measured for Bianthryl, three specific sites of this molecule within the phospholipid membrane were proven. Coumarin 6 incorporates likewise very well in Liposomes. The thermotrope phase transition at temperature 24,5 o C is well provable by the change of the anisotropy of fluorescence of this laser dye. By time-resolved anisotropy measurements the dynamics (rotation) was proven with high sensitivity. The thermotropic phase transition of DMPC Liposomes was detected by means of fluorescence reasonance energy transfer (FRET). A specific method for the determination of fluorescence quantum yields in strongly scattering solutions was suggested on the basis of FRET using Anthracen as energy donor and coumarin 6 as energy acceptor. For the energy transfer of Anthracen to Coumarin 6 in the gel phase of the DMPC liposomes as substantial proportion of static transfer was found. The presence of correlated donor-acceptor pairs was proven by the comparison of stationary and time-resolved fluorescence. Further more, concentration- and temperature dependent formation was found of anthracene dimers. Such dimers are formed in the gel phase of

  1. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking

    Science.gov (United States)

    Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2018-02-01

    [Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.

  2. Synthesis and Spectroscopic Analysis of Schiff Bases of Imesatin ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keywords: Schiff bases, isatin, imesatin, spectroscopic analysis, biological activity. Isatin (1H-indole-2, 3-Dione) was first synthesized by. Erdman, 1840 and established by Laurent, 1841 as a product from the oxidation of indigo by nitric and chromic acids. The synthetic versatility of Isatin has led to the wide applications of ...

  3. Synthesis and Spectroscopic Characterisation of N-Alkyl Quaternary Ammonium Salts Typical Precursors of Cyanines

    Directory of Open Access Journals (Sweden)

    P. Almeida

    2002-03-01

    Full Text Available The synthesis and spectroscopic characterisation of some representative N-alkylsubstituted quaternary ammonium salts derived from benzothiazole, benzoxazole, benzoselenazole, indole and quinoline are described. These heterocyclic salts, bearing an activated methyl group in the 2-position in relation to the nitrogen atom and N-methyl, -pentyl, -hexyl and -decyl chains, are typical precursors of cyanine dyes.

  4. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    Science.gov (United States)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  5. Synthesis and characterization of Taurine

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-10-01

    Full Text Available Have been obtained 2-aminoethanesulfonic acid (taurine from ethanolamine, sulfuric acid and sodium sulfite during the synthesis in laboratory condition. The process involves two steps of reactions, the first was esterification of ethanolamine with sulfuric acid to produce the intermediate product of 2-aminoethyl ester which than was extended to the second step by sulfonation with sodium sulfite to produce 2-aminoethanesulfonic acid. Resulting product was analyzed using 1H-NMR, IR, FAB-MS analysis and examined purity characterizations of the synthesized products. DOI: http://dx.doi.org/10.5564/mjc.v14i0.200 Mongolian Journal of Chemistry 14 (40, 2013, p57-60

  6. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide.

    Science.gov (United States)

    Henriques, M S C; Del Amparo, R; Pérez-Álvarez, D; Nogueira, B A; Rodríguez-Argüelles, M C; Paixão, J A

    2017-02-05

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P2 1 /c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P2 1 2 1 2 1 . Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. New Mn(II, Ni(II, Cd(II, Pb(II complexes with 2-methylbenzimidazole and other ligands. Synthesis, spectroscopic characterization, crystal structure, magnetic susceptibility and biological activity studies

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2016-11-01

    Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.

  8. Synthesis and spectroscopic study of nitroxide mono- and bi- radicals

    International Nuclear Information System (INIS)

    Michon, Pierre

    1970-01-01

    Synthesis and study of nitroxide mono- and bi- radicals derived from oxazolidine: - The first part is the synthesis of amines and radicals, and the I.R. U.V., E.P.R. spectroscopy study. - Conformational analysis of two biradicals has been carried out by measurement of dipolar interaction, on the E.P.R. spectra in the second part. - The final part is an application of N.M.R. study to the determination of the sign and magnitude of nuclear-electron spin-spin couplings and conformations analysis in five mono-radicals. (author) [fr

  9. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking.

    Science.gov (United States)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-05

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488nm and 785nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Expression, purification and spectroscopic characterization of the Regulator complex

    International Nuclear Information System (INIS)

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C.; Ospina-Bedoya, M.

    2012-01-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  11. Preparation and Spectroscopic Characterization of Iron Doped Mullite

    Directory of Open Access Journals (Sweden)

    Iva Buljan

    2015-07-01

    Full Text Available A novel method for preparation of Fe2+/Fe3+ substituted mullite is described. Aluminosilicate gels are applied as precursors instead of crystalline aluminosilicates as used in other common syntheses. The process is composed of three stages. First, iron is introduced into a homogeneous aluminosilicate gel by ion exchange. The gel is converted to a mixture of mullite and amorphous silica in a 1263 K 3 h isothermal calcination in the the second stage. Finally, in order to obtain the nano-scale pure mullite phase the formed amorphous silica is removed by a dissolution in alkaline media. The components formed in various stages of the process are characterized by 57Fe Mössbauer and Fourier transform infra red spectroscopies, X-ray diffraction method and scanning electron microscopy. Spectroscopic and diffraction methods helped the identification of the mullite phase. Mössbauer measurements revealed the presence of both Fe2+ and Fe3+ states providing a chance for perspective catalytic application of the obtained Fe-mullite.

  12. Expression, purification and spectroscopic characterization of the Regulator complex

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Ospina-Bedoya, M. [Universidad de Antioquia, Medellin (Colombia)

    2012-07-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  13. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with changing the composition. The shifting of absorption and emission peak in shorter wave- length is obtained with increasing the mole fraction of zinc. The quantum yield (QY) value decreases with increasing the ...

  15. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    A new series of Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) mixed ligands-metal complexes derived from salicylic acid (SA) and 1,10-phenanthroline (PHEN) have been synthesized and characterized by spectroscopic studies. The coordination of the two ligands towards central metal ions has been proposed in the light of ...

  16. Biomimetic synthesis and characterization of semiconducting hybrid

    Indian Academy of Sciences (India)

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of ...

  17. Biomimetic synthesis and characterization of semiconducting hybrid ...

    Indian Academy of Sciences (India)

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of ...

  18. Synthesis, Characterization and Antimicrobial Activities of Some ...

    African Journals Online (AJOL)

    Some transition metal complexes of nicotinamide have been prepared and characterized using melting point, conductivity measurement, infrared, electronic, HNMR and atomic absorption spectroscopic methods. . The antibacterial and antifungal studies of the metal complexes and the ligand have been evaluated against ...

  19. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of saturated polyester and nanocomposites derived from glycolyzed PET waste ... construction industries. PET is widely used in the packaging of beverages and drugs. ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the estimation of the maximum. 277 ...

  20. Synthesis, characterization and application of semiconducting oxide ...

    Indian Academy of Sciences (India)

    Nanostructured; Cu2O nanostructures; electrolysis based oxidation; aligned ZnO nanorods. Abstract. In the present study, we report the synthesis, characterization and application of nanostructured oxide materials. The oxide ... The copper electrode served as a sacrificial anode for the synthesis of different nanostructures.

  1. Synthesis, Characterization and Antibacterial Activity of Imidazole ...

    African Journals Online (AJOL)

    NICO

    Synthesis, Characterization and Antibacterial Activity of. Imidazole Derivatives of 1,10-Phenanthroline and their .... Synthesis of Ligands (L1, L2). Ligands (L1. , L2) were synthesized by a method similar to one ... (50 mL). Dropwise addition of concentrated aqueaus ammonia to neutralize gave a yellow precipitate, which was ...

  2. Synthesis and characterization of tetraethylammonium tetrachloro ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and characterization of tetraethylammonium tetrachloro- cobaltate crystals. M A KANDHASWAMY and V SRINIVASAN*. Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India. MS received 7 February 2000; revised 27 December 2001. Abstract.

  3. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Biological synthesis and characterization of silver nanoparticles using. Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. PARAMASIVAM PREMASUDHA1, MUDILI VENKATARAMANA2,∗, MARRIAPPAN ABIRAMI3,. PERIYASAMY VANATHI4, KADIRVELU KRISHNA2 and RAMASAMY ...

  4. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  5. Spectroscopic Characterization of Key Aromatic and Heterocyclic Molecules: A Route toward the Origin of Life

    Science.gov (United States)

    Puzzarini, Cristina; Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo; Murphy, Thomas E.; Drew, H. Dennis; Ali, Ashraf

    2017-09-01

    To gain information on the abiotic synthesis of the building blocks of life from simple molecules, and their subsequent chemical evolution to biological systems, the starting point is the identification of target species in Titan-like planets; I.e., planets that resemble the primitive Earth, as well as in Earth-like planets in the habitable zone of their star, namely planets where life can be already originated. In this scenario, molecular spectroscopy plays a crucial role because spectroscopic signatures are at the basis of an unequivocal proof for the presence of these target molecules. Thanks to advances in many different techniques and NASA’s successful Kepler exoplanet transit mission, thousands of diverse planets outside of our solar system have been discovered. The James Webb Space Telescope (JWST), scheduled to be launched in 2018, will be very helpful in the identification of biosignature gases in Earth-like planets’ atmospheres and prebiotic molecule signatures in Titan-like atmospheres, by observing their absorption during transits. Although the search for key-target molecules in exoplanet atmospheres can be carried out by the JWST Transit Spectroscopy in the infrared (IR) region (0.6-29 μm wavelength range), opportunities for their detection in protostellar cores, protoplanetary disks, and on Titan are also offered by interferometric high spectral and spatial resolution observations using the Atacama Large Millimeter/submillimeter Array. In the present work, target molecules have been selected, and their spectroscopic characterization presented in view of supporting their infrared and complementary millimeter/submillimeter-wave spectral observations. In detail, the selected target molecules include: (1) the three-membered oxygen-containing heterocycles, oxirane and protonated oxirane; (2) the cyclopropenyl cation and its methyl derivative; (3) two examples of ortho- and peri-fused tri-cyclic aromatic rings, I.e., the phenalenyl cation ({{{C}}}13

  6. Spectroscopic characterization of manganese-doped alkaline earth

    Indian Academy of Sciences (India)

    The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies.

  7. Synthesis, spectroscopic characterization, molecular modeling and potentiometric studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M. A.

    2014-08-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)(H2O)2]·2H2O have been synthesized [L = N,N";-bis(2-hydroxybenzylidene)-1,1-diaminobutane]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR, SEM, EDX, thermal and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a tetradentate manner. The molar conductance of the complexes in fresh solution of DMSO lies in the range of 7.46-9.13 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen and azomethine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The molecular parameters of the ligand and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been calculated. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M sodium perchlorate.

  8. Enzymatic synthesis of tRNA-peptide conjugates and spectroscopic studies of fluorine-modified RNA

    International Nuclear Information System (INIS)

    Graber, D.

    2010-01-01

    The research presented in this thesis concerns the enzymatic synthesis of artificially modified tRNA, in particular the preparation of non-hydrolysable tRNA-peptide conjugates. Another focus is on NMR-spectroscopic investigations of fluorine-modified RNA. In both projects, chemical methods were developed to address specific RNA-biological research questions. In the first part of this thesis the preparation of tRNA-peptide conjugates with a non-hydrolysable 3'-amide linkage is presented. These molecules are of high relevance for the characterization of ribosomal processes that occur in the peptidyl transferase center (such as peptide bond formation, peptide release, or translocation) using X-ray crystallography and biochemical methods. First, a novel concept to prepare chemically modified ('labeled') tRNA was elaborated based on the combination of solid-phase synthesis and enzymatic ligation. Thereby, a variety of differently labeled tRNAs was achieved. Moreover, the most successful high-yield ligation sites were identified to be situated within the TΨ C-loop. Optimization of the synthesis and the corresponding HPLC-purification of the conjugates were initially conducted with puromycin derivatized tRNA. In the course of this project, also two tRNAs with a ribose 3'-amino group at the terminal adenosine A76 were synthesized. For that purpose a protection group pattern had to be developed to obtain a functionalized solid-support bound to 3'-amino-3'-deoxyadenosine which was appropriate for RNA solid-phase synthesis. The successful preparation of tRNA-peptide conjugates was accomplished in cooperation with Holger Moroder and Jessica Steger (Micura group) who contributed short synthetic RNA-peptide conjugates. These fragments represented the tRNA 3'-termini that were required for exploring the new ligation strategies for non-hydrolisable tRNA - a main aim of this thesis. If the 5'-fragments are synthesized by solid-phase synthesis or in vitro transcription they do not

  9. Synthesis, structural, spectroscopic and biological studies of Schiff base complexes

    Science.gov (United States)

    Diab, M. A.; El-Sonbati, A. Z.; Shoair, A. F.; Eldesoky, A. M.; El-Far, N. M.

    2017-08-01

    Schiff base ligand 4-((pyridin-2- yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (PDMP) and its complexes were prepared and characterized on the basis of elemental analysis, IR, mass spectra and thermogravimetric analysis. All results confirm that the complexes have 1:1 (M: PMDP) stoichiometric formula [M(PMDP)Cl2H2O ] (M = Cu(II), Co(II), Ni(II) and Mn(II)), [Cd(PMDP)Cl2] and the ligand behaves as a bi/tridentate forming five-membered chelating ring towards the metal ions, bonding through azomethine nitrogen/exocyclic carbonyl oxygen, azomethine pyridine nitrogen and exocyclic carbonyl oxygen. The shift in the band positions of the groups involved in coordination has been utilized to estimate the metal-nitrogen and/or oxygen bond lengths. The complexes of Co(II), Ni(II) and Cu(II) are paramagnetic and the magnetic as well as spectral data suggest octahedral geometry, whereas the Cd(II) complex is tetrahedral. The XRD studies show that both the ligand and its metal complexes (1 and 3) show polycrystalline with crystal structure. Molecular docking was used to predict the binding between PMDP ligand and the receptors. The corrosion inhibition of mild steel in 2 M HCl solution by PDMP was explored utilizing potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and (EFM) electrochemical frequency modulation method. Potentiodynamic polarization demonstrated that PDMP compound is mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the protective ability. The percentage of inhibition efficiency was found to increase with increasing the inhibitor concentration.

  10. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION ... on the electron density in the phenyl ring and the respective accelerating and decelerating effects on the rate of ... compounds were determined using Nujol mulls and of liquids either in dichloromethane or chloroform ...

  11. SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED ...

    African Journals Online (AJOL)

    2016-07-30

    E-mail: b_mohtat@yahoo.com. This work is licensed under the Creative Commons ... Department of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran. (Received July 30, 2016; revised ..... Chem. 2013, 9, 2846-2851. 7. Mohamed, K.S.; Soliman, M.A.; El-Remaily, M.A.A.; Abdel-Ghany, H. Eco-friendly synthesis of ...

  12. Synthesis, spectroscopic characterization of palladium(II)-orthohydroxyacetophenone azine nano-optical sensor doped in sol–gel matrix and its use as probe for assessment of α-amylase activity in human saliva

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, B.A. [Chemistry department, Faculty of Science, al Azhr University, Cairo (Egypt); Abo-Aly, M.M., E-mail: aboalymoh@hotmail.com [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt); Attia, M.S.; Gamal, S. [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2016-01-15

    PdAPA (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel matrix is synthesized. It is characterized using UV-visible, infrared spectra and TEM image. A novel, simple, sensitive spectrofluorometric method was developed for measuring the activity of the α-amylase enzyme in human saliva for smokers and non-smokers with age range (17–64 years) based on the quenching of the luminescence intensity at 450 nm of the new synthesized complex characterized by various concentrations of the maltose released from the hydrolysis of starch by α-amylase enzyme and was successfully used as nano-optical sensor. The calibration plot was achieved over the concentration range 4.7×10{sup −6}–9.3×10{sup −10} mol L{sup −1} maltose with a correlation coefficient of 0.996 and a detection minimum limit value of 7.55×10{sup −10} mol L{sup −1}. The method was satisfactorily used for the assessment of the α-amylase activity in a number of human saliva samples for various smokers and non-smoker's volunteers. - Highlights: • The (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel was prepared. • It was used for the assessment of of α-amylase enzyme activity. • By maltose resulting from the reaction of α-amylase enzyme with starch. • A novel, simple, sensitive and precise spectrofluorometric method was developed.

  13. Synthesis, spectroscopic characterization of palladium(II)-orthohydroxyacetophenone azine nano-optical sensor doped in sol–gel matrix and its use as probe for assessment of α-amylase activity in human saliva

    International Nuclear Information System (INIS)

    El-Sayed, B.A.; Abo-Aly, M.M.; Attia, M.S.; Gamal, S.

    2016-01-01

    PdAPA (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel matrix is synthesized. It is characterized using UV-visible, infrared spectra and TEM image. A novel, simple, sensitive spectrofluorometric method was developed for measuring the activity of the α-amylase enzyme in human saliva for smokers and non-smokers with age range (17–64 years) based on the quenching of the luminescence intensity at 450 nm of the new synthesized complex characterized by various concentrations of the maltose released from the hydrolysis of starch by α-amylase enzyme and was successfully used as nano-optical sensor. The calibration plot was achieved over the concentration range 4.7×10 −6 –9.3×10 −10 mol L −1 maltose with a correlation coefficient of 0.996 and a detection minimum limit value of 7.55×10 −10 mol L −1 . The method was satisfactorily used for the assessment of the α-amylase activity in a number of human saliva samples for various smokers and non-smoker's volunteers. - Highlights: • The (palladium(II)-orthohydroxyacetophenone azine) complex doped in sol–gel was prepared. • It was used for the assessment of of α-amylase enzyme activity. • By maltose resulting from the reaction of α-amylase enzyme with starch. • A novel, simple, sensitive and precise spectrofluorometric method was developed.

  14. Synthesis, structure, and spectroscopic and magnetic characterization of [Mn12O12(O2CCH2But)16(MeOH)4]·MeOH, a Mn12 single-molecule magnet with true axial symmetry.

    Science.gov (United States)

    Lampropoulos, Christos; Murugesu, Muralee; Harter, Andrew G; Wernsdofer, Wolfgang; Hill, Stephen; Dalal, Naresh S; Reyes, Arneil P; Kuhns, Philip L; Abboud, Khalil A; Christou, George

    2013-01-07

    The synthesis and properties are reported of a rare example of a Mn(12) single-molecule magnet (SMM) in truly axial symmetry (tetragonal, I4). [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(MeOH)(4)]·MeOH (3·MeOH) was synthesized by carboxylate substitution on [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)]·2MeCO(2)H·4H(2)O (1). The complex was found to possess an S = 10 ground state, as is typical for the Mn(12) family, and displayed both frequency-dependent out-of-phase AC susceptibility signals and hysteresis loops in single-crystal magnetization vs DC field sweeps. The loops also exhibited quantum tunneling of magnetization steps at periodic field values. Single-crystal, high-frequency electron paramagnetic resonance spectra on 3·MeOH using frequencies up to 360 GHz revealed perceptibly sharper signals than for 1. Moreover, careful studies as a function of the magnetic field orientation did not reveal any satellite peaks, as observed for 1, suggesting that the crystals of 3 are homogeneous and do not contain multiple Mn(12) environments. In the single-crystal (55)Mn NMR spectrum in zero applied field, three well-resolved peaks were observed, which yielded hyperfine and quadrupole splitting at three distinct sites. However, observation of a slight asymmetry in the Mn(4+) peak was detectable, suggesting a possible decrease in the local symmetry of the Mn(4+) site. Spin-lattice (T(1)) relaxation studies were performed on single crystals of 3·MeOH down to 400 mK in an effort to approach the quantum tunneling regime, and fitting of the data using multiple functions was employed. The present work and other recent studies continue to emphasize that the new generation of truly high-symmetry Mn(12) complexes are better models for thorough investigation of the physical properties of SMMs than their predecessors such as 1.

  15. Glycine and metformin as new counter ions for mono and dinuclear vanadium(V)-dipicolinic acid complexes based on the insulin-enhancing anions: Synthesis, spectroscopic characterization and crystal structure

    Science.gov (United States)

    Ghasemi, Fatemeh; Rezvani, Ali Reza; Ghasemi, Khaled; Graiff, Claudia

    2018-02-01

    Complexes [VO(dipic) (H2O)2]·2H2O (1), [H2Met][V2O4(dipic)2] (2) and [HGly][VO2(dipic)] (3), where H2dipic = 2,6-pyridinedicarboxylic acid, Met = Metformin (N,N-dimethylbiguanide) and Gly = glycine, were synthesized. The three complexes were characterized by elemental analysis, FTIR, 1H and 13C NMR, and UV-Vis spectroscopy. Solid-state structures of (2) and (3) were determined by single-crystal X-ray diffraction analysis. The coordination geometry around the vanadium atoms in 2 is octahedral, while the coordination geometry in 3 is between trigonal bipyramidal and squared pyramidal. In the binuclear complex 2 and mononuclear complex 3, metformin and glycine are diprotonated and monoprotonated respectively, and act as a counter ion. The redox behavior of the complexes was also investigated by cyclic voltammetry.

  16. Synthesis, spectroscopic characterization, molecular modeling and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) complexes containing the tetradentate aza Schiff base ligand

    Science.gov (United States)

    Chandra, Sulekh; Ruchi

    2013-02-01

    Mn(II), Co(II), Ni(II), and Cu(II) complexes with a tetradentate macrocyclic ligand [1.2.5.6tetraoxo-3,4,7,8tetraaza-(1,2,3,4,5,6,7,8)tetrabenzene(L)] were synthesized and characterized by elemental analysis, molar conductance measurements, mass, nmr, i.r., electronic and e.p.r. spectral studies. All the complexes are non electrolytes in nature and may be formulated as [M(L)X2] [where, M = Mn(II), Co(II), Ni(II), Cu(II) and X = Cl-, CH3COO-]. On the basis of i.r., electronic and e.p.r. spectral studies a distorted octahedral geometry has been assigned for all complexes. The antimicrobial activities and LD50 values of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against two different species of bacteria and plant pathogenic fungi.

  17. Synthesis, characterization and investigation of the spectroscopic properties of novel peripherally 2,3,5-trimethylphenoxy substituted Cu and Co phthalocyanines, the computational and experimental studies of the 4-(2,3,5-trimethylphenoxyphthalonitrile

    Directory of Open Access Journals (Sweden)

    Nesuhi Akdemir

    2016-11-01

    Full Text Available 4-(2,3,5-trimethylphenoxyphthalonitrile (3 was firstly prepared via aromatic nucleophilic substitution reaction and characterized by FT-IR, mass spectrometry, 1H and 13C NMR techniques. The molecular structure of the compound (3 was optimized using Density Functional Theory (DFT/B3LYP method with 6-311G(d,p basis set in the ground state. The molecular geometric parameters which were obtained by X-ray single crystal diffraction method and the spectral results were compared with computed bond lengths and angles, vibrational frequencies and 1H, 13C NMR chemical shifts values of the compound (3. Also, Cu(II and Co(II phthalocyanines were synthesized by the treatment of dinitrile derivative with anhydrous CuCl2 or CoCl2 under N2 atmosphere in dry n-pentanol at 140oC. The new compounds have been determined by elemental analysis, FT-IR and electronic absorption. The UV-Vis spectra of the Cu(II and Co(II phthalocyanines were recorded with different concentration in THF and also with different solvents as DMF, DMSO, DCM, CHCl3, toluene.

  18. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    Science.gov (United States)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  19. 1-(4-(6-Fluorobenzo [d] isoxazol-3-yl) piperidin-1-yl)-2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl) ethanone: Synthesis, spectroscopic characterization, Hirshfeld surface analysis, cytotoxic studies and docking studies

    Science.gov (United States)

    Govindhan, M.; Viswanathan, V.; Karthikeyan, S.; Subramanian, K.; Velmurugan, D.

    2017-08-01

    Compound 1-(4-(6-fluorobenzo[d] isoxazol-3-yl) piperidin-1-yl)-2-(4-(hydroxymethyl)-1H-1, 2,3-triazol-1-yl) ethanone was synthesized in good yield by using click chemistry approach with 2-azido-1-(4-(6-flurobenzo[d]isooxazol-3-yl)piperidin-1-yl)ethanone as a starting material. The synthesized compound was characterized using IR, NMR and MS studies. Thermal stability of the compound was analyzed by using TGA and DSC technique. The single crystal XRD analysis was taken part, to confirm the structure of the compound. The intercontacts in the crystal structure are analyzed using Hirshfeld surfaces computational method. Cytotoxicity of the synthesized compound was evaluated and the results were reported. The binding analysis carried out between the newly synthesized molecule with human serum albumin using fluorescence spectroscopy technique to understand the pharmacokinetics nature of the compound for further biological application. The molecular docking studies were evaluated for the compound to elucidate insights of new molecules in carrier protein.

  20. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  1. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    Science.gov (United States)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  2. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    Science.gov (United States)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  3. Synthesis and spectroscopic characterization study of new palladium complexes containing bioactive O,O-chelated ligands: evaluation of the DNA/protein BSA interaction, in vitro antitumoural activity and molecular docking.

    Science.gov (United States)

    Karami, Kazem; Mehri Lighvan, Zohreh; Farrokhpour, Hossein; Dehdashti Jahromi, Maryam; Momtazi-Borojeni, Amir Abbas

    2017-10-30

    [Pd{(C,N)-C 6 H 4 CH 2 NH(Et) (Qu)] (2) and [Pd{(C,N)-C 6 H 4 CH 2 NH(Et) (Nar)] (3) (Qu = Quercetin, Nar = Naringin) mononuclear palladium (II) complexes have been synthesized and characterized using elemental analysis, IR and electronic spectroscopy. The interaction of the prepared complexes with calf thymus DNA and bovine serum albumin (BSA), monitored by UV-visible and fluorescence titrations, respectively, have been carried out to better understand the mode of their action under biological conditions. Intercalative binding mode between the complexes and DNA is suggested by the binding constant (K b ) values of 2.5 × 10 6 and 3.2 × 10 6 for complexes 2 and 3, respectively. In particular, the in vitro cytotoxicity of the complexes on two cancer cells lines (bladder carcinoma TCC and breast cancer MCF7) showed that the compounds had broad spectrum, anti-cancer activity with low IC 50 values and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. In the meantime, the quenching of tryptophan emission with the addition of complexes using BSA as a model protein indicated the protein binding ability. The quenching mechanisms of BSA by the complexes were static processes, according to the results obtained. The competitive binding using Warfarin, Digoxin and Ibuprofen site markers, which contain definite biding sites, demonstrated that the complexes bind to site I on BSA. Ultimately, the binding sites of DNA and BSA with the complexes have been determined by molecular modelling studies.

  4. New platinum (II) and palladium (II) complexes of coumarin-thiazole Schiff base with a fluorescent chemosensor properties: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro anticancer activity on various human carcinoma cell lines and computational studies.

    Science.gov (United States)

    Şahin, Ömer; Özdemir, Ümmühan Özmen; Seferoğlu, Nurgül; Genc, Zuhal Karagöz; Kaya, Kerem; Aydıner, Burcu; Tekin, Suat; Seferoğlu, Zeynel

    2018-01-01

    A new coumarin-thiazole based Schiff base (Ligand, L) and its Pd(II), Pt(II) complexes; ([Pd(L) 2 ] and [Pt(L) 2 ]), were synthesized and characterized using spectrophotometric techniques (NMR, IR, UV-vis, LC-MS), magnetic moment, and conductivity measurements. A single crystal X-ray analysis for only L was done. The crystals of L have monoclinic crystal system and P21/c space group. To gain insight into the structure of L and its complexes, we used density functional theory (DFT) method to optimize the molecules. The photophysical properties changes were observed after deprotonation of L with CN - via intermolecular charge transfer (ICT). Additionally, as the sensor is a colorimetric and fluorimetric cyanide probe containing active sites such as coumarin-thiazole and imine (CH=N), it showed fast color change from yellow to deep red in the visible region, and yellow fluorescence after CN - addition to the imine bond, in DMSO. The reaction mechanisms of L with CN - , F - and AcO - ions were evaluated using 1 H NMR shifts. The results showed that, the reaction of L with CN - ion was due to the deprotonation and addition mechanisms at the same time. The anti-cancer activity of L and its Pd(II) and Pt(II) complexes were evaluated in vitro using MTT assay on the human cancer lines MCF-7 (human breast adenocarcinoma), LS174T (human colon carcinoma), and LNCAP (human prostate adenocarcinoma). The anti-cancer effects of L and its complexes, on human cells, were determined by comparing the half maximal inhibitory concentration (IC 50 ) values. The activity results showed that, the Pd(II) complex of L has higher anti-tumor effect than L and its Pt(II) complex against the tested human breast adenocarcinoma (MCF-7), human prostate adenocarcinoma (LNCAP), and human colon carcinoma (LS174T) cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and spectroscopic characterization of mononuclear/binuclear organotin(IV complexes with 1H-1,2,4-triazole-3-thiol: Comparative studies of their antibacterial/antifungal potencies

    Directory of Open Access Journals (Sweden)

    Parveen Bushra

    2015-01-01

    Full Text Available A series of di and triorganotin(IV complexes of the general formula, R2(ClSnL (R= Me: 1; Bu: 2 and R3SnL (R = Bu: 3; Ph: 4 have been synthesized by refluxing equivalent molar ratios of orgnotin(IV chlorides (R2SnCl2/R3SnCl with the 1H-1,2,4-Triazole-3-thiol (LH in dry methanol. The synthesized complexes (1-4 were further treated with CS2 and R2SnCl2/R3SnCl in 1:1:1 molar ratio to yield the homobimetallic complexes of the types R2(ClSnLCS2Sn(ClR2 (R = Me: 5; Bu: 6 and R3SnLCS2SnR3 (R = Bu: 7; Ph: 8. The ligand and the complexes have been characterized by elemental microanalysis (CHNS, FT-IR and multinuclear NMR (1H&13C, and electron ionization mass spectrometry. IR data demonstrates that the dithiocarbamate donor site of the ligand acts in a bidentate manner and there isa trigonal bipyramidal geometry around Sn(IV in solid state. 1H and 13C NMR data supports the tetrahedralgeometry with thiol donor sites of the ligand while tetra and penta coordinated environments around dithiocarboxylate bound tin(IV in solution state. Mass spectrometric data supported well the structures of the synthesized complexes. The homobimetallic derivatives were found more active than mononuclear organotin(IV compounds and free ligand against various strains of bacteria and fungus.

  6. Nanostructure characterization of high k materials by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Pereira, L.; Aguas, H.; Fortunato, E.; Martins, R.

    2006-01-01

    In this work, the optical and structural properties of high k materials such as tantalum oxide and titanium oxide were studied by spectroscopic ellipsometry, where a Tauc-Lorentz dispersion model based in one (amorphous films) or two oscillators (microcrystalline films) was used. The samples were deposited at room temperature by radio frequency magnetron sputtering and then annealed at temperatures from 100 to 500 deg. C. Concerning the tantalum oxide films, the increase of the annealing temperature, up to 500 deg. C does not change the amorphous nature of the films, increasing, however, their density. The same does not happen with the titanium oxide films that are microcrystalline, even when deposited at room temperature. Data concerning the use of a four-layer model based on one and two Tauc-Lorentz dispersions is also discussed, emphasizing its use for the detection of an amorphous incubation layer, normally present on microcrystalline films grown by sputtering

  7. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    International Nuclear Information System (INIS)

    Kolesniková, L.; Alonso, J. L.; Daly, A. M.; Tercero, B.; Cernicharo, J.; Gordon, B. P.; Shipman, S. T.

    2014-01-01

    New laboratory data of ethyl mercaptan, CH 3 CH 2 SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH 3 CH 2 SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH 3 SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL

  8. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  9. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  10. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological me- thods of ... Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced ... for the biomimetic synthesis and characterization of protein capped silver nanoparticles.

  11. Synthesis and optical characterization of copper nanoparticles ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. SAMIRA MONIRI MAHMOOD GHORANNEVISS MOHAMMAD REZA HANTEHZADEH MOHSEN ASADI ASADABAD. Volume 40 Issue 1 February 2017 pp 37-43 ...

  12. Synthesis and characterization of gold nanoparticles incorporated ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). Pankaj Kumar Rastogi Dharmendra Kumar Yadav Shruti Pandey Vellaichamy Ganesan Piyush Kumar Sonkar Rupali Gupta. Regular Articles Volume 128 Issue 3 March 2016 pp 349-356 ...

  13. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Assem Barakat, Bandar M. Al-Qahtani, Abdullah M. Al-Majid, M. Ali Mohammed Rafi Shaik, Mohamed H.M. Al-Agamy, Abdul Wadood ...

  14. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 2. Synthesis and characterization of a ... Shivaiah Samar K Das. Inorganic and Analytical Volume 114 Issue 2 April 2002 pp 107-114 ... Compound (1) crystallizes in a cubic space group 3 ¯ , with = 22.2001(6) Å and = 8. The anion [VVO4W 10 VI V 2 ...

  15. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...

  16. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Synthesis, characterization and photochemistry of a new heptamolybdate supported magnesium-aqua coordination complex. Savita S Khandolkar Pallepogu Raghavaiah Bikshandarkoil R Srinivasan. Volume 127 Issue 9 September 2015 pp 1581-1588 ...

  17. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A BINUCLEAR. COMPLEX AND A COORDINATION POLYMER OF COPPER(II). Masoumeh Tabatabaee1*, Reza Mohamadinasab1, Kazem Ghaini1 and Hamid Reza Khavasi2. 1Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran.

  18. Synthesis, characterizations and applications of some nanomaterials

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT{blood platelet clusters). O N Srivastava A Srivastava D Dash D P Singh R M Yadava P R Mishra J ...

  19. Synthesis, characterization and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    Synthesis of a new nano hybrid of 5,10,15,20-mesotetra(4-aminophenyl) porphyrin (TAP) functionalized with multi-walled carbon nanotubes (MWCNTs) through an amide linkage is reported for the first time. ThisMWCNT-TAP hybrid was characterized by Raman, Fourier transform infrared (FT-IR), Transmissionelectron ...

  20. Synthesis, characterization and electrochemical performance of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Synthesis, characterization and electrochemical performance of Li 2 Ni x Fe 1 − x SiO 4 cathode materials for lithium ion batteries. A Y SHENOUDA M M S SANAD. Volume 40 Issue 6 October 2017 pp 1055-1060 ...

  1. Synthesis, characterization and antibacterial evaluation of ...

    African Journals Online (AJOL)

    The synthesis, characterization and anti-bacterial evaluation of two palmitoyl amino acids is reported in this work. The reported antimicrobial activity of some fatty acid derivatives encouraged the investigation of the possible influence of an aromatic group substituent on a saturated fatty acid residue. The compounds were ...

  2. Synthesis, characterizations and applications of some ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT{blood platelet clusters). O N Srivastava A Srivastava D Dash D P Singh R M Yadava P R Mishra J ...

  3. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Unknown

    disposal or to minimize the environmental impact. One of the approaches is the conversion of fly ash to zeolites, which have wide applications in ion exchange, as mole- cular sieves, catalysts, and adsorbents (Breck 1974). The present study is concerned with the synthesis of zeolite from coal fly ash and its characterization ...

  4. Synthesis, Characterization and Antibacterial Evaluations of the ...

    African Journals Online (AJOL)

    MBI

    2014-06-05

    Jun 5, 2014 ... 39. Synthesis, Characterization and Antibacterial Evaluations of the Schiff. Base 2-(1-(2-(Piperazin-1-yl)ethylimino)ethyl)Phenol and its Complexes of. Mn(II), Ni(II) and Zn(II). Salga, M. S., Sada, I. and Abdullahi, A. Department of Pure and Industrial Chemistry, Umaru Musa 'Yar Adua University, Katsina.

  5. synthesis, characterization, thermal behavior and antimicrobial

    African Journals Online (AJOL)

    The present work deals with the synthesis and characterization of Co, Ni, Cd, Zn and Cu(II) complexes of 3-methyl benzoic acid with/without hydrazine. EXPERIMENTAL. The chemicals and solvents used were of AR grade received from Fluka Chemicals. The double distilled water was used for the preparation and chemical ...

  6. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Pope and Flynn reported a series of such compounds of the general formula VtVnW12−n. −+. )3(. 40. O n. (where Vt is the vanadium in the center of the tertrahedron, n = 2, 3, 4)5,6. The synthesis and characterization of these heteropolytungstovanadates have been described many years ago, but the reduced analogue of ...

  7. Synthesis, characterization and biological activity studies of mixed ...

    African Journals Online (AJOL)

    The complexes were characterized using some physical techniques such as melting point, solubility, conductivity measurement and spectroscopic analyses such as UV-Visible spectroscopy, Atomic absorption spectroscopy, and Infrared spectroscopy. Based on the physical and spectroscopic results, the coordination of the ...

  8. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Sm3+-doped ZnAl2O4 phosphor was synthesized by citrate sol–gel method and characterized using. X-ray diffraction and scanning electron microscopy to identify the crystalline phase and determine the parti- cle size. Photoluminescence (PL) studies on the sample showed emission peaks at 563, 601, 646 and ...

  9. SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE ...

    African Journals Online (AJOL)

    ABSTRACT. In this work, nano ferrite spinel NiFe2O4 was synthesized by sol-gel method and characterized by. SEM, XRD, FT-IR, and VSM. In second step Schiff base made from salicylaldehyde and amino propyl triethoxy silane was used for modification of the synthesized nano ferrit. In the third step removal of Ni(II) was ...

  10. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    grinding and heating in (Ar + 10% H2) atmosphere. 2.2 Sample characterization. The as-synthesized ... with literature value of cell parameter a = 8⋅059 A. No impurity phase was observed. The XRD pattern was ..... are thankful to Dr N D Dahale, Fuel Chemistry Division,. BARC, Dr T K Seshagiri, former scientist, and Shri.

  11. Synthesis and spectroscopic characterization of palladium-doped ...

    Indian Academy of Sciences (India)

    tion (0.15418 nm for Cu Kα), and β the full-width at half- maximum of diffraction peak measured at 2θ, the average particle sizes of pure Pd-TiO2 and TiO2 powders for (101). Table 1. Compared parameters of Pd-TiO2 synthesized using different methods. Method. Template. Particle size (nm). Synthesized temperature (◦C).

  12. Synthesis and spectroscopic characterization of palladium-doped ...

    Indian Academy of Sciences (India)

    2. Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran; Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia ...

  13. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, Cristina [Dipartimento di Chimica " Giacomo Ciamician," Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Ali, Ashraf [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Biczysko, Malgorzata; Barone, Vincenzo, E-mail: cristina.puzzarini@unibo.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  14. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  15. Fourier–transform infrared spectroscopic characterization of natu ...

    Indian Academy of Sciences (India)

    This colloidal solution got transformed into fulgurites, glassy material, within a few hours. We present here the characterization of the fulgurites by Fourier transform infrared (FTIR) absorption, X-ray diffraction and X-ray fluorescence methods. The amorphous nature of the substance has been confirmed by Fourier transform ...

  16. Fourier–transform infrared spectroscopic characterization of natu ...

    Indian Academy of Sciences (India)

    We present here the characterization of the fulgurites by Fourier transform infrared (FTIR) absorption, X-ray diffraction and X-ray fluorescence methods. The amorphous nature of the substance has been confirmed by Fourier transform infrared spectra of the fulgurites, which exhibit prominent absorption band in the region ...

  17. Spectroscopic characterization of a Nigerian standard sand: Igbokoda sand

    CSIR Research Space (South Africa)

    Ojuri, OO

    2017-01-01

    Full Text Available The characterization of the Nigerian Igbokoda Standard Sand was performed by X-ray diffraction, IR and Raman Spectroscopy, and nuclear magnetic resonance techniques. The principal reflections occurring at the d-Spacings of 4.25745, 3.34359, 2...

  18. Spectroscopic characterization of exoplanets : from LOUPE to SINFONI

    NARCIS (Netherlands)

    Hoeijmakers, H.J.

    2017-01-01

    Over the past years it has been discovered that the population of extra-solar planets is large and diverse. This fact feeds expectations for finding habitable Earth-like planets and potentially extra-terrestrial life. However without a reliable characterization, the fundamental nature of

  19. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  20. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  1. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  2. Synthesis and characterization of -phosphorylated thioureas ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 3. Synthesis and characterization of -phosphorylated thioureas RNHC(S)NHP(O)(OPr)2 (R = 2-MeC6H4, 2,6-Me2C6H3, 2,4,6-Me3C6H2). Damir A Safin Maria G Babashkina Michael Bolte Axel Klein. Full Papers Volume 122 Issue 3 May 2010 pp 409- ...

  3. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    compounds of the general formula VtVnW12−n. −+. )3(. 40. O n. (where Vt is the vanadium in the center of the tertrahedron, n = 2, 3, 4)5,6. The synthesis and characterization of these heteropolytungstovanadates have been described many years ago, but the reduced analogue of any of these in the series has yet to be ...

  4. FTIR spectroscopic characterization of differently cultivated food related yeasts.

    Science.gov (United States)

    Shapaval, V; Walczak, B; Gognies, S; Møretrø, T; Suso, H P; Wold Åsli, A; Belarbi, A; Kohler, A

    2013-07-21

    The application of Fourier Transform Infrared Spectroscopy for characterization of yeasts is growing rapidly. Since it is known that the phenotypic expression of yeast cells depends sensitively on the nutrients that are available in the growth medium, one standardized growth medium is usually used for identification and characterization purposes in order to obtain reproducible FTIR signals. Since our recently developed high-throughput micro-cultivation protocol has the capacity to use more than one standardized growth medium, we wanted to investigate if the parallel use of multiple growth media can improve identification results. For this purpose, five different cultivation media (YP, YPD, YMB, SAB and SD) were used. In total 91 food spoilage yeast strains of 12 different genera were cultivated in different cultivation media and subsequently characterized by FTIR spectroscopy. For spectral identifications, Radial Basis Function-Partial Least Squares (RBF-PLS) was used in combination with cross-model validation where an inner cross-validation loop was used to optimize the model, while in an outer loop an independent test set was kept aside to test the optimized model. Sensitivity and specificity were evaluated for each studied genus class. The results show that the YMB selective medium gave the best discrimination results for 9 of the 12 genera with sensitivity above 90%. Only three genera showed better identification results on other media (Clavispora and Metschnikowia on medium SD, Debaryomyces on medium YPD). We therefore suggest to use the media SD, YPD in combination with the YMB medium for the identification of food spoilage yeasts.

  5. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites

    Directory of Open Access Journals (Sweden)

    L. Bokobza

    2012-07-01

    Full Text Available In this work Raman spectroscopy was used for extensive characterization of multiwall carbon nanotube (MWNTs and of MWCNTs/rubber composites. We have measured the Raman spectra of bundled and dispersed multiwall carbon nanotubes. All the Raman bands of the carbon nanotubes are seen to shift to higher wavenumbers upon debundling on account of less intertube interactions. Effects of laser irradiation were also investigated. Strong effects are observed by changing the wavelength of the laser excitation. On the other hand, at a given excitation wavelength, changes on the Raman bands are observed by changing the laser power density due to sample heating during the measurement procedure.

  6. [Structural characterization and spectroscopic analysis of the aloin].

    Science.gov (United States)

    Xie, Yun-Fei; Huan, Nan; Cao, Yuan-Yuan; Wang, He-Ya; Zhong, Ying; Yao, Wei-Rong; Qian, He

    2014-02-01

    Aloe is widely used in various fields for its rich polysaccharides, proteins, amino acids, vitamins, active enzymes and trace beneficial elements to human body. However, the main active ingredient aloin is also an allergenic ingredient, which even may cause a severe allergic reaction In this study, infrared spectroscopy, Raman spectroscopy applied to the structural characterization of the aloin Density functional theory (DFT) is applied to the theoretical calculations using the B3LYP/6-31G (d) basis set vibration, which was helpful to understand the aloin molecular vibrational frequency. By comparing we choose the optimal experimental condition for water as solvent under alkaline conditions, the detection limit of the Aloin can reach a level of 5 ppm, which can be considered the theoretical basis for rapid detection of aloin content.

  7. Ultraviolet-visible spectroscopic characterization of lanthanum beryllate crystals doped with Er, Nd, or Pr ions

    OpenAIRE

    Pustovarov, Vladimir; Ogorodnikov, Igor

    2016-01-01

    Spectroscopic characterization of lanthanum beryllate La$_{2}$Be$_{2}$O$_{5}$ (BLO) single crystals doped with trivalent ions of Eu, Nd or Pr, was carried out in the ultraviolet-visible spectral range using synchrotron radiation spectroscopy in combination with conventional optical absorption and luminescence spectroscopy techniques. On the basis of the obtained data, the energy level diagram for these trivalent impurity ions in BLO host lattice was developed; the optical and electronic prope...

  8. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  9. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Science.gov (United States)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  10. Spectroscopic and morphologic characterization of the dentin/adhesive interface

    Science.gov (United States)

    Lemor, R. M.; Kruger, Michael B.; Wieliczka, David M.; Swafford, Jim R.; Spencer, Paulette

    1999-01-01

    The potential environmental risks associated with mercury release have forced many European countries to ban the use of dental amalgam. Alternative materials such as composite resins do not provide the clinical function for the length of time characteristically associated with dental amalgam. The weak link in the composite restoration is the dentin/adhesive bond. The purpose of this study was to correlate morphologic characterization of the dentin/adhesive bond with chemical analyses using micro- Fourier transform infrared and micro-Raman spectroscopy. A commercial dental adhesive was placed on dentin substrates cut from extracted, unerupted human third molars. Sections of the dentin/adhesive interface were investigated using infrared radiation produced at the Aladdin synchrotron source; visible radiation from a Kr+ laser was used for the micro-Raman spectroscopy. Sections of the dentin/adhesive interface, differentially stained to identify protein, mineral, and adhesive, were examined using light microscopy. Due to its limited spatial resolution and the unknown sample thickness the infrared results cannot be used quantitatively in determining the extent of diffusion. The results from the micro-Raman spectroscopy and light microscopy indicate exposed protein at the dentin/adhesive interface. Using a laser that reduces background fluorescence, the micro-Raman spectroscopy provides quantitative chemical and morphologic information on the dentin/adhesive interface. The staining procedure is sensitive to sites of pure protein and thus, complements the Raman results.

  11. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  12. Synthesis, Electrochemical, Spectroscopic, Antimicrobial, and Superoxide Dismutase Activity of Nickel (II Complexes with Bidentate Schiff Bases

    Directory of Open Access Journals (Sweden)

    R. N. Patel

    2013-01-01

    Full Text Available Five new nickel (II complexes, namely, [Ni(L12](ClO42(1; [Ni(L22](ClO42(2; [Ni(L32](ClO42(3; [Ni(L42](ClO42(4; [Ni(L52](ClO42(5, where L1 = benzoylhydrazide; L2 = N-[(1-1-(2-methylphenylethylidene]benzohydrazide; L3=N-[(1-1-(4-methylphenylethylidene]benzohydrazide; L4=N-[(1-1-(2-methoxyphenylethylidene]benzohydrazide; L5 = N-[(1-1-(4-methoxy-phenylethylidene]benzohydrazide, have been synthesized and characterized by various physicochemical and spectroscopic techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform, and diethyl ether, and are nonelectrolytes. The magnetic and spectroscopic data indicate a distorted square planar geometry for all complexes. The superoxide dismutase activity of these complexes has been measured and discussed. Antibacterial and antifungal properties of these complexes were also tested.

  13. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  14. Design, synthesis, characterization and study of novel conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wu [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.

  15. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones

    Science.gov (United States)

    Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, Seik Weng; Tiekink, Edward R. T.

    2015-02-01

    Two series of new quinolinyl chalcones containing a pyrazole group, 3a-f and 4a-r, have been synthesized by Claisen-Schmidt condensation of the derivatives of 2-methyl-3-acetylquinoline with either substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehyde or 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde in 76-93% yield under ultrasonic method. The compounds were characterized using IR, 1H NMR and ESI-MS spectroscopic methods and, for representative compounds, by X-ray crystallography. An E-configuration about the Cdbnd C ethylene bond has been established via 1H NMR spectroscopy and X-ray crystallography. These compounds show promising anti-microbial properties, with 4a and 3e being the most potent against bacterial and fungal strains, respectively and the methoxy substituted compounds showed moderate anti-oxidant activity.

  16. Characterization of a low-cost, commercially available, vanadium oxide microbolometer array for spectroscopic imaging

    Science.gov (United States)

    Benirschke, David; Howard, Scott

    2017-04-01

    Many long-wave infrared spectroscopic imaging applications are limited by the portability and cost of detector arrays. We present a characterization of a newly available, low-cost, uncooled vanadium oxide microbolometer array, the Seek Compact, in accordance with common infrared detector specifications: noise-equivalent differential temperature (NEDT), optical responsivity spectra, and Allan variance. The Compact's imaging array consists of 156×206 pixels with a 12-μm pixel pitch, 93% of the pixels yield useful temperature readings. Characterization results show optical response between λ=7.4 and 12 μm with an NEDT of 148 mK (at ≈7 fps). Comparing these results to a research-grade camera, the Seek Compact exhibits a 4× and 48× reduction in weight (2.0/0.5 lbs) and cost (12,000/250) but takes 93× longer to achieve the same NEDT (1.55 s/16.6 ms for 45 mK). Additionally, a proof-of-concept spectral imaging experiment of SiN thin films is conducted. Leveraging this price reduction and spectroscopic imaging capability, the Seek Compact has potential in enabling field-deployable and distributed active midinfrared spectroscopic imaging, where cost and portability are the dominate inhibitors and high frame rates are not required.

  17. Synthesis and Characterization of Novel Quaternary Thioaluminogermanates

    KAUST Repository

    Al-Bloushi, Mohammed

    2013-05-01

    Metal chalcogenides form an important class of inorganic materials, which include several technologically important applications. The design of metal chlcogenides is of technological interest and has encouraged recent research into moderate temperature solid-state synthetic methods for the single crystal growth of new materials. The aim of this project is the investigation and development of synthetic methodology for the synthesis of novel metal chlcogenides. The new inorganic compounds of the type “M(AlS2)(GeS2)” (M = Na and K) are new metal-chalcogenides, synthesized by the classical solid state approach. The characterization of these compounds was carried out by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Single crystal and powder X-ray diffraction, solid state Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-VIS), Infrared (IR) and Raman spectroscopy. These theses study the synthesis of metal chalcogenides through the use of standard chemical techniques. The systematic studies demonstrate the effect of the reactants ratio and reaction temperature on the synthesis and growth of the single crystals. Metal chalcogenides have several potential applications in gas separation, ion exchange, environmental remediation, and energy storage. Especially, the ion exchange materials have found\\tpossible applications in waste-water treatment, water softening, metal separation, and production of high purity water.

  18. Synthesis and characterization of peapods and DWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Anis, B.; Kuntscher, C.A. [Experimentalphysik 2, Universitaet Augsburg, 86195 Augsburg (Germany); Fischer, M.; Schreck, M. [Experimentalphysik 4, Universitaet Augsburg, 86195 Augsburg (Germany); Haubner, K.; Dunsch, L. [Center of Spectroelectrochemistry, IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany)

    2012-12-15

    We report the synthesis and characterization of C{sub 60} rate at SWCNT peapods and double-walled carbon nanotubes (DWCNTs) derived from the peapods. Single-walled carbon nanotubes (SWCNTs), C{sub 60} rate at SWCNT peapods, and DWCNTs were characterized by Raman and optical spectroscopy. The radial breathing modes (RBMs) of the tubes in C{sub 60} rate at SWCNT peapods are shifted to higher energies compared to the RBMs in SWCNTs, while in the case of DWCNTs the RBMs related to the outer tubes are shifted to lower energies compared to SWCNTs. A similar trend is observed for the absorption bands. These results suggest that the filling of the SWCNTs with C{sub 60} molecules decreases the average diameter of the electron cloud around the tubes, whereas the filling with an inner tube increases it. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Synthesis, Transfer, and Characterization of Nanoscale 2-Dimensional Materials

    Science.gov (United States)

    2015-09-01

    stack is floating on top of the DDI water surface. Instead of removing the stack with the target substrate, a graphene/copper foil substrate (graphene...demonstrated the synthesis of graphene, hexagonal boron nitride, and bismuth telluride using chemical and physical vapor deposition techniques. Making...for material synthesis, transfer, and characterization. 15. SUBJECT TERMS graphene, hexagonal boron nitride, bismuth telluride, synthesis, transfer

  20. Synthesis, Characterization, and Biological Activity of Nickel (II and Palladium (II Complex with Pyrrolidine Dithiocarbamate (PDTC

    Directory of Open Access Journals (Sweden)

    Sk Imadul Islam

    2016-01-01

    Full Text Available The synthesis of square planar Ni(II and Pd(II complexes with pyrrolidine dithiocarbamate (PDTC was characterized by elemental, physiochemical, and spectroscopic methods. Two complexes were prepared by the reaction of nickel acetate and palladium acetate with pyrrolidine dithiocarbamate (PDTC in 1 : 2 molar ratio. The bovine serum albumin (BSA interaction with complexes was examined by absorption and fluorescence spectroscopic techniques at pH 7.4. All the spectral data suggest that coordination of the pyrrolidine dithiocarbamate (PDTC takes place through the two sulphur atoms in a symmetrical bidentate fashion. All the synthesized compounds were screened for their antimicrobial activity against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia, and Bacillus cereus. It has been observed that complexes have higher activity than the free ligand.

  1. Synthesis and characterization of semi-IPNs based on PVP and PLLA

    International Nuclear Information System (INIS)

    Camilo, A.P.R.; Mano, V.; Felisberti, M.I.

    2010-01-01

    The specific interest in the synthesis of semi-IPNs based on PLLA and PVP homopolymers due to the fact these are biodegradable and biocompatible, which allows us to infer applications in the medical field as sutures, implants, matrices for controlled release of drugs etc. The objective was to prepare a multicomponent material amphiphile in the form of semi-interpenetrating polymer networks, based on poly (L-lactide), PLLA, hydrophobic homopolymer, and poly (vinylpyrrolidone), PVP, hydrophilic component. The preparation of semi-IPN combined the polymerization and crosslinking of N-vinylpyrrolidone in the presence of poly (L-lactide). The products were characterized by spectroscopic and thermal methods. (author)

  2. Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles

    Science.gov (United States)

    Gural'skiy, Il'ya A.; Reshetnikov, Viktor A.; Omelchenko, Irina V.; Szebesczyk, Agnieszka; Gumienna-Kontecka, Elzbieta; Fritsky, Igor O.

    2017-01-01

    1,2,4-triazoles attract attention as actively used medications and ligands for constructing coordination architectures. In this paper we describe four optically active 4-substituted 1,2,4-triazoles that have been prepared by Bayer's synthesis from the corresponding aliphatic chiral amines. This approach tends to be universal towards different triazoles and permits to conserve a homochirality of substrates. Novel asymmetric molecules have been characterized by spectroscopic techniques and their structures have been retrieved from the single crystal X-ray analysis. Chiro-optical studies of these heterocycles have been made by means of circular dichroism spectroscopy.

  3. Characterizing the collision of potassium atoms with a siloxane coated glass surface using spectroscopic methods

    Science.gov (United States)

    Morgus, Tyler Christophe

    2001-07-01

    We have developed a series of three experiments to characterize the collisions between potassium atoms and a siloxane coated non-stick surface on a glass substrate. The first experiment looks at the aggregate effect of multiple collisions of the potassium atoms with the surface. The atoms are observed spectroscopically. The spectroscopic information allows for the calculation of the flux, average velocity, and density of the potassium atoms. These quantities are also calculated with a computer model. The parameters of the model are the probability that a potassium atom will stick to the surface during a collision, and the probabilities that the collision is specular or diffuse. The second experiment uses the photo-desorption effect to create a spatially peaked non-equilibrium density distribution. The rate of decay of this distribution is fit with a computer model whose free parameter is proportional to the probability that an atom will stick to the siloxane coated wall during a collision. The third experiment is designed to observe the results of a single collision with a siloxane coated surface. Again, the potassium atoms are observed spectroscopically, the Doppler effect providing velocity resolution. The intensity of the fluorescence is related to the velocity-density distribution. The density is then theoretically modeled using the same simple kernel, accounting for contributions to the density from the potassium source, specular collisions, and diffuse collisions.

  4. Synthesis and spectroscopic properties of transfermium isotopes with Z = 105, 106 and 107

    International Nuclear Information System (INIS)

    Streicher, B.

    2006-01-01

    The quest for production of new elements has been on for several decades. On the way up the ladder of nuclear chart the systematic research of nuclear properties of elements in transfermium region has been severely overlooked. This drawback is being rectified in past few years by systematic synthesis of especially even-even and odd-A isotopes of these elements. This work proceeds forward also with major contribution of velocity filter SHIP, placed at GSI, Darmstadt. This experimental device represents a unique possibility due to high (up to 1 pμA) beam currents provided by UNILAC accelerator and advancing detection systems to study by means of decay spectroscopy the nuclear structure of isotopes for the elements, possibly up to proton number Z = 110. As the low lying single-particle levels are especially determined by the unpaired nucleon, the odd mass nuclei provide a valuable source of information about the nuclear structure. Such results can be directly compared with the predictions of the calculations based on macroscopic-microscopic model of nuclear matter, thus proving an unambiguous test of the correctness of present models and their power to predict nuclear properties towards yet unknown regions. This work concentrates on the spectroscopic analysis of few of such nuclei. Namely it deals with isotopes 261 Sg and 257 Rf with one unpaired neutron, as well as isotopes 257 Db and 253 Lr with one unpaired proton configuration. Moreover, the analysis of odd-odd nuclei of the the decay sequence 262 Bg → 258 Db → 254 Lr → produced in various experiments at SHIP is discussed in detail. Exhaustive spectroscopic analysis of these data is provided, revealing new information on α, β, EC and SF decay modes of these very heavy isotopes, and deepening the knowledge of the low lying single-particle level structure. Outcomes resulting from the comparison with the systematics of experimentally derived nuclear properties as well as with the predictions of the

  5. Synthesis and Characterization of a Schiff Base Cobalt (III) Complex ...

    African Journals Online (AJOL)

    2017-12-18

    Dec 18, 2017 ... Synthesis and Characterization of a Schiff Base Cobalt (III) Complex and ... zinc, palladium, magnesium and gold and most ..... Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5 ...

  6. Variable angle spectroscopic ellipsometric characterization of HfO2 thin film

    Science.gov (United States)

    Kumar, M.; Kumari, N.; Karar, V.; Sharma, A. L.

    2018-02-01

    Hafnium Oxide film was deposited on BK7 glass substrate using reactive oxygenated E-Beam deposition technique. The film was deposited using in-situ quartz crystal thickness monitoring to control the film thickness and rate of evaporation. The thin film was grown with a rate of deposition of 0.3 nm/s. The coated substrate was optically characterized using spectrophotometer to determine its transmission spectra. The optical constants as well as film thickness of the hafnia film were extracted by variable angle spectroscopic ellipsometry with Cauchy fitting at incidence angles of 65˚, 70˚ and 75˚.

  7. Processing of High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water - Final Report

    International Nuclear Information System (INIS)

    Arrington, C. A. Jr.

    2000-01-01

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of oxidation reactions at subcritical and supercritical temperatures are being followed by Raman spectroscopy using a high temperature stainless steel cell with diamond windows. In these reactions both hydrogen peroxide and nitrate anions are used as the oxidizing species with Cr(III) compounds and organic compounds as reducing agents

  8. Spectroscopic and thermal characterization of carbon nanotubes functionalized through diazonium salt reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangappa, Malingappa, E-mail: mprangachem@gmail.com [Department of Chemistry, Bangalore University, Central College Campus, Dr Ambedkar Veedhi, Bangalore 560 001 (India); Ramakrishnappa, Thippeswamy [Department of Chemistry, Bangalore University, Central College Campus, Dr Ambedkar Veedhi, Bangalore 560 001 (India)

    2010-08-01

    Chemical reduction of anthraquinone diazonium chloride (Fast Red AL salt) in presence of hypophosphorous acid and carbon nanotubes results in anthraquinonyl functionalized carbon nanotubes. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its voltammetric behaviour. The effect of pH, and scan rate has revealed that the modified species are confined on the electrode surface. The spectroscopic characterization of the modified single walled carbon nanotubes using Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, thermogravimetric analysis and transmission electron microscopy have revealed that the modifier molecules are covalently bonded on the surface of carbon nanotubes.

  9. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    Science.gov (United States)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  10. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

    Science.gov (United States)

    Nam, Hyeong Soo; Song, Joon Woo; Jang, Sun-Joo; Lee, Jae Joong; Oh, Wang-Yuhl; Kim, Jin Won; Yoo, Hongki

    2016-07-01

    Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.

  11. Synthesis and characterization of zeolite L

    International Nuclear Information System (INIS)

    Ko, Yong Sig; Ahn, Wha Seung

    1999-01-01

    Substantial reduction in synthesis time was achieved for zeolite L crystallization by attempting a hydrothermal synthesis at elevated temperature of 443K in a Na + /K+ mixed alkali system. Pure zeolite L could be obtained from a gel with the molar composition 5.4K 2 O-5.7Na 2 O-Al 2 O 3 -30SiO 2 -500H 2 O after 24h. Zeolite L could be obtained in high purity at the optimum Na 2 O/(K 2 O+Na 2 O) ratio of around 0.5, while zeolite W was formed when the Na 2 O/(K 2 O+Na 2 O) ratio was more than 0.66. The crystalline zeolite L samples obtained were characterized by means of elemental chemical analysis, XRD, SEM, FTi.r. spectroscopy, and particle size analyzer. In addition, two probe reaction studies were conducted. In toluene alkylation, H-L catalyst showed high catalytic activity at the beginning, but was deactivated quickly probably due to one-dimensional pore structure being blocked by the coke formed. High amounts of trimethylbenzene or diethylbenzene were observed due to the large 12-membered ring pore structure of zeolite L. Pt/NaKL catalyst prepared showed a high conversion of n-hexane and high selectivity to benzene in n-hexane aromatization reaction

  12. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  13. Green synthesis and characterization of graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Farnosh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-03-15

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductant but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.

  14. Synthesis, Characterization and Reactions of (Azidoethynyltrimethylsilane

    Directory of Open Access Journals (Sweden)

    Klaus Banert

    2015-12-01

    Full Text Available Synthesis of azido(trimethylsilylacetylene (6 was performed by treating the iodonium salt 5 with highly soluble hexadecyltributylphosphonium azide (QN3 at −40 °C. Although this product is very unstable, it can nevertheless be trapped by the click reaction with cyclooctyne to give the corresponding 1,2,3-triazole, and also directly characterized by 1H- and 13C-NMR data as well as IR-spectra, which were measured in solution at low temperature and in the gas phase. The thermal or photochemical decay of azide 6 leads to cyano(trimethylsilylcarbene. This is demonstrated not only by quantum chemical calculations, but also by the trapping reactions with the help of isobutene.

  15. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  16. Synthesis and characterization of a cerebral radiotracer

    International Nuclear Information System (INIS)

    Ben hamouda, Salem

    2010-01-01

    The development of nuclear medicine is based on research of new radiopharmaceuticals, in particular, relying on technetium-99m, the most used radioisotope in terms of availability and low cost. A similar study on Rhenium (185/187Re) is essential for monitoring physico-chemical studies due to the high specific activity of technetium-99m. During this work, we have synthesized and labeled with technetium the N-methyl-4-hydroxy piperidinyl ferrocenyl carboxylate. The marking is done by exchange of ligands between the iron group of ferrocene and tricabonyl technetium core. We have succeeded to synthesis the N-methyl-4-hydroxy piperidinyl carboxyl cyclopentadienyl tricarbonyl rhenium (the molecular analogue of the technetium). We characterized it by MS, IR and NMR (1H, 13C) The structure of N-methyl-4-hydroxy piperidinyl carboxyl cyclopentadienyl tricarbonyl technetium is well justified.

  17. Synthesis and spectroscopic identification of a new series of 2-iminothia-zolidin-4-one compounds from aromatic heterocyclic primary amines

    Science.gov (United States)

    Azeez, Hashim J.; Bahram, Roshna

    2017-09-01

    The present work describes the synthesis and spectroscopic characterization some new 2-imino-thiazolidin-4-one derivatives along with study of their antibacterial activities. The synthesis steps have been classified into three main parts as follows: The first part of this work included preparation of the starting material 2-amino-4-(substitutedphenyl)- 1,3-thiazole during the reaction of thiourea with substituted acetophenone in the presence of iodine. The second part was the synthesis of 2-chloroacetamido-4-(substitutedphenyl)-1,3-thiazole, which has been achieved by the reaction of heterocyclic amine which readily underwent nucleophilic substitution reaction with chloroacetyl chloride in benzene. The third part involved synthesized intermediate compounds, which easily undergo cyclization reaction and result in the formation of a new series of desired products 2-imino-3-[4-(substitutedphenyl)-1,3-thiazol-2-yl] thiazolidin-4-ones. The structures of the synthesized compounds were assigned on the basis of the spectral data such as IR, 1H-NMR, 13C-NMR and 13C-DEPT-135 spectra, which showed the expected frequencies and signals. Finally, the synthesized compounds were screened against two types of bacteria both Escherichia coli G (-ve) and Staphylococcus aureus G (+ve) microorganisms. The results revealed that most tested compounds were showed medium to high activity against both types of test organisms of bacteria especially against E-coli.

  18. Yb3+:Sr5(VO4)3F: Crystal growth, spectroscopic characterization and laser development

    International Nuclear Information System (INIS)

    Bustamante, Andrea Nora Pino

    1999-01-01

    Crystal growth, spectroscopic characterization and laser development of Yb 3+ :SVAP [Sr 5 (VO 4 ) 3 F] was performed to demonstrate for the first time, operation of tunable laser emission centered at 1120 nm. Initially, SVAP crystals were grown with high dopant concentrations, up to 6.0 mol % of Yb 2 O 3 in the melt, in order to investigate the material for potential laser operation at a new laser wavelength. Additional research was performed to alleviate highly doped SVAP crystals of defects previously observed. Basic spectroscopic characterization including absorption and luminescent properties were measured to better understand the behavior of Yb 3+ ions in SVAP. Based upon these studies, discussion of the 1120 nm laser transition is presented as it arises from a ground state vibrational level. Investigations of the charge compensation process and the optical parameters as a function of dopant concentration are also presented. The laser development of Yb 3+ :SVAP included continuous and pulsed modes of operation of the 1044 nm and 1120 nm transitions. Initial laser action of the 1044 nm transition was achieved using a Yi: Saphire laser pump source in order to compare with previously results. Further development of a diode-pumped Yb 3+ :SVAP laser system demonstrated continuously tunable laser operation from 1103 nm for the first time. The laser investigations also proved that this high gain media does provide continuous wave laser action at 1044 nm and 1120 simultaneously without significant gain depletion. (author)

  19. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study

    Science.gov (United States)

    Hossain, Mossaraf; Thomas, Renjith; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Two newly synthetized imidazole derivatives (1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (MPDIA) and 1-(4-bromophenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (BPDIA)) have been prepared by solvent-free synthesis pathway and their specific spectroscopic and reactive properties have been discussed based on combined experimental and computational approaches. Aside of synthesis, experimental part of this work included measurements of IR, FT-Raman and NMR spectra. All of the aforementioned spectra were also obtained computationally, within the framework of density functional theory (DFT) approach. Additionally, DFT calculations have been used in order to investigate local reactivity properties based on molecular orbital theory, molecular electrostatic potential (MEP), average local ionization energy (ALIE), Fukui functions and bond dissociation energy (BDE). Molecular dynamics (MD) simulations have been used in order to obtain radial distribution functions (RDF), which were used for identification of the atoms with pronounced interactions with water molecules. MEP showed negative regions are mainly localized over N28, O29, O35 atoms, it is represent with red colour in rainbow color scheme for MPDIA and BPDIA (which are most reactive sites for electrophilic attack). The first order hyperpolarizabilities of MPDIA and BPDIA are 20.15 and 6.10 times that of the standard NLO material urea. Potential interaction with antihypertensive protein hydrolase.

  20. Synthesis and characterization of dental composites

    Science.gov (United States)

    Djustiana, Nina; Greviana, Nadia; Faza, Yanwar; Sunarso

    2018-02-01

    During the last few decades, the increasing demands in esthetic dentistry have led to the development of dental composites material that provide similar appearance to the natural teeth. Recently, esthetic trend was an issue which increase the demand for teeth restorations that is similar with the origin. The esthetics of dental composite are more superior compared to amalgam, since its color look similar with natural teeth. Various dental composites have been developed using many type of fillers such as amorphous silica, quartz), borosilicate, Li-Sr-Ba-Al glass and oxide: zirconia and alumina. Researchers in Faculty of Dentistry University of Padjadjaran have prepared dental composites using zirconia-alumina-silica (ZAS) system as the filler. The aim is to improve the mechanical properties and the esthetic of the dental composites. The ZAS was obtained from chemical grade purity chemicals and Indonesia's natural sand as precursors its characterization were also presented. This novel method covers the procedure to synthesis and characterize dental composites in Padjadjaran University and some review about dental composites in global research.

  1. Synthesis, crystal structure and spectroscopic properties of ethanol solvated α-Keggin heteropolymolybdate

    Science.gov (United States)

    Tümer, Ferhan; Köse, Muhammet; Tümer, Mehmet

    2017-11-01

    In this study, the ethanol solvated α-Keggin heteropolymolybdate (A) was prepared and characterized by the spectroscopic methods such as single-crystal X-ray diffraction, Uv-vis, FT-IR and photoluminescence methods. Thermal analysis of the compound (A) was performed in the 20-1000 °C range in the N2 atmosphere and electrochemical studies were carried out in the 100-1000 mV/s scan rate range. The ethanol solvated α-Keggin compound exhibits three irreversible anodic and cathodic peak potentials. The structure of the Keggin type polyoxometalate compound was solved in trigonal unit cell and R-3 space group with Rfinal value of 0.0507. The structure of the compound contains H4[SiMo12O40] molecule and three ethanol solvates. The Hirshfeld surface for H4[SiMo12O40]·3EtOH was obtained to determine the interaction sites within the crystal structure. A cyclic hydrogen bond pattern was shown by a large number of fused spots in the fingerprint plot and these hydrogen bond contacts link the other symmetry-related molecules forming a 3D hydrogen bond networks. Hydrogen bond interactions resulted in the formation of honey comb structure.

  2. Synthesis, spectroscopic, DFT and in vitro biological studies of vanadium(III) complexes of aryldithiocarbonates

    Science.gov (United States)

    Andotra, Savit; Kumar, Sandeep; Kour, Mandeep; Vikas; Chayawan; Sharma, Vishal; Jaglan, Sundeep; Pandey, Sushil. K.

    2017-06-01

    Vanadium(III) tris(dithiocarbonates), [(ROCS2)3V] (R = o-, m-, p-CH3C6H4 and 4-Cl-3-CH3C6H3) and donor stabilized addition complexes [(ROCS2)2V(Cl)·L] [L = NC5H5 or P(C6H5)3] were synthesized and characterized by elemental analyses, IR, mass, TGA/DTA, SEM magnetic susceptibility and heteronuclear NMR (1H, 13C and 31P) spectroscopic studies. The cytotoxicity of the complexes was measured in vitro using the cultivated human cell lines. In addition, the antioxidant activities of the ligands and its vanadium complexes were also investigated through their scavenging effect on DPPH radicals. The antimicrobial activity of ligands and some complexes has been conducted against three bacterial strains and fungus. The density functional theory (DFT) calculations of ligands and vanadium complexes were performed by the DFT/B3LYP/LANL2DZ method to obtain the optimized molecular geometry, vibrational frequencies, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), thermodynamic properties and various other quantum-mechanical parameters.

  3. Synthesis, characterization and catalytic activity of sulphonated multi ...

    Indian Academy of Sciences (India)

    MWCNTs-SO3H was prepared and characterized by some microscopic and spectroscopic techniques including scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and Raman spectroscopy. Acidity of the catalyst was measured by acid-base titration. The catalyst was reused several times ...

  4. Synthesis, characterization and antimicrobial activities of a Schiff ...

    African Journals Online (AJOL)

    Complexes of Cu(II), Ni(II) and Mn(II) with a Schiff base derived from condensation reaction of phenylalanine and acetylacetone have been synthesized and characterized analytically and spectroscopically. Melting point of the Schiff base was 188oC and the complexes decompose within a temperature range of 210-242oC.

  5. Green Synthesis and Characterization of Biosilica Produced from Sugarcane Waste Ash

    Directory of Open Access Journals (Sweden)

    Rodrigo Heleno Alves

    2017-01-01

    Full Text Available In this study, ash from sugarcane waste was used in the synthesis of biosilica using alkaline extraction followed by acid precipitation. Different parameters that could influence the silica particle synthesis were evaluated. The ash and synthesized biosilica were characterized by a combination of spectroscopic and chemical techniques such as XRD, XRF, SEM, particle size analyser, N2 adsorption analysis, TGA, and FTIR. The best condition for biosilica production was achieved with fusion method and aging temperature of 80°C for 1 h during gel formation. X-ray powder diffraction pattern confirms the amorphous nature of synthesized silica. The purity of the prepared silica was 99% silica which was confirmed by means of XRF. The experimental data suggest that the sugarcane waste ash could be converted into a value-added product, minimizing the environmental impact of disposal problems.

  6. Synthesis and characterization of fluorine compounds

    International Nuclear Information System (INIS)

    Martinez Carrillo, M.

    1991-01-01

    The ( 18 F) D-glucose, 2-deoxy fluorine ( 18 FDG) is a radio pharmaceutic that is used in nuclear medicine it is utilized mainly in the glucose metabolism. It allows recently to observe the tumors accumulation and growing. The obtention of this radio pharmaceutic can realize by a nucleophilic or electrophilic process through the use of different fluorinated agents obtained as intermediates for introducing the 18 F radionuclide in a final step of synthesis. The first methods already has been studied in the National Institute of Nuclear Research. The second one which is based this work and it was realized through the reaction of acetyl hypo fluorite (CH 3 COOF) with tri acetyl glucal (TAG) in turn they require the obtention of several fluorated compounds that they serve as intermediates for their obtention so that objective of this work was to find the adequate technique for the obtention of anhydride hydrofluoric acid (HF), KF.2 HF and elemental fluorine so as the design and construction of the systems and equipment used for carry out each one of the reactions. Moreover it was designed the system that will be used for the obtention of acetyl hypo fluoride and the synthesis of composite tetraacetilide 3,4,6 tri-D-glucopyranosil fluoride (TAG-F) for that finally by hydrolysis it was obtained the 2-deoxy fluoride-D-glucose (TAG) in inactive. In this system were realized several preliminary tests. The results are showed in the content of this work also the techniques for compounds characterization were given. (Author)

  7. Synthesis and Characterization of Nano Scale YBCO

    International Nuclear Information System (INIS)

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  8. Dual emitter IrQ(ppy){sub 2} for OLED applications: Synthesis and spectroscopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ciobotaru, I.C. [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Polosan, S., E-mail: silv@infim.ro [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, C.C. [Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 149 Calea Victoriei, 010072 (Romania)

    2014-01-15

    The synthesis of organometallic compound with iridium and two types of ligands, quinoline and phenylpyridine, was done successfully. The absorption spectra of this compound have shown broad peaks in a visible region assigned to metal-to-ligands charge transfer and in UV region assigned to intraligand absorptions. The photoluminescence spectra exhibit dual character in which the red emission is more intense than the green one. In cathodoluminescence measurements, under electron beam, the powder obtained after recrystallization from dichloromethane, shows similar behaviors with photoluminescence spectra. The cathodoluminescence images have shown a luminescent crystalline powder with triclinic structure. This compound exhibits combined vibrational modes, which proves the presence in the same molecule of both ligands. Density Functional Theory calculation was involved in order to identify the main vibrations of this compound. Highlights: • Mixed-ligand of IrQ(ppy){sub 2} synthesis which gives green and red phosphorescence due to the MCLT processes coming from two types of ligands. • Absorption, photoluminescence, infrared spectroscopy and cathodoluminescence measurements for characterization of IrQ(ppy){sub 2} organometallic compound. • Experimental results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software.

  9. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles.

    Science.gov (United States)

    El-Shishtawy, Reda M; Asiri, Abdullah M; Al-Otaibi, Maha M

    2011-09-01

    A facile approach for the synthesis of stable aqueous dispersion of silver nanoparticles (AgNPs) using glucose as the reducing agent in water/micelles system, in which cetyltrimethylammonium bromide (CTAB) was used as capping agent (stabilizer) is described. The evolution of plasmon band of AgNPs was monitored under different conditions such as (a) concentration of sodium hydroxide, (b) concentration of glucose, (c) concentration of silver nitrate (d) concentration of CTAB, and (e) reaction time. AgNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy and FT-IR spectroscopy. The results revealed an easy and viable strategy for obtaining stable aqueous dispersion of AgNPs with well controlled shape and size below 30 nm in diameter. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT.

    Science.gov (United States)

    Bardak, F; Karaca, C; Bilgili, S; Atac, A; Mavis, T; Asiri, A M; Karabacak, M; Kose, E

    2016-08-05

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, (1)H and (13)C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400nm. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400cm(-1) and 3500-50cm(-1), respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The (13)C and (1)H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives.

    Science.gov (United States)

    Krishnanjaneyulu, Immadisetty Sri; Saravanan, Govindaraj; Vamsi, Janga; Supriya, Pamidipamula; Bhavana, Jarugula Udaya; Sunil Kumar, Mittineni Venkata

    2014-01-01

    A series of novel N-((1H-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-substituted-4, 5-dihydro-1-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-substituted-4, 5-dihydro-1H-pyrazol-3-yl) benzenamine were synthesized by treating various 1-(4-((1H-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one with phenyl hydrazine in the presence of sodium acetate through a simple ring closure reaction. The starting material, 1-(4-((1H-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one,-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one, was synthesized from o-phenylenediamine by a multistep synthesis. All the synthesized compounds were characterized by spectroscopic means and elemental analyses. The title compounds were investigated for in vitro antibacterial and antifungal properties against some human pathogenic microorganisms by employing the agar streak dilution method using Ciprofloxacin and Ketoconazole as standard drugs. All title compounds showed activity against the entire strains of microorganism. Structural activity relationship studies reveal that compounds possessing an electron-withdrawing group display better activity than the compounds containing electron-donating groups, whereas the unsubstituted derivatives display moderate activity. Based on the results obtained, N-((1H-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-(4-(trifluoromethyl) phenyl)-4,5-dihydro-1H-pyrazol-3-yl) benzenamine 5i was found to be very active compared with the rest of the compounds and standard drugs that were subjected to antimicrobial assay.

  12. Synthesis and characterization of nanoparticles capped with medicinal plant extracts

    Science.gov (United States)

    Rekulapally, Sujith R.

    In this study, synthesis, characterization and biological application of series nanometal (silver, Ag) and nanometal oxide (titania, TiO2) were carried out. These nanomaterials were prepared using wet-chemistry method and then coated using natural plant extract. Three medicinal plants, namely Zingiber officinale (Ginger), Allium sativum (Garlic) and Capsicum annuum (Chili) were chosen as grafting agent to decrease the side-effects and increase the efficiency of NPs towards living organism. Extraction conditions were controlled under 60-100 °C for 8 hrs. Ag and TiO2 NPs were fabricated using colloidal chemistry and variables were controlled at ambient condition. The band gap of TiO2 NPs used as disinfectant was also modified through coating the medicinal plant extracts. The medicinal plant extracts and coated NPs were measured using spectroscopic methods. Ultraviolet-visible spectra indicated the Ag NPs were formed. The peak at 410 nm resulted from the electrons transferred from their ground to the excited state. The broadened full width at half maximum (FWHM) suggested the ultrafine particles were obtained. The lipid soluble compounds, phenols, tri-terpenoids, flavanoids, capsaicinoids, flavonoids, carotenoids, steroids steroidal glycosides, and vitamins were determined from the high performance liquid chromatographical analyses. X-ray powder diffraction indicated that the face-centered cubic Ag (PDF: 00-004-0783, a = 4.0862A, a = 90°) and anatase TiO2 (PDF: 01-08-1285, a = 3.7845, c = 9.5143A, a = 90°) were obtained using colloidal chemistry. Bactericidal activity indicated that these core-shelled TiO 2 were effective (MBC=0.6 ppm, within 30 mins) at inactivating Gram-positive and Gram-negative bacteria. It is proposed that the medicinal extracts enhanced the potency of NPs against bacteria. From our previous study, the Ag NPs were highly effective at inactivating both bacteria.

  13. Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Immadisetty Sri Krishnanjaneyulu

    2014-01-01

    Full Text Available A series of novel N-((1H-benzoimidazol-1-yl methyl-4-(1-phenyl-5-substituted-4, 5-dihydro-1-benzoimidazol-1-yl methyl-4-(1-phenyl-5-substituted-4, 5-dihydro-1H-pyrazol-3-yl benzenamine were synthesized by treating various 1-(4-((1H-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one with phenyl hydrazine in the presence of sodium acetate through a simple ring closure reaction. The starting material, 1-(4-((1H-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one,-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one, was synthesized from o-phenylenediamine by a multistep synthesis. All the synthesized compounds were characterized by spectroscopic means and elemental analyses. The title compounds were investigated for in vitro antibacterial and antifungal properties against some human pathogenic microorganisms by employing the agar streak dilution method using Ciprofloxacin and Ketoconazole as standard drugs. All title compounds showed activity against the entire strains of microorganism. Structural activity relationship studies reveal that compounds possessing an electron-withdrawing group display better activity than the compounds containing electron-donating groups, whereas the unsubstituted derivatives display moderate activity. Based on the results obtained, N-((1H-benzoimidazol-1-yl methyl-4-(1-phenyl-5-(4-(trifluoromethyl phenyl-4,5-dihydro-1H-pyrazol-3-yl benzenamine 5i was found to be very active compared with the rest of the compounds and standard drugs that were subjected to antimicrobial assay.

  14. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Terry [The Ohio State Univ., Columbus, OH (United States)

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work has demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.

  15. Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure.

    Science.gov (United States)

    Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi

    2016-09-01

    The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.

  16. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  17. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  18. Synthesis and characterization of cuprate superconductors

    International Nuclear Information System (INIS)

    Schaeffer, R.W. III.

    1992-01-01

    Superconducting powders and films were synthesized by a variety of methods and solvent systems: chemical solidification, freeze drying, and spray pyrolysis from livid ammonia (to form powders and films); reactions in molten sodium hydroxide/sodium peroxide and sodium nitrate/potassium nitrate mixtures (to form powders); and gel formation, coprecipitation, and spray drying from aqueous/organic mixtures (to form powders and films). These materials were characterized for elemental content and phase purity by gravimetric and volumetric analysis, atomic absorption spectroscopy, x-ray fluorescence and x-ray diffraction techniques. Particle size and surface morphology were determined by scanning electron microscopy and x-ray diffraction analysis. Also, precursor reactions were followed as a function of temperature with thermal gravimetric analysis and differential scanning calorimetry. Finally, physical properties determined for the resulting superconducting phases included resistivity, magnetic susceptibility, critical current, and percent Meissner effect. These results are discussed as a function of process parameters with particular attention to the role of atomic level mixing in solid state synthesis

  19. Synthesis and Characterization of 2-D Materials

    Science.gov (United States)

    Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.

    Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.

  20. Synthesis and characterization of novel nanothermometers

    Energy Technology Data Exchange (ETDEWEB)

    Baumert, Delphine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Larsen, George [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Schyck, Sarah [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-23

    A straightforward approach was developed for the synthesis of Pd, Pd-Fe2O3, Au-Fe2O3, and Au-Pd-Fe2O3 nanothermometers, using a single SL DNA. These NP-DNA conjugates were characterized using techniques including EDX measurements, ζ-potential of NPs before and after DNA functionalization, electron microscopy studies and fluorescence spectroscopy. The fluorescence studies of the NP-DNA demonstrate the interaction between the NP and the fluorophore, which is quenched in the case of Au-Pd-Fe2O3 NPs and is perhaps enhanced (when compared to AuNPs) in the case of Pd and Pd-Fe2O3 NPs. In order to achieve more accurate and reproducible measurements, designing a system that is able to hold the NP-DNA conjugates at a temperature for a longer period of time to allow them to 12 equilibrate is currently underway. Our studies show that Au-Pd-Fe2O3 NPs are the best candidate material to serve as nanothermometers when compared to Pd, Pd-Fe2O3, and Au-Fe2O3 materials.

  1. SYNTHESIS AND CHARACTERIZATION OF IRON (II) AND NICKEL ...

    African Journals Online (AJOL)

    DR. AMINU

    SYNTHESIS AND CHARACTERIZATION OF IRON (II) AND NICKEL (II). SCHIFF BASE COMPLEXES. * Aliyu, H. N. and A. S. ... synthesis and magnetic studies on schiff base complexes of copper (II). Recently, Xishi et al. (2003) .... pyridylmethanimines as Tuneable Alternatives to Bipyridine Ligan in Copper Medicated Atom.

  2. Synthesis and characterization of six-membered pincer ...

    Indian Academy of Sciences (India)

    0013167

    SUPPORTING INFORMATION. REGULAR ARTICLE. Synthesis and characterization of six-membered pincer nickelacycles and application in alkylation of benzothiazole. †. HANUMANPRASAD PANDIRI,a DIPESH M SHARMA,a RAJESH G GONNADEb and. BENUDHAR PUNJI*,a. aOrganometallic Synthesis and Catalysis ...

  3. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    Science.gov (United States)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  4. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  5. Gold (I)-selenolate complexes: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    selenolate complexes: Synthesis, characterization and ligand exchange reactions. Krishna P Bhabak ... This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the ...

  6. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 116; Issue 5. Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. Bikash Kumar Panda. Volume 116 ... Keywords. Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium.

  7. Synthesis and characterization of ceria nanomaterials

    Science.gov (United States)

    Cheong Ng, Nitzia

    Cerium dioxide or ceria, CeO2, has been widely used in industry as catalyst for automotive exhaust controls, chemical mechanical polishing (CMP) slurries, and high temperature fuel cells because of its unique metal oxide properties. This well-known rare metal oxide has high thermal stability, electrical conductivity and chemical diffusivity. Proper synthesis method requires knowledge of reaction temperature, concentration, and time effects on the synthesis. In this work, ceria nanomaterials were prepared via the hydrothermal method using a Teflon autoclave. Cerium nitrate solution was used as the source and three different precursors: NaOH, H2O 2, and NH4OH were used as the oxidizing agents. CeO 2 nanoplates, nanocubes and nanorods were produced and studied using transmission electron microscopy (TEM), BET specific surface area, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Through characterization, CeO2 nanomaterials showed the presence of mixed valence states (Ce3+ and Ce4+) through XPS spectra. Deconvolution was performed to investigate the ratio of Ce 3+/Ce4+ concentration in the synthesized CeO2 nanostructures. Nanocubes showed a higher Ce3+ concentration. CeO2 nanomaterials were found to be mesoporous. Nanoplates synthesized with H2O2, and NH4OH were found with surface areas of 95.11 m2/g and 62.07 m2/g, respectively. Nanorods and nanocubes showed surface areas of 16.77 m2/g and 16.55 m2/g, respectively. The prepared ceria nanoplates, nanocubes and nanorods had crystallite size in the range of 5--25 nm and pore size range of 7--15 nm. XRD spectra confirmed that the peaks were indexed to the cubic phase of CeO2 with fluorite structure and with an average lattice parameter, 5.407 A. Higher Ce3+ concentration and exposed surface of crystalline planes suggest that nanorods are better catalyst for CO oxidation and oxygen storage capacity (OSC).

  8. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  9. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Nobrega

    2012-01-01

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  10. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Science.gov (United States)

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  11. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Directory of Open Access Journals (Sweden)

    Magali Roger

    Full Text Available Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  12. Novel Green Synthesis and Characterization of Nanopolymer ...

    African Journals Online (AJOL)

    Purpose: To develop a novel approach to green synthesis of nano-polymer porous gold oxide nanoparticles, and examine the effects of the temperatures on their surface. Methods: Green synthesis of nano-polymer porous gold oxide nanoparticles (GONPs) using cetyle trimethylammonium bromide (CTAB) surfactant with a ...

  13. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Lenka Kucková

    2015-01-01

    Full Text Available Mixed ligand copper(II complexes containing derivatives of salicylic acid and heterocyclic ligands with nitrogen donor atoms have been the subject of various studies and reviews. In this paper, synthesis and characterization of the ternary copper(II complexes of neocuproine (2,9-dimethyl-1,10-phenanthroline, Neo and salicylate ligands (Sal are reported. In addition, the crystal structures of ([Cu(H2O(5-Cl-Sal(Neo] (1, [Cu(μ-Sal(Neo]2 (2, Cu2(μ-5-Cl-Sal(5-Cl-HSal2(Neo2]·EtOH (3 were determined. In order to compare structural and biological properties of the prepared complexes, spectroscopic and biological studies were performed. Results of X-ray diffraction show that prepared complexes form three types of crystal structures in a given system: monomeric, dimeric and dinuclear complex. The preliminary study on the DNA cleavage activity has shown that the complexes under study behave as the chemical nucleases in the presence of added hydrogen peroxide with slight differences in the activity (1 > 2 > 3. The complexes 1 and 2 exhibited nuclease activity itself indicating the interaction of complexes with the DNA. It has been proposed that the enhanced destructive effect of the complexes 1 and 2 on the DNA is a result of two possible mechanisms of action: (i the conversion of closed circular DNA (form I to the nicked DNA (form II caused by the copper complex itself and (ii damage of DNA by Reactive Oxygen Species (ROS—products of the interaction of copper with hydrogen peroxide by means of Fenton reaction (hydroxyl radicals. Thus the biological activity of the prepared Cu(II complexes containing derivatives of salicylic acid and phenanthroline molecules is substantiated by two independent mechanisms. While derivatives of salicylic acids in the coordination sphere of copper complexes are responsible for radical-scavenging activity (predominantly towards superoxide radical anion, the presence of chelating ligand 2,9-dimethyl-1,10-phenanthroline

  14. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    Science.gov (United States)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  15. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  16. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    Energy Technology Data Exchange (ETDEWEB)

    Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com [Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology, Calicut, Kerala 673601 (India)

    2014-10-15

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  17. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    Science.gov (United States)

    Thappily, Praveen; Shiju, K.

    2014-10-01

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  18. Spectroscopic characterization of the on-surface induced (cyclo) dehydrogenation of a N-heteroaromatic compound on noble metal surfaces

    Czech Academy of Sciences Publication Activity Database

    Palacio, I.; Pinardi, A. L.; Martínez, J. I.; Preobrajenski, A.; Cossaro, A.; Jančařík, Andrej; Stará, Irena G.; Starý, Ivo; Méndez, J.; Martín-Gago, J.A.; López, M.F.

    2017-01-01

    Roč. 19, č. 33 (2017), s. 22454-22461 ISSN 1463-9076 Institutional support: RVO:61388963 Keywords : dibenzohelicene * on-surface (cyclo)dehydrogenation * spectroscopic characterization Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.123, year: 2016

  19. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  20. Unusual coordination modes of ligand 2-chloro-5-nitrobenzene sulfonate: Synthesis, spectroscopic characterization, thermal and X-ray structural studies of metal 2-chloro-5-nitrobenzene sulfonate complexes, metal = Tl(I), Cu(II), Ag(I) and Pb(II)

    Science.gov (United States)

    Sharma, Raj Pal; Kumar, Santosh; Venugopalan, Paloth; Aree, Thammarat; Starynowicz, Przemysław

    2016-03-01

    Using metal ions thallium(I), copper(II), silver(I) and lead(II) and ligand 2-chloro-5-nitrobenzenesulfonate(cnb), four new metal complexes [Tl(cnb)]n(1), [Cu(en)2(H2O)2](cnb)2.2H2O(2), where en = ethylenediamine, [Ag(cnb)]n(3) and [Pb(cnb)2]n(4) have been synthesized and characterized by elemental analyses, spectroscopic methods (FT-IR, multinuclear NMR), single crystal X-ray structure analyses (except 4) and TGA analyses. Complexes 1 and 3 crystallize in monoclinic crystal system in P21/c space group having unit cell dimensions, a = 13.849(2) Å, b = 9.449(2) Å, c = 7.506(2)Å, β = 105.3°, V = 947.1 Å3, Z = 4 and a = 15.197(13)Å, b = 5.136(4)Å, c = 24.058(18)Å, β = 106.86°, V = 1797.1 Å3, Z = 4 respectively. Complex 2, crystallizes in triclinic crystal system with PI bar having unit cell parameters; a = 6.888 Å, b = 7.835 Å, c = 13.227 Å, α = 80.20°, β = 83.15°, γ = 78.18°, V = 945.6 Å3, Z = 1. X-ray structure determination revealed that complexes 1 and 3 are polymeric in nature, whereas complex 2 has ionic structure. Remarkably, cnb ligand is coordinating through sulfonato oxygen atoms and nitro oxygen atoms in thallium complex but coordinates through sulfonato oxygen atoms and chloro group in silver complex, thereby showing the flexible/versatile coordinating behaviour of anionic ligand. This is unusual.

  1. Synthesis, Molecular Structure and Spectroscopic Investigations of Novel Fluorinated Spiro Heterocycles

    Directory of Open Access Journals (Sweden)

    Mohammad Shahidul Islam

    2015-05-01

    Full Text Available This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a and 2,4-dimethyl-7,11-bis (4-(trifluoromethylphenyl-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.

  2. Magnetic Resonance Spectroscopic Imaging of Tumor Metabolic Markers for Cancer Diagnosis, Metabolic Phenotyping, and Characterization of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Qiuhong He

    2004-01-01

    Full Text Available Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors modify their biochemical pathways, which results in abnormal tumor metabolism. An elevation in glycolysis known as the “Warburg effect” and changes in lipid synthesis and oxidation occur. Magnetic resonance spectroscopy (MRS has been used to study tumor metabolism in preclinical animal models and in clinical research on human breast, brain, and prostate cancers. This technique can identify specific genetic and metabolic changes that occur in malignant tumors. Therefore, the metabolic markers, detectable by MRS, not only provide information on biochemical changes but also define different metabolic tumor phenotypes. When combined with the contrast-enhanced Magnetic Resonance Imaging (MRI, which has a high sensitivity for cancer diagnosis, in vivo magnetic resonance spectroscopic imaging (MRSI improves the diagnostic specificity of malignant human cancers and is becoming an important clinical tool for cancer management and care. This article reviews the MRSI techniques as molecular imaging methods to detect and quantify metabolic changes in various tumor tissue types, especially in extracranial tumor tissues that contain high concentrations of fat. MRI/MRSI methods have been used to characterize tumor microenvironments in terms of blood volume and vessel permeability. Measurements of tissue oxygenation and glycolytic rates by MRS also are described to illustrate the capability of the MR technology in probing molecular information non-invasively in tumor tissues and its important potential for studying molecular mechanisms of human cancers in physiological conditions.

  3. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    –1 dry exchanger, respectively. The material ... been found to have better properties than the simple salts of metals. The selectivity may be enhanced ... capacity and higher stability at elevated temperature. This paper deals with the synthesis, ...

  4. Spectroscopic characterization of iron-doped II-VI compounds for laser applications

    Science.gov (United States)

    Martinez, Alan

    The middle Infrared (mid-IR) region of the electromagnetic spectrum between 2 and 15 ?m has many features which are of interest to a variety of fields such as molecular spectroscopy, biomedical applications, industrial process control, oil prospecting, free-space communication and defense-related applications. Because of this, there is a demand for broadly tunable, laser sources operating over this spectral region which can be easily and inexpensively produced. II-VI semiconductor materials doped with transition metals (TM) such as Co 2+, Cr2+, or Fe2+ exhibit highly favorable spectroscopic characteristics for mid-IR laser applications. Among these TM dopants, Fe2+ has absorption and emission which extend the farthest into the longer wavelength portion of the mid-IR. Fe2+:II-VI crystals have been utilized as gain elements in laser systems broadly tunable over the 3-5.5 microm range [1] and as saturable absorbers to Q -switch [2] and mode-lock [3] laser cavities operating over the 2.7-3 microm. TM:II-VI laser gain elements can be fabricated inexpensively by means of post-growth thermal diffusion with large homogeneous dopant concentration and good optical quality[4,5]. The work outlined in this dissertation will focus on the spectroscopic characterization of TM-doped II-VI semiconductors. This work can be categorized into three major thrusts: 1) the development of novel laser materials, 2) improving and extending applications of TM:II-VI crystals as saturable absorbers, and 3) fabrication of laser active bulk crystals. Because current laser sources based on TM:II-VI materials do not cover the entire mid-IR spectral region, it is necessary to explore novel laser sources to extend available emissions toward longer wavelengths. The first objective of this dissertation is the spectroscopic characterization of novel ternary host crystals doped with Fe2+ ions. Using crystal field engineering, laser materials can be prepared with emissions placed in spectral regions not

  5. Synthesis, Characterization and Antimicrobial Activity of Copper(II ...

    African Journals Online (AJOL)

    This study presents the synthesis, characterization and antimicrobial activity of copper(II) complexes of some ortho-substituted aniline Schiff bases (L1–L8). The Schiff bases and their respective copper(II) complexes were characterized by a combination of elemental analysis, infrared and UV/Visible studies. The structures of ...

  6. Synthesis and characterization of poly(2,5-dimethoxyaniline) and ...

    Indian Academy of Sciences (India)

    Unknown

    Mater. Sci., Vol. 24, No. 4, August 2001, pp. 389–396. © Indian Academy of Sciences. 389. Synthesis and characterization of poly(2,5-dimethoxyaniline) and poly(aniline-Co-2 ... remarkably improved solubility in common organic solvents, were obtained by chemical polymerization, and characterized by a host of physical ...

  7. Spectroscopic characterization of extrasolar planets from ground-, space- and airborne-based observatories

    Science.gov (United States)

    Angerhausen, Daniel

    2010-11-01

    This thesis deals with techniques and results of observations of exoplanets from several platforms. In this work I present and then attempt solutions to particular issues and problems connected to ground- and space-based approaches to spectroscopic characterization of extrasolar planets. Furthermore, I present the future prospects of the airborne observatory, SOFIA, in this field of astronomy. The first part of this thesis covers results of an exploratory study to use near-infrared integral-field-spectroscopy to observe transiting extrasolar planets. I demonstrate how adaptive-optics assisted integral field spectroscopy compares with other spectroscopic techniques currently applied, foremost being slit spectroscopy. An advanced reduction method using elements of a spectral-differential decorrelation and optimized observation strategies is discussed. This concept was tested with K-Band time series observations of secondary eclipses of HD 209458b and HD 189733b obtained with the SINFONI at the Very Large Telescope (VLT), at spectral resolution of R~3000. In ground-based near infrared (NIR) observations, there is considerable likelihood of confusion between telluric absorption features and spectral features in the targeted object. I describe a detailed method that can cope with such confusion by a forward modelling approach employing Earth transmission models. In space-based transit spectroscopy with Hubble's NICMOS instrument, the main source of systematic noise is the perturbation in the instrument's configuration due to the near Earth orbital motion of the spacecraft. I present an extension to a pre-existing data analysis sequence that has allowed me to extract a NIR transmission spectrum of the hot-Neptune class planet GJ 436b from a data set that was highly corrupted by the above mentioned effects. Satisfyingly, I was able to obtain statistical consistency in spectra (acquired over a broad wavelength grid) over two distinct observing visits by HST. Earlier

  8. Synthesis of mixed-linked xylans for enzyme characterization

    DEFF Research Database (Denmark)

    Boos, Irene; Clausen, Mads Hartvig

    of arabinoxylans. This can be achieved by chemical synthesis of well-defined oligosaccharides as models for the more complex macromolecules. Moreover, the utilization of enzyme resistant substrates can support the mapping of the active site of glycosyl-hydrolases. The talk will highlight the synthesis of mixed O......- and S-linked tetraxylans as possible interesting candidates for the investigation and characterization of arabinoxylan degrading enzymes....

  9. Studies on bismuth carboxylates—synthesis and characterization of ...

    Indian Academy of Sciences (India)

    synthesis and characterization of a new structural form of bismuth(III) dipicolinate ... Synthesis and X-ray structure of a new bismuth dipicolinate cooordination polymer, {[Bi((2,6-O2C)2C5H3N)((2-HO2C-6-O2C)C5H3N)(H2O)]2.5H2O} (7) are ...

  10. Characterization of a spectroscopic detector for application in x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fix, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, W. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are ±0.4 and ±0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 ± 5 ns. This is consistent with the manufacturer’s quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9% (typical) and 12% (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of about 20 mm shows an underestimation of attenuation by about 10% at 60 keV. This error is due to partial energy deposition from higher-energy (> 60 keV) photons into a lower-energy (~60 keV) bin, reducing the apparent attenuation. A radiograph of a PTFE cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion

  11. Characterization of a spectroscopic detector for application in x-ray computed tomography

    Science.gov (United States)

    Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.

    2017-09-01

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is

  12. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    of silver tungstate nanoparticles. 2. Experimental. Silver tungstate nanoparticles were synthesized by reacting AR grade silver nitrate. (AgNO3) and sodium tungstate (Na2WO4) using distilled water as solvent at room temperature. The method followed for this synthesis is similar to that used by. Takahashi et al [9]. However ...

  13. Synthesis and Characterization of Colloidal MCM-41

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Zukalová, Markéta; Kooyman, P. J.; Zukal, Arnošt

    2004-01-01

    Roč. 241, - (2004), s. 81-86 ISSN 0927-7757 Institutional research plan: CEZ:AV0Z4040901 Keywords : colloidal MCM-41 * homogeneous precipitation * salt effect in the synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.513, year: 2004

  14. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    NARCIS (Netherlands)

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.

    2010-01-01

    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  15. Synthesis and Characterization of Nanostructured Sulfated Zirconias

    Czech Academy of Sciences Publication Activity Database

    Lutecki, M.; Šolcová, Olga; Werner, S.; Breitkopf, C.

    2010-01-01

    Roč. 53, č. 1 (2010), s. 13-20 ISSN 0928-0707 Grant - others:DFG(DE) BR2068/2-1; DFG(DE) BR2068/2-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : sulfated zirconia * template assisted synthesis * porous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  16. Synthesis, spectral characterization and in vitro antibacterial ...

    African Journals Online (AJOL)

    Shafqat Nadeem

    2015-12-17

    Dec 17, 2015 ... Petra/Osiris/Molinspiration analysis. Abstract The paper emphasizes on the synthesis of Palladium(II) iodide complexes containing based ligands. The new compounds .... The spectral conditions were as follows: 32 K data points,. 1.822 s acquisition time, 2.00 s pulse delay and 6.00 ls pulse width. The 13C ...

  17. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    Abstract. The synthesis, crystal structure, redox characteristics and photochemistry of a new heptamolyb- date supported magnesium-aqua coordination complex viz. (hmtH)2[{Mg(H2O)5}2{Mo7O24}]·3H2O 1 (hmt. = hexamethylenetetramine) is reported. The cyclic voltammogram reveals quasireversible redox behaviour.

  18. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    ... nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent ...

  19. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    eral plant extracts, particularly Lantana camara, Moringa oleifera, Catharanthus roseus, Eucalyptus hybrid, Cassia auriculata.23 However, potential of the plants as biologi- cal materials for the synthesis of nanoparticles is still under exploitation. In the present study, we developed an optimized method for syntheses of silver ...

  20. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    sants.20 Comparative structure of drugs and reported bio-active quinoline derivatives shown in figure 1. As a result of remarkable pharmacological efficiency of quinoline, pyrimidine and morpholine derivatives, our studies have been focused towards the synthesis and bio-evaluation of these derivatives by hybrid approach.

  1. Synthesis, stabilization, and characterization of metal nanoparticles

    Science.gov (United States)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  2. Synthesis, Characterization and Application of Nano Lepidocrocite ...

    African Journals Online (AJOL)

    NICO

    were finely ground with a pestle in an agate mortar and were stored in an airtight bottle. 2.3. Synthesis of Magnetite (Fe3O4) Nanoparticles. Fe3O4 nanoparticles were synthesized in a similar fashion as mentioned for FeOOH except that the washing was done 3–4. RESEARCH ARTICLE. A. Agarwal, H. Joshi and A. Kumar,.

  3. Synthesis and characterization of silver molybdate nanowires ...

    Indian Academy of Sciences (India)

    Wintec

    approaches have been proved to provide an alternative route for the synthesis of 1-D nanomaterials (Buhro et al ... magnetic stirring to form a homogeneous greenish-yellow precipitate. The resulting precipitate was ... the size-dependent optical properties of the nanomaterials, due to the quantum confinements of the photo- ...

  4. Synthesis, Characterization and Antimicrobial Activities of Some ...

    African Journals Online (AJOL)

    user

    of metal ions with vitamin.111: Synthesis and infrared spectra of metal complexes with pyridoxamine and pyridoxine. Inorg. Chim. Acta, 46, 191-197. Gary, J and Adeyemo, A (1981) Interaction of vitamin B1 with Zn(II), Cd (II) and Hg(II) in. Deuterated Dimethyl Sulfoxide. Inorg. Chim. Acta, 55, 93-98. Gohzalez-vergara, E ...

  5. Spectroscopic Characterization of Intermolecular Interaction of Amyloid β Promoted on GM1 Micelles

    Directory of Open Access Journals (Sweden)

    Maho Yagi-Utsumi

    2011-01-01

    Full Text Available Clusters of GM1 gangliosides act as platforms for conformational transition of monomeric, unstructured amyloid β (Aβ to its toxic β-structured aggregates. We have previously shown that Aβ(1–40 accommodated on the hydrophobic/hydrophilic interface of lyso-GM1 or GM1 micelles assumes α-helical structures under ganglioside-excess conditions. For better understanding of the mechanisms underlying the α-to-β conformational transition of Aβ on GM1 clusters, we performed spectroscopic characterization of Aβ(1–40 titrated with GM1. It was revealed that the thioflavin T- (ThT- reactive β-structure is more populated in Aβ(1–40 under conditions where the Aβ(1–40 density on GM1 micelles is high. Under this circumstance, the C-terminal hydrophobic anchor Val39-Val40 shows two distinct conformational states that are reactive with ThT, while such Aβ species were not generated by smaller lyso-GM1 micelles. These findings suggest that GM1 clusters promote specific Aβ-Aβ interactions through their C-termini coupled with formation of the ThT-reactive β-structure depending on sizes and curvatures of the clusters.

  6. Spectroscopically Well-Characterized RGD Optical Probe as a Prerequisite for Lifetime-Gated Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Julia Eva Mathejczyk

    2011-11-01

    Full Text Available Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing αvβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–d-phenylalanine–lysine (RGDfK peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of αvβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.

  7. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis.

    Science.gov (United States)

    Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano

    2016-09-02

    Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries

    International Nuclear Information System (INIS)

    Schenck, Peter K.; Bassim, Nabil D.; Otani, Makoto; Oguchi, Hiroyuki; Green, Martin L.

    2007-01-01

    The goal of the design of pulsed laser deposition (PLD) combinatorial library films is to optimize the compositional coverage of the films while maintaining a uniform thickness. The deposition pattern of excimer laser PLD films can be modeled with a bimodal cos n distribution. Deposited films were characterized using a spectroscopic reflectometer (250-1000 nm) to map the thickness of both single composition calibration films and combinatorial library films. These distribution functions were used to simulate the composition and thickness of multiple target combinatorial library films. The simulations were correlated with electron-probe microanalysis wavelength-dispersive spectroscopy (EPMA-WDS) composition maps. The composition and thickness of the library films can be fine-tuned by adjusting the laser spot size, fluence, background gas pressure, target geometry and other processing parameters which affect the deposition pattern. Results from compositionally graded combinatorial library films of the ternary system Al 2 O 3 -HfO 2 -Y 2 O 3 are discussed

  9. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.

    Science.gov (United States)

    Lee, Joonsup; Wen, Beryl; Carter, Elizabeth A; Combes, Valery; Grau, Georges E R; Lay, Peter A

    2017-07-01

    Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. © FASEB.

  10. Spectroscopic characterization of bioactive Cu(II complexes with polysaccharides by modern FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    Mitić Žarko

    2010-01-01

    Full Text Available Investigations of bioactive copper complexes are of great interest for the pharmaceutical industry from the aspect of therapy of hypochromic microcitary anemia and hypocupremia. The structure of bioactive copper complexes with oligosaccharides has not yet been explained in details despite a number of studies. This work represents further development in the research of the complex structure and pharmacobiological activity of the copper complexes. Different copper complexes with dextran and pullulan oligosaccharides, as well as reduced derivatives, have been analyzed by IR spectroscopy. Characterization of the complexes has been performed by using modern spectroscopic techniques: RT-FTIR, LNT-FTIR, D2O-FTIR, ATR-FTIR and FTIR microspectroscopy. Results of FTIR microspectroscopic investigations show that the structural form of complexes and copper content depend considerably on constitution and ligands conformation, degree of crystallinity, polymerization, polydispersity, and linearity of macromolecules. Also, stability of the synthesized complexes, as well as their pharmacological effect, depend on these parameters. Based on IR testing results, structures of the synthesized Cu(II complexes with polysaccharides were confirmed.

  11. Spectroscopic characterization of Au 3+ biosorption by waste biomass of Saccharomyces cerevisiae

    Science.gov (United States)

    Lin, Zhongyu; Wu, Jianming; Xue, Ru; Yang, Yong

    2005-02-01

    Some spectroscopic characteristics of Au 3+ biosorption by waste biomass of Saccharomyces cerevisiae have been reported in this paper. The effect of temperature on the correlation parameters of chemical kinetics and thermodynamics of the binding reaction was investigated by using AAS. XRD diffraction pattern of gold-loaded biomass revealed that the Au 3+ bound on the cell wall of the biomass had been reduced into gold particle. FTIR spectrophotometry on blank and gold-loaded biomass demonstrated that active groups such as the hydroxyl group of saccharides, and the carboxylate anion of amino-acid residues, from the peptidoglycan layer on the cell wall seem to be the sites for the Au 3+ binding, and the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides on the peptidoglycan layer, serving as the electron donor, in situ reduced the Au 3+ to Au 0. XPS and IR characterizations of the interaction between glucose and Au 3+ further supported that the reduction of Au 3+ to Au 0 can directly occur at the aldehyde group of the reducing sugars.

  12. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases

    Science.gov (United States)

    Mondal, Sudipa; Mandal, Santi M.; Mondal, Tapan Kumar; Sinha, Chittaranjan

    2017-01-01

    Schiff bases synthesised from the condensation of 2-(hydroxy)naphthaldehyde and sulfonamides (sufathiazole (STZ), sulfapyridine (SPY), sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfaguanidine (SGN)) are characterized by different spectroscopic data (FTIR, UV-Vis, Mass, NMR) and two of them, (E)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide (1a) and (E)-N-(diaminomethylene)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzenesulfonamide (1e) have been confirmed by single crystal X-ray structure determination. Antimicrobial activities of the Schiff bases have been evaluated against certified and resistant Gram positive (Staphylococcus aureus, Enterococcus facelis) and Gram negative (Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Shigella flexneri, Klebsiella pneumonia) pathogens. Performance of Schiff base against the resistant pathogens are better than standard stain and MIC data lie 32-128 μg/ml while parent sulfonamides are effectively inactive (MIC >512 μg/ml). The DFT optimized structures of the Schiff bases have been used to accomplish molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) to establish the most preferred mode of interaction. ADMET filtration, Cytotoxicity (MTT assay) and haemolysis assay have been examined for evaluation of druglike character.

  13. Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films.

    Science.gov (United States)

    Ummadisingu, Amita; Seo, Ji-Youn; Stojanovic, Marko; Zakeeruddin, Shaik M; Grätzel, Michael; Hagfeldt, Anders; Vlachopoulos, Nick; Saliba, Michael

    2017-11-29

    The achievement of high efficiency and high stability in perovskite solar cells (PSCs) requires optimal selection and evaluation of the various components. After a brief introduction to the perovskite materials and their historical evolution, the first part is devoted to the hole transporting material (HTM), between photoelectrode and dark counter electrode. The basic requirements for an efficient HTM are stated. Subsequently, the most used HTM, spiro-OMeTAD, is compared to alternative HTMs, both small-molecule size species and electronically conducting polymers. The second part is devoted to additives related to the performance of the perovskite light-absorbing material itself. These are related either to the modification of the composition of the material itself or to the optimization of the morphology during the perovskite preparation stage, and their effect is in the enhancement of the power conversion efficiency, the long-term stability, or the reproducibility of the properties of the PSCs. Finally, a number of spectroscopic methods based on the UV-Vis part of the electromagnetic spectrum useful for characterizing the different perovskite material types are described in the last part of this review.

  14. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    International Nuclear Information System (INIS)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-01-01

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications

  15. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system

    Energy Technology Data Exchange (ETDEWEB)

    Danial, Wan Hazman, E-mail: hazmandanial@gmail.com; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my; Aziz, Madzlan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Chutia, Arunabhiram [Institute of Fluid Sciences, Tohoku University, Sendai 980-8577 (Japan); Sahnoun, Riadh [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia)

    2015-07-22

    The present work reports the synthesis and characterization of graphene via electrochemical exfoliation of graphite rod using two-electrode system assisted by Sodium Dodecyl Sulphate (SDS) as a surfactant. The electrochemical process was carried out with sequence of intercalation of SDS onto the graphite anode followed by exfoliation of the SDS-intercalated graphite electrode when the anode was treated as cathode. The effect of intercalation potential from 5 V to 9 V and concentration of the SDS surfactant of 0.1 M and 0.01 M were investigated. UV-vis Spectroscopic analysis indicated an increase in the graphene production with higher intercalation potential. Transmission Electron Microscopy (TEM) analysis showed a well-ordered hexagonal lattice of graphene image and indicated an angle of 60° between two zigzag directions within the honeycomb crystal lattice. Raman spectroscopy analysis shows the graphitic information effects after the exfoliation process.

  16. Spectroscopic, topological, and electronic characterization of ultrathin a-CdTe:O tunnel barriers

    International Nuclear Information System (INIS)

    Dolog, Ivan; Mallik, Robert R.; Malz, Dan; Mozynski, Anthony

    2004-01-01

    Ultrathin oxygenated amorphous CdTe (a-CdTe:O) films are prepared by rf sputtering of CdTe in a background of argon or argon/nitrogen/oxygen mixtures. Atomic force microscopy (AFM) is used to characterize the films and shows that they have an island structure typical of most sputtered thin films. However, when sufficiently low powers and deposition rates are employed during sputtering, the resulting films are remarkably smooth and sufficiently thin for use as barrier layers in inelastic electron tunneling (IET) junctions. Four terminal current-voltage data are recorded for Al/a-CdTe:O/Pb tunnel junctions and conductance-voltage curves are derived numerically. WKB fits to the conductance-voltage curves are obtained using a two-component trapezoidal plus square (TRAPSQR) model barrier potential to determine values for the tunnel barrier parameters (height, shape, and width); these parameters are consistent with AFM topological measurements and values from similar devices reported in the literature. IET spectra are presented which confirm that electrons tunnel through ultrathin regions of the a-CdTe:O films, which contain aluminum oxide subregions in a manner consistent with the TRAPSQR barrier model. Because tunneling occurs predominantly through these ultrathin regions, IET spectroscopic data obtained are representative of states at, or within a few tenths of nanometers from, the surface and confirm that the a-CdTe:O surface stoichiometry is very sensitive to changes in the argon/oxygen/nitrogen concentration ratios during film growth. Full IET spectra, current-voltage, and conductance-voltage data are presented together with tunnel barrier parameters derived from (WKB) fits to the data. The results presented here indicate that inelastic electron tunneling spectroscopy is a useful tool for characterizing the surface states of a-CdTe:O and possibly other photovoltaic materials

  17. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  18. Synthesis and characterization of hybrid nanostructures

    OpenAIRE

    Mokari, Taleb

    2011-01-01

    There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal...

  19. Synthesis, characterization and applications of different nanostructures

    Science.gov (United States)

    Snyder, Whitney Elaine

    There has been a growing interest in the field of nanoscience for the last several decades including the use in optical, electrical, biological and medicinal applications. This thesis focuses on the synthesis of different nanoparticles for their potential uses in drug delivery and antimicrobial agents as well as porous alumina membranes as surface enhanced Raman scattering or SERS substrates. The synthesis of nanocomposites (NCs) composed of silica and poly(4-vinyl pyridine) (P4VP) in a basic ethanol solution is presented in chapter 2. The composition of the NCs appears to be homogenous after synthesis and is greatly affected by heat and pH changes. When the NCs are heated, a core-shell nanostructure is produced with silica forming a shell around a P4VP core. At lower pHs, the NCs form a silica core with a P4VP shell while at higher pHs the silica is etched away causing the NC to decompose. A novel synthesis method of growing stable copper oxide nanoparticles with poly(acrylic acid) (PAA) is presented in chapter 3. Insoluble copper (I) oxide is dissolved with ammonium hydroxide and reduced using sodium borohydride to form metallic copper nanoparticles that oxidize overtime to form copper oxide nanoparticles stable in an aqueous environment. In addition to copper oxide nanoparticles, copper (I) iodide and copper (II) sulfide particles were also synthesized in the presence of PAA. In chapter 4, alumina membranes with 100nm and 200nm pores were coated with silver and used as SERS substrates to detect small molecules. The alumina membranes are coated with silver by reducing silver (I) oxide with ethanol. The thickness of the silver layer depends primarily on the length of time the substrate comes into contact with the Ag2O in solution with longer exposure times producing thicker films. Raman scattering of 10-100nM adenine concentrations were collected.

  20. New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared

    Science.gov (United States)

    Terrien, Ryan C.

    of work is centered on a large NIR spectroscopic survey of nearby M dwarfs, undertaken to characterize potential targets for HPF. This survey, and new techniques for measuring M dwarf metallicity, are the subject of Chapter 2. These data will provide crucial information to assess planetary composition, and the stellar metallicities will help us understand the process of planet formation around M dwarfs. These techniques have also enabled strong tests of low-mass stellar models in the benchmark eclipsing binary system CM Draconis, and have helped identify potential directions for improvement in the models, as presented in Chapter 3. The development of new spectroscopic indices for measuring M dwarf luminosity, radius, and potentially alpha-element abundance is discussed in Chapter 4. Finally, Chapter 5 presents a synthesis of these M dwarf characterization techniques and radial velocity (RV) measurements from the SDSS-III APOGEE spectrograph, which we applied to confirm and characterize the first M dwarfs in the nearby Coma Berenices cluster. The second line of work relates to the optimization of HPF. By targeting M dwarfs, HPF will take advantage of the large signal induced by an Earth-mass planet orbiting an M dwarf compared to the same planet orbiting an FGK star. Chapter 6 discusses a number of design trades and parameter optimizations undertaken in order to ensure the best sensitivity to Earth-mass planets. These subtopics include the optimization of the HPF resolution, bandpass, operating temperature, and vacuum phase holographic cross-disperser, as well as prediction of anticipated HPF performance, and the development of an HPF software simulator tool. In carrying out NIR detector tests for HPF, we have also tested an optical filter that selectively blocks long-wavelength thermal background radiation. This type of contamination is a perennial source of noise for NIR instruments, and typically forces these instruments to operate fully cryogenically. The

  1. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  2. Synthesis and characterization of Trichloroisocyanouric acid ...

    Indian Academy of Sciences (India)

    Abstract. Trichloroisocyanouric acid (TCCA)-functionalized mesoporous silica nanocomposites (SBA/. TCCA) were synthesized and characterized for the acylation of indole. The uniform incorporation of TCCA inside the SBA-15 matrix was confirmed by standard characterization techniques (PXRD, Adsorption studies,. FT-IR ...

  3. X-Ray powder diffraction analysis: Synthesis and spectroscopic studies on the stoichiometric elpasolite Cs2NaTmCl6

    International Nuclear Information System (INIS)

    Acevedo, R.; Poblete, V.; Elgueta, R.; Pozo, J.

    2000-01-01

    The elpasolite Cs 2 NaTmCl 6 belonging to the spatial group Fm3m, has been synthesized and characterized by powder DRX and spectroscopic studies. The synthesis was carried out by means of a solid state reaction at 802.9 o C, for two hours, with a temperature gradient of 4 o C/min. and 2 o C/min, at the beginning and end of the reaction, respectively. The optimum crystallization temperature occurs between 764.5 o C and 838.5 o C. The following crystallographic parameters were obtained: a 0 = 10,6866 o A, V =1220,45( o A) 3 , Z = 4, M = 802.90, D x =3,65 y D exp =3,67. The 32 experimental lines that were analyzed show great accuracy considering that R exp less than R wp . The Raman spectrums allowed for precise identification and assignation so that we can make progress in calculating the crystal dynamics and mechanistic aspects, still unexplored in the literature (C.W)

  4. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  5. Synthesis and characterization of nanosize sodium titanates

    Energy Technology Data Exchange (ETDEWEB)

    Elvington, M. C.; Tosten, M.; Taylor-Pashow, K. M. L.; Hobbs, D. T., E-mail: david.hobbs@srnl.doe.gov [Savannah River National Laboratory (United States)

    2012-11-15

    This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST). The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST). Key modifications to this process include altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The BET surface area and isoelectric point of the nMST measured 285 m{sup 2} g{sup -1} and 3.34 pH units, respectively, which is more than an order of magnitude higher in surface area and a pH unit lower than that measured for the microsize MST. The nMST material serves as an effective ion exchanger under both weakly acidic and strongly alkaline conditions and was converted to a peroxotitanate form by reaction with hydrogen peroxide.

  6. Synthesis and spectroscopic study of high quality alloy Cd Zn S ...

    Indian Academy of Sciences (India)

    In the present study, we report the synthesis of high quality CdZn1-S nanocrystals alloy at 150°C with changing the composition. The shifting of absorption and emission peak in shorter wavelength is obtained with increasing the mole fraction of zinc. The quantum yield (QY) value decreases with increasing the Cd mole ...

  7. Synthesis and spectroscopic properties of porphyrin - (thia)calix[4]arene conjugates

    Czech Academy of Sciences Publication Activity Database

    Dudic, M.; Lhoták, P.; Stibor, I.; Dvořáková, H.; Lang, Kamil

    2002-01-01

    Roč. 58, - (2002), s. 5475-5482 ISSN 0040-4020 R&D Projects: GA ČR GA104/00/1722; GA ČR GA203/99/1163 Institutional research plan: CEZ:AV0Z4032918 Keywords : porphyrin * calix[4]arene * synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.420, year: 2002

  8. Synthesis and characterization of CuO nanoparticles using strong ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of CuO nanoparticles using strong base electrolyte ... Fourier transform infrared spectrum showed that the CuO ..... Hydrogen bub- bles play a key role in generation of sparks and metal removal in the electrochemical discharge process. Flower-like morphology could be attained with both the.

  9. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    School of Chemistry, University College of Science, University of Tehran, Tehran, Iran. Email: alnema@khayam.ut.ac.ir ... nation polymers and coordination complexes, is a suit- able building block for supramolecular ..... Kianpour G, Salavati-Niasari M and Emadi H 2013. Precipitation synthesis and characterization of cobalt.

  10. Synthesis and characterization of cupric oxide (CuO) nanoparticles ...

    African Journals Online (AJOL)

    Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. ... Thermodynamic and kinetic studies were also performed to determine the feasibility of the process. The maximum MB removal was observed to be 88.93%. The pH of point zero charge (pHPZC) of adsorbent ...

  11. Synthesis, spectral characterization and redox properties of iron (II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, spectral characterization and redox properties of iron. (II) complexes of 1-alkyl-2-(arylazo)imidazole. U S RAY, D BANERJEE and C SINHA*. Department of Chemistry, The University of Burdwan, Burdwan 713 104,. India e-mail: c_r_sinha@yahoo.com. MS received 26 February 2003; revised 12 May 2003.

  12. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  13. Synthesis and characterization of nano silicon and titanium nitride ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique ... nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor.

  14. Synthesis, characterization, crystal structure and DNA-binding study ...

    Indian Academy of Sciences (India)

    BOLIN

    SYNOPSIS. Synthesis and characterization of four mononuclear eight coordinated cadmium(II) complexes with newly explored carboxamide derivatives and study of interaction with calf-thymus DNA are reported. The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, ...

  15. Synthesis, spectral characterization of Schiff base transition metal ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. N RAMAN,* J DHAVEETHU RAJA and A SAKTHIVEL. Department of Chemistry, VHNSN College, Virudhunagar 626 001 e-mail: drn_ raman@yahoo.co.in. MS received 1 May 2007; revised 7 July ...

  16. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. BIKASH KUMAR PANDA. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032,. India e-mail: b_panda@hotmail.com. MS received 2 June 2004; revised 21 July 2004.

  17. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  18. Synthesis, characterization of N-, S-, O-substituted naphtho- and ...

    Indian Academy of Sciences (India)

    Sci. Vol. 124, No. 3, May 2012, pp. 657–667. c Indian Academy of Sciences. Synthesis, characterization of N-, S-, O-substituted naphtho- and benzoquinones and a structural study. CEMIL IBIS. ∗ and NAHIDE GULSAH DENIZ. Engineering Faculty, Department of Chemistry, Division of Organic Chemistry, Istanbul University,.

  19. Synthesis, characterization and self-assembly of Co 3 complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups. Afsar Ali Deepak Bansal Rajeev Gupt. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1535-1546 ...

  20. Synthesis, characterization and investigation of catalytic activity of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 827–834. c Indian Academy of Sciences. Synthesis, characterization and investigation of catalytic activity ..... 2004 J. Catal. 222 107. 8. Rajgopal R, Vetrivel R and Rao B S 2000 Catal. Lett. 65 99. 9. Rao B S, Sreekumar K and Jyothi T M 1998 Indian. Patent 2707/98. 10.

  1. Synthesis, spectral characterization and antihaemostatic activity of 1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 2. Synthesis, spectral characterization and antihaemostatic activity of 1,2,4-triazoles ... Author Affiliations. Ravindra R Kamble1 Belgur S Sudha1. Department of Chemistry and Food Science, Yuvaraja's College, University of Mysore, Mysore 570 005 ...

  2. Synthesis and photoelectrochemical characterization of a high molar ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 4. Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex. L Giribabu Vrun Kumar Singh M Srinivasu Ch Vijay Kumar V Gopal Reddy Y Soujnya P Yella Reddy. Volume 123 Issue 4 July ...

  3. An efficient synthesis, X-ray and spectral characterization of ...

    Indian Academy of Sciences (India)

    An efficient synthesis, X-ray and spectral characterization of biphenyl derivatives. Ravindra R Kamble Dharesh B Biradar Gangadhar Y Meti Tasneem Taj Tegginamath Gireesh Imthiyaz Ahmed M Khazi Sundar T Vaidyanathan Raju Mohandoss Balasubramanian Sridhar Viraraghav Parthasarathi. Volume 123 Issue 4 July ...

  4. Synthesis and characterization of magnetite/hydroxyapatite tubes ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Synthesis and characterization of magnetite/hydroxyapatite tubes using natural template for biomedical applications. M SNEHA N MEENAKSHI SUNDARAM A KANDASWAMY. Volume 39 Issue 2 April ...

  5. Synthesis, characterization and magnetic properties of polyaniline/ γ ...

    Indian Academy of Sciences (India)

    Administrator

    deposition technique by placing fine-graded γ-Fe2O3 in a polymerization mixture of aniline. The composites are characterized by using ... All chemicals of analytical grade procured from Sigma-. Aldrich were used for the synthesis of .... PANI seem to exhibit transition peaks in the temperature range of 125–175°C. In case of ...

  6. Synthesis, characterization of N-, S-, O-substituted naphtho- and ...

    Indian Academy of Sciences (India)

    657–667. c Indian Academy of Sciences. Synthesis, characterization of ... naphthoquinone) were investigated.16 Novel vitamin K3 analogues were ... 1.2Ueq(C). The selected bond distances, bond and tor- sion angles for compound 13 were listed in tables 2 and 3, respectively. Drawings were performed with the program ...

  7. organic-inorganic hybrid materials. i: synthesis, characterization and ...

    African Journals Online (AJOL)

    a

    organic-inorganic nanocomposites, and models in the area of biomimetics [13]. Hence, with a focus towards developing a potential photoresist material that has a lithographic action [14], we report herein the facile synthesis, characterization and properties of a novel octasilsesquioxane, which by virtue of its terminal chlorine ...

  8. Synthesis, characterization, X-ray crystal structure, electrochemical ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0978-8. Synthesis, characterization, X-ray crystal structure, electrochemical evaluation and anti-cancer studies of a mixed ligand Cu(II) complex of (E)-N -((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide. IRAN SHEIKHSHOAIEa, S YOUSEF EBRAHIMIPOURa,∗, MAHDIEH SHEIKHSHOAIEa,.

  9. Synthesis, characterization and isotherm studies of new composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Synthesis, characterization and isotherm ... With different methods, different molar ratios and different surfactants have been investigated to reach the optimum conditions for synthesized zirconium tungstate (Zr(IV)W). Zr(IV)W with different molar ratios of ...

  10. Synthesis, characterization and ion recognition studies of lower rim ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6. Synthesis, characterization and ion recognition studies of lower rim 1,3-di{rhodamine} conjugate of calix[4]arene. Jugun Prakash Chinta Jayaraman Dessingou Chebrolu Pulla Rao. Regular Articles Volume 125 Issue 6 November 2013 pp 1455-1461 ...

  11. Synthesis and characterization of new meso-substituted ...

    Indian Academy of Sciences (India)

    The synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins has been described. A new modified Adler method ... P Bandgar1 Pradip B Gujarathi1. Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431 606 ...

  12. Synthesis and characterization of solid heterogeneous catalyst for ...

    African Journals Online (AJOL)

    Synthesis and characterization of solid heterogeneous catalyst for the production of biodiesel from high FFA waste cooking oil. Nasar Mansir, Taufiq-Yap Yun Hin. Abstract. No Abstract. Keywords: Biodiesel, Transesterification, High FFA waste cooking oil, Heterogeneous catalyst, Single step reaction process. Full Text:.

  13. Synthesis, characterization and photo-epoxidation performance of ...

    Indian Academy of Sciences (India)

    Synthesis, characterization and photo-epoxidation performance of Au-loaded photocatalysts. VAN-HUY NGUYEN, HSIANG-YU CHAN and JEFFREY C S WU. ∗. Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan e-mail: cswu@ntu.edu.tw. MS received 7 November 2012; revised 11 ...

  14. Synthesis and characterization of thermally stable oligomer-metal ...

    African Journals Online (AJOL)

    Synthesis and characterization of thermally stable oligomer-metal complexes of copper(II), nickel(II), zinc(II) and cobalt(II) derived from oligo- p - nitrophenylazomethinephenol. ... Based on half degradation temperature parameters Cu(II) and Zn(II) complexes were more resistant than the others. KEY WORDS: Oligomer metal ...

  15. Synthesis, characterization and evaluation of biological activities of ...

    African Journals Online (AJOL)

    Original Research Article. Synthesis, characterization and evaluation of biological activities of manganese-doped zinc oxide nanoparticles. Shakeel Ahmad Khan1*, Sammia Shahid1, Waqas Bashir1, Sadia Kanwal2 and. Ahsan Iqbal3. 1Department of Chemistry, University of Management and Technology, Lahore-54000, ...

  16. Large scale synthesis and characterization of Ni nanoparticles by ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Huazhi Wang Xinli Kou Jie Zhang Jiangong Li. Nanomaterials Volume 31 Issue 1 February 2008 pp 97-100 ...

  17. Synthesis and characterization of bi-functional magneto-luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 7. Synthesis and characterization of bi-functional magneto-luminescent Fe₃O₄ @ SiO₂ @ NaLuF₄ :Eu³⁺ hybrid core / shell nanospheres. JIGMET LADOL HEENA KHAJURIA HAQ NAWAZ SHEIKH YUGAL KHAJURIA. Regular Article Volume 128 Issue ...

  18. SYNTHESIS AND CHARACTERIZATION OF N, N'-BIS-(3 ...

    African Journals Online (AJOL)

    user

    base complexes derived from Salicylaldehyde and histidine with some divalent transition metal ions. Furthermore, Syed (1993) reported the synthesis, characterization and biological evaluation of some. Schiff base metal complexes derived from Anthranilic acid-sugar and naturally occurring amino acid-sugar. Schiff bases ...

  19. Synthesis, characterization and antimicrobial studies of cadmium(II)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 130; Issue 4. Synthesis, characterization and antimicrobial studies of cadmium(II) complexes with a tetraazamacrocycle (LB) and its cyanoethyl N-pendent derivative (LBX). MD SHAH ALAM SASWATA RABI MD MASUDUR RAHMAN ADRITY BAIDYA MANASHI DEBI ...

  20. Spectroscopic and voltammetric characterizations of the interaction of two local anesthetics with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun, E-mail: sy_bi@sina.co [College of Chemistry, Changchun Normal University, Changchun 130032 (China); Yan Lili; Wang Binbin; Bian Jiangyu [College of Chemistry, Changchun Normal University, Changchun 130032 (China); Sun Yantao [College of Chemistry, Jilin Normal University, Sipin 136000 (China)

    2011-05-15

    The interactions of bovine serum albumin (BSA) with two local anesthetics, procaine hydrochloride (PCH) and tetracaine hydrochloride (TCH) were studied using spectroscopic methods such as fluorescence and ultraviolet visible (UV-vis), and electrochemical techniques including cyclic voltammetry (CV) and differential pulsed stripping voltammetry (DPSV). The results obtained from these techniques turned out that both PCH and TCH could bind to BSA. The binding constants (K{sub A}) and the number of binding sites (n) of the two drugs with BSA at different temperatures were determined, respectively. At 291 K, K{sub A} was found as 2.40x10{sup 4} and 1.42x10{sup 4} L mol{sup -1} and n was 1.03 and 0.99 for PCH-BSA and TCH-BSA, respectively. According to van't Hoff equation, the thermodynamic parameters, {Delta}G, {Delta}H and {Delta}S, were obtained, showing the involvement of hydrophobic and electrostatic force in these interactions. Based on the theory of the Foerster energy transference, the distance between the acceptor (PCH or TCH) and the donor (BSA) were determined as 2.32 and 3.62 nm for PCH and TCH, respectively. The effects of Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Mn{sup 2+}, Zn{sup 2+} and Ca{sup 2+} on the binding of PCH or TCH to BSA were also evaluated. - Research highlights: Procaine or tetracaine hydrochloride quenching the fluorescence of Trp in BSA was a static quenching process. Synchronous fluorescence was applied to study the structural change of BSA. Binding constant, binding site and binding force were determined. Voltammetry techniques further characterized the nature of the interactions of the two drugs with BSA.

  1. Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications

    Science.gov (United States)

    Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.

    2009-05-01

    We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.

  2. Synthesis, characterization and electrochemistry of heterobimetallic ...

    African Journals Online (AJOL)

    dimethylpyrazolyl) borate with a series of manganese(II) Schiff bases have been synthesized. Characterization by UV, IR, MS and elemental analysis support their formulations. Cyclic and differential pulse voltammograms of manganese(II) Schiff base ...

  3. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    Energy Technology Data Exchange (ETDEWEB)

    Mtat, D.; Touati, R. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia); Guerfel, T., E-mail: taha-guerfel@yahoo.fr [Université de Kairouan, Laboratoire d’Electrochimie, Matériaux et Environnement (Tunisia); Walha, K. [Université de Sfax, M.E.S.Lab. Faculté des Sciences de Sfax (Tunisia); Ben Hassine, B. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia)

    2016-12-15

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

  4. Synthesis, Spectroscopic, Anticancer, and Antimicrobial Properties of Some Metal(II Complexes of (Substituted Nitrophenol Schiff Base

    Directory of Open Access Journals (Sweden)

    Aderoju A. Osowole

    2012-01-01

    Full Text Available The Schiff base, 2-[(2,3-dihydro-1H-inden-4-yliminomethyl]-5-nitrophenol coordinates to Mn(II, Cu(II, Zn(II, and Pd(II ions through the phenolic O and imine N atoms. The complexes are characterized by physicochemical and spectroscopic methods. The metal complexes formed as [ML2]xH2O with exception of the Cu(II complex which is anhydrous. Spectroscopic data corroborate the adoption of a four-coordinate, tetrahedral geometry for the Mn(II, and Zn(II complexes, and a four-coordinate, square planar geometry for the Cu(II and Pd(II complexes. None is an electrolyte in DMSO. The in vitro anticancer activities of the metal free ligand, Cu(II, Zn(II, and Pd(II complexes against MCF-7 (human breast adenocarcinoma and HT-29 (colon carcinoma cells reveal that the Pd(II complex has the best cytotoxic activity against MCF-7 cells with an IC50 of 5.94 μM, which is within the same order of activity as cisplatin. Furthermore, the ligand and the Zn(II complex exhibit broad-spectrum activity against two gram-positive bacteria, three gram-negative bacteria, and a fungus with inhibitory zones range of 10.0–20.0 and 10.0–17.0 mm, respectively.

  5. Synthesis and characterization of hybrid nanostructures

    Directory of Open Access Journals (Sweden)

    Taleb Mokari

    2011-05-01

    Full Text Available There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal-semiconductor heterojunctions formed by the growth of Au, Pt, or other binary catalytic metal systems on metal (Cd, Pb, Cu-chalcogenide nanostructures. We show the ability to grow the metal on various shapes (spherical, rods, hexagonal prisms, and wires. Furthermore, manipulating the composition of the metal nanoparticles is also shown, where PtNi and PtCo alloys are our main focus. The magnetic and electrical properties of the developed hybrid nanostructures are shown.

  6. Solid-state NMR as a spectroscopic tool for characterizing phosphane-borane frustrated lewis pairs.

    Science.gov (United States)

    Wiegand, Thomas; Eckert, Hellmut; Grimme, Stefan

    2013-01-01

    Frustrated Lewis pair (FLP) chemistry has provided a new strategy for small molecule binding and/or catalytic activation. It is based on the cooperative reaction behavior of Lewis acid and Lewis base centers that are in close proximity to each other (e.g., within the same molecule) but cannot form a direct bond because of geometrical constraints. The most prominent FLPs are based on intramolecular phosphane-borane adducts, whose catalytic properties can be tailored over wide ranges of reactivity and selectivity. For the structural and chemical design of such systems, a fundamental understanding needs to be developed on how structure, dynamics and covalent interactions between the Lewis centers influence the reactivity profile. Advanced solid-state nuclear magnetic resonance (NMR) spectroscopic techniques afford new opportunities for addressing this challenge. Following a general introduction into the fundamentals of NMR spectroscopy, this review discusses the different types of internal interactions - magnetic shielding, nuclear electric quadrupolar coupling, indirect spin-spin interactions, and "through-space" dipole-dipole couplings - influencing NMR spectra in the solid state. As discussed in detail, each type of interaction bears specific informational content with regard to structural issues in FLP chemistry. One of the most attractive features of solid-state NMR is the possibility of tailoring the effective Hamiltonian by manipulations in either physical space or spin space. Using such "decoupling" or "recoupling" techniques certain types of interactions can be selectively turned off for spectral simplification or turned on for selective evaluation. The present review summarizes the most important selective averaging techniques that have found applications in the characterization of FLPs. In a second step the interaction parameters need to be connected with structure and bonding information. As illustrated in this chapter, ab initio calculations using density

  7. Synthesis, characterization and photophysical studies of ...

    Indian Academy of Sciences (India)

    These novel zinc(II) porphyrin-benzo--pyrone dyads successfully underwent demetallation in the presence of concentrated hydrochloric acid in chloroform at 25°C to form the corresponding free-base porphyrin analogues in good yields. The newly synthesized products were characterized on the basis of spectral data and ...

  8. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc.

  9. Synthesis and characterization of fluorophore attached silver ...

    Indian Academy of Sciences (India)

    Silver nanoparticles stabilized by soluble starch were synthesized and characterized. in vivo studies in rats showed no toxicity and revealed their distribution in various tissues and permeability across BBB. This starch stabilized silver nanoparticles have good biological characteristics to act as a potential promising vector for ...

  10. Synthesis, characterization and photocatalytic reactions of ...

    Indian Academy of Sciences (India)

    Titanium dioxide is one of the most extensively investigated photocatalyst and is the subject of extensive .... with commercial titania powder from Merck. 2.2 Characterization. X-ray diffraction patterns of the ..... Bickley R I and Navio J A 1985 Photocatalytic production of energy-rich compounds (eds) G Grassi and D O Hall ...

  11. Synthesis and characterization of multicolour fluorescent ...

    Indian Academy of Sciences (India)

    Abstract. In this study, we successfully developed Y2O3 nanoparticles doped with Tb3+ and Eu3+ ions to generate fluorescent images of latent fingerprints. The optical and structural characterization of the nanoparticles was carried out and the fluorescence mechanisms are discussed. In our studies, the developed ...

  12. SYNTHESIS AND CHARACTERIZATION OF NEW HEAT ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. New series of olefinic poly(ether-amide)s (OPEA)s 6a-f was synthesized from 4,4′-bis(1,4- diphenoxybutane)diacrylic acid 4 and aromatic diamine 5a-f via a direct polycondensation reaction. The resulting polymers were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance ...

  13. Synthesis, spectrometric characterization and trypanocidal activity of ...

    African Journals Online (AJOL)

    ... Coupled with High-Performance Liquid Chromatography) and they were characterized using spectrometry IR, NMR 1H and 13C (Nuclear Magnetic Resonance). These compounds were then tested in vitro on Trypanosoma brucei brucei according to the “LILIT, Alamar Blue” method to estimate their trypanocidal activity.

  14. Synthesis, characterization and gas sensing performance of ...

    Indian Academy of Sciences (India)

    The product obtained was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear magneticresonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by applying ...

  15. synthesis, characterization and antibacterial studies of metal

    African Journals Online (AJOL)

    Preferred Customer

    sulfonamide (sulfadiazine) with some N-alkyl-N-phenyl dithiocarbamate have been synthesized and characterized by elemental analysis, conductivity measurements, UV-Vis and FTIR spectroscopy. The complexes are formulated as four coordinate MN2S2 species in which the metal ions are coordinated to one molecule of.

  16. Synthesis, Characterization, Antimicrobial Activity and Antioxidant ...

    African Journals Online (AJOL)

    The Schiff base ligand and the metal (II) complexes prepared were characterized by melting point/decomposition temperature, solubility, conductivity, FT-IR spectra and elemental analysis results. IR spectra of the free ligand showed a band at 1655cm-1 which is assigned to the (-C=N-) stretching vibration of the azomethine.

  17. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    These compounds were characterized using X-ray diffraction technique and IR spectroscopy. The elemental analysis was carried out by CHNS analyser and atomic emission spectroscopy. Normal chain sodium alkoxides were found to exhibit tetragonal crystal structure. Crystal structures of sodium ethoxide and sodium ...

  18. Synthesis, characterization and antibacterial studies of metal ...

    African Journals Online (AJOL)

    Co(II), Cu(II), Pd(II) and Pt(II) complexes of 4-amino-N-(2-pyrimidinyl)benzene sulfonamide (sulfadiazine) with some N-alkyl-N-phenyl dithiocarbamate have been synthesized and characterized by elemental analysis, conductivity measurements, UV-Vis and FTIR spectroscopy. The complexes are formulated as four ...

  19. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Compound (1) crystallizes in a cubic space group 3 ¯ , with = 22.2001(6) Å and = 8. The anion [VVO4W 10 VI V 2 IV O36]7- is a typical Keggin type structure with VVO4 as the central tetrahedron. (1) has further been characterized by elemental analyses, redox titration, IR, EPR, and electronic spectroscopy and room ...

  20. Synthesis and characterization of superabsorbent hydrogel based ...

    African Journals Online (AJOL)

    In this work, acrylonitrile (AN) and acrylic acid (AA) monomers were directly grafted onto chitosan using ammonium persulfate (APS) as an initiator and methylenebisacrylamide (MBA) as a crosslinking agent under an inert atmosphere. The hydrogels structure was characterized by Fourier transform infrared (FTIR) ...

  1. Synthesis, characterization and gas sensing property of ...

    Indian Academy of Sciences (India)

    Hydroxyapatite (HAp) biomaterial ceramic was synthesized by three different processing routes viz. wet chemical process, microwave irradiation process, and hydrothermal technique. The synthesized ceramic powders were characterized by SEM, XRD, FTIR and XPS techniques. The dielectric measurements were carried ...

  2. Synthesis, characterization, sintering and dielectric properties of ...

    Indian Academy of Sciences (India)

    Nanoparticles of barium gadolinium antimonate (Ba2GdSbO6), a complex perovskite-type oxide, has been synthesized using an auto ignition combustion process for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermogravimetric analysis, differential thermal analysis, ...

  3. Synthesis, characterization and gas sensing performance of ...

    Indian Academy of Sciences (India)

    The product obtained was characterized by Fourier transform infrared spectroscopy,. X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear mag- netic resonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by ...

  4. Synthesis, physical characterization, antibacterial activity and ...

    African Journals Online (AJOL)

    Some five-coordinated cobalt(III) complexes were synthesized and characterized using elemental analysis, 1H NMR and IR spectra. The formation constants and the thermodynamic parameters were measured spectrophotometrically for the 1:1 adduct formation of [Co(Chel)(PBu3)]ClO4.H2O where Chel = cd3OMesalen, ...

  5. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    chloroquinolin-3-yl)-6-(aryl)pyrimidin-2-yl)-2-morpholinoacetamides (5a-l) were synthesized by multistep reactions. Compounds were characterized by IR, NMR and mass spectra. Antimicrobial screening of title compounds (5a-l) was carried out ...

  6. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2011-05-01

    Full Text Available Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally-friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned.

  7. Synthesis and Characterization of MAX Ceramics (MAXCERs)

    Science.gov (United States)

    Nelson, Johnny Carl

    This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.

  8. Synthesis and characterization of melanin in DMSO

    Science.gov (United States)

    Bronze-Uhle, Erika S.; Batagin-Neto, Augusto; Xavier, Pedro H. P.; Fernandes, Nicole I.; de Azevedo, Eduardo R.; Graeff, Carlos F. O.

    2013-09-01

    Recently soluble melanin derivatives have been obtained by a synthetic procedure carried out in DMSO (D-melanin). In this work a comparative study of the structural characteristics of synthetic melanin derivatives obtained by oxidation of L-DOPA in H2O and DMSO are presented. To this end, Fourier-transform infrared spectroscopy as well as proton and carbon nuclear magnetic resonance techniques has been employed. In addition, aging effects have been investigated for D-melanin. The results suggest that sulfonate groups (-SO2CH3) from the oxidation of DMSO, are incorporated into melanin, which confers protection to the phenolic hydroxyl group present in its structure. The solubility of D-melanin in DMSO is attributed to the presence of these groups. When D-melanin is left in air for long time periods, the sulfonate groups leave the structure, and an insoluble compound is obtained. NaOH and water have been used, in order to accelerate the release of the sulfonate groups attached to D-melanin, thereby corroborating the proposed structure and the synthesis mechanism.

  9. Synthesis and characterization of porous calcium phosphate

    International Nuclear Information System (INIS)

    Granados C, F.; Serrano G, J.; Bonifacio M, J.

    2007-01-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO 3 ) 2 .4H 2 O and NH 4 H 2 PO 4 salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  10. Synthesis, characterization and evaluation of bioactivity and ...

    Indian Academy of Sciences (India)

    Abstract. Bioactive glasses in the systems SiO2–CaO–P2O5–MgO (BGZn0) and SiO2–CaO–P2O5–MgO–ZnO. (BGZn5), were prepared by sol–gel method and then characterized. Surface reactivity was studied in simulated body fluid (SBF) to determine the effect of zinc (Zn) addition as a trace element. The effect of Zn ...

  11. Dipodal quinoline-tethered fluorescent probe synthesis and investigation of spectroscopic properties

    Science.gov (United States)

    Obalı, Aslıhan Yılmaz; Yilmaz, Menzeher Serkan; Uçan, Halil İsmet

    2017-10-01

    Novel quinoline-tethered fluorescent probe was designed and synthesized as multidentate ligand. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of perchlorate salts of Co2+, Li+, Fe2+, K+, Pb2+, Cu2+, Zn2+, Ni2+, Hg2+, Ag+ cations in acetonitrile (1 × 10-5 M for absorption studies, 1 × 10-7 M for fluorescence studies). It was found that the dipodal compounds can selectively bind to Cu2+ and Ag+ metal ions with a significant quenching in their emissions. The capture of Cu2+ and Ag+ by the probe resulted in deprotonation of the secondary amine conjugated to the quinoline-tethered probe, so that the electron-donation ability of the 'N' atom would be greatly enhanced and the probe (2) showed blue-shift in emission and exhibited an on-off fluorescent response. The binding study was explored by using fluorescence spectroscopy with Job plot method.

  12. Synthesis, characterization and performance of bifunctional catalysts for the synthesis of menthol from citronellal

    NARCIS (Netherlands)

    ten Dam, J.; Ramanathan, A; Djanashvili, K.; Kapteijn, F.; Hanefeld, U.

    2017-01-01

    The synthesis of a series of bifunctional catalysts (1 wt% Pt/W-TUD-1 (Technische Universiteit Delft-1) and 1 wt% Pt/WO3/TUD-1) with different tungsten loadings (5-30 wt% WO3) is described. They were characterized using ICP-OES, INAA, N2 physisorption, XRD and

  13. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  14. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  15. Spectroscopic characterization, antimicrobial activity and molecular docking study of novel azo-imine functionalized sulphamethoxazoles

    Science.gov (United States)

    Sahu, Nilima; Mondal, Sudipa; Naskar, Kaushik; Mahapatra, Ananya Das; Gupta, Suvroma; Slawin, Alexandra M. Z.; Chattopadhyay, Debprasad; Sinha, Chittaranjan

    2018-03-01

    [SMXsbnd Ndbnd Nsbnd C6H3sbnd (p-OH)(msbnd CHO)] (1) reacts with ArNH2 to synthesize Schiff bases, [SMXsbnd Ndbnd Nsbnd C6H3sbnd (psbnd OH)(msbnd HCdbnd Nsbnd Ar)] (Ar = sbnd C6H5 (2a), sbnd C6H4sbnd psbnd CH3 (2b), sbnd C6H4sbnd psbnd OCH3 (2c), sbnd C6H4sbnd psbnd Cl (2d), sbnd C6H4sbnd psbnd NO2 (2e), sbnd C10H7 (2f)) and the products have been assessed for antibacterial properties against Gram positive bacteria, B. subtillis: IC50 (μg/ml): 39.2 (1), 60.1 (2a), 64.0 (2b), 85.6 (2c), 55.1 (2d), 88.4 (2e) and 65.1 (2f); and Gram negative bacteria, E. coli: IC50 (μg/ml): 159.0 (1), 151.4 (2a), 155.3 (2b), 140 (2c), 156.0 (2d), 153.5 (2e) and 157 (2f). The cell line toxicity (Vero cells) has also been evaluated with these compounds and EC50 (μg/ml) values are 129.9 (1), 74.2 (2a) and 93.0 (2b), 191.9 (2c), 99.1 (2d), 93.2 (2e) and 62.0 (2f). The anti-viral efficiency against harpies virus (HSVsbnd 1F ATCC-733) infection demonstrates that the compound 1 has highest selectivity index (CC50/EC50), 5.06 than the compounds 2a-f (CC50/EC50: 1.18 (2a), 1.42 (2b), 3.50 (2c), 1.45 (2d), 1.58 (2e), 1.29 (2f)). The compounds have been spectroscopically characterized and the structural confirmation has been established in one case by single crystal X-ray diffraction studies of 2c. In silico Molecular Docking study has been done using optimized geometries of the compounds to search the most favored binding mode of these drugs and hence useful to explain their competitive drug efficiency.

  16. Synthesis and characterization of Co nanoparticles

    Science.gov (United States)

    Singh, J.; Tripathi1, J.; Kaurav, N.

    2017-05-01

    Nanoparticles of Cobalt (Co) have attracted great interest in recent years because of their unique physical and optical properties that are of industrial importance. To understand their basic properties, Co nanoparticles were synthesized by Polyol method using Cobalt acetate and ethylene glycol in the presence of some pellets of sodium hydroxide. The synthesized powder was characterized X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The average particle size and lattice parameter estimated by XRD were found to be ˜37.3 nm and 3.1653 Å respectively. The results suggest suitability of these nanoparticles as dopants in other materials such as polymer materials and oxides.

  17. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  18. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Wilke de [Institute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster (Germany); Doerenkamp, Carsten; Zeng, Zhaoyang [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster (Germany); Oliveira, Marcos de [Instituto de Física em Sao Paulo, Universidade de Sao Paulo, Av. Trabalhador Saocarlense 400, Sao Carlos, S.P. 13560 590 (Brazil); Niehaus, Oliver; Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster (Germany); Studer, Armido, E-mail: studer@uni-muenster.de [Institute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster (Germany); Eckert, Hellmut, E-mail: eckerth@uni-muenster.de [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster (Germany); Instituto de Física em Sao Paulo, Universidade de Sao Paulo, Av. Trabalhador Saocarlense 400, Sao Carlos, S.P. 13560 590 (Brazil)

    2016-05-15

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest that these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.

  19. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Neffer A.; Abonia, Rodrigo, E-mail: rodrigo.abonia@correounivalle.edu.co [Departamento de Quimica, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Cadavid, Hector [Grupo GRALTA, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Vargas, Ines H. [Area de Ingenieria de Distribucion, Empresas Publicas de Medellin (EPM), Medellin (Colombia)

    2011-09-15

    In this work, a complete UV-Vis, IR and (1H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3 vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3 oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no structural changes occurred to the oils by the use. Chemical transformations like catalytic hydrogenation (hardening) and hydrolysis were performed to the FR3 oil sample and the obtained products were analyzed by spectroscopic methods in order to collect further structural information about the FR3 oil. Accelerated aging tests in laboratory were also performed for three FR3 oil samples affording interesting information about the structure of the degradation products. These findings would be valuable to search for a spectroscopy-based technique for monitoring the lifetime and performance of this insulating vegetable oil. (author)

  20. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry

    NARCIS (Netherlands)

    Oates, T.W.H.; Wormeester, Herbert; Arwin, H.

    2011-01-01

    In this article, spectroscopic ellipsometry studies of plasmon resonances at metal–dielectric interfaces of thin films are reviewed. We show how ellipsometry provides valuable non-invasive amplitude and phase information from which one can determine the effective dielectric functions, and how these

  1. Synthesis and Spectroscopic Studies ofAtenolol Derivatives with Enhanced Lipophilicity as Potential Prodrugs

    OpenAIRE

    Tabba, Hani D. [هاني الطباع وآخرون; Hassan, Mohamed A.; Hijawi, Ali S.; Voelter, Wolfgang

    2002-01-01

    Atenolol, a selective pi-adrenoceptor blocking agent is characterized by its low bioavailability. A number of atenolol prodrugs were synthesized to improve its lipid solubility and hence bioavailability. These compounds included an oxazolidine-2-thione derivative (II), a l,4-oxazine-2,3-dione derivative (III), and a series of oxazolidine derivatives (IVa-m). The structure of each compound was characterized by elemental analysis, infrared (IR), protonnuclear magnetic resonance ( H-NMR), and ma...

  2. L-shaped benzimidazole fluorophores: synthesis, characterization and optical response to bases, acids and anions.

    Science.gov (United States)

    Lirag, Rio Carlo; Le, Ha T M; Miljanić, Ognjen Š

    2013-05-14

    Nine L-shaped benzimidazole fluorophores have been synthesized, computationally evaluated and spectroscopically characterized. These "half-cruciform" fluorophores respond to bases, acids and anions through changes in fluorescence that vary from moderate to dramatic.

  3. Synthesis and characterization of carboxymethyl tamarind

    Directory of Open Access Journals (Sweden)

    Shunwei WU

    2015-10-01

    Full Text Available Series of carboxymethyl tamarind kernel polysaccharide (CMTKP with different degree of substitution (DS were prepared by the reactions of tamarind kernel polysaccharide (TKP and sodium monochloroacetic acid (SMCA in alkaline aqueous isopropanol. The influence of mole ratio of NaOH to SMCA, SMCA concentration, reaction temperature and time on DS, reaction efficiency (RE as well as the transmittance and apparent viscosity of CMTKP aqueous solution was investigated. The maximum DS of 0.92 and the RE of 77% were obtained. The solubility of CMTKP in cold water and the freeze-thaw stability were apparently improved and the transmittance of the mass fraction of 2% CMTKP aqueous solution could be up to 97%. Thermal stability decreased showed by TGA, and crystalline region reduced with the increasing of DS after carboxymethylation showed by XRD. The structure was characterized by FT-IR and solid-state 13C NMR.

  4. Energetic Di- and Trinitromethylpyridines: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Yiying Zhang

    2017-12-01

    Full Text Available Pyridine derivatives based on the addition of trinitromethyl functional groups were synthesized by the reaction of N2O4 with the corresponding pyridinecarboxaldoximes, then they were converted into dinitromethylide hydrazinium salts. These energetic compounds were fully characterized by IR and NMR spectroscopy, elemental analysis, differential scanning calorimetry (DSC, and X-ray crystallography. These pyridine derivatives have good densities, positive enthalpies of formation, and acceptable sensitivity values. Theoretical calculations carried out using Gaussian 03 and EXPLO5 programs demonstrated good to excellent detonation velocities and pressures. Each of these compounds is superior in performance to TNT, while 2,6-bis(trinitromethylpyridine (D = 8700 m·s−1, P = 33.2 GPa shows comparable detonation performance to that of RDX, but its thermal stability is too low, making it inferior to RDX.

  5. Synthesis and characterization of deuterated polyethylene

    International Nuclear Information System (INIS)

    Jia Xianbin; Luo Xuan; Chang Guanjun; Du Kai; Zhang Lin; Xie Zhengwei; Li Xinjuan; Lu Zaijun

    2009-01-01

    Due to its remarkable isotope effects, excellent kinetic stability towards C-D bond break, high degree of deuteration, and being non-radioactive, deuterated polyethylene (d-PE) is widely used in many fields, such as in inertially confined fusion (ICF) as target material, in production of low loss plastic optical fibers, and in study of the compatibility of different polymers. For the necessary of ICF, the d-PE was synthesized by the anionic polymerization and palladium-catalyzed hydrogenation. Furthermore, by the method of FTIR, 1H NMR and GPC, the deuterated ratio and structure of d-PE have been characterized. The results show that the d-PE has the high deuterated ratio and molecular weight, narrow molecular-weight distribution, the polymer material fits the basic necessary of ICF. (authors)

  6. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  7. Synthesis and Characterization Studies of MIL-101

    Directory of Open Access Journals (Sweden)

    Emine Kaya EKİNCİ

    2017-12-01

    Full Text Available MIL-101 is a kind of Metal Organic Frameworks (MOFs, which have attracted much attention in the past decade due to its promising application in chemical industries. MIL-101 is also known as “Porous Chromium Terephthalate”. It has very high surface area and pore volume. MIL-101 exhibits exceptional stability against moisture and other chemicals and is composed of coordinately unsaturated Cr- sites with high concentration available for catalysis and adsorption. MIL-101 was synthesized by hydrothermal method and characterized by XRD, nitrogen adsorption and desorption analyses and SEM. XRD patterns show the presence of MIL-101’s crystal structure with high surface area (~2400 m2/g. Nitrogen adsorption-desorption analyzes showed that the material exhibited mesoporous material behavior.

  8. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  9. Electrochemical and Spectroscopic Characterization of Aluminium(III)-para-methyl-meso-tetraphenylporphyrin Complexes Containing Substituted Salicylates as Axial Ligands

    OpenAIRE

    Gauri D. Bajju; Deepmala; Sunil Kumar Anand; Sujata Kundan; Narinder Singh

    2013-01-01

    A series of aluminium(III)-p-methyl-meso-tetraphenylporphyrin (p-CH3TPP-Al(III)) containing axially coordinated salicylate anion [p-CH3TPP-Al-X)], where X = salicylate (SA), 4-chlorosalicylate (4-CSA), 5-chlorosalicylate (5-CSA), 5-flourosalicylate (5-FSA), 4-aminosalicylate (4-ASA), 5-aminosalicylate (5-ASA), 5-nitrosalicylate (5-NSA), and 5-sulfosalicylate (5-SSA), have been synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis), infrared (I...

  10. Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite

    OpenAIRE

    M. Meskinfam; M. S. Sadjadi; H. Jazdarreh

    2012-01-01

    In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM...

  11. MFI-molecular sieve membranes:synthesis, characterization and modelling

    OpenAIRE

    Jareman, Fredrik

    2002-01-01

    This work concerns evaluation by permeation measurements and modeling of thin (<2µm) MFI molecular sieve membranes and, to a smaller extent, synthesis of such materials. The membranes have been synthesized on graded a-alumina microfiltration filters using The seed film method. Scanning electron microscopy and x-ray diffraction were used for characterization in addition to permeation measurements. Mathematical models describing membrane flux for real membranes and defect distributions were ...

  12. Electronic, electrical and magnetic ceramics synthesis and characterization

    International Nuclear Information System (INIS)

    Calix, V.S.; Saligan, P.P.; Naval, P.C.

    1989-01-01

    This paper describes the research and development activities of the Philippine Nuclear Research Institute (PNRI) on the synthesis and characterization of soft and hard ferrites and some beta alumina type superionic conductor materials. XRD, XRF and Moessbauer effect spectrometry are used to determine the structure phases, compositions and some magnetic properties of the materials. Effects of composition and preparation methods on the bulk electronic and magnetic properties are also discussed. (Auth.). 6 figs.; 3 tabs

  13. Open-Framework Germanates and Nickel Germanates : Synthesis and Characterization

    OpenAIRE

    Huang, Shiliang

    2012-01-01

    Microporous materials have a wide range of important applications in separation, gas adsorption, ion-exchange and catalysis. Open-framework germanates are a family of microporous compounds and are of particular interest. This thesis focuses on the synthesis and characterization of new open-framework germanates as well as introducing the transition-metal nickel into germanate structures. One new microporous germanosilicate, SU-78 and four new open-framework germanates, SU-74, SU-75, SU-69 and ...

  14. Synthesis and characterization of new amino acyl-4-thiazolidones

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lima Leite

    2007-04-01

    Full Text Available A series of heterocyclic compounds with a 4-thiazolidone nucleus and amino acyl moiety were synthesized by protection reaction of thiosemicarbazide using the symmetrical anhydride (Boc2O and cyclization with chloroacetic acid under mild conditions. Trifluoroacetic acid was used to obtain 4-thiazolidone and the alpha-amino acid condensation reactions were carried out using strategies for peptide synthesis. The characterization of this new class of compounds was performed using IR and ¹H-NMR spectroscopy.

  15. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    Science.gov (United States)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  16. Synthesis and characterization of biomorphic ceramics

    International Nuclear Information System (INIS)

    Rambo, Carlos Renato

    2001-01-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO 2 originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  17. Polypeptide Grafted Hyaluronan: Synthesis and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun [ORNL; Messman, Jamie M [ORNL; Mays, Jimmy [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. 1H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael addition at high [PLeu- NH2]/[acrylate]TBAHA ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, 1H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a -sheet conformation for aggregates of poly(L-leucine).

  18. Synthesis and characterization of struvite nano particles

    Science.gov (United States)

    Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.

    2015-06-01

    Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.

  19. Solvothermal synthesis and characterization of CZTS nanocrystals

    Science.gov (United States)

    Dumasiya, Ajay; Shah, N. M.

    2017-05-01

    Cu2ZnSnS4 (CZTS) is a promising thin film absorber material for low cost solar cell applications. CZTS nanoparticle ink synthesized using solvothermal route is an attractive option to deposit absorber layer using screen printing or spin coating method in CZTS thin film solar cell. In this study we have synthesized CZTS nanocrystals using solvothermal method from aqueous solution of Copper nitrate [Cu(NO3)2], Zinc nitrate [Zn(NO3)2], tin chloride [SnCl4] and thiourea with varying concentration of Cu(NO3)2 (viz 0.82 mmol,1.4 mmol, 1.7 mmol) keeping concentrations of rest of solutions constant. As synthesized CZTS nanocrystals are characterized using Energy Dispersive Analysis of X-rays (EDAX) to verify stoichiometry of elements. Analysis of EDAX data suggests that CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole is near stoichiometric. X-ray diffraction analysis study of CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole reveals the preferred orientation of the grains in (112), (220) and (312) direction confirming Kesterite structure of CZTS.

  20. Synthesis and characterization of luminescence magnetic nanocomposite

    International Nuclear Information System (INIS)

    Kiplagat, Ayabei; Onani, Martin O.; Meyer, Mervin; Akenga, Teresa A.; Dejene, Francis B.

    2016-01-01

    We report a new type of indium based quantum dots which were conjugated to the magnetic Fe 2 O 3 nanoparticles. They were characterized by photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) and fourier transform infra-red (FTIR). The photoluminescence characteristics of the coupled and uncoupled indium based quantum dots were investigated to determine whether the fluorescing property could be retained in the bifunctional system. Generally, the PL intensity of the quantum dots was observed to reduce significantly and with huge red shift most probably due to quenching effects for the MNPs. The average size of the coupled nanoparticles were found to range between 4 and 5 nm for the quantum dots and range of 6–13 nm for the Fe 2 O 3 magnetic nanoparticles as revealed by both HRTEM and XRD. The highest magnetic saturation reached for both bare and functionalized magnetic nanoparticles was 68.58 emu/g. The FTIR data revealed that the postulated functional groups were actually present in both the bare and functionalized nanoparticles. For instance, Fe–O was observed at around 580 cm −1 , O–H at 3432 cm −1 and thiol group at 2929 cm −1 for meso-2,3-dimercaptosuccinic acid capped Fe 2 O 3 magnetic nanoparticles. The energy dispersive spectroscopy (EDS) also confirmed that all the elements of the nanocomposite were actually present in the designed material.

  1. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    Science.gov (United States)

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-01-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors

    Science.gov (United States)

    Mbese, Johannes Z.; Ajibade, Peter A.

    2017-09-01

    Homonuclear tris-dithiocarbamato ruthenium(III) complexes, [Ru(S2CNR2)3] were prepared and characterized by spectroscopic techniques and thermogravimetric analyses. The thermogravimetric analyses (TGA) of the ruthenium complexes showed that the complexes decompose to ruthenium(III) sulfide nanoparticles. The ruthenium(III) complexes were dispersed in oleic acid and thermolysed in hexadecylamine to prepared oleic acid/hexadecylamine capped Ru2S3 nanoparticles. FTIR revealed that Ru2S3 nanoparticles are capped through the interaction of the -NH2 group of hexadecylamine HDA adsorbed on the surfaces of nanoparticles and it also showed that oleic acid (OA) is acting as both coordinating stabilizing surfactant and capping agent. EDS spectra revealed that the prepared nanoparticles are mainly composed of Ru and S, confirming the formation of Ru2S3 nanoparticles. Powder XRD confirms that the nanoparticles are in cubic phase. The inner morphology of nanoparticles obtained from transmission electron microscopy (TEM) showed nanoparticles with narrow particle size distributions characterized by an average diameter of 8.45 nm with a standard deviation of 1.6 nm. The optical band gap (Eg) determined from Tauc plot are in the range 3.44-4.18 eV.

  3. Synthesis and characterization of polyimide silica hybrids

    International Nuclear Information System (INIS)

    Ullah, S.M.

    2010-01-01

    Flexible-chain polyimide (PIF) was synthesized from 4, 4'-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) and the stiff-chain polyimide (PI S ) was derived from 1, 5-diaminonepthaline (DAN) and pyromellitic anhydride (PMDA). Molecular composites of polyimide were prepared by embedding the stiff-chain polyimide (PIS) in to ductile matrix of flexible-polyimide (PI F ) by blending their respective poly(amic acid) solution (20:80). Blend of rigid and flexible polyimide (20:80) was reinforced with silica up to 35 wt % by sol-gel process to form the silica reinforced molecular composite (SRMC). Silica reinforced molecular composite (SRMC) were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and tensile testing (TT). FTIR results showed the shifting of Si - O - Si peak toward lower wave number with the increase in the silica wt % indicates the increase in the silica particle size. The oxidative degradation of SRMC showed an improvement of 23 degree C in composite having 30 wt% silica contents. Similarly, modulus of SRMC was increased as the concentration of silica was increased. Silica reinforced (co-)polyimide (SRCO) was prepared from the same monomers DAN, ODA and PMDA (20:80:100) and reinforced with different of silica up to 35 wt%. Comparison of thermo-mechanical properties of SRMC with SRCO was also done. Both the composite showed similar peak shift to low wave number with the increase in the wt% of silica was observed as in the case of SRMC. TG results of SRCO showed the 13 degree C improvement in the oxidative degradation with 30 wt% silica content. Tensile testing shows the 80% increase in the modulus with 35 wt% silica content. The result showed that SRMC are 15 degree C more stable than SRCO with 30 wt% silica. SRMC have 15% more modulus than SRCO with 30 wt% silica. This shows that thermo mechanical stability of SRMC's over SRCO's composites. (author)

  4. Synthesis and characterization of luminescence magnetic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Kiplagat, Ayabei [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Meyer, Mervin [DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville (South Africa); Akenga, Teresa A. [Department of Chemistry, University of Eldoret, P.O. Box 1125, Eldoret (Kenya); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthadithaba 9866 (South Africa)

    2016-01-01

    We report a new type of indium based quantum dots which were conjugated to the magnetic Fe{sub 2}O{sub 3} nanoparticles. They were characterized by photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) and fourier transform infra-red (FTIR). The photoluminescence characteristics of the coupled and uncoupled indium based quantum dots were investigated to determine whether the fluorescing property could be retained in the bifunctional system. Generally, the PL intensity of the quantum dots was observed to reduce significantly and with huge red shift most probably due to quenching effects for the MNPs. The average size of the coupled nanoparticles were found to range between 4 and 5 nm for the quantum dots and range of 6–13 nm for the Fe{sub 2}O{sub 3} magnetic nanoparticles as revealed by both HRTEM and XRD. The highest magnetic saturation reached for both bare and functionalized magnetic nanoparticles was 68.58 emu/g. The FTIR data revealed that the postulated functional groups were actually present in both the bare and functionalized nanoparticles. For instance, Fe–O was observed at around 580 cm{sup −1}, O–H at 3432 cm{sup −1} and thiol group at 2929 cm{sup −1} for meso-2,3-dimercaptosuccinic acid capped Fe{sub 2}O{sub 3} magnetic nanoparticles. The energy dispersive spectroscopy (EDS) also confirmed that all the elements of the nanocomposite were actually present in the designed material.

  5. Synthesis, spectroscopic characterization, theoretical study and anti-hepatic cancer activity study of 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate, a novel curcumin congener

    Science.gov (United States)

    Srivastava, Sangeeta; Gupta, Preeti; Singh, Ranvijay Pratap; Jafri, Asif; Arshad, M.; Banerjee, Monisha

    2017-08-01

    In the present work 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate (2), a novel curcumin ester was synthesized. The molecular structure and spectroscopic analysis were performed using experimental techniques like FT-IR, 1H,13C NMR, mass and UV-visible as well as theoretical calculations. The theoretical calculations were done by DFT level of theory using B3LYP/6-31G (d,p) basis set. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). The electronic properties such as frontier orbitals and band gap energies have been calculated using time dependent density functional theory (TD-DFT). The strength and nature of weak intramolecular interactions have been studied by AIM approach. Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out. The anti-hepatic cancer activity of compound 2 was also carried out.

  6. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  7. Non-destructive characterization of nitrogen-implanted silicon-on-insulator structures by spectroscopic ellipsometry

    NARCIS (Netherlands)

    Fried, M.; Lohner, T.; de Nijs, J.M.M.; van Silfhout, Arend; Hanekamp, L.J.; Khanh, N.Q.; Laczik, Z.; Gyulai, J.

    1989-01-01

    Silicon-on-insulator (SOI) structures implanted with 200 or 400 keV N+ ions at a dose of 7.5 × 1017cm−2 were studied by spectroscopic ellipsometry (SE). The SE measurements were carried out in the 300–700 nm wavelength (4.13-1.78 eV photon energy) range. The SE data were analysed by the conventional

  8. Carbon nanotubes: Synthesis, characterization, and applications

    Science.gov (United States)

    Deck, Christian Peter

    Carbon nanotubes (CNTs) possess exceptional material properties, making them desirable for use in a variety of applications. In this work, CNTs were grown using two distinct catalytic chemical vapor deposition (CVD) procedures, floating catalyst CVD and thermal CVD, which differed in the method of catalyst introduction. Reaction conditions were optimized to synthesize nanotubes with desired characteristics, and the effects of varying growth parameters were studied. These parameters included gas composition, temperature, reaction duration, and catalyst and substrate material. The CNT products were then examined using several approaches. For each CVD method, nanotube growth rates were determined and the formation and termination mechanisms were investigated. The effects of reaction parameters on nanotube diameters and morphology were also explored to identify means of controlling these important properties. In addition to investigating the effects of different growth parameters, the material properties of nanotubes were also studied. The floating catalyst CVD method produced thick mats of nanotubes, and the mechanical response of these samples was examined using in-situ compression and tension testing. These results indicated that mat structure is composed of discontinuous nanotubes, and a time-dependent response was also observed. In addition, the electrical resistance of bulk CNT samples was found to increase for tubes grown with higher catalyst concentrations and with bamboo morphologies. The properties of nanotubes synthesized using thermal CVD were also examined. Mechanical testing was performed using the same in-situ compression approach developed for floating catalyst CVD samples. A second characterization method was devised, where an optical approach was used to measure the deflection of patterned nanotubes exposed to an applied fluid flow. This response was also simulated, and comparisons with the experimental data were used to determine the flexural

  9. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    Science.gov (United States)

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  10. Synthesis of Radiation Curable Palm Oil–Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations

    Directory of Open Access Journals (Sweden)

    Ashraf M. Salih

    2015-08-01

    Full Text Available Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA from an epoxidized palm oil product (EPOP as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  11. Synthesis, spectroscopic and TD-DFT quantum mechanical study of azo-azomethine dyes. A laser induced trans-cis-trans photoisomerization cycle

    Science.gov (United States)

    Georgiev, Anton; Kostadinov, Anton; Ivanov, Deyan; Dimov, Deyan; Stoyanov, Simeon; Nedelchev, Lian; Nazarova, Dimana; Yancheva, Denitsa

    2018-03-01

    This paper describes the synthesis, spectroscopic characterization and quantum mechanical calculations of three azo-azomethine dyes. The dyes were synthesized via condensation reaction between 4-(dimethylamino)benzaldehyde and three different 4-aminobenzene azo dyes. Quantum chemical calculations on the optimized molecular geometry and electron densities of the trans (E) and cis (Z) isomers and their vibrational frequencies have been computed by using DFT/B3LYP density-functional theory with 6-311 ++G(d,p) basis set in vacuo. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans → cis, Δμtrans → cis,ΔHtrans → cis, ΔGtrans → cis and ΔStrans → cis values. After molecular geometry optimization the electronic spectra have been obtained by TD-DFT calculations at same basis set and correlated with the spectra of vapour deposited nanosized films of the dyes. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. Solvatochromism was investigated by UV-VIS spectroscopy in five different organic solvents with increasing polarity. The dynamic photoisomerization experiments have been performed in DMF by pump lasers λ = 355 nm (mostly E → Z) and λ = 491 nm (mostly Z → E) in spectral region 300 nm - 800 nm at equal concentrations and times of illumination in order to investigate the photodynamical trans-cis-trans properties of the sbnd CHdbnd Nsbnd and sbnd Ndbnd Nsbnd chromophore groups of the dyes.

  12. Optical properties and surface characterization of pulsed laser-deposited Cu2ZnSnS4 by spectroscopic ellipsometry

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt

    2015-01-01

    Cu2ZnSnS4 films prepared by pulsed laser deposition at different temperatures are characterized by spectroscopic ellipsometry. The focus is on confirming results from direct measurement techniques, by finding appropriate models of the surface overlayer for data fitting, and extracting the dielect......Cu2ZnSnS4 films prepared by pulsed laser deposition at different temperatures are characterized by spectroscopic ellipsometry. The focus is on confirming results from direct measurement techniques, by finding appropriate models of the surface overlayer for data fitting, and extracting...... the dielectric function of the films. It is found that the surface overlayer changes with film thickness and deposition temperature. Adopting different ellipsometry measurements and modeling strategies for each film, dielectric functions are extracted and compared. As the deposition temperature is increased......, the dielectric functions exhibit additional critical points related to optical transitions in the material other than absorption across the fundamental band gap. In the case of a thin film surface features observed by scanning electron microscopy and atomic force microscopy are accurately...

  13. Full-dimensional quantum mechanics calculations for the spectroscopic characterization of the isomerization transition states of HOCO/DOCO systems.

    Science.gov (United States)

    Ma, Dandan; Ren, Haisheng; Ma, Jianyi

    2018-02-14

    Full-dimensional quantum mechanics calculations were performed to determine the vibrational energy levels of HOCO and DOCO based on an accurate potential energy surface. Almost all of the vibrational energy levels up to 3500 cm -1 from the vibrational ground state were assigned, and the calculated energy levels in this work are well in agreement with the reported results by Bowman. The corresponding full dimensional wavefunctions present some special features. When the energy level approaches the barrier height, the trans-HOCO and cis-HOCO states strongly couple through tunneling interactions, and the tunneling interaction and Fermi resonance were observed in the DOCO system. The energy level patterns of trans-HOCO, cis-HOCO and trans-DOCO provide a reasonable fitted barrier height using the fitting formula of Field et al., however, a discrepancy exists for the cis-DOCO species which is considered as a random event. Our full-dimensional calculations give positive evidence for the accuracy of the spectroscopic characterization model of the isomerization transition state reported by Field et al., which was developed from one-dimensional model systems. Furthermore, the special case of cis-DOCO in this work means that the isotopic substitution can solve the problem of the accidental failure of Field's spectroscopic characterization model.

  14. Development, validation and comparison of near infrared and Raman spectroscopic methods for fast characterization of tablets with amlodipine and valsartan.

    Science.gov (United States)

    Casian, Tibor; Reznek, Andra; Vonica-Gligor, Andreea Loredana; Van Renterghem, Jeroen; De Beer, Thomas; Tomuță, Ioan

    2017-05-15

    The objective of this study was to develop, validate and compare NIR and Raman spectroscopic methods for fast characterization in terms of API content and tensile strength of fixed-dose combination tablets containing amlodipine and valsartan. For the APIs assay NIR-transmittance and Raman-reflectance methods were considered, whereas for the tensile strength assay Raman spectra were recorded in reflectance configuration and NIR spectra were recorded in both reflectance and transmittance. Multivariate calibration models (PLS) were built by applying different pre-processing methods (SNV, MSC, SD+SNV) on certain spectral regions. Correlating pre-processed spectral data with tablet properties resulted in highly predictive models except in the case of NIR-transmittance spectra for tensile strength estimation. The best models selected by cross-validation were further validated on independent samples in terms of linearity, trueness, accuracy and precision. Using Bland and Altman analysis the analytical performance of the NIR and Raman methods were compared, demonstrating their similarity considering the investigated applications. The two spectroscopic methods can be used in association to confirm each others results for at-line characterization of the pharmaceutical product. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flame synthesis and characterization of nanocrystalline titania powders

    Directory of Open Access Journals (Sweden)

    Bhaskaran Manjith Kumar

    2012-09-01

    Full Text Available Flame reactors are considered to be one of the most promising and versatile synthesis routes for the largescale production of submicron and nanosized particles. An annular co-flow type oxy-gas diffusion burner was designed for its application in a modular flame reactor for the synthesis of nanocrystalline oxide ceramics. The burner consisted of multiple ports for the individually regulated flow of a precursor vapour, inert gas, fuel gas and oxidizer. The nanopowders formed during flame synthesis in the reaction chamber were collected by a suitable set of filters. In the present study, TTIP was used as the precursor for the synthesis of nanocrystalline TiO2 and helium was used to carry the precursor vapour to the burner head. Methane and oxygen were used as fuel and oxidizer respectively. The operating conditions were varied by systematically changing the flow rates of the gases involved. The synthesized powders were characterized using standard techniques such as XRD, SEM, TEM, BET etc., in order to determine the crystallite size, phase content, morphology, particle size and degree of agglomeration. The influences of gas flow rates on the powder characteristics are discussed.

  16. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  17. Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties

    Science.gov (United States)

    Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.

    2017-12-01

    One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.

  18. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  19. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  20. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    International Nuclear Information System (INIS)

    Morel, Mauricio; Martínez, Francisco; Mosquera, Edgar

    2013-01-01

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N 2 (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe 2+ and Fe 3+ from the mineral magnetite is synergistic

  1. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Rivera, A.B.

    1989-01-01

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl 2 (PPh 3 ) 2 L 2 and RuCl 2 (PPh 3 ) 2 A, obtained from the reaction of RuCl 2 (PPh 3 ) 3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b 1 (dxz)->b 1 (pi) and a 2 (dxy)->a 2 (pi) transitions, and a third, weak band ascribed to the b 2 (dyz)->a 2 (pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl 3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh 3 ) 3 Cl 2 . In the presence of CO, RuCl 2 (CO) 2 L 2 complexes were gennerated. Several derivatives were isolated and characterized. (author) [pt

  2. Synthesis, Spectroscopic, and Thermal Investigations of Metal Complexes with Mefenamic Acid

    Directory of Open Access Journals (Sweden)

    Karolina Kafarska

    2017-01-01

    Full Text Available The novel metal complexes with empirical formulae M(mef2·nH2O (where M = Mn(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II; mef is the mefenamic ligand were synthesized and characterized by elemental analysis, molar conductance, FTIR-spectroscopy, and thermal decomposition techniques. All IR spectra revealed absorption bands related to the asymmetric (νas and symmetric (νs vibrations of carboxylate group. The Nakamoto criteria clearly indicate that this group is bonded in a bidentate chelate mode. The thermal behavior of complexes was studied by TGA methods under non-isothermal condition in air. Upon heating, all compounds decompose progressively to metal oxides, which are the final products of pyrolysis. Cu(II, Zn(II, and Cd(II complexes were also characterized by the coupled TG-FTIR technique, which finally proved the path and gaseous products of thermal decomposition. Additionally, the coupled TG-MS system was used to determine the principal volatile products of thermolysis and fragmentation processes of Mn(mef2·3H2O and Co(mef2·2H2O.

  3. Synthesis and characterization of poly aniline for electrochemical biosensor construction

    International Nuclear Information System (INIS)

    Magalhaes, Gleice S.L.; Southgate, Erica F.; Alhadeff, Eliana M.; Guimaraes, Maria Jose O.C.

    2011-01-01

    Conductors polymers have many attractive interests to the industry due their highly technological applications. This work treats specially of polyaniline because it's large electrical conductivity, electrochemical properties, associate to the chemical stability in environmental conditions and synthesis facility. The main of this work is the application in a construction of an electrochemical biosensor for ethanol detection and quantification. Different conditions of synthesis of the conductor emeraldine polyaniline form were studied, investigated the influence of the dopant agent and the reactional environment conditions temperature on the reaction yield and conductivities. The polyaniline that showed the best conductivity were characterized by differential and thermal gravimetric analysis, infrared spectroscopy, X ray diffraction, and cycle voltammetry, comparing with the commercial polyaniline. (author)

  4. Synthesis and spectroscopic properties of Tris(2,2'-bipyridine)ruthenium(II) in zeolite Y

    International Nuclear Information System (INIS)

    DeWilde, W.; Peeters, G.; Lunsford, J.H.

    1980-01-01

    Tris(2,2'-bipyridine)ruthenium(II) complexes have been synthesized within the large cavities of dehydrated Y-type zeolites by allowing bipyridine to react with a Ru(NH 3 ) 6 -Y form of the zeolite. The resulting Ru(bpy) 3 2+ complexes are characterized by absorption and emission bands similar to those found in aqueous solutions. The relatively high concentration of the Ru(bpy) 3 2+ complexes resulted in concentration quenching. As the addition of water to the samples approached saturation, the luminescence was quenched; however, small amounts of water increased the luminescence in a sample which contained 2.8 complexes per unit cell. Emission was also quenched upon addition of O 2 to the zeolite, with the effect being more pronounced in samples having a smaller concentration of complexes. 30 references, 6 figures, 1 table

  5. Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics.

    Science.gov (United States)

    Aculey, Patrick C; Snitkjaer, Pia; Owusu, Margaret; Bassompiere, Marc; Takrama, Jemmy; Nørgaard, Lars; Petersen, Mikael A; Nielsen, Dennis S

    2010-08-01

    Export of cocoa beans is of great economic importance in Ghana and several other tropical countries. Raw cocoa has an astringent, unpleasant taste, and flavor, and has to be fermented, dried, and roasted to obtain the characteristic cocoa flavor and taste. In an attempt to obtain a deeper understanding of the changes in the cocoa beans during fermentation and investigate the possibility of future development of objective methods for assessing the degree of fermentation, a novel combination of methods including cut test, colorimetry, fluorescence spectroscopy, NIR spectroscopy, and GC-MS evaluated by chemometric methods was used to examine cocoa beans sampled at different durations of fermentation and samples representing fully fermented and dried beans from all cocoa growing regions of Ghana. Using colorimetry it was found that samples moved towards higher a* and b* values as fermentation progressed. Furthermore, the degree of fermentation could, in general, be well described by the spectroscopic methods used. In addition, it was possible to link analysis of volatile compounds with predictions of fermentation time. Fermented and dried cocoa beans from the Volta and the Western regions clustered separately in the score plots based on colorimetric, fluorescence, NIR, and GC-MS indicating regional differences in the composition of Ghanaian cocoa beans. The study demonstrates the potential of colorimetry and spectroscopic methods as valuable tools for determining the fermentation degree of cocoa beans. Using GC-MS it was possible to demonstrate the formation of several important aroma compounds such 2-phenylethyl acetate, propionic acid, and acetoin and the breakdown of others like diacetyl during fermentation. Practical Application: The present study demonstrates the potential of using colorimetry and spectroscopic methods as objective methods for determining cocoa bean quality along the processing chain. Development of objective methods for determining cocoa bean

  6. Synthesis, DNA/HSA Interaction Spectroscopic Studies and In Vitro Cytotoxicity of a New Mixed Ligand Cu(II) Complex.

    Science.gov (United States)

    Gan, Qian; Fu, Xiabing; Chen, Weijiang; Xiong, Yahong; Fu, Yinlian; Chen, Shi; Le, Xueyi

    2016-05-01

    A new mixed ligand copper(II)-dipeptide complex with 2-(2'-pyridyl)benzothiazole (pbt), [Cu(Gly-L-leu)(pbt)(H2O)]·ClO4 (Gly-L-leu = Glycyl-L-leucine anion) was synthesized and characterized by various physico-chemical means. The DNA binding and cleavage properties of the complex investigated by viscosity, agarose gel electrophoresis and multi-spectroscopic techniques (UV, circular dichroism (CD) and fluorescence) showed that the complex was bound to CT-DNA through intercalation mode with moderate binding constant (K b = 3.132 × 10(4) M(-1)), and cleaved pBR322 DNA efficiently (~ 5 μM) in the presence of Vc, probably via an oxidative mechanism induced by •OH. Additionally, the interaction of the complex with human serum albumin (HSA) was explored by UV-visible, CD, fluorescence, synchronous fluorescence and 3D fluorescence spectroscopy. The complex exhibits desired affinity to HSA through hydrophobic interaction. Moreover, the cytotoxicity of the complex against three human carcinoma cell lines (HeLa, HepG2 and A549) was evaluated by MTT assay, which showed that the complex had effective cytotoxicity and higher inhibition toward A549 cell lines with IC50 of 38.0 ± 3.2 μM.

  7. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies.

    Science.gov (United States)

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu

    2015-04-06

    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA.

  8. Synthesis, molecular structure, spectroscopic properties and stability of (Z)-N-methyl-C-2,4,6-trimethylphenylnitrone

    Science.gov (United States)

    Lasri, Jamal; Ismail, Ali I.; Haukka, Matti; Soliman, Saied M.

    2015-02-01

    New N-methyl-C-2,4,6-trimethylphenylnitrone 1 has been synthesized starting from N-methylhydroxylamine and mesitaldehyde. The product was fully characterized using different spectroscopic techniques; FTIR, NMR, UV-Vis, high resolution mass spectrometry and X-ray diffraction. The relative stability and percent of population of its two possible isomers (E and Z) were calculated using the B3LYP/6-311++G(d,p) method in gas phase and in solution. In agreement with the X-ray results, it was found that Z-isomer is the most stable one in both gas phase and solution. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO), and chemical shift values were also calculated using the same level of theory. The TD-DFT results of the studied nitrone predicted a π-π∗ transition band at 285.1 nm (fosc = 0.3543) in the gas phase. The rest of the spectral bands undergo either hyperchromic or hypsochromic shifts in the presence of solvent. Polarizability and HOMO-LUMO gap values were used to predict the nonlinear optical properties (NLO) of the studied compound. NBO analysis has been used to determine the most accurate Lewis structure of the studied molecule.

  9. Synthesis, spectroscopic and voltammetric studies of a novel Schiff-base of cysteine and saccharin

    Science.gov (United States)

    Çakır, Semiha; Odabaşoğlu, Mustafa; Biçer, Ender; Yazar, Zehra

    2009-01-01

    In this study, a novel Schiff-base of cysteine and saccharin [( 2R)-2-(1, 1-dioxo-1, 2-dihydro-1λ6-benzo[ d]isothiazol-3-ylideneamino)-3-mercapto-propionic acid] was synthesized and characterized by UV-Vis, FT-IR, 1H NMR and elemental analysis. The voltammetric behaviour of Schiff-base was investigated on the static mercury drop electrode (SMDE) by using Square-Wave voltammetry (SWV) and Cyclic voltammetry (CV). The voltammograms of the Schiff-base gave three reduction waves in Britton-Robinson buffer (pH 5.0-9.0) for the potential range from 0.0 to -1.4 V. The first reversible cathodic peak is due to reduction of the mercury thiolate, produced by the thiol group of Schiff-base which adsorbs at Hg electrode surface, to metallic mercury and free thiol. The second reduction peak may be assigned to the reduction of azomethine center (>C dbnd N sbnd ) in the Schiff-base and the last peak may be related to the catalytic hydrogen reduction.

  10. Rhodium (II) cycle alkanecarboxylate: synthesis, spectroscopic and thermo analytic studies and evaluation of the antitumor potential

    International Nuclear Information System (INIS)

    Souza, Aparecido Ribeiro de

    1995-01-01

    Four new rhodium(II) carboxylates (cyclopropane, cyclobutane, cyclopentane, and cyclohexanecarboxylate), and other already known rhodium (II) carboxylates (acetate, propionate, butyrate, metoxyacetate, dichloroacetate, and trifluoroacetate), have been prepared for study in this work. The compounds were characterized by elementary and thermogravimetric analysis, magnetic susceptibility, and electronic, Raman, and infrared spectroscopy. The reaction of Rh CL 3 .aq with the sodium carboxylates was studied aiming to improve the understanding of the redox process involved. Spectroscopy studies (Raman and electronic) were made to examine the transition involved in the Rh-Rh and Rh-O bonds. The results have shown a direct relation between the force of the carboxylic acid and the Rh-O force, but show a inverse relation with the Rh-Rh bond force. Thermal analysis studies were undertaken and the obtained date show a resemblance of the TG/DTG curves with that found in literature. In the other hand, the DSC curves show a different results: in open crucible, the peaks associated with the cage breakdown are exothermic and, in closed crucible this peaks are endothermic. The thermodecomposition products were analyzed. The evolved gases were identified by GC?MS and 1 H and 13 C NMR spectra. The residues were analyzed by X-ray diffraction. Antitumor activity of rhodium cyclopropanecarboxylate was evaluated in vitro (cell cultures K562 and Ehrlich) and in vivo (Balb-c mice with ascite Ehrlich tumor), indicating an increased life span (87.5%) of the treated animals. (author)

  11. Synthesis, X-ray Structure, Spectroscopic Properties and DFT Studies of a Novel Schiff Base

    Directory of Open Access Journals (Sweden)

    Kew-Yu Chen

    2014-10-01

    Full Text Available A series of Schiff bases, salicylideneaniline derivatives 1–4, was synthesized under mild conditions and characterized by 1H NMR, HRMS, UV-Vis and fluorescence spectra, and single-crystal X-ray diffraction. In solid and aprotic solvents 1–4 exist mainly as E conformers that possess an intramolecular six-membered-ring hydrogen bond. A weak intramolecular C–H×××F hydrogen bond is also observed in fluoro-functionalized Schiff base 4, which generates another S(6 ring motif. The C–H×××F hydrogen bond further stabilizes its structure and leads it to form a planar configuration. Compounds 1–3 exhibit solely a long-wavelength proton-transfer tautomer emission, while dipole-functionalized Schiff base 4 shows remarkable dual emission originated from the excited-state intramolecular charge transfer (ESICT and excited-state intramolecular proton transfer (ESIPT states. Furthermore, the geometric structures, frontier molecular orbitals (MOs and the potential energy curves for 1–4 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT and time-dependent DFT calculations.

  12. Synthesis, X-ray structure, spectroscopic properties and DFT studies of a novel Schiff base.

    Science.gov (United States)

    Chen, Kew-Yu; Tsai, Hsing-Yang

    2014-10-17

    A series of Schiff bases, salicylideneaniline derivatives 1-4, was synthesized under mild conditions and characterized by 1H NMR, HRMS, UV-Vis and fluorescence spectra, and single-crystal X-ray diffraction. In solid and aprotic solvents 1-4 exist mainly as E conformers that possess an intramolecular six-membered-ring hydrogen bond. A weak intramolecular C-H···F hydrogen bond is also observed in fluoro-functionalized Schiff base 4, which generates another S(6) ring motif. The C-H···F hydrogen bond further stabilizes its structure and leads it to form a planar configuration. Compounds 1-3 exhibit solely a long-wavelength proton-transfer tautomer emission, while dipole-functionalized Schiff base 4 shows remarkable dual emission originated from the excited-state intramolecular charge transfer (ESICT) and excited-state intramolecular proton transfer (ESIPT) states. Furthermore, the geometric structures, frontier molecular orbitals (MOs) and the potential energy curves for 1-4 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT) and time-dependent DFT calculations.

  13. Synthesis, spectroscopic, thermal and biological activity studies on triazine metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.; Badawy, M. A.; Omar, M. M.; Nassar, M. M.; Kamel, A. B.

    2010-11-01

    The coordination behaviour of the triazine ligand with NNO donation sites, derived from 3-benzyl-7-hydrazinyl-4H-[1,3,4]thiadiazolo[2,3c][1,2,4]triazin-4-one (HL), towards some metal ions namely Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) are reported. The metal complexes are characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TG, DTG and DTA). The ionization constants of the organic ligand under investigation as well as the stability constants of its metal chelates are calculated spectrophotometrically at 25 °C. The chelates are found to have octahedral geometrical structures. The ligand (HL) and its binary chelates are subjected to thermal analyses (TG, DTG and DTA) and the different activation thermodynamic parameters are calculated from their corresponding DTG curves to throw more light on the nature of changes accompanying the thermal decomposition process of these compounds. The synthesized ligand and its metal complexes were found to have biological activity against the desert locust Schistocerca gregaria (Forsk.) (Orthoptera - Acrididae) and its adult longevities.

  14. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Roushani, Mahmoud [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Department of Chemistry, Ilam University, Ilam (Iran, Islamic Republic of); Pourmortazavi, Seied Mahdi [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was found that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.

  15. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  16. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    Energy Technology Data Exchange (ETDEWEB)

    Özaydın, C. [Batman University, Engineering Faculty, Department of Computer Eng., Batman (Turkey); Güllü, Ö., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, Batman (Turkey); Pakma, O. [Batman University, Science and Art Faculty, Department of Physics, Batman (Turkey); Ilhan, S. [Siirt University, Science and Art Faculty, Department of Chemistry, Siirt (Turkey); Akkılıç, K. [Dicle University, Education Faculty, Department of Physics Education, Diyarbakır (Turkey)

    2016-05-15

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ{sub b}) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  17. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    International Nuclear Information System (INIS)

    Özaydın, C.; Güllü, Ö.; Pakma, O.; Ilhan, S.; Akkılıç, K.

    2016-01-01

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ b ) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  18. Synthesis and vibrational spectroscopic characterisation of nickel (II) propionate tetrahydrate, Ni(CH 3CH 2COO) 2·4H 2O, and its aqueous solution

    Science.gov (United States)

    Bickley, R. I.; Edwards, H. G. M.; Gustar, R.; Rose, S. J.

    1991-08-01

    A two-stage synthesis for nickel(II) propionate is described. A comprehensive Raman and infrared spectroscopic study of propionic acid, nickel propionate, sodium propionate and barium propionate has been made and the vibrational spectra have been assigned. From comparisons of the Raman and infrared spectra of sodium propionate and nickel propionate, it is concluded that nickel (II) propionate dissociates into the propionate ion CH 3CH 2CO 2-, hexa-aquo nickel(II) ions Ni(H 2O) 2+6, and the monopropionato-nickel(II) species (CH 3CH 2COO)Ni +, in aqueous solution.

  19. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  20. Synthesis and Biophysical Characterization of Chlorambucil Anticancer Ether Lipid Prodrugs

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Christensen, Mikkel Stochkendahl; Ruysschaert, Tristan

    2009-01-01

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability...... to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A2, resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A2, with IC50 values in the 8-36 μM range....

  1. Synthesis and Characterization of Biscoumarin and Benzopyrano Dicoumarin Derivatives

    International Nuclear Information System (INIS)

    Nik Khairunissa' Nik Abdullah Zawawi; Muhammad Taha; Norizan Ahmat; Nor Hadiani Ismail; Nik Khairunissa' Nik Abdullah Zawawi; Muhammad Taha; Norizan Ahmat; Nor Hadiani Ismail

    2016-01-01

    The wide-ranging biological activities of 4-hydroxycoumarin have stimulated considerable interest in this class of compounds, and various biscoumarin derivatives have been synthesized. Recently, a number of methods have been reported for the synthesis of biscoumarin by the reaction of 4-hydroxycoumarin and various aldehydes in the presence of catalysts. In the present study, a new series of biscoumarin and benzopyrano dicoumarin were synthesized and physically characterized by nuclear magnetic resonane ( 1 H and 13 C NMR), fourier transform infrared spectroscopy (FTIR), mass spectrometry (MS) and melting point. (author)

  2. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Synthesis, Characterization, and Reactivities of Manganese(V)-Oxo Porphyrin Complexes

    OpenAIRE

    Song, Woon Ju; Seo, Mi Sook; George, Serena DeBeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I.; Nam, Wonwoo

    2007-01-01

    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H2O2, produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(...

  4. Spectroscopic investigation on the chemical forms of Cu during the synthesis of zeolite X at low temperature

    International Nuclear Information System (INIS)

    Terzano, Roberto; Spagnuolo, Matteo; Medici, Luca; Tateo, Fabio; Vekemans, Bart; Janssens, Koen; Ruggiero, Pacifico

    2006-01-01

    The direct synthesis of zeolites in polluted soils has proved to be a promising process for the stabilization of metals inside these minerals. Nevertheless, more detailed information about this process is still needed in order to better foresee the fate of metals in treated soils. In this work, zeolite X has been synthesized under alkaline conditions in an aqueous solution containing 2500 mg kg -1 of Cu, starting from Na silicate and Al hydroxide at 60 deg. C. Aluminium, Si and Cu concentrations in the aqueous phase, during zeolite synthesis, were measured over a period of 160 h. The solid products have been characterized over time by XRD, SEM-EDX, ESR, FT-IR, and synchrotron radiation X-ray microbeam absorption near edge structure (μ-XANES) and extended X-ray absorption fine structure (μ-EXAFS) spectroscopy. It appears that the marked reduction of Cu concentration in solution is not only due to a simple precipitation effect, but also to processes connected with the formation of zeolite X which could entrap, inside its porous structure, nano- or micro-occlusions of precipitated Cu hydroxides and/or oxides. In addition, EXAFS observations strengthen the hypothesis of the presence of different Cu phases even at a short-range molecular level and suggest that some of these occlusions could be even bound to the zeolite framework. The results suggest that zeolite formation could be used to reduce the availability of metals in polluted soils

  5. New synthesis parameters of GGG:Nd nanocrystalline powder prepared by sol–gel method: Structural and spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Alshikh Mohamad, Yassin, E-mail: yassinm@mail.ru; Atassi, Yomen; Moussa, Zafer

    2015-09-15

    GGG:Nd nanopowder is synthesized by the sol–gel method using formic acid and acetic acid as chelating agents and ethylene glycol as a cross linking agent. TGA–DSC, XRD, photoluminescence spectroscopy and fluorescence life time analysis (τ) are used to characterize the powder. XRD is used to optimize the synthesis parameters. According to XRD, complete phase of GGG nanopowder is formed at 800 °C for 1 min. Fluorescence life time analyses reveal that the optimum crystallization temperature is 1000 °C. - Highlights: • GGG:Nd nanopowder was prepared using formic acid by the sol gel method. • Optimization of sol gel parameters was done. • GGG phase formation was complete at 800 °C for 1 min • According to τ measurements, optimal temperature treatment is at 1000 °C. • Nanopowder prepared with formic acid was better than that formed with acetic acid.

  6. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  7. Spectroscopic and Physical Characterization of Functionalized Au Nanoparticles: A Multiweek Experimental Project

    Science.gov (United States)

    Masson, Jean-Francois; Yockell-Lelièvre, Hélène

    2014-01-01

    A term project was introduced in teaching advanced spectroscopy and notions of nanotechnology to chemistry students at the graduate level (M.Sc. and Ph.D.). This project could also be suited for an honor's thesis at the undergraduate level. Students were assigned a unique combination of nanoparticle synthesis (13 nm Au nanospheres, ~100 nm…

  8. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

    Science.gov (United States)

    Muradov, Mustafa B.; Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Maharramov, Abel M.; Qahramanli, Lala R.; Eyvazova, Goncha M.; Aghamaliyev, Zohrab A.

    2018-03-01

    Convenient and environmentally friendly synthesis of Co9S8/PVA, CoxSy/EG and CoxSy/3-MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and sodium sulfide (Na2S·9H2O) were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co9S8/PVA is 1.81 eV and for CoxSy/EG is 2.42 eV, where the direct band gap of bulk cobalt sulfide is (0.78-0.9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co9S8, CoS2 and Co3S4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

  9. Materials Research Society Symposium Proceedings Volume 635. Anisotropic Nanoparticles - Synthesis, Characterization and Applications

    National Research Council Canada - National Science Library

    Lyon, L

    2000-01-01

    This volume contains a series of papers originally presented at Symposium C, "Anisotropic Nanoparticles Synthesis, Characterization and Applications," at the 2000 MRS Fall Meeting in Boston, Massachusetts...

  10. Spectroscopic and computational characterization of laccases and their substrate radical intermediates.

    Science.gov (United States)

    Pogni, Rebecca; Baratto, Maria Camilla; Sinicropi, Adalgisa; Basosi, Riccardo

    2015-03-01

    Laccases are multicopper oxidases which oxidize a wide variety of aromatic compounds with the concomitant reduction of oxygen to water as by-product. Due to their high stability and biochemical versatility, laccases are key enzymes to be used as eco-friendly biocatalyst in biotechnological applications. The presence of copper paramagnetic species in the catalytic site paired with the substrate radical species produced in the catalytic cycle makes laccases particularly attractive to be studied by spectroscopic approaches. In this review, the potentiality of a combined multifrequency electron paramagnetic spectroscopy /computational approach to gain information on the nature of the catalytic site and radical species is presented. The knowledge at molecular level of the enzyme oxidative process can be of great help to model new enzymes with increased efficiency and robustness.

  11. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  12. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    Science.gov (United States)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  13. Electrochemical synthesis and characterization of copper (I oxide

    Directory of Open Access Journals (Sweden)

    Bugarinović Sanja J.

    2009-01-01

    Full Text Available The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2.

  14. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    Science.gov (United States)

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc.

  15. Synthesis, characterization and luminescence properties of zinc oxide nanostructures

    Science.gov (United States)

    Khan, Aurangzeb

    Zinc oxide (ZnO) represents an important semiconductor material due to its wideband gap (3.37 eV at room temperature), large exciton binding energy (60 meV), high optical gain, and luminescence as well as piezoelectric properties [1]. From the 1960s, ZnO thin films have been extensively studied because of their applications as sensors, transducers and catalysts [2]. Since a few decades, one-dimensional nanostructures have become the focus point in nanoscience and nanotechnology. Nanostructures are considered to have unique physical, chemical, catalytic and optical properties that are profoundly different from their bulk counterparts. Since the discovery of carbon nanotubes (CNTs) in 1991, a string of research activities led to the growth and characterization of nanostructures of various materials including semiconductors such as Si, Ge and also compound semiconductors such as InP, GaAs, GaN and ZnO. ZnO is a versatile material and has shown potential for the synthesis of various types of nanostructures such as nanocombs, nanorings, nanohelices/nanosprings, nanobelts, nanowires and nanocages under specific growth conditions and probably has the richest family of nanostructures among all materials, both in structure and properties. This dissertation presents the synthesis, characterization and luminescence properties of ZnO nanostructures with the development of a PVD system. The nanostructures of ZnO are synthesized on various kinds of substrates such as Silicon, Sapphire and Alumina. We have synthesized a large family of nanostructures such as nanowires, nanorods, nanobelts, aligned nanorods, nanosheets, nanospheres, nanocombs, microspheres, hexagons etc. The nanostructures are then characterized by SEM, EDX, TEM, HRTEM, XRD, Raman Spectroscopy, PL and CL. From the characterization of the materials, we observed that these nanostructures are of good crystalline quality. PL and CL spectra reveal that all the nanostructures emit a ˜380 nm (UV) usually called the near

  16. Characterizing the interaction between oridonin and bovine serum albumin by a hybrid spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen [Department of Chemistry, Shantou University, Shantou 515063 (China); Chen, Junhui, E-mail: chenjupush@126.com [Interventional Oncology and Minimally Invasive Therapies Department, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Wang, Shaobin [The Fourth People' s Hospital of Shenzhen, Shenzhen 518033 (China); Chen, Zhanguang, E-mail: kqlu@stu.edu.cn [Department of Chemistry, Shantou University, Shantou 515063 (China)

    2013-02-15

    Oridonin is an effective anticancer drug which has high potency and low systemic toxicity. In this study, the interaction between oridonin and bovine serum albumin (BSA) was investigated by several spectroscopic approaches for the first time. The binding characteristics of oridonin and BSA were determined by fluorescence emission spectra and resonance light scattering spectra. It is showed that the oridonin quenches the fluorescence of BSA and the static quenching constant K{sub SV} is 1.30 Multiplication-Sign 10{sup 4} L mol{sup -1} at 298 K. Moreover, oridonin and BSA form a 1:1 complex with a binding constant of 0.62 Multiplication-Sign 10{sup 4} L mol{sup -1}. On the other hand, the thermodynamic parameters indicate that the binding process was a spontaneous molecular interaction procedure, in which hydrophobic forces played a major role. The structure analysis indicates that oridonin binding results in an increased hydrophobicity around the tryptophan residues of BSA. Additionally, as shown by the UV-vis absorption, synchronous fluorescence and three-dimensional fluorescence results, oridonin could lead to conformational and some microenvironmental changes of BSA. The work provides accurate and full basic data for clarifying the binding mechanism of oridonin with BSA in vitro and is helpful for understanding its effect on protein function during its transportation and distribution in blood. - Highlights: Black-Right-Pointing-Pointer Interaction between oridonin and BSA was evaluated by multi-spectroscopic methods. Black-Right-Pointing-Pointer Binding constant, number of binding sites and thermodynamic parameters were calculated. Black-Right-Pointing-Pointer Oridonin binds to Subdomain II site in BSA and form a 1:1 complex with it. Black-Right-Pointing-Pointer Oridonin-BSA complex is stabilized mainly by hydrophobic force. Black-Right-Pointing-Pointer Oridonin binding induces conformational and microenvironmental changes in BSA.

  17. The nitro-reduced metabolite of nimesulide: Crystal structure, spectroscopic characterization, ESI-QTOF mass spectrometric analysis and antibacterial evaluation

    Science.gov (United States)

    Nunes, Julia H. B.; Nakahata, Douglas H.; Lustri, Wilton R.; Corbi, Pedro P.; de Paiva, Raphael E. F.

    2018-04-01

    Here we present a synthetic procedure, spectroscopic characterization and single-crystal X-ray structure for the nitro-reduced metabolite of the anti-inflammatory drug nimesulide, hereby referred to as NMS-NH2. The nitro-reduced metabolite was synthesized using the Béchamp reduction (iron powder under acidic media), leading to the conversion of the nitrobenzene group of nimesulide to an aniline. Mass spectrometry, infrared and nuclear magnetic resonance spectroscopies data are also provided for NMS-NH2, and discussed in comparison to nimesulide. NMS-NH2 was also evaluated in terms of its antibacterial activities, considering that the free sbnd NH2 group could allow the compound to act as a dihydropteroate synthase inhibitor. NMS-NH2 had a modest antibacterial activity against P. aeruginosa (5.0 mg mL-1), which was not observed for NMS.

  18. Electrochemical and Spectroscopic Characterization of Aluminium(III-para-methyl-meso-tetraphenylporphyrin Complexes Containing Substituted Salicylates as Axial Ligands

    Directory of Open Access Journals (Sweden)

    Gauri D. Bajju

    2013-01-01

    Full Text Available A series of aluminium(III-p-methyl-meso-tetraphenylporphyrin (p-CH3TPP-Al(III containing axially coordinated salicylate anion [p-CH3TPP-Al-X], where X = salicylate (SA, 4-chlorosalicylate (4-CSA, 5-chlorosalicylate (5-CSA, 5-flourosalicylate (5-FSA, 4-aminosalicylate (4-ASA, 5-aminosalicylate (5-ASA, 5-nitrosalicylate (5-NSA, and 5-sulfosalicylate (5-SSA, have been synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, 13C NMR, and elemental analysis. A detailed study of electrochemistry of all the synthesized compounds has been done to compare their oxidation and reduction mechanisms and to explain the effect of axial coordination on their redox properties.

  19. One pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: Green approach.

    Science.gov (United States)

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2016-05-01

    In this report, a simple and cost-effective methodology has been developed to obtain gold nanoparticles (AuNPs) using Sacha inchi (Plukenetia volubilis) oil in the presence of sunlight. The spectroscopic and morphological properties of AuNPs were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), particle size analyzer, and X-ray diffraction (XRD). UV-vis and TEM reveal that the nanostructure of the gold particles has surfaced plasmon resonance at 515-520nm and is almost spherical in shape with an average size of 5-15nm. XRD studies confirmed the face cubic center (fcc) unit cell structure of AuNPs. The as-synthesized AuNPs showed remarkable photocatalytic decomposition of the methylene blue (>75%) without using any reducing agent and weak antioxidant activity (21-16%) against 1,1-diphenyl-2-picrylhydrazyl at the different sunlight exposure times. The experimental approach is promising and suggested that the sunlight is a good source of energy for enhancement of AuNP synthesis via Sacha inchi oil and its photocatalytic activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Efficient synthesis and physicochemical characterization of natural danshensu, its S isomer and intermediates thereof

    Science.gov (United States)

    Sidoryk, Katarzyna; Filip, Katarzyna; Cmoch, Piotr; Łaszcz, Marta; Cybulski, Marcin

    2018-02-01

    The synthesis and molecular structure details of R- 3,4-dihydroxyphenyl lactic acid (danshensu) and related compounds, i.e. S isomer and the key intermediates have been described. Danshensu is an important water soluble phenolic acid of Salvia miltiorrhiza herb (danshen or red sag) with numerous applications in traditional Chinese medicine (TCM). Our synthetic approach was based on the Knoevenagel condensation of the protected 3,4-dihydroxybenzaldehyd and Meldrum acid derivative, followed by asymmetric Sharples dihydroxylation, reductive mono dehydroxylation and final deprotection. All compounds were characterized by various spectroscopic techniques: 1H-, 13C- magnetic resonance (NMR); Fourier-transformed infrared (FTIR); Raman, HR mass spectroscopy. For the determination of compound optical purities original HPLC methods were developed which allowed for the efficient resolution of danshensu R and S enantiomers as well as its intermediate enantiomers, using commercially available chiral stationary phases. Furthermore, in order to better understand danshensu specificity as a potential API in drug formulation, the physicochemical properties of the compounds were studied by thermal analysis, including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

  1. Synthesis and characterization of a new composite based on copper (II) and octa (aminopropil)silsesquioxane

    International Nuclear Information System (INIS)

    Magossi, M.S. de; Carmo, D.R. do

    2014-01-01

    In this work, a new compound based silsesquioxane and nitroprusside of copper was prepared starting from octa (aminopropyl)silsesquioxane following a new route of synthesis. The composite prepared as described ACCuN was preliminarily characterized by spectroscopic techniques, such as Infrared Spectroscopy in the Region of the Fourier transform (FTIR), Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM) and cyclic voltammetry (VC). The FTIR spectra showed absorption bands at 1106 cm -1 due to stretching Si-O-Si (νSi-O-Si) characteristic of the structure of octa(aminopropylsilsesquioxane and absorption bands at 2063 cm -1 ascribed to the stretching NO (νN-O ) and 2192 cm -1 attributed to the stretching C≡N (ν≡ N ) . SEM and EDX observed cluster of cubic particles with an average size of approximately 241 nm, containing Si, O, N, Cu and Fe. Cyclic voltammogram of the material (ACCuN) showed a redox couple with average potential Eθ '= 0.73 V. (author)

  2. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.

    2014-01-01

    New triazene monomer was synthesized and further employed as a crosslinking agent partner with epoxy matrix using ethyl methyl imidazole as a curing agent in order to investigate the effect of triazene moieties on polymeric properties for laser ablation application. The synthesized triazene monomer was characterized by analytical and spectroscopic methods, while the surface morphology of resist after laser ablation was visualized by optical laser scanning images and scanning electron microscopy. Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas chromatography analyses showed the successful synthesis of triazene. The ablation results from the optical laser scanning images revealed that the etching depth could be controlled by varying the concentration of triazene monomer in the formulation of epoxy. The shear strength analysis revealed that that the shear strength increased with increasing the amount of triazene in the formulation of direct ablation sensitive resist. © 2014 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht.

  3. Synthesis and characterization of five-coordinated indium amidinates

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Yasaman

    2016-07-29

    The focus of this work is synthesis, characterization and exploring the reactivity of new indium amidinate compounds of the type R{sub 2}InX (R = R''NCR'NR''; R' = Ph, R'' = SiMe{sub 3}, iPr, dipp; X = Br, Cl) with the coordination number of five and R{sub 3}In (R = Me{sub 3}SiNCPhNSiMe{sub 3}) with the coordination number of six. By using amidinates as chelating ligands the electron deficiency of indium atom will be resolved. Additionally, by using different substituents the study of the different synthesized indium amidinates has become possible. The selected method for the synthesis allows the carbodiimides to react with organolithium compounds to get the corresponding lithium amidinates. Afterwards the resulting lithium amidinates take part in transmetalation reactions with InBr{sub 3} and InCl{sub 3}. The study of the reactivity of indium amidinate complexes including nucleophilic reactions as well as their reduction were also examined. Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as well as elemental analysis has been applied to characterize the compounds.

  4. Synthesis and characterization of the silver methacrylate and its polymerization with gamma radiation

    International Nuclear Information System (INIS)

    Figueroa de Paz, Y. M.

    2014-01-01

    One of the traditional objectives in research has been the development of new and useful materials that combine the properties of polymers with metals. Synthesis of monomers containing metal, followed by a polymerization process, is a method to introduce metal ions in the structure of a polymer, and the gamma radiation was easily applied to initiate polymerization. The coordination polymers have high insolubility, which is a general problem of these materials, besides the lack of structural information available. Also, due to the difficulty of obtaining single crystals, it has hindered the identification of the structures of some coordination polymers, requiring the use of indirect methods for structural characterization. In this work the synthesis of silver poly-methacrylate (PMAAg), was performed using the gamma radiation as polymerization initiator, having as precursor to silver methacrylate monomer (MAAg). The combination of spectroscopic methods revealed structural changes in the coordination polymers. With scanning electron microscopy, it was observed that the morphology of the monomer and its polymers is fiber, which grows with increasing radiation dose; furthermore, this increase in size is related to Bet analysis result, since the monomer has a bigger superficial area to the irradiated polymers. In monomer and irradiated polymers the crystalline structure CCC was observed by X-ray diffraction. By thermogravimetric analysis the decomposition temperature of the products was determined, finding around 150 degrees C. The infrared spectroscopy confirmed the silver methacrylate polymerization, as with increasing radiation dose, also increases the degree of polymerization; likewise the form of coordination of the monomer was determined and its irradiated polymers which corresponds to a bi-dentate chelate, confirmed by X-ray photoelectron spectroscopy. (Author)

  5. A silver complex with tryptophan: Synthesis, structural characterization, DFT studies and antibacterial and antitumor assays in vitro

    Science.gov (United States)

    Carvalho, Marcos A.; de Paiva, Raphael E. F.; Bergamini, Fernando R. G.; Gomes, Alexandre F.; Gozzo, Fábio C.; Lustri, Wilton R.; Formiga, André L. B.; Shishido, Silvia M.; Ferreira, Carmen V.; Corbi, Pedro P.

    2013-01-01

    The synthesis, spectroscopic characterization and biological assays of a new silver(I) complex with L-tryptophan (TRP) are presented. Elemental and thermal analyses and ESI-QTOF mass spectrometric measurements of the solid compound suggest the composition AgC11H11N2O2. Infrared and solid-state NMR analyses indicate coordination of TRP to Ag(I) ion through the nitrogen of the NH2 group and also through the oxygen of carboxylate group. Theoretical (DFT) calculations permit proposing an optimized geometry for the complex. Antibacterial assays indicated that the Ag-TRP complex is effective against Staphylococcus aureus and Enterococcus faecalis (Gram-positive), and Pseudomonas aeruginosa and Escherichia coli (Gram-negative) bacterial strains. The complex was also cytotoxic against Panc-1 (human pancreatic carcinoma) and SK-Mel 103 (human melanoma) cells.

  6. Radiation Synthesis of Functional Nanoparticles for Imaging, Sensing and Drug Delivery Applications

    International Nuclear Information System (INIS)

    Grasselli, M.; Soto Espinoza, S.; Risso, V.; Pawlak, E.; Smolko, E.E.

    2010-01-01

    In the present report we describe nanoparticle synthesis by ionizing radiation from globular proteins and methacrylate monomers. Dynamic light scattering and other spectroscopic methods were performed to characterize this new material

  7. Synthesis and characterization of semi-IPNs based on PVP and PLLA; Sintese e caracterizacao de semi-IPNs envolvendo os homopolimeros PVP e PLLA

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, A.P.R.; Mano, V., E-mail: mano@ufsj.edu.b [Universidade Federal de Sao Joao del Rei (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Felisberti, M.I. [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    The specific interest in the synthesis of semi-IPNs based on PLLA and PVP homopolymers due to the fact these are biodegradable and biocompatible, which allows us to infer applications in the medical field as sutures, implants, matrices for controlled release of drugs etc. The objective was to prepare a multicomponent material amphiphile in the form of semi-interpenetrating polymer networks, based on poly (L-lactide), PLLA, hydrophobic homopolymer, and poly (vinylpyrrolidone), PVP, hydrophilic component. The preparation of semi-IPN combined the polymerization and crosslinking of N-vinylpyrrolidone in the presence of poly (L-lactide). The products were characterized by spectroscopic and thermal methods. (author)

  8. Synthesis and characterization of silver nanoparticles in natural rubber

    International Nuclear Information System (INIS)

    Abu Bakar, N.H.H.; Ismail, J.; Abu Bakar, M.

    2007-01-01

    Silver nanoparticles are formed in natural rubber matrix via photo reduction of film cast from natural rubber latex (NRL) containing silver salt. The resulting NR-Ag nanocomposite is characterized using TEM, XRD and UV spectroscopic techniques. The nanoparticles, diameter ranging between 4 and 10 nm, are dispersed within distinct interfaces which correspond to the inter-particle boundaries of the NRL particles that form the matrix. The average width of the interfaces is 8 nm. X-ray diffraction (XRD) analysis confirms the nanoparticles as metallic silver of the face-centered cubic type. UV-vis absorption spectra show peaks characteristic of the surface plasmon resonance of nano-sized silver. A comparison with the results of formation of silver, obtained under similar reduction condition, in a series of matrices namely de-proteinized natural rubber latex (DNRL), NRL containing sodium dodecyl sulfate (SDS), aqueous solutions of bovain serum albumin and SDS, suggests that the protein in natural rubber is responsible for the formation of stable silver nanoparticles in the natural rubber (NR) matrix

  9. Synthesis, Characterization and Optical Constants of Silicon Oxycarbide

    Directory of Open Access Journals (Sweden)

    Memon Faisal Ahmed

    2017-01-01

    Full Text Available High refractive index glasses are preferred in integrated photonics applications to realize higher integration scale of passive devices. With a refractive index that can be tuned between SiO2 (1.45 and a-SiC (3.2, silicon oxycarbide SiOC offers this flexibility. In the present work, silicon oxycarbide thin films from 0.1 – 2.0 μm thickness are synthesized by reactive radio frequency magnetron sputtering a silicon carbide SiC target in a controlled argon and oxygen environment. The refractive index n and material extinction coefficient k of the silicon oxycarbide films are acquired with variable angle spectroscopic ellipsometry over the UV-Vis-NIR wavelength range. Keeping argon and oxygen gases in the constant ratio, the refractive index n is found in the range from 1.41 to 1.93 at 600 nm which is almost linearly dependent on RF power of sputtering. The material extinction coefficient k has been estimated to be less than 10-4 for the deposited silicon oxycarbide films in the visible and near-infrared wavelength regions. Morphological and structural characterizations with SEM and XRD confirms the amorphous phase of the SiOC films.

  10. Spectroscopic ellipsometry characterization of interface reactivity in GaAs-based superlattices

    International Nuclear Information System (INIS)

    Losurdo, M.; Giuva, D.; Giangregorio, M.M.; Bruno, G.; Brown, A.S.

    2004-01-01

    Pseudodielectric function spectra of GaAs/GaSb 1-y As y , GaSb/GaAs y Sb 1-y and GaAs/GaP y As 1-y superlattices have been measured by spectroscopic ellipsometry in the 0.75-5.5 eV photon energy range. The analysis of the E 1 interband critical point and modeling of spectra has been carried out to investigate the chemistry of the anion exchange reaction and abruptness of interface composition in the superlattices. It has been found that a ternary compound GaP y As 1-y forms in the case of the P-for-As anion exchange reaction. In the case of As-for-Sb anion exchange reaction for (GaSb/GaAs y Sb 1-y ) 20 SLs, SE data show that this anion exchange results in the formation not only of a ternary alloy GaAs y Sb 1-y , but also in the formation of isoelectronic compounds AsSb x that segregate at the GaSb/GaAs interface. In the case of Sb-for-As anion exchange for (GaAs/GaSbyAs 1-y ) 20 SLs, Sb segregates at the GaAs surface

  11. Spectroscopic and Chromatographic Characterization of Wastewater Organic Matter from a Biological Treatment Plant

    Directory of Open Access Journals (Sweden)

    Min-Hye Park

    2009-12-01

    Full Text Available Spectroscopic and chromatographic changes in dissolved organic matter (DOM characteristics of influent and treated sewage were investigated for a wastewater treatment plant (WWTP with a biological advanced process. Refractory DOM (R-DOM was defined as the dissolved organic carbon concentrations of the samples after 28-day incubation for this study. Specific UV absorbance (SUVA, hydrophobicity, synchronous fluorescence spectra and molecular weight (MW distributions were selected as DOM characteristics. The percent distribution of R-DOM for the effluent was much higher than that of the influent, indicating that biodegradable DOM was selectively removed during the process. Comparison of the influent versus the effluent sewage revealed that SUVA, fulvic-like fluorescence (FLF, humic-like fluorescence (HLF, the apparent MW values were enhanced during the treatment. This suggests that more aromatic and humic-like compounds were enriched during the biological process. No significant difference in the DOM characteristics was observed between the original effluent (i.e., prior to the incubation and the influent sewage after the incubation. This result suggests that the major changes in wastewater DOM characteristics occurring during the biological advanced process were similar to those for simple microbial incubation.

  12. Optical characterization of varnish films by spectroscopic ellipsometry for application in artwork conservation.

    Science.gov (United States)

    Polikreti, Kyriaki; Othonos, Andreas; Christofides, Constantinos

    2005-01-01

    The specific aim of this paper is to measure the optical constants of fresh varnish layers up to a thickness of 10 mum by spectroscopic ellipsometry. It is the first time that this technique has been used in artwork conservation and it may prove very promising due to its nondestructive character. Samples of fresh dammar varnish (natural resin) and Paraloid B72 (synthetic resin) applied on glass and carbon black acrylic paint were analyzed. Both varnishes were considered as perfect dielectrics, and the real part of their refractive index was described by the Cauchy model: n (lambda) = A + B/lambda(2) + C/lambda(4). The Cauchy coefficients for dammar varnish and Paraloid B72 were then determined for layers of known thickness. The ellipsometric data were fitted to a model, which includes a mixed varnish-air layer. The optical properties of this layer were calculated by the Bruggeman effective medium approximation. In the case of carbon black acrylic paint, another mixed layer (paint-varnish) was added to the model. The results are very close to the values given in the literature. Given the measurement reproducibility, the results show that ellipsometry can discriminate between dammar varnish and Paraloid B72. This is very important in artwork conservation studies, because it has been done by time-consuming, destructive techniques up to now. Future work includes measurements of other types of natural and synthetic varnishes, in an attempt to introduce a nondestructive method for picture varnish identification and aging studies.

  13. Crystal growth, spectroscopic characterization and laser performance of Tm/Mg:LiNbO3 crystal

    Science.gov (United States)

    Zhang, P. X.; Yin, J. G.; Zhang, R.; Li, H. Q.; Xu, J. Q.; Hang, Y.

    2014-03-01

    A Tm, Mg co-doped LiNbO3 crystal was grown by the traditional Czochralski method. The room-temperature absorption, photo-luminescence spectra and fluorescence lifetime of Tm3+ ions in the crystal have been investigated. The experimental results show that the co-doped of MgO can lead to the lengthening of the measured fluorescence lifetime of the upper Tm3+:3F4 level. Based on the Judd-Ofelt approach, the intensity parameters Ω2,4,6 of Tm3+ were calculated to be Ω2 (6.29 × 10-20 cm2), Ω4 (0.54 × 10-20 cm2) and Ω6 (0.79 × 10-20 cm2). Other spectroscopic parameters that relate to laser performance were also obtained. Non-photorefractive continuous wave laser operation with a Tm, Mg:LiNbO3 single crystal is demonstrated at room temperature for the first time. We obtained 1.026 W output power at 1.885 μm with a slope efficiency of near 14%, which, to the best of our knowledge, is the largest output power and the highest slope efficiency obtained for this crystal thus far. The output power was observed to be stable, and the crystal showed no sign of photorefractive damage.

  14. Spectroscopic ellipsometry characterization of interface reactivity in GaAs-based superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Giuva, D.; Giangregorio, M.M.; Bruno, G.; Brown, A.S

    2004-05-01

    Pseudodielectric function spectra of GaAs/GaSb{sub 1-y}As{sub y}, GaSb/GaAs{sub y}Sb{sub 1-y} and GaAs/GaP{sub y}As{sub 1-y} superlattices have been measured by spectroscopic ellipsometry in the 0.75-5.5 eV photon energy range. The analysis of the E{sub 1} interband critical point and modeling of spectra has been carried out to investigate the chemistry of the anion exchange reaction and abruptness of interface composition in the superlattices. It has been found that a ternary compound GaP{sub y}As{sub 1-y} forms in the case of the P-for-As anion exchange reaction. In the case of As-for-Sb anion exchange reaction for (GaSb/GaAs{sub y}Sb{sub 1-y}){sub 20} SLs, SE data show that this anion exchange results in the formation not only of a ternary alloy GaAs{sub y}Sb{sub 1-y}, but also in the formation of isoelectronic compounds AsSb{sub x} that segregate at the GaSb/GaAs interface. In the case of Sb-for-As anion exchange for (GaAs/GaSbyAs{sub 1-y}){sub 20} SLs, Sb segregates at the GaAs surface.

  15. Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride Compound

    Directory of Open Access Journals (Sweden)

    Mei Chan Sin

    2014-01-01

    Full Text Available Plasticized poly(vinyl chloride (PVC is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA, a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA. SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan δmax⁡ peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the Tg of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.

  16. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    Science.gov (United States)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  17. Polarized Raman spectroscopic characterization of normal and oral cancer blood plasma

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    In India oral cancer ranks the top due to the habitual usage of tobacco in its various forms and remains the major burden. Hence priority is given for early diagnosis as it is the better solution for cure or to improve the survival rate. For the past three decades, optical spectroscopic techniques have shown its capacity in the discrimination of normal and malignant samples. Many research works have conventional Raman in the effective detection of cancer using the variations in bond vibrations of the molecules. However in addition polarized Raman provides the orientation and symmetry of biomolecules. If so can polarized Raman be the better choice than the conventional Raman in the detection of cancer? The present study aimed to found the answer for the above query. The conventional and polarized Raman spectra were acquired for the same set of blood plasma samples of normal subjects and oral malignant (OSCC) patients. Thus, obtained Raman spectral data were compared using linear discriminant analysis coupled with artificial neural network (LDA-ANN). The depolarization ratio of biomolecules such as antioxidant, amino acid, protein and nucleic acid bases present in blood plasma was proven to be the best attributes in the categorization of the groups. The polarized Raman results were promising in discriminating oral cancer blood plasma from that of normal blood plasma with improved efficiency. The results will be discussed in detail.

  18. Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept

    Science.gov (United States)

    Tanarro, I.; Alemán, B.; de Vicente, P.; Gallego, J. D.; Pardo, J. R.; Santoro, G.; Lauwaet, K.; Tercero, F.; Díaz-Pulido, A.; Moreno, E.; Agúndez, M.; Goicoechea, J. R.; Sobrado, J. M.; López, J. A.; Martínez, L.; Doménech, J. L.; Herrero, V. J.; Hernández, J. M.; Peláez, R. J.; López-Pérez, J. A.; Gómez-González, J.; Alonso, J. L.; Jiménez, E.; Teyssier, D.; Makasheva, K.; Castellanos, M.; Joblin, C.; Martín-Gago, J. A.; Cernicharo, J.

    2018-01-01

    We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments. Movies are available at http://www.aanda.org

  19. Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine

    Directory of Open Access Journals (Sweden)

    Arunkumar T. Buddanavar

    2017-06-01

    Full Text Available The quenching interaction of atomoxetine (ATX with bovine serum albumin (BSA was studied in vitro under optimal physiological condition (pH=7.4 by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a dynamic quenching process and was confirmed by the fluorescence spectra and lifetime measurements. The number of binding sites, binding constants and other binding characteristics were computed. Thermodynamic parameters ∆H° and ∆S° indicated that intermolecular hydrophobic forces predominantly stabilized the drug-protein system. The average binding distance between BSA and ATX was studied by Försters theory. UV-absorption, Fourier transform infrared spectroscopy (FT-IR, circular dichroism (CD, synchronous spectra and three-dimensional (3D fluorescence spectral results revealed the changes in micro-environment of secondary structure of protein upon the interaction with ATX. Displacement of site probes and the effects of some common metal ions on the binding of ATX with BSA interaction were also studied.

  20. Characterization of μc-Si:H/a-Si:H tandem solar cell structures by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Murata, Daisuke; Yuguchi, Tetsuya; Fujiwara, Hiroyuki

    2014-01-01

    In order to perform the structural characterization of Si thin-film solar cells having submicron-size rough textured surfaces, we have developed an optical model that can be utilized for the spectroscopic ellipsometry (SE) analysis of a multilayer solar cell structure consisting of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) layers fabricated on textured SnO 2 :F substrates. To represent the structural non-uniformity in the textured structure, the optical response has been calculated from two regions with different thicknesses of the Si layers. Moreover, in the optical model, the interface layers are modeled by multilayer structures assuming two-phase composites and the volume fractions of the phases in the layers are controlled by the structural curvature factor. The polarized reflection from the μc-Si:H layer that shows extensive surface roughening during the growth has also been modeled. In this study, a state-of-the-art solar cell structure with the textured μc-Si:H (2000 nm)/ZnO (100 nm)/a-Si:H (200 nm)/SnO 2 :F/glass substrate structure has been characterized. The μc-Si:H/a-Si:H textured structure deduced from our SE analysis shows remarkable agreement with that observed by transmission electron microscopy. From the above results, we have demonstrated the high-precision characterization of highly-textured μc-Si:H/a-Si:H solar cell structures. - Highlights: • Characterization of textured μc-Si:H/a-Si:H solar cell structures by ellipsometry • A new optical model using surface area and multilayer models • High precision characterization of submicron-range rough interface structures