WorldWideScience

Sample records for synthesis photophysical properties

  1. Synthesis, photophysical and electrochemical properties of water–soluble phthalocyanines bearing 8-hydroxyquinoline-5-sulfonicacid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Günsel, Armağan; Kocabaş, Sibel; Bilgiçli, Ahmet T. [Department of Chemistry, Sakarya University, 54140 Esentepe, Sakarya (Turkey); Güney, Sevgi [Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kandaz, Mehmet, E-mail: mkandaz@sakarya.edu.tr [Department of Chemistry, Sakarya University, 54140 Esentepe, Sakarya (Turkey)

    2016-08-15

    We have presented in this paper, the synthesis, characterization, photophysical properties and electrochemical characterization of water soluble phthalocyanines (Pcs) bearing 8-hydroxyquinoline-5-sulfonicacid conjugates and their cationic quaternized counterpart that play important roles their application in photodynamic therapy (PDT). The periphery and non-periphery substituted phthalocyanines show high solubility and low aggregation tendency due to bulky 8-hydroxyquinoline-5-sulfonicacid steric hindrance moieties and axially bound counter chlorine anion. Singlet oxygen quantum yields, photodegradation quantum yields, photophysical properties and also the nature of the substituent and solvent effect on the photophysical and photochemical parameters of α-ZnPc and β-ZnPc are reported. In electrovalent cobalt (II) and manganese (III) compounds, metal based electron transfer reactions have been observed in addition to the common phthalocyanine ring-based electron transfer processes. The effect of point of substitution on the electrochemical properties of newly synthesized phthalocyanines substituted with 8-hydroxyquinoline-5-sulfonicacid group were evaluated.

  2. Synthesis, characterization and photophysical properties of ESIPT reactive triazine derivatives

    International Nuclear Information System (INIS)

    Kuplich, Marcelo D.; Grasel, Fabio S.; Campo, Leandra F.; Rodembusch, Fabiano S.; Stefani, Valter

    2012-01-01

    Four new reactive fluorescent triazine derivatives were obtained from nucleophilic aromatic substitution of cyanuric chloride. The compounds were characterized by infrared spectroscopy (IR), nuclear magnetic resonance ( 13 C and 1 H NMR) and high resolution mass spectrometry (HRMS MALDI). UV-Vis and steady-state fluorescence (in solution and in solid state) spectroscopies were also applied to characterize the photophysical behavior. The dyes are fluorescent by an intramolecular proton transfer mechanism (ESIPT) in the blue-orange region, with a large Stokes shift between 6365-10290 cm-1. The fluorescent cyanuric derivatives could successfully react with cellulose fibers to give new fluorescent cellulosic materials. (author)

  3. Naphthalene-based fluorophores: Synthesis characterization, and photophysical properties

    International Nuclear Information System (INIS)

    Feng Jinwu; Chen Xiaopeng; Han Qingchuan; Wang Hongbo; Lu Ping; Wang Yanguang

    2011-01-01

    U-type, 1,8-diarylnaphthalenes and 1,8-diarylethynylnaphthalenes were synthesized and their structures were characterized by spectroscopic methods. Emission performance of these compounds with donor and acceptor was largely depended upon the solvent polarity and environmental acidity, which implied that they might be used as solvent polarity sensors or pH sensors as well. Moreover, some 1,8-diarylnaphthalenes exhibited aggregation-induced emission enhancement (AIEE) based on their photophysical investigation and might be used as light emitting materials for optoelectronic applications. - Highlights: → 1,8-Diarylnaphthalenes and 1,8-diarylethynylnaphthalenes were synthesized. → Emission of these compounds depended on solvent polarity and environmental acidity. → Some 1,8-diarylnaphthalenes exhibited aggregation-induced emission enhancement.

  4. Synthesis and photophysical properties of a series of cyclopenta[b]naphthalene solvatochromic fluorophores.

    Science.gov (United States)

    Benedetti, Erica; Kocsis, Laura S; Brummond, Kay M

    2012-08-01

    The synthesis and photophysical properties of a series of naphthalene-containing solvatochromic fluorophores are described within. These novel fluorophores are prepared using a microwave-assisted dehydrogenative Diels-Alder reaction of styrene, followed by a palladium-catalyzed cross coupling reaction to install an electron donating amine group. The new fluorophores are structurally related to Prodan. Photophysical properties of the new fluorophores were studied and intriguing solvatochromic behavior was observed. For most of these fluorophores, high quantum yields (60-99%) were observed in methylene chloride in addition to large Stokes shifts (95-226 nm) in this same solvent. As the solvent polarity increased, so did the observed Stokes shift with one derivative displaying a Stokes shift of ~300 nm in ethanol. All fluorophore emission maxima, and nearly all absorption maxima were significantly red-shifted when compared to Prodan. Shifting the absorption and emission maxima of a fluorophore into the visible region increases its utility in biological applications. Moreover, the cyclopentane portion of the fluorophore structure provides an attachment point for biomolecules that will minimize disruptions of the photophysical properties.

  5. Synthesis, photophysical and electrochemical properties of 2,8 ...

    Indian Academy of Sciences (India)

    dibenzothiophene derivatives for organic electronics. Pabitra K Nayak ... These molecules have electron withdrawing or electron donating groups at the para phenyl position, which alters the electronic properties of these derivatives. The quantum yield ...

  6. Synthesis and photophysical properties of indium(III) phthalocyanine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Özceşmeci, İbrahim, E-mail: ozcesmecii@itu.edu.tr [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gelir, Ali [Department of Physics, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gül, Ahmet [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey)

    2014-03-15

    Three chloroindium(III) phthalocyanine derivatives bearing four aromatic (naphthalene or pyrene) or aliphatic (hexylthio) groups were prepared from corresponding phthalonitrile compounds. The indium(III) phthalocyanine derivatives were characterized with elemental analyses, mass, proton nuclear magnetic resonance ({sup 1}H NMR), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopy (UV–vis) techniques. Quantum yields and the energy transfer from the substituents to phthalocyanine core were examined. No energy transfer was observed for 5. The energy transfer efficiency from pyrene units to indium phthalocyanine core was calculated as 0.27 for 6. Quantum yields of all samples were very small due to heavy atom effect of indium atom in the core. It was also observed that upon binding of pyrene and naphthalene units to indium phthalocyanine as substituents, the quantum yields of indium phthalocyanine parts of 5 and 6 decreased. -- Highlights: • Three chloroindium(III) phthalocyanines were prepared and characterized. • Aggregation properties of these compounds were investigated. • The energy transfer efficiency was examined. • Quantum yield of these systems were calculated.

  7. Synthesis, spectral and photophysical properties of novel phthalocyanines bearing bulky phenantroxy moiety

    International Nuclear Information System (INIS)

    Erdogmuş, Ali; Lütfi Ugur, Ahmet; Memişoglu, Abdussamed; Erden, İbrahim

    2013-01-01

    The synthesis, characterization, spectral and photophysical properties of soluble 9-Phenanthroxy substituted oxo-titanium (IV), zinc, magnesium and nickel phthalocyanines (1a, 1b, 1c and 1d) are reported for the first time. The new compounds have been characterized by elemental analysis, FT-IR, 1 H–NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for spectral, fluorescence properties and fluorescence quantum yields of these compounds in dimethylsulfoxide (DMSO) and toluene. All phthalocyanine complexes (1a to 1d) exhibited excellent solubility in organic solvents such as dichloromethane, chloroform, THF, toluene, DMF and DMSO. - Highlights: ► New metallophthalocyanines (1a–1d) were synthesized. ► These new phthalocyanine derivatives show the enhanced solubility in organic solvents. ► The spectral and photophysical properties of TiO(IV), zinc (II) and Mg(II) phthalocyanine (1a–1c) are investigated in DMSO and toluene. ► Ground state electronic absorption and fluorescence spectra.

  8. Selective recognition of palladium based on functional mono phthalocyanines; synthesis, characterization and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yaraşir, M. Nilüfer; Aytekin, Ahmet [Department of Chemistry, Sakarya University, TR54187 Serdivan, Sakarya (Turkey); Kandaz, Mehmet, E-mail: mkandaz@sakarya.edu.tr [Department of Chemistry, Sakarya University, TR54187 Serdivan, Sakarya (Turkey); Güney, Orhan [Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul (Turkey)

    2016-09-15

    We report the synthesis and photophysical properties of 4,5-bis(2-((Z)-(3-hydroxynaphthalen-2-yl) methyleneamino)phenylthio)phthalonitrile ligand (SB) and its star-type functional zincphthalocyanine (SB-ZnPc) compound obtained by the condensation of 2,3,9,10,16,17,23,24-octakis-(2-aminophenylthio)zincphthlocyanines (A-ZnPc) and 1-hydroxy-2-naphthaldehyde (HNA). Each compound was purified and characterized by elemental analysis, FTIR, {sup 1}H NMR, {sup 13}C NMR, UV/vis and MS (Maldi-TOF) spectral data. SB-ZnPc bearing fluorescent SB moieties on the periphery shows selective palladium ion sensing behavior by acting as hard core upon interaction. Electronic spectra of the SB-ZnPc displays pronounced changes in both absorption and fluorescence spectra upon interaction with Pd{sup 2+} ion. The fluorescence of the SB-ZnPc compound is effectively quenched by treatment with Pd{sup 2+} in THF solution. The solvent effect on the photophysical properties of the SB-ZnPc and interference effect of foreign metal ions were also investigated.

  9. Synthesis and Photophysical Characterizations of Thermal -Stable Naphthalene Benzimidazoles

    OpenAIRE

    Erten Ela, Şule; Özçelik, Serdar; Eren, Ersin

    2011-01-01

    Microwave-assisted synthesis, photophysical and electrochemical properties of thermal-stable naphthalene benzimidazoles and naphthalimides are studied in this paper. Microwave-assisted synthesis of naphthalene benzimidazoles provide higher yields than the conventional thermal synthesis. Comparative photophysical properties of naphthalene benzimidazoles and naphthalimides are revealed that conjugation of electron-donating group onto naphthalimide moiety increases fluorescence ...

  10. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents

    Energy Technology Data Exchange (ETDEWEB)

    Aktaş, Ayşe [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadikoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-01-15

    In this study, the synthesis of phthalonitrile derivatives bearing fluoro-functionalized groups and their peripherally-tetra substituted zinc phthalocyanine complexes were reported. The phthalonitrile derivatives 2a–5a were prepared by nucleophilic substitution of 4-nitrophthalonitrile with 2-[3-(trifluoromethyl)phenoxy]ethanol, 2-{2-[3-(trifluoromethyl) phenoxy]ethoxy}ethanol, 2-(2,3,5,6-tetrafluorophenoxy)ethanol, 2-[2-(2,3,5,6-tetrafluorophenoxy)ethoxy]ethanol, respectively. Zinc phthalocyanines bearing fluoro-functionalized groups (2b–5b) were obtained from the corresponding phthalonitrile derivatives. The newly synthesized phthalocyanines displayed good solubility in organic solvents such as chloroform (CHCl{sub 3}), dichloromethane (DCM), tetrahydrofuran (THF), toluene, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). On the other hand, the singlet oxygen, photodegradation, fluorescence quantum yields and fluorescence lifetime of these complexes were determined in DMSO. The effects of the substitution with fluoro-functionalized groups on these parameters were also compared. -- Highlights: • Synthesis of peripherally substituted zinc phthalocyanines. • Photophysical and photochemical properties in DMSO for phthalocyanines. • Photodynamic therapy studies.

  11. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents

    International Nuclear Information System (INIS)

    Aktaş, Ayşe; Pişkin, Mehmet; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya

    2014-01-01

    In this study, the synthesis of phthalonitrile derivatives bearing fluoro-functionalized groups and their peripherally-tetra substituted zinc phthalocyanine complexes were reported. The phthalonitrile derivatives 2a–5a were prepared by nucleophilic substitution of 4-nitrophthalonitrile with 2-[3-(trifluoromethyl)phenoxy]ethanol, 2-{2-[3-(trifluoromethyl) phenoxy]ethoxy}ethanol, 2-(2,3,5,6-tetrafluorophenoxy)ethanol, 2-[2-(2,3,5,6-tetrafluorophenoxy)ethoxy]ethanol, respectively. Zinc phthalocyanines bearing fluoro-functionalized groups (2b–5b) were obtained from the corresponding phthalonitrile derivatives. The newly synthesized phthalocyanines displayed good solubility in organic solvents such as chloroform (CHCl 3 ), dichloromethane (DCM), tetrahydrofuran (THF), toluene, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). On the other hand, the singlet oxygen, photodegradation, fluorescence quantum yields and fluorescence lifetime of these complexes were determined in DMSO. The effects of the substitution with fluoro-functionalized groups on these parameters were also compared. -- Highlights: • Synthesis of peripherally substituted zinc phthalocyanines. • Photophysical and photochemical properties in DMSO for phthalocyanines. • Photodynamic therapy studies

  12. Synthesis and photophysical properties of fluorescence sensing diester-terminated 1,8-naphthalimide

    International Nuclear Information System (INIS)

    Bojinov, N. I. Georgiev. V. B.

    2011-01-01

    Full text: The immediate detection and determination of environmental pollutants have been gaining particular importance. In recent years, extensive research has been carried out on fluorescent organic compounds whose photophysical properties are sensitive to environmental changes. Such interest is due to the possibility of tailoring the design of molecular devices for environmental pollution caused by heavy and transition metal ions. Photoinduced electron transfer (PET) using the 'fluorophore-spacer-receptor' format, developed by de Silva, is one of the most popular approaches to the design of fluorescent sensors.; This work reports the synthesis and sensor activity of a 1,8-naphthalimide sensor based on the 'fluorophore-spacer-receptor' format. The diester-terminated 1,8-naphthalimide was found to display sensitive fluorescence signal amplification over a wide pH scale, which has been ascribed to a photoinduced electron transfer from the tertiary amine receptor to the fluorophore. From the changes in the fluorescence intensity, a pKa value of 4.42 was determined, making the synthesized compound of potential use as pH chemosensing material.; In addition, the ability to detect ions has been evaluated in DMF by monitoring the quenching of the fluorescence intensity. Different ions have been tested: Zn 2+ , Ni 2+ , Pb 2+ , Co 2+ , Cu 2+ , and Fe 3+ for this purpose. The results have clearly shown that only Fe 3+ could be efficiently detected

  13. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units

    International Nuclear Information System (INIS)

    Ali, Haytham Elzien Alamin; Pişkin, Mehmet; Altun, Selçuk; Durmuş, Mahmut; Odabaş, Zafer

    2016-01-01

    The synthesis of highly soluble and non-aggregated peripherally/non-peripherally Zn and In(OAc) phthalocyanines was achieved by 3-/ and 4-(2-phenylphenoxy)phthalonitrile as starting materials. The novel compounds were characterized by elemental analyses, FT-IR, 1 H-NMR (for phthalonitriles), UV–vis and MALDI-TOF mass (for Pcs) spectroscopic techniques. Additionally, photophysical, photochemical and spectral properties of the phthalocyanines were reported. Especially, the indium(OAc) phthalocyanines showed good singlet oxygen quantum yields in DMSO and they can be appropriate candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

  14. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Haytham Elzien Alamin [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey); University of Khartoum, Department of Chemistry, Faculty of Science, P.O. Box 321, Khartoum, 11115 (Sudan); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Altun, Selçuk [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze, Kocaeli 41400 (Turkey); Odabaş, Zafer, E-mail: zodabas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey)

    2016-05-15

    The synthesis of highly soluble and non-aggregated peripherally/non-peripherally Zn and In(OAc) phthalocyanines was achieved by 3-/ and 4-(2-phenylphenoxy)phthalonitrile as starting materials. The novel compounds were characterized by elemental analyses, FT-IR, {sup 1}H-NMR (for phthalonitriles), UV–vis and MALDI-TOF mass (for Pcs) spectroscopic techniques. Additionally, photophysical, photochemical and spectral properties of the phthalocyanines were reported. Especially, the indium(OAc) phthalocyanines showed good singlet oxygen quantum yields in DMSO and they can be appropriate candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

  15. Luminescent chiral ionic Ir(III) complexes: Synthesis and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: loredana.ricciardi@unical.it [CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036 Arcavacata di Rende (CS) (Italy); La Deda, Massimo; Ionescu, Andreea; Godbert, Nicolas; Aiello, Iolinda; Ghedini, Mauro [MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM and CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS) (Italy); Fusè, Marco, E-mail: marco.fuse@unimi.it [Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Golgi 19, 20133 Milano (Italy); Rimoldi, Isabella; Cesarotti, Edoardo [Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Golgi 19, 20133 Milano (Italy)

    2016-02-15

    Three homologous series of luminescent octahedral ionic Ir(III) complexes (1–12) with a dual stereogenic center of general formula {sup Δ,Λ} {sup (R,S)}[(ppy){sub 2}Ir(R-campy)]X, where ppy=2-phenylpyridine, R-campy=2-methyl-5,6,7,8-tetrahydroquinolin-8-amine (Me-campy) or 8-amino-5,6,7,8-tetrahydroquinolines (H-campy) and as counterions X{sup −}=Cl{sup −} or CH{sub 3}COO{sup −} have been synthesized and characterized. The NMR characterization of each complex highlighted the diastereoisomeric purity and the absolute configuration has been confirmed by Electronic Circular Dichroism spectroscopy. The absorption and the luminescence properties of the compounds in solution and in solid state have been investigated by UV–vis, steady-state emission and time-correlated single-photon counting spectroscopy. The obtained results from the 12 compounds highlight the difficult to correlate photophysical properties in solution to the stereochemistry, while excited states decay studies of the solid state samples indicate a correlation between photophysics and packing mode which is affected by the different stereochemistry. - Highlights: • Luminescent chiral ionic Ir(III) complexes have been synthesized and characterized. • Presence in the same structure of two stereogenic centers. • Use of camphorsulfonate as resolving anion to obtain enantiomerically pure samples. • Stereoisomers produce aggregates with different emitting properties. • Lifetimes from solid samples show the presence of AIPE.

  16. Copolymers containing meta-pyridylvinylene and para-arylenevinylene fragments: synthesis, quaternization reaction, and photophysical properties

    Science.gov (United States)

    Barashkov, Nikolay N.; Olivos, Hernando J.; Ferraris, John P.

    1997-12-01

    We report the Wittig reaction of the diphosphonium salt of 2,6-bis(chloromethyl)pyridine with terephthaldehyde, 2.5- dioctyloxyterephthaldehyde, or 9,10-anthracenedicarbaldehyde to form conjugated copolymers with fragments of 2,6 - pyridylene and para-arylenevinylene. The protonation reaction of poly(para-arylenevinylene)-co-(meta- pyridylvinylene) with hydrochloric acid and the quaternization reaction of poly(2,5-dioctyloxy-1,4- phenylenevinylene)-co-(2,6-pyridylvinylene) with methyl triflate have been investigated by spectrophotometric and fluorescent methods. The absorption, excitation and fluorescence spectra of these copolymers as well as their corresponding model compounds were studied and compared. The photophysical properties of the investigated polymers suggest that these materials could be good candidates for the fabrication of efficient blue and green light-emitting diodes.

  17. A novel chlorine derivative of Meso-tris(pentafluorophenyl)-4-pyridyl porphyrin: synthesis, photophysics and photochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Maestrin, Ana Paula J.; Ribeiro, Anderson O.; Tedesco, Antonio Claudio; Neri, Claudio R.; Vinhado, Fabio S.; Serra, Osvaldo A.; Martins, Patricia R.; Iamamoto, Yassuko [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Inst. de Quimica]. E-mail: oaserra@ffclrp.usp.br; Silva, Ana Margarida G.; Tome, Augusto C.; Neves, Maria G.P.M.S.; Cavaleiro, Jose A.S. [Universidade de Aveiro (Portugal). Dept. de Quimica]. E-mail: jcavaleiro@dq.ua.pt

    2004-12-01

    Photodynamic therapy (PDT) is based on the accumulation of a photosensitizer, such as a porphyrin or a chlorine, in a malignant tissue after its administration. Chlorins exhibit photophysical properties similar to those of the porphyrin macrocycles, but with intensified and red-shifted Q bands, making chlorine-containing systems even better candidates for PDT. In this contribution, we report the synthesis of 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin, (2) and its transformation to the novel chlorine derivatives 4, (5,10,20-tris(pentafluorophenyl)-15-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo [3,4-b]porphyrin and 5, (5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo[3,4-b]porphyrin) by 1,3-dipolar cycloaddition with an azomethine ylide. The new products have been characterized by UV-Vis, {sup 1}H NMR and FAB-MS. The photophysics, photochemical and photobleaching properties of chlorine 4 have been evaluated. Its quantum yield of photobleaching ({phi}{sub Pb}, mol Einstein{sup -1}) was 0.047{+-}0.014. In order to demonstrate the production of {sup 1}O{sub 2} when 4 is used as a photosensitizer, uric acid tests have been carried out. The results indicate that chlorine 4 can be considered a promising photosensitizer in PDT. (author)

  18. A novel chlorine derivative of Meso-tris(pentafluorophenyl)-4-pyridyl porphyrin: synthesis, photophysics and photochemical properties

    International Nuclear Information System (INIS)

    Maestrin, Ana Paula J.; Ribeiro, Anderson O.; Tedesco, Antonio Claudio; Neri, Claudio R.; Vinhado, Fabio S.; Serra, Osvaldo A.; Martins, Patricia R.; Iamamoto, Yassuko; Silva, Ana Margarida G.; Tome, Augusto C.; Neves, Maria G.P.M.S.; Cavaleiro, Jose A.S.

    2004-01-01

    Photodynamic therapy (PDT) is based on the accumulation of a photosensitizer, such as a porphyrin or a chlorine, in a malignant tissue after its administration. Chlorins exhibit photophysical properties similar to those of the porphyrin macrocycles, but with intensified and red-shifted Q bands, making chlorine-containing systems even better candidates for PDT. In this contribution, we report the synthesis of 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin, (2) and its transformation to the novel chlorine derivatives 4, (5,10,20-tris(pentafluorophenyl)-15-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo [3,4-b]porphyrin and 5, (5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo[3,4-b]porphyrin) by 1,3-dipolar cycloaddition with an azomethine ylide. The new products have been characterized by UV-Vis, 1 H NMR and FAB-MS. The photophysics, photochemical and photobleaching properties of chlorine 4 have been evaluated. Its quantum yield of photobleaching (φ Pb , mol Einstein -1 ) was 0.047±0.014. In order to demonstrate the production of 1 O 2 when 4 is used as a photosensitizer, uric acid tests have been carried out. The results indicate that chlorine 4 can be considered a promising photosensitizer in PDT. (author)

  19. 6-Aminocoumarin-naphthoquinone conjugates: design, synthesis, photophysical and electrochemical properties and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Fabio S.; Ronconi, Celia M.; Sousa, Mikaelly O.B.; Silveira, Gleiciani Q.; Vargas, Maria D., E-mail: miranda@vm.uff.br, E-mail: mdvargascp@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica

    2014-01-15

    Four novel 6-aminocoumarin-naphthoquinone conjugates were synthesized and their photophysical and electrochemical properties, investigated. 2-Chloro-3-(2-oxo-2H-chromen-6- ylamino)-1,4-naphthoquinone 1 did not present appreciable fluorescence in solution in comparison with 6-aminocoumarin, 6-AC. In order to understand the reasons for the fluorescence quenching in this compound, two strategies were attempted. Firstly, compound 1 was N-methylated to remove the intramolecular N-H...O=C electrostatic interaction that maintained the two units fixed, but the emission properties of the product 2 were not significantly different from those of 1. Time-dependent density functional theory (TD-DFT) calculations of compounds 1 and 2 indicate that the fluorescence quenching is related to the electron acceptor character of the naphthoquinone ring. The second strategy, therefore, involved the substitution of the chlorine atom in position 2 of the naphthoquinone nucleus for different electron donor groups (compounds 3-5), but again the emission properties did not change significantly. To explain these experimental findings, TD-DFT calculations of the ground (S{sub 0}) and excited (S{sub 1}) states of all molecules in solution were carried out. The results suggest that the energy states in these conjugates are such that the fluorescent group (6-AC) donates electrons to the naphthoquinone LUMO resulting in an oxidative photoinduced electron transfer (oxidative-PET). (author)

  20. Synthesis and photo-physical properties of fluorescent 1,3,5-triazine styryl derivatives

    Directory of Open Access Journals (Sweden)

    Padalkar Vikas S

    2011-12-01

    Full Text Available Abstract Background Organic fluorophore contains well-defined D-π-A (Donor-π system-Acceptor push-pull system have wide application in the field of NLO, OLED and high tech application. Electron donor diphenyl, triphenyl and carbazole conjugated with electron acceptor terminal through π-system were reported recently for high-tech applications. N,N-Dialkyl substituted 1,3,5-triazine also acts as donor keeping this idea in mind we developed D-π-A styryl dyes. Results Novel "Y"-shaped acceptor-π-donor-π-acceptor type of compounds were synthesized from 4,4'-((6-(4-(diethylaminophenyl-1,3,5-triazine-2,4diylbis(oxy dibenzaldehyde (DIPOD as electron donors and different active methylene compounds as electron acceptors by conventional Knoevenagel condensation reaction. Their photophysical and thermal properties were investigated. Conclusion It was found that the strong electron acceptor-donor chromophoric system of these compounds showed high Stoke's shift and excellent thermal stability. Compounds showed positive solvatofluorism behavior from nonpolar to polar solvent. All compounds have good thermal stability.

  1. Novel nonplanar triphenylamine-centered oligofluorenes: Synthesis, thermal, photophysical and electrochemical properties

    International Nuclear Information System (INIS)

    Zhang Yujian; Ouyang Mi; Yu Chunhui; Hu Bin; Lou Qianping; Zhang Cheng

    2011-01-01

    A series of fluorene derivatives containing a triphenylamine (TPA) derivative core and two oligofluorene peripheries was effectively synthesized. These compounds are fluorescent and emission color ranges from blue to red. The spiro-skeleton molecular structure leads to excellent glass transition temperatures and weak intermolecular interactions. Simultaneously, novel nonplanar triphenylamine-centered oligofluorenes solve the spectral stability problem and hole-injection issue for fluorene-based materials. The photophysical properties of 6 and 7 are investigated in solvents with different polarities, which reveal the existence of the Charge Transfer (CT) excited-state in these molecules. - Highlights: → Novel nonplanar oligofluorenes consisting of triphenylamine (TPA) derivatives as the core and oligofluorenes as the peripheries were facilely prepared via CF 3 SO 3 H-promoted Friedel-Crafts and Suzuki cross-coupling reactions. → These as-prepared compounds effectively solve the spectral stability problem and hole-injection issue for fluorene-based materials. → The ability of hole-injection and emission color could be fine tuned by R substituent at the C4 position of TPA.

  2. New naphthalene polyimide with unusual molar absorption coefficient and excited state properties: Synthesis, photophysics and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ozser, Mustafa E. [Girne American University, Faculty of Engineering and Architecture, Department of Industrial Engineering, Girne, North Cyprus (Cyprus); Yucekan, Ilke; Bodapati, Jagadeesh B. [Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Chemistry, Famagusta, North Cyprus (Cyprus); Icil, Huriye, E-mail: huriye.icil@emu.edu.tr [Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Chemistry, Famagusta, North Cyprus (Cyprus)

    2013-11-15

    A high molecular weight 1,4,5,8-naphthalene polyimide (ENPI) by one-step polycondensation mechanism and for comparison its monomeric diimide (ENDI) were synthesized; the photophysical and electrochemical properties were studied in detail for ENPI. Monomer has shown unusual insolubility so that the characterization proven to be difficult, whereas ENPI has shown better solubility. The molecular weight data obtained by GPC for the polymer were M{sub n}=8240 and M{sub w}=34,000 g mol{sup −1} respectively with a polydispersity of 4.13. The polyimide exhibited outstandingly high molar absorption coefficients as 599,000, 1,021,000, and 972,700 M{sup −1} cm{sup −1}, which is first time reported in literature for the characteristic 0–2, 0–1, and 0–0 electronic transitions, respectively. ENPI showed concentration dependent and red shifted excimer emission in 1,1,2,2-tetrachloroethane (TCE). The polymer has undergone multielectron reductions in CHCl{sub 3} solution below 100 mV s{sup −1} scan rates which merged into two reversible one-electron reduction peaks at higher scan rates. In solid-state, similar scan rate dependent reduction peaks were noticed. The LUMO, HOMO and optical band gap values obtained for ENPI were −3.73, −6.91, and 3.18 eV respectively. ENDI polymer with striking features has great potential as new sensitizer for efficient dye sensitized organic cells. Highlights: • A high molecular weight naphthalene polyimide was synthesized (M{sub w}=34,000 g mol{sup −1}). • The oligoether polyimide exhibited outstanding molar absorptivity (972,700 M{sup −1} cm{sup −1}). • A red shifted excimer emission has been observed. • The polymer has undergone multielectron reductions.

  3. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    Science.gov (United States)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  4. η6-Cycloparaphenylene transition metal complexes: synthesis, structure, photophysical properties, and application to the selective monofunctionalization of cycloparaphenylenes.

    Science.gov (United States)

    Kubota, Natsumi; Segawa, Yasutomo; Itami, Kenichiro

    2015-01-28

    The synthesis, structure, photophysical properties, and reactivity of cycloparaphenylenes (CPPs) coordinated to group 6 transition metal fragments are described. The η(6)-coordination of [9]CPP or [12]CPP with M(CO)6 (M = Cr, Mo, W) afforded the corresponding [n]CPP-M(CO)3 complexes (n = 9, 12; M = Cr, Mo, W). In the (1)H NMR spectra of these complexes, characteristic upfield-shifted singlet signals corresponding to the four hydrogen atoms attached to the coordinated C6H4 ring of the CPPs were observed at 5.4-5.9 ppm. The complex [9]CPP-Cr(CO)3 could be successfully isolated in spite of its instability. X-ray crystallographic analysis and computational studies of [9]CPP-Cr(CO)3 revealed that chromium-CPP coordination occurs at the convex surface of [9]CPP both in the solid state and in solution. TD-DFT calculations suggested that the emerging high-wavenumber absorption peak upon coordination of [9]CPP to Cr(CO)3 should be assigned to a weak HOMO-LUMO transition. Moreover, by using the complex [9]CPP-Cr(CO)3, a rapid and highly monoselective CPP functionalization has been achieved. The established one-pot method, consisting of complexation, deprotonation, nucleophilic substitution, and decomplexation steps, yielded silyl-, boryl-, and methoxycarbonyl-substituted CPPs in up to 93% yield relative to reacted starting material.

  5. Excited-state intramolecular proton transfer (ESIPT) inspired azole-quinoline based fluorophores: Synthesis and photophysical properties study

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in

    2014-11-15

    7-Hydroxy-3-(4-nitrophenyl)quinoline-6-carboxylic acid was obtained by the condensation reaction of p-amino salicylic acid and 4-nitrophenylmalonadialdehyde which was obtained from phenylacetonitrile through nitration, hydrolysis and Vilsmeier reaction. 7-Hydroxy-3-(4-nitrophenyl) quinoline-6-carboxylic acid was condensed with different o-aminophenols or o-aminothiophenol in ethanol in the presence of phosphorustrichloride. Synthesized quinoline contained benzimidazole and benzothiazole moieties. Photophysical behaviors of these compounds in solvents of different polarities were studied using UV–vis and fluorescence spectroscopy. The compounds showed single absorption in all the studied solvents. The dual emissions (normal emission and ESIPT emission) as well as large Stokes' shift emission pattern were observed for the synthesized fluorophores. The photophysical study shows that the emission properties of the compounds depend on the solvent polarity. The photophysical properties of the compounds were compared with structurally analogous ESIPT quinoline. Thermal stability of the compounds was studied using thermogravimetric analysis and results show that compounds are thermally stable up to 300 °C. The synthesized quinoline derivatives were characterized using elemental analysis, FT-IR and {sup 1}H –NMR, {sup 13}C –NMR spectroscopy and mass spectral analysis. - Highlights: • First and unique study of quinoline derivatives contain ESIPT azole unit at 6-position and hydroxyl group at 7-position. • Compounds are fluorescent with considerable quantum yields. • All compounds showed absorption in ultraviolet region and emission in visible region with large Stokes' shift. • The photophysical properties of new compounds were compared with reported ESIPT quinoline analogous.

  6. Synthesis and photophysical characterizations of thermal-stable naphthalene benzimidazoles.

    Science.gov (United States)

    Erten-Ela, Sule; Ozcelik, Serdar; Eren, Esin

    2011-07-01

    Microwave-assisted synthesis, photophysical and electrochemical properties of thermal-stable naphthalene benzimidazoles and naphthalimides are studied in this paper. Microwave-assisted synthesis of naphthalene benzimidazoles provide higher yields than the conventional thermal synthesis. Comparative photophysical properties of naphthalene benzimidazoles and naphthalimides are revealed that conjugation of electron-donating group onto naphthalimide moiety increases fluorescence quantum yields. Fluorophore-solvent interactions are also investigated using Lippert-Mataga equation for naphthalimides and naphthalene benzimidazoles. Thermal stabilities of naphthalene benzimidazoles are better than naphthalimides due to increased aromaticity. The experimental E(LUMO) levels of naphthalene benzimidazoles are found to be between 3.15 and 3.28 eV. Therefore, naphthalene benzimidazole derivatives consisting of anchoring groups are promising materials in organic dye sensitized solar cells. © Springer Science+Business Media, LLC 2011

  7. Synthesis, photophysical property study of novel fluorescent 4-(1,3 ...

    Indian Academy of Sciences (India)

    Some of the benzoxazole derivatives exhibit diverse ... NSC-693638 and antibacterial agents;13 some exam- ples are UK-1, ..... 1H NMR (D2O Exchange of Comp .... test material in 10% (v/v) DMSO (usually a stock con- .... Refractive index of solvent for standard .... synthesis B M Trost, and I Flemming (eds) New York:.

  8. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  9. Synthesis and photophysical properties of a novel corrole–anthraquinone–corrole molecular system

    International Nuclear Information System (INIS)

    Sudhakar, Kolanu; Kanaparthi, Ravi Kumar; Kumar, Challa Kiran; Giribabu, Lingamallu

    2014-01-01

    A novel molecular triad (AQ-(H 3 ) 2 ) based on tritolylcorrole and anthraquinone having azomethine-bridge at the pyrrole-β position has been designed and synthesized by following a facile one step reaction. The molecular system, AQ-(H 3 ) 2 is characterized by elemental analysis, MALDI-MS, 1 H-NMR, UV–Visible and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. In absorption spectra, prominent changes such as red-shift (∼7 nm) and broadening of the both Soret and Q-bands with respect to their monomer units were observed. The present study supported by density functional theory calculations manifest that there exists a negligible electronic communication in the ground state between the donor tritolylcorrole and acceptor anthraquinone of the triad. However, interestingly, in the triad AQ-(H 3 ) 2 , fluorescence emission of the tritolylcorrole quenched significantly (17–80%) compared to their monomeric units. The emission quenching is attributed to the excited state intramolecular photoinduced electron transfer from donor tritolylcorrole to acceptor anthraquinone and the electron transfer rates (k ET ) are found in the range 4.1×10 8 to 2.4×10 9 s −1 and are found to be solvent dependent. - Highlights: • Molecular triad based on corrole and anthraquinone having azomethine-bridge at pyrrole-β position. • Ground state properties showed that there exist minimum π–π interactions. • Excited state properties showed intramolecular photoinduced electron transfer from corrole to anthraquinone

  10. Synthesis and photophysical properties of a novel corrole–anthraquinone–corrole molecular system

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Kolanu [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Kanaparthi, Ravi Kumar [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Department of Chemistry, Central University of Kerala, Reverside Transit Campus, Padanakkad, Nileshwar Kasaragod District - 671 314 Kerala (India); Kumar, Challa Kiran [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Giribabu, Lingamallu, E-mail: giribabu@iict.res.in [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India)

    2014-09-15

    A novel molecular triad (AQ-(H{sub 3}){sub 2}) based on tritolylcorrole and anthraquinone having azomethine-bridge at the pyrrole-β position has been designed and synthesized by following a facile one step reaction. The molecular system, AQ-(H{sub 3}){sub 2} is characterized by elemental analysis, MALDI-MS, {sup 1}H-NMR, UV–Visible and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. In absorption spectra, prominent changes such as red-shift (∼7 nm) and broadening of the both Soret and Q-bands with respect to their monomer units were observed. The present study supported by density functional theory calculations manifest that there exists a negligible electronic communication in the ground state between the donor tritolylcorrole and acceptor anthraquinone of the triad. However, interestingly, in the triad AQ-(H{sub 3}){sub 2}, fluorescence emission of the tritolylcorrole quenched significantly (17–80%) compared to their monomeric units. The emission quenching is attributed to the excited state intramolecular photoinduced electron transfer from donor tritolylcorrole to acceptor anthraquinone and the electron transfer rates (k{sub ET}) are found in the range 4.1×10{sup 8} to 2.4×10{sup 9} s{sup −1} and are found to be solvent dependent. - Highlights: • Molecular triad based on corrole and anthraquinone having azomethine-bridge at pyrrole-β position. • Ground state properties showed that there exist minimum π–π interactions. • Excited state properties showed intramolecular photoinduced electron transfer from corrole to anthraquinone.

  11. Unprecedented Hexanuclear Cobalt(II Nonsymmetrical Salamo-Based Coordination Compound: Synthesis, Crystal Structure, and Photophysical Properties

    Directory of Open Access Journals (Sweden)

    Zong-Li Ren

    2018-03-01

    Full Text Available A novel hexanuclear Co(II coordination compound with a nonsymmetrical Salamo-type bisoxime ligandH4L, namely [{Co3(HL(MeO(MeOH2(OAc2}2]·2MeOH, was prepared and characterized by elemental analyses, UV–vis, IR and fluorescence spectra, and X-ray single-crystal diffraction analysis. Each Co(II is hexacoordinated, and possesses a distorted CoO6 or CoO4N2 octahedrons. The Co(II coordination compound possesses a self-assembled infinite 2D supramolecular structure with the help of the intermolecular C–H···O interactions. Meanwhile, the photophysical properties of the Co(II coordination compound were studied.

  12. A High Molar Extinction Coefficient Mono-Anthracenyl Bipyridyl Heteroleptic Ruthenium(II Complex: Synthesis, Photophysical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-06-01

    Full Text Available In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs, cis-dithiocyanato-4-(2,3-dimethylacrylic acid-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic-2,2'-bipyridyl ruthenium(II complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT band absorption with higher molar extinction coefficient (λmax = 518 nm, e = 44900 M−1cm−1, and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  13. Synthesis, photophysical and preliminary investigation of the dye

    Indian Academy of Sciences (India)

    Synthesis, photophysical and preliminary investigation of the dye-sensitized solar ... with most reduction potential which might be due to increase in the conjugation of ... CSIR Materials Science and Manufacturing, PO Box 395, Pretoria 0001, ...

  14. Synthesis, photophysical and electrochemical properties, and protein-binding studies of luminescent cyclometalated iridium(III) bipyridine estradiol conjugates.

    Science.gov (United States)

    Lo, Kenneth Kam-Wing; Zhang, Kenneth Yin; Chung, Chi-Keung; Kwok, Karen Ying

    2007-01-01

    A new series of luminescent cyclometalated iridium(III) bipyridine estradiol conjugates [Ir(N-C)2(N-N)](PF6) (N-N = 5-(4-(17alpha-ethynylestradiolyl)phenyl)-2,2'-bipyridine, bpy-est, HN-C = 2-phenylpyridine, Hppy (1 a), 1-phenylpyrazole, Hppz (2 a), 7,8-benzoquinoline, Hbzq (3 a), 2-phenylquinoline, Hpq (4 a), 2-((1,1'-biphenyl)-4-yl)benzothiazole, Hbsb (5 a); N-N = 4-(N-(6-(4-(17alpha-ethynylestradiolyl)benzoylamino)hexyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine, bpy-C6-est, HN-C = Hppy (1 b), Hppz (2 b), Hbzq (3 b), Hpq (4 b), Hbsb (5 b)) was synthesized, characterized, and their photophysical and electrochemical properties studied. Upon photoexcitation, all the complexes displayed intense and long-lived emission in fluid solutions at 298 K and in low-temperature glass. The emission of complexes 1 a-3 a and 1 b-3 b was assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir)-->pi*(bpy-est and N-C-)) state mixed with some triplet intraligand ((3)IL) (pi-->pi*) (N-C- and N-N) character. However, the emissive states of the pq- and bsb- complexes 4 a, 4 b, 5 a, and 5 b showed substantial (3)IL (pi-->pi*) (pq-/bsb-) character. The lipophilicity of all the complexes was determined by reversed-phase HPLC. Upon binding to estrogen receptor alpha, all of these iridium(III) estradiol conjugates exhibited emission enhancement and lifetime extension, rendering them a novel series of luminescent probes for this receptor.

  15. Synthesis, crystal structure and photophysical properties of (E)-4-(4-(2-hydroxybenzylideneamino)benzyl)oxazolidin-2-one

    International Nuclear Information System (INIS)

    Kumari, Rekha; Varghese, Anitha; George, Louis

    2016-01-01

    A new Schiff base, (4-(benzylideneamino)benzyl)oxazolidin-2-one has been synthesised from 4-(4-aminobenzyl)oxazolidin-2-one and salicylaldehyde by a simple condensation reaction. Single-crystal X-ray analysis of (E)-4-(4-(2-hydroxybenzylideneamino) benzyl)oxazolidin-2-one (HBOA) revealed that there is a 1-D, slipped, face-to-face motif with off-set, head-to-tail stacked columns. Detailed studies on photophysical properties of the synthesised compound in solutions indicate their potential applications in the field of organic light emitting devices and nonlinear optical materials. Absorption and fluorescence study of HBOA has been conducted in a series of solvents with increasing polarity at room temperature. Ground and excited state dipole moments have been determined experimentally by using Lippert–Mataga polarity function, Bakhshiev solvent polarity parameter, Kawskii–Chamma–Viallet solvent polarity parameter and RichardtГ—Віs microscopic solvent polarity parameter. Due to the considerable π-electron density redistribution, the excited state dipole moment was found to be larger than that of the ground state. The ground state dipole moment value was determined by quantum chemical method which was used to estimate excited state dipole moment through solvatochromic correlations. Kamlet–Taft and Catalan methods were used to get the information of both non-specific solute–solvent interactions and hydrogen bonding interactions. TD-DFT (B3LYP/6-311G(d,p)) has been used for the determination of HOMO–LUMO energies. Mulliken charges and Molecular electrostatic potential were also evaluated from DFT calculations.

  16. Synthesis of novel styryl derivatives from 4-chloro-2-(morpholin-4-yl)-1,3-thiazole-5-carbaldehyde, study of their photophysical properties and TD-DFT computations

    International Nuclear Information System (INIS)

    Sekar, Nagaiyan; Umape, Prashant G.; Padalkar, Vikas S.; Tayade, Rajratna P.; Ramasami, Ponnadurai

    2014-01-01

    Novel fluorescent styryl push–pull compounds having electron donating thiazole unit were synthesized by condensing 4-chloro-2-(morpholin-4-yl)-1,3-thiazole-5-carbaldehyde with active methylene compounds via classical Knoevenagel condensation. The synthesized styryl molecules were characterized by spectral analysis. Photophysical properties of these styryl derivatives were analyzed and the effect of change in solvent polarity and viscosity on their absorptive and emissive properties has been investigated. Density functional theory (DFT) and time dependent-density functional theory (TD-DFT) computations have been used to understand the structural, molecular, electronic and photophysical parameters of push–pull dyes. Bakhshiev and Kawski–Chamma–Viallet correlations were used to calculate the ratio of ground to excited state dipole moment of the synthesized novel styryl compounds. -- Highlights: •Novel styryl derivatives are synthesized from thiazole aldehyde. •Photophysical properties of styryl derivatives were evaluated and supported by TD-DFT computations. •Experimental photophysical results are in good agreement with the theoretical results obtained by TD-DFT computations. •Compounds show fluorescence in solid state as well as in solvents of different polarities

  17. Synthesis, characterization, and photophysical properties of a thiophene-functionalized bis(pyrazolyl) pyridine (BPP) tricarbonyl rhenium(I) complex.

    Science.gov (United States)

    Lytwak, Lauren A; Stanley, Julie M; Mejía, Michelle L; Holliday, Bradley J

    2010-09-07

    A bromo tricarbonyl rhenium(I) complex with a thiophene-functionalized bis(pyrazolyl) pyridine ligand (L), ReBr(L)(CO)(3) (1), has been synthesized and characterized by variable temperature and COSY 2-D (1)H NMR spectroscopy, single-crystal X-ray diffraction, and photophysical methods. Complex 1 is highly luminescent in both solution and solid-state, consistent with phosphorescence from an emissive (3)MLCT excited state with an additional contribution from a LC (3)(pi-->pi*) transition. The single-crystal X-ray diffraction structure of the title ligand is also reported.

  18. Luminescent cyclometalated iridium(III) polypyridine indole complexes--synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake.

    Science.gov (United States)

    Lau, Jason Shing-Yip; Lee, Pui-Kei; Tsang, Keith Hing-Kit; Ng, Cyrus Ho-Cheong; Lam, Yun-Wah; Cheng, Shuk-Han; Lo, Kenneth Kam-Wing

    2009-01-19

    A series of luminescent cyclometalated iridium(III) polypyridine indole complexes, [Ir(N--C)(2)(N--N)](PF(6)) (HN--C = 2-phenylpyridine (Hppy), N--N = 4-((2-(indol-3-yl)ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine (bpy-ind) (1a), N--N = 4-((5-((2-(indol-3-yl)ethyl)aminocarbonyl)pentyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine (bpy-C6-ind) (1b); HN--C = 7,8-benzoquinoline (Hbzq), N--N = bpy-ind (2a), N--N = bpy-C6-ind (2b); and HN--C = 2-phenylquinoline (Hpq), N--N = bpy-ind (3a), N--N = bpy-C6-ind (3b)), have been synthesized, characterized, and their photophysical and electrochemical properties and lipophilicity investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence (lambda(em) = 540-616 nm, tau(o) = 0.13-5.15 mus). The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi*(N--N)) excited state, probably with some mixing of triplet intraligand ((3)IL) (pi --> pi*) (pq) character for complexes 3a,b. Electrochemical measurements revealed that all the complexes showed an irreversible indole oxidation wave at ca. +1.1 V versus SCE, a quasi-reversible iridium(IV/III) couple at ca. +1.3 V, and a reversible diimine reduction couple at ca. -1.3 V. The interactions of these complexes with an indole-binding protein, bovine serum albumin (BSA), have been studied by emission titrations, and the K(a) values are on the order of 10(4) M(-1). Additionally, the cytotoxicity of the complexes toward human cervix epithelioid carcinoma (HeLa) cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC(50) values of the complexes ranged from 1.1 to 6.3 microM, which are significantly smaller than that of cisplatin (30.7 microM) under the same experimental conditions. Furthermore, the cellular uptake of the complexes has been investigated by flow cytometry and laser

  19. Synthesis, characterization, and photo-physical properties of nano-crystallites of CdyZn1-yS semiconductors

    International Nuclear Information System (INIS)

    Cizeron, Joel

    1996-01-01

    This research thesis reports the study of the synthesis of particles of semiconductor with a hybrid composition (Cd y Zn 1-y S) in an inverse micellar system. This system is made of nano-scopic water droplets suspended in oil by Brownian movement. Inverse micelles of AOT/water/alkane have been successfully used in laboratory to synthesize semiconductor particles (CdS, Ag 2 S, AgI, PbS) and metallic particles (Ag, Cu, Co) with a diameter of few nanometers. The objective has been to demonstrate the feasibility of synthesises of solid solution with a composition controlled by colloidal techniques. It was then possible to identify new information on the mechanism which governs the size of semiconductor particles. Optical properties of these particles were then studied. These nano-particles exhibit a displacement of their exciton towards high energies; it is the so-called size quantum effect. This effect has been analysed for the particles and their fluorescence [fr

  20. C-shaped diastereomers containing cofacial thiophene-substituted quinoxaline rings: synthesis, photophysical properties, and X-ray crystallography.

    Science.gov (United States)

    DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M

    2014-05-16

    Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.

  1. Synthesis, dynamics and photophysics of nanoscale systems

    Science.gov (United States)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  2. N-2-Aryl-1,2,3-Triazoles: A novel class of blue–green emitting fluorophores-synthesis, photophysical properties study and dft computations

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S.; Chemate, Santosh B.; Lanke, Sandip K.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in

    2015-12-15

    Three novel 2-{2-[4-(N,N-diethylamino)–2–hydroxyphenyl]–1H–benzo[d]imidazol–6–yl} –2H–naphtho [1,2-d] [1,2,3] fluorescent triazole derivatives were synthesized from 2-(5-amino-1H-benzimidazol-2-yl)-5-(N,N-diethylamino)phenol and amino substituted naphthylsulphonic acids. The absorption, emission, quantum yields and dipole moments of these compounds were evaluated in methanol, acetonitrile, N,N-dimethylformamide and dimethylsulfoxide. The compounds 8a and 8c absorb in the near visible region, while compound 8b shows two absorption peaks, short wavelength peak is in the near visible region and long wavelength absorption in the visible region. Compounds are fluorescent in solution and emit in blue and green region. The photophysical properties of the 8a–8c were compared with structural analogs reported till date. The experimental absorption and emission properties were compared with the theoretical data obtained by DFT and TD-DFT computations with TD–B3LYP and CAM–B3LYP functional with 6–31G (d) and 6–311G (d) basis sets. Theoretical results obtained by TD-B3LYP functional are well in line with the experimental results. The compounds are thermally stable up to 300 °C. New compounds were characterized by spectral techniques. - Highlights: • First unique study of blue-emitting ESIPT triazoles. • Improved photophysical properties compared to similar analogues. • Experimental and TDDFT data on photophysical properties. • Dipole moments from solvatochromic data.

  3. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Controllable synthesis of Eu{sup 3+}/Tb{sup 3+} activated lutetium fluorides nanocrystals and their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jintai; Huo, Jiansheng [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Cai, Yuepeng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2013-12-15

    In this paper, phosphors of LuF{sub 3}:Eu{sup 3+}/Tb{sup 3+} have been successfully synthesized with small chelator ethylenediaminetetra acetic acid (EDTA) or amphiphilic polymer (polyethylene glycol, PEG-1000) as templates via a hydrothermal method. X-ray powder diffraction (XRD), scanning electronic microscope (SEM), and photo-luminescent spectra techniques (PL) were used to characterize the as-prepared samples. XRD patterns showed that well crystallized lanthanide fluorides with hexagonal phase were achieved. SEM images revealed that different regular microstructures were achieved. The photo-luminescent properties of LuF{sub 3}:Eu{sup 3+} demonstrated that there are significant energy transfers from fluorides to Eu{sup 3+}. The results presented that EDTA as the template will lead to the highest emission intensities. -- Highlights: • Various templates were used to synthesize LuF{sub 3}:Eu{sup 3+}/Tb{sup 3+}. • All the phosphors were red or green emissive. • Different morphologies were acquired and controllable.

  5. Synthesis, characterization and photophysical properties

    Indian Academy of Sciences (India)

    and medicinal application such as photodynamic thera- py.9–11 Intramolecular ... resident metallo/metalloid ion of porphyrin.15–18 In con- trast, energy or electron ... or flash chromatography was used for compound purifi- cation. Where as a ...

  6. NLOphoric and solid state emissive BODIPY dyes containing N-phenylcarbazole core at meso position – Synthesis, photophysical properties of and DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Telore, Rahul D.; Jadhav, Amol G.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in

    2016-11-15

    Two boron-dipyrromethene dyes with N-phenylcarbazole core at meso position were prepared and characterized. They show small Stokes shifts (15–20 nm), high molar extinction coefficient and high quantum yield. Their photophysical properties were compared with the known meso aryl, 4-aminophenyl, N,N-dimethylaniline and N-butylcarbzole boron-dipyrromethene dyes. The bulky nature of N-phenylcarbazole leads to an increase in molar absorptivity and quantum yield. The Catalan solvent parameters are found to be the suitable for defining the solvatochromic absorption and emission properties. Confocal laser scanning microscopy showed solid-state fluorescence. Density Functional Theory is used to determine the static first hyperpolarizability (β{sub ο}) and its components (μ, α{sub 0}, Δα, and γ) using B3LYP/6-31G(d) at ground state and excited state in different polarity solvent. The geometries of the dyes were optimized by using B3LYP/6-31G(d) and their electronic excitation properties were estimated using time dependent density functional theory.

  7. Synthesis, Photophysical and Electrochemical Properties of a Mixed Bipyridyl-Phenanthrolyl Ligand Ru(II Heteroleptic Complex Having trans-2-Methyl-2-butenoic Acid Functionalities

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2011-09-01

    Full Text Available In this work, two ligands: 4-(trans-2-Methyl-2-butenoic acid-2,2'-bipyridine (L1 and 5-(trans-2-methyl-2-butenoic acid-1,10-phenanthroline (L2, with the corresponding mixed-ligand heteroleptic Ru(II complex were synthesized and characterized by FT-IR, 1H-, 13C-NMR spectroscopy and elemental analysis. The influence of the mixed functionalized polypyridyl ruthenium(II complex on the photophysical and electrochemical properties were investigated and compared to individual single-ligand homoleptic complexes. Interestingly, the mixed-ligand complex formulated as [RuL1L2(NCS2] exhibits broad and intense metal-to-ligand charge transfer (MLCT absorption with a high molar extinction coefficient (λmax = 514 nm, ε = 69,700 M−1 cm−1, better than those of individual single-ligand complexes, [Ru(L12(NCS2] and [Ru(L22(NCS2], and a strong photoluminescence intensity ratio in the red region at λem = 686 nm. The electrochemical properties of the complex indicated that the redox processes are ligand-based.

  8. Pincer-CNC mononuclear, dinuclear and heterodinuclear Au(III) and Pt(II) complexes supported by mono- and poly-N-heterocyclic carbenes: synthesis and photophysical properties.

    Science.gov (United States)

    Gonell, S; Poyatos, M; Peris, E

    2016-04-07

    A family of cyclometallated Au(iii) and Pt(ii) complexes containing a CNC-pincer ligand (CNC = 2,6-diphenylpyridine) supported by pyrene-based mono- or bis-NHC ligands have been synthesized and characterized, together with the preparation of a Pt-Au hetero-dimetallic complex based on a Y-shaped tris-NHC ligand. The photophysical properties of all the new species and of two related Ru(ii)-arene complexes were studied and compared. Whereas the pyrene-based complexes only exhibit emission in solution, those containing the Y-shaped tris-NHC ligand are only luminescent when dispersed in poly(methyl methacrylate) (PMMA). In particular, the pyrene-based complexes were found to be emissive in the range of 373-440 nm, with quantum yields ranging from 3.1 to 6.3%, and their emission spectra were found to be almost superimposable, pointing to the fluorescent pyrene-centered nature of the emission. This observation suggests that the emission properties of the pyrene fragment may be combined with some of the numerous applications of NHCs as supporting ligands allowing, for instance, the design of biological luminescent agents.

  9. Photophysical properties of pyronin dyes in reverse micelles of AOT

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktutan, Tuğba; Meral, Kadem; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    2014-01-15

    The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in reverse micelles formed with water/sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane were investigated by UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. This study was carried out a wide range of reverse micelle sizes, with hydrodynamic radii ranging from 1.85 to 9.38 nm. Significant photophysical parameters as band shifts, fluorescence quantum yields and fluorescence lifetimes were determined to understand how photophysical and spectroscopic features of the dye compounds were affected by the variation of reverse micelle sizes. In this regard, control of reverse micelle size by changing W{sub 0}, the molar ratio of water to surfactant, allowed tuning the photophysical properties of the dyes in organic solvent via reverse micelle. Non-fluorescent H-aggregates of pyronin dyes were observed for the smaller reverse micelles whereas an increase in the reverse micelle size induced an increment in the amount of dye monomers instead of dye aggregates. Thus, the fluorescence intensities of the dyes were improved by increasing W{sub 0} due to the predomination of the fluorescent dye monomers. As a result, the fluorescence quantum yields also increased. The fluorescence lifetimes of the dyes in the reverse micelles were determined by the time-resolved fluorescence decay studies. Evaluation of the fluorescence lifetimes calculated for pyronin dyes in the reverse micelles showed that the size of reverse micelle affected the fluorescence lifetimes of pyronin dyes. -- Highlights: • The photophysical properties of pyronin dyes were examined by spectroscopic techniques. • Optical properties of the dyes were tuned by changing of W{sub 0} values. • The fluorescence lifetime and quantum yield values of the dyes in reverse micelles were discussed.

  10. A diamine ligand with long 'arms' and its corresponding dinuclear rhenium(I) complex: Synthesis, characterization, photophysical property, and sensing activity towards molecular oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaoyong, E-mail: dreamxxy01@163.com [Center for Functional Materials of Pingxiang, Pingxiang 337055 (China) and College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2012-09-15

    In this paper, we synthesize a novel diamine ligand of 4,7-dinonadecyl-1,10-phenanthroline (DN-Phen) with two long alkyl chain arms serving as a shield and its corresponding dinuclear Re(I) complex of Re{sub 2}(CO){sub 6}(bpy)(DN-Phen){sub 2} (bpy=4,4 Prime -bipyridine), aiming at an optical sensor immune to the surrounding interferences. Its geometric and electronic structures are investigated, which suggest that the introduced long alkyl chains act as a shield for the excited state of emissive center. The promising photophysical parameters of Re{sub 2}(CO){sub 6}(bpy)(DN-Phen){sub 2}, including the immunity of emission towards the surrounding interferences and long excited state lifetime, make itself a potential probe for oxygen detection. By doping Re{sub 2}(CO){sub 6}(bpy)(DN-Phen){sub 2} into two silica matrixes of MCM-41 and SBA-15, oxygen sensing performances of the resulted composite materials are investigated. Finally, a high sensitivity of 20.1 is realized, with short response/recovery time of 8 s/42 s. Here, sensitivity is defined as the ratio of emission maximum under pure nitrogen to emission minimum under pure oxygen, response and recovery times are the times for a sample to lose (response time) or recover (recovery time) 95% of its emission maximum upon periodically changed atmosphere. - Highlights: Black-Right-Pointing-Pointer A ligand with two long alkyl chain arms serving as a shield is synthesized. Black-Right-Pointing-Pointer The shield protects the excited state emissive center. Black-Right-Pointing-Pointer The emission of Re(I) complex is immune towards surrounding interference. Black-Right-Pointing-Pointer A high sensitivity of 20.1 is realized.

  11. Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents

    International Nuclear Information System (INIS)

    Pal, Haridas; Nad, Sanjukta; Kumbhakar, Manoj

    2003-01-01

    Photophysical properties of coumarin-120 (C120; 7-amino-4-methyl-1,2-benzopyrone) dye have been investigated in different solvents using steady-state and time-resolved fluorescence and picosecond laser flash photolysis (LFP) and nanosecond pulse radiolysis (PR) techniques. C120 shows unusual photophysical properties in nonpolar solvents compared to those in other solvents of moderate to higher polarities. Where the Stokes shifts (Δν-bar=ν-bar abs -ν-bar fl ), fluorescence quantum yields (Φ f ), and fluorescence lifetimes (τ f ) show more or less linear correlation with the solvent polarity function Δf={(ε-1)/(2ε+1)-(n 2 -1)/(2n 2 +1)}, all these parameters are unusually lower in nonpolar solvents. Unlike in other solvents, both Φ f and τ f in nonpolar solvents are also strongly temperature dependent. It is indicated that the excited singlet (S 1 ) state of C120 undergoes a fast activation-controlled nonradiative deexcitation in nonpolar solvents, which is absent in all other solvents. LFP and PR studies indicate that the intersystem crossing process is negligible for the present dye in all the solvents studied. Photophysical behavior of C120 in nonpolar solvent has been rationalized assuming that in these solvents the dye exists in a nonpolar structure, with its 7-NH 2 group in a pyramidal configuration. In this structure, since the 7-NH 2 group is bonded to the 1,2-benzopyrone moiety by a single bond, the former group can undergo a fast flip-flop motion, which in effect causes the fast nonradiative deexcitation of the dye excited state. In moderate to higher polarity solvents, it is indicated that the dye exists in an intramolecular charge-transfer structure, where the bond between 7-NH 2 group and the 1,2-benzopyrone moiety attains substantial double bond character. In this structure, the flip-flop motion of the 7-NH 2 group is highly restricted and thus there is no fast nonradiative deexcitation process for the excited dye

  12. Bibliographic study of photophysical and photochemical properties of laser dyes

    International Nuclear Information System (INIS)

    Doizi, D.

    1986-06-01

    Laser isotope separation of uranium requires high power and precise wave length. This report is a bibliographic and experimental study of the photophysical and photochemical properties of seven commercial laser dyes which have an emission wavelength in the range 5500-6500 A: Rhodamine 110 or 560, rhodamine 6G or 590, rhodamine B or 610, rhodamine 101 or 640, sulforhodamine B or kiton red 620, sulforhodamine 101 or 640 and DCM or LC 6500. Absorption and emission cross section values, fluorescence lifetimes and quantum yields in various solvents are indicated. For each dye, a non exhaustive list of laboratory experiments made with two types of pump sources: Nd YAG (532) and copper vapor laser is given. When it is known, the toxicity of the dyes is mentioned [fr

  13. New electroluminescent carbazole-containing conjugated polymer: synthesis, photophysics, and electroluminescence

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Ulbricht, C.; Dzhabarov, Vagif; Výprachtický, Drahomír; Egbe, D. A. M.

    2014-01-01

    Roč. 55, č. 24 (2014), s. 6220-6226 ISSN 0032-3861 R&D Projects: GA ČR GAP106/12/0827; GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : carbazole-containing conjugated polymer * synthesis * photophysics and electroluminescence Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  14. Pyridine-Based Conjugated Polymers: Photophysical Properties and Light- Emitting Diodes

    National Research Council Canada - National Science Library

    Epstein, A

    1997-01-01

    We study the photophysical properties of the pyridine-based polymers poly (p-pyridyl vinylene) (PPyV) and poly (p-pyridine) (PPy). The primary photoexcitations in the pyridine-based polymers are singlet excitons...

  15. Simple synthesis, photophysics, and electroluminescent properties of poly[2,7-bis(4-tert-butylstyryl)fluorene-9,9-diyl-alt-alkane-.alpha.,.omega.-diyl

    Czech Academy of Sciences Publication Activity Database

    Mikroyannidis, J. A.; Barberis, V. P.; Výprachtický, Drahomír; Cimrová, Věra

    2007-01-01

    Roč. 45, č. 5 (2007), s. 809-821 ISSN 0887-624X R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409; GA ČR GA203/04/1372 Institutional research plan: CEZ:AV0Z40500505 Keywords : distyrylfluorene * electrochemical properties * electroluminescence Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.529, year: 2007

  16. Synthesis and characterization of Na(Y,Gd)F{sub 4} upconversion nanoparticles and an investigation of their effects on the photophysical properties of an unsubstituted tetrathiophenoxy phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jessica M.; Litwinski, Christian; Nyokong, Tebello; Antunes, Edith M., E-mail: ebeukes@uwc.ac.za [Rhodes University, Department of Chemistry (South Africa)

    2015-02-15

    Sphere- and star-shaped Na(Y,Gd)F{sub 4}:Yb/Er(Tm)upconversion nanoparticles (UCNP) were successfully synthesized utilizing a methanol-assisted thermal decomposition approach and their spectroscopic (absorption, emission and luminescence lifetime) properties fully characterized. The factors affecting the size and shape of the UCNPs were studied and discussed in detail. The size of the nanoparticles was determined using TEM primarily and found to be approximately 19 and 30 nm for the Er and Tm spheres, respectively, while the Er and Tm “stars” were found to be much larger with sizes ranging from 110 to 240 nm, respectively (as determined along the width of the nanoparticle). In addition, their influence on the spectroscopic properties of an unsubstituted tetrathiophenoxy phthalocyanine (H{sub 2}Pc) was investigated. The UCNP were found to produce characteristic upconversion luminescence emissions in the blue, green, red and NIR regions. Simple mixing with an H{sub 2}Pc in toluene was found to exert no obvious changes in the spectroscopic properties of the Pc, although a considerable increase in the radiative lifetimes is observed for the Pc in the presence of the UCNPs. The singlet oxygen generation mediated by the red light excitation of the H{sub 2}Pc mixed with UCNP was found to decrease in the presence of the NPs.

  17. Synthesis and Study of Chemical and Photo-physical Properties of Quinolinate Aluminum and Zinc Complexes in Organic Light Emitting Diodes (OLEDs)

    Science.gov (United States)

    Rawat, Madhu; Prakash, Sattey; Singh, C.; Anand, R. S.

    2011-10-01

    Two well known electroluminescent (EL) compounds, aluminum and zinc metallo-8-hydroxyquinolates have been synthesized. Their chemical and physical properties like NMR, FTIR, Cyclic Voltammetry, absorption and EL are studied. Organic LEDs are fabricated using both the material as emissive layers. Electroluminescence spectra of the complexes are measured. 2Alq3 and Znq2 give peak emission in yellow-green region at wavelengths 527nm and 540nm respectively. Znq2 is slightly red shifted compared to Alq3 because metal to ligand charge transfer is more in Znq2. A study of ON voltage, luminance efficiency and stability of OLEDs using both materials is made.

  18. Conjugated Polymers Containing BODIPY and Fluorene Units for Sensitive Detection of CN− Ions: Site-Selective Synthesis, Photo-Physical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Tian He

    2017-10-01

    Full Text Available Conjugated polymers containing distinct molecular units are expected to be very interesting because of their unique properties endowed by these units and the formed conjugated polymers. Herein, four new conjugated copolymers based on fluorene and 4,4’-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY have been designed and synthesized via Sonogashira polymerization. The fluorene unit was attached to the 3,5- or 2,6-positions of BODIPY by ethynylenes or p-diacetylenebenzene. The obtained polymers show good thermal stability and broad absorption in the wavelength range from 300 to 750 nm. The effects of site-selective copolymerization and conjugation length along the polymer backbone on the optoelectronic and electrochemical properties of these copolymers were systematically studied by UV-Vis spectroscopy, photoluminescence (PL and cyclic voltammetry. Besides, it is found that the BODIPY-based copolymers exhibit selectively sensitive responses to cyanide anions, resulting in obvious change of UV-Vis absorption spectra and significant fluorescence quenching of the polymers among various common anions.

  19. Photophysical properties of some xanthylium salts performances under CVL pumping

    International Nuclear Information System (INIS)

    Doizi, D.; Lompre, L.A.; Gazeau, M.C.

    1995-01-01

    We report the photochemical and photophysical performances of some new dyes belonging to the xanthylium salts family. Performances under Copper Vapor Laser (CVL) pumping are described and compared to those of Rhodamine 6G. (author)

  20. Photophysical properties of novel Porphyrin-Flavin Dyads

    International Nuclear Information System (INIS)

    Stark, S.

    2001-10-01

    Photosynthesis belongs to the fundamentals of life on earth, therefore it is an important matter in natural sciences. The basic principle of photosynthesis is the transformation of solar light into chemical energy. The starting steps of photosynthesis are light-induced energy- and electron-transfer-steps with singular efficiency. One attempt to enlighten the molecular processes involved is to synthesize simpler model systems with similar properties. Important research goals are the dependencies of light-induced processes on distance and orientation of donor and acceptor. A second aim next to the clarification of the molecular conditions of photosynthesis is to create molecular light-driven machines. The most simple so-called biomimetic model system consists of an electron-donor connected to an electron-acceptor via a spacer-group. This simplest form is also referred to as dyad. Beyond dyads far more complicated compounds have been introduced consisting of several donors and/or acceptors, so-called triads, tetrads, pentads etc. Usually porphyrin serves as electron-donor. Next to chinones several other electron-acceptors are used, e.g. anthracene, pyromellitimide and fullerene. Artificial photosynthetic centers are often more stable and/or the excited states are easier to detect compared to the natural photosynthetic center. The photophysical characteristics of four dyads are reported in this work. The dyads consist of porphyrin (either free-base or zinc-metallated) and flavin, connected by different spacers. These dyads reveal photo-induced electron transfer from porphyrin to flavin and energy-transfer in the reversed direction with different efficiencies. The object of the study is the dependency of these processes on the structural features. The spacer of the dyads 1a-1c is an aromatic bridge which leads to well defined donor-acceptor distances. Because of this structure conjugation through the spacer is increased, whereas the absorption in the visible and near UV

  1. Aggregation and Photophysical Properties of Water-Soluble Sapphyrins

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2004-01-01

    Roč. 395, - (2004), s. 82-86 ISSN 0009-2614 R&D Projects: GA AV ČR KSK4040110 Keywords : water-soluble * sapphyrins * photophysical Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2004

  2. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  3. Analysis of the photophysical properties of zearalenone using density functional theory

    Science.gov (United States)

    The intrinsic photophysical properties of the resorcylic acid moiety of zearalenone offer a convenient label free method to determine zearalenone levels in contaminated agricultural products. Density functional theory and steady-state fluorescence methods were applied to investigate the role of stru...

  4. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    Science.gov (United States)

    Chen, Kuizhi; Pan, Sujuan; Zhuang, Xuemei; Lv, Hafei; Que, Shoulin; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-07-01

    1-2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G n -DSiPc(CN)4 n , (G n = n-generation dendrimer, n = 1-2)) were synthesized. Their structures were characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Polymeric nanoparticles (G n -DSiPc(CN)4 n /m) were formed through encapsulating G n -DSiPc(CN)4 n into three monomethoxyl poly(ethylene glycol)-poly(ɛ-caprolactone) diblock copolymers (MPEG-PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G n -DSiPc(CN)4 n and G n -DSiPc(CN)4 n /m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G n -DSiPc(CN)4 n /m were lower than the corresponding free dendrimer phthalocyanines. G n -DSiPc(CN)4 n encapsulated into MPEG-PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG2000-PCL2000 micelles was about 70 nm, which decreased when loaded with G n -DSiPc(CN)4 n .

  5. Photophysical properties of fullerenes prepared in an atmosphere of pyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. (Temple Univ., Philadelphia, PA (United States))

    1994-10-01

    Samples of C[sub 60] and C[sub 70] containing a variety of nitrogen-doped species were prepared by arc vaporization of graphite in the presence of pyrrole. Cage-doped fractions were isolated by column chromatography and characterized by mass spectroscopy, optical absorption, and fluorescence measurements. Mass spectra were consistent with the substitution of an even number of carbon atoms of the C[sub 60] and C[sub 70] cages by nitrogen atoms. Carbonaceous clusters including fragmented fullerenes containing hydrogen atoms were also formed. UV-visible spectral analysis indicated that there is an influence of the molecular weight on the fundamental [pi]-[pi]* electronic transition. Fluorescence spectra showed a broad band containing vibrational fine structure that is attributed to photoseparated charges in the fragmented fullerenes and a shoulder on the low-energy side that is related to intrinsic excitation in the nitrogen-doped species. Fluorescence results imply a bandgap of 2.36 eV for the N doped fullerenes and the existence of intermediate excitonic transitions below the optical bandgap. Although it has not yet been possible to isolate a pure cage-doped material, the photophysical studies add credence to their existence and the importance of further attempts at their isolation. 17 refs., 4 figs., 1 tab.

  6. Photophysical Properties of II-VI Semiconductor Nanocrystals

    Science.gov (United States)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in

  7. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    Energy Technology Data Exchange (ETDEWEB)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Bulut, Mustafa, E-mail: mbulut@marmara.edu.tr [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey)

    2015-12-15

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, {sup 1}H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn{sup 2+}, Mg{sup 2+}, In{sup +3}) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  8. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    International Nuclear Information System (INIS)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz; Durmuş, Mahmut; Bulut, Mustafa

    2015-01-01

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, 1 H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn 2+ , Mg 2+ , In +3 ) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  9. Type II photoinitiator substituted zinc phthalocyanine: Synthesis, photophysical and photopolymerization studies

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Sibel Eken [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey); Temel, Gokhan [Department of Polymer Engineering, Yalova University, 77100 Yalova (Turkey); Balta, Demet Karaca [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey); Arsu, Nergis, E-mail: narsu@yildiz.edu.tr [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey); Şener, M. Kasım, E-mail: mkasimsener@gmail.com [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey)

    2013-04-15

    The novel 4-(9-oxo-9 H-thioxanthen-2yloxy) phthalonitrile (TX-Pht) and its peripherally tetra substituted zinc phthalocyanine complex (TX-ZnPc) have been prepared and characterized by spectroscopic and elemental analysis techniques. Photoinitiated polymerization of methyl methacrylate (MMA) with TX-ZnPc has been investigated in the presence and absence of a co-initiator. Fluorescence and phosphorescence measurements have been also performed to determine the photophysical properties. Low fluorescence quantum yield (Φ{sub F}=0.08) compared to the unsubstituted ZnPc has been found. This allows initiator to undergo intersystem crossing into the triplet state and the lowest triplet state possesses π-π{sup ⁎} configuration. Highlights: ► Zinc phthalocyanine (ZnPc), peripherally functionalized with photoactive thioxanthone (TX) groups was synthesized. ► The photophysical and photochemical properties of resulting photoinitiator were studied in DMF. ► Photoinitiated polymerization of MMA with TX-ZnPc was investigated in the presence and absence of co-initiator.

  10. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuizhi [Fujian Normal University, College of Materials Science & Engineering, Fujian Provincial Key Laboratory of Polymer Materials (China); Pan, Sujuan [Fujian Normal University, College of Chemistry & Engineering (China); Zhuang, Xuemei [Fuzhou No.2 Hospital (China); Lv, Hafei; Que, Shoulin [Fujian Normal University, College of Chemistry & Engineering (China); Xie, Shusen; Yang, Hongqin, E-mail: hqyang@fjnu.edu.cn [Fujian Normal University, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Engineering (China)

    2016-07-15

    1–2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G{sub n}-DSiPc(CN){sub 4n}, (G{sub n} = n-generation dendrimer, n = 1–2)) were synthesized. Their structures were characterized by elemental analysis, IR, {sup 1}H NMR, and ESI-MS. Polymeric nanoparticles (G{sub n}-DSiPc(CN){sub 4n}/m) were formed through encapsulating G{sub n}-DSiPc(CN){sub 4n} into three monomethoxyl poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers (MPEG–PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G{sub n}-DSiPc(CN){sub 4n} and G{sub n}-DSiPc(CN){sub 4n}/m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G{sub n}-DSiPc(CN){sub 4n}/m were lower than the corresponding free dendrimer phthalocyanines. G{sub n}-DSiPc(CN){sub 4n} encapsulated into MPEG–PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG{sub 2000}–PCL{sub 2000} micelles was about 70 nm, which decreased when loaded with G{sub n}-DSiPc(CN){sub 4n}.Graphical abstract .

  11. Photophysical, Photochemical, and BQ Quenching Properties of Zinc Phthalocyanines with Fused or Interrupted Extended Conjugation

    Directory of Open Access Journals (Sweden)

    Gülşah Gümrükçü

    2014-01-01

    Full Text Available The effects of substituents and solvents on the photophysical and photochemical parameters of zinc(II phthalocyanines containing four Schiff’s base substituents attached directly and through phenyleneoxy-bridges on peripheral positions are reported. The group effects on peripheral position and the continual and intermittent conjugation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen, and fluorescence quantum yields of these compounds in dimethylsulfoxide (DMSO, dimethylformamide (DMF, and tetrahydrofurane (THF. Among the different substituents, phthalocyanines with cinnamaldimine moieties (1c and 2c have the highest singlet oxygen quantum yields (ΦΔ and those with nitro groups (1a and 2a have the highest fluorescence quantum yields in all the solvents used. The fluorescence of the substituted zinc(II phthalocyanine complexes is effectively quenched by 1,4-benzoquinone (BQ in these solvents.

  12. Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing

    KAUST Repository

    Piwonski, Hubert Marek

    2017-05-16

    Applications of conjugated polymer nanoparticles (Pdots) for imaging and sensing depend on their size, fluorescence brightness and intraparticle energy transfer. The molecular design of conjugated polymers (CPs) has been the main focus of the development of Pdots. Here we demonstrate that proper control of the physical interactions between the chains is as critical as the molecular design. The unique design of twisted CPs and fine-tuning of the reprecipitation conditions allow us to fabricate ultrasmall (3.0–4.5 nm) Pdots with excellent photostability. Extensive photophysical and structural characterization reveals the essential role played by the packing of the polymer chains in the particles in the intraparticle spatial alignment of the emitting sites, which regulate the fluorescence brightness and the intraparticle energy migration efficiency. Our findings enhance understanding of the relationship between chain interactions and the photophysical properties of CP nanomaterials, providing a framework for designing and fabricating functional Pdots for imaging applications.

  13. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    Science.gov (United States)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  14. Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of a Homologous Set of BODIPY-Appended Bipyridine Derivatives.

    Science.gov (United States)

    Rosenthal, Joel; Nepomnyashchii, Alexander B; Kozhukh, Julia; Bard, Allen J; Lippard, Stephen J

    2011-09-15

    Two new 2,2'-bipyridine (bpy) based ligands with ancillary BODIPY chromophores attached at the 4 and 4'-positions were prepared and characterized, which vary in the substitution pattern about the BODIPY periphery by either excluding (BB1) or including (BB2) a β-alkyl substituent. Both absorb strongly throughout the visible region and are strongly emissive. The basic photophysics and electrochemical properties of BB1 and BB2 are comparable to those of the BODIPY monomers on which they are based. The solid-state structures and electronic structure calculations both indicate that there is negligible electronic communication between the BODIPY moieties and the intervening bpy spacers. Electrogenerated chemiluminescence spectra of the two Bpy-BODIPY derivatives are similar to their recorded fluorescence profiles and are strongly influenced by substituents on the BODIPY chromophores. These 2,2'-bipyridine derivatives represent a new set of ligands that should find utility in applications including light-harvesting, photocatalysis, and molecular electronics.

  15. Photophysical properties of columnar phases formed by triphenylene derivatives

    International Nuclear Information System (INIS)

    Sigal, Herve

    1997-01-01

    This research thesis reports the study of the spectroscopic properties and of the migration of excitation energy in the singlet state in columnar phases formed by alkyloxy and alkylthio derivatives of triphenylene. First, the author studied the spectroscopic properties of chromophores in solutions, and characterized excited states by using computation codes (CS-INDO-CIPSI). Then, by using the excitonic theory in the case of the considered triphenylene derivatives, the author studied the influence of molecular movements and of the intra-columnar order on the spectroscopic properties. In some circumstances, the non-radiative transfer of excitation energy is governed by a mechanism displaying a random evolution. This stochastic movement is studied by using Monte Carlo simulations. The author shows that the energy migration is one-dimensional on short times, and then becomes three-dimensional. The evolution of excitation energy in space and in time is determined [fr

  16. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  17. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  18. The photophysical and photochemical properties of new unmetallated and metallated phthalocyanines bearing four 5-chloroquinolin-8-yloxy substituents on peripheral sites

    Energy Technology Data Exchange (ETDEWEB)

    Nas, Asiye; Demirbaş, Ümit [Department of Chemistry, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400 Kocaeli (Turkey); Kantekin, Halit, E-mail: halit@ktu.edu.tr [Department of Chemistry, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-01-15

    The synthesis and characterization of novel peripherally tetrakis-(5-chloroquinolin-8-yloxy) substituted metal-free (4), zinc(II) (5), lead(II) (6), cobalt(II) (7), copper(II) (8) and nickel(II) (9) phthalocyanines are described for the first time in this study. The spectroscopic, photophysical (fluorescence quantum yields and lifetimes) and photochemical properties (singlet oxygen production and photodegradation under light irradiation) of metal-free (4), zinc(II) (5) and lead(II) (6) phthalocyanines are investigated in N,N-dimetilformamid (DMF). The newly synthesized cobalt(II) (7), copper(II) (8) and nickel(II) (9) phthalocyanine compounds were not evaluated for this purpose due to open shell nature of these central metals in the phthalocyanine cavity. The influence of various the nature of the central metal ion (zinc, lead or without metal) on these properties has also been investigated and compared. -- Highlights: • The synthesis and characterization of novel peripherally tetrakis-(5-chloroquinolin-8-yloxy) substituted metal-free (4), zinc(II) (5), lead(II) (6), cobalt(II) (7), copper(II) (8) and nickel(II) (9) phthalocyanines. • The spectroscopic, photophysical (fluorescence quantum yields and lifetimes) and photochemical properties of metal-free (4), zinc(II) (5) and lead(II) (6)phthalocyanines in N, N-dimetilformamid (DMF). • The influence of various the nature of the central metal ion (zinc, lead or without metal) on these properties.

  19. Photophysical properties of neutral and dissociated forms of rosmarinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Danaf, Nader Al [Department of Chemistry, American University of Beirut, Beirut (Lebanon); Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen (Germany); Melhem, Racha Abi [Department of Chemistry, American University of Beirut, Beirut (Lebanon); Assaf, Khaleel I.; Nau, Werner M. [Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen (Germany); Patra, Digambara, E-mail: dp03@aub.edu.lb [Department of Chemistry, American University of Beirut, Beirut (Lebanon)

    2016-07-15

    Polyphenols are bioactive components that have attracted attention by chemists over many years. Rosmarinic acid (RA) is a polyphenol that is widely investigated for its broad range of potential applications as an anti-carcinogenic agent, an anti-inflammatory drug, and antioxidant. The spectroscopic properties of this molecule are addressed in details in this study. The absorption and fluorescence of RA are investigated at different pH values, characterizing the dissociated forms of RA. In a similar manner, RA was characterized in a set of different solvents. The spectral shifts of RA in the different solvents were addressed by using the Lippert–Mataga and the Stokes' shift vs. E{sub T}30 plots, which revealed two sets of linearity for the behavior of RA in polar protic and aprotic solvents. The lifetime decay profile of the dissociated forms of RA and those of RA in different solvents are characterized by bi-exponential lifetime decay functions. A theoretical study on the molecular structure of the different dissociated forms of RA is also reported. The simulated UV–vis spectra of the dissociated forms of RA were studied and compared to the experimental spectra by performing TDDFT calculations. Besides the UV-simulated spectra, the frontier molecular orbitals (FMO) of the different RA dissociated forms were also calculated.

  20. Photophysical properties of neutral and dissociated forms of rosmarinic acid

    International Nuclear Information System (INIS)

    Danaf, Nader Al; Melhem, Racha Abi; Assaf, Khaleel I.; Nau, Werner M.; Patra, Digambara

    2016-01-01

    Polyphenols are bioactive components that have attracted attention by chemists over many years. Rosmarinic acid (RA) is a polyphenol that is widely investigated for its broad range of potential applications as an anti-carcinogenic agent, an anti-inflammatory drug, and antioxidant. The spectroscopic properties of this molecule are addressed in details in this study. The absorption and fluorescence of RA are investigated at different pH values, characterizing the dissociated forms of RA. In a similar manner, RA was characterized in a set of different solvents. The spectral shifts of RA in the different solvents were addressed by using the Lippert–Mataga and the Stokes' shift vs. E T 30 plots, which revealed two sets of linearity for the behavior of RA in polar protic and aprotic solvents. The lifetime decay profile of the dissociated forms of RA and those of RA in different solvents are characterized by bi-exponential lifetime decay functions. A theoretical study on the molecular structure of the different dissociated forms of RA is also reported. The simulated UV–vis spectra of the dissociated forms of RA were studied and compared to the experimental spectra by performing TDDFT calculations. Besides the UV-simulated spectra, the frontier molecular orbitals (FMO) of the different RA dissociated forms were also calculated.

  1. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics

    International Nuclear Information System (INIS)

    Li Yang; Wang Dong; Wang Lei; Li Zhengqiang; Cui Qing; Zhang Haiquan; Yang Huai

    2012-01-01

    A series of novel substituted pyrene derivatives with asymmetrical groups have been successfully synthesized in excellent yield. Structures of the asymmetrical compound were fully characterized by 1 H-NMR, IR spectroscopy and mass spectrometry. By introducing ethynyl functions to pyrene, we obtained highly efficient blue and green light emitting materials. It has been demonstrated that the emission characteristics of pyrene derivatives have been bathochromatically tuned in the visible region by extending the π-conjugation. The photophysical properties of these compounds were carefully examined in different organic solvents and different concentrations. The electrochemical properties and geometrical electronic structures of the new pyrene derivatives have been investigated by cyclic voltammograms and density functional theory (DFT) calculations. - Highlights: ► It is the first research about asymmetrial pyrene derivatives as highly efficient light emitting materials. ► The solvatochromism and concentration effect of the new compounds have been discussed. ► Furthermore, the electrochemical properties and geometrical electronic structures were also investigated in this paper.

  2. Photophysical and photobiological properties of a sulfonated chlorin photosensitiser TPCS(2a) for photochemical internalisation (PCI).

    Science.gov (United States)

    Wang, Julie T-W; Berg, Kristian; Høgset, Anders; Bown, Stephen G; MacRobert, Alexander J

    2013-03-01

    This study investigated the photophysical and photobiological properties of a new amphiphilic chlorin photosensitiser, disulfonated tetraphenylchlorin (TPCS(2a)), for photochemical internalisation (PCI). The absorption and fluorescence spectra of TPCS(2a) were examined in a range of solvents together with fluorescence lifetime measurements. The fluorescence lifetime of TPCS(2a) was found to be 8.5 ns in methanol, whereas non-exponential decays were observed in distilled water due to sensitiser dimerisation. The singlet oxygen quantum yield of TPCS(2a) was determined as 0.62 in deuterated methanol by direct observation of singlet oxygen phosphorescence. In a human oral squamous carcinoma (HN5) cell line, intracellular co-localisation of TPCS(2a) and Alexa488-labelled saporin, a macromolecular toxin, was observed corresponding predominantly to a lysosomal distribution. Intracellular fluorescence redistribution of TPCS(2a) and Alexa488-saporin was observed after 405 nm irradiation. Using two-photon confocal microscopy at 840 nm, and fluorescence lifetime imaging (FLIM), the lifetime was measured as 6 ns in HN5 cells. PCI using TPCS(2a) was shown to be very effective, and a synergistic increase in saporin toxicity was achieved in HN5 cells where viability was significantly reduced after light exposure compared to saporin (25 nM) treatment alone. The results demonstrate the favourable photophysical and photobiological properties of TPCS(2a) for PCI, which induces the relocalisation of a macromolecular anti-cancer toxin inside cells and significantly enhances cell death.

  3. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber.

    Science.gov (United States)

    Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa

    2017-09-13

    Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

  4. A New Synthesis of Porphyrins with Extended Conjugation and their Photophysics

    National Research Council Canada - National Science Library

    Ono, Noboru

    2005-01-01

    .... These molecules useful non-linear optical and optoelectronic properties. The contractor used a synthesis method based on the retro Diels-Alder reaction of porphyrins fused with bicyclo[2.2.2]octadiene units...

  5. Synthesis, photophysical and electrochemical characterization of terpyridine-functionalized dendritic oligothiophenes and their Ru(II complexes

    Directory of Open Access Journals (Sweden)

    Amaresh Mishra

    2013-05-01

    Full Text Available Pd-catalyzed Sonogashira cross-coupling reactions were used to synthesize novel π-conjugated oligothienylene-ethynylene dendrons and their corresponding terpyridine-based ligands. Their complexation with Ru(II led to interesting novel metallodendrimers with rich spectroscopic properties. All new compounds were fully characterized by 1H and 13C NMR, as well as MALDI–TOF mass spectra. Density functional theory (DFT calculations performed on these complexes gave more insight into the molecular orbital distributions. Photophysical and electrochemical studies were carried out in order to elucidate structure–property relationships and the effect of the dendritic structure on the metal complexes. Photophysical studies of the complexes revealed broad absorption spectra covering from 250 to 600 nm and high molar extinction coefficients. The MLCT emission of these complexes were significantly red-shifted (up to 115 nm compared to the parent [Ru(tpy2]2+ complex.

  6. Physical and photophysical properties of mixed double- and triple-decker sandwiches of porphyrins and phthalocyanines

    International Nuclear Information System (INIS)

    Salabert, Isabelle

    1995-01-01

    The study of electron transfer and charge recombination processes in various oligomers of porphyrins and phthalocyanines is reported. Our objective is to determine the nature of processes which compete with electron transfer in such Systems. The first part of this thesis is devoted to the study of mixed double- and triple-decker sandwich compounds of porphyrins and phthalocyanines of cerium and praseodymium. The charge transfer reaction and geminated recombination from excited complexes in solution and in sublimated film are investigated by time-resolved absorption spectroscopy with femtosecond time scale resolution. These results show the influence of the magnetic nature of the metal ion and of the relative position of the chromophores in the complex on the photophysical processes. The physical and photophysical properties of complexes formed by pairing in solution porphyrins and porphyrazines bearing oppositely charged substituent are reported in the second part. The formation of mixed aggregates of high order (2 to 5) is observed and their nature are spectrally characterized. The photoproducts issued from these complexes are extremely stable. (author) [fr

  7. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sohaimi, Bander Roshadan [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Aljuhani, Ateyatallah; Al-Raqa, Shaya Y. [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Durmuş, Mahmut, E-mail: durmus@gtu.edu.tr [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey)

    2016-05-15

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as {sup 1}H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  8. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    International Nuclear Information System (INIS)

    Al-Sohaimi, Bander Roshadan; Pişkin, Mehmet; Aljuhani, Ateyatallah; Al-Raqa, Shaya Y.; Durmuş, Mahmut

    2016-01-01

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as 1 H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  9. Synthesis and photophysical and electroluminescent properties of poly(1,4-phenylene–ethynylene)-alt-poly(1,4-phenylene–vinylene)s with various dissymmetric substitution of alkoxy side chains

    Czech Academy of Sciences Publication Activity Database

    Bouguerra, N.; Růžička, Aleš; Ulbricht, C.; Enengl, C.; Enengl, S.; Pokorná, Veronika; Výprachtický, Drahomír; Tordin, E.; Aitout, R.; Cimrová, Věra; Egbe, D. A. M.

    2016-01-01

    Roč. 49, č. 2 (2016), s. 455-464 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GA13-26542S; GA ČR(CZ) GAP106/12/0827 Institutional support: RVO:61389013 Keywords : poly(1,4-phenylene-ethynylene)-alt-poly(1,4-phenylene-vinylene)s * dissymmetric side chains * synthesis Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.835, year: 2016

  10. Photophysical and adsorption properties of pyronin B in natural bentonite clay dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Mohammad Reza [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey); Kaya, Mehmet [Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, 53100 Rize (Turkey); Gür, Bahri; Onganer, Yavuz [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey); Meral, Kadem, E-mail: kademm@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey)

    2015-12-30

    Graphical abstract: The molecular aggregation of PyB in bentonite aqueous dispersion is observed by using molecular absorption spectrum. - Highlights: • Molecular behavior of PyB adsorbed on bentonite was spectroscopically followed. • H-aggregates of PyB in bentonite aqueous dispersion were formed. • The adsorption characteristics of PyB on bentonite particles were determined. - Abstract: The present study focused on the adsorption and photophysical properties of pyronin B (PyB) in bentonite aqueous dispersion. The photophysical properties of PyB in the aqueous dispersion were studied by using UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. In this concept, the interaction of the dye with bentonite particles in the aqueous dispersion was spectroscopically followed depending on certain parameters such as interaction time, pH and the dye concentration. Obtained spectral data revealed that the aggregate structures (H-type) of PyB in the aqueous dispersion were formed in the dye concentration range studied. The non-fluorescence nature of H-aggregates and the clay minerals governed the fluorescence property of PyB. The mentioned non-radiative processes caused the fluorescence lifetime of the dye to decrease compared to that in water. The adsorption process of PyB on bentonite was examined depending on contact time and initial adsorbate concentration. An adsorption isotherm was good-fitted by the Freundlich model with a linear regression correlation value of 0.999. The adsorption of PyB on bentonite particles was in agreement with pseudo second-order kinetics.

  11. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  12. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil

    Directory of Open Access Journals (Sweden)

    LILHIAN A. ARAÚJO

    Full Text Available ABSTRACT This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P 0.05. Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P <0.05, characteristic factors of the angiogenesis process. In conclusion, Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  13. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil.

    Science.gov (United States)

    Araújo, Lilhian A; Araújo, Rafael G M; Gomes, Flávia O; Lemes, Susy R; Almeida, Luciane M; Maia, Lauro J Q; Gonçalves, Pablo J; Mrué, Fátima; Silva-Junior, Nelson J; Melo-Reis, Paulo R DE

    2016-01-01

    This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P Curcuma longa essential oil and the positive control (P >0.05). Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  14. Pyrene based D-π-A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics.

    Science.gov (United States)

    Kathiravan, Arunkumar; Srinivasan, Venkatesan; Khamrang, Themmila; Velusamy, Marappan; Jaccob, Madhavan; Pavithra, Nagaraj; Anandan, Sambandam; Velappan, Kandavelu

    2017-01-25

    Pyrene derivatives show immense potential as sensitizers for dye-sensitized solar cells (DSCs). Therefore, this work focuses on the impact of π-spacers on the photophysical, electrochemical and photovoltaic properties of pyrene based D-π-A dyes, since the insertion of π-spacers is one of the doable strategies to improve the light harvesting properties of the dye. In this respect, three new pyrene based D-π-A dyes have been synthesized and characterized by 1 H, 13 C NMR, and elemental analyses and EI-MS spectrometry. The selected π-spacers are benzene, thiophene and furan. Compared with a benzene spacer, the introduction of a heterocyclic ring spacer reduces the band gap of the dye and brings about the broadening of the absorption spectra to the longer wavelength region through intramolecular charge-transfer (ICT). Combined experimental and theoretical studies were performed to investigate the ICT process involved in the pyrene derivatives. The profound solvatochromism with increased nonradiative rate constants (k nr ) has been construed in terms of ICT from the pyrene core to rhodanine-3-acetic acid via conjugated π-spacers. Electrochemical data also reveal that the HOMO and LUMO energy levels are fine-tuned by incorporating different π-spacers between pyrene and rhodanine-3-acetic acid. On the basis of the optimized DSC test conditions, the best performance was found for PBRA, in which a benzene group is the conjugated π-spacer. The divergence in the photovoltaic behaviors of these dyes was further explicated by femtosecond fluorescence and electrochemical impedance spectroscopy.

  15. Synthesis, characterization and photophysical study of ethynyl pyrene derivatives as promising materials for organic optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Gama, Paola E.; Corrêa, Rodrigo J.; Garden, Simon J., E-mail: garden@iq.ufrj.br

    2015-05-15

    Two series of pyrene derivatives, phenylethynyl (4–6) and the previously unknown ethynylcyclohexanol (7–9), were prepared by Sonogashira cross-coupling reactions. The introduction of an increasing number of ethynyl substituents resulted in a progressive bathochromic shift in the absorption and emission spectra which culminated in an inversion of the nature of the first two excited states ({sup 1}L{sub a} and {sup 1}L{sub b}) of the tetra-substituted derivatives (6 and 9) relative to pyrene. In solution, only for the mono-cyclohexanolethynyl pyrene (7) a sufficiently concentrated solution could be obtained so as to observe the excimer. Additionally, the emission band ratio I{sub 1}/I{sub 3} for 7 was found to be moderately sensitive to the nature of the solvent and the ratio directly correlated with the Py scale. TDDFT calculations were used to explore the variation of the properties of the low lying excited states. Fluorescence emission in the solid state, with the appropriate choice of materials, covers the entire visible region of the electromagnetic spectrum due to static excimer emission. A massive red-shift for solid state photoluminescence from 9 resulted in emission at longer wavelength than the more highly conjugated 6. - Highlights: • Phenyl and cyclohexanol ethynylpyrene derivatives: photophysically compared. • Excimer formation and solvent dependent emission from cyclohexanolethynylpyrene. • Systematic red shifting of solid state photoluminescence from static excimers. • Massive red-shift in the solid state photoluminescence of 9. • TDDFT calculations: properties of the lowest singlet states, systematic comparison.

  16. Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin.

    Science.gov (United States)

    Mayavan, Sundar; Dutta, Naba K; Choudhury, Namita R; Kim, Misook; Elvin, Christopher M; Hill, Anita J

    2011-04-01

    In this investigation we report the synthesis of optically coupled hybrid architectures based on a new biomimetic fluorescent protein rec1-resilin and nanometer-scale gold nanoparticles (AuNPs) in a one-step method using a non-covalent mode of binding protocol. The presence of uniformly distributed fluorophore sequences, -Ser(Thr)-Tyr-Gly- along the molecular structure of rec1-resilin provides significant opportunity to synthesize fluorophore-modified AuNPs bioconjugates with unique photophysical properties. The detailed analyses of the AuNP-bioconjugates, synthesized under different experimental conditions using spectroscopic, microscopic and scattering techniques demonstrate the organizational pathways and the electronic and photophysical properties of the developed AuNP-rec1-resilin bioconjugates. The calculation of the bimolecular quenching constant using the Stern-Volmer equation confirms that the dominant mechanism involved in quenching of fluorescence of rec1-resilin in the presence of AuNP is static. Photoacoustic infrared spectroscopy was employed to understand the nature of the interfacial interaction between the AuNP and rec1-resilin and its evolution with pH. In such bioconjugates the quenched emission of fluorescence by AuNP on the fluorophore moiety of rec1-resilin in the immediate vicinity of the AuNP has significant potential for fluorescence-based detection schemes, sensors and also can be incorporated into nanoparticle-based devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    Science.gov (United States)

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis, structure, electrochemistry, and photophysics of methyl-substituted phenylpyridine ortho-metalated iridium(III) complexes

    International Nuclear Information System (INIS)

    Garces, F.O.; King, K.A.; Watts, R.J.

    1988-01-01

    Synthetic, structural, photophysical, and electrochemical characterizations of ortho-metalated [Ir(NC) 2 Cl] 2 dimeric and [Ir(NC) 2 NN]Cl monomeric complexes, where NC = 2(p-tolyl)pyridine (ptpy) or 3-methyl-2-phenylpyridine (mppy) and NN = 2,2'-bipyridine (bpy) are described. Structural characterizations by 1 H and 13 C nuclear magnetic resonance (NMR) indicate the presence of symmetry elements in these complexes. The ultraviolet-visible absorption properties of these complexes are reported. The results of voltametric measurements of these complexes are included. 55 references, 10 figures, 6 tables

  19. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its Eu~Ⅲ complex

    Institute of Scientific and Technical Information of China (English)

    许辉; 魏莹; 赵保敏; 黄维

    2010-01-01

    The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...

  20. Imaging, photophysical properties and DFT calculations of manganese blue (barium manganate(VI) sulphate)--a modern pigment.

    Science.gov (United States)

    Accorsi, Gianluca; Verri, Giovanni; Acocella, Angela; Zerbetto, Francesco; Lerario, Giovanni; Gigli, Giuseppe; Saunders, David; Billinge, Rachel

    2014-12-18

    Manganese blue is a synthetic barium manganate(VI) sulphate compound that was produced from 1935 to the 1990s and was used both as a blue pigment in works of art and by conservators in the restoration of paintings. The photophysical properties of the compound are described as well as the setup needed to record the spatial distribution of the pigment in works of art.

  1. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  2. Photophysical properties of betaxanthins: Vulgaxanthin I in aqueous and alcoholic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, Monika [Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-614 (Poland); Szot, Dominika; Starzak, Karolina; Tuwalska, Dorota [Faculty of Chemical Engineering and Technology, Institute C-1, Section of Analytical Chemistry, Cracow University of Technology, Warszawska 24, Cracow 31-155 (Poland); Gapinski, Jacek [Molecular Biophysics Department, Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-614 (Poland); Naskrecki, Ryszard [Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-614 (Poland); Prukala, Dorota; Sikorski, Marek [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, Poznan 61-614 (Poland); Wybraniec, Slawomir [Faculty of Chemical Engineering and Technology, Institute C-1, Section of Analytical Chemistry, Cracow University of Technology, Warszawska 24, Cracow 31-155 (Poland); Burdzinski, Gotard, E-mail: gotardb@amu.edu.pl [Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-614 (Poland)

    2015-11-15

    Betaxanthins are yellow pigments present in Caryophyllales plants and some higher fungi. We characterize photophysical properties of vulgaxanthin I and extracts of Amanita muscaria L. Vulgaxanthin I photoexcitation at λ{sub exc}=476 nm leads to the S{sub 1} excited state with the S{sub 1}→S{sub n} absorption bands at ca. 390 and 920 nm in both aqueous and alcoholic solutions. The S{sub 1} state lifetimes (2.9 and 37 ps in water) imply that vulgaxanthin I exists in two stereoisomeric forms. An increase in the solvent viscosity extends the S{sub 1} lifetimes and fluorescence quantum yields, probably due to hindered internal rotations in the dye. Internal conversion is the major S{sub 1} state deactivation path, with fluorescence being a minor channel, and S{sub 1}→T{sub 1} intersystem crossing not observed. Betaxanthins extracted from A. muscaria L. have similar properties. Efficient dissipation of the absorbed light energy as heat supports the postulate of photoprotective role of betaxanthins in vivo. - Highlights: • Betaxanthin S{sub 1} state deactivation mechanism is mainly radiationless. • S{sub 1} state shows absorption band with maxima at about 390 nm and 920 nm. • Solvent viscosity affects S{sub 1} state lifetime and fluorescence quantum yield. • Addition of potassium iodide to solution enhances ISC in betaxanthin.

  3. Solvent Effect, Photochemical and Photophysical Properties of Phthalocyanines with Different Metallic Nuclei

    Directory of Open Access Journals (Sweden)

    Charles Biral Silva

    2017-12-01

    Full Text Available Photophysical and photochemical properties of lithium phthalocyanine (1, gallium(III phthalocyanine chloride (2, titanium(IV phthalocyanine dichloride (3 and iron(II phthalocyanine (4 were investigated in dimethyl sulfoxide (DMSO, tetrahydrofuran (THF and DMSO-THF mixtures. The influence of the central metal on these properties was analyzed according to solvent type, axial ligands and their paramagnetic and diamagnetic effect. Fluorescence lifetimes were recorded using a time correlated single photon counting setup (TCSPC technique. In order to demonstrate the generation of reactive oxygen species under light irradiation, the indirect method (applying 1,3-diphenylisobenzofuran (DPBF as chemical suppressor and the direct method (analyzing the phosphorescence decay curves of singlete oxygen at 1270 nm were employed. Compounds 1, 2 and 3 showed a monomeric behavior in all media while compound 4 presented low aggregation in DMSO, but a very pronounced aggregation behavior in THF. Steady-state fluorescence anisotropy was compared with emission spectra and complex 4 presented values beyond the expected limits. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1047 

  4. Synthesis and optical properties of water-soluble biperylene-based dendrimers.

    Science.gov (United States)

    Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng

    2014-05-30

    We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.

  5. Photophysical properties of chirality: Experimental and theoretical studies of (R)- and (S)-binaphthol derivatives as a prototype case

    International Nuclear Information System (INIS)

    Tsuboi, Taiju; An, Zhong-fu; Nakai, Yosuke; Yin, Jun; Chen, Run-feng; Shi, Hui-fang; Huang, Wei

    2013-01-01

    Highlights: ► The effect of chirality on photophysical properties was investigated. ► The same photophysics of enantiomers was observed in solutions. ► But different photoluminescent efficiency and lifetime were found in neat film. ► The different symmetry and formation probability of dimmers may be the main reason. ► The joint experimental and theoretical study explains these differences well. - Abstract: The key monomers of binaphthol-based chiral materials, (R)- and (S)- 6,6′-dibromo-2,2′-bis(octyloxy)- 1,1′-binaphthyl (R–M and S–M, respectively), were synthesized and characterized by UV–vis absorption spectra, circular dichroism (CD) spectra, photoluminescence (PL) lifetime, PL quantum efficiency at room temperature, together with PL spectra at various temperatures between 12 K and 296 K in both film and solution. The photophysical properties of R–M and S–M were investigated in detail with a joint experimental and theoretical study, in order to reveal the effects of chirality on the π-conjugated chiral systems. Higher photoluminescent quantum efficiency and better PL spectra purity in solid film of R–M were observed and discussed

  6. The steady-state and time-resolved photophysical properties of a dimeric indium phthalocyanine complex

    International Nuclear Information System (INIS)

    Chen Yu; Araki, Yasuyuki; Dini, Danilo; Liu Ying; Ito, Osamu; Fujitsuka, Mamoru

    2006-01-01

    The steady-state and time-resolved photophysical properties and some molecular orbital calculation results of a dimeric indium phthalocyanine complex with an indium-indium bond, i.e., [tBu 4 PcIn] 2 .2tmed, have been described. The results regarding triplet excited state lifetimes can be ascribed to strong intramolecular interactions existing only in the excited state of this dimer because no significant difference in the absorption spectra of the tBu 4 PcInCl monomer and the [tBu 4 PcIn] 2 .2tmed dimer is observed, suggesting that no ground-state interaction can be assessed. The deactivation processes of the excited singlet state of [tBu 4 PcIn] 2 .2tmed are apparently faster than that of μ-oxo-bridged PcIn dimer [tBu 4 PcIn] 2 O. Molecular orbital calculation on the PcIn dimer shows no node between two indium atoms was found in the HOMO - 2 of the PcIn-InPc dimer, suggesting that bonding electrons distribute between two indium atoms

  7. Photophysical properties, photodegradation characteristics, and lasing action for coumarin dye C540A in polymeric media

    Science.gov (United States)

    Jones, Guilford, II; Huang, Zhennian; Pacheco, Dennis P., Jr.; Russell, Jeffrey A.

    2004-07-01

    Tunable solid-state dye lasers operating in the blue-green spectral region are attractive for a variety of applications. An important consideration in assessing the viability of this technology is the service life of the gain medium, which is presently limited by dye photodegradation. In this study, solid polymeric samples consisting of the coumarin dye C540A in modified PMMA were subjected to controlled photodegradation tests. The excitation laser was a flashlamp-pumped dye laser operating at 440 nm with a pulse duration of 1 μs. A complementary set of data was obtained for dye in solution phase for comparison purposes. Photophysical properties of C540A in water solution of polymethacrylic acid (PMAA) have been investigated with a view to assess the suitability of the sequestering polymer (PMAA) as an effective additive to facilitate use of a water medium for highly efficient blue-green dye lasers. Lasing action of C540A in aqueous PMAA has been realized using flashlamp-pumped laser system, yielding excellent laser efficiencies superior to that achieved in ethanolic solutions with the same dye. Laser characterization of dye in media included measurement of laser threshold, slope efficiency, pulse duration and output wavelength.

  8. Heterodiazocines: Synthesis and Photochromic Properties, Trans to Cis Switching within the Bio-optical Window.

    Science.gov (United States)

    Hammerich, Melanie; Schütt, Christian; Stähler, Cosima; Lentes, Pascal; Röhricht, Fynn; Höppner, Ronja; Herges, Rainer

    2016-10-04

    Diazocines, bridged azobenzenes, exhibit superior photophysical properties compared to parent azobenzenes such as high switching efficiencies, quantum yields, and particularly switching wavelengths in the visible range. Synthesis, however, proceeds with low yields, and derivatives are difficult to prepare. We now present two heterodiazocines which are easier to synthesize, and the general procedures should also provide facile access to derivatives. Moreover, both compounds can be switched with light in the far-red (650 nm). Accessibility and photophysical properties make them ideal candidates for applications such as photoswitchable drugs and functional materials.

  9. The effect of the triblock properties on the morphologies and photophysical properties of nanoparticle loaded with carboxylic dendrimer phthalocyanine

    Science.gov (United States)

    Lv, Huafei; Chen, Zhe; Yu, Xinxin; Pan, Sujuan; Zhang, Tiantian; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-09-01

    Photodynamic therapy (PDT) is an emerging alternative treatment for various cancers and age-related macular degeneration. Phthalocyanines (Pcs) and their substituted derivatives are under intensive investigation as the second generation photosensitizers. A big challenge for the application of Pcs is poor solubility and limited accumulation in the tumor tissues, which severely reduced its PDT efficacy. Nano-delivery systems such as polymeric micelles are promising tools for increasing the solubility and improving delivery efficiency of Pcs for PDT application. In this paper, nanoparticles of amphiphilic triblock copolymer poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) were developed to encapsulate 1-2 generation carboxylic poly (benzyl aryl ether) dendrimer. The morphologies and photophysical properties of polymeric nanoparticles loaded with 1-2 generation dendritic phthalocyanines (G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m) were studied by AFM, UV/Vis and fluorescent spectroscopic method. The morphologies of self-assembled PLL-PEG-PLL aggregates exhibited concentration dependence. Its morphologies changed from cocoon-like to spheral. The diameters of G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m were in the range of 33-147 nm, increasing with the increase of the concentration of PLL-PEG-PLL. The morphologies of G2-ZnPc(COOH)16/m also changed from cocoon-like to sphere with the increase of the concentration of PLL-PEG-PLL. It was found that, the no obviously Q change was observed between the free phthalocyanines and nanoparticles. The fluorescence intensity of polymer nanoparticles were higher enhanced compared with free dendritic phthalocyanines. The dendrimer phthalocyanine loaded with poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) presented suitable physical stability, improved photophysical properties suggesting it may be considered as a promising formulation for PDT.

  10. Photophysical and photochemical properties of Bauhinia megalandra (Caesalpinaceae) extracts as new PDT photosensitizer

    Science.gov (United States)

    Vargas Tovar, Franklin R.; Rivas, C.; Estrada, O.; Marcano O., Aristides A.; Echevarria, Lorenzo; Diaz, Yrene; Alexander, I.; Rodriguez, L.; Padron, L.; Rivera, I. R.

    2004-10-01

    Recently new photosensitizers, chlorophyll "a and b" derivatives, for photodynamic therapy (PDT) have been presented. It already passed complete pre-clinical investigations. This prompted us to carry out an extensive study of photophysical properties of chlorine derivatives, important both for optimization of their clinic applications and for study of mechanisms of chlorine PDT&. The fresh leaves of Bauhinia megalandra (Caesalpinaceae) were extracted with methanol by percolation, and re-extract with a mixture of methanol-water (1:1), the insoluble fraction was then separated by column chromatography [RP18/hexane-ethylacetate (9:1)] to obtain four fractions named 1 to 4. These compounds were identified by NMR data. We found that 3 and 4 efficiently generates singlet oxygen when irradiated with visible light. Detection of the singlet oxygen was fulfilled by its reaction with histidine and detected by bleaching p-nitrosodimethylaniline under 440 nm irradiation. The quantum yields of singlet oxygen determined by us were 0.088 (1), 0.151 (2), 0.219 (3) and 0.301 (4). We measured absorption and fluorescence spectra of compounds 1 to 4 (Mg-chlorophyll-a, Pheophytin, Mg-chlorophyll-b and chlorophyll-b respectively) in different media and in aqueous solutions of human serum albumin. The association constant of the compounds 1, 2, 3 and 4 in the presence of HSA were estimated. The binding and quenching studies suggest that only 1 and 3 may serve as a useful fluorescence probe for structure/function studies of different chlorophyll binding proteins. No photoinduced binding was observed after irradiation by all the studied compounds in presence of human serum albumin.

  11. Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers

    International Nuclear Information System (INIS)

    Barros, Bráulio Silva; Chojnacki, Jaroslaw; Macêdo Soares, Antonia Alice; Kulesza, Joanna; Lourenço da Luz, Leonis; Júnior, Severino Alves

    2015-01-01

    The reaction between Zn(NO 3 ) 2 ·6H 2 O or Zn(CH 3 COO) 2 ·2H 2 O and isophthalic acid (1,3-H 2 bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H 2 O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn 2 (1,3-bdc) 2 (Hbzim) 2 ] (1) and [Zn 2 (1,3-bdc)(bzim) 2 ] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2) is a 3D framework with benzimidazolate species acting as a co-ligand and bridging two Zn(II) ions. Reactions performed at 90 °C led to the formation of coordination polymers structurally similar to (2), independently of the Zn(II) source used. In the absence of benzimidazole, the reaction between ZnAc 2 .2H 2 O and 1,3-H 2 bdc at 90 °C resulted in the formation of (3), a 3D coordination polymer Zn(HCOO) 3 (Me 2 NH 2 + ). It was observed that the thermostability and the photophysical properties of (1) and (2) are strongly dependent on the coordination modes and packing of benzimidazole in the solid state. These materials present photoluminescence in the wide range of the spectrum, from UV to IR. A full understanding of a physical process occurring in these intriguing systems, including complete energy level diagrams with possible transitions were provided. - Graphical abstract: Display Omitted - Highlights: • Structurally different Zn(II)-coordination polymers were prepared. • The formation of frameworks was counter anion and temperature dependent. • Photoluminescence in the wide range of the spectrum, from UV to IR was observed. • Thermostability and luminescence depended on bzim packing in the structure

  12. Photophysical properties of a surfactive long-chain styryl merocyanine dye as fluorescent probe

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, L.F.M., E-mail: Lailafmi@yahoo.com [Al-Azhar University, Faculty of Science, Chemistry Department, Nasr City, 12 Ibrahim El-Nagar, El-Hegaz Sq. Heliopolis, Cairo 11315 (Egypt)

    2012-09-15

    This work deals with detailed investigations of the photophysical properties of a styryl merocyanine dye, namely 1-cetyl-4-[4 Prime -(methoxy) styryl]-pyridinium bromide (CMSPB) of molecular rotor type. The solvatochromic analyses of the data in different solvents using the Kamlet-Taft parameters ({alpha}, {beta}, {pi}{sup Low-Asterisk }) were discussed. Optical excitation of the studied merocyanine dye populates a CT S{sub 1} state with about 22.64 folds higher dipole moment value relative to that in the S{sub 0} state. Moreover, the effect of solvent viscosity (glycerol at various temperatures (299.0-351.0 K)) on CMSPB fluorescent properties is analyzed to understand the molecular mechanisms of the characteristic increase in CMSPB fluorescence intensity. The results indicate that CMSPB exhibits fluorescent properties typical for molecular rotors. The results show that torsional relaxation dynamics of molecular rotors in high-viscosity solvents cannot be described by the simple stick boundary hydrodynamics defined by the Debye-Stokes-Einstein (DSE) equation. The fluorescence depolarization behavior in glycerol at various temperatures (299.0-351.0 K) shows that the molecular rotational diffusion is controlled by the free volume of the medium. Furthermore, excited state studies in ethanol/chloroform mixture revealed the formation of weak complex with chloroform of stoichiometry 1:1 with formation constant of 0.004l mol{sup -1}. Moreover, the increase of the quantum yield values in micellar solutions of CTAB and SDS relative to that of water indicates that the guest dye molecules are microencapsulated into the hydrophobic interior of host micelle. The obtained non-zero values of fluorescence polarization in micellar solution imply reduced rotational depolarization of dye molecules via association with the surfactant. Upon comparing the spectral data in micelles with those in homogeneous solvent systems, more can be learned of the structural details of the micellar

  13. Nitrocyclopropanes: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Averina, Elena B; Yashin, N V; Kuznetsova, Tamara S; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-10-31

    State-of-the-art data on the methods of synthesis, properties and transformations of nitro- and- dinitrocyclopropanes of different structure is generalized and described systematically. The attention is focused on stereoselective cyclopropanation methods, new approaches to the synthesis of natural products and their synthetic analogues with diversified biological activities, in particular, of aminocyclopropane acids based on nitrocyclopropanes, and the formation of structures of energetic compounds.

  14. The effect of H- and J-aggregation on the photophysical and photovoltaic properties of small Thiophene–Pyridine–DPP molecules for bulk-heterojunction solar cells

    NARCIS (Netherlands)

    Más-Montoya, M.; Janssen, R.A.J.

    2017-01-01

    The performance of organic semiconductors in optoelectronic devices depends on the functional properties of the individual molecules and their mutual orientations when they are in the solid state. The effect of H- and J-aggregation on the photophysical properties and photovoltaic behavior of four

  15. Photophysical Properties of Pheophorbide-a Derivatives and Their Photodynamic Therapeutic Effects on a Tumor Cell Line In Vitro

    Directory of Open Access Journals (Sweden)

    Kang-Kyun Wang

    2014-01-01

    Full Text Available Pheophorbide-a derivatives have been reported to be potential photosensitizers for photodynamic therapy (PDT. In this study, photophysics of pheophorbide-a derivatives (PaDs were investigated along with their photodynamic tumoricidal effect in vitro. PaDs were modified by changing the coil length and/or making the hydroxyl group (–OH substitutions. Their photophysical properties were studied by steady-state and time-resolved spectroscopic methods. The photodynamic tumoricidal effect was evaluated in the mouse breast cancer cell line (EMT6. Lifetime and quantum yield of fluorescence and quantum yields of triplet state and singlet oxygen were studied to determine the dynamic energy flow. The coil length of the substituted alkyl group did not significantly affect the spectroscopic properties. However, the substitution with the hydroxyl group increased the quantum yields of the triplet state and the singlet oxygen due to the enhanced intersystem crossing. In order to check the application possibility as a photodynamic therapy agent, the PaDs with hydroxyl group were studied for the cellular affinity and the photodynamic tumoricidal effect of EMT6. The results showed that the cellular affinity and the photodynamic tumoricidal effect of PaDs with the hydroxyl group depended on the coil-length of the substituted alkyl group.

  16. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    work, we report herein the synthesis, structural cha- racterization and properties of a chiral Mn(IV) mononuclear ... atmosphere with a platinum disc working electrode, a platinum wire auxiliary electrode and a Ag/AgCl ... SMART APEX CCD area detector system [λ(Mo-. Kα) = 0⋅71073 Å], graphite monochromator, 2400.

  17. Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study

    Science.gov (United States)

    Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2018-02-01

    Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.

  18. Computational Investigation of the Influence of Halogen Atoms on the Photophysical Properties of Tetraphenylporphyrin and Its Zinc(II) Complexes.

    Science.gov (United States)

    De Simone, Bruna C; Mazzone, Gloria; Russo, Nino; Sicilia, Emilia; Toscano, Marirosa

    2018-03-15

    How the tetraphenylporphyrin (TPP) and its zinc(II) complexes (ZnTPP) photophysical properties (absorption energies, singlet-triplet energy gap and spin-orbit coupling contributions) can change due to the presence of an increasing number of heavy atoms in their molecular structures has been investigated by means of density functional theory and its time-dependent formulation. Results show that the increase of the atomic mass of the substituted halogen strongly enhances the spin-orbit coupling values, allowing a more efficient singlet-triplet intersystem crossing. Different deactivation channels have been considered and rationalized on the basis of El-Sayed and Kasha rules. Most of the studied compounds possess the appropriate properties to generate cytotoxic singlet molecular oxygen ( 1 Δ g ) and, consequently, they can be proposed as photosensitizers in photodynamic therapy.

  19. Study of the photophysical properties of composite film assembled of porphyrin and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X -S; Kang, S -Z; Liu, H -G; Mu, J [Shandong Univ., Jinan (China). Key Lab. for Colloid and Interface Chem. of Education Ministry

    1999-09-08

    In this paper, the formation, structure, and photophysical properties of functional mixed film of 5,10,15,20-tetra-4-(2-decanoic acid)phenyl porphyrin (TDPP) with TiO{sub 2} nanoparticles formed from the 2D sol-gel process of tetrabutoxyltitanium (TBT) at the air/water interface is reported. The composite multilayer films were assembled by transferring the mixed monolayer onto quartz plates. The diameter distribution and crystallinity of TiO{sub 2} particles were estimated by TEM observation and electron diffraction. The sensitization of TDPP upon TiO{sub 2} nanoparticles was confirmed by the spectral changes of UV-visible absorption and fluorescence of TDPP in the composite films. Furthermore the photosensitization greatly affected the photocatalytic activity of TiO{sub 2} particles with respect to the degradation of methylene blue (MO). (orig.)

  20. Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores

    Directory of Open Access Journals (Sweden)

    Mathieu L. Lepage

    2015-05-01

    Full Text Available The synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I-catalysed azide–alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.

  1. Photophysical properties of open-framework germanates templated by nickel complexes

    KAUST Repository

    Peskov, Maxim; Schwingenschlö gl, Udo

    2014-01-01

    Open-framework germanates are a group of germanium oxides with a well-defined porous structure, suitable for ion-exchange and gas adsorption applications. Recently, Ni incorporation into the porous structure by establishing Ge-O-Ni bonds with the molecular complexes [Ni(H 2N(CH2)2NH2)2] was realized. We investigate the optical and electronic features of these systems (SUT-1 and SUT-2) from first principles. To describe the photophysical behavior, we analyze the bonding between the Ni and nearest-neighboring atoms and simulate the absorption spectra. Because of their optical characteristics, germania-based nanomaterials are expected to be essential components of future optical and electronic devices. We discuss to what extent molecular transition-metal complexes embedded into porous germanium oxide can modify the optical response to potentially expand the area of applications. This journal is © the Partner Organisations 2014.

  2. Studies on the photophysical properties of 1,8-naphthalimide derivative and aggregation induced emission recognition for casein

    International Nuclear Information System (INIS)

    Sun, Yang; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-01-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein micelle based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated by the solvation effect. Changing from polar to non-polar solvent increased the solvent interaction; both the excitation and emission spectra were shifted to shorter wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association fluorescence emission. Moreover, the red-shift and quenching in protic solvent were caused by the excited-state hydrogen bond strengthening effect. The density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The AIE mechanism of 1 with casein micelle was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with amino acid residues, resulting in the aggregation of 1 on the casein micelle surface and emission enhancement, based on which, a novel casein assay method was developed. The proposed method exhibited a good linear range from 0.1 to 10.5 μg mL −1 , with the detection limit of 3.0 ng mL −1 . Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied for the determination of casein in milk powder samples, avoiding the interferences from other components and illegal additives in milk. -- Highlights: • A water-soluble 1,8-naphthalimide-based fluorescent probe 1 was synthesized. • Photophysical characterization of 1 was studied. • Aggregation induced emission enhancement of 1 with casein was investigated. • A novel casein quantification method was developed

  3. Studies on the photophysical properties of 1,8-naphthalimide derivative and aggregation induced emission recognition for casein

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang, E-mail: 66160692@qq.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China); Liang, Xuhua; Fan, Jun [School of Chemical Engineering, Northwest University, No. 229, Taibai North Road, Xi' an, Shaanxi 710069 (China); Han, Quan, E-mail: xahanq@hotmail.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China)

    2013-09-15

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein micelle based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated by the solvation effect. Changing from polar to non-polar solvent increased the solvent interaction; both the excitation and emission spectra were shifted to shorter wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association fluorescence emission. Moreover, the red-shift and quenching in protic solvent were caused by the excited-state hydrogen bond strengthening effect. The density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The AIE mechanism of 1 with casein micelle was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with amino acid residues, resulting in the aggregation of 1 on the casein micelle surface and emission enhancement, based on which, a novel casein assay method was developed. The proposed method exhibited a good linear range from 0.1 to 10.5 μg mL{sup −1}, with the detection limit of 3.0 ng mL{sup −1}. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied for the determination of casein in milk powder samples, avoiding the interferences from other components and illegal additives in milk. -- Highlights: • A water-soluble 1,8-naphthalimide-based fluorescent probe 1 was synthesized. • Photophysical characterization of 1 was studied. • Aggregation induced emission enhancement of 1 with casein was investigated. • A novel casein quantification method was developed.

  4. Short-time synthesis of poly[4,6-bis(3′-(2-ethylhexyl)thien-2′-yl)thieno[3,4-c][1,2,5]thiadiazole-alt-9,9-dioctylfluorene], its photophysical, electrochemical and photovoltaic properties

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Kmínek, Ivan; Výprachtický, Drahomír; Pokorná, Veronika

    2015-01-01

    Roč. 59, 24 February (2015), s. 298-304 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA13-26542S; GA ČR GAP106/12/0827 Institutional support: RVO:61389013 Keywords : low-bandgap thienothiadiazole copolymer * Suzuki coupling * photophysics and photovoltaics Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.586, year: 2015

  5. Effects of alkyl or alkyloxy side chains in poly[4,6-bis(3´-dodecylthien-2´-yl)thieno-[3,4-c][1,2,5]thiadiazole-5´,5´-diyl-alt-2,5-di(alkyl or alkyloxy)-1,4-phenylene]: synthesis, photophysics, and spectroelectrochemical and photovoltaic properties

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Pokorná, Veronika; Výprachtický, Drahomír

    2017-01-01

    Roč. 118, 2 June (2017), s. 180-191 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : low-bandgap thienothiadiazole copolymers * photophysics * spectroelectrochemistry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.684, year: 2016

  6. Synthesis and photophysical characteristics of 2,7-fluorenevinylene-based trimers and their electroluminescence.

    Science.gov (United States)

    Mikroyannidis, John A; Fenenko, Larysa; Adachi, Chihaya

    2006-10-19

    Three new 2,7-fluorenevinylene-based trimers were synthesized and characterized. The synthesis was carried out by the Heck coupling reaction of 9,9-dihexyl-2,7-divinylfluorene with 2-(4-bromophenyl)-5-phenyl-1,3,4-oxadiazole, N,N-diphenyl-4-bromoaniline, or 3-bromopyrene to afford the trimers OXD, TPA, and PYR, respectively. All the trimers were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. Their glass transition temperatures ranged from 33 to 60 degrees C. The UV-vis spectra showed an absorption maximum at lambda(a,max) = 379-417 nm with optical band gap of Eg = 2.47-2.66 eV. In solution, they emitted strong blue-green photoluminescence (PL) with PL maximum at lambda(f,max) = 455-565 nm and fluorescence quantum yield of Phi(f) = 0.65-0.74. On the other hand, in their spin-coated films, the PL efficiencies significantly decreased due to the presence of concentration quenching. All samples showed nanosecond transient lifetime containing two components, suggesting excimer formation. The organic light-emitting diodes (OLEDs) with OXD and TPA showed green emission with electroluminescence (EL) quantum efficiencies of eta(EL) approximately 10(-2)%, while very weak EL efficiency of eta(EL) approximately 10(-5)% was observed with PYR. The highest occupied molecular orbital (HOMO) levels of the films were found to be 5.05-5.75 eV.

  7. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study

    International Nuclear Information System (INIS)

    Lucas H, J.

    2016-01-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  8. Synthesis, Photophysical and Computational Study of Novel Coumarin-based Organic Dyes.

    Science.gov (United States)

    Kumbar, Mahadev N; Sannaikar, Madivalagouda S; Shaikh, Saba Kauser J; Kamble, Atulkumar A; Wari, Manjunath N; Inamdar, Sanjeev R; Qiao, Qiquan; Revanna, Bhavya N; Madegowda, Mahendra; Dasappa, Jagadeesh P; Kamble, Ravindra R

    2018-03-01

    A series of novel coumarin pyrazoline moieties combined with tetrazoles, 3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one, 6-chloro-3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one, 6-bromo-3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one and 6-bromo-3-(1-(4-bromophenyl)-4-(1H-tetrazol-5-yl)-1H pyrazol-3-yl)-2H-chromen-2-one7(a-d), were designed and synthesized. Single crystal X-ray diffraction and their interactions were studied by Hirshfeld surface analysis. Thermal stabilities and electrochemical properties of these compounds were examined from differential scanning calorimetry (DSC), thermogravimetric (TGA) and cyclic voltammetric (CV) studies. Their spectroscopic properties were analyzed in various alcohols and general solvents by UV-Vis absorption, fluorescence and time-resolved spectroscopy. In addition, the ground and excited state electronic properties were investigated using density functional theory (DFT). The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and energy band gap (E g ) values have revealed the effect of substitution of halogens. The substitution has equally affected the ground and excited states of 7(a-d) compounds. The solvatochromism on absorption, fluorescence spectra and fluorescence lifetimes of these compounds was investigated. All these results showed the chromen-2-one of pyrazoline tetrazole derivatives could play an important role in photonic and electronic devices. © 2017 The American Society of Photobiology.

  9. 5-Bromo-4′,5′-bis(dimethylaminofluorescein: Synthesis and Photophysical Studies

    Directory of Open Access Journals (Sweden)

    Jun Yeon Hwang

    2018-01-01

    Full Text Available In this study, three new fluorescein derivatives—5-bromo-4′,5′-dinitrofluorescein (BDNF, 5-bromo-4′,5′-diaminofluorescein (BDAF, and 5-bromo-4′,5′-bis(dimethylaminofluorescein (BBDMAF—were synthesized and their pH-dependent protolytic equilibria were investigated. In particular, BBDMAF exhibited pH-dependent fluorescence, showing strong emission only at pH 3–6. BBDMAF bears a bromine moiety and thus, can be used in various cross-coupling reactions to prepare derivatives and take advantage of its unique emission properties. To confirm this, the Suzuki and Sonogashira reactions of BBDMAF with phenylboronic acid and phenylacetylene, respectively, were performed, and the desired products were successfully obtained.

  10. Studies on the Synthesis, Photophysical and Biological Evaluation of Some Unsymmetrical Meso-Tetrasubstituted Phenyl Porphyrins

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2017-10-01

    Full Text Available Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT: 5-(4-hydroxy-3-methoxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin (P2.2, Zn(II-5-(4-hydroxy-3-methoxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin (Zn(II2.2 and Cu(II-5-(4-hydroxy-3-methoxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin (Cu(II2.2. The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II2.2 exhibited PDT-acceptable values of singlet oxygen generation. A “dark” cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts and for blood (peripheral mononuclear cells. Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II or Cu(II altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT.

  11. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  12. Study on photophysical properties of Eu(III) complexes with aromatic β-diketones – Role of charge transfer states in the energy migration

    Energy Technology Data Exchange (ETDEWEB)

    Räsänen, Markus, E-mail: mpvras@utu.fi [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland); Takalo, Harri [DHR Finland Oy, Innotrac Diagnostics, Biolinja 12, FIN-20750 Turku (Finland); Rosenberg, Jaana; Mäkelä, Joonas [Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku (Finland); Haapakka, Keijo; Kankare, Jouko [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland)

    2014-02-15

    We synthesized a set of aromatic β-diketones and measured the photophysical properties of their europium(III) complexes. According to these photophysical properties, the europium complexes can be divided into two groups: the complexes with or without the freely rotating amino-group (FRAG). On the basis of the experimental results, it can be concluded that in the FRAG complexes, the ligand-centered excitation energy is most probably transferred from a ligand to a coordinated europium via the intraligand charge transfer (ILCT) state. The temperature dependency of the lifetimes of the emissive {sup 5}D{sub 0} state revealed that in the FRAG complexes, the energy of the emissive {sup 5}D{sub 0} state is back-transferred to the ligand-to-metal charge transfer (LMCT) state and in the non-FRAG complexes, to the triplet state of the ligand. The most efficient complex synthesized was the europium complex of carbazole derivative L{sup 6} with the quantum yield of 47% and molar absorption coefficient of 70,400 M{sup −1}cm{sup −1}. -- Highlights: • We synthesized a set of substituted aromatic β-diketones and their Eu(III) complexes. • We measured the photophysical properties of these Eu(III) complexes. • Carbazole derivative of β-diketone forms the brightest Eu(III) complex. • The Jablonski diagrams proposed for the luminescence of these complexes.

  13. Photophysical properties and localization of chlorins substituted with methoxy groups, hydroxyl groups and alkyl chains in liposome-like cellular membrane

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, S [Department of Physics, Hashemite University, Zarqa 13115 (Jordan)

    2007-06-01

    Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of chlorins substituted with methoxy groups, hydroxyl groups and hydrocarbonic chains were studied in ethanol and dipalmitoyl-phosphatidylcholine (DPPC) liposomes using steady-state and time-resolved fluorescence spectroscopies. The photophysical behaviors of the chlorins in liposomes like cellular membrane were compared with those obtained from chlorin-liposome systems delivered to Jurkat cells in order to select potent photosensitizers for the photodynamic treatment of cancer. The localization of the studied chlorins inside liposomes was found to depend strongly on the substituents of chlorins. Absorption spectra of chlorins embedded in DPPC-liposomes have been recorded in the temperature range of 20-70 deg. C. It is demonstrated that the location of the chlorin molecules depends on the phase state of the phospholipids. These observations are confirmed by the fluorescence lifetimes, singlet oxygen lifetimes and singlet oxygen quantum yields results.

  14. Single-crystal structure, photophysical characteristics and electroluminescent properties of bis(2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazolate)zinc

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huixia, E-mail: xuhuixia0824@163.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Yue, Yan [Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Wang Hua [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Chen Liuqing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Hao Yuying [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xu Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2012-04-15

    In this paper, a zinc (II) complex of Zn{sub 2}(4-tfmBTZ){sub 4} (4-tfmBTZ=2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazolate) was reported. Via combination of experimental and theoretical approaches, its molecular structure, photophysical characteristics, electronic structure and electroluminescent properties were investigated. The results indicate that Zn{sub 2}(4-tfmBTZ){sub 4} exists as five-coordinate geometric structure and two zinc atoms are bridged by oxygen atoms. The intense absorption band was located at 404 nm, which mainly originate from the transition HOMO-1 to LUMO+2. The blue-light emission was observed in tetrahydrofuran solution and thin film. White-light emission with four emission peaks was observed with CIE coordinate of (0.29, 0.33) and a higher CRI of 85.1 by fabricating bilayer device using Zn{sub 2}(4-tfmBTZ){sub 4} as electron-transport and NPB as hole-transport material. - Highlights: Black-Right-Pointing-Pointer The single-crystal and electronic structures of Zn{sub 2}(4-tfmBTZ){sub 4}. Black-Right-Pointing-Pointer The multicolor emission of Zn{sub 2}(4-tfmBTZ){sub 4} were realized by the simple devices. Black-Right-Pointing-Pointer White OLED is achieved with particularly high color rending index (CRI) by the emission of Zn{sub 2}(4-tfmBTZ){sub 4}.

  15. Single-crystal structure, photophysical characteristics and electroluminescent properties of bis(2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazolate)zinc

    International Nuclear Information System (INIS)

    Xu Huixia; Yue, Yan; Wang Hua; Chen Liuqing; Hao Yuying; Xu Bingshe

    2012-01-01

    In this paper, a zinc (II) complex of Zn 2 (4-tfmBTZ) 4 (4-tfmBTZ=2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazolate) was reported. Via combination of experimental and theoretical approaches, its molecular structure, photophysical characteristics, electronic structure and electroluminescent properties were investigated. The results indicate that Zn 2 (4-tfmBTZ) 4 exists as five-coordinate geometric structure and two zinc atoms are bridged by oxygen atoms. The intense absorption band was located at 404 nm, which mainly originate from the transition HOMO−1 to LUMO+2. The blue-light emission was observed in tetrahydrofuran solution and thin film. White-light emission with four emission peaks was observed with CIE coordinate of (0.29, 0.33) and a higher CRI of 85.1 by fabricating bilayer device using Zn 2 (4-tfmBTZ) 4 as electron-transport and NPB as hole-transport material. - Highlights: ► The single-crystal and electronic structures of Zn 2 (4-tfmBTZ) 4 . ► The multicolor emission of Zn 2 (4-tfmBTZ) 4 were realized by the simple devices. ► White OLED is achieved with particularly high color rending index (CRI) by the emission of Zn 2 (4-tfmBTZ) 4 .

  16. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  17. Investigations of the Photo-Physical Properties of Novel Photo-Voltaic and Light Emitting Materials

    National Research Council Canada - National Science Library

    Goodson, Theodore G

    2004-01-01

    .... This report highlights the distinctive optical properties of dendrimers; branched chromophore systems as well as dendrimer encapsulated metal nanoparticles which provide a novel approach toward this challenge...

  18. Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue.

    Science.gov (United States)

    Donauerová, Alena; Bujdák, Juraj; Smolinská, Miroslava; Bujdáková, Helena

    2015-10-01

    Solid or colloidal materials with embedded photosensitizers are promising agents from the medical or environmental perspective, where the direct use of photoactive solutions appears to be problematic. Colloids based on layered silicates of the saponite (Sap) and montmorillonite (Mon) type, including those modified with dodecylammonium cations (C12) and photosensitizer--methylene blue (MB) were studied. Two representatives of bacteria, namely Enterobacter cloacae and Escherichia coli, were selected for this work. A spectral study showed that MB solutions and also colloids with Sap including C12 exhibited the highest photoactivities. The antimicrobial properties of the smectite colloids were not directly linked to the photoactivity of the adsorbed MB cations. They were also influenced by other parameters, such as light vs. dark conditions, the spectrum, power and duration of the light used for the irradiation; growth phases, and the pre-treatment of microorganisms. Both the photoactivity and antimicrobial properties of the colloids were improved upon pre-modification with C12. Significantly higher antimicrobial properties were observed for the colloids based on Mon with MB in the form of molecular aggregates without significant photoactivities. The MB/Mon colloids, both modified and non-modified with C12 cations, exhibited higher antimicrobial effects than pure MB solution. Besides the direct effect of photosensitization, the surface properties of the silicate particles likely played a crucial role in the interactions with microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Theoretical spectral properties of PAHs: towards a detailed model of their photophysics in the ISM

    International Nuclear Information System (INIS)

    Malloci, Giuliano; Mulas, Giacomo; Porceddu, Ignazio

    2005-01-01

    In the framework of density functional theory (DFT) we computed the spectral properties of a total of about 20 polycyclic aromatic hydrocarbons (PAHs) in different charge states. From our complete atlas of PAHs, ranging in size from naphthalene (C 10 H 8 ) to dicoronylene (C 48 H 20 ), we present here a sample of results concerning both ground-state and excited-state properties. Our theoretical results are in reasonable agreement with the available experimental data. This makes them particularly precious when the latter are not easily obtainable, as is often the case for the highly reactive radicals and ions of such species. In another paper (Mulas et al., same volume) we show that our theoretical results can be reliably used to model the behaviour of these molecules in astrophysical environments

  20. PFE: ZnO hybrid nanocomposites for OLED applications: Fabrication and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, M. [Université de Monastir, Faculté des sciences de Monastir, Département de physique, Laboratoire des Interfaces et des Matériaux Avancés, 5019 Monastir (Tunisia); Dridi, C., E-mail: cherif.Dridi@issatso.rnu.tn [Université de Monastir, Faculté des sciences de Monastir, Département de physique, Laboratoire des Interfaces et des Matériaux Avancés, 5019 Monastir (Tunisia); Université de Sousse, Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Cité Ettafala, 4003 Ibn Khaldoun Sousse (Tunisia); Elhouichet, H. [Centre National de Recherches en Sciences des Matériaux, Laboratoire de physico-Chimie des Matériaux Minéreaux et leurs applications, B.P. 95 Hammam-Lif 2050 (Tunisia)

    2015-01-15

    In this work, ZnO nanoparticles (n-ZnO) and poly (9, 9-dioctyl-fluorenyl-2, 7-yleneethynylene) (PFE): n-ZnO based thin films were spin-coated onto glass substrates. Structural, morphological and optical properties of ZnO, PFE and the PFE: n-ZnO hybrid films with different n-ZnO mass ratios were investigated. n-ZnO films obtained by sol–gel technique are polycrystalline with a hexagonal wurtzite structure. They are also homogenous with an average grain size of about 35 nm. For polymer nanocomposite, the optical properties are closely related to the ZnO content in the mixture. Among the tested active layers, the best performance is observed for that containing 2 wt% of ZnO nanoparticles. - Highlights: • We have analyzed the optical properties of PFE: ZnO nanocomposites . • We have optimized the best PFE: ZnO nanocomposite for the OLED application. • We have demonstrated the feasibility of white OLED devices.

  1. PFE: ZnO hybrid nanocomposites for OLED applications: Fabrication and photophysical properties

    International Nuclear Information System (INIS)

    Belhaj, M.; Dridi, C.; Elhouichet, H.

    2015-01-01

    In this work, ZnO nanoparticles (n-ZnO) and poly (9, 9-dioctyl-fluorenyl-2, 7-yleneethynylene) (PFE): n-ZnO based thin films were spin-coated onto glass substrates. Structural, morphological and optical properties of ZnO, PFE and the PFE: n-ZnO hybrid films with different n-ZnO mass ratios were investigated. n-ZnO films obtained by sol–gel technique are polycrystalline with a hexagonal wurtzite structure. They are also homogenous with an average grain size of about 35 nm. For polymer nanocomposite, the optical properties are closely related to the ZnO content in the mixture. Among the tested active layers, the best performance is observed for that containing 2 wt% of ZnO nanoparticles. - Highlights: • We have analyzed the optical properties of PFE: ZnO nanocomposites . • We have optimized the best PFE: ZnO nanocomposite for the OLED application. • We have demonstrated the feasibility of white OLED devices

  2. Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices.

    Science.gov (United States)

    Bessette, André; Hanan, Garry S

    2014-05-21

    This review article presents the most recent developments in the use of materials based on dipyrromethene (DPM) and azadipyrromethenes (ADPM) for organic photovoltaic (OPV) applications. These chromophores and their corresponding BF2-chelated derivatives BODIPY and aza-BODIPY, respectively, are well known for fluorescence-based applications but are relatively new in the field of photovoltaic research. This review examines the variety of relevant designs, synthetic methodologies and photophysical studies related to materials that incorporate these porphyrinoid-related dyes in their architecture. The main idea is to inspire readers to explore new avenues in the design of next generation small-molecule and bulk-heterojunction solar cell (BHJSC) OPV materials based on DPM chromophores. The main concepts are briefly explained, along with the main challenges that are to be resolved in order to take full advantage of solar energy.

  3. Optical, photo-physical properties and photostability of pyrromethene (PM-597) in ionic liquids as benign green-solvents

    International Nuclear Information System (INIS)

    AL-Aqmar, Dalal M.; Abdelkader, H.I.; Abou Kana, Maram T.H.

    2015-01-01

    Laser dye pyrromethene-597 was dissolved with different concentrations in three types of ionic liquids (ILs): 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl 4 ) and 1-butyl-3-methylimidazolium tetrafluoro-borate (BMIM BF 4 ) in addition to ethanol as reference solvent. This paper investigates optical spectra and some photo-physical parameters of PM-597 in BMIM Cl, BMIM AlCl 4 , BMIM BF 4 and ethanol. These parameters are absorption and emission cross sections, fluorescence lifetime and quantum yield. The amplified spontaneous emission (ASE) was studied using the second harmonic Nd-YAG laser of 532 nm. Also, the gain and energy conversion efficiencies were investigated. Relatively high efficiency was obtained with good photostability in case of PM-597 in BMIM BF 4 that was a decrease to ~90% of the initial amplified spontaneous emission. This output energy was observed after pumping by 75,000 shots at a relatively high repetition rate of 10 Hz and pumping energy of 37 mJ. The composition and properties of the matrix of ILs were found to lead to optimize the laser performance and photostability of the investigated laser dye. In this study, we considered ionic liquids as the environmentally benign green solvents in place of volatile toxic organic solvents. - Highlights: • Pyrromethen-597 as laser dye was dissolved in three types of ionic liquids (ILs): BMIM Cl, BMIM AlCl 4 and BMIM BF 4 as benign green-solvent in addition to ethanol as reference solvent. • Important spectroscopic properties of PM-597 dye such as quantum yield, fluorescence lifetime, radiative and nonradiative rate, transition dipole moment, attenuation length and oscillator strength were affected by changing the host material. • The dye laser gain, quantum yield, peak intensity of ASE and photostability were found to be better in BMIM BF 4 than in BMIM Cl and in ethanol. • ILs may be used as ideal hosts for dye laser systems to

  4. Optical, photo-physical properties and photostability of pyrromethene (PM-597) in ionic liquids as benign green-solvents

    Energy Technology Data Exchange (ETDEWEB)

    AL-Aqmar, Dalal M. [Physics Department, Ibb University, Ibb (Yemen); Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abdelkader, H.I. [Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abou Kana, Maram T.H., E-mail: mabou202@niles.edu.eg [National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt)

    2015-05-15

    Laser dye pyrromethene-597 was dissolved with different concentrations in three types of ionic liquids (ILs): 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl{sub 4}) and 1-butyl-3-methylimidazolium tetrafluoro-borate (BMIM BF{sub 4}) in addition to ethanol as reference solvent. This paper investigates optical spectra and some photo-physical parameters of PM-597 in BMIM Cl, BMIM AlCl{sub 4}, BMIM BF{sub 4} and ethanol. These parameters are absorption and emission cross sections, fluorescence lifetime and quantum yield. The amplified spontaneous emission (ASE) was studied using the second harmonic Nd-YAG laser of 532 nm. Also, the gain and energy conversion efficiencies were investigated. Relatively high efficiency was obtained with good photostability in case of PM-597 in BMIM BF{sub 4} that was a decrease to ~90% of the initial amplified spontaneous emission. This output energy was observed after pumping by 75,000 shots at a relatively high repetition rate of 10 Hz and pumping energy of 37 mJ. The composition and properties of the matrix of ILs were found to lead to optimize the laser performance and photostability of the investigated laser dye. In this study, we considered ionic liquids as the environmentally benign green solvents in place of volatile toxic organic solvents. - Highlights: • Pyrromethen-597 as laser dye was dissolved in three types of ionic liquids (ILs): BMIM Cl, BMIM AlCl{sub 4} and BMIM BF{sub 4} as benign green-solvent in addition to ethanol as reference solvent. • Important spectroscopic properties of PM-597 dye such as quantum yield, fluorescence lifetime, radiative and nonradiative rate, transition dipole moment, attenuation length and oscillator strength were affected by changing the host material. • The dye laser gain, quantum yield, peak intensity of ASE and photostability were found to be better in BMIM BF{sub 4} than in BMIM Cl and in ethanol. • ILs may be used as ideal

  5. Investigation on the photophysical properties of tungsten trioxide and tungstate based nanocomposites

    Science.gov (United States)

    Palanisamy, G.; Pazhanivel, T.

    2018-04-01

    Tungsten trioxide (WO3), Metal tungstates (SrWO4, Cr2WO6), WO3/SrWO4 and WO3/Cr2WO6 nanocomposites were successfully prepared by microwave irradiation method at relatively low temperature (500 °C). The synthesized samples were subjected to different investigation techniques, to know the materials physical and chemical properties. The structural and phase change formation of nanoparticles were investigated through XRD analysis. It shows that, the nanoparticles have highly crystalline nature. The shape and composition of the prepared nanoparticles were investigated through SEM and EDAX analysis. The optical properties of the synthesized samples were verified by Ultraviolet-diffuse reflectance spectroscopy and photoluminescence spectrometer. The emission intensity maximum of WO3 nanoparticle was red shifted when compared to composites. It may be due to the effect of delocalized electrons in the parent material. Simultaneously, the emission intensity was decreased because of trap states occurred on the surface of the composite nanoparticles. The photoluminescence spectra of the synthesized samples exhibit different emission (violet and blue) behavior. Hence, it may be useful for light emitting diode (LED) applications.

  6. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    Science.gov (United States)

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  7. Durability and photophysical properties of surfactant-covered porous silicon particles in aqueous suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Balaguer, M.; Pastor, E.; Matveeva, E.; Chirvony, V.S. [Nanophotonics Technology Center, Universidad Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Bychto, L. [Nanophotonics Technology Center, Universidad Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Department of Electronics and Computer Sciences, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Atienzar, P.; Miranda, M.A. [Instituto de Tecnologia Quimica CSIC-UPV, Universidad Politecnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia (Spain)

    2008-11-15

    With the aim to impart hydrophilic properties to porous silicon (PSi) containing luminescent Si nanocrystals the PSi surface has been modified by a non-ionic surfactant (undecylenic acid) either physically (by physisorption) or chemically (through Si-C bond). PSi luminescence spectra and reversible quenching of the luminescence by molecular oxygen have been studied as a function of time elapsed after PSi surface immersion in water. The data obtained indicate that Si nanocrystal surface oxidation, which is realized in water, is accompanied by an appearance of a new type of luminescence centres, which are quenched by molecular oxygen differently than free excitons. SiO-related surface states are suggested to be responsible for the observed effect. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Photochemical and Photophysical Properties of Phthalocyanines Modified with Optically Active Alcohols

    Directory of Open Access Journals (Sweden)

    Aline A. Ramos

    2015-07-01

    Full Text Available Three phthalocyanine derivatives were synthesized and characterized: one modified with a racemic mixture of 1-(4-bromophenylethanol and two other macrocycles modified with each one of the enantioenriched isomers (R-1-(4-bromophenylethanol and (S-1-(4-bromophenylethanol. The compounds were characterized by 1H-NMR spectroscopy, mass spectrometry, UV-Vis absorption, and excitation and emission spectra. Additionally, partition coefficient values and the quantum yield of the generation of oxygen reactive species were determined. Interestingly, the phthalocyanine containing a (R-1-(4-bromophenylethoxy moiety showed higher quantum yield of reactive oxygen species generation than other compounds under the same conditions. In addition, the obtained fluorescence microscopy and cell viability results have shown that these phthalocyanines have different interactions with mammary MCF-7 cells. Therefore, our results indicate that the photochemical and biological properties of phthalocyanines with chiral ligands should be evaluated separately for each enantiomeric species.

  9. Photophysical, electrochemical and photovoltaic properties of thiophene-containing arylene-ethynylene/arylene-vinylene polymers

    International Nuclear Information System (INIS)

    Egbe, Daniel Ayuk Mbi; Huong Nguyen, Le; Muehlbacher, David; Hoppe, Harald; Schmidtke, Kathy; Serdar Sariciftci, Niyazi

    2006-01-01

    This work reports the properties of two types of thiophene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s polymers, whose repeating units (-Ph-C≡C-Th-CH=CH-Ph-CH=CH-) n , 1, and (-Th-C≡C-Ph-C≡C-Th-CH=CH-Ph-CH=CH-) n , 2, consist respectively of a 1 : 2 and a 2 : 2 ratio of -C≡C-/-CH=CH- moieties. Although similar electrochemical data (HOMO: - 5.43 eV, LUMO: ∼- 3.15 eV, E g ec = 2.28 eV) as well as identical thin film absorption behaviour (λ a = 501 nm, E g opt = 2.10 eV) were obtained for both types of materials, significant differences in their thin film photoluminescence behaviour and photovoltaic properties were observed. While polymer 1 shows a fluorescence maximum at λ e = 568 nm (with a fluorescence quantum yield of Φ f = 7%), a total fluorescence quenching was observed in 2. Solar cells (set up: ITO/PEDOT : PSS/active layer/LiF/Al; active layer consisting of 1 or 2 as donor and PCBM as acceptor in a 1 : 3 ratio by weight) designed from 1 (best cell: V OC = 900 mV, I SC = 2.51 mA.cm -2 , FF = 53.7%, η AM1.5 = 1.21%) show far better photovoltaic performance than those from 2 (best cell: V OC = 500 mV, I SC = 1.44 mA.cm -2 , FF = 37.1%, η AM1.5 = 0.27%)

  10. Photophysical properties of a novel axially substituted tetra-α-(pentyloxy) Titanium(IV) Phthalocyanine - Hematoxylin

    Science.gov (United States)

    Jiang, Yufeng; Lv, Huafei; Yu, Xinxin; Pan, Sujuan; Zhang, Tiantian; Huang, Yide; Wang, Yuhua; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2017-06-01

    Metal phthalocyanines (MPcs) are a very important class of widespread application compounds. They are not only used as dyes but also used as catalysts, data storage, electron charge carriers in photocopiers, photoconductors in chemical sensors, and photo-antenna devices in photosysthesis, photovoltaic cells. A particular application of Pcs is that it was used as a photosensitizers (PS) for treatment of certain cancer by photodynamic therapy of cancer and non-cancer diseases. However, the molecular aggregation of phthalocyanines, which is an intrinsic property of these large π-π conjugated systems, provides an efficient non-radioactive energy relaxation pathway, thereby shortening the excited state lifetimes, and reducing the photosensitizing and target efficiency. To overcome these problems, the introduction of axial ligands to phthalocyanine can prevent the formation of aggregation to some extend. In this paper, hematoxylin axially substituted tetra-α-(pentoxy) titanium (IV) phthalocyanine (TiPc(OC5H11)4-Hematoxylin) were characterized by elemental analysis, IR, 1H NMR, UV-Vis, fluorescence spectra. No obviously Q band change was observed after the hematoxylin was substituted at the peripheral position of substituted phthalocyanine ring. Because of the rigidity structure of the hematoxylin, the fluorescence intensity of hematoxylin peripheral substituted phthalocyanine decreased compared with free substituted phthalocyanines. The fluorescence lifetimes of axially substituted phthalocyanine was fitted to be 3.613 ns. This compound may be considered as a promising photosensitizer for PDT.

  11. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    Science.gov (United States)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  12. Photophysical properties of [Ru(2,2′-bipyridine){sub 3}]{sup 2+} encapsulated within the Uio-66 zirconium based metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Randy W., E-mail: rwlarsen@usf.edu; Wojtas, Lukasz

    2017-03-15

    The ability to encapsulate photo-active guest molecules within the pores of metal organic frameworks (MOFs) affords the opportunity to develop robust photocatalysts as well as solar energy conversion systems. An important criteria for such systems is stability of the new materials towards moisture, high temperatures, etc which preclude the use of many MOF frameworks. Here, the ability to encapsulate [Ru(II)(2,2′-bipyridine){sub 3}]{sup 2+}([Ru(bpy){sub 3}]{sup 2+}) into the cavities of the zirconium based MOF Uio-66 as well as the photophysical properties of the complex are reported. The X-ray powder diffraction data of the orange Uio-66 powder are consistent with the formation of Uio-66 in the presence of [Ru(bpy){sub 3}]{sup 2+}. The steady state emission exhibits a significant bathochromic shift from 603 nm in ethanol to 610 nm in Uio-66. The corresponding emission decay of the encapsulated [Ru(bpy){sub 3}]{sup 2+} complex is biexponential with a fast component of 128 ns and a slower component of 1176 ns (20 deg C). The slow component is consistent with encapsulation of [Ru(bpy){sub 3}]{sup 2+} into cavities with restricted volume that prevents the population of a triplet ligand field transition that is anti-bonding with respect to the Ru-N bonds. The origin of the fast component is unclear but may involve interactions of the [Ru(bpy){sub 3}]{sup 2+} encapsulated within large cavities formed through missing ligand defect sites within the Uio-66 materials. Co-encapsulated quenchers contained within these larger cavities gives rise to the reduced lifetimes of the [Ru(bpy){sub 3}]{sup 2+} complexes. - Graphical abstract: One-pot synthesis of Ru(II)tris(2,2-bipyridine)@Uio-66 (left) and the effects of encapsulation on the excited state energy levels and decay pathways of the Ru(II)tris(2,2-bipyridine) complex (right).

  13. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  14. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  15. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    International Nuclear Information System (INIS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-01-01

    Rare earths orthovanadates (REVO 4 ) doped with luminescent lanthanide ions (Ln 3+ ) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu 3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO 4 3− groups to Eu 3+ ions. In the presented study, Fe 3 O 4 @SiO 2 @GdVO 4 :Eu 3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO 4 doped with Ln 3+ . Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells

  16. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Ekner-Grzyb, Anna [Adam Mickiewicz University, Department of Behavioural Ecology, Faculty of Biology (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-03-15

    Rare earths orthovanadates (REVO{sub 4}) doped with luminescent lanthanide ions (Ln{sup 3+}) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu{sup 3+} ions is well known for its efficient and intense red emission, induced by energy transfer from the VO{sub 4}{sup 3−} groups to Eu{sup 3+} ions. In the presented study, Fe{sub 3}O{sub 4}@SiO{sub 2}@GdVO{sub 4}:Eu{sup 3+} 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO{sub 4} doped with Ln{sup 3+}. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  17. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Science.gov (United States)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  18. D-π-A-A-π-D prototype 2,2'-bipyridine dyads exhibiting large structure and environment-sensitive fluorescence: synthesis, photophysics, and computation.

    Science.gov (United States)

    Sarma, Monima; Chatterjee, Tanmay; Ghanta, Susanta; Das, Samar K

    2012-01-06

    A series of 4,4'-π-conjugated-2,2'-bipyridine chromophores (MS 1-8) were synthesized, and their photophysical and thermal properties were investigated. The title "push-pull' chromophores", except MS 1, were integrated with both alkoxy and alkylamino donor functionalities that differ in their donation capabilities. The oligophenylenevinylene (OPV) chromophores MS 4-8 are associated with a π-extended backbone in which the position and the number of alkoxy donors were systematically varied. All of the studied systems possess a D-π-A-A-π-D dyad archetype in which the A-A is the central 2,2'-bipyridine acceptor core that is electronically attached with the donor termini through π-linkers. The fluorescence quantum yields of the synthesized chromophores are found to be sensitive to the molecular archetype and the solvent medium. Out of the eight fluorescent compounds reported in this article, the compound MS 5 exhibits fluorescence in the solid state also. The modulating effect of the nature, position, and number of donor functionalities on the optical properties of these classes of compounds has further been comprehended on the basis of DFT and TD-DFT computation in a solvent reaction field.

  19. Ibuprofen: Synthesis, production and properties

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2003-01-01

    Full Text Available Since its introduction in 1969, ibuprofen has become one of the most common painkillers in the world. Ibuprofen in an NSAID (non-steroidal anti-inflammatory drug and like other drugs of its class it possesses analgetic, antipyretic and anti-inflammatory properties. While ibuprofen is a relatively simple molecule, there is still sufficient structural complexity to ensure that a large number of different synthetic approaches are possible. Since the introduction of pharmaceutical products containing ibuprofen, industrial and academic scientists have developed many potential production processes. This paper describes the history, synthesis and production, as well as the properties and stability of ibuprofen.

  20. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  1. Nonlinear absorbing cationic iridium(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) ligand: synthesis, photophysics and reverse saturable absorption.

    Science.gov (United States)

    Li, Yuhao; Dandu, Naveen; Liu, Rui; Hu, Lei; Kilina, Svetlana; Sun, Wenfang

    2013-07-24

    Four new heteroleptic cationic Ir(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) (1 and 2) and phenylpyridine (C∧N) (3 and 4) ligands are synthesized and characterized. The influence of the position of the substituent and the extent of π-conjugation on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The complexes exhibit ligand-centered (1)π,π* transitions with admixtures of (1)ILCT (π(benzothiazolylfluorene) → π*(bpy)) and (1)MLCT (metal-to-ligand charge transfer) characters below 475 nm, and very weak (1,3)MLCT and (1,3)LLCT (ligand-to-ligand charge transfer) transitions above 475 nm. The emission of these complexes at room temperature in CH2Cl2 solutions is ascribed to be predominantly from the (3)MLCT/(3)LLCT states for 1 and from the (3)π,π* state for 2, while the emitting state of 3 and 4 are assigned to be an admixture of (3)MLCT, (3)LLCT, and (3)π,π* characters. The variations of the photophysical properties of 1-4 are attributed to different degrees of π-conjugation in the bipyridine and phenylpyridine ligands induced by different positions of the benzothiazolylfluorenyl substituents on the bipyridine ligand and different extents of π-conjugation in the phenylpyridine ligands, which alters the energy and lifetime of the lowest singlet and triplet excited states. 1-4 all possess broadband transient absorption (TA) upon nanosecond laser excitation, which extends from the visible to the NIR region. Therefore, 1-4 all exhibit strong reverse saturable absorption (RSA) at 532 nm for ns laser pulses. However, the TA of complexes 1, 2, and 3 are much stronger than that of 4. This feature, combined with the difference in ground-state absorption and triplet excited-state quantum yield, result in the difference in RSA strength, which follows this trend: 1 ≈ 2 ≈ 3 > 4. Therefore, complexes 1-3 are strong

  2. Influence of Bridgehead Substitution and Ring Annelation on the Photophysical Properties of Polycyclic DBO-Type Azoalkanes.

    Science.gov (United States)

    Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen

    1999-05-14

    The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.

  3. Properties and synthesis of milrinone

    Directory of Open Access Journals (Sweden)

    Mirković Jelena M.

    2013-01-01

    Full Text Available Milrinone, 1,6-dihydro-2-methyl-6-oxo-[3,4’-bipyridine]-5-carbonitrile, is a positive inotropic cardiotonic agent with vasodilator properties that acts as selective phosphodiesterase 3 inhibitor in cardiac and vascular smooth muscle. Trade names of milrinone are Primacor, Corotrop, Corotrope, and Milrila. Milrinone, an amrinone derivative, is 20 to 50 times more active than amrinone and possesses reduced propensity to side effects. The use of milrinone has created controversy in the medical as the result of increased mortality rate among patients that received high amounts of milrinone in oral form. Reaserch show that it can be benifitial for patients with severe congestive heart failure when used as short-time intravenous therapy. Milrinone properties, stability, as well as mechanism of action and synthesis under laboratory and industry conditions have been described in this paper. For industrial purposes milrinone is synthesized by condensation of cyanoacetamide with 4-(dimethylamino-3-(4-pyridinyl-3-buten-2-one and 4-ethoxy-3-(4-pyridinyl-3-buten-2-one in presence of a base, or by the reaction of 1-(4-pyridinyl- 2-propanone with ethoxymethylenmalononitrile or 4-alkoxy-3-(4-pyridinyl-3-buten-2-one with malononitrile without the use of external base. The starting compound for these syntheses is 4-picoline. Alternative synthesis of milrinone starts from 2-methyl-3-(4-pyridylidiene-1,1,5-tricyano-1,4-pentadiene-5-carboxamide and 2-methyl-6-oxo-1,6-dihydro-3,4’-bipyridine-5-carboxamide. Lastly, methods for milrinone synthesis in laboratory, injection preparation and purification have been summarized.

  4. Photochemistry and photophysics concepts, research, applications

    CERN Document Server

    Balzani , Vincenzo; Juris, Alberto

    2014-01-01

    This textbook covers the spectrum from basic concepts of photochemistry and photophysics to selected examples of current applications and research.Clearly structured, the first part of the text discusses the formation, properties and reactivity of excited states of inorganic and organic molecules and supramolecular species, as well as experimental techniques. The second part focuses on the photochemical and photophysical processes in nature and artificial systems, using a wealth of examples taken from applications in nature, industry and current research fields, ranging from natural photosynth

  5. Synthesis and photophysical properties of phosphorus(V) porphyrins functionalized with axial carbazolylvinylnaphthalimides.

    Science.gov (United States)

    Zhan, Yong; Cao, Kaiyu; Wang, Chenguang; Jia, Junhui; Xue, Pengchong; Liu, Xingliang; Duan, Xuemei; Lu, Ran

    2012-11-21

    We have synthesized new D-A-D type phosphorus(V) porphyrin derivatives and functionalized with axial carbazolylvinylnaphthalimide units. The absorption bands of the obtained phosphorus(V) porphyrins were in the range 250-640 nm with high molar absorption coefficients, meaning strong light-harvesting abilities. Notably, it is found that the devices based on phosphorus(V) porphyrins with a configuration structure of [ITO/PEDOT : PSS/organic active film/LiF/Al] give an incident-photon-to-current conversion efficiency (IPCE) response. The maximal IPCE value reaches 2.76% for the device based on compound , which is much higher than that of 0.20% for compound . The reason might be due to the low oxidation potential and the strong light-harvesting ability of the enlarged conjugation of the axial units in compound . Therefore, we deduced that photo-induced electron transfer happened in phosphorus(V) porphyrins bearing axial conjugated donor units, which would make them good candidates for photovoltaic materials that could be applied in solar cells.

  6. Synthesis and photophysical properties of aluminium tris-(4-morpholine-8-hydroxyquinoline).

    Science.gov (United States)

    Omar, Walaa A E

    2013-11-01

    Aluminium tris(4-morpholinyl-8-hydroxyquinoline) has been synthesized and characterized. The photoluminescence measurements showed that the new derivative is blue shifted and has relative photoluminescence quantum yield two times higher compared to the pristine Al tris(8-hydroxyquinoline). Deferential scanning colorimetric studies revealed that the newly synthesized Alq3 derivative in this work is amorphous material with the highest transition glass temperature value among the reported amorphous Alq3 derivatives.

  7. Synthesis, Characterization and Photophysical Properties of Pyridine-Carbazole Acrylonitrile Derivatives

    Science.gov (United States)

    Pérez-Gutiérrez, Enrique; Percino, M. Judith; Chapela, Víctor M.; Cerón, Margarita; Maldonado, José Luis; Ramos-Ortiz, Gabriel

    2011-01-01

    We synthesized three novel highly fluorescent compounds, 2-(2’-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile, 2-(3”-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile, and 2-(4-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile by Knoevenagel condensation. The first two were synthesized without solvent in the presence of piperidine as a catalyst; the third was synthesized without a catalyst and with N,N-dimethylformamide as a solvent. In solution, the molar absorption coefficients showed absorptions at 380, 378, and 396 nm, respectively; in solid state, absorptions were at 398, 390, and 442 nm, respectively. The fluorescence emission was at 540, 540 and 604 nm, respectively, the 2-(4-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile showed a red shift in the emission of 64 nm compared to the other two compounds. The fluorescence quantum yield for the compounds in powder form showed values of 0.05, 0.14, and 0.006, respectively; compared with the value measured for the Alq3 reference, 2-(3”-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile had a lightly higher value. The third harmonic generation measurement for 2-(2’-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile yielded a χ(3) value of 5.5 × 10−12 esu, similar to that reported for commercial polymers. PMID:28880006

  8. Synthesis, Characterization and Photophysical Properties of Pyridine-Carbazole Acrylonitrile Derivatives

    Directory of Open Access Journals (Sweden)

    Gabriel Ramos-Ortiz

    2011-03-01

    Full Text Available We synthesized three novel highly fluorescent compounds, 2-(2’-pyridyl-3-(N-ethyl-(3’-carbazolylacrylonitrile, 2-(3”-pyridyl-3-(N-ethyl-(3’-carbazolylacrylonitrile, and 2-(4-pyridyl-3-(N-ethyl-(3’-carbazolylacrylonitrile by Knoevenagel condensation. The first two were synthesized without solvent in the presence of piperidine as a catalyst; the third was synthesized without a catalyst and with N,N-dimethylformamide as a solvent. In solution, the molar absorption coefficients showed absorptions at 380, 378, and 396 nm, respectively; in solid state, absorptions were at 398, 390, and 442 nm, respectively. The fluorescence emission was at 540, 540 and 604 nm, respectively, the 2-(4-pyridyl-3-(N-ethyl-(3’-carbazolylacrylonitrile showed a red shift in the emission of 64 nm compared to the other two compounds. The fluorescence quantum yield for the compounds in powder form showed values of 0.05, 0.14, and 0.006, respectively; compared with the value measured for the Alq3 reference, 2-(3”-pyridyl-3-(N-ethyl-(3’-carbazolylacrylonitrile had a lightly higher value. The third harmonic generation measurement for 2-(2’-pyridyl-3-(N-ethyl-(3’-carbazolylacrylonitrile yielded a χ(3 value of 5.5 × 10−12 esu, similar to that reported for commercial polymers.

  9. Synthesis and photophysical properties of a novel terephthalic PH sensor based on internal charge transfer

    International Nuclear Information System (INIS)

    Miladinova, Polya M.

    2016-01-01

    A novel fluorescence sensing derivative of 2-aminodimethylterephthalate configured as a “fluorophore-receptor” system was synthesized and investigated. Due to the internal charge transfer, the designed fluorophore was able to act as a pH-probe via an “off-on” fluorescence sensing mechanism. The sensor activity toward protons as cations and hydroxide as anions in DMF was studied by monitoring the changes of the fluorescence intensity. Keywords: 2-aminoterephthalic derivative, ICT (internal charge transfer), pH sensor.

  10. Synthesis and photophysical properties of aluminium tris-(4-morpholine-8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Walaa A.E. Omar

    2013-11-01

    Full Text Available Aluminium tris(4-morpholinyl-8-hydroxyquinoline has been synthesized and characterized. The photoluminescence measurements showed that the new derivative is blue shifted and has relative photoluminescence quantum yield two times higher compared to the pristine Al tris(8-hydroxyquinoline. Deferential scanning colorimetric studies revealed that the newly synthesized Alq3 derivative in this work is amorphous material with the highest transition glass temperature value among the reported amorphous Alq3 derivatives.

  11. Analogues of uracil nucleosides with intrinsic fluorescence (NIF-analogues): synthesis and photophysical properties.

    Science.gov (United States)

    Segal, Meirav; Fischer, Bilha

    2012-02-28

    Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.

  12. Photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone: Evidence for excited state proton transfer reaction

    International Nuclear Information System (INIS)

    Singh, Rupashree Balia; Mahanta, Subrata; Guchhait, Nikhil

    2007-01-01

    The photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone (HTHQ) have been investigated by steady state and time resolved spectroscopy in combination with quantum chemical calculations. The effects of various parameters such as the nature of solvent and pH of the medium on the spectral properties confirm the existence of different neutral and ionic species in the ground and excited states. In the ground state, HTHQ exists as intramolecularly hydrogen bonded closed conformer in non-polar and polar aprotic solvents. Apart from the closed conformer, the intermolecular hydrogen bonded solvated species and the anion of HTHQ are present in hydroxylic solvents. The closed conformer shows excited state intramolecular proton transfer in all solvents and the solvent polarity independent red shifted emission indicates only keto-enol tautomerism. Evaluation of the potential energy surfaces by quantum chemical calculation using density functional theory point towards the possibility of proton transfer reaction in the first excited state but not in the ground state

  13. Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy

    Science.gov (United States)

    Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.

    1996-04-01

    Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.

  14. Theoretical Characterization of Sulfur-to-Selenium Substitution in an Emissive RNA Alphabet: Impact on H-bonding Potential and Photophysical Properties

    KAUST Repository

    Chawla, Mohit

    2018-02-23

    We employ density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the structural, energetic and optical properties of a new computationally designed RNA alphabet, where the nucleobases,tsA, tsG, tsC, and tsU (ts-bases), have been derived by replacing sulfur with selenium in the previously reported tz-bases, based on the isothiazolo[4.3-d]pyrimidine heterocycle core. We find out that the modeled non-natural bases have minimal impact on the geometry and energetics of the classical Watson-Crick base pairs, thus potentially mimicking the natural bases in a RNA duplex in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge of purines are destabilized as compared to their natural counterparts. We also focus on the photophysical properties of the non-natural bases and correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital. It is indeed stabilized by roughly 1.1-1.6 eV as compared to the natural analogues, resulting in a reduction of the gap between the highest occupied and the lowest unoccupied molecular orbital from 5.3-5.5 eV in the natural bases to 3.9-4.2 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. Overall, our analysis clearly indicates that the newly modelled ts-bases are expected to exhibit better fluorescent properties as compared to the previously reported tz-bases, while retaining similar H-bonding properties. In addition, we show that a new RNA alphabet based on size-extended benzo-homologated ts-bases can also form stable Watson-Crick base pairs with the natural complementary nucleobases.

  15. A new photoactive Ru(II)tris(2,2'-bipyridine) templated Zn(II) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties.

    Science.gov (United States)

    Whittington, Christi L; Wojtas, Lukasz; Gao, Wen-Yang; Ma, Shengqian; Larsen, Randy W

    2015-03-28

    It has now been demonstrated that Ru(ii)tris(2,2'-bipyridine) (RuBpy) can be utilized to template the formation of new metal organic framework (MOF) materials containing crystallographically resolved RuBpy clusters with unique photophysical properties. Two such materials, RWLC-1 and RWLC-2, have now been reported from our laboratory and are composed of RuBpy encapsulated in MOFs composed of Zn(ii) ions and 1,3,5-tris(4-carboxyphenyl)benzene ligands (C. L. Whittington, L. Wojtas and R. W. Larsen, Inorg. Chem., 2014, 53, 160-166). Here, a third RuBpy templated photoactive MOF is described (RWLC-3) that is derived from the reaction between Zn(ii) ions and 1,4-dicarboxybenzene in the presence of RuBpy. Single Crystal X-ray diffraction studies determined the position of RuBpy cations within the crystal lattice. The RWLC-3 structure is described as a 2-fold interpenetrated pillared honeycomb network (bnb) containing crystallographically resolved RuBpy clusters. The two bnb networks are weakly interconnected. The encapsulated RuBpy exhibits two emission decay lifetimes (τ-fast = 120 ns, τ-slow = 453 ns) and a bathochromic shift in the steady state emission spectrum relative to RuBpy in ethanol.

  16. Synthesis and properties of bimetallic aluminium alkoxides

    International Nuclear Information System (INIS)

    Vyshinskaya, K.I.; Vasil'ev, G.A.; Vishnyakova, T.A.

    1997-01-01

    A single stage method of aluminium bimetallic alkoxide synthesis, which consists in activated aluminium reaction with metal salts in the relevant alcohols, has been developed. Properties of the compounds prepared are described

  17. DFT/TDDFT investigation on the electronic structures and photophysical properties of phosphorescent iridium(III) complexes with 2-(pyridin-2-yl)-benzo[d]imidazole ligand

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xiaohong, E-mail: shangxiaohong58@aliyun.com [College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012 (China); Han, Deming [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Li, Dongfeng [College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China)

    2014-03-15

    We have reported a theoretical analysis of a series of heteroleptic iridium(III) complexes (mpmi){sub 2}Ir(pybi) [mpmi=1-(4-tolyl)-3-methyl-imidazole, pybi=2-(pyridin-2-yl)-benzo[d]imidazole] (1a), (fpmi){sub 2}Ir(pybi) [fpmi=1-(4-fluoro-phenyl)-3-methyl-imidazole] (1b), (tfpmi){sub 2}Ir(pybi) [tfpmi=1-methyl-3-(4-trifluoromethyl-phenyl)-imidazole] (1c), (pypmi){sub 2}Ir(pybi) [pypmi=3-(3-methyl-imidazol)-pyrazole] (2a), (phpymi){sub 2}Ir(pybi) [phpymi=3-(3-methyl-imidazol)-5-phenyl-pyrazole] (2b), and (inpymi){sub 2}Ir(pybi) [inpymi=3-(3-methyl-imidazol)-indeno[1,2-c]pyrazole] (2c) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. By changing cyclometalated ligands, the conjugation length, and substituents of the cyclometalated ligands, one can tune the emission color from green (λ{sub em}=520 nm) to orange (λ{sub em}=592 nm). Complexes 1a, 1b, 2a, and 2b have the almost identical emission wavelength about 550 nm, while 592 nm for 1c and 520 nm for 2c are red shifted and blue shifted, respectively, relative to 1a. The calculated results indicate that, for 1b and 1c, the substituents of −F and −CF{sub 3} at the phenyl moiety cause a poor hole-injection ability compared with that of 1a. For all these complexes studied, the hole-transporting performances are better than the electron-transporting ones. The difference between reorganization energies for hole transport (λ{sub ih}) and reorganization energies for electron transport (λ{sub ie}) for complex 1c are relatively smaller, indicating that the hole and electron transfer balance could be achieved more easily in the emitting layer. The alteration of cyclometalated ligands with different conjugation lengths and substituents has an impact on the optoelectronic properties of these complexes. It is believed that the larger metal to ligand charge transfer (MLCT

  18. Photophysical properties and excited state intramolecular proton transfer in 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid in homogeneous solvents and micro-heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Gashnga, Pynsakhiat Miki [Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793022, Meghalaya (India); Singh, T. Sanjoy [Department of Chemistry, Assam University, Silchar 788011, Assam (India); Baul, Tushar S. Basu [Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793022, Meghalaya (India); Mitra, Sivaprasad, E-mail: smitra@nehu.ac.in [Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793022, Meghalaya (India)

    2014-04-15

    A systematic study on the photophysical properties and excited state intramolecular proton transfer (ESIPT) behavior of 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid, is reported using steady-state and time-resolved fluorescence spectroscopy in homogeneous solvents as well as in different micro-heterogeneous environments. Depending on the nature of intramolecular hydrogen bond (IHB), the salicylic acid derivative may exist in two different ground state conformers (I and II). Structure I having IHB between the carbonyl oxygen and phenolic hydrogen can undergo ESIPT upon excitation as evidenced by largely Stokes-shifted fluorescence at ∼455 nm; whereas, normal fluorescence in the blue side of the spectrum (∼410 nm) is due to the spontaneous emission from conformer II. The results in homogeneous solvents were compared with those in bio-mimicking environments of β-cyclodextrin (CD) and surfactants. The intensity of the ESIPT fluorescence increases substantially upon encapsulation of the probe into the cyclodextrin as well as micellar nano-cavities. Detailed analysis of the spectroscopic data indicates that the probe forms 1:1 complex with CD in aqueous medium. Binding constant of the probe with the micelles as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of different surfactants in aqueous medium. -- Highlights: • Steady state and time resolved fluorescence study on ESIPT in HMBA. • Dual fluorescence corresponding to the pro- and non-ESIPT structures. • Modulation of ESIPT fluorescence in micro-heterogeneous environments. • 1:1 stoichiometry for interaction with cyclodextrin. • Calculation of binding constant and other physico-chemical properties from fluorescence titration data in surfactants.

  19. Photophysical properties and excited state intramolecular proton transfer in 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid in homogeneous solvents and micro-heterogeneous environments

    International Nuclear Information System (INIS)

    Gashnga, Pynsakhiat Miki; Singh, T. Sanjoy; Baul, Tushar S. Basu; Mitra, Sivaprasad

    2014-01-01

    A systematic study on the photophysical properties and excited state intramolecular proton transfer (ESIPT) behavior of 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid, is reported using steady-state and time-resolved fluorescence spectroscopy in homogeneous solvents as well as in different micro-heterogeneous environments. Depending on the nature of intramolecular hydrogen bond (IHB), the salicylic acid derivative may exist in two different ground state conformers (I and II). Structure I having IHB between the carbonyl oxygen and phenolic hydrogen can undergo ESIPT upon excitation as evidenced by largely Stokes-shifted fluorescence at ∼455 nm; whereas, normal fluorescence in the blue side of the spectrum (∼410 nm) is due to the spontaneous emission from conformer II. The results in homogeneous solvents were compared with those in bio-mimicking environments of β-cyclodextrin (CD) and surfactants. The intensity of the ESIPT fluorescence increases substantially upon encapsulation of the probe into the cyclodextrin as well as micellar nano-cavities. Detailed analysis of the spectroscopic data indicates that the probe forms 1:1 complex with CD in aqueous medium. Binding constant of the probe with the micelles as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of different surfactants in aqueous medium. -- Highlights: • Steady state and time resolved fluorescence study on ESIPT in HMBA. • Dual fluorescence corresponding to the pro- and non-ESIPT structures. • Modulation of ESIPT fluorescence in micro-heterogeneous environments. • 1:1 stoichiometry for interaction with cyclodextrin. • Calculation of binding constant and other physico-chemical properties from fluorescence titration data in surfactants

  20. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  1. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    Science.gov (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tetraaryl-, Pentaaryl-, and Hexaaryl-1,4-dihydropyrrolo 3,2-b pyrroles: Synthesis and Optical Properties

    DEFF Research Database (Denmark)

    Krzeszewski, M.; Thorsted, B.; Brewer, J.

    2014-01-01

    . Strategic placement of electron-withdrawing substituents at the 2-, 3-, 5-, and 6-positions produced an acceptor donor acceptor type fluorophore. The resulting multiply substituted heteropentalenes displayed intriguing optical properties. The relationship between the structure and photophysical properties...

  3. Rationalizing substituent effects in 1-azathioxanthone photophysics

    Science.gov (United States)

    Junker, Anne Kathrine R.; Just Sørensen, Thomas

    2018-01-01

    The influence of an electron donating substituent on the photophysical properties of 1-azathioxanthone dyes has been investigated using optical spectroscopy and theoretical models. The motivation behind the study is based on the fact that thioxanthones are efficient triplet sensitizers, and thus promising sensitizers for lanthanide centered emission. By adding an aza group to one of the phenyl ring systems, direct coordination to a lanthanide center becomes possible, which makes azathoixanthones great candidates as antenna chromophores in lanthanide(III) based dyes. Here, three 1-azathioxanthone derivatives have been synthesized targeting efficient triplet formation following absorption in the visible range of the spectrum. This is achieved by adding methoxy groups to the 1-azathioxanthone core. The derivatives were characterized using absorption, emission, and time-gated emission spectroscopy, where fluorescent quantum yields, singlet and triplet excited states lifetimes were determined. The experimentally determined photophysical properties of the three 1-azathioxanthone compounds are contrasted to those of the parent thioxanthone and is rationalized using the Strickler-Berg equation, Hückel MO theory, and Dewar’s rules in combination with computational chemistry. We find that the transition energies follow predictions, but that the overall photophysical properties are determined by the relative energies as well as the nature of the involved states in both the singlet and the triplet excited state manifolds.

  4. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  5. Photo-physical properties of dimers formed by tri-aryl pyrylium salts: experimental and theoretical study

    International Nuclear Information System (INIS)

    Lampre, Isabelle

    1996-01-01

    This research thesis reports the study of dimers formed in solution by aggregation of tri-aryl pyrylium salts, in order to establish a direct correlation between properties and electronic structure of components, on the one hand, and molecular pattern, on the other hand. The author adopted a multidisciplinary approach by using experimental techniques and calculations based on the excitonic theory and methods of quantum chemistry. First, the properties of the first excited states of cationic chromophores have been studied (characterisation of electronic transitions, relaxation at the singlet excited state, formation of triplet state). Then, the author analysed dimerisation processes and showed that each dimer is formed by two pairs of ions. She discusses some original optical properties of dimers. The geometry of dimers is theoretically determined by minimising the system interaction potential energy. Electronic transitions are then determined as linear combinations of transitions of two monomers. Properties are thus calculated and are in agreement with those deduced from spectral analysis. The experimentally noticed polarisation change and large Stokes displacement are then explained in terms of emission for a localised state on a chromophore [fr

  6. Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Bikash; Sarma, Bimal K., E-mail: sarmabimal@gmail.com

    2017-07-15

    Highlights: • Fabrication of Ag/ZnO heterostructure by facile chemical processes. • Decoration of plasmonic Ag nanoparticles on ZnO microrods through direct attachment. • Quenching of photoluminescence is observed in Ag/ZnO heterostructure. • Extent of surface coverage governs photophysical and photochemical properties. - Abstract: This report presents findings on microstructural, photophysical, and photocatalytic properties of Ag/ZnO heterostructure grown on flexible and silicon substrates. ZnO microrods are prepared by thermal decomposition method for different solute concentrations and Ag/ZnO heterostructure are fabricated by photo-deposition of Ag nanoparticles on ZnO microrods. X-ray diffraction and electron microscopy studies confirm that ZnO microrods belong to the hexagonal wurtzite structure and grown along [001] direction with random alignment showing that majority microrods are aligned with (100) face parallel to the sample surface. Plasmonic Ag nanoparticles are attached to different faces of ZnO. In the optical reflection spectra of Ag/ZnO heterostructure, the surface plasmon resonance peak due to Ag nanoparticles appears at 445 nm. Due to the oxygen vacancies the band gaps of ZnO microrods turn out to be narrower compared to that of bulk ZnO. The presence of Ag nanoparticles decreases the photoluminescence intensity which might be attributed to the non-radiative energy and direct electron transfer in the plasmon–exciton system. The quenching of photoluminescence in Ag/ZnO heterostructure at different growth conditions depend on the extent of surface coverage of ZnO by plasmonic Ag nanoparticles. Photocatalytic degradation efficiency of Ag/ZnO heterostructure is higher than that of ZnO microrods. The extent of surface coverage of ZnO microrods by Ag nanoparticles is crucial for the observed changes in photophysical and photochemical properties.

  7. Non-empirical Prediction of the Photophysical and Magnetic Properties of Systems with Open d- and f-Shells Based on Combined Ligand Field and Density Functional Theory (LFDFT).

    Science.gov (United States)

    Daul, Claude

    2014-09-01

    Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the

  8. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    Science.gov (United States)

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at

  9. Effect of the substituents on the photophysical, electrochemical and electroluminescence properties of OLED dopant Iridium bis(2-phenylbenzothiozolato- N,C2')(acetylacetonate)

    Science.gov (United States)

    Ivanov, P.; Tomova, R.; Petrova, P.

    2014-12-01

    The effect of two substituents: clorine and 1,3-diphenylpropane-1,3-dionate, placed on different position in the molecule of Iridium (III) bis(2-phenylbenzothiozolato-N,C2')- (acetylacetonate) (bt)2Ir(acac), on its electrochemical behaviour, photophysical and electroluminescence properties were investigated. Three complexes (bt)2Ir(acac), Iridium (III) bis[2-(4-chlorophenyl)benzothiazolato-N,C2']-acetylacetonate (Clbt)2Ir(acac), in which the Cl atom was introduced on the 4-position in the benzothiazole ring, and the new Iridium (Ill) bis[2 -phenylbenzothiazolato -N,C2'] -(1,3 -diphenylpropane-1,3 -dionate) (bt)2Ir(dbm), where ancillary acetylacetonate ligand was replaced by 1,3-diphenylpropane-1,3-dionate, were synthesized and characterised by 1H-NMR and elemental analysis. The HOMO/LUMO energy levels of the complexes were determined by cyclic voltammetry (CV) and their properties were established by UV-Visible and fluorescence spectroscopy. The application of (Clbt)2Ir(acac), (bt)2Ir(bsm) and (bt)2Ir(acac) as dopants in hole transporting layer (HTL) of Organic light- emitting diodes(OLEDs). It was found that with respect to the reference (bt)2Ir(acac): both LUMO and HOMO of the substituted complexes were shifted to more positive values accordingly with 0.23 and 0.19 eV for (Clbt)2Ir(acac) and 0.14 and 0.12 eV for (bt)2Ir(dbm). OLEDs doped with 1 w% of the complexes irradiated the warm white light with Commission internationale de l'eclairage (CIE) coordinates: 0.24;0.38 for (Clbt)2Ir(acac), 0.30;0.44 for (bt)2Ir(acac) and 0.28;0.46 for (bt)2Ir(dbm). Devices doped with 10 w% of all complexes irradiated in the yellow orange region of the spectrum.

  10. Optical and photophysical properties of the chlorin-type photosensitizer photolon in aqueous solutions of different acidities

    Science.gov (United States)

    Bagrov, I. V.; Belousova, I. M.; Dadeko, A. V.; Krisko, T. K.; Kriukova, E. V.; Martynenko, I. V.; Savchenko, M. R.

    2017-09-01

    Photolon is a modern compound for fluorescence diagnostics and photodynamic therapy, which was relatively recently introduced into clinical practice. In the present work, we study its electronic-absorption spectra, fluorescence spectra (excited at different visible wavelengths), and fluorescence quantum yields. The characteristics are studied in aqueous solutions with pH 6.0-7.5 and compared under identical conditions with the corresponding characteristics of other chlorin- or porphyrin-type compounds (Photoditazin, Radachlorin, Dimegin) for photodynamic diagnostics and therapy. It is shown that the studied properties of Photolon are very close to those of Photoditazin and Radachlorin. At the same time, chlorin products are found to be more effective than Dimegin at pH 7.5, which is close to the pH of blood, while Dimegin is the most effective in solutions with lower pH, for example, in distilled water.

  11. Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [Department; Center; Fedin, Igor [Department; Diroll, Benjamin T. [Center; Liu, Yuzi [Center; Talapin, Dmitri V. [Center; Department; Schaller, Richard D. [Department; Center

    2018-01-03

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology up to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.

  12. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self

  13. Synthesis of fluorinated ReCl(4,4'-R2-2,2'-bipyridine)(CO)3 complexes and their photophysical characterization in CH3CN and supercritical CO2.

    Science.gov (United States)

    Doherty, Mark D; Grills, David C; Fujita, Etsuko

    2009-03-02

    Two new CO(2)-soluble rhenium(I) bipyridine complexes bearing the fluorinated alkyl ligands 4,4'-(C(6)F(13)CH(2)CH(2)CH(2))(2)-2,2'-bipyridine (1a), and 4,4'-(C(8)F(17)CH(2)CH(2)CH(2))(2)-2,2'-bipyridine (1b) have been prepared and their photophysical properties investigated in CH(3)CN and supercritical CO(2). Electrochemical and spectroscopic characterization of these complexes in CH(3)CN suggests that the three methylene units effectively insulate the bipyridyl rings and the rhenium center from the electron-withdrawing effect of the fluorinated alkyl chains. Reductive quenching of the metal-to-ligand charge-transfer excited states with triethylamine reveals quenching rate constants in supercritical CO(2) that are only 6 times slower than those in CH(3)CN.

  14. Poly-β-hydroxybutyrate sensitizing effect on the photophysical properties of environment friendly fluorescent films containing europium complex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chaolong, E-mail: yclzjun@163.com [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Zhang, Pan; Zhou, Hualin [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xu, Jing [Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Azaaoba 6-3, Aoba-ku, Sendai (Japan); Li, Youbing [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Lu, Mangeng [Key Laboratory of Polymer Materials for Electronics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); Lei, Lei; Zhang, Qiang; Zhang, Yi; Chen, Shaopeng [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2016-10-15

    A series of environment friendly Eu/PHB fluorescent films through doped the Eu-complex precursor Eu(TTA){sub 2}(Tpy-OCH{sub 3})(2H{sub 2}O) into polymer matrices poly-β-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, and 7 (mass) were designed, fabricated and characterized. TGA and PL results indicated the Eu-complex precursor was immobilized in PHB matrix through the interaction between the Eu-complex. DSC results indicated the crystallinity of Eu/PHB films decreased with the increase of Eu-complex doping percentage. The emission spectra of the Eu-complex and Eu/PHB films recorded at room temperature exhibited the characteristic bands arising from the {sup 5}D{sub 0}/{sup 7}F{sub J}. The fact that the quantum efficiencies (η) of the doped film increased significantly revealed that the PHB matrix acts as an efficient co-sensitizer for Eu{sup 3+} ions luminescent center and therefore enhances the quantum efficiency of the emitter {sup 5}D{sub 0} level. In particular, all Eu/PHB films can be excited by visible light (410 nm), and also showed good photoluminescent properties. So the new Eu/PHB fluorescent films showed considerable promise for polymer light-emitting diode, active polymer optical fiber and biomedical analysis applications.

  15. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit

    2015-09-17

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  16. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  17. Poly-β-hydroxybutyrate sensitizing effect on the photophysical properties of environment friendly fluorescent films containing europium complex

    International Nuclear Information System (INIS)

    Yang, Chaolong; Zhang, Pan; Zhou, Hualin; Xu, Jing; Li, Youbing; Lu, Mangeng; Lei, Lei; Zhang, Qiang; Zhang, Yi; Chen, Shaopeng

    2016-01-01

    A series of environment friendly Eu/PHB fluorescent films through doped the Eu-complex precursor Eu(TTA) 2 (Tpy-OCH 3 )(2H 2 O) into polymer matrices poly-β-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, and 7 (mass) were designed, fabricated and characterized. TGA and PL results indicated the Eu-complex precursor was immobilized in PHB matrix through the interaction between the Eu-complex. DSC results indicated the crystallinity of Eu/PHB films decreased with the increase of Eu-complex doping percentage. The emission spectra of the Eu-complex and Eu/PHB films recorded at room temperature exhibited the characteristic bands arising from the 5 D 0 / 7 F J . The fact that the quantum efficiencies (η) of the doped film increased significantly revealed that the PHB matrix acts as an efficient co-sensitizer for Eu 3+ ions luminescent center and therefore enhances the quantum efficiency of the emitter 5 D 0 level. In particular, all Eu/PHB films can be excited by visible light (410 nm), and also showed good photoluminescent properties. So the new Eu/PHB fluorescent films showed considerable promise for polymer light-emitting diode, active polymer optical fiber and biomedical analysis applications.

  18. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit; Samanta, Pralok Kumar; Pati, Swapan

    2015-01-01

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  19. Investigation on the electronic structures and photophysical properties of a series of cyclometalated iridium(III) complexes based on DFT/TDDFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Chunyu, E-mail: shang.chun.yu@163.com; Xu, Jie; Du, Yanqiu; Zhao, Jie

    2016-07-15

    The electronic structures and photophysical properties of a series of cyclometalated iridium (III) complexes Ir(C{sup ∧}N){sub 2}(H{sub 2}NNHCOO), including 1 [C{sup ∧}N=2-phenyl-pyridine], 2 [C{sup ∧}N=5-fluoro-2-phenylpyridine], 3 [C{sup ∧}N=2-phenyl-5-trifluoromethylpyridine], 4 [C{sup ∧}N=6-phenyl-[2, 3] bipyridinyl], 5 [C{sup ∧}N=7-phenyl-cyclopenta [4] dipyridine] and 6 [C{sup ∧}N=8-phenyl-[1, 9] phenanthroline], have been theoretically investigated based on density functional theory (DFT) and time-dependent DFT. The characteristics in phosphorescent performances have been outlined for each of the complexes in the applications in OLED. On the basis of the two simplifications presented in this paper and the available experimental data, the magnitudes of phosphorescent radiative rates for complexes 1–6 were approximately calculated to be: 5.56×10{sup 5} s{sup −1}, 2.68×10{sup 5} s{sup −1}, 1.17×10{sup 6} s{sup −1}, 9.78×10{sup 4} s{sup −1}, 5.30×10{sup 6} s{sup −1} and 6.71×10{sup 6} s{sup −1}, respectively. Meanwhile, the sequence of phosphorescent quantum efficiencies was obtained to be: Φ{sub PL}(4)<Φ{sub PL}(2)<Φ{sub PL}(1)<Φ{sub PL}(3)<Φ{sub PL}(5)<Φ{sub PL}(6), in which Φ{sub PL}(4) is by far the lowest, Φ{sub PL}(5) is much larger and Φ{sub PL}(6) is by far the largest. In contrast to complex 1, the emission wavelengths are slightly red-shifted for 2 and 3 and significantly red-shifted for 4 and 5, while the emission wavelength of 6 is slightly blue-shifted. In comparison, complexes 6 and 5 may be singled out to be the most efficient phosphorescence emitters for the applications in OLED.

  20. Dextran Nanoparticle Synthesis and Properties.

    Science.gov (United States)

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.

  1. Synthesis, Crystal Structure and Luminescence Property of a New Silver(I) Dimer with Isonicotinic Acid

    International Nuclear Information System (INIS)

    Yuan, Qi; Liu, Bing

    2005-01-01

    The absorption spectrum was calculated from reflection spectrum by the Kubelka.Munk function. The energy gap of the title compound determined by extrapolation from the linear portion of the absorption edge in a (α/S) versus energy plot is 1.91 eV, which suggests that the title compound behaves as semiconductor. Isonicotinic acid (Iso), namely 4.pyridinecarboxylate, a multi.functional chelating and/or bridging ligand, has proved to be very powerful for the construction of multi. dimensional metal.organic coordination networks. Furthermore, The isonicotinic acid complexes has raised many interests in fluorescence probing with numerous potential applications for studies of microsecond diffusion and dynamics of membranes. Metal centers are potential carriers of electrochemical, magnetic, catalytic, or optical properties that may be introduced into the inorganic.organic hybrid materials. d"1"0 metals with rich photophysical and photochemical character have focused attentions to synthesize polynuclear complexes. Considering the versatile coordination abilities of Iso, we employ the ligand to coordinate with silver nitrate to fabricate a coordination complex with excellent fluorescence property. Herein we report the synthesis, crystal structure and fluorescence property of a new d"1"0 coordination dimer [Ag_2(Iso)_2(NO_3)_2

  2. Synthesis, Crystal Structure and Luminescence Property of a New Silver(I) Dimer with Isonicotinic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qi [Pharmacy College of Henan University, Kaifeng (China); Liu, Bing [Chinese Academy of Sciences, Fuzhou (China)

    2005-10-15

    The absorption spectrum was calculated from reflection spectrum by the Kubelka.Munk function. The energy gap of the title compound determined by extrapolation from the linear portion of the absorption edge in a (α/S) versus energy plot is 1.91 eV, which suggests that the title compound behaves as semiconductor. Isonicotinic acid (Iso), namely 4.pyridinecarboxylate, a multi.functional chelating and/or bridging ligand, has proved to be very powerful for the construction of multi. dimensional metal.organic coordination networks. Furthermore, The isonicotinic acid complexes has raised many interests in fluorescence probing with numerous potential applications for studies of microsecond diffusion and dynamics of membranes. Metal centers are potential carriers of electrochemical, magnetic, catalytic, or optical properties that may be introduced into the inorganic.organic hybrid materials. d{sup 10} metals with rich photophysical and photochemical character have focused attentions to synthesize polynuclear complexes. Considering the versatile coordination abilities of Iso, we employ the ligand to coordinate with silver nitrate to fabricate a coordination complex with excellent fluorescence property. Herein we report the synthesis, crystal structure and fluorescence property of a new d{sup 10} coordination dimer [Ag{sub 2}(Iso){sub 2}(NO{sub 3}){sub 2}].

  3. Polyfuran Conducting Polymers: Synthesis, Properties, and Applications.

    OpenAIRE

    González-Tejera, M.J.; Sánchez de la Blanca, Emilia; Carrillo Ramiro, Isabel

    2008-01-01

    In this review, polyfuran (PFu) synthesis methods and the nucleation mechanism; the electrochemical, structural, morphological, and magnetic properties of PFu; thermal behavior; theoretical calculations on PFu, as well as its applications reported to date, have been compiled. Not only PFu homopolymers have been reviewed, but also PFu co-polymers, PFu bipolymers, and PFu composites. The results are listed, discussed, and compared. It is hoped that this assembly of all the relevant data might e...

  4. A study of the structure-property relationship of azole-azine based homoleptic platinum(II) complexes and tunability of the photo-physical properties

    Science.gov (United States)

    Ranga Prabhath, Malaviarachchige Rabel

    reveal that the solid state emission is associated with 1MMLCT transitions. Lifetime measurements revealed the existence of two decay processes: one being fluorescence and the other process, either phosphorescence or delayed fluorescence. Further a linear-relationship between the Hammett parameters of the substituents and emission wavelengths was established. This allows a reliable emission predictability for any given substituent of 5-substituted pyridyl-1,2,3-triazole platinum complexes. In conclusion, we show a new approach in achieving coarse emission tunability in pyridyl-1,2,3-triazole based platinum complexes via subtle changes in the molecular structure and the importance of metallophilic interactions in the process. During the second phase of the study, the scope was broadened to examine the effects of heterocyclic nitrogens in the ligand skeleton. Fifteen different combinations of azole-azine linked ligand systems were synthesized, by systematically increasing the number of nitrogens and changing the ring position of the nitrogens in the skeleton. Later, the homoleptic platinum complexes of the respective ligands were synthesised, and the photo-physical characteristics were studied. The above mentioned changes in the ligand structure resulted in a 264 nm emission tunability, in the thin films of the complexes. Theoretical studies on the complexes revealed that based on the structure of the ligand, different metallophilic stacking behaviours and different origins of emission (fluorescence and phosphorescence) can result, which in turn give rise to tunable emission wavelengths.

  5. Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds.

    Science.gov (United States)

    Siddique, Zainul Abedin; Yamamoto, Yuichi; Ohno, Takeshi; Nozaki, Koichi

    2003-10-06

    The photophysical properties of singlet and triplet metal-to-ligand charge transfer (MLCT) states of [Cu(I)(diimine)(2)](+), where diimine is 2,9-dimethyl-1,10-phenanthroline (dmphen), 2,9-dibutyl-1,10-phenanthroline (dbphen), or 6,6'-dimethyl-2,2'-bipyridine (dmbpy), were studied. On 400 nm laser excitation of [Cu(dmphen)(2)](+) in CH(2)Cl(2) solution, prompt (1)MLCT fluorescence with a quantum yield of (2.8 +/- 0.8) x 10(-5) was observed using a picosecond time-correlated single photon counting technique. The quantum yield was dependent on the excitation wavelength, suggesting that relaxation of the Franck-Condon state to the lowest (1)MLCT competes with rapid intersystem crossing (ISC). The fluorescence lifetime of the copper(I) compound was 13-16 ps, unexpectedly long despite a large spin-orbit coupling constant of 3d electrons in copper (829 cm(-1) ). Quantum chemical calculations using a density functional theory revealed that the structure of the lowest (1)MLCT in [Cu(dmphen)(2)](+) (1(1)B(1)) was flattened due to the Jahn-Teller effect in 3d(9) electronic configuration, and the dihedral angle between the two phenanthroline planes (dha) was about 75 degrees with the dha around 90 degrees in the ground state. Intramolecular reorganization energy for the radiative transition of 1(1)B(1) was calculated as 2.1 x 10(3) cm(-1), which is responsible for the large Stokes shift of the fluorescence observed (5.4 x 10(3) cm(-1)). To understand the sluggishness of the intersystem crossing (ISC) of (1)MLCT of the copper(I) compounds, the strength of the spin-orbit interaction between the lowest (1)MLCT (1(1)B(1)) and all (3)MLCT states was calculated. The ISC channels induced by strong spin-orbit interactions (ca. 300 cm(-1)) between the metal-centered HOMO and HOMO - 1 were shown to be energetically unfavorable in the copper(I) compounds because the flattening distortion caused large splitting (6.9 x 10(3) cm(-1)) between these orbitals. The possible ISC is therefore

  6. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  7. Synthesis and optical properties studies

    Directory of Open Access Journals (Sweden)

    N.A. El-Ghamaz

    2017-01-01

    Full Text Available 4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-phenol (L1 and 4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-benzoic acid (L2 have been synthesized by the condensation reaction of 4-aminoantipyrine (4-AAP and 4-aminophenol or 4-aminobenzoic acid in ethanolic solution and are characterized by various physico-chemical techniques. Thin films of L1 and L2 have been prepared by the conventional spin coating technique. X-ray diffraction patterns (XRD show an amorphous nature for both powder and thin films for L1 and L2 ligands. The optical absorption and refraction properties of L1 and L2 are investigated by spectrophotometric techniques at normal incidence of light in the wavelength range of 200–2500 nm. The absorption spectra show two peaks in the UV region which correspond to π → π∗ transition and a peak in UV–Vis region which may correspond to n → π∗ transition. The values of dispersion parameters Eo, Ed, εL, ε∞ and N/m* are calculated according to the single oscillator model. The presence of the OH group increases the value of ε∞ from 3.21 to 3.32 and the value of N/m* from 7.38 × 1053 to 2.08 × 1054 m−3Kg−1. The optical band transition is found to be indirect allowing fundamental energy gap values of 3.4 and 3.9 eV and onset energy gap values of 2.1 and 2.6 eV for L1 and L2, respectively.

  8. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  9. Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystals

    NARCIS (Netherlands)

    Fang, Honghua; Raissa, Raissa; Abdu-Aguye, Mustapha; Adjokatse, Sampson; Blake, Graeme R.; Even, Jacky; Loi, Maria Antonietta

    2015-01-01

    Hybrid organometal halide perovskites have been demonstrated to have outstanding performance as semiconductors for solar energy conversion. Further improvement of the efficiency and stability of these devices requires a deeper understanding of their intrinsic photophysical properties. Here, the

  10. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  11. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Martirosyan, K.S.; Galstyan, E.; Hossain, S.M.; Wang Yiju; Litvinov, D.

    2011-01-01

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m 2 /g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO 2 . The activation energy for carbon combustion synthesis of BaFe 12 O 19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H c ∼3000 Oe and M s ∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  12. A novel photo-active Cd:1,4-benzene dicarboxylate metal organic framework templated using [Ru(ii)(2,2'-bipyridine)3]2+: synthesis and photophysics of RWLC-5.

    Science.gov (United States)

    Larsen, Randy W; Mayers, Jacob M; Wojtas, Lukasz

    2017-09-26

    The development of photoactive porous materials is of significant importance for applications ranging from sustainable energy to pharmaceutical development and catalysis. A particularly attractive class of photo-active materials is the metal-organic framework (MOF)-based platform in which the photo-active elements are components of the framework itself or photo-active guests encapsulated within the MOF cavities. It has now been demonstrated that the photo-active [Ru(2,2'-bipyridine) 3 ] 2+ (RuBpy) complex can template the formation of MOFs with varying three dimensional structures. Here we report the synthesis and structural and photo-physical characterization of a new RuBpy-templated MOF composed of Cd 2+ ions with 1,4-benzenedicarboxylate ligands (RWLC-5) that contains crystallographically resolved RuBpy complexes. The new material displays a biphasic emission decay (130 ns and 1180 ns, T = 20 °C) and a bathochromically shifted emission maximum, relative to RuBpy in solution (603 nm for RuBpy in ethanol vs. 630 nm for RWLC-5). The emission lifetimes also do not display temperature-dependent decays which are characteristic of RuBpy type complexes as well as other RuBpy templated MOFs. The lack of temperature dependence is consistent with the complete deactivation of the 3 LF state of the encapsulated RuBpy complex due to a constrained environment. The fast phase decay is attributed to a water molecule hydrogen bonded to a bipyridine ligand associated with ∼38% of the encapsulated RuBpy complexes resulting in the nonradiative deactivation of the 3 MLCT state.

  13. Trivalent europium-doped strontium molybdate red phosphors in white light-emitting diodes: Synthesis, photophysical properties and theoretical calculations

    International Nuclear Information System (INIS)

    Yang, W.-Q.; Liu, H.-G.; Liu, G.-K.; Lin, Y.; Gao, M.; Zhao, X.-Y.; Zheng, W.-C.; Chen, Y.; Xu, J.; Li, L.-Z.

    2012-01-01

    Eu 3+ -doped strontium molybdate red phosphors (Sr 1−x MoO 4 :Eu x (x = 0.01–0.2)) for white light-emitting diodes (LED) were synthesized by the solid-state reaction method. The fluorescent intensities of the as-prepared phosphors were remarkably improved. The excitation and emission spectra demonstrate that these phosphors can be effectively excited by the near-UV light (395 nm) and blue light (466 nm). Their emitted red light peaks are located at 613 nm, and the highest quantum yield value (η) of the as-grown red phosphor, which is 95.85%, is much higher than that of commercial red phosphor (77.53%). These red phosphors plus commercial yellow powers (1:10) were successfully packaged with the GaN-based blue chips on a piranha frame by epoxy resins. The encapsulated white LED lamps show high performance of the CIE chromaticity coordinates and color temperatures. Moreover, to explain the fluorescent spectra of these phosphors, a complete 3003 × 3003 energy matrix was successfully built by an effective operator Hamiltonian including free ion and crystal field interactions. For the first time, the fluorescent spectra for Eu 3+ ion at the tetragonal (S 4 ) Sr 2+ site of SrMoO 4 crystal were calculated from a complete diagonalization (of energy matrix) method. The fitting values are close to the experimental results.

  14. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    NARCIS (Netherlands)

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  15. Synthesis of Beam Lines with Necessary Properties

    CERN Document Server

    Andrianov, Serge

    2005-01-01

    In this paper a new approach to the problem of synthesis of beam lines is discussed. Usually this problem can be overcome by the use of numerical simulation and optimal control theory methods. But this results in sufficiently great number of variable parameters and functions. Obviously, that this degrades quality of a modeling procedure. The suggested approach is demonstrated on a problem of a microprobe design problem. Essence of the problem is that necessary to design a high precision focusing system which satisfies some additional conditions. For solution of this problem we use an algebraic treatment based on Lie algebraic methods and computer algebra techniques. Using the symmetry ideology this approach allows rewriting beam properties to enough simple conditions for control parameters and functions. This leads a set of desired solutions and show results in some most suitable form. Moreover, this approach decreases the number of variable parameters.

  16. Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV–Vis Extinction Spectra Using DDA Method

    Directory of Open Access Journals (Sweden)

    Sarkar Priyanka

    2010-01-01

    Full Text Available Abstract We present a very simple and effective way for the synthesis of tunable coloured silver sols having different morphologies. The procedure is based on the seed-mediated growth approach where methyl cellulose (MC has been used as soft-template in the growth solution. Nanostructures of varying morphologies as well as colour of the silver sols are controlled by altering the concentration of citrate in the growth solution. Similar to the polymers in the solution, citrate ions also dynamically adsorbed on the growing silver nanoparticles and promote one (1-D and two-dimensional (2-D growth of nanoparticles. Silver nanostructures are characterized using UV–vis and HR-TEM spectroscopic study. Simulation of the UV–vis extinction spectra of our synthesized silver nanostructures has been carried out using discrete dipole approximation (DDA method.

  17. Colloidal synthesis and photophysics of M{sub 3}Sb{sub 2}I{sub 9} (M=Cs and Rb) nanocrystals. Lead-free perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Jaya; Manna, Suman; Nag, Angshuman [Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (India); Mondal, Anirban; Adarsh, K.V. [Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal (India); Das, Shyamashis [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India)

    2017-11-06

    Herein we report the colloidal synthesis of Cs{sub 3}Sb{sub 2}I{sub 9} and Rb{sub 3}Sb{sub 2}I{sub 9} perovskite nanocrystals, and explore their potential for optoelectronic applications. Different morphologies, such as nanoplatelets and nanorods of Cs{sub 3}Sb{sub 2}I{sub 9}, and spherical Rb{sub 3}Sb{sub 2}I{sub 9} nanocrystals were prepared. All these samples show band-edge emissions in the yellow-red region. Exciton many-body interactions studied by femtosecond transient absorption spectroscopy of Cs{sub 3}Sb{sub 2}I{sub 9} nanorods reveals characteristic second-derivative-type spectral features, suggesting red-shifted excitons by as much as 79 meV. A high absorption cross-section of ca. 10{sup -15} cm{sup 2} was estimated. The results suggest that colloidal Cs{sub 3}Sb{sub 2}I{sub 9} and Rb{sub 3}Sb{sub 2}I{sub 9} nanocrystals are potential candidates for optical and optoelectronic applications in the visible region, though a better control of defect chemistry is required for efficient applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Photoluminescent Copper(I) Complex Based on 3-(2-(Cyclohexylthio) ethoxy)pyridine: Synthesis, Structure, and Physical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyunjin; Kwon, Eunjin; Kang, Gihaeng; Kim, Jieun; Kim, Tae Ho [Gyeongsang National University, Jinju (Korea, Republic of)

    2016-07-15

    In recent years, the Cu(I) complexes, with d 10 electronic configuration, have been attracting interest due to their diverse structures and photophysical properties. A copper(I) coordination polymer 1 based on a sulfur-containing pyridyl ligand L was synthesized and identified by X-ray crystallography. Photophysical and thermal properties of 1 have been investigated. More Cu(I) coordination polymers based on mixed donor ligands are under investigation in order to discover factors governing luminescence wavelength, such as Cu[BOND]Cu distances, intermolecular interactions, structures of ligands, and so on.

  19. Synthesis and superconducting properties of niobium germanium

    International Nuclear Information System (INIS)

    Kihlstrom, K.E.

    1982-01-01

    By carefully controlling temperature homogeneity during preparation of the Nb 3 Ge samples, homogeneous films have been prepared of high-T/sub c/Nb 3 Ge. Homogeneity is demonstrated by a sharp transition width (ΔT/sub c/ 6 amps/cm 2 which are the highest ever reported for any material at this temperature. The successful film synthesis has made it possible to study the superconducting properties of Nb 3 Ge. High quality A15 NbGe/(SiO/sub x/)/Pb tunnel juctions on electron beam codeposited oxygen-doped Nb 3 Ge have been fabricated. 2Δ/(k/sub B/T/sub c/ rises from the BCS limit in Ge-poor samples to become strong coupled (2Δk/sub B/T/sub c/ approx. 4.35) as stoichiometry is approached. The electron-phonon spectral function α 2 F(ω) and related microscopic parameters were obtained. As the T/sub c/ and gap increase, a movement of the lowest phonon branch to lower energies is observed with a resultant decrease in (ω 2 ). Thus lambda increases with T/sub c/ while (ω 2 ) decreases in agreement with the idea that mode softening is a major factor in the increase of T/sub c/ with approach to stoichiometry as previously found in Nb 3 Al by Kwo and Geballe

  20. Synthesis and properties of superheavy elements

    CERN Document Server

    Hofmann, S

    2003-01-01

    The nuclear shell model predicts that the next doubly magic shell-closure beyond sup 2 sup 0 sup 8 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding of experimental investigations is the exploration of this region of spherical 'SuperHeavy Elements' (SHEs). Experimental methods are described which allowed for the identification of elements 107 to 112 in studies of cold fusion reactions based on lead and bismuth targets. Also presented are data which were obtained on the synthesis of elements 112, 114, and 116 in investigation of hot fusion reactions using actinide targets. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decay properties as well as reaction cross- sections are compared with the results of theoretical studies. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the exploration of the regio...

  1. Novel metallomesogenic polyurethanes: Synthesis, characterization and properties

    International Nuclear Information System (INIS)

    Senthilkumar, Natarajan; Narasimhaswamy, Tanneru; Kim, Il-Jin

    2012-01-01

    A series of tetradentate Schiff base metallomesogenic diols were synthesized from two simple dihydroxy benzenes. The metallomesogenic diol was constructed from three ring containing mesogen linked through ester and azomethine with terminal hydroxy group. This upon complexation with copper(II) formed metallomesogenic diol with varying terminal chain length. A series of metallomesogenic polyurethanes were synthesized using these metallomesogenic diols as chain extenders for the prepolymers based on polytetramethylene glycol (PTMG) of varying molecular weight (M n = 650, 2000) and 2,4-toluene diisocyanate (TDI), or 4,4′-methylene bis(phenyl isocyanate) (MDI). The molar ratio of metallomesogenic diol and PTMG were varied in the polyurethane to find their role in liquid crystalline and mechanical properties. Extensive characterization of all metallomesogenic compounds and intermediates were carried out by FT-IR, 1 H and 13 C NMR, EPR, VSM, Mass (EI and FAB) and UV–visible spectroscopy. Hot stage polarizing microscope and differential scanning calorimetry were used to ensure the phase characteristics such as nature of phase, melting and clearing temperatures and phase range. The appearance of enantiotropic smectic A phases indicated high molecular polarizability of the core due to the metal ion. - Highlights: ► Design and synthesis of metallomesogenic diols. ► Metallomesogenic polyurethanes were prepared using these diols as chain extenders. ► Liquid crystalline and mechanical properties were studied. ► A square pyramidal structure for the copper(II) complexes have been proposed. ► Polyurethanes exhibited enantiotropic smectic A phases.

  2. Luminescent cyclometalated alkynylgold(III) complexes with 6-phenyl-2,2'-bipyridine derivatives: synthesis, characterization, electrochemistry, photophysics, and computational studies.

    Science.gov (United States)

    Au, Vonika Ka-Man; Lam, Wai Han; Wong, Wing-Tak; Yam, Vivian Wing-Wah

    2012-07-16

    A novel class of luminescent gold(III) complexes containing various tridentate cyclometalating ligands derived from 6-phenyl-2,2'-bipyridine and alkynyl ligands, [Au(RC^N^N)(C≡C-R')]PF(6), has been successfully synthesized and characterized. One of the complexes has also been determined by X-ray crystallography. Electrochemical studies show a ligand-centered reduction originated from the cyclometalating RC^N^N ligands as well as an alkynyl-centered oxidation. The electronic absorption and photoluminescence properties of the complexes have also been investigated. In acetonitrile at room temperature, the complexes show intense absorption at higher energy region with wavelength shorter than 320 nm, and a moderately intense broad absorption band at 374-406 nm, assigned as the metal-perturbed intraligand π-π* transition of the cyclometalating RC(∧)N(∧)N ligand, with some charge transfer character from the aryl ring to the bipyridine moiety. Most of the complexes have been observed to show vibronic-structured emission bands at 469-550 nm in butyronitile glass at 77 K, assigned to an intraligand excited state of the RC^N^N ligand, with some charge transfer character from the aryl to the bipyridyine moiety. Insights into the origin of the absorption and emission have also been provided by density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations.

  3. Cyclometalated Iridium(III) Complexes Containing 4,4'-π-Conjugated 2,2'-Bipyridine Derivatives as the Ancillary Ligands: Synthesis, Photophysics, and Computational Studies.

    Science.gov (United States)

    Sarma, Monima; Chatterjee, Tanmay; Bodapati, Ramakrishna; Krishnakanth, Katturi Naga; Hamad, Syed; Rao, S Venugopal; Das, Samar K

    2016-04-04

    This article demonstrates a series of cyclometalated Ir(III) complexes of the type [Ir(III)(C^N)2(N^N)](PF6), where C^N is 2-phenylpyridine, and N^N corresponds to the 4,4'-π-conjugated 2,2'-bipyridine ancillary ligands. All these compounds were synthesized through splitting of the binuclear dichloro-bridged complex precursor, [Ir(C^N)2(μ-Cl)]2, with the appropriate bipyridine ligands followed by the anion exchange reaction. The linear and nonlinear absorption properties of the synthesized complexes were investigated. The absorption spectra of all the title complexes exhibit a broad structureless feature in the spectral region of 350-700 nm with two bands being well-resolved in most of the cases. The structures of all the compounds were modeled in dichloromethane using the density functional theory (DFT) algorithm. The nature of electronic transitions was further comprehended on the basis of time-dependent DFT analysis, which indicates that the origins of various bands are primarily due to intraligand charge transfer transitions along with mixed-metal and ligand-centered transitions. The synthesized compounds are found to be nonemissive at room temperature because of probable nonradiative deactivation pathways of the T1 state that compete with the radiative (phosphorescence) decay modes. However, the frozen solutions of compounds Ir(MS 3) and Ir(MS 5) phosphoresce at the near-IR region, the other complexes remaining nonemissive up to 800 nm wavelength window. The two-photon absorption studies on the synthesized complexes reveal that values of the absorption cross-section are quite notable and lie in the range of 300-1000 GM in the picosecond case and 45-186 GM in the femtosecond case.

  4. Towards PSII analogs driven by ruthenium photophysics

    International Nuclear Information System (INIS)

    Olsson, Jerry

    2002-01-01

    A number of model complexes have been prepared in an attempt to develop models for photosystem II (PSII) in green plants. As replacement for the chlorophyll photosensitizer, we have used Ru(ll) tris-2,2-bipyridyl or Ru(ll) bis-2,2';6',2 - terpyridyl complexes linked to a pendant 2,2'-bipyridyl or 2,2';6',2''-terpyridyl moieties via spacers of varying lengths. Manganese (ll) has been covalently linked to the pendant 2,2'-bipyridyl /2,2';6',2''-terpyridyl moieties. The use of different ruthenium centres and spacers has made it possible to make assumptions about the way and how easily manganese is coordinated through self-assembly to the pendant 2,2'-bipyridyl or 2,2';6',2''-terpyridyl groups. Several polynuclear complexes containing a photoactive centre (Ru(ll) tris-2,2'-bipyridine or Ru(ll) bis-2,2';6',2''-terpyridine) or other metal ions (Co 2+ , Fe 2+ , Mn 2= ) have been prepared and characterised. The main work has been focused on organic synthesis and characterisation of polypyridine ligands and coordinated to different metal centres. The complexes have been investigated electrochemically and photophysically. Several new phenol-based ligands have been prepared by organic synthetic methods and characterised by various different methods. (author)

  5. Synthesis and photophysics of functionalized silicon nanoparticles

    NARCIS (Netherlands)

    Rosso-Vasic, M.

    2008-01-01

    Nanotechnology is an emerging multidisciplinary science that involves the formation, investigation and manipulation of nanoobjects (1 - 100 nm). It has a huge potential to revolutionize diverse fields as engineering and medicine since the basis of many different physical processes can now be

  6. Synthesis, Photophysical, Electrochemical and Thermal Studies of ...

    Indian Academy of Sciences (India)

    of Triarylamines based on benzo[g]quinoxalines. AZAM M ...... Son H-J, Han W-S, Wee K-R, Yoo D-H, Lee J-H, Kwon. S-N, Ko J ... Kim S K, Yang B, Park Y I, Ma Y J -Y and Lee H -J K ... M, Wang R-Y, Tao Y and Wang S 2004 J. Mater. Chem.

  7. Synthesis, characterization and photophysical studies of β ...

    Indian Academy of Sciences (India)

    synthesized in appreciable yields through a copper(I)-catalyzed “click” reaction of zinc(II) 2-azidomethyl-. 5,10,15,20-tetraphenylporphyrin ... C to form the corresponding free-base porphyrin analogues in good yields. The newly syn- thesized products ... nificance of these two classes of heterocycles, our aim was to connect ...

  8. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  9. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  10. Plasma synthesis of nanostructures for improved thermoelectric properties

    International Nuclear Information System (INIS)

    Petermann, Nils; Hecht, Christian; Schulz, Christof; Wiggers, Hartmut; Stein, Niklas; Schierning, Gabi; Theissmann, Ralf; Stoib, Benedikt; Brandt, Martin S

    2011-01-01

    The utilization of silicon-based materials for thermoelectrics is studied with respect to the synthesis and processing of doped silicon nanoparticles from gas phase plasma synthesis. It is found that plasma synthesis enables the formation of spherical, highly crystalline and soft-agglomerated materials. We discuss the requirements for the formation of dense sintered bodies, while keeping the crystallite size small. Small particles a few tens of nanometres and below that are easily achievable from plasma synthesis, and a weak surface oxidation, both lead to a pronounced sinter activity about 350 K below the temperature usually needed for the successful densification of silicon. The thermoelectric properties of our sintered materials are comparable to the best results found for nanocrystalline silicon prepared by methods other than plasma synthesis.

  11. Photophysical Properties of SrTaO2N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation

    KAUST Repository

    Ziani, Ahmed

    2017-04-10

    Converting photon energy into chemical energy using inorganic materials requires the successful capture of photons, exciton dissociation, and the charge carrier diffusion. This study reports a thorough analysis of the optoelectronic properties of visible-light-responsive SrTaON perovskites to quantify their absorption coefficient and the generated charge carriers\\' effective masses, dielectric constants, and electronic structures. The measurements on such intrinsic properties were attempted using both epitaxial and polycrystalline SrTaON films deposited by radiofrequency magnetron sputtering under N reactive plasma. Density functional theory calculations using the HSE06 functional provided reliable values of these optoelectronic properties. Such quantities obtained by both measurements and calculations gave excellent correspondence and provide possible variations that account for the small discrepancies observed. One of the significant factors determining the optical properties was found to be the anion ordering in the perovskite structure imposed by the cations. As a result, the different anion ordering has a noticeable influence on the optical properties and high sensitivity of the hole effective mass. Determination of relative band positions with respect to the water redox properties was also attempted by Mott-Schottky analysis. All these results offer the opportunity to understand why SrTaON possesses intrinsically all the ingredients needed for an efficient water splitting device.

  12. Photophysical Properties of SrTaO2N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation

    KAUST Repository

    Ziani, Ahmed; Le Paven, Claire; Le Gendre, Laurent; Marlec, Florent; Benzerga, Ratiba; Tessier, Franck; Cheviré , Franç ois; Hedhili, Mohamed N.; Garcia-Esparza, Angel T.; Melissen, Sigismund; Sautet, Philippe; Le Bahers, Tangui; Takanabe, Kazuhiro

    2017-01-01

    Converting photon energy into chemical energy using inorganic materials requires the successful capture of photons, exciton dissociation, and the charge carrier diffusion. This study reports a thorough analysis of the optoelectronic properties of visible-light-responsive SrTaON perovskites to quantify their absorption coefficient and the generated charge carriers' effective masses, dielectric constants, and electronic structures. The measurements on such intrinsic properties were attempted using both epitaxial and polycrystalline SrTaON films deposited by radiofrequency magnetron sputtering under N reactive plasma. Density functional theory calculations using the HSE06 functional provided reliable values of these optoelectronic properties. Such quantities obtained by both measurements and calculations gave excellent correspondence and provide possible variations that account for the small discrepancies observed. One of the significant factors determining the optical properties was found to be the anion ordering in the perovskite structure imposed by the cations. As a result, the different anion ordering has a noticeable influence on the optical properties and high sensitivity of the hole effective mass. Determination of relative band positions with respect to the water redox properties was also attempted by Mott-Schottky analysis. All these results offer the opportunity to understand why SrTaON possesses intrinsically all the ingredients needed for an efficient water splitting device.

  13. Photophysical and physicochemical studies of rare earths complexes formed with calyx(n)arenes

    International Nuclear Information System (INIS)

    Ramirez, F.M.; Varbanov, S.; Corine, C.; Muller, G.; Fatin-Rouge, N.; Scopelliti, R.; Bunzli J, C.G.

    2001-01-01

    In this work, some of the photophysical and physicochemical properties are presented which are observed in the rare earths complexes that are formed with diverse functionalized calyx(n)arenes receptors where n=4-6 designed with predetermined properties and synthesized by own methods. (Author)

  14. Synthesis, microstructures and properties of {gamma}-aluminum oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Wang Fuming; Li Wenchao

    2003-02-15

    This paper deals with the synthesis, microstructures and properties of {gamma}-aluminum oxynitride (AlON). The thermodynamic properties of AlON were analyzed and the Gibbs energy of AlON with different compositions and temperatures were evaluated. Based on thermodynamic studies, AlON has been synthesized. The microstructures, mechanical properties and oxidation resistance of the synthetic AlON have been examined and discussed.

  15. Shedding light on the photophysical properties of newly designed platinum(II) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters from a theoretical viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jieqiong [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Wang, Li, E-mail: chemwangl@henu.edu.cn [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Wang, Xin [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); He, Chaozheng, E-mail: hecz2013@nynu.edu.cn [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061 (China); Zhang, Jinglai, E-mail: zhangjinglai@henu.edu.cn [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2015-08-01

    The phosphorescent properties of three synthesized and three new designed platinum(II) complexes are focused on in this work. To reveal their structure–property relationships, a density functional theory/time-dependent density functional theory (DFT/TDDFT) investigation is performed on the geometric and electronic structures, absorption and emission spectra. The electroluminescent (EL) properties are evaluated by the ionization potential (IP), electron affinity (EA), and reorganization energy (λ). Furthermore, the radiative rate constant (k{sub r}) is qualitatively elucidated by various factors including the strength of the SOC interaction between the higher-lying singlet excited states (S{sub n}) and the T{sub 1} state, the oscillator strength (f) of the S{sub n} states that can couple with the T{sub 1} state, and the energy separation between the coupled states. A combined analysis of various elements that could affect the phosphorescent efficiency is beneficial to exploring efficient triplet phosphors in OLEDs. Consequently, complexes Pt-1 and 1 would be more suitable blue-emitting phosphorescent materials with balance of EL properties and acceptable quantum yields. - Graphical abstract: Display Omitted - Highlights: • The absorption and phosphorescence spectra of Pt(II) complexes are investigated. • Their Φ{sub em}, IP, EA, and reorganization energy are compared. • Three new Pt(II) complexes are designed.

  16. Theoretical study on photophysical properties of angular-shaped mercury(II) bis(acetylide) complexes as light-emitting materials

    International Nuclear Information System (INIS)

    Ran Xueqin; Feng Jikang; Wong, Wai-Yeung; Ren Aimin; Poon, Suk-Yue; Sun Chiachung

    2010-01-01

    An in-depth investigation on the optical and electronic properties of a series of mercury-containing and metal-free arylacetylenes with bridged heteroatoms was provided here. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory and Hartree-Fock, whereas the lowest singlet and triplet excited states are optimized by singles configuration interaction (CIS) methods. At the time-dependent density functional theory (TD-DFT) level, molecular absorptions and emission properties were calculated on the basis of optimized ground- and excited-state geometries, respectively. The calculated lowest-lying absorptions of the investigated complexes are attributed to ligand-to-ligand charge transfer (LLCT), intraligand (IL) and ligand-to-metal charge transfer (LMCT). The results show that the optoelectronic properties for the complexes are affected by the transition-metal atom, various bridge heteroatoms and different end-group substituents. Moreover, the calculated data reveal that the studied molecules have improved charge-transfer rate, especially for designed molecules.

  17. One pot synthesis, X-ray crystal structure of 2-(2‧-hydroxyphenyl)oxazolo[4,5-b]pyridine derivatives and studies of their optical properties

    Science.gov (United States)

    Briseño-Ortega, Horacio; Juárez-Guerra, Lizbeth; Rojas-Lima, Susana; Mendoza-Huizar, Luis Humberto; Vázquez-García, Rosa A.; Farfán, Norberto; Arcos-Ramos, Rafael; Santillan, Rosa; López-Ruiz, Heralio

    2018-04-01

    A series of five 2-(2-hydroxyphenyl)oxazolo [4,5-b]pyridines (HPOP) (3a-e), where four are novel, were synthesized by a mild, one pot, phenylboronic acid-NaCN catalyzed reaction. Spectroscopic characterization and photophysical properties of these compounds are reported. Absorption and excitation spectra of the compounds were dependent on the substituents in the phenyl ring. Fluorescence quantum yields (0.009-0.538) were associated with the donor strength and the position of the substituents. Also, DFT analysis allowed us to determine the contribution of diethylamino and methoxy moieties to the π-system, which is in agreement with the experimental data analyzed in solution and by cyclic voltammetry. The results obtained in the solid state by single-crystal X-ray diffraction experiments indicate that, the quasi-planarity envisioned for the explored compounds is present, supporting the hypothesis that both the H-bonding of a hydroxyl group to the Cdbnd N moiety and a donor groups such as diethylamino and methoxy moieties favor an electronic communication. Due to the facile synthesis and their photophysical properties, the novel HPOP 3a-e have potential application as organic semiconductors.

  18. Theoretical Investigations of the Photophysical Properties of Star-Shaped π-Conjugated Molecules with Triarylboron Unit for Organic Light-Emitting Diodes Applications

    Directory of Open Access Journals (Sweden)

    Ruifa Jin

    2017-10-01

    Full Text Available The density functional theory (DFT and time-dependent DFT (TD-DFT methodologies have been applied to explore on a series of star-shaped π-conjugated organoboron systems for organic light-emitting diode (OLED materials. The compounds under investigation consist of benzene as π-bridge and different core units and triarylboron end groups. Their geometry structures, frontier molecular orbital (FMO energies, absorption and fluorescence spectra, and charge transport properties have been investigated systematically. It turned out that the FMO energy levels, the band gaps, and reorganization energies optical are affected by the introduction of different core units and triarylboron end groups. The results suggest that the designed compounds are expected to be promising candidates for luminescent materials. Furthermore, they can also serve as hole and/or electron transport materials for OLEDs.

  19. Solvent influence on the photophysical properties of 4-(2-Oxo-2H-benzo[h]chromen-4-ylmethoxy)-benzaldehyde

    Science.gov (United States)

    Pramod, A. G.; Renuka, C. G.; Shivashankar, K.; Boregowda, P.; Nadaf, Y. F.

    2018-05-01

    Steady-state absorption and the fluorescence properties of the synthesized Benzofuran derivatives were studied. Absorption and fluorescence spectra of 4-(2-Oxo-2H-benzo[h]chromen-4-ylm ethoxy)-benzaldehyde (4-OBCM) have been recorded at room temperature in extensive variety of solvents of various polarities. 4-OBCM Fluorescence band maxima of the solvents are small amount spectral shifted to hypsochromic when the solvent polarity will increase, compared to absorption band under the identical circumstance. This suggests an increase in dipole moment of excited state compared to ground state. The ground-state dipole moment of 4-OBCM was found from quantum mechanical methods and the excited state dipole moment of 4-OBCM was evaluated from Lippert-Mataga Bakhshiev's, Kawski-Chamma-Viallet's and Reichardt conditions by methods for solvatochromic shift. Kamlet-Taft coefficients which affect this absorption profiles.

  20. Synthesis, microstructure, and physical properties of metallic barcode nanowires

    Science.gov (United States)

    Park, Bum Chul; Kim, Young Keun

    2017-05-01

    With rapid progress in nanotechnology, nanostructured materials have come closer to our life. Single-component nanowires are actively investigated because of their novel properties, attributed to their nanoscale dimensions and adjustable aspect ratio, but their technical limitations cannot be resolved easily. Heterostructured nanomaterials gained attention as alternatives because they can improve the existing single-component structure or add new functions to it. Among them, barcode nanowires (BNWs), comprising at least two different functional segments, can perform multiple functions for use in biomedical sensors, information encoding and security, and catalysts. BNW applications require reliable response to the external field. Hence, researchers have been attempting to improve the reliability of synthesis and regulate the properties precisely. This article highlights the recent progress and prospects for the synthesis, properties, and applications of metallic BNWs with focus on the dependence of the magnetic, optical, and mechanical properties on material, composition, shape, and microstructure.

  1. Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions

    Science.gov (United States)

    Chibisov, Alexander K.; Görner, Helmut

    2002-05-01

    The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).

  2. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  3. Molecular clips based on propanediurea : synthesis and physical properties

    NARCIS (Netherlands)

    Jansen, Robertus Johannes

    2002-01-01

    This thesis describes the synthesis and physical properties of a series of molecular clips derived from the concave molecule propanediurea. These molecular clips are cavity-containing receptors that can bind a variety of aromatic guests. This binding is a result of hydrogen bonding and pi-pi

  4. Synthesis and properties of heterocyclic type I photoinitiators

    International Nuclear Information System (INIS)

    Liska, R.; Knaus, S.; Wendrinsky, J.

    1999-01-01

    The synthesis and properties of a series of new heterocyclic hydroxyalkylphenone-analogous photoinitiators (PIs) is described. The PIs are obtained by reaction of aromatic organolithium compounds with nitriles or by Friedel-Craft's-acylation. Preliminary photocalorimetric tests and UV absorption data are included

  5. Synthesis, structural and optical properties of nanoparticles (Al, V ...

    Indian Academy of Sciences (India)

    The synthesis by the sol–gel method, structural and optical properties of ZnO, Zn0.99Al0.01O (AlZ),. Zn0.9V0.1O (VZ) ... drops of the resulting suspension containing the synthesized .... ZnO films on silicon substrate, they thought that this emis-.

  6. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Unknown

    chelated ruthenium organometallics. BIKASH KUMAR PANDA. Department of Inorganic ... Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium. 1. Introduction. There is continuing ... chem.istry of orthometallated ruthenium compounds is of current interest in the context of synthesis ...

  7. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  8. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  9. Synthesis, characterization and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    Further, TEM image of azo-GO indicates some dark spots on the GO sheets due to azo functionalization. AFM ... Introduction. Photochromic compounds, which can easily undergo ... change in optical properties and morphologies.9,10.

  10. Synthesis, microstructure and mechanical properties of ceria ...

    Indian Academy of Sciences (India)

    Unknown

    ceria stabilized zirconia powders with improved mechanical properties. Ce–ZrO2 with 20 wt% ... structural ceramic materials (Garvie et al 1975; Evans and. Cannon 1986) ... thermal expansion matching with that of iron alloys. (Tsukuma and ...

  11. Spectral characterizations and photophysical properties of one-step synthesized blue fluorescent 4′-aryl substituted 2,2′:6′,2′′-terpyridine for OLEDs application

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, Raja [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Shivaprakash, Narayanapura Chennegowda [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Nair, Sindhu Sukumaran, E-mail: sindhunair@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India)

    2015-12-15

    We have synthesized a series of 4′-aryl substituted 2,2′:6′,2′′-terpyridine (terpy) derivatives, namely 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine (C-1), 4′-(2-furyl)-2,2′:6′2′′-terpyridine (C-2), and 4′-(3,4,5-trimethoxyphenyl)-2,2′:6′,2′′-terpyridine (C-3). The synthesized terpy compounds were characterized by elemental analyses, FTIR, NMR ({sup 1}H and {sup 13}C), and ESI-Mass spectrometry. Photophysical, electrochemical and thermal properties of terpy compounds were systematically studied. Maximum excitation band was observed between 240 and 330 nm using UV–visible spectra, and maximum emission peaks from PL spectra were observed at 385, 405 and 440 nm for C-1, C-2 and C-3 respectively. Fluorescence lifetime (τ) of the fluorophores was found to be 0.35 and 1.55 ns at the excitation wavelength of 406 nm for C-1 and C-2 respectively, and τ value for C-3 was found to be 0.29 ns at the excitation wavelength of 468 nm. We noticed that the calculated values of HOMO energy levels were increased from 5.96 (C-1) to 6.08 (C-3) eV, which confirms that C-3 derivative is more electrons donating in nature. The calculated electrochemical band gaps were 2.95, 2.82 and 3.02 eV for C-1, C-2 and C-3 respectively. These blue fluorescent emitter derivatives can be used as an electron transport and electroluminescent material to design the blue fluorescent organic light emitting diode (OLED) applications. - Highlights: • Facile one-step synthesized blue fluorescent emitter, 2,2′:6′,2′′-terpyridine derivatives. • The exceptionally broad emission band (365–525 nm) was achieved in the blue region. • Fast fluorescence life time and good thermal stability.

  12. Hybrid materials of SBA-16 functionalized by rare earth (Eu3+, Tb3+) complexes of modified β-diketone (TTA and DBM): Covalently bonding assembly and photophysical properties

    International Nuclear Information System (INIS)

    Li Yajuan; Yan Bing; Li Ying

    2010-01-01

    Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29 Si CP-MAS NMR, and N 2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE 3+ (Eu 3+ , Tb 3+ ) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb 3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16. - Graphical abstract: Novel organic-inorganic mesoporous luminescent hybrids containing RE 3+ complex covalently attached to the β-diketone-functionalized ordered mesoporous SBA-16, which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process.

  13. Photophysical and photochemical study of styrene dyes related to their laser efficiency

    International Nuclear Information System (INIS)

    Meyer, Martine

    1989-01-01

    The photophysical and photochemical properties of two styrene dyes: 4-dicyanomethylene-2-methyl-6-p-dimethylamino-styryl-4H-pyran (DCM) and 7-dimethylamino-3-(-p-formyl-styryl)-1,4-benzoxazine-2-one (DFSBO) have been studied. These molecules have electron donor and electron acceptor groups which give to their fluorescent excited state a charge transfer state character. The red shifts of the absorption and fluorescence spectra in polar solvents and the large Stokes shift related to the increase of the dipole moment from the ground state to the singlet excited state have been fully characterised. The absorption spectra of the first excited singlet and triplet states and the quantum yields of the intersystem crossing to the triplet state have been determined. The existence of conformers of the two dyes has been evidenced. The synthesis of DCM leads to the trans isomer which, under light exposure undergoes photo-isomerization to the cis-compound. Their fluorescence lifetimes and the photo-isomerization efficiency are solvent dependent. The DFSBO emission spectra depend greatly on the excitation wavelength. This effect can be explained by the occurrence of two rotational conformers one being stabilised by an intramolecular hydrogen bond. The spectral properties of these two molecules enable us to explain why DCM is a very good laser dye whereas DFSBO has a poor laser efficiency. (author) [fr

  14. Photo-physics study of an hydroxy-quinoline derivative as inhibitor of Pim-1 kinase

    DEFF Research Database (Denmark)

    Lamhasni, T.; Aitlyazidi, S.; Hnach, M.

    2013-01-01

    The photophysical properties of the antiviral 7-nicotinoyl-styrylquinoline (MB96) were investigated by means of UV-Vis linear dichroism (LD) spectroscopy on molecular samples aligned in stretched polyvinylalcohol (PVA), supported by Time Dependent Density Functional Theory (TD-DFT) calculations...

  15. Synthesis and Luminescence Properties of Iridium(III Azide- and Triazole-Bisterpyridine Complexes

    Directory of Open Access Journals (Sweden)

    Timothy W. Schmidt

    2013-07-01

    Full Text Available We describe here the synthesis of azide-functionalised iridium(III bisterpyridines using the “chemistry on the complex” strategy. The resulting azide-complexes are then used in the copper(I-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition “click chemistry” reaction to from the corresponding triazole-functionalised iridium(III bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III bisterpyridines, but this effect can be reversed by the addition of copper(II sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III bisterpyridines can be functionalized for use in “click chemistry” facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  16. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2011-05-01

    Full Text Available Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally-friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned.

  17. Synthesis and thermal properties of strontium and calcium peroxides

    Science.gov (United States)

    Philipp, Warren H.; Kraft, Patricia A.

    1989-01-01

    A practical synthesis and a discussion of some chemical properties of pure strontium peroxide and calcium peroxide are presented. The general synthesis of these peroxides involves precipitation of their octahydrates by addition of H2O2 to aqueous ammoniacal Sr(NO3)2 or CaCl2. The octahydrates are converted to the anhydrous peroxides by various dehydration techniques. A new x-ray diffraction powder pattern for CaO2 x 8H2O is given from which lattice parameters a=6.212830 and c=11.0090 were calculated on the basis of the tetragonal crystal system.

  18. Synthesis and properties of nickel cobalt boron nanoparticles

    Science.gov (United States)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  19. Statistical nuclear properties and synthesis of 138La

    Directory of Open Access Journals (Sweden)

    Kheswa B. V.

    2015-01-01

    Full Text Available The synthesis of the neutron deficient 138La nucleus has been a puzzle for a long time. It has not been clear whether it is produced through photodisintegration processes or neutrino induced reactions due to unavailability of experimental data for nuclear level densities and γ strength functions of 138,139La nuclei. In the present work these nuclear properties have been measured and are used to investigate the synthesis of 138La. The results support the neutrino interactions as a dominant production process for 138La.

  20. Property Based Process and Product Synthesis and Design

    DEFF Research Database (Denmark)

    Eden, Mario Richard

    2003-01-01

    in terms of the constitutive (synthesis/design) variables instead of the process variables, thus providing the synthesis/design targets. The second reverse problem (reverse property prediction) solves the constitutive equations to identify unit operations, operating conditions and/or products by matching......This thesis describes the development of a general framework for solving process and product design problems. Targeting the desired performance of the system in a systematic manner relieves the iterative nature of conventional design techniques. Furthermore, conventional component based methods...... are not capable of handling problems, where the process or product objectives are driven by functionalities or properties rather than chemical constituency. The framework is meant to complement existing composition based methods by being able to handle property driven problems. By investigating the different...

  1. Synthesis and photoluminescence property of silicon carbide ...

    Indian Academy of Sciences (India)

    Administrator

    The β-SiC nanowires thin films exhibit the strong photoluminescence (PL) peak at a wavelength of. 400 nm, which is significantly ... in the nanowires. Keywords. SiC nanowires; nanocrystalline diamond; crystal growth; photoluminescence. 1. ... unique mechanical, electrical and thermal properties. Due to the wide band gap ...

  2. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    The complex has been synthesized by refluxing method. ... FT–IR absorption peaks confirm the insertion of complex in the backbone of PANI. ... The anticorrosive property of a .... of [Co(mea)2(H2O)2Cl2] complex and ammonium per- sulphate ...

  3. Controlled synthesis and electrochemical properties of vanadium ...

    Indian Academy of Sciences (India)

    Vanadium oxides (V3O7·H2O and VO2) with different morphologies have been selectively synthesized ... appeared at around 68 ◦C. Furthermore, the electrochemical properties of V3O7·H2O nanobelts, VO2(B) .... morphologies of shape-controlled orthorhombic V3O7·H2O ..... condition, as shown in figures S14i and j.

  4. Synthesis and tribological properties of antimony N, N-diethanoldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    李丽; 黄可龙; 瞿龙; 舒万艮

    2001-01-01

    Antimony N, N-diethanoldithiocarbamate was synthesized with diethanolamine, antimony trioxide and carbon disulfide. The influences of temperature, reaction time, solvents and their dosages were investigated, and the optimum synthesis conditions were: reaction temperature 15~20 ℃, reaction time 2.5 h, 250 mL CH3OH as solvent and the hot CH3OH as recrystallization solvent. Element analysis, IR, 1HNMR and 13CNMR spectra were used to study its chemical composition and molecular structure. Antimony N, N-diethanol-dithiocarbamate was added in the base oil, and its properties of wear resistance and extreme pressure were studied by FB, FD and WSD. The synthesis product behaves per fectly as wear resistance and extreme pressure additive and its extreme pressure property is superior to its wear resistance property. The mechanism of tribological action was discussed by using XPS and AES spectra, and the reason of good wear resistance and extreme pressure properties is that the synthesis product decompose element C, S and N.

  5. Novel Discotic Boroxines: Synthesis and Mesomorphic Properties

    Directory of Open Access Journals (Sweden)

    Tobias Wöhrle

    2014-05-01

    Full Text Available A new synthetic approach to highly substituted triphenylboroxines 11 is described. Their mesomorphic properties were investigated by differential scanning calorimetry (DSC, polarizing optical microscopy (POM and X-ray diffraction (SAXS, WAXS. The tris(3,4,5-trialkyloxyphenyl functionalized derivatives 11b–e showed broad mesophases for a minimum alkyl chain length of C9. The phase widths ranged from 110 K to 77 K near room temperature, thus decreasing with enhanced alkyl chain lengths. Textures observed under POM indicated a columnar hexagonal (Colh mesophase symmetry that was confirmed by X-ray diffraction experiments.

  6. Synthesis, structure, and properties of azatriangulenium salts

    DEFF Research Database (Denmark)

    Laursen, B.W.; Krebs, Frederik C

    2001-01-01

    amines and, by virtue of its stepwise and irreversible nature, provides a powerful tool for the preparation of a wide variety of new heterocyclic carbenium salts. Several derivatives of the three new oxygen- and/or nitrogen-bridged triangulenium salts, azadioxa- (6), diazaoxa- (7......), and triazatriangulenium (4), have been synthesized and their physicochemical properties have been investigated. Crystal structures for compounds 2 b-PF6: 2d-PF6, 4b-BF4, 4c-BF4, 6e-BF4, and 8 are reported. The different packing modes found for the triazatriagulenium salts are discussed in relation to the electrostatic...

  7. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  8. Graphene Nanoelectronics Metrology, Synthesis, Properties and Applications

    CERN Document Server

    2012-01-01

    Graphene is a perfectly two-dimensional single-atom thin membrane with zero bandgap. It has attracted huge attention due to its linear dispersion around the Dirac point, excellent transport properties, novel magnetic characteristics, and low spin-orbit coupling. Graphene and its nanostructures may have potential applications in spintronics, photonics, plasmonics and electronics. This book brings together a team of experts to provide an overview of the most advanced topics in theory, experiments, spectroscopy and applications of graphene and its nanostructures. It covers the state-of-the-art in tutorial-like and review-like manner to make the book useful not only to experts, but also newcomers and graduate students.

  9. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-01-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  10. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  11. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes

    International Nuclear Information System (INIS)

    Nikolin, A A; Negrebetsky, V V

    2014-01-01

    The state of the art of the chemistry of hypercoordinate silicon compounds is analyzed. Published data on the current top-priority approaches to the preparative synthesis of these compounds and on their properties, structures and reactivity are summarized and generalized. Relying on the results obtained by modern physicochemical methods, the possible mechanisms of stereodynamic processes occurring in the coordination units of hypercoordinate silicon complexes are discussed. The bibliography includes 157 references

  12. Synthesis and magnetic properties of Zn Spinel ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Sofer, Z.; Nádherný, L.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Maryško, Miroslav

    2013-01-01

    Roč. 57, č. 2 (2013), s. 162-166 ISSN 0862-5468 R&D Projects: GA ČR GA13-17538S; GA MŠk(CZ) 7AMB12FR019 Institutional support: RVO:68378271 Keywords : Zn spinel * synthesis * magnetic properties * antiferromagnet * bulk ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.434, year: 2013

  13. Chemistry of Fluorinated Carbon Acids: Synthesis, Physicochemical Properties, and Catalysis.

    Science.gov (United States)

    Yanai, Hikaru

    2015-01-01

    The bis[(trifluoromethyl)sulfonyl]methyl (Tf2CH; Tf=SO2CF3) group is known to be one of the strongest carbon acid functionalities. The acidity of such carbon acids in the gas phase is stronger than that of sulfuric acid. Our recent investigations have demonstrated that this type of carbon acids work as novel acid catalysts. In this paper, recent achievements in carbon acid chemistry by our research group, including synthesis, physicochemical properties, and catalysis, are summarized.

  14. Synthesis and properties of silicon nanowire devices

    Science.gov (United States)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  15. Synthesis route and structural properties of nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina; Cherkezova-Zheleva, Zara; Kunev, Boris; Shopska, Maya; Mitov, Ivan [Institute of Catalysis, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2013-07-01

    The nano dimensional magnesium ferrite materials Mg{sub 0.25}Fe{sub 2.75}O{sub 4} , Mg{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} with different stoichiometry were prepared by co-precipitation procedure using MgCl{sub 2} •6H{sub 2}O, FeCl{sub 2} •4H{sub 2}O and FeCl{sub 3} •6H{sub 2}O and NaOH as precipitant. The physicochemical methods - X-ray diffraction analysis, Moessbauer spectroscopy and FTIR spectroscopy were performed to investigate the structural properties of obtained nano size magnesium ferrite type samples. The registered experimental data were determined the presence of spinel ferrites and additional precursor phases as iron oxihydroxides and double layered hydroxides in ferrite materials MgxFe{sub 3-x}O{sub 4} (x=0.5;1). In the case of magnesium ferrite sample Mg{sub x}Fe{sub 3-x}O{sub 4} (x=0.25) the existence of non-stoichiometric spinel ferrite and intermediate phase - iron oxihydroxides were observed only. Key words: magnesium ferrites, co-precipitation, physicochemical methods.

  16. Synthesis route and structural properties of nanoferrites

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Cherkezova-Zheleva, Zara; Kunev, Boris; Shopska, Maya; Mitov, Ivan

    2013-01-01

    The nano dimensional magnesium ferrite materials Mg 0.25 Fe 2.75 O 4 , Mg 0.5 Fe 2.5 O 4 and MgFe 2 O 4 with different stoichiometry were prepared by co-precipitation procedure using MgCl 2 •6H 2 O, FeCl 2 •4H 2 O and FeCl 3 •6H 2 O and NaOH as precipitant. The physicochemical methods - X-ray diffraction analysis, Moessbauer spectroscopy and FTIR spectroscopy were performed to investigate the structural properties of obtained nano size magnesium ferrite type samples. The registered experimental data were determined the presence of spinel ferrites and additional precursor phases as iron oxihydroxides and double layered hydroxides in ferrite materials MgxFe 3-x O 4 (x=0.5;1). In the case of magnesium ferrite sample Mg x Fe 3-x O 4 (x=0.25) the existence of non-stoichiometric spinel ferrite and intermediate phase - iron oxihydroxides were observed only. Key words: magnesium ferrites, co-precipitation, physicochemical methods

  17. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  18. The Gas-Phase Photophysics of Eosin Y and its Maleimide Conjugate.

    Science.gov (United States)

    Daly, Steven; Kulesza, Alexander; Knight, Geoffrey; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2016-05-26

    The use of the xanthene family of dyes as fluorescent probes in a wide range of applications has provided impetus for the studying of their photophysical properties. In particular, recent advances in gas-phase techniques such as FRET that utilize such chromophores have placed a greater importance on the characterization of these properties in the gas phase. Additionally, the use of synthetic linker chains to graft the chromophores in a site-specific manner to their target system is ubiquitous. There is, however, often limited information on how the addition of such a linker chain may affect the photophysical properties of the chromophores, which is of fundamental importance for interpretation of experimental data reliant on grafted chromophores. Here, we present data on the optical spectroscopy of different protonation states of Eosin Y, a fluorescein derivative. We compare the photophysics of Eosin Y to its maleimide conjugate, and to the thioether product of the reaction of this conjugate with cysteamine. Comparison of the mass spectra following laser irradiation shows that very different relaxation takes place upon addition of the maleimide moiety but that the photophysics of the bare chromophore are restored upon addition of cysteamine. This radical change in the photophysics is interpreted in terms of charge-transfer states, whose energy relative to the S1 ← S0 transition of the chromophore is dependent on the conjugation of the maleimide moiety. We also show that the shape of the absorption band is unchanged in the gas-phase as compared to the solution-phase, showing a maximum with a shoulder toward the blue, and examination of isotope distributions of the isolated ions show that this shoulder cannot be due to the presence of dimers. Consideration of the fluorescence emission spectrum allows a tentative assignment of the shoulder to be due to a vibrational progression with a high Franck-Condon factor.

  19. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  20. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore

    KAUST Repository

    Goswami, Subhadip

    2014-12-18

    A pair of diketopyrrolopyrrole (DPP) chromophores that are end-functionalized with platinum containing "auxochromes" were subjected to electrochemical and photophysical study. The chromophores contain either platinum acetylide or ortho-metalated 2-thienylpyridinyl(platinum) end-groups (DPP-Pt(CC) and DPP-Pt(acac), respectively). The ground state redox potentials of the chromophores were determined by solution electrochemistry, and the HOMO and LUMO levels were estimated. The chromophores\\' photophysical properties were characterized by absorption, photoluminescence, and time-resolved absorption spectroscopy on time scales from sub-picoseconds to microseconds. Density functional theory (DFT) computations were performed to understand the molecular orbitals involved in both the singlet and triplet excited state photophysics. The results reveal that in both platinum DPP derivatives the organometallic auxochromes have a significant effect on the chromophores\\' photophysics. The most profound effect is a reduction in the fluorescence yields accompanied by enhanced triplet yields due to spin-orbit coupling induced by the metal centers. The effects are most pronounced in DPP-Pt(acac), indicating that the orthometalated platinum auxochrome is able to induce spin-orbital coupling to a greater extent compared to the platinum acetylide units. (Figure Presented).

  1. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore

    KAUST Repository

    Goswami, Subhadip; Winkel, Russell W.; Alarousu, Erkki; Ghiviriga, Ion; Mohammed, Omar F.; Schanze, Kirk S.

    2014-01-01

    A pair of diketopyrrolopyrrole (DPP) chromophores that are end-functionalized with platinum containing "auxochromes" were subjected to electrochemical and photophysical study. The chromophores contain either platinum acetylide or ortho-metalated 2-thienylpyridinyl(platinum) end-groups (DPP-Pt(CC) and DPP-Pt(acac), respectively). The ground state redox potentials of the chromophores were determined by solution electrochemistry, and the HOMO and LUMO levels were estimated. The chromophores' photophysical properties were characterized by absorption, photoluminescence, and time-resolved absorption spectroscopy on time scales from sub-picoseconds to microseconds. Density functional theory (DFT) computations were performed to understand the molecular orbitals involved in both the singlet and triplet excited state photophysics. The results reveal that in both platinum DPP derivatives the organometallic auxochromes have a significant effect on the chromophores' photophysics. The most profound effect is a reduction in the fluorescence yields accompanied by enhanced triplet yields due to spin-orbit coupling induced by the metal centers. The effects are most pronounced in DPP-Pt(acac), indicating that the orthometalated platinum auxochrome is able to induce spin-orbital coupling to a greater extent compared to the platinum acetylide units. (Figure Presented).

  2. Open-chain poly(organophosphazenes). Synthesis and properties

    International Nuclear Information System (INIS)

    Vinogradova, Svetlana V; Tur, Dzidra R; Vasnev, Valery A

    1998-01-01

    Various methods for the synthesis of open-chain poly(organophosphazenes) are considered. The mechanism of polymerisation of hexachlorocyclotriphosphazene and the basic principles of formation of poly(organophosphazene) macromolecules by polymeranalogous reactions of poly(dichloro-phosphazene) with various nucleophilic reagents are analysed from a new viewpoint. The potential of this synthetic method for targeted design of poly(organophosphazenes) of various structures is shown. The possibility of synthesising poly(organophosphazenes) by polymerisation of cyclophosphazenes is also discussed. The problem of unit non-uniformity of poly(organophosphazenes) and its influence on the properties of these polymers are considered. The properties of poly(organophosphazenes) are considered in detail and it is shown that these polymers possess unusual valuable properties, which provide opportunities for their successful practical application. The bibliography includes 276 references.

  3. Photophysics Applied to Cavitands and Capsules.

    Science.gov (United States)

    Berryman, Orion B; Dube, Henry; Rebek, Julius

    2011-07-01

    The use of light as a stimulus to control functional materials or nano-devices is appealing as it provides convenient control of triggering events where and when they are desired without introducing extra components to the system. Many photophysical and photochemical processes are extremely fast, giving rise to nearly instantaneous onset of events. However, these fast processes can be challenging to engineer into chemical systems. Supramolecular chemistry offers a convenient way to study and control photoprocesses. Given the reversible and self-programmed nature of modern host-guest systems, a modular approach can be considered in which different photoprocesses are coupled to obtain complex functions that emerge and are controlled solely by light inputs. In this review, we highlight recent examples of photoswitching and photophysics applied in the context of supramolecular host-guest systems, with a particular emphasis on resorcinarene based cavitands and hydrogen bonded capsules.

  4. Synthesis characterization, and properties of rubber lattices; a review

    International Nuclear Information System (INIS)

    Khan, S.M.; Chughtai, A.; Sattar, A.

    2008-01-01

    Latex is a stable dispersion of polymeric material in an aqueous medium. Lattices are present in natural as well as in synthetic forms. The range of applications of latex is extensive in carpet underlay, fabric back-coating, paper and paints coatings, adhesive, binder, leather finish, floor polish, waterproof clothing, bounded fiber, pigment printing, latex thread, cement and asphalt, foam scraps binders, can closure, thickeners, box toes and shoes counters, sealant and mastics, modifiers, protein reduction, enzyme treatment and peroxide vulcanization. In this review we are presenting synthesis, characterization, properties, manufacturing and processing of latex. (author)

  5. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  6. Influence of some additions on zircon synthesis and its properties

    International Nuclear Information System (INIS)

    Goryacheva, Z.E.; Poplevina, O.G.; Suvorov, S.A.; Toropov, A.N.

    1978-01-01

    Kinetics of zircon synthesis from pure ZrO 2 and SiO 2 is studied in the presence of additions of magnesium, calcium and rare earth oxides. The addition introduction accelerates zircon formation, its yield reaching 97% at 1600 deg C. Constants of zircon formation reaction rate are determined in the presence of additions of various oxides. It is shown that synthetic zircon surpasses the natural one in tensile and density properties at similar thermostability. It is stable to the effect of molten alkaline borosilicate glass and does not polute it

  7. Synthesis and properties of novel 4,5-diaminonaphthalimides

    International Nuclear Information System (INIS)

    Morris, I.P.

    1999-07-01

    This thesis presents work carried out into the synthesis and properties of Novel 4,5-diaminonaphthalimides. Previous work had identified that these compounds could be synthesised through a short reaction sequence but a very limited number of examples had been produced. With some modifications, the structure of 4,5-diaminonaphthalimides suggests a number of applications. The diamine functionality suggests the formation of complexes and if chiral amines were used asymmetric synthesis is a possibility. Naphthalimides are known to intercalate into DNA and so compounds of this nature may have interesting anti-cancer activity. Finally diaminonaphthalimides are strongly fluorescent and this in combination with the chelation potential of the diamine functionality may afford ion and molecular sensors. The first section of this thesis reviews these areas of research and demonstrates how diaminonaphthalimides might contribute to these areas. The second section describes the synthesis of 4,5-diaminonaphthalimides and illustrates the variety of compounds that may be synthesised. In addition this section explores the applications to fluorescence sensing and asymmetric synthesis. 4,5-Diaminonaphthalimides are shown to undergo chelation enhanced quenching (CHEQ) and chelation enhanced fluorescence (CHEF) with various transition metal ions. The precise features are shown to be dependent on the metal ion present. The mass spectroscopic results discussed in this section show 4,5-diaminonaphthalimides to be a new class of supramolecular compound as they show pre-assembly around alkali earth metal ions. 4,5-Diaminonaphthalimides were also used as catalysts in asymmetric reactions where they show some catalytic activity in the addition of diethylzinc to benzaldehyde. (author)

  8. Photophysics of charge transfer in a polyfluorene/violanthrone blend

    Science.gov (United States)

    Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.; Nelson, J.; Bradley, D. D. C.

    2005-01-01

    We present a study of the photophysical and photovoltaic properties of blends of violanthrone in poly[9, 9-bis (2-ethylhexyl)-fluorene-2, 7-diyl ] (PF2/6) . Photoluminescence quenching and photocurrent measurements show moderate efficiencies for charge generation, characteristic of such polymer/dye blends. Pump-probe measurements on blend films suggest that while ˜47% of the total exciton population dissociates within 4ps of photoexcitation, only ˜32% subsequently results in the formation of dye anions. We attribute the discrepancy to the likely formation of complex species with long lifetimes, such as stabilized interface charge pairs or exciplexes. This conclusion is supported by the appearance of a long lifetime component of 2.4ns in the dynamics of the photoinduced absorption signal associated to polarons in photoinduced absorption bands centered at 560nm .

  9. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate

    Science.gov (United States)

    Yosenick, Timothy James

    2005-11-01

    Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface

  10. Synthesis, Properties and Potential Applications of Porous Graphene: A Review

    Institute of Scientific and Technical Information of China (English)

    Paola Russo; Anming Hu; Giuseppe Compagnini

    2013-01-01

    Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

  11. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  12. Synthesis and radioactive properties of the heaviest nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1996-01-01

    Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs

  13. Poly[(arylene ethynylene)-alt-(arylene vinylene)]s based on anthanthrone and its derivatives: synthesis and photophysical, electrochemical, electroluminescent, and photovoltaic properties

    Czech Academy of Sciences Publication Activity Database

    John, S. V.; Cimrová, Věra; Ulbricht, C.; Pokorná, Veronika; Růžička, Aleš; Giguére, J.-B.; Lafleur-Lambert, A.; Morin, J.-F.; Iwuoha, E.; Egbe, D. A. M.

    2017-01-01

    Roč. 50, č. 21 (2017), s. 8357-8371 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : polycyclic aromatic compounds * anthanthrones and anthanthrone derivatives * electroluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 5.835, year: 2016

  14. Eu(III) and Tb(III) complexes with the nonsteroidal anti-inflammatory drug carprofen: synthesis, crystal structure, and photophysical properties.

    Science.gov (United States)

    Zhou, Xianju; Zhao, Xiaoqi; Wang, Yongjie; Wu, Bing; Shen, Jun; Li, Li; Li, Qingxu

    2014-12-01

    Two new lanthanide complexes with general formula [Ln2(carprofen)6(DMF)2] (Ln = Eu (1), Tb (2), DMF = N,N-dimethylformamide, carprofen = 6-chloro-α-methylcarbazole-2-acetic acid) have been synthesized by a hydrothermal method. Complex 1 was characterized by single-crystal X-ray diffraction (XRD), and it was found to crystallize in the monoclinic space group C2/c. The coordination of the ligand to the lanthanide ion has been investigated by Fourier-transform infrared (FTIR) spectra and ultraviolet-visible (UV-vis) absorption spectra. Complex 1 emits red light, but the antenna effect of the ligand is not effective, whereas complex 2 presents intense green emission with effective energy transfer from the ligand. The different performance of the two complexes is related to the energy matching between the excited states of the lanthanide ion and the triplet state of the ligand. The intramolecular energy transfer mechanisms are also discussed.

  15. Synthesis, photophysical and preliminary investigation of the dye-sensitized solar cells properties of functionalized anthracenyl-based bipyridyl and phenanthrolyl Ru(II) complexes

    CSIR Research Space (South Africa)

    Adeloye, AO

    2013-01-01

    Full Text Available .Ali S, Arta S, Sina H, Siguang C, Pierre G P and Sylvie M 2008 J. New Mat. Electrochem. Systems 11 281 39.Ruhle S, Greenshtein M, Chen S G, Merson A, Pizen H, Sukenik S, Cahen D and Zaban A 2005 J. Phys. Chem. B 109 18907 40.Hoshikawa T, Kikuchi R...

  16. Synthesis of 2-azaindolizines by using an iodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides and an investigation of their photophysical properties.

    Science.gov (United States)

    Shibahara, Fumitoshi; Kitagawa, Asumi; Yamaguchi, Eiji; Murai, Toshiaki

    2006-11-23

    Iodine-mediated, oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides serves as an efficient and versatile method for the preparation of 2-azaindolizines (imidazo[1,5-a]pyridines) and rare 2-azaindolizine sulfur-bridged dimers. The 2-azaindolizines prepared in this manner are readily converted to a variety of fluorescent compounds by using transition-metal-catalyzed cross-coupling reactions. [reaction: see text].

  17. Synthesis, photophysical, structural and electronic properties of novel regioisomerically pure 1,7-disubstituted perylene-3,4,9,10-tetracarboxylic monoimide dibutylester derivatives

    Science.gov (United States)

    Ozser, Mustafa E.; Mohiuddin, Obaidullah

    2018-04-01

    Three new isomerically pure 1,7-disubstituted perylene-3,4,9,10-tetracarboxylic monoimide dibutylester derivatives namely; N-[2-(diethylamino)ethyl]-1,7-dibromoperylene-3,4,9,10-tetracarboxy monoimide dibutylester (PMD-1), N-[2-(diethylamino)ethyl]-1,7-di(4-tert-butylphenoxy)perylene-3,4,9,10-tetracarboxy monoimide dibutylester (PMD-2) and N-[2-(diethylamino)ethyl]-1,7-di(pyrrolidinyl)perylene-3,4,9,10-tetracarboxy monoimide dibutylester (PMD-3), have been synthesized and their electronic absorption spectra, and steady-state fluorescence were investigated experimentally as well as by using density functional theory (DFT) calculations. All three compounds show good solubility in toluene and chloroform. Attachment of two tert-butylphenoxy groups at the 1,7-positions in PMD-2 resulted in a red shifted absorption band with an absorption maximum at 518 nm. UV/Vis absorption spectrum of PMD-3 bearing electron donating pyrrolidinyl groups at the 1,7-positions shows a broad absorption band within the visible region, extending to red region. Absorption maximum of lowest energy transition now shifts to 653 nm. In addition to the S0 → S1 absorption bands, bands belonging to S0 → S2 electronic transitions were observed at 378, 386, and 411 nm for PMD-1, PMD-2, and PMD-3 respectively. Compounds PMD-1, PMD-2 and PMD-3 display low fluorescence quantum yields of 0.027, 0.040 and 0.001, respectively in chloroform. DFT calculations revealed that the attachment of electron donating groups at 1,7-positions of perylene core, results in an increase in frontier orbitals energy levels. Observed energy increase in HOMO level is larger in each case, compared to the energy increase in LUMO levels, due to the higher contribution of side groups to HOMO. DFT calculated band gaps for PMD-1, PMD-2 and PMD-3 are 2.68, 2.63 and 2.29 eV respectively.

  18. Synthesis and photophysical properties of pyrene-functionalized nano-SiO{sub 2} hybrids in solutions and doped-PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Jie; He, Wen-Li; Yu, Hong-Yu [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Huang, Hong-Xiang [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chen, Meng [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2017-01-15

    Luminescent pyrene-functionalized nano-SiO{sub 2} (nano-SiO{sub 2}Pyr) hybrids were synthesized and characterized using thermogravimetry, infrared, UV–vis absorption and, X-ray photoelectron spectroscopy, as well as field emission transmission electron microscopy (FETEM). The organic substituents immobilized on the nano-SiO{sub 2}Pyr hybrids accounted for approximately 10% of the total weight. Polyethylene glycol 200 (PEG200) was found to be the most suitable solvent to suspend the nano-SiO{sub 2}Pyr hybrids compared to other commonly used organic solvents. FETEM images indicated an average SiO{sub 2} nanoparticle diameter of approximately 12 nm and a 1- to 2-nm thick organic species functionalization layer. Several emission peaks were recorded at wavelengths of 380–580 nm and were designated as emissions arising from either the monomer or excimer of the pyrene substituents. Excimer formation was concentration and solvent polarity dependent, with higher concentrations and a stronger solvent polarity benefiting excimer formation. Further, nano-SiO{sub 2}Pyr hybrids were doped in poly(methyl methacrylate) (PMMA) thin films; fluorescence spectra indicated that the excimer could be formed almost exclusively from neighboring nano-SiO{sub 2}Pyr hybrids. Time-resolved fluorescence decays revealed that the emission lifetimes of nano-SiO{sub 2}Pyr monomers and excimers were approximately 190 ns and 65–100 ns in the PEG200 solution, respectively, which was shortened to 0.45 ns to tens of ns in doped PMMA thin films, depending on the nano-hybrid concentration. Thus, the present study not only provides a method to prepare luminescent nano-materials but also a route to investigate excimer formation in solutions and thin films. - Highlights: • Luminescent pyrene-functionalized nano-SiO{sub 2}Pyr hybrids were prepared. • A 1- to 2- nm thick organic functionalization layer on nano-SiO{sub 2} was observed. • Formation of pyrene excimer was concentration and solvent polarity dependent. • Dynamic fluorescence decay was investigated in solutions and doped thin films.

  19. Synthesis and photophysical properties of 7-deaza-2'-deoxyadenosines bearing bipyridine ligands and their Ru(II)-complexes in position 7

    Czech Academy of Sciences Publication Activity Database

    Vrábel, Milan; Pohl, Radek; Votruba, Ivan; Sajadi, M.; Kovalenko, S. A.; Ernsting, N. P.; Hocek, Michal

    2008-01-01

    Roč. 6, č. 16 (2008), s. 2852-2860 ISSN 1477-0520 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleosides * ruthenium * bipyridine * fluorescence Subject RIV: CC - Organic Chemistry Impact factor: 3.550, year: 2008

  20. Photophysics of C60 Colloids

    Science.gov (United States)

    2012-11-28

    nonlinear-optical properties and excited-state dynamics of pristine, oxygen- doped , and photopolymerized C-60 in the solid-state," Physical Review B...C45 (2009). 139. E. A. Brujan, "Numerical investigation on the dynamics of cavitation nanobubbles," Microfluidics and Nanofluidics 11(5), 511-517

  1. Protein-based nanostructures as carriers for photo-physically active molecules in biosystems

    OpenAIRE

    Delcanale, Pietro

    2017-01-01

    In nature, many proteins function as carriers, being able to bind, transport and possibly release a ligand within a biological system. Protein-based carriers are interesting systems for drug delivery, with the remarkable advantage of being water-soluble and, as inherent components of biosystems, highly bio-compatible. This work focuses on the use of protein-based carriers for the delivery of hydrophobic photo-physically active molecules, whose structure and chemical properties lead to spontan...

  2. Spectroscopy and photophysics of self-organized zinc porphyrin nanolayers. 1. Optical spectroscopy of excitonic interactions involving the soret band

    NARCIS (Netherlands)

    Donker, H.; Koehorst, R.B.M.; Schaafsma, T.J.

    2005-01-01

    The photophysical properties of excited singlet states of zinc tetra-(p-octylphenyl)-porphyrin in 5-25-nm-thick films spin-coated onto quartz slides have been investigated by optical spectroscopy. Analysis of the polarized absorption spectra using a dipole-dipole exciton model with two mutually

  3. The synthesis and decay properties of the heaviest elements

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    2000-01-01

    The synthesis and the study of radioactive properties of new elements is considered with respect to the existence of the 'islands of stability' of hypothetical superheavy elements predicted by the theory more than 35 years ago. Experimental data demonstrating an enhanced stability of nuclei in the vicinity of deformed shells with Z=108 and N=162 is discussed from the point of view of advent into more heavy and much more stable nuclides near the predicted spherical shells Z=114-122 and N=184 following after the doubly magic nucleus 208 Pb. The author presents the results of experiments on the synthesis of isotopes of elements 114 and 116 in the fusion reactions with 48 Ca. In these reactions the decay chains of heavy atoms consisting of sequential α-decays interrupted by spontaneous fission have been observed. The decay energies and probabilities are compared with predictions of different theoretical models describing the structure of heavy nuclei. The obtained results are considered as the first experimental evidence of the existence of domains of stability of superheavy nuclei which substantially extends the boundaries of existence of chemical elements

  4. The Synthesis and Decay Properties of the Heaviest Elements

    CERN Document Server

    Oganessian, Yu T

    2000-01-01

    The synthesis and the study of radioactive properties of new elements is considered with respect to the existence of the "islands of stability" of hypothetical superheavy elements predicted by the theory more than 35 years ago. Experimental data demonstrating an enhanced stability of nuclei in the vicinity of deformed shells with Z=108 and N=162 is discussed from the point of view of advent into more heavy and much more stable nuclides near the predicted spherical shells Z=114-122 and N=184 following after the doubly magic nucleus ^{208}Pb. The author presents the results of experiments on the synthesis of isotopes of elements 114 and 116 in the fusion reactions with ^{48}Ca. In these reactions the decay chains of heavy atoms consisting of sequential alpha-decays interrupted by spontaneous fission have been observed. The decay energies and probabilities are compared with predictions of different theoretical models describing the structure of heavy nuclei. The obtained results are considered as the first exper...

  5. Synthesis and Properties of Group IV Graphane Analogues

    Science.gov (United States)

    Goldberger, Joshua

    Similar to how carbon networks can be sculpted into low-dimensional allotropes such as fullerenes, nanotubes, and graphene with fundamentally different properties, it is possible to create similar ligand terminated sp3-hybridized honeycomb graphane derivatives containing Ge or Sn that feature unique and tunable properties. Here, we will describe our recent success in the creation of hydrogen and organic-terminated group IV graphane analogues, from the topochemical deintercalation of precursor Zintl phases, such as CaGe2. We will discuss how the optical, electronic, and thermal properties of these materials can be systematically controlled by substituting either the surface ligand or via alloying with other Group IV elements. Additionally, we have also developed an epitopotaxial approach for integrating precise thicknesses of germanane layers onto Ge wafers that combines the epitaxial deposition of CaGe2 precursor phases with the topotactic interconversion into the 2D material. Finally, we will describe our recent efforts on the synthesis and crystal structures of Sn-containing graphane alloys in order to access novel topological phenomena predicted to occur in these graphanes.

  6. Synthesis, Optical Properties and Applications for New Trianguleniums Derivatives

    DEFF Research Database (Denmark)

    Santella, Marco

    The development of new types of emissive organic dyes is an exciting area of research due to the applicability of these compounds in a wide range of disciplines. Cationic triangulenium salts are highly stable carbenium ions with a planar conformation. The convenient and versatile synthetic proced...... focused on the synthesis of thioether para substituted dyes, where the reactivity of various para-methoxy substituted propeller shaped cations towards different alkyl thiols was examined. Furthermore, ringclosure reactions of these thioether bearing propellers in order to obtain trioxa...... structures. These dyes possess excellent emissive properties with possible applications as cell staining agents or as fluorescent probes. Lastly, I focused on the use of triangulenes as binding group for molecular electronics. It has been shown that TATA can form self-assembled monolayers (SAMs) on a gold...

  7. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    DEFF Research Database (Denmark)

    Warner, Terence Edwin

    chosen so as to illustrate the large variety of physico-chemical properties encountered in inorganic materials, and to provide practical experience covering a wide range of preparative methods, with an emphasis on high-temperature techniques. The majority of the materials described in the book relate...... in extending their repertoire of teaching material into the realms of high-temperature synthesis. It is also of interest to professional chemists, physicists, materials scientists and technologists, ceramicists, mineralogists, geologists, geochemists, archaeologists, metallurgists, engineers, and non......-specialists, who are interested in learning more about how technological ceramic materials and artificial minerals are made. Finally, the author assumes that the reader is familiar with the basic principles and concepts of materials chemistry (or at least has access to such knowledge), such as; thermodynamic...

  8. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    Science.gov (United States)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  9. Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants

    International Nuclear Information System (INIS)

    Runowski, Marcin; Lis, Stefan

    2014-01-01

    Highlights: • Synthesis of nanocrystalline lanthanide fluorides doped with Eu 3+ ions. • Inorganic nanomaterials exhibiting bright red luminescence. • Luminescence enhancement by energy transfer (ET) from Ce 3+ → Gd 3+ to Eu 3+ ions. • Decreased agglomeration and morphology control using organic modifiers/surfactants. • Absolute and relative quantum yield (QY) comparison. - Abstract: A series of nanomaterials composed of LaF 3 :Ce 3+ 10%, Gd 3+ 30%, Eu 3+ 1% was synthesized via a facile co-precipitation approach. The reaction between appropriate lanthanide (Ln 3+ ) and fluoride ions resulted in the formation of crystalline, Ln 3+ doped fluorides and was performed in the presence of a series of organic modifiers, acting as surfactants and anti-agglomeration agents. Modifiers such as polyacrylic acid (PAA), ethylenediaminetetraacetic acid (EDTA), citric acid and oleylamine most significantly influenced the morphology and spectroscopic properties of the products. The product obtained in the presence of PAA was composed of the smallest nanoparticles (ca. 5–6 nm), with narrow size/shape distribution. All fluorides synthesized exhibited intensive, bright red luminescence under UV irradiation (λ ex ≈ 250 nm), because of the presence of Eu 3+ ions in their structure. The efficient intensity of luminescence was a result of indirect excitation, via energy transfer (ET) phenomena occurring in the system (Ce 3+ → Gd 3+ → Eu 3+ ). The structure and morphology of the obtained nanomaterials were established by powder X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) measurements. Optical properties of the obtained compounds were studied and discussed on the basis of excitation emission spectra and luminescence decay curves. On the basis of the performed measurements, luminescence quantum yield (absolute and relative) and radiative lifetimes were calculated and analyzed. FT-IR spectroscopy was applied to examine the presence of molecules of

  10. Photophysics of GaN single-photon emitters in the visible spectral range

    Science.gov (United States)

    Berhane, Amanuel M.; Jeong, Kwang-Yong; Bradac, Carlo; Walsh, Michael; Englund, Dirk; Toth, Milos; Aharonovich, Igor

    2018-04-01

    In this work, we present a detailed photophysical analysis of recently discovered, optically stable single-photon emitters (SPEs) in gallium nitride (GaN). Temperature-resolved photoluminescence measurements reveal that the emission lines at 4 K are three orders of magnitude broader than the transform-limited width expected from excited-state lifetime measurements. The broadening is ascribed to ultrafast spectral diffusion. The photophysical study on several emitters at room temperature (RT) reveals an average brightness of (427 ±215 )kCounts /s . Finally, polarization measurements from 14 emitters are used to determine visibility as well as dipole orientation of defect systems within the GaN crystal. Our results underpin some of the fundamental properties of SPEs in GaN both at cryogenic and RT, and define the benchmark for future work in GaN-based single-photon technologies.

  11. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles

    Science.gov (United States)

    Berti, Lorenzo; Burley, Glenn A.

    2008-02-01

    Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.

  12. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  13. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Science.gov (United States)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  14. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  15. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Energy Technology Data Exchange (ETDEWEB)

    El Moussaoui, H., E-mail: elmoussaoui.hassan@gmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Mahfoud, T.; Habouti, S. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); El Maalam, K.; Ben Ali, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hamedoun, M.; Mounkachi, O. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid – BP 63, 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4}; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases. - Highlights: • We have studied the microstructural and the magnetic properties of Sn{sub 1-x}MnxFe{sub 2}O{sub 4}. • The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} have a blocking temperature around 100 K. • The Ms and Hc increase with the augmentation of Mn content.

  16. The synthesis and properties of linear A-π-D-π-A type organic small molecule containing diketopyrrolopyrrole terminal units

    Science.gov (United States)

    Zhang, Shanshan; Niu, Qingfen; Sun, Tao; Li, Yang; Li, Tianduo; Liu, Haixia

    2017-08-01

    A novel linear A-π-D-π-A-type organic small molecule Ph2(PDPP)2 consisting diketopyrrolopyrrole (DPP) as acceptor unit, biphenylene as donor unit and acetylene unit as π-linkage has been successfully designed and synthesized. Its corresponding thermal, photophysical and electrochemical properties as well as the photoinduced charge-separation process were investigated. Ph2(PDPP)2 exhibits high thermal stability and it can be soluble in common organic solvents such as chloroform and tetrahydrofuran. The photophysical properties show that DPP2Ph2 harvests sunlight over the entire visible spectrum range in the thin-film state (300-800 nm). DPP2Ph2 has lower band gaps and appropriate energy levels to satisfy the requirement of solution-processable organic solar cells. The efficient photoinduced charge separation process was clearly observed between DPP2Ph2 with PC61BM and the Ksv value was found to be as high as 2.13 × 104 M- 1. Therefore, these excellent properties demonstrate that the designed A-π-D-π-A-type small molecule Ph2(PDPP)2 is the prospective candidate as donor material for organic photovoltaic material.

  17. An ultrahigh vacuum monochromator for photophysics beamline

    International Nuclear Information System (INIS)

    Meenakshi Raja Rao, P.; Padmanabhan, Saraswathy; Raja Sekhar, B.N.; Shastri, Aparna; Khan, H.A.; Sinha, A.K.

    2000-08-01

    The photophysics beamline designed for carrying out photoabsorption and fluorescence studies using the 450 MeV Synchrotron Radiation Source (SRS), INDUS-1, uses a 1 metre monochromator as premonochromator for monochromatising the continuum. An ultra high vacuum compatible monochromator in Seya-Namioka mount has been designed and fabricated indigenously. The monochromator was assembled and tested for its performance. Wavelength scanning mechanism was tested for its reproducibility and the monochromator was tested for its resolution using UV and VUV sources. An average spectral resolution of 2.5 A was achieved using a 1200 gr/mm grating. A wavelength repeatability of ± 1A was obtained. An ultra high vacuum of 2 X 10 -8 mbar was also achieved in the monochromator. Details of fabrication, assembly and testing are presented in this report. (author)

  18. Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications

    Science.gov (United States)

    Banholzer, Matthew John

    As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of

  19. Synthesis, characterization and magnetic properties of Fe-Al nanopins

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Zhang, Z.D.

    2005-01-01

    We report the synthesis of Fe-Al nanopins using arc discharge. The morphology and chemical composition of the Fe-Al nanopins were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). The nanopins are composed of a spherical base of about 20-100 nm and a needle-like tip of about several hundred nanometers. EDX and HRTEM studies indicate that the spherical base is mainly composed of α-Fe and FeAl core coated with a thin Al 2 O 3 layer, while the needle-like part contains only Al and O and corresponds to Al 2 O 3 . The formation mechanism of the nanopins is suggestive of a vapor-liquid-solid (VLS) growth process. The as-prepared Fe-Al nanopins show ferromagnetic properties. The temperature dependence of the magnetization at high temperatures indicates the existence of some phase transformations

  20. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches

    Science.gov (United States)

    Zhang, Xi-Feng; Liu, Zhi-Guo; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs. PMID:27649147

  2. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  3. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2014-08-01

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ c ) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  4. Synthesis, crystal structures and luminescence properties of two metal carboxyphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaonan; Feng, Pingjing; Li, Jintang, E-mail: leejt@xmu.edu.cn; Luo, Xuetao

    2017-05-15

    Two metal carboxyphosphonates, [Co{sub 2}(OOCC{sub 5}H{sub 3}NPO{sub 3}){sub 2·}(H{sub 2}O){sub 3}] (Compound1) and Zn{sub 3}[OOCC{sub 6}H{sub 3}CH(OH)PO{sub 3}]{sub 2·}2H{sub 2}O (Compound2) were successfully synthesized under the hydrothermal reactions. In compound 1, two (Co1-NO{sub 5}) octahedra link the (CPO{sub 3}) by sharing the corner, which link the two (Co2-O{sub 6}) octahedra. From a-axis the six clusters form the layer. Each layer is linked through hydrogen bond. In compound 2, the (Zn-O{sub 4}) tetrahedron and (CPO{sub 3}) tetrahedron are corner-shared, which arrange in line. From a-axis, each line forms the columnar. The thermal and luminescence properties of these compounds were investigated. - Graphical abstract: The synthesis conditions of the two compounds and the crystal morphology. Compound 1 shows the layer and the compound 2 shows the pillared-layer. - Highlights: • Two new carboxyphosphonate ligands have been prepared. • Using the two ligands, two metal carboxyphosphonates have been synthesized. • The two MOFs may be candidates for fluorescent materials.

  5. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  6. Synthesis and Property of Ag(NP)/catechin/Gelatin Nanofiber

    Science.gov (United States)

    Nasir, Muhamad; Apriani, Dita

    2017-12-01

    Nanomaterial play important role future industry such as for the medical, food, pharmaceutical and cosmetic industry. Ag (NP) and catechin exhibit antibacterial property. Ag(NP) with diameter around 15 nm was synthesis by microwaved method. We have successfully produce Ag(NP)/catechin/gelatin nanofiber composite by electrospinning process. Ag(NP)/catechin/gelatin nanofiber was synthesized by using gelatin from tuna fish, polyethylene oxide (PEO), acetic acid as solvent and silver nanoparticle(NP)/catechin as bioactive component, respectively. Morphology and structure of bioactive catechin-gelatin nanofiber were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. SEM analysis showed that morphology of nanofiber composite was smooth and had average diameter 398.97 nm. FTIR analysis results were used to confirm structure of catechin-gelatin nanofiber. It was confirmed by FTIR that specific vibration band peak amide A (N-H) at 3286,209 cm-1, amide B (N-H) 3069,396 cm-1, amide I (C=O) at 1643,813 cm-1, amide II (N-H and CN) at 1538,949 cm-1, amide III (C-N) at 1276,789 cm-1, C-O-C from polyethylene oxide at 1146,418 cm-1, respectively. When examined to S. Aureus bacteria, Ag/catechin/gelatin nanofiber show inhabitation performance around 40.44%. Ag(NP)/catechin/gelatin nanofiber has potential application antibacterial medical application.

  7. Synthesis and Antiangiogenic Properties of Tetrafluorophthalimido and Tetrafluorobenzamido Barbituric Acids.

    Science.gov (United States)

    Ambrożak, Agnieszka; Steinebach, Christian; Gardner, Erin R; Beedie, Shaunna L; Schnakenburg, Gregor; Figg, William D; Gütschow, Michael

    2016-12-06

    The development of novel thalidomide derivatives as immunomodulatory and anti-angiogenic agents has revived over the last two decades. Herein we report the design and synthesis of three chemotypes of barbituric acids derived from the thalidomide structure: phthalimido-, tetrafluorophthalimido-, and tetrafluorobenzamidobarbituric acids. The latter were obtained by a new tandem reaction, including a ring opening and a decarboxylation of the fluorine-activated phthalamic acid intermediates. Thirty compounds of the three chemotypes were evaluated for their anti-angiogenic properties in an ex vivo assay by measuring the decrease in microvessel outgrowth in rat aortic ring explants. Tetrafluorination of the phthalimide moiety in tetrafluorophthalimidobarbituric acids was essential, as all of the nonfluorinated counterparts lost anti-angiogenic activity. An opening of the five-membered ring and the accompanying increased conformational freedom, in case of the corresponding tetrafluorobenzamidobarbituric acids, was well tolerated. Their activity was retained, although their molecular structures differ in torsional flexibility and possible hydrogen-bond networking, as revealed by comparative X-ray crystallographic analyses. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives

    International Nuclear Information System (INIS)

    Tran, Quang Huy; Nguyen, Van Quy; Le, Anh-Tuan

    2013-01-01

    In recent years the outbreak of re-emerging and emerging infectious diseases has been a significant burden on global economies and public health. The growth of population and urbanization along with poor water supply and environmental hygiene are the main reasons for the increase in outbreak of infectious pathogens. Transmission of infectious pathogens to the community has caused outbreaks of diseases such as influenza (A/H 5 N 1 ), diarrhea (Escherichia coli), cholera (Vibrio cholera), etc throughout the world. The comprehensive treatments of environments containing infectious pathogens using advanced disinfectant nanomaterials have been proposed for prevention of the outbreaks. Among these nanomaterials, silver nanoparticles (Ag-NPs) with unique properties of high antimicrobial activity have attracted much interest from scientists and technologists to develop nanosilver-based disinfectant products. This article aims to review the synthesis routes and antimicrobial effects of Ag-NPs against various pathogens including bacteria, fungi and virus. Toxicology considerations of Ag-NPs to humans and ecology are discussed in detail. Some current applications of Ag-NPs in water-, air- and surface- disinfection are described. Finally, future prospects of Ag-NPs for treatment and prevention of currently emerging infections are discussed. (review)

  9. Synthesis and properties of scandium ortho-phosphate

    International Nuclear Information System (INIS)

    Eshchenko, L.S.; Pechkovskij, V.V.; Dvoskina, R.N.

    1979-01-01

    With the aim to elucidate the influence of synthesis conditions on the chemical composition and properties of orthophosphates of scandium, the interaction of orthophosphoric acid and scandium-containing component (oxide or salt) was studied under various conditions. In the interaction of scandium salt, phosphoric acid and ammonia at room temperature and pH 3.0; 5.0; 7.0 and 9.0 amorphous scandium phosphates have been obtained with the composition of x Sc 2 O 3 xY P 2 O 5 xz NH 3 xn H 2 O. After prolonged staying in mother liquor, roentgenoamorphous precipitates of phosphates transform into the crystalline state. The dependences are studied of the specific surface of amorphous phosphates on pH of precipitation and temperature of the heat treatment (200-800 deg C). Precipitates obtained in a neutral medium at 400 deg C temperature of thermal treatment, show a maximum specific surface. At a temperature of 820-840 deg C the crystallization of amorphous phase occurs followed by the recrystallization and formation of anhydrous SePO 4 of zircon type

  10. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives

    Science.gov (United States)

    Tran, Quang Huy; Quy Nguyen, Van; Le, Anh-Tuan

    2013-09-01

    In recent years the outbreak of re-emerging and emerging infectious diseases has been a significant burden on global economies and public health. The growth of population and urbanization along with poor water supply and environmental hygiene are the main reasons for the increase in outbreak of infectious pathogens. Transmission of infectious pathogens to the community has caused outbreaks of diseases such as influenza (A/H5N1), diarrhea (Escherichia coli), cholera (Vibrio cholera), etc throughout the world. The comprehensive treatments of environments containing infectious pathogens using advanced disinfectant nanomaterials have been proposed for prevention of the outbreaks. Among these nanomaterials, silver nanoparticles (Ag-NPs) with unique properties of high antimicrobial activity have attracted much interest from scientists and technologists to develop nanosilver-based disinfectant products. This article aims to review the synthesis routes and antimicrobial effects of Ag-NPs against various pathogens including bacteria, fungi and virus. Toxicology considerations of Ag-NPs to humans and ecology are discussed in detail. Some current applications of Ag-NPs in water-, air- and surface- disinfection are described. Finally, future prospects of Ag-NPs for treatment and prevention of currently emerging infections are discussed.

  11. Synthesis, crystal structures and properties of lead phosphite compounds

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Hu, Chun-Li; Xu, Xiang; Kong, Fang; Mao, Jiang-Gao

    2015-01-01

    Here, we report the preparation and characterization of two lead(II) phosphites, namely, Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 through hydrothermal reaction or simple solution synthesis, respectively. A new lead phosphite, namely, Pb_2(HPO_3)_2, crystallizes in the noncentrosymmetric space group Cmc2_1 (no. 36), which features 3D framework formed by the interconnection of 2D layer of lead(II) phosphites and 1D chain of [Pb(HPO_3)_5]_∞. The nonlinear optical properties of Pb_2(HPO_3)(NO_3)_2 have been studied for the first time. The synergistic effect of the stereo-active lone-pairs on Pb"2"+ cations and π-conjugated NO_3 units in Pb_2(HPO_3)(NO_3)_2 produces a moderate second harmonic generation (SHG) response of ∼1.8×KDP (KH_2PO_4), which is phase matchable (type I). IR, UV–vis spectra and thermogravimetric analysis (TGA) for the two compounds were also measured. - Graphical abstract: Two lead phosphites Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 are studied. A new lead phosphite Pb_2(HPO_3)_2 features a unique 3D framework structure and Pb_2(HPO_3)(NO_3)_2 shows a moderate SHG response of ∼1.8×KDP (KH_2PO_4). - Highlights: • A new lead phosphite, Pb_2(HPO_3)_2 is reported. • Pb_2(HPO_3)_2 features a unique 3D framework structure. • NLO property of Pb_2(HPO_3)(NO_3)_2 is investigated. • Pb_2(HPO_3)(NO_3)_2 produces a moderate SHG response of ∼1.8×KDP (KH_2PO_4).

  12. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Paulo [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States); Qutubuddin, Syed [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States)]. E-mail: sxq@case.edu

    2006-03-15

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T {sub g}) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T {sub g} 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films.

  13. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  14. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study; Sintesis de complejos de samario con el ligante derivado de base de Schiff Quinolinica. Caracterizacion y estudio fotofisico

    Energy Technology Data Exchange (ETDEWEB)

    Lucas H, J.

    2016-07-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  15. Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H

    2015-06-18

    The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.

  16. Synthesis, transport and dielectric properties of polyaniline/Co3O4 ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites ... Initial increment in conductivity is due to extended chain length of polyaniline where polarons possess .... Figure 3 displays the scanning electron micrograph of.

  17. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  18. Transition metal borides. Synthesis, characterization and superconducting properties

    International Nuclear Information System (INIS)

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M 2 B, MB, M 3 B 2 , MB 2 , and M 2 B 4 . The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W 2 B 4 to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W 2 B 4 was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB 2 (T C = 3.5 K), β-MoB (T C = 2.4 K), β-WB (T C = 2.0 K), α-WB (T C = 4.3 K), W 2 B 4 (T C = 5.4 K), Re 7 B 3 (T C = 2.4 K). A relationship between the superconducting properties and the compositional and structural features was discussed for metal diborides. Also it was

  19. How to prevent dimerization of laser dyes in water? Simulation and organic synthesis

    International Nuclear Information System (INIS)

    Dare-Doyen, S.

    2000-01-01

    Xanthenes are widely used as laser dyes in ethanol medium because their photophysical properties there are excellent. On the other hand, when they are dissolved in water, their fluorescence is almost zero on account of the dimerization phenomenon (aggregation of two molecules) which is specific in water although the interaction between the two molecules (these dyes are mainly cations) be repulsive. The first part of this work deals with the dimerization study of two dyes, the 6G rhodamine and the 6G pyronine. Molecular dynamics simulation results (AMBER software) have been compared with those of the NMR; thus it has been possible to describe the geometry of the 6G rhodamine dimer and to identify two structures present in equal quantities for the 6G pyronine dimer. It has been demonstrated that the role of water is essential in the aggregation mechanism; this role can be understood as resulting of the hydrophobic effect. The second part of this work concerns the synthesis of rhodamines which are soluble but not able to dimerize in water at the running concentrations of the laser dyes. At first, aminophenol precursors having hydrophilic ionic groups on modifiable sites have been synthesized without changing their photophysical properties. The synthesis sequence of the 3-(2-alkylamino-4-hydroxyphenyl)propionic acids has not given the waited products but N-(3'-hydroxyphenyl)amino-alkylsulfonic acids have been obtained. Their condensation with the phthalic anhydride has led to dyes of a charge -2 at a pH of 5 in water and which have photophysical properties similar to those of the rhodamine 575 in ethanol and laser emission properties in the emission spectral range of the rhodamine 6G in ethanol. This synthesis work has then led to the preparation of two laser dyes usable in water. (author) [fr

  20. Photophysical investigation of cyano-substituted terrylenediimide derivatives.

    Science.gov (United States)

    Kennes, Koen; Baeten, Yannick; Vosch, Tom; Sempels, Wouter; Yordanov, Stoyan; Stappert, Sebastian; Chen, Long; Müllen, Klaus; Hofkens, Johan; Van der Auweraer, Mark; Fron, Eduard

    2014-12-18

    Two new terrylenediimide (TDI) chromophores with cyano substituents in the bay and core area (BCN-TDI and OCN-TDI, respectively) have been characterized by a wide range of techniques, and their applicability for stimulated emission depletion (STED) microscopy has been tested. By cyano substitution an increase of the fluorescence quantum yield and a decrease of the nonradiative rate constant is achieved and attributed to a reduced charge-transfer character of the excited state due to a lower electron density of the TDI core. For BCN-TDI, the substitution in the bay area induces a strong torsional twist in the molecule which, similar to phenoxy bay-perylenediimide (PDI), has a strong effect on the fluorescence lifetime but appears to prevent the aggregation that is observed for OCN-TDI. The single-molecule photobleaching stability of BCN- and OCN-TDI is lower than that of a reference TDI without cyano substitution (C7-TDI), although less so for OCN-TDI. The photophysical properties of the excited singlet state are only slightly influenced by the cyano groups. The observed intense stimulated emission, the pump-dump-probe experiments, and STED single-molecule imaging indicate that STED experiments with the cyano-substituted TDIs are possible. However, because of aggregation and more efficient photobleaching, the performance of BCN- and OCN-TDI is worse than that of the reference compound without cyano groups (C7-TDI). Bay-substituted TDIs are less suitable for STED microscopy.

  1. Synthesis and optical properties of biphenylene ethynylene co ...

    Indian Academy of Sciences (India)

    The absorption and photoluminescence spectra of the polymers, P1, P2 and P5 showed .... Microanalyses were performed at the ... signals were passed through a second monochromator .... 3.1 Synthesis and characterization of polymers and.

  2. Synthesis and properties of Oxasmaragdyrins containing one Five ...

    Indian Academy of Sciences (India)

    pioneering synthesis of Vitamin B12.2a However, the first synthesis of .... 2.3b Compound 3: Yield 22% (135 mg); 1H NMR. (500 MHz, CDCl3, 25 .... (b). Figure 1. (a) 1H NMR and (b) 1H-1H COSY NMR spectrum of compound 4 recorded in CDCl3 at room temperature. The double crossed peak in (a) and an asterix marked ...

  3. Synthesis and property characterization of two novel side-chain isoindigo copolymers for polymer solar cells

    Directory of Open Access Journals (Sweden)

    X. Liu

    2015-11-01

    Full Text Available Two novel side-chain conjugated polymers, PTBT-TID and PTBT-TTID, based on the new synthetic thiophene-benzne-thiophene (TBT unit, side-chain isoindigo (ID unit, and the introduced thiophene π-bridge, have been designed and synthesized. The photophysical, electrochemical and photovoltaic properties of the two polymers have been systematically investigated. The two polymers possess relatively good solubility as well as excellent thermal stability up to 380°C, and all of the polymer solar cell (PSC devices based on the two polymers obtain high open circuit voltage (Voc of about 0.8 V. The polymer solar cells based on the polymer PTBT-TID show relatively higher efficiencies than the PTBT-TTID-based ones, due to the broader absorption spectrum, a relatively higher hole mobility, a lower HOMO (the highest occupied molecular orbital energy level, a stronger IPCE (the incident photon to current conversion efficiency response and a better microphase separation, Consequently, the device based on PTBT-TID:PC61BM (1:2, by weight gives the best power conversion efficiency (PCE of 2.04%, with a short-circuit current density (Jsc of 5.39 mA·cm–2, an open-circuit voltage (Voc of 0.83 V, and a fill factor (FF of 0.45.

  4. Synthesis of diketopyrrolopyrrole containing copolymers: a study of their optical and photovoltaic properties.

    Science.gov (United States)

    Kanimozhi, Catherine; Balraju, P; Sharma, G D; Patil, Satish

    2010-03-11

    The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620-800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPP-BBT:PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm(2)). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.

  5. Synthesis and fluorescence properties of some difluoroboron β-diketonate complexes and composite containing PMMA

    Science.gov (United States)

    Xing, Dongye; Hou, Yanjun; Niu, Haijun

    2018-03-01

    A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.

  6. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    Science.gov (United States)

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  7. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  8. Synthesis, photophysical and metal ion signalling behaviour of mono

    Indian Academy of Sciences (India)

    Unknown

    component systems, ... tion and heavy metal ions, is of considerable interest for various ... cause of the macrocyclic effect, expect to show ... whose chloride salt, mercuric chloride, was used. ... filtered, concentrated, washed with water and ex-.

  9. Synthesis, Spectral, Electrochemical and Theoretical Investigation of ...

    Indian Academy of Sciences (India)

    chemsci

    and thermal properties along with computed HOMO-LUMO energy levels were studied for the synthesized compounds. ... anthraquinone (Chart 1) and their photophysical, elec- ... Indolo[2,3-b]quinoxaline based dyes as n–type materials. 485.

  10. Facile synthesis and catalytic properties of silver colloidal ...

    Indian Academy of Sciences (India)

    Administrator

    al 2011). Organic thiol compounds, long-chain amines ... synthesis of nanomaterials by mixing with other co- surfactants such ... example, Zhang and co-workers (2006) used SDBS as a capping .... of AgCNPs, we considered that monolayer micelle model could be ... significantly with pH value, when AgCNPs are suspended.

  11. Hydrothermal synthesis of titania powders and their photocatalyc properties

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Houšková, Vendula

    2008-01-01

    Roč. 52, č. 4 (2008), s. 278-290 ISSN 0862-5468 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : anatase * rutile * hydrothermal synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.644, year: 2008

  12. Photoprotection and the photophysics of acylated anthocyanins.

    Science.gov (United States)

    da Silva, Palmira Ferreira; Paulo, Luísa; Barbafina, Adrianna; Eisei, Fausto; Quina, Frank H; Maçanita, António L

    2012-03-19

    The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanin-coumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyanin-co-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cation-co-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  14. Synthesis, sintering properties and thermal conductivity of uranium carbonitrides

    International Nuclear Information System (INIS)

    Wolters, R.A.M.

    1978-01-01

    An introduction to the applications and chemistry of uranium carbonitrides is given including the potential use as a nuclear fuel. The powder synthesis of UC, UN and mixtures of UC and UN by a cyclic process is described. The correlation between the composition ratio UN/(UC+UN) in the final product and the parameters of the process is only determined qualitatively. Batch synthesis of a powder does not lead to an increase of the content of metallic impurities and oxygen. The impurity level is determined by that of the starting uranium metal and the thermal conductivity of the sintered compacts of uranium carbonitrides are determined via the measurement of the thermal diffusivity at 1100-1700 K. (Auth.)

  15. Photo-physical and interactional behavior of two members of group B vitamins in different solvent media

    Science.gov (United States)

    Zakerhamidi, M. S.; Zare Haghighi, L.; Seyed Ahmadian, S. M.

    2017-09-01

    In this paper, absorption and fluorescence spectra of vitamin B12 (cyanocobalamin) and vitamin B6 (pyridoxine) were recorded in solvents with different polarity, at room temperature. These vitamins' photo-physical behavior depends strongly on the solvent's nature along with different attached groups in their structures. In order to investigate the solvent-solute interactions and environmental effect on spectral variations, linear solvation energy relationships concept, suggested by Kamlet and Taft was used. Solvatochromic method was also used for measuring the ground and excited state dipole moments of these vitamins. According to our experimental results, dipole moment of these groups of vitamins in excited state is larger than ground state. Furthermore, obtained photo-physical and interactional properties of used vitamins can give important information on how this group of vitamins behaves in biological systems.

  16. Synthesis and spectral properties of europium phthalocyanine complexes

    International Nuclear Information System (INIS)

    Maksimova, K.N.; Bazyakina, N.L.; Kutyreva, V.V.; Suvorova, O.N.; Domrachev, G.A.

    2008-01-01

    Synthesis of europium monophthalocyanic complexes with thenoyltrifluroacetonate (tta) and ferrocenoyltrifluoroacetate (fta) ligands has been considered. Spectral characteristics of complexes PcEu(tta)(ttaH) and PcEu(fta)(ftaH) (Pc - phthalocyanine ligand) have been investigated. One of β-diketonate ligand is proposed to bind with europium ion covalently, and the second ligand saturates coordination sphere of europium due to donor-acceptor binding [ru

  17. Phosphorus-containing macrocyclic compounds: synthesis and properties

    International Nuclear Information System (INIS)

    Knyazeva, I R; Burilov, Alexander R; Pudovik, Michael A; Habicher, Wolf D

    2013-01-01

    Main trends in the development of methods for the synthesis of phosphorus-containing macrocyclic compounds in the past 15 years are considered. Emphasis is given to reactions producing macrocyclic structures with the participation of a phosphorus atom and other functional groups involved in organophosphorus molecules and to modifications of macrocycles by phosphorus compounds in different valence states. Possibilities of the practical application of phosphorus-containing macrocyclic compounds in difference areas of science and engineering are discussed. The bibliography includes 205 references.

  18. Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces

    KAUST Repository

    Shinagawa, Tatsuya

    2016-08-04

    Direct photon to chemical energy conversion using semiconductor-electrocatalyst-electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties (1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces (3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface (5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing "photocatalysis by design" concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory. Photocatalytic water splitting (especially hydrogen evolution on metal surfaces) was selected as a topic, and the photophysical and electrochemical processes that occur at semiconductor-metal, semiconductor-electrolyte and metal-electrolyte interfaces are discussed.

  19. Synthesis and Photophysical Properties of Biaryl-Substituted Nucleos(t)ides. Polymerase Synthesis of DNA Probes Bearing Solvatochromic and pH Sensitive Dual Fluorescent and 19F NMR Labels

    Czech Academy of Sciences Publication Activity Database

    Riedl, Jan; Pohl, Radek; Rulíšek, Lubomír; Hocek, Michal

    2012-01-01

    Roč. 77, č. 2 (2012), s. 1026-1044 ISSN 0022-3263 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleotides * biaryls * fluorescence * DNA Subject RIV: CC - Organic Chemistry Impact factor: 4.564, year: 2012

  20. Electronic structures and photophysics of d8-d8 complexes

    Czech Academy of Sciences Publication Activity Database

    Gray, H. B.; Záliš, Stanislav; Vlček, Antonín

    2017-01-01

    Roč. 345, AUG 2017 (2017), s. 297-317 ISSN 0010-8545 R&D Projects: GA MŠk LH13015 Grant - others:COST(XE) CM1405 Institutional support: RVO:61388955 Keywords : excitation * electronic structures * photophysics Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 13.324, year: 2016

  1. Synthesis, characterization, and physical properties of 1D nanostructures

    Science.gov (United States)

    Marley, Peter Mchael

    temperature makes this system particularly attractive and viable for technological applications. A mechanistic basis for the phase transition is proposed based on charge disproportionation evidenced at room temperature in near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements, ab initio density functional theory calculations of the band structure, and electrical transport data suggesting that transformation to the metallic state is induced by melting of specific charge localization and ordering motifs extant in these materials. In Chapter 4, we report the synthesis of single-crystalline delta-Ag 0.88V2O5 nanowires and unravel pronounced electronic phase transitions induced in response to temperature and applied electric field. Specifically, a pronounced semiconductor---semiconductor transition is evidenced for these materials at ca. 150 K upon heating and a distinctive insulator---conductor transition is observed upon application of an in-plane voltage. An orbital-specific picture of the mechanistic basis of the phase transitions is proposed using a combination of density functional theory (DFT) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Structural refinements above and below the transition temperature, angle-resolved O K-edge NEXAFS spectra, and DFT calculations suggest that the electronic phase transitions in these 2D frameworks are mediated by a change in the overlap of d xy orbitals. The classical orthorhombic layered phase of V2O5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Concluding with Chapter 5, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V 2O5 (zeta-V2O5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel

  2. Synthesis and optical properties of CdS/PVA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, P K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Gokhale, R R [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Subbarao, V V.V.S. [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Singh, Narendra [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Jun, K -W [Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Das, B K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India)

    2005-12-15

    Yellow and orange light emission from nanoparticles of cadmium sulphide embedded in polyvinyl alcohol (PVA) has been observed as thin films. The synthesis of CdS embedded in PVA has been performed via two different routes at room temperature and the composite films have been prepared by vacuum evaporation of solvent on a glass surface. The absorption spectra show a blue shift of more than 80 nm as compared to bulk CdS band-gap. The photoluminescence studies indicate the air stable light emission from the films. Bright light emission at 515 nm (2.41 eV) has been observed without using PVA.

  3. Vibrational properties of gold nanoparticles obtained by green synthesis

    Science.gov (United States)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  4. Modified ion exchange resins - synthesis and properties. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, F.; Klein, J.; Pohl, F.; Widdecke, H.

    1982-01-22

    Sulfomethylated resins are prepared by polymer analogous reactions, starting from macroporous poly(styrene-co-divinylbenzene) matrices. Different reaction paths are discussed and used in the synthesis. Sulfomethylation can be achieved by reaction of a chloromethylated resin with dimethyl sulfide and sodium sulfonate or alternatively by oxidation of polymer-bound thiol groups. Both methods give high conversions as shown by IR spectra and titration of the sulfonic acid groups. Poly(1-(4-hydroxysulfomethylphenyl)ethylene) (3) is obtained by reaction of poly(1-(4-hydroxyphenyl)ethylene) (2) resin with formaldehyde/sodium sulfonate. The thermal stability, catalytic activity, and ion exchange equilibria of the sulfomethylated resin are investigated.

  5. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    Science.gov (United States)

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  6. Synthesis and luminescent properties of novel Cu (II), Zn (II ...

    Indian Academy of Sciences (India)

    Administrator

    solid state respectively, and the maximum wavelengths of the polymeric complexes 2 and 3 are red ... properties of inorganic and organic small molecule ... good electro- and photo-active properties. ... solution was poured over 600 mL of ice water and ... Extraction with ..... atom and carbon atom in the phenanthroline and.

  7. Design, synthesis and physical properties of poly(styrene ...

    Indian Academy of Sciences (India)

    Administrator

    tance in the commodity plastics field because of their advantages as balanced properties and cost-effectiveness. ... Polymers and polymer-based materials with electro- conductive properties are materials with potential appli- ... BIO-RAD (4 cm–1 resolution). The number and weight- average molecular weight (Mn and Mw) ...

  8. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Science.gov (United States)

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  9. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Hamid Esfahani

    2017-10-01

    Full Text Available Ceramic nanofibers (NFs have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  10. Magnetic and Photo-Physical Properties of Lanthanide Dinuclear Complexes Involving the 4,5-Bis(2-Pyridyl-N-Oxidemethylthio-4′,5′-Dicarboxylic Acid-Tetrathiafulvalene-, Dimethyl Ester Ligand

    Directory of Open Access Journals (Sweden)

    Fabrice Pointillart

    2015-12-01

    Full Text Available The reaction between the 4,5-bis(2-pyridyl-N-oxidemethylthio-4′,5′-dicarboxylic acid-tetrathiafulvalene-, dimethyl ester ligand (L and the metallo-precursors Ln(hfac3·2H2O leads to the formation of two dinuclear complexes of formula [Ln2(hfac6(L]·(CH2Cl2·(C6H140.5 (LnIII = DyIII (1 and YbIII (2. The X-ray structure reveals a quite regular square anti-prism symmetry for the coordination sphere of the lanthanide ion. UV-visible absorption properties have been experimentally measured and rationalized by TD-DFT calculations. The functionalization of the tetrathiafulvalene (TTF core by two methyl ester moieties induces the appearance of an additional absorption band in the lowest-energy region of the spectrum. The latter has been identified as a HOMO (Highest Occupied Molecular Orbital→LUMO (Lowest Unoccupied Molecular Orbital Intra-Ligand Charge Transfer (ILCT transition in which the HOMO and LUMO are centred on the TTF and methyl ester groups, respectively. Irradiation at 22,222 cm−1 of this ILCT band induces an efficient sensitization of the YbIII-centred emission that can be correlated to the magnetic properties.

  11. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-06-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  12. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-03-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  13. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives

    Directory of Open Access Journals (Sweden)

    Osman Hasnah

    2012-04-01

    Full Text Available Abstract Background Coumarin derivatives exhibit a wide range of biological properties including promising antioxidant activity. Furthermore, microwave-assisted organic synthesis has delivered rapid routes to N- and O-containing heterocycles, including coumarins and thiazoles. Combining these features, the use of microwave-assisted processes will provide rapid access to a targeted coumarin library bearing a hydrazino pharmacophore for evaluation of antioxidant properties Results Microwave irradiation promoted 3 of the 4 steps in a rapid, convergent synthesis of a small library of hydrazinyl thiazolyl coumarin derivatives, all of which exhibited significant antioxidant activity comparable to that of the natural antioxidant quercetin, as established by DPPH and ABTS radical assays Conclusions Microwave dielectric heating provides a rapid and expedient route to a series of hydrazinyl thiazolyl coumarins to investigate their radical scavenging properties. Given their favourable properties, in comparison with known antioxidants, these coumarin derivatives are promising leads for further development and optimization.

  14. Synthesis and properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis, thermal and magnetic properties of RE-diborides

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.V., E-mail: vvnovikov@mail.ru [Training-Research Center ' Bryansk Physical Laboratory' , Petrovsky Bryansk State University, 14, Bezhitskaya St, 241036 Bryansk (Russian Federation); Matovnikov, A.V. [Training-Research Center ' Bryansk Physical Laboratory' , Petrovsky Bryansk State University, 14, Bezhitskaya St, 241036 Bryansk (Russian Federation); Volkova, O.S. [Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow (Russian Federation); Vasil' ev, A.N., E-mail: vasil@mig.phys.msu.ru [Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow (Russian Federation)

    2017-04-15

    Techniques of synthesis of RE diborides (RB{sub 2}) are developed (R=Tb, Dy, Ho, Er, Lu). Temperature dependence of magnetisation, a heat capacity, a lattice parameters of diborides in the range of 2–300 K are measured. According to joint calorimetric and X-ray research the analysis of a phonon component of a heat capacity and thermal expansion of RE-diborides is carried out by Debye-Einstein's models, the parameters of the model are determined. The change of magnetisation of the ferromagnetic RB{sub 2} compounds with growth of temperature caused by violation of ordering in the system of the atomic magnetic moments is compared with the change of entropy of a magnetic subsystem calculated from calorimetric data. Analytical expansion for calculation of a magnetic component of a heat capacity by RB{sub 2} magnetisation data at the temperatures of 2–300 K is obtained. - Highlights: • 1 Techniques of synthesis of RE diborides (RB{sub 2}) are developed (R=Tb, Dy, Ho, Er, Lu). • 2 Temperature dependence of magnetisation of diborides at 2–300 K is determined. • 3 Calculation method of RB{sub 2} magnetic heat capacity from magnetic data is obtained.

  16. Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

    CSIR Research Space (South Africa)

    Motlatle, Abesach M

    2016-10-01

    Full Text Available of Nanoparticle Research, vol. 18: DOI: 10.1007/s11051-016-3614-8 Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles Motlatle AM Kesevan Pillai S Scriba MR Ray SS ABSTRACT: Cu...

  17. Synthesis and properties of highly branched Jatropha curcas L. oil derivatives

    NARCIS (Netherlands)

    Daniel, Louis; Ardiyanti, Agnes R.; Schuur, Boelo; Manurung, Robert; Broekhuis, Antonius A.; Heeres, Hero J.

    The synthesis and properties of a number of novel branched Jatropha curcas L. oil (JO) derivatives containing vicinal di-ester units in the fatty acid chains are reported. Both the length (acetyl vs. hexanoyl) and the stereochemistry of the vicinal di-ester units (cis vs. trans) were varied. The

  18. Synthesis, structural and ferromagnetic properties of La1–x Kx ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Synthesis, structural and ferromagnetic properties of La1–KMnO3 (0.0≤ 0.25) phases by solution combustion method ... Structural parameters were determined by the Rietveld refinement method using powder XRD data. Parent ... The ratio of the Mn3+/Mn4+ was determined by the iodometric titration.

  19. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    NARCIS (Netherlands)

    Richter, Alexander P.; Bharti, Bhuvnesh; Armstrong, Hinton B.; Brown, Joseph S.; Plemmons, Dayne; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2016-01-01

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and

  20. The Synthesis and Luminescence-spectroscopic Properties of Fluorescent Condensation Polymers

    Science.gov (United States)

    Barashkov, Nikolai N.

    1985-07-01

    The results of studies on the synthesis of polycondensation phosphorus-containing aliphatic and aromatic polymers as well as the products of polymer-analogue transformations with phosphorus-groups in the side chain are examined. The light absorption and luminescent properties of the polymers obtained and of model compounds having an analogous structure are discussed. The bibliography includes 108 references.

  1. Synthesis and properties of lyotropic poly(amide-block-aramid) copolymers

    NARCIS (Netherlands)

    De Ruijter, C.

    2006-01-01

    This thesis describes the synthesis and properties of liquid crystalline block copolymers comprised of alternating rigid and flexible blocks for the preparation of self-reinforcing materials. The incentive for this work was the expectation that the rigid segments would phase separate on a

  2. Understanding Microstructural Properties of Perovskite Ceramics through Their Wet-Chemical Synthesis

    NARCIS (Netherlands)

    Stawski, Tomasz

    2011-01-01

    This thesis comprises of seven full research chapters on the morphology, properties and processing of sol-gel precursor systems of barium titanate and lead zirconate titanate thin films and powders. In all the considered problems, the synthesis leading to nano-sized perovskite ceramics constitutes

  3. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Synthesis of new porphyrinoids for biomedical and materials applications

    Science.gov (United States)

    Stewart, Fraser

    The facile synthesis of three non-hydrolysable thioglycosylated porphyrinoids is reported. Starting from meso perfluorophenylporphyrin (TPPF20), the non-hydrolysable thioglycosylated porphyrin (PGlc4), chlorin (CGlc4), isobacteriochlorin (IGlc4), and bacteriochlorin (BGlc4) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. With reduction of one or two pyrrole double bonds, there is a red shift in the lowest energy absorption band and a significant increase in intensity. The fluorescence of these porphyrinoids is in the order PGlc4 = BGlc4 spectroscopy (DOSY) in solution. The hydrocarbon chains on the melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A water soluble zinc (II) phthalocyanine symmetrically appended with eight thioglucose units was synthesized from commercially available hexadecafluoro-phthalocyaninato zinc(II) by controlled nucleophilic substitution of the peripheral fluoro groups by thio-sugars. The photophysical properties and cancer cell uptake studies of this nonhydrolyzable thioglycosylated phthalocyanine are reported. The new compound has amphiphilic character, is chemically and photochemically stable, and can potentially be used as a photosensitizer in photodynamic therapy. A porphyrin bearing pyridyl groups at the meso positions was synthesized using 2,6-diacetamido-4-formylpyridine. A new method has been developed for the synthesis of the precursor aldehyde that avoid much of the problems associated with the earlier synthesis. With this porphyrin it is possible to build hetero-complementary rigid, multi-porphyrin supramolecular arrays via hydrogen bonds. For example, when using naphthalenediimide (NDI) units a

  5. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado; Herrer, Rafael; Bourlinos, Athanasios B.; Li, Ruipeng; Amassian, Aram; Archer, Lynden A.; Giannelis, Emmanuel P.

    2010-01-01

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached

  6. Synthesis, non-isothermal crystallization and magnetic properties of ...

    Indian Academy of Sciences (India)

    perties and modifies the physical properties of the matrix considerably. However ... perties and harmlessness to health. PEVA, in their different ..... crystals causing a depression in Tm and Tp. In all the cases, the crystallization enthalpy peak ...

  7. Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...

    Indian Academy of Sciences (India)

    L1) identifies its molecular structure and reveals π-π stacking. The synthetic mechanisms for L2, L3 were studied by density functional theory calculations. And a comprehensive study of spectroscopic properties involving experimental data and ...

  8. Synthesis and properties of amphiphilic hyperbranched polyethers as pigment dispersant

    Science.gov (United States)

    Xu, Q.; Zhou, Y. J.; Long, S. J.; Liu, Y. G.; Li, J. H.

    2018-01-01

    Hyperbranched polymers possess prominent properties such as low viscosity, good solubility, high rheological property, environmental non-toxic, and so on, which have potential applications in coatings. In this study, the amphiphilic hyperbranched polyethers (AHPs) consisting of hydrophobic hyperbranched polyethers core and hydrophilic poly (ethylene glycol) arms with different degree of branching (DB) under various reaction temperatures was prepared by the cation ring-opening polymerization. Their structures were characterized by IR, 13CNMR and GPC. Their dispersion properties for pigment particles were investigated. The AHP47 with 0.47 DB was found to have good dispersion properties for Yellow HGR. This work would provide experimental data and theoretical foundation for the application of hyperbranched polyethers in environmental protection coating.

  9. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods

    Science.gov (United States)

    Palmero, Paola

    2015-01-01

    Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029

  10. Specific solvent effect on lumazine photophysics: A combined fluorescence and intrinsic reaction coordinate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moyon, N. Shaemningwar; Gashnga, Pynsakhiat Miki; Phukan, Smritakshi; Mitra, Sivaprasad, E-mail: smitra@nehu.ac.in

    2013-06-27

    Highlights: • Correlation of lumazine photophysics with multiparametric Kamlet–Taft equation. • Solvent basicity (β) contributes maximum towards the hydrogen bonding (HB) effect. • HB interaction occurs at N1 and N3 proton in S{sub 0} and S{sub 1} state, respectively. • IRC calculation for different tautomerization processes both in S{sub 0} and S{sub 1} states. • Process related to riboflavin biosynthesis is thermodynamically feasible. - Abstract: The photophysical properties and tautomerization behavior of neutral lumazine were studied by fluorescence spectroscopy and density functional theory calculation. A quantitative estimation of the contributions from different solvatochromic parameters, like solvent polarizibility (π{sup ∗}), hydrogen bond donation (α) and hydrogen bond accepting (β) ability of the solvent, was made using linear free energy relationships based on the Kamlet–Taft equation. The analysis reveals that the hydrogen bond acceptance ability of the solvent is the most important parameter characterizing the excited state behavior of lumazine. Theoretical calculations result predict an extensive charge redistribution of lumazine upon excitation corresponding to the N3 and N1 proton dissociation sites by solvents in the ground and excited states, respectively. Comparison of S{sub 0} and S{sub 1} state potential energy curves constructed for several water mediated tautomerization processes by intrinsic reaction coordinate analysis of lumazine-H{sub 2}O cluster shows that (3,2) and (1,8) hydrogen migrations are the most favorable processes upon excitation.

  11. Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments

    Directory of Open Access Journals (Sweden)

    Serra Arslancan

    2017-06-01

    Full Text Available Interest in understanding the photophysics and photochemistry of thiated nucleobases has been awakened because of their possible involvement in primordial RNA or their potential use as photosensitizers in medicinal chemistry. The interpretation of the photodynamics of these systems, conditioned by their intricate potential energy surfaces, requires the powerful interplay between experimental measurements and state of the art molecular simulations. In this review, we provide an overview on the photophysics of natural nucleobases’ thioanalogs, which covers the last 30 years and both experimental and computational contributions. For all the canonical nucleobase’s thioanalogs, we have compiled the main steady state absorption and emission features and their interpretation in terms of theoretical calculations. Then, we revise the main topographical features, including stationary points and interstate crossings, of their potential energy surfaces based on quantum mechanical calculations and we conclude, by combining the outcome of different spectroscopic techniques and molecular dynamics simulations, with the mechanism by which these nucleobase analogs populate their triplet excited states, which are at the origin of their photosensitizing properties.

  12. Hydrothermal synthesis and physicochemical properties of ruthenium(0) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dikhtiarenko, A., E-mail: dikhtiarenkoalla@uniovi.es [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Khainakov, S.A.; Garcia, J.R.; Gimeno, J. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Pedro, I. de; Fernandez, J. Rodriguez [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Ruthenium nanoparticles were synthesized by hydrothermal technique. Black-Right-Pointing-Pointer The average size of the nanoparticles are depend on the reducing agent used. Black-Right-Pointing-Pointer The magnetic response seems to be dominated by a paramagnetic contribution characteristic of the band electronic magnetism of the ruthenium(0) nanoparticles. - Abstract: The synthesis of ruthenium nanoparticles in hydrothermal conditions using mild reducing agents (succinic acid, ascorbic acid and sodium citrate) is reported. The shape of the nanoparticles depends on the type of the reducing agent, while the size is more influenced by the pH of the medium. The magnetic response seems to be dominated by a paramagnetic contribution characteristic of the band electronic magnetism of the nanoparticles.

  13. Template assisted synthesis and optical properties of gold nanoparticles.

    Science.gov (United States)

    Fodor, Petru; Lasalvia, Vincenzo

    2009-03-01

    A hybrid nanofabrication method (interference lithography + self assembly) was explored for the fabrication of arrays of gold nanoparticles. To ensure the uniformity of the nanoparticles, a template assisted synthesis was used in which the gold is electrodeposited in the pores of anodized aluminum membranes. The spacing between the pores and their ordering is controlled in the first fabrication step of the template in which laser lithography and metal deposition are used to produce aluminum films with controlled strain profiles. The diameter of the pores produced after anodizing the aluminum film in acidic solution determines the diameter of the gold particles, while their aspect ratio is controlled through the deposition time. Optical absorbance spectroscopy is used to evaluate the ability to tune the nanoparticles plasmon resonance spectra through control over their size and aspect ratio.

  14. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  15. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    Science.gov (United States)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  16. Influence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate

    International Nuclear Information System (INIS)

    Leino, Ewelina; Kumar, Narendra; Mäki-Arvela, Päivi; Aho, Atte; Kordás, Krisztián; Leino, Anne-Riikka; Shchukarev, Andrey; Murzin, Dmitry Yu.; Mikkola, Jyri-Pekka

    2013-01-01

    Synthesis of cerium (IV) oxide by means of room temperature precipitation method was carried out. The effect of preparation variables such as synthesis time, calcination temperature and pH of the solution on resulting CeO 2 properties was discussed. Moreover, the comparison of CeO 2 samples prepared in a static and rotation mode of synthesis is presented. The solid catalysts were characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, nitrogen physisorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy using pyridine as a probe molecule and temperature programmed desorption of CO 2 . Significant variations in physico-chemical properties of CeO 2 by varying the preparation conditions were observed. Furthermore, the catalytic performances of CeO 2 catalysts were compared in the synthesis of diethyl carbonate starting from ethanol and CO 2 using butylene oxide as a dehydrating agent. The dependence of CeO 2 properties on its catalytic activity is evaluated in detail. - Highlights: • Synthesis of cerium (IV) oxide by precipitation method. • Influence of synthesis time, calcination temperature, mode of stirring and solution pH on properties. • Characterization by XRD, SEM, TEM, nitrogen physisorption, XPS, FTIR. • Catalytic performance diethyl carbonate synthesis from ethanol and CO 2

  17. Synthesis, Structure and Fluorescence Properties of 5,17-Distyryl-25,26,27,28-tetraproproxycalix[4]arenes in the Cone Conformation

    DEFF Research Database (Denmark)

    Larsen, Mogens; Krebs, Frederik C; Jørgensen, Mikkel

    1998-01-01

    The HWE (Horner-Wadsworth-Emmons) reaction performed on the easily obtainable 5,17-diformyl- calix[4]arenes (cone) with arylmethyl phosphorus ylides yielded 5,17-distyryl-25,26,27, 28-tetrapropoxycalix[4]arenes (cone) in high yield and purely in the E/E configuration. Compounds 2-5 were prepared...... this way containing bromine. Subsequent bromine-lithium exchange and reaction with trimethoxyborane yielded the boryl- substituted 5,17-distyrylcalix[4] arenes 6-7a. The structures of 3, 5, and 7a were determined by X-ray diffraction. The photophysical properties of 2 were established by absorption...

  18. Boron nitride ceramics from molecular precursors: synthesis, properties and applications.

    Science.gov (United States)

    Bernard, Samuel; Salameh, Chrystelle; Miele, Philippe

    2016-01-21

    Hexagonal boron nitride (h-BN) attracts considerable interest because its structure is similar to that of carbon graphite while it displays different properties which are of interest for environmental and green technologies. The polar nature of the B-N bond in sp(2)-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission. It is chemically inert and nontoxic and has good environmental compatibility. h-BN also has enhanced physisorption properties due to the dipolar fields near its surface. Such properties are closely dependent on the processing method. Bottom-up approaches consist of transforming molecular precursors into non-oxide ceramics with retention of the structural units inherent to the precursor molecule. The purpose of the present review is to give an up-to-date overview on the most recent achievements in the preparation of h-BN from borazine-based molecular single-source precursors including borazine and 2,4,6-trichloroborazine through both vapor phase syntheses and methods in the liquid/solid state involving polymeric intermediates, called the Polymer-Derived Ceramics (PDCs) route. In particular, the effect of the chemistry, composition and architecture of the borazine-based precursors and derived polymers on the shaping ability as well as the properties of h-BN is particularly highlighted.

  19. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    Science.gov (United States)

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Synthesis and luminescence properties of erbium silicate thin films

    International Nuclear Information System (INIS)

    Miritello, Maria; Lo Savio, Roberto; Iacona, Fabio; Franzo, Giorgia; Bongiorno, Corrado; Priolo, Francesco

    2008-01-01

    We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 deg. C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O 2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N 2 . Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 10 22 cm -3 ) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material

  1. Three-dimensional graphene networks: synthesis,properties and applications

    Institute of Scientific and Technical Information of China (English)

    Yanfeng Ma; Yongsheng Chen

    2015-01-01

    Recently, three-dimensional graphene/graphene oxide(GO) networks(3DGNs) in the form of foams,sponges and aerogels have atracted much atention. 3D structures provide graphene materials with high speciic surface areas, large pore volumes, strong mechanical strengths and fast mass and electron transport,owing to the combination of the 3D porous structures and the excellent intrinsic properties of graphene.his review focuses on the latest advances in the preparation, properties and potential applications of 3D micro-/nano-architectures made of graphene/GO-based networks, with emphasis on graphene foams and sponges.

  2. Synthesis, magnetic and microstructural properties of Alnico magnets with additives

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair, E-mail: dza.isit@yahoo.com [School of Materials Science and Engineering, South China, University of Technology, Guangzhou 510640 (China); Liu, Zhongwu [School of Materials Science and Engineering, South China, University of Technology, Guangzhou 510640 (China); Ul Haq, A. [Riphah International University, I-14, Islamabad (Pakistan)

    2017-04-15

    The phase formation, crystal structure, crystallographic texture, microstructure and magnetic properties of Alnico-8 alloys with varying Co and Nb content have been investigated and presented. Alnico-8 alloys were fabricated by induction melting and casting techniques. Magnetic properties in the alloys were induced by optimized thermomagnetic treatment and subsequent aging. The 37.9Fe-32Co-14Ni-7.5Al-3.1Cu-5.5Ti alloy exhibits coercivity of 110 kA/m, remanence of 0.66 T and energy product of 31.2 kJ/m{sup 3}. The addition of 35 wt% Co in conjunction with 1.5 wt% Nb to 37.9Fe-14Ni-7.5Al-3.1Cu-5.5Ti alloys led to increase the magnetic properties, especially coercivity. The enhancement of the coercivity is attributed to ideal shape anisotropy and optimum mass fraction of ferromagnetic Fe-Co rich particles, which are 25–30 nm in diameter and 300–350 nm in length. The 33.4Fe-35Co-14Ni-7.5Al-5.5Ti-3.1Cu-1.5 Nb alloy yields the optimum magnetic properties of coercivity of 141.4 kA/m, remanence of 0.83 T and energy product of 42.4 kJ/m{sup 3}. The good magnetic properties in the studied alloys are attributed to the nanostructured microstructure comprising textured Fe-Co-Nb rich α{sub 1} phase and Al-Ni-Cu rich α{sub 2} phase. - Highlights: • Synthesize of Alnico-8 magnets by casting and thermomagnetic treatment. • High coercivity up to 148.3 kA/m can be obtained with Alnico magnets. • Properties are affected by intrinsic properties of spinodal phases and thermal cycle. • Magnet exhibits properties as: H{sub c}=141.4 kA/m, B{sub r}=0.83 T and (BH){sub max}=42.4 kJ/m{sup 3}.

  3. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  4. Poly(o-aminophenol) film electrodes synthesis, transport properties and practical applications

    CERN Document Server

    Tucceri, Ricardo

    2014-01-01

    This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.

  5. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  6. A Review of the Synthesis and Photoluminescence Properties of Hybrid ZnO and Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Protima Rauwel

    2016-01-01

    Full Text Available Photoluminescent ZnO carbon nanomaterials are an emerging class of nanomaterials with unique optical properties. They each, ZnO and carbon nanomaterials, have an advantage of being nontoxic and environmentally friendly. Their cost-effective production methods along with simple synthesis routes are also of interest. Moreover, ZnO presents photoluminescence emission in the UV and visible region depending on the synthesis routes, shape, size, deep level, and surface defects. When combined with carbon nanomaterials, modification of surface defects in ZnO allows tuning of these photoluminescence properties to produce, for example, white light. Moreover, efficient energy transfer from the ZnO to carbon nanostructures makes them suitable candidates not only in energy harvesting applications but also in biosensors, photodetectors, and low temperature thermal imaging. This work reviews the synthesis and photoluminescence properties of 3 carbon allotropes: carbon quantum or nanodots, graphene, and carbon nanotubes when hybridized with ZnO nanostructures. Various synthesis routes for the hybrid materials with different morphologies of ZnO are presented. Moreover, differences in photoluminescence emission when combining ZnO with each of the three different allotropes are analysed.

  7. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  8. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    International Nuclear Information System (INIS)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-01-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  9. Photophysics and lasing correlation of pyrromethene 567 dye in crosslinked polymeric networks

    International Nuclear Information System (INIS)

    Banuelos Prieto, J.; Lopez Arbeloa, F.; Garcia, O.; Arbeloa, I. Lopez

    2007-01-01

    The photophysical properties of the pyrromethene 567 dye incorporated in copolymers of methylmethacrylate with different acrylic and methacrylic crosslinking monomers are reported. In general, the solid matrices improve the fluorescence capacity of the dye, due to both an increase and a decrease in the radiative and non-radiative deactivation rate constants, respectively, as consequence of a more rigid environment. It is observed that there is an optimal crosslinking degree for the highest fluorescence efficiency, which depends on the nature of the crosslinking monomer. Taking into account the lasing properties for these systems, it is established a good correlation between the lasing and the fluorescence characteristics of the dye in agreement with previous conclusions obtained in liquid solutions

  10. Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications

    International Nuclear Information System (INIS)

    Khandelwal, Apratim; Mani, Karthick; Karigerasi, Manohar Harsha; Lahiri, Indranil

    2017-01-01

    Highlights: • Reviews recent progress in phosphorene research, a new 2D material. • Anisotropic properties are reviewed and compared with other 2D materials. • Synthesis methods of black phosphorus and phosphorene are discussed. • Prospective applications inspired from the intrinsic properties are also discussed. • Challenges and future scope for this promising material is included. - Abstract: Black phosphorus (BP) is known to human beings for almost a century. It started receiving more attention of scientists and researchers worldwide in last three years, with its ability to exist in two-dimensional (2D) form, popularly known as phosphorene. In the post-graphene-discovery period, phosphorene is probably receiving most attention, owing to its excellent properties and hence, high potential for practical applications in the field of electronics, energy and infrastructure. In this article, attractive properties of phosphorene, which makes it unique and comparable with graphene or transition metal dichalcogenides (TMDs), are highlighted. As the question of its environmental instability remains critical, a comprehensive overview of synthesis methods of phosphorene and black phosphorus are presented, to inspire in-situ methods of phosphorene synthesis and fabrication towards improving further investigation into this wonder material. In addition, the article also focuses on opportunities in nano-electronics, optoelectronics, energy conversion/storage, sensors etc arising from phosphorene’s remarkable properties.

  11. Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, Apratim; Mani, Karthick; Karigerasi, Manohar Harsha; Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in

    2017-07-15

    Highlights: • Reviews recent progress in phosphorene research, a new 2D material. • Anisotropic properties are reviewed and compared with other 2D materials. • Synthesis methods of black phosphorus and phosphorene are discussed. • Prospective applications inspired from the intrinsic properties are also discussed. • Challenges and future scope for this promising material is included. - Abstract: Black phosphorus (BP) is known to human beings for almost a century. It started receiving more attention of scientists and researchers worldwide in last three years, with its ability to exist in two-dimensional (2D) form, popularly known as phosphorene. In the post-graphene-discovery period, phosphorene is probably receiving most attention, owing to its excellent properties and hence, high potential for practical applications in the field of electronics, energy and infrastructure. In this article, attractive properties of phosphorene, which makes it unique and comparable with graphene or transition metal dichalcogenides (TMDs), are highlighted. As the question of its environmental instability remains critical, a comprehensive overview of synthesis methods of phosphorene and black phosphorus are presented, to inspire in-situ methods of phosphorene synthesis and fabrication towards improving further investigation into this wonder material. In addition, the article also focuses on opportunities in nano-electronics, optoelectronics, energy conversion/storage, sensors etc arising from phosphorene’s remarkable properties.

  12. The impact of the chemical synthesis on the magnetic properties of intermetallic PdFe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos-Rubio, I.; Insausti, M.; Muro, I. Gil de [Universidad del País Vasco, UPV/EHU, Dpto. de Química Inorgánica (Spain); Arias-Duque, D. Carolina; Hernández-Garrido, Juan Carlos [Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias (Spain); Rojo, T.; Lezama, L., E-mail: luis.lezama@ehu.es [Universidad del País Vasco, UPV/EHU, Dpto. de Química Inorgánica (Spain)

    2015-05-15

    Palladium-rich Iron nanoparticles in the 4–8 nm range have been produced by a combination of two methods: the thermal decomposition of organometallic precursors and the reduction of metallic salts by a polyol. Herein, it is shown how the details of the synthesis have a striking impact on the magnetic and morphological properties of the final products. In the synthesis of these bimetallic nanoparticles, the use of high reaction temperatures plays an essential role in attaining good chemical homogeneity, which has proved to have a key influence on the magnetic properties. Magnetic characterization has been performed by electron magnetic resonance and magnetization measurements, which have confirmed the superparamagnetic-like behavior at room temperature. No clear traces of magnetic polarization in palladium atoms have been detected. The combination of long-term stability and homogeneous chemical and magnetic properties makes these particles very suitable for a wide range of applications in nanotechnology.

  13. The impact of the chemical synthesis on the magnetic properties of intermetallic PdFe nanoparticles

    International Nuclear Information System (INIS)

    Castellanos-Rubio, I.; Insausti, M.; Muro, I. Gil de; Arias-Duque, D. Carolina; Hernández-Garrido, Juan Carlos; Rojo, T.; Lezama, L.

    2015-01-01

    Palladium-rich Iron nanoparticles in the 4–8 nm range have been produced by a combination of two methods: the thermal decomposition of organometallic precursors and the reduction of metallic salts by a polyol. Herein, it is shown how the details of the synthesis have a striking impact on the magnetic and morphological properties of the final products. In the synthesis of these bimetallic nanoparticles, the use of high reaction temperatures plays an essential role in attaining good chemical homogeneity, which has proved to have a key influence on the magnetic properties. Magnetic characterization has been performed by electron magnetic resonance and magnetization measurements, which have confirmed the superparamagnetic-like behavior at room temperature. No clear traces of magnetic polarization in palladium atoms have been detected. The combination of long-term stability and homogeneous chemical and magnetic properties makes these particles very suitable for a wide range of applications in nanotechnology

  14. Microwave-assisted synthesis and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    2017-11-11

    Nov 11, 2017 ... The photoluminescence property was studied by near-UV (nUV) excitation. The XRD .... spectrofluorimeter equipped with a 450-W Xenon lamp, in the range of .... nUV-excited RGB tricolour LED for production of white light.

  15. Nanowires: properties, applications and synthesis via porous anodic ...

    Indian Academy of Sciences (India)

    Moreover, periodic arrays of magnetic nanowires hold high potential for recording media application. Nanowires are also potential candidates for sensor and bio-medical applications. In the present article, the physical and chemical properties of nanowires along with their probable applications in different fields have been ...

  16. Synthesis and mesomorphic properties of a triphenylene-based ...

    African Journals Online (AJOL)

    A new triphenylene liquid crystal material with six rod-shape bisazobenzene moieties as the peripheral units has been synthesized and characterized by spectroscopic methods. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and, X-ray diffraction.

  17. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  18. Divergent synthesis and optoelectronic properties of oligodiacetylene building blocks

    NARCIS (Netherlands)

    Pilzak, G.S.; Lagen, van B.; Sudhölter, E.J.R.; Zuilhof, H.

    2008-01-01

    A new and divergent synthetic route to oligodiacetylene (ODA) building blocks has been developed via Sonogashira reactions under a reductive atmosphere. These central building blocks provide a new way for rapid preparation of long ODAs. In addition, we report on their optoelectronic properties which

  19. Synthesis, molecular and crystalline architectures, and properties of ...

    Indian Academy of Sciences (India)

    The construction1 of coordination compounds of cobalt(II) of different nuclearities is the centre of attrac- tion due to interesting structural and physico-chemical properties.1–5 ... Design SQUID MPMS-XL magnetometer working in the 2–300 K range. ..... Complex 1 adopts a molecular architecture cor- responding to the gross ...

  20. (Biodegradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure

    Directory of Open Access Journals (Sweden)

    T. V. Travinskaya

    2017-01-01

    Full Text Available New (biodegradable environmentally friendly film-forming ionomeric polyurethanes (IPU based on renewable biotechnological polysaccharide xanthan (Xa have been obtained. The influence of the component composition on the colloidal-chemical and physic-mechanical properties of IPU/Xa and based films, as well as the change of their properties under the influence of environmental factors, have been studied. The results of IR-, PMS-, DMA-, and X-ray scattering study indicate that incorporation of Xa into the polyurethane chain initiates the formation of a new polymer structure different from the structure of the pure IPU (matrix: an amorphous polymer-polymer microdomain has occurred as a result of the chemical interaction of Xa and IPU. It predetermines the degradation of the IPU/Xa films as a whole, unlike the mixed polymer systems, and plays a key role in the improvement of material performance. The results of acid, alkaline hydrolysis, and incubation into the soil indicate the increase of the intensity of degradation processes occurring in the IPU/Xa in comparison with the pure IPU. It has been shown that the introduction of Xa not only imparts the biodegradability property to polyurethane, but also improves the mechanical properties.

  1. Single crystalline Co3O4: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Hosny, Nasser Mohammed

    2014-01-01

    Crystals of Co 3 O 4 have been prepared from thermal decomposition of molecular precursors derived from salicylic acid and cobalt (II) acetate or chloride at 500 °C. A cubic phase Co 3 O 4 micro- and nanocrystals have been obtained. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The images of electron microscopes showed octahedral crystals of Co 3 O 4 . The volume and polarizability of the optimized structures of molecular precursors have been calculated and related to the particle size. The optical band gap of the obtained crystals has been measured. The results indicated two optical band gaps with values 2.65 and 2.95 eV for (E g1 ) (E g2 ), respectively. - Highlights: • Synthesis of Co 3 O 4 nanocrystals by decomposition of cobalt salicylic acid precursor. • Characterization of the isolated nanocrystals by using XRD, SEM and HRTEM. • The optical band gap has been measured

  2. Synthesis and Catalytic Properties of Au Pd Nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianguang [Department of Chemistry, Duke University; Wilson, Adria [Duke University; Howe, Jane Y [ORNL; Chi, Miaofang [ORNL; Wiley, Benjamin J [Duke University

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 0.1 nm) shell of Pd. UV visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.

  3. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Astruc, Didier

    2014-02-10

    Anisotropic gold nanoparticles (AuNPs) have attracted the interest of scientists for over a century, but research in this field has considerably accelerated since 2000 with the synthesis of numerous 1D, 2D, and 3D shapes as well as hollow AuNP structures. The anisotropy of these nonspherical, hollow, and nanoshell AuNP structures is the source of the plasmon absorption in the visible region as well as in the near-infrared (NIR) region. This NIR absorption is especially sensitive to the AuNP shape and medium and can be shifted towards the part of the NIR region in which living tissue shows minimum absorption. This has led to crucial applications in medical diagnostics and therapy ("theranostics"), especially with Au nanoshells, nanorods, hollow nanospheres, and nanocubes. In addition, Au nanowires (AuNWs) can be synthesized with longitudinal dimensions of several tens of micrometers and can serve as plasmon waveguides for sophisticated optical devices. The application of anisotropic AuNPs has rapidly spread to optical, biomedical, and catalytic areas. In this Review, a brief historical survey is given, followed by a summary of the synthetic modes, variety of shapes, applications, and toxicity issues of this fast-growing class of nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and catalytic properties of Au-Pd nanoflowers.

    Science.gov (United States)

    Xu, Jianguang; Wilson, Adria R; Rathmell, Aaron R; Howe, Jane; Chi, Miaofang; Wiley, Benjamin J

    2011-08-23

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 ± 0.1 nm) shell of Pd. UV-visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core-shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core-shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures. © 2011 American Chemical Society

  5. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synthesis, properties, and assimilation methods of aluminium hydride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    We have discovered a new source of aluminium hydride-conversion of tetrahydrofurane under influence of halogenous alkyls. We have proposed the chlorbenzene method of synthesis of AlH 3 , which excludes adhesion and ensure high quality of the product with respect to its purity, thermal stability, habits of crystals (round shape), and granulometric composition. We determined capability of benzyl chloride to fix AlH 4 -groups by the way of complexes formation. This allows increasing efficient concentration of AlH 3 solutions and their productivity. We have carried out 'direct' crystallization of aluminium hydride in one stage using interaction of binary metal hydride with aluminium chloride in the medium of ether-toluene at 60-100 d ig C a nd using solvent distillation. In the reaction of Li H with AlCl 3 , we achieved output of pure crystal AlH 3 of hexagonal modification, which was close to quantitative. We have discovered the assimilation methods of aluminium hydride in carrying out of solid-phase chemical reactions. (author)

  7. Crystal chemistry, properties and synthesis of microporous silicates containing transition elements

    International Nuclear Information System (INIS)

    Chukanov, Nikita V; Pekov, Igor V; Rastsvetaeva, Ramiza K

    2004-01-01

    The review surveys and generalises recent data on synthesis methods, physicochemical properties and crystal chemistry of silicate microporous materials containing transition elements (amphoterosilicates). The frameworks of these materials, unlike those of usual aluminosilicate zeolites, are built from tetrahedrally coordinated atoms along with atoms of various elements (Ti, Nb, Zr, Ta, Sn, W, Fe, Mn, Zn, etc.) with coordination numbers of 6 or 5. Many amphoterosilicates possess ion-exchange properties and can serve as catalysts for redox reactions, sorbents, etc. The structural diversity of synthetic and natural amphoterosilicates provides the basis for the preparation of microporous materials with different properties.

  8. Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties

    International Nuclear Information System (INIS)

    Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M

    2011-01-01

    The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.

  9. Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: Experiment and DFT/TDDFT calculations

    Science.gov (United States)

    Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.

    2018-01-01

    Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.

  10. Asymmetric flavone-based liquid crystals: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Daren J. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Jordan, Abraham J. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Kirchon, Angelo A. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Murthy, N. Sanjeeva [New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Siemers, Troy J. [Department of Applied Mathematics, Virginia Military Institute, Lexington, VA, USA; Harrison, Daniel P. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Slebodnick, Carla [Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

    2017-02-01

    A series of flavones (n-F) substituted at the 4', and 6 positions was prepared, characterised by NMR (1H,13C), HRMS, and studied for liquid crystal properties. The 4'-alkoxy,6-methoxyflavones (4-F–16-F) exhibit varying ranges of nematic and smectic A phases as evidenced by polarised optical microscopy and differential scanning calorimetry (DSC). As the tail length is increased, the smectic phase becomes more prevalent. Smectic phases for (8-F–16-F) were further analysed by powder X-ray diffraction (XRD), and the rate of structural transformations was explored by combined DSC/XRD studies. Flavonol 6-F–OH was also prepared but no mesogenic behaviour was observed. The molecular structures of 6-F and 6-F–OH were determined by single-crystal XRD and help to explain the differences in material properties. Additionally, fluorescence and electrochemical studies were conducted on solutions of n-F.

  11. Nanocomposites: synthesis, structure, properties and new application opportunities

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Cury Camargo

    2009-03-01

    Full Text Available Nanocomposites, a high performance material exhibit unusual property combinations and unique design possibilities. With an estimated annual growth rate of about 25% and fastest demand to be in engineering plastics and elastomers, their potential is so striking that they are useful in several areas ranging from packaging to biomedical applications. In this unified overview the three types of matrix nanocomposites are presented underlining the need for these materials, their processing methods and some recent results on structure, properties and potential applications, perspectives including need for such materials in future space mission and other interesting applications together with market and safety aspects. Possible uses of natural materials such as clay based minerals, chrysotile and lignocellulosic fibers are highlighted. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.

  12. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  13. Synthesis and optical properties of polyurethane foam modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Apyari, V V; Volkov, P A; Dmitrienko, S G

    2012-01-01

    This paper for the first time describes peculiarities of synthesis of polyurethane foam modified with silver nanoparticles as a potential material for optical sensors in analytical chemistry. We found that the unique sorptional properties of polyurethane foam gave an opportunity to perform such a synthesis by two different approaches. The first one was based on sorption of previously synthesized in-solution nanoparticles by polyurethane foam, the second one consisted in preparation of nanoparticles directly in polyurethane foam matrix. This possibility is novel and interesting for practical use because the nanoparticles in polyurethane foam are capable of surface plasmon resonance. The influence of different factors during the synthesis was investigated and the optimal conditions were found. The samples prepared were characterized by diffuse reflectance spectroscopy and scanning electron microscopy. On the basis of the results obtained we first suggested that this material is attractive from the viewpoint of analytical chemistry as a convenient analytical form for determination of oxidants and reductants

  14. Influence of synthesis energy on physical properties of the oxide nanoparticles

    International Nuclear Information System (INIS)

    Medeiros, A.A.S.; Mello, V.S. e; Trajano, M.F.; Alves, S.M.

    2014-01-01

    Nanoparticles are present in many research areas giving a range of applications, one of them is lubricant technology. Oxide nanoparticles have been used as extreme pressure additives in boundary lubrication with good results. The great challenge of this technology is in control of the nanoparticles dispersion to ensure their actions as anti-wear additive. This study goal was to evaluate the influence of the amount of energy synthesis in the dispersive properties, size and shape of nanoparticles synthesized by microwave, varying the amount of energy transferred during the synthesis process. The morphology of the nanoparticles was evaluated by SEM and XRD spectrum was used to identify the crystallite size and the formation of copper oxides. The results showed that the size and shape of the particle, and consequently the dispersion, are directly related to amount of energy used in the synthesis are directly related. (author)

  15. Properties of FeCo nanopowder prepared by chemical synthesis

    Czech Academy of Sciences Publication Activity Database

    Zábranský, Karel; Schneeweiss, Oldřich

    2010-01-01

    Roč. 61, č. 5 (2010), s. 299-301 ISSN 1335-3632. [NANOVED 2010. Bratislava, 16.05.2010-19.05.2010] R&D Projects: GA MŠk 1M0512; GA ČR GA106/08/1440 Institutional research plan: CEZ:AV0Z20410507 Keywords : FeCo alloys * nanoparticles * magnetic properties Subject RIV: JG - Metallurgy Impact factor: 0.270, year: 2010

  16. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  17. Synthesis and Analgesic Properties of Lidocaine Derivatives with Substituted Aminobenzothiazoles.

    Science.gov (United States)

    Ahmadi, Abbas; Khalili, Mohsen; Mohammadinoude, Mohammad Kazem; Nahri-Niknafs, Babak

    2016-01-01

    Local anesthetics are the most widely consumed drugs in the practice of medicine which provide a loss of sensation in a certain body part without loss of consciousness or impairment of central control of essential functions. Lidocaine (I) is the most commonly local anaesthetic drug which is widely used in all species due to its fabulous diffusing and penetrating properties as well as prompt onset of surgical analgesia. In this study, new aminobenzothiazole (with many useful biological and pharmacological properties) analogues were synthesized by changing of amine moiety of I. Both acute and chronic pain properties of new compounds (II-VI) were studied by using the tail immersion and formalin tests on mice and the outcomes were compared with control and lidocaine groups. According to the results, aminobenzothiazole derivatives are better candidates than diethylamine group for replacement on amine moiety of I. Also, derivatives with electron-withdrawing groups on this amine (V and VI) could decrease pain better than electron-donating ones (II and III) (specially on position 6 of this amine, II and V) which may be of concern for blockade of specific sodium channels by these new compounds.

  18. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    Science.gov (United States)

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  19. ZnS-Graphene nanocomposite: Synthesis, characterization and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pan Shugang [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2012-07-15

    A ZnS-Graphene nanocomposite was prepared by a facile one-step hydrothermal method using zinc nitrate hexahydrate, ethylenediamine and carbon disulfide as precursors, graphene oxide as a template. The composite was characterized by X-ray power diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier transform infrared, Raman spectra and fluorescence spectroscopy. The results show that graphene oxide was reduced to graphene in the hydrothermal reaction process. Simultaneously, the graphene sheets in the composite are exfoliated and decorated with ZnS nanoparticles. Furthermore, Raman and fluorescence properties of the composite were observed. ZnS-Graphene nanocomposite displays surface-enhanced Raman scattering activity for graphene oxide, and fluorescence enhancement property compared with pure ZnS sample. - Graphical abstract: Approach of reaction makes the reduction of grapheme oxide and the deposition of Zns on the grapheme sheets occur simultaneously and overcomes the aggregation of the grapheme sheets and Zns. Highlights: Black-Right-Pointing-Pointer Graphene oxide is reduced to graphene in the hydrothermal reaction process. Black-Right-Pointing-Pointer ZnS nanoparticles are attached onto the almost transparent graphene sheets. Black-Right-Pointing-Pointer ZnS-Graphene system shows surface-enhanced Raman scattering (SERS) activity. Black-Right-Pointing-Pointer ZnS-Graphene system displays relatively better fluorescence property than pure ZnS.

  20. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  1. Synthesis and luminescent properties of pentacene derivatives having a chromophore

    International Nuclear Information System (INIS)

    Hwang, Eun-Jee; Kim, Yeong-Eun; Lee, Chang-Jun; Park, Jong-Wook

    2006-01-01

    We introduced carbazole and fluorene moieties into pentacene compound for comparing optical and EL properties together. The structure was identified by NMR, IR, UV-Visible spectroscopies and FAB-Mass analysis. 6,13-Bis(9,9-diethyl-9H-fluoren-2-ly)pentacene (DFP) and 6,13-bis(9-ethyl-9H-carbazol-3-yl)pentacene (ECP) showed similar red PL spectrum pattern and their maximum wavelengths appeared at 627 nm and 633 nm. ITO/m-MTDATA/NPB/Alq 3 :DFP (5%)/LiF/Al device showed red EL spectrum at 636 nm with 0.03 cd/A efficiency. ITO/m-MTDATA/NPB/Alq 3 :ECP (5%)/LiF/Al device also showed similar red EL spectrum at same range and higher efficiency (> 0.21 cd/A) than DFPs. We suppose the dopant EL property of pentacene compound can be changed as the electronic property and steric effect of 6,13-substituted moiety in 6- and 13-positions

  2. Synthesis and microwave absorption properties of PPy/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Gao, Duoduo [School of Material Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2014-11-15

    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was −20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth. - Highlights: • The influence of PPy on the structure of Co is discussed. • The influence of PPy on the magnetic properties of Co is discussed. • The influence of PPy on the absorption property of Co is discussed. • PPy/Co possessed the excellent absorption property.

  3. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake

    International Nuclear Information System (INIS)

    Navarro, Julien R G; Lerouge, Frédéric; Chaput, Frédéric; Micouin, Guillaume; Gabudean, Ana-Maria; Baldeck, Patrice L; Kamada, Kenji; Parola, Stephane; Manchon, Delphine; Mosset, Alexis; Cottancin, Emmanuel; Blanchard, Nicholas P; Marotte, Sophie; Leverrier, Yann; Marvel, Jacqueline

    2012-01-01

    A great number of works have focused their research on the synthesis, design and optical properties of gold nanoparticles for potential biological applications (bioimaging, biosensing). For this kind of application, sharp gold nanostructures appear to exhibit the more interesting features since their surface plasmon bands are very sensitive to the surrounding medium. In this paper, a complete study of PEGylated gold nanostars and PEGylated bipyramidal-like nanostructures is presented. The nanoparticles are prepared in high yield and their surfaces are covered with a biocompatible polymer. The photophysical properties of gold bipyramids and nanostars, in suspension, are correlated with the optical response of single and isolated objects. The resulting spectra of isolated gold nanoparticles are subsequently correlated to their geometrical structure by transmission electron microscopy. Finally, the PEGylated gold nanoparticles were incubated with melanoma B16-F10 cells. Dark-field microscopy showed that the biocompatible gold nanoparticles were easily internalized and most of them localized within the cells. (paper)

  4. Metal-organic framework templated synthesis of Fe{sub 2}O{sub 3}/TiO{sub 2} nanocomposite for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, Kathryn E. de; Wang, Cheng; Lin, Wenbin [University of North Carolina, Chapel Hill, NC (United States). Department of Chemistry

    2012-04-17

    A new metal-organic framework (MOF)-templated method has been developed for the synthesis of a metal oxide nanocomposite with interesting photophysical properties. Fe-containing nanoscale MOFs are coated with amorphous titania, then calcined to produce crystalline Fe{sub 2}O{sub 3}/TiO{sub 2} composite nanoparticles. This material enables photocatalytic hydrogen production from water using visible light, which cannot be achieved by either Fe{sub 2}O{sub 3} or TiO{sub 2} alone or a mixture of the two. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    Science.gov (United States)

    Ashenfelter, Brian A.

    Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence

  6. Investigation of superconducting properties of nanowires prepared by template synthesis

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowires is small enough to ensure a one-dimensional superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have a uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter...

  7. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure

    OpenAIRE

    Adamova, Gabriela; Gardas, Ramesh L.; Nieuwenhuyzen, Mark; Vaca Puga, Alberto; Rebelo, Luis Paulo N.; Robertson, Allan J.; Seddon, Kenneth R.

    2012-01-01

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, CnH2n+1Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosit...

  8. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  9. Synthesis and properties of catalysts prepared from silicomolybdovanadium heteropoly acid

    International Nuclear Information System (INIS)

    Chumachenko, N.N.; Tarasova, D.V.; Nikoro, T.A.; Yaroslavtseva, I.V.

    1984-01-01

    Catalytic properties of samples prepared of silicomolybdovanadium heteropoly acid (HPA) have been investigated. The massive catalyst is shown to be comparatively low effective in the reaction of acrolein oxidation to acrylic acid. Impregnation of coarse-dispersed silica gel by the HPA solution results in the formation of active and selective catalyst, whereas low-active catalyst of deep oxidation is formed on the base of high-dispersed silica gel. The obtained data are explained by the formation and stabilization of different forms of vanadium- and molybdenum-containing compounds on the carrier surface

  10. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV–vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli. Keywords: Green synthesis, Nanoparticles, Antibacterial effect

  11. Synthesis and properties of unagglomerated nanocomposite particles for nanomedical applications

    Science.gov (United States)

    Rouse, Sarah M.

    2005-11-01

    Methods have been developed to prepare stable, unagglomerated active-medical-agent nanoparticles in a range of sizes, based on reverse-micelle microemulsion techniques. The process used to prepare monodisperse, spherical nanocomposite particles is based on methods originally outlined in detail by Adair et al. and Li et al. The "Molecular Dot" (MD) nanoparticles incorporate a variety of medically-active substances, such as organic fluorophores and therapeutic drugs, internally distributed in silica, titania, calcium phosphate, or calcium phospho-silicate matrices. The synthesis techniques have also been modified to produce nanoparticles containing combinations of fluorophores and medicinal agents, in order to monitor drug release and location. The specific biomedical application for the nanocomposite particles dictates the selection of core and shell-matrix materials. For example, the protective shell-matrices of the silica and titania MDs shield the active-medical agents from damage due to changes in pH, temperature, and other environmental effects. Conversely, the calcium phosphate and calcium phospho-silicate shell-matrix nanoparticles can potentially be engineered to dissolve in physiological environments. The method used to remove residual precursor materials while maintaining a well-dispersed assembly of nanoparticles is critical to the use of nanocolloids in medical applications. The dispersion approach is based on protection-dispersion theory tailored to accommodate the high surface areas and reactivity of sub-50 nm particles in aqueous or water/ethanol mixtures. Dispersion of the nanocomposite particles is further enhanced with the use of size-exclusion high performance liquid chromatography (HPLC) to simultaneously wash and disperse the nanocomposite particle suspensions. The state of dispersion of the nanosuspensions is evaluated using the average agglomeration number (AAN) approach in conjunction with other characterization techniques. The formulation of

  12. Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites.

    Science.gov (United States)

    Vega-Rios, Alejandro; Olmedo-Martínez, Jorge L; Farías-Mancilla, Bárbara; Hernández-Escobar, Claudia A; Zaragoza-Contreras, E Armando

    2014-09-22

    Polyaniline/iota-carrageenan (ι-CGN) biocomposites were synthesized via in situ methodology using ammonium persulfate as the oxidizing agent. Both ionic (band at 1131 cm(-1)) and hydrogen bond (bands at 2500 and 3500 cm(-1)) interactions between polyaniline and ι-CGN were determined by infrared spectroscopy. Such intermolecular interactions provided the biocomposites with a cross-linked structure that provided the materials with hydrogel behavior. Biocomposite electro-conductivity, determined by the 4-probe technique, was in the range of semiconductors (10(-3) to 10(-2) S cm(-1)); whereas electro-activity, assessed by cyclic voltammetry, showed the oxidation-reduction transitions typical of polyaniline. Based on the properties of polyaniline and ι-CGN, some applications for the new materials in the field of biosensor design, electrochemical capacitors, or tissue engineering scaffolds are possible. It is worth saying that both electro-conductive and electro-active properties of polyaniline/ι-CGN biocomposites are reported here for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Synthesis and Tribological Properties of WSe2Nanorods

    Directory of Open Access Journals (Sweden)

    Yang Jinghai

    2008-01-01

    Full Text Available Abstract The WSe2nanorods were synthesized via solid-state reaction method and characterized by X-ray diffractometer, TEM, and HRTEM. The results indicated the WSe2compounds had rod-like structures with diameters of 10–50 nm and lengths of 100–400 nm, and the growth process of WSe2nanorods was discussed on the basis of the experimental facts. The tribological properties of WSe2nanorods as additives in HVI500 base oil were investigated by UMT-2 multispecimen tribotester. Under the determinate conditions, the friction coefficient of the base oil containing WSe2nanorods was lower than that of the base oil, and decreased with increasing mass fraction of WSe2nanorods when it was <7 wt.%. Moreover, the base oil with the additives was rather suited to high load and high rotating speed. A combination of rolling friction, sliding friction, and stable tribofilm on the rubbing surface could explain the good friction and wear properties of WSe2nanorods as additives.

  14. Synthesis and magnetic properties of prussian blue modified Fe nanoparticles

    International Nuclear Information System (INIS)

    Arun, T.; Prakash, K.; Justin Joseyphus, R.

    2013-01-01

    Fe nanoparticles are prepared using a unique polyol process and modified with prussian blue (PB) at various concentrations. The presence of PB in the Fe nanoparticles are confirmed from thermal, Fourier transform infrared spectroscopy and electron microscopic analyses. The prussian blue existed on ;the surface of the nanoparticles when the concentration is 200 μM and in excess with 1000 μM. ;Fe nanoparticles are reduced in size using Pt as nucleating agent and modified with the optimum concentration of PB. The saturation magnetization decreases with the concentration of PB whereas the coercivity is influenced by the size of the Fe nanoparticles. The presence of oxide layer in Fe nanoparticles helps in the surface modification with PB. The Fe nanoparticles of particle size 53 nm modified with 200 μM of PB showed a saturation magnetization of 110 emu/g. The magnetic properties suggest that the PB modified Fe nanoparticles are better candidates for detoxification applications. - Highlights: • Fe nanoparticles surface modified with prussian blue (PB) were synthesized. • Optimum PB concentration on size reduced Fe showed better magnetic properties. • Coercivity decreased with increasing concentration of PB. • Fe-PB nanoparticles could be used for detoxification applications

  15. Photophysical properties of xanthophylls in carotenoproteins from human retinas.

    Science.gov (United States)

    Billsten, Helena H; Bhosale, Prakash; Yemelyanov, Alexander; Bernstein, Paul S; Polívka, Tomás

    2003-08-01

    The macula of the human retina contains high amounts of the xanthophyll carotenoids lutein and zeaxanthin [a mixture of (3R,3'R)-zeaxanthin and (3R,3'S-meso)-zeaxanthin]. Recently, it was shown that the uptake and the stabilization of zeaxanthin and lutein into the retina are likely to be mediated by specific xanthophyll-binding proteins (XBP). Here, we have used femtosecond pump-probe spectroscopy to study the dynamics of the S1 state of these xanthophylls in xanthophyll-enriched and native XBP. The results from the native XBP and the enriched XBP were then compared with those for carotenoids in organic solvents and in detergent micelles. Steady-state and transient absorption spectra show that the incorporation of xanthophylls into the protein causes a redshift of the spectra, which is stronger for lutein than for zeaxanthin. The transient absorption spectra further indicate that a part of the xanthophylls remains unbound in the xanthophyll-enriched XBP. The transient absorption spectra of the native XBP prove the presence of both xanthophylls in native XBP. Although the S1 lifetime of lutein does not exhibit any changes when measured in solution, micelles or XBP, we have observed the influence of the environment on the S1 lifetime of meso-zeaxanthin, which has a longer (12 ps) lifetime in XBP than in solution (9 ps). The most pronounced effect was found for vibrational relaxation in the S1 state, which is significantly slower for xanthophylls in XBP compared with micelles and solution. This effect is more pronounced for meso-zeaxanthin, suggesting a specific site of binding of this carotenoid to XBP.

  16. Synthesis and rheological properties of poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Lee, Jung Kyung; Lee, Hyang Aee; Kim, Keyng Yi

    2001-01-01

    Vinyl acetate usually used in PVA resin preparation was converted to PVAc by bulk poly-merization using AIBN as a initiator and PVA was synthesized by changing the concentration of NaOH added for saponification subsequently. As a result of estimating molecular weight using GPC, molecular weight increased as the NaOH concentration increased to 2.5 N, 5.0 N, 7.5 N and 10.0 N and polydispersity had similar values of 2.1∼2.3, however, showed slightly decreasing tendency. In addition, PVA saponificated by 10.0 N-NaOH showed high syndiotacticity in observation of tacticity using NMR spectroscopy. From this fact, the degree of tacticity was predicted to be high and it was in good agreement with the tendency of polydisperisity by GPC. Also, from the result of FT-IR spectroscopy, it might be known that hydrolysis was more promoted in the PVA with 10.0 N-NaOH than other NaOH concentration. Intrinsic viscosity measured using Ubbelohde viscometer, which increased as the concentration of NaOH added for saponification increased. The change of shear strength with the change of shear rate was investigated using Brookfield viscometer, in consequence, viscosity of PVA synthesized decreased as shear rate increased. PVA solution confirmed to show the shear thinning behavior by Casson plot and PVA with 10.0 N-NaOH had the largest yield value. DSC measurement was performed to know the thermal properties of PVA. Tp had nearly constant value of 214 .deg. C in all cases except for adding 2.5 N-NaOH and ΔH was increased as the concentration of NaOH increased. From this properties, it was concluded that the degree of hydrogen bonding was proportional to the added concentration of NaOH and the increase of the degree of hydrogen bonding and hydrophobic interaction could affect the rheological and thermal properties of title compound

  17. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    International Nuclear Information System (INIS)

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-01-01

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: → In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. → The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. → The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10 -3 emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10 -3 emu/g. → The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V 2 O 5 and BaCl 2 at 200 o C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba 3 V 2 O 8 with small amount of Ba 3 VO 4.8 coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of ∼20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO 4 tetrahedron with T d symmetry in Ba 3 V 2 O 8 . The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10 -3 emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10 -3 emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S = 1/2.

  18. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    International Nuclear Information System (INIS)

    Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M.

    2015-01-01

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL

  19. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Ngom, B.D. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Park, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nelson Mandela African Institute for Science & Technology, Arusha (Tanzania, United Republic of); Maaza, M., E-mail: Maaza@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2015-10-15

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL.

  20. Application of CAPEC Lipid Property Databases in the Synthesis and Design of Biorefinery Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Cunico, Larissa; Gani, Rafiqul

    Petroleum is currently the primary raw material for the production of fuels and chemicals. Consequently, our society is highly dependent on fossil non-renewable resources. However, renewable raw materials are recently receiving increasing interest for the production of chemicals and fuels, so a n...... of biorefinery networks. The objective of this work is to show the application of databases of physical and thermodynamic properties of lipid components to the synthesis and design of biorefinery networks.......]. The wide variety and complex nature of components in biorefineries poses a challenge with respect to the synthesis and design of these types of processes. Whereas physical and thermodynamic property data or models for petroleum-based processes are widely available, most data and models for biobased...

  1. Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis

    International Nuclear Information System (INIS)

    Vu, Nguyen; Kim Anh, Tran; Yi, Gyu-Chul; Strek, W.

    2007-01-01

    Eu-doped Y 2 O 3 nanophosphors were prepared using combustion synthesis. In this method, urea was employed as a fuel. The particle size was estimated to be in the range of 10-20 nm as determined by X-ray diffractometry and transmission electron microscopy. The photoluminescent and cathodoluminescent spectra are described by the well-known 5 D 0 →7 F J transition (J=0, 1, 2, etc.) of Eu 3+ ions with the strongest emission for J=2. The optical properties of nanophosphors were compared with commercial with an order of micrometer size. The effects of urea-to-metal nitrate molar ratio and the other synthesis conditions on the particle size and luminescent properties will be discussed in detail. The red emission of Eu-doped Y 2 O 3 nanophosphors is promising materials not only in high-resolution screen but also in telecomunication as well as in biosensor

  2. Thiolated silicone oil: Synthesis, gelling and mucoadhesive properties

    Science.gov (United States)

    Partenhauser, Alexandra; Laffleur, Flavia; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2015-01-01

    The aim of this study was the development of novel thiolated silicone oils and their evaluation with regard to gelling and mucoadhesive properties. A thiol coupling of 220 ± 14 and 127 ± 33 μmol/g polymer for 3-mercaptopropionic acid (MPA)- and cysteine-coupled silicone oil was determined, respectively. The dynamic viscosity of MPA–silicone raised significantly (p Thiolated silicone oils can be regarded superior in comparison to commonly used silicone oils due to a prolonged retention time in the small intestine as site of action. Gelling and mucoadhesive features are advantageous for antiflatulent as well as mucoprotective biomaterials. Thus, these novel thiomers seem promising for an upgrade of currently available products for the treatment of dyspepsia, reflux oesophagitis and even inflammatory bowel diseases such as ulcerative colitis or Crohn’s disease. PMID:25660565

  3. Synthesis of graft copolymers onto starch and its semiconducting properties

    Directory of Open Access Journals (Sweden)

    Nevin Çankaya

    Full Text Available Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA and commercial methyl methacrylate (MMA monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured. Keywords: Starch, Graft copolymer, Semiconducting, Thermal stability, Starch methacrylate

  4. A novel Graphene Oxide film: Synthesis and Dielectric properties

    Science.gov (United States)

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with Sdirect current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  5. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  6. Synthesis, crystal structures and properties of new quinolinium derivatives

    Science.gov (United States)

    Zhang, Xinyuan; Jiang, Xingxing; Li, Yin; Lin, Zheshuai; Zhang, Guochun; Wu, Yicheng

    2015-11-01

    Four phenyl-substituted quinolinium salts with different counter anions, C27H27NO4S, C26H25NO5S, C25H22NO5SCl, and C25H22NO5SBr, were synthesized and their single crystals were successfully grown from methanol solution by slow evaporation. Single crystal X-ray diffraction analyses showed that C27H27NO4S crystal belongs to the noncentrosymmetric orthorhombic space group Pna21, and the other three crystals belong to centrosymmetric monoclinic space group P21/n. Their first order hyperpolarization and macroscopic nonlinearity were analyzed and physical properties were characterized by UV-vis absorption spectroscopy, and differential scanning calorimetric and thermal gravimetric analysis.

  7. Lanthanides-clay nanocomposites: Synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Celedon, Salvador; Quiroz, Carolina; Gonzalez, Guillermo; Sotomayor Torres, Clivia M.; Benavente, Eglantina

    2009-01-01

    Complexes of Europium(III) and Terbium(III) with 2,2-bipyridine and 1,10-phenanthroline were inserted into Na-bentonite by ion exchange reactions at room temperature. The products display interlaminar distances and stoichiometries in agreement with the ion exchange capacity and the interlayer space available in the clay. The optical properties of the intercalates, being qualitatively similar to those of the free complexes, are additionally improved with respect to exchange processes with the medium, especially in a moist environment. The protection again hydrolysis, together with the intensity of the optical transition 5 D 0 - 5 F 2 observed in the nanocomposite, makes these products promising for the development of novel optical materials

  8. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  9. Synthesis and physicochemical properties of polyhydroxylated diphenyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fu; Zhang, Xuesheng; Qu, Ruijuan; Shi, Jiaqi; Wang, Zunyao, E-mail: wangzun315cn@163.com

    2013-09-20

    Highlights: • The experimental pK{sub a1} values of five synthesized PHODEs were determined. • The hydrogen bonds existed in PHODEs were investigated. • There exist close relationships between the thermodynamic properties and N{sub PHOS}. • The relative stability order of PHODE congeners was theoretically proposed. - Abstract: Five polyhydroxylated diphenyl ethers (PHODEs) were synthesized. The first ionization constants (pK{sub a1}) of the synthesized compounds and seven phenolic compounds were determined using potentiometric titration experiments, together with the software ACD/Labs pK{sub a} DB program (version 6.0). The compared results showed that the software could be used to predict the pK{sub a1} of all 209 PHODEs. The thermodynamic properties of 209 PHODEs were calculated using density functional theory (DFT) at the B3LYP/6-311G** level with Gaussian 09 program. The standard enthalpy of formation (Δ{sub f}H{sup θ}) and the standard Gibbs energy of formation (Δ{sub f}G{sup θ}) were obtained. Two types of hydrogen bond were found to exist in the PHODEs’ molecules. The intramolecular hydrogen bond energies were discussed. The relative stability of PHODEs isomers was proposed theoretically with the relative standard Gibbs energy of formation (Δ{sub f}G{sub R}{sup θ}). The relationships of S{sup θ}, Δ{sub f}H{sup θ} and Δ{sub f}G{sup θ} to the number and position of the hydroxyl substitution (N{sub PHOS}) were studied.

  10. Synthesis, characterization and magnetic properties of room-temperature nanofluid ferromagnetic graphite

    OpenAIRE

    Souza, N. S.; Sergeenkov, S.; Speglich, C.; Rivera, V. A. G.; Cardoso, C. A.; Pardo, H.; Mombru, A. W.; Rodrigues, A. D.; de Lima, O. F.; Araujo-Moreira, F. M.

    2009-01-01

    We report the chemical synthesis route, structural characterization, and physical properties of nanofluid magnetic graphite (NFMG) obtained from the previously synthesized bulk organic magnetic graphite (MG) by stabilizing the aqueous ferrofluid suspension with an addition of active cationic surfactant. The measured magnetization-field hysteresis curves along with the temperature dependence of magnetization confirmed room-temperature ferromagnetism in both MG and NFMG samples. (C) 2009 Americ...

  11. Molecular Polygons Probe the Role of Intramolecular Strain in the Photophysics of π-Conjugated Chromophores.

    Science.gov (United States)

    Wilhelm, Philipp; Vogelsang, Jan; Poluektov, Georgiy; Schönfelder, Nina; Keller, Tristan J; Jester, Stefan-Sven; Höger, Sigurd; Lupton, John M

    2017-01-24

    π-Conjugated segments, chromophores, are the electronically active units of polymer materials used in organic electronics. To elucidate the effect of the bending of these linear moieties on elementary electronic properties, such as luminescence color and radiative rate, we introduce a series of molecular polygons. The π-system in these molecules becomes so distorted in bichromophores (digons) that these absorb and emit light of arbitrary polarization: any part of the chain absorbs and emits radiation with equal probability. Bending leads to a cancellation of transition dipole moment (TDM), increasing excited-state lifetime. Simultaneously, fluorescence shifts to the red as radiative transitions require mixing of the excited state with vibrational modes. However, strain can become so large that excited-state localization on shorter units of the chain occurs, compensating TDM cancellation. The underlying correlations between shape and photophysics can only be resolved in single molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Poly(ferrocenyldimethylsilanes) at the interface of chemistry and materials science: synthesis, structure-properties and thin film applications

    NARCIS (Netherlands)

    Lammertink, Rob G.H.

    2000-01-01

    The work described in this thesis concerns the synthesis, characterization, and properties study of ferrocenyldimethylsilane homopolymers and block copolymers. Due to the presence of iron and silicon in the polymer main chain, these macromolecules possess characteristics that are very distinctive

  13. Synthesis, crystallographic and magnetic properties of protactinium pnictides

    International Nuclear Information System (INIS)

    Hery, Yves.

    1979-03-01

    From a theoretical point of view, protactinium lies in a very important place in the periodic system for it seems to be the first element of the actinide series where the 5f state is occupied. We have studied protactinium pnictides, particularly arsenides and antimonides. PaAs 2 , Pa 3 As 4 , PaSb 2 and Pa 3 Sb 4 were synthetized and their crystallographic properties were determined and discussed. We have measured the magnetic susceptibilities of PaC, PaAs 2 and PaSb 2 . Protactinium exhibits a dual character. In its monocarbide, which is a weakly diamagnet, it behaves as a transition element while in the temperature independent paramagnets PaAs 2 and PaSb 2 , it behaves like a 'f' element. This 'f' element character increases with increasing metal-metal distances. Furthermore the radial expansion of the protactinium 5f orbital seems to be more important than the Uranium one, and consequently the corresponding protactinium 5f electrons are less localized. In addition, some protactinium chalcogenides (βPaS 2 , γPaSe 2 and PaOSe) have been identified [fr

  14. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.

    Science.gov (United States)

    Somturk, Burcu; Yilmaz, Ismail; Altinkaynak, Cevahir; Karatepe, Aslıhan; Özdemir, Nalan; Ocsoy, Ismail

    2016-05-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu(2+)) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02mgmL(-1) urease in 10mM PBS (pH 7.4) at +4°C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4°C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4°C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effects of Synthesis Method on Electrical Properties of Graphene

    Science.gov (United States)

    Fuad, M. F. I. Ahmad; Jarni, H. H.; Shariffudin, W. N.; Othman, N. H.; Rahim, A. N. Che Abdul

    2018-05-01

    The aim of this study is to achieve the highest reduction capability and complete reductions of oxygen from graphene oxide (GO) by using different type of chemical methods. The modification of Hummer’s method has been proposed to produce GO, and hydrazine hydrate has been utilized in the GO’s reduction process into graphene. There are two types of chemical method are used to synthesize graphene; 1) Sina’s method and 2) Sasha’s method. Both GO and graphene were then characterized using X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The graph patterns obtained from XRD showed that the values of graphene and GO are within their reliable ranges, FT-IR identified the comparison functional group between GO and graphene. Graphene was verified to experience the reduction process due to absent of functional group consist of oxygen has detected. Electrochemical impedance spectrometry (EIS) was then conducted to test the ability of conducting electricity of two batches (each weighted 1.6g) of graphene synthesized using different methods (Sina’s method and Sasha’s method). Sasha’s method was proven to have lower conductivity value compare to Sina’s method, with value of 6.2E+02 S/m and 8.1E+02 S/m respectively. These values show that both methods produced good graphene; however, by using Sina’s method, the graphene produced has better electrical properties.

  16. Stacked nickelocenes: synthesis, structural characterization, and magnetic properties.

    Science.gov (United States)

    Trtica, Sabrina; Prosenc, Marc Heinrich; Schmidt, Michael; Heck, Jürgen; Albrecht, Ole; Görlitz, Detlef; Reuter, Frank; Rentschler, Eva

    2010-02-15

    The disubstitution of 1,8-diiodonaphthalene (1) with cyclopentadienyl nucleophiles reveals 1,8-(dicyclopentadienyl)-naphthalene, which rapidly undergoes Diels-Alder reaction forming 1,8-(3a',4',7',7a'-tetrahydro-4',7'-methanoindene-7a',8'-diyl)-naphthalene (2). A subsequent retro-Diels-Alder reaction in the presence of sodium hydride yields the disodium salt of 1,8-(dicyclopentadiendiyl)-naphthalene 3. The disodium salt 3 was the starting material to obtain the paramagnetic bisnickelocene derivative 4, which structure was obtained by X-ray structure analysis, revealing two nickelocenes kept together in a stacked fashion by a 1,8-naphthalene clamp. An electronic interaction between the two nickel atoms is found as a result of cyclic voltammetry, indicating five different oxidation states +4, +3, +2, +1, and 0. The magnetic properties of 4 in solution were studied by variable temperature paramagnetic (1)H NMR spectroscopy and Evans method and revealed Curie behavior between 213 and 293 K. The magnetic susceptibility of a powdered sample of 4 was measured, and an antiferromagnetic interaction with an exchange coupling of J(12) = -31.49 cm(-1) is found. In accord with experimental data, broken symmetry density functional theory (DFT) calculations revealed four antiferromagnetically coupled electrons resulting in an open shell singlet ground state.

  17. Mechanically activated synthesis of PZT and its electromechanical properties

    Science.gov (United States)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  18. Mechanically activated synthesis of PZT and its electromechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Akdogan, E.K.; Safari, A.; Riman, R.E. [Rutgers the State University of New Jersey, Department of Ceramic and Materials Engineering, Piscataway, NJ (United States)

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr{sub 0.7}Ti{sub 0.3})O{sub 3} (PZT) powders. Lead-zirconium-titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of {proportional_to}110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route. (orig.)

  19. Synthesis and mechanical properties of boron suboxide thin films

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.; Kugler, Veronika; Nakao, Setsuo; Jin, Ping; Oestblom, Mattias; Hultman, Lars; Helmersson, Ulf

    2002-01-01

    Boron suboxide thin films have been deposited on Si(100) and graphite substrates by reactive rf magnetron sputtering of a sintered B target in an Ar/O 2 atmosphere. X-ray photoelectron spectroscopy, elastic recoil detection analysis, Fourier transform infrared spectroscopy, x-ray diffraction, and transmission electron microscopy were applied to study the influence of the O 2 partial pressure on the film composition and microstructure. BO x thin films with x=[0.02-0.21] and a C impurity of approximately 0.3 at. % were formed by varying the O 2 partial pressure from 7.2x10 -7 to 3.3x10 -2 Pa. All films were amorphous and the films with x≥0.15 contained boric acid on the surface due to a probable chemical reaction with water in laboratory atmosphere. Mechanical properties were evaluated by nanoindentation. As x was increased from 0.02 to 0.21, the elastic modulus decreased from 272 to 109 GPa. The change in the elastic modulus was attributed to the O concentration variations

  20. Synthesis, structure, and physical properties of new rare earth ferrocenoylacetonates.

    Science.gov (United States)

    Koroteev, Pavel S; Dobrokhotova, Zhanna V; Ilyukhin, Andrey B; Efimov, Nikolay N; Rouzières, Mathieu; Kiskin, Mikhail A; Clérac, Rodolphe; Novotortsev, Vladimir M

    2016-04-21

    New ferrocenoylacetonate complexes of several rare earth elements, [Ln(fca)3(bpy)]·MeC6H5 (Ln = Pr (), Eu (), Gd (), Tb (), Dy (), Ho (), Y (); bpy - 2,2'-bipyridine; Hfca - FcCOCH2COMe) as well as scandium ferrocenoylacetonate [Sc(fca)3]·0.5MeC6H5 (), were synthesized and characterized by single crystal X-ray diffraction analysis. In the crystal lattice of the isostructural complexes , two [Ln(fca)3(bpy)] molecules form a pair due to stacking interactions between the bpy ligands. The Ln(3+) ions are coordinated in a square antiprism geometry with a coordination number of 8. The Sc(3+) ions in complex are coordinated in an octahedral geometry. Thermolysis of complexes was studied under air and argon atmospheres; in the first case, it affords perovskites LnFeO3 as one of the products. Complexes display single-molecule magnet properties, and the effective relaxation barrier for the Dy complex , was found to be Δeff/kB = 241 K, which is one of the highest values obtained for a mononuclear β-diketonate lanthanide complex.

  1. Synthesis and properties of topologically ordered porous magnesium

    International Nuclear Information System (INIS)

    Kirkland, N.T.; Kolbeinsson, I.; Woodfield, T.; Dias, G.J.; Staiger, M.P.

    2011-01-01

    A processing method is described for the preparation of controllable macroscopic architectures in open-cell porous magnesium (Mg). Various macroscopic architectures were devised with computer aided design (CAD). The CAD models were then fabricated as positive templates by 3D printing using an acrylic polymer. The polymer templates could be infiltrated using a specially formulated sodium chloride (NaCl) slurry. Complete removal of the polymer then resulted in a negative NaCl template that was infiltrated with liquid Mg. Optimization of the parameters for the processing of the negative NaCl template was achieved by initially investigating the effect of sintering conditions on the microstructure and mechanical properties of bulk NaCl. Subsequent removal of the NaCl by solvent washing results in Mg with ordered porosity that faithfully reproduced the macroscopic features of the CAD models. The dimensions of the macroscopic features of the positive polymer and NaCl templates were compared to assess the accuracy of replication.

  2. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  3. Synthesis and optical property of zinc aluminate spinel cryogels

    Directory of Open Access Journals (Sweden)

    Lifen Su

    2016-06-01

    Full Text Available Zinc aluminate spinel cryogels with various molar ratio of Al/Zn are synthesized by sol–gel technology followed by vacuum freeze drying. The structures and optical properties are both found to be affected by the molar ratios of Al/Zn and annealed temperatures. The peaks of zinc oxide (ZnO and zinc dialuminum oxide (ZnAl2O4 are both obtained for the samples with more Zn content annealed at 750 °C or upward. The composites have a large surface area (137 m2/g with mesoporous structure after annealing at 750 °C. The SEM images reveal that the ZnAl2O4 crystals formed a multilayer structure with redundant ZnO particles which deposited on it. Furthermore, the maximum infrared reflectance is about 80% with an improvement of 35% in the infrared region after annealing at 950 °C compared with that of 450 °C, which indicates that these porous cryogels have a potential application as thermal insulating materials at a high temperature.

  4. Synthesis and optical properties of novel asymmetric perylene bisimides

    International Nuclear Information System (INIS)

    Tsai, Hsing-Yang; Chen, Kew-Yu

    2014-01-01

    A novel series of asymmetric perylene bisimides, 1-amino-7-nitroperylene bisimides (1a–1c), was synthesized and fully characterized. These molecules undergo an excited-state intramolecular electron transfer reaction, resulting in a unique charge transfer emission in the near-infrared region, of which the peak wavelength exhibits strong solvatochromism. The dipole moments of these compounds have been estimated using the Lippert–Mataga equation, and upon excitation, the molecules show larger dipole moment changes than those of the symmetric 1,7-diaminoperylene bisimides (2a–2c). Furthermore, these dyes undergo two quasi-reversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. They display good thermal stability and optical stability that can be used as stable near-infrared fluorescent dyes. Their spectroscopic properties in various conditions and complementary time-dependent density functional theory calculations are reported. - Highlights: • 1-amino-7-nitroperylene bisimide dyes were synthesized. • These molecules undergo an excited-state intramolecular electron transfer reaction. • They can be used as stable near-infrared fluorescent dyes

  5. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication

    Science.gov (United States)

    Yang, Xuan; Gilroy, Kyle D.; Vara, Madeline; Zhao, Ming; Zhou, Shan; Xia, Younan

    2017-09-01

    Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15 nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

  6. Synthesis of ZnS thin films from aqueous caustic of trisodium citrate and their properties

    Directory of Open Access Journals (Sweden)

    Martyn A. Sozanskyi

    2015-12-01

    Full Text Available Zinc sulfide (ZnS thin films due to their properties are widely used in various electronic optical devices. They are produced by several methods, among which – vacuum sublimation, high frequency sputtering method, quasiclosed volume method, sol-gel method, electrodeposition. These methods have high energy consumption which increases the price of ZnS thin films. Aim: The aim of this work is to establish the optimal parameters of the synthesis of ZnS thin films of the aqueous caustic and the correlation between content of zinc in the synthesized films determined by the method of stripping voltammetry and thickness, structural, morphological and optical parameters. Materials and Methods: The ZnS thin films were obtained from aqueous caustics of zinc-containing salt using chemical deposition. Fresh solution of zinc-containing salt, trisodium citrate (Na3C6H5O7 as a complexing agent, thiourea ((NH22CS and ammonium hydroxide (NH4OH was used for the synthesis of ZnS films by chemical deposition. The deposition was performed on prepared glass substrates with the area of 5,76 cm2. Results: The phase mixture of the films has been determined. It showed the presence of ZnS compounds in the cubic modification (sphalerite. Stripping voltammetry was used to determine the mass of zinc in the ZnS films on various conditions of synthesis, namely on the concentration of the initial zinc-containing salt, trisodium citrate, thiourea, deposition time and temperature. The surface morphology, optical properties, the thickness of the ZnS resulting films have been studied. Conclusions: The optimal conditions for the synthesis of ZnS films were found based on these data. Three-dimensional surface morphology of ZnS film studies showed its smoothness, uniformity, integrity and confirmed the correctness of determining the optimal synthesis parameters.

  7. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liyan [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng, E-mail: yansc@njupt.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Lu, Tao; Shi, Yi; Wang, Jianyu [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidone (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and

  8. Synthesis of Large Molecules in Cometary Ice Analogs: Physical Properties

    Science.gov (United States)

    Dworkin, Jason; Sandford, S. A.; Allamandola, L. J.; Deamer, D. W.; Gillette, S. J.; Zare, R. N.

    Comets and carbonaceous micrometeorites may have been important sources of volatiles on the early Earth; their organic composition may therefore be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. Within the cloud and especially the presolar nebula, these icy grains would have been photoprocessed by ultraviolet light to produce more complex molecules. We are investigating the molecules that could have been generated in precometary ices. Experiments were conducted by forming a realistic interstellar ice (H_2^O, CH_3H, NH_3 and CO) at ~10 K under high vacuum irradiated UV by a hydrogen plasma lamp. The residue remaining after warming to room temperature was analyzed by HPLC and by several mass spectrometric methods. This material contains a variety of complex compounds with MS profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. In other experiments, the residues were dispersed in aqueous media for microscopy. The organic material forms 10-40 micrometer droplets that fluoresce (300-450 nm) under UV excitation and appear strikingly similar to those produced by extracts of the Murchison meteorite. Together, these results suggest a link between organic material synthesized on cold grains photochemically and compounds that may have contributed to the organic inventory of the primitive Earth. The amphiphilic properties of such compounds permit self-assembly into the membranous boundary structures required for the first forms of cellular life.

  9. Pyrimidine homoribonucleosides: synthesis, solution conformation, and some biological properties.

    Science.gov (United States)

    Lassota, P; Kuśmierek, J T; Stolarski, R; Shugar, D

    1987-05-01

    Conversion of uridine and cytidine to their 5'-O-tosyl derivatives, followed by cyanation with tetraethylammonium cyanide, reduction and deamination, led to isolation of the hitherto unknown homouridine (1-(5'-deoxy-beta-D-allofuranosyl)uracil) and homocytidine (1-(5'-deoxy-beta-D-allofuranosyl)cytosine), analogues of uridine and cytidine in which the exocyclic 5'-CH2OH chain is extended by one carbon to CH2CH2OH. Homocytidine was also phosphorylated to its 6'-phosphate and 6'-pyrophosphate analogues. In addition, it was converted, via its 2,2'-anhydro derivative, to arahomocytidine, an analogue of the chemotherapeutically active araC. The structures of all the foregoing were established by various criteria, including 1H and 13C NMR spectroscopy, both of which were also applied to analyses of the solution conformations of the various compounds, particularly as regards the conformations of the exocyclic chains. The behaviour of the homo analogues was examined in several enzymatic systems. Homocytidine was a feeble substrate, without inhibitory properties, of E. coli cytidine deaminase. Homocytidine was an excellent substrate for wheat shoot nucleoside phosphotransferase; while homouridine was a good substrate for E. coli uridine phosphorylase. Although homoCMP was neither a substrate, nor an inhibitor, of snake venom 5'-nucleotidase, homoCDP was a potent inhibitor of this enzyme (Ki approximately 6 microM). HomoCDP was not a substrate for M. luteus polynucleotide phosphorylase. None of the compounds exhibited significant activity vs herpes simplex virus type 1, or cytotoxic activity in several mammalian cell lines.

  10. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  11. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties

    Directory of Open Access Journals (Sweden)

    C. S. M. F. Costa

    2017-11-01

    Full Text Available The main goal of this work was the development of fully biobased unsaturated polyesters (UPs that upon crosslinking with unsaturated monomers (UM could lead to greener unsaturated polyester resins (UPRs with similar thermomechanical properties to commercial fossil based UPR. After the successful synthesis of the biobased UPs, those were crosslinked with styrene (Sty, the most commonly used monomer, and the influence of the chemical structure of the UPs on the thermomechanical characteristics of UPRs were evaluated. The properties were compared with those of a commercial resin (Resipur 9837©. The BioUPRs presented high gel contents and contact angles that are similar to the commercial resin. The thermomechanical properties were evaluated by dynamic mechanical thermal analysis (DMTA and it was found that the UPR synthesized using propylene glycol (PG, succinic acid (SuAc and itaconic acid (ItAc presented very close thermomechanical properties compared to the commercial resin.

  13. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology

    Science.gov (United States)

    Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu

    2014-01-01

    Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the “wonder material” graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications. PMID:24808721

  14. Synthesis, characterization and magnetic properties of Fe/MCM-48

    International Nuclear Information System (INIS)

    Oliva, M.I; Elias, V.R; Eimer, G.A; Silvetti, S.P; Urreta, S.E

    2008-01-01

    Mesoporous silicates called MCM-48 have a structure of interconnected pores with a cubic three dimensional arrangement, with diameters ranging from 1-10nm. This kind of pore configuration has elevated surface areas (more than 1000 m 2 /g) so these molecular MCM-48 sieves are useful for supporting and encapsulating nanophases of different transition metals, metal oxides and organometallic compounds. Nanocomposites are formed with potential applications in the areas of electronics, optics, magnetism, energy storage, drug transport and catalysis. For this work MCM-48 materials were synthesized and then modified with Fe by the wet impregnation method. Two sources of Fe were used: Fe(NO 3 ) 3 .9H 2 O and FeSO 4 .7H 2 O. The silica, previously roasted at 773 K, was suspended in a large amount of aqueous solution that initially contained the amount of iron to be deposited (5%p/p) and that was agitated for a short time. The mixture was then placed in a bath at 353K without agitation for 8 hours. Finally the water was eliminated in a rotating evaporator at 333K. The powder obtained was dried in a stove at 333K for 8 hours and calcined at 773K for 4 hours. The microstructure of the resulting composites was characterized by X-ray diffraction (XRD) and ultraviolet-visible diffuse reflectance (UVvis-DR). The magnetic properties were studied as a function of the temperature following zero field cooling (ZFC) and field cooling (FC) protocols between 300K and 5K and by measuring the hysterisis curves at different temperatures in the same range. The DRX studies confirmed a MCM-48 type structure for all the matrices, consistent with the high surface areas - around 1300 m 2 /g- measured. The structure and the surface areas of the composites were affected by the addition of the metal. While the UVvis-DR and DRX analyses of the composites obtained showed that the iron subjects in the final material are similar for both sources of iron used, they have different magnetic behaviors

  15. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    Science.gov (United States)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  16. Synthesis, characterization and magnetic properties of selected Laves and MAX phases

    International Nuclear Information System (INIS)

    Hamm, Christin Maria

    2017-01-01

    In this work the rare-earth free Laves phases Ti 2 M 3 Si with M = Mn, Fe, Co, Ni were synthesized by microwave heating and were structurally and magnetically characterized. Furthermore, the solid solution Ti 2 (Co 1-x Fe x ) 3 Si was synthesized by arc melting and spark plasma sintering, as well as their magnetic behavior was studied. In addition to the Laves phases, the focus was on the synthesis and characterization of aluminum-based MAX phases. For the first time the ternary carbides were prepared by microwave heating. The phase-pure representation of MAX phases was particularly challenging for synthetic solid-state chemistry. The susceptor-assisted microwave heating allows the synthesis of high-quality samples, which was shown in this work on M 2 AlC (M = Ti, V, Cr) and V 4 AlC 3 . Furthermore, for the first time, the doping of these materials with Mn and Fe was successful. In addition to the structural characterization of the new phases, the microstructure and magnetic properties are discussed in this work. Using these doped compounds as well as the compound V 4 AlC 3 , it has been shown that field-activated synthesis, particularly susceptor-assisted microwave heating, are a very good synthesis method for compounds which are hard or sometimes not synthesized by conventional methods.

  17. Flow synthesis of a versatile fructosamine mimic and quenching studies of a fructose transport probe

    Directory of Open Access Journals (Sweden)

    Matthew B. Plutschack

    2013-10-01

    Full Text Available We describe the synthesis of 1-amino-2,5-anhydro-D-mannose (“mannitolamine”, a key intermediate to the 7-nitro-1,2,3-benzadiazole conjugate (NBDM, using commercially available fluidic devices to increase the throughput. The approach is the first example of a flow-based Tiffeneau–Demjanov rearrangement. Performing this step in flow enables a ~64-fold throughput enhancement relative to batch. The flow process enables the synthesis to be accomplished three times faster than the comparable batch route. The high throughput enabled the production of larger quantities of the fluorescent fructose transport probe NBDM, enabling us to measure key photophysical properties that will facilitate future uptake studies.

  18. Two-dimensional tantalum disulfide: controlling structure and properties via synthesis

    Science.gov (United States)

    Zhao, Rui; Grisafe, Benjamin; Krishna Ghosh, Ram; Holoviak, Stephen; Wang, Baoming; Wang, Ke; Briggs, Natalie; Haque, Aman; Datta, Suman; Robinson, Joshua

    2018-04-01

    Tantalum disulfide (TaS2) is a transition metal dichalcogenide (TMD) that exhibits phase transition induced electronic property modulation at low temperature. However, the appropriate phase must be grown to enable the semiconductor/metal transition that is of interest for next generation electronic applications. In this work, we demonstrate direct and controllable synthesis of ultra-thin 1T-TaS2 and 2H-TaS2 on a variety of substrates (sapphire, SiO2/Si, and graphene) via powder vapor deposition. The synthesis process leads to single crystal domains ranging from 20 to 200 nm thick and 1-10 µm on a side. The TaS2 phase (1T or 2H) is controlled by synthesis temperature, which subsequently is shown to control the electronic properties. Furthermore, this work constitutes the first demonstration of a metal-insulator phase transition in directly synthesized 1T-TaS2 films and domains by electronic means.

  19. Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties.

    Science.gov (United States)

    Nasirian, Nima; Mirzaie, Maryam; Cicek, Nazim; Levin, David B

    2018-04-01

    Relationships between lipid and carotenoid synthesis by Rhodosporidium diobovatum were investigated for cell cultures in nitrogen-limited medium (GMY) containing equimolar amounts of carbon of glucose or glycerol. The cultures were also supplemented with additional substrate at 120 h postinoculation (pi) and during a fed-batch experiment. Growth of R. diobovatum on glucose resulted in higher yields of triacyglycerides (TAGs) and carotenoid than when grown on glycerol, even though the cultures contained equimolar amounts of carbon. After the addition of fresh substrate at 120 h pi, total carotenoid concentrations were significantly different from the concentrations measured at 120 h pi in both glucose and glycerol cultures, with no concomitant increase in lipid concentrations, suggesting that carotenoid synthesis is linked to exponential-phase growth, while lipid synthesis is linked to stationary phase. We also compared the calculated properties of biodiesel that could be made with TAGs derived from R. diobovatum with properties of biodiesel made from TAGs of other oleaginous yeasts, microalgae, vegetable oils, and animal fats. This study shows that R. diobovatum can be an effective strain for production of neutral lipids containing high percentages of oleic acid, palmitic acid, and linoleic acid, as well as carotenoids.

  20. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis