WorldWideScience

Sample records for synthesis cu-co catalysts

  1. Efficient Synthesis of Ethanol from CH4 and Syngas on a Cu-Co/TiO2 Catalyst Using a Stepwise Reactor

    Science.gov (United States)

    Zuo, Zhi-Jun; Peng, Fen; Huang, Wei

    2016-10-01

    Ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst is studied using experiments, density functional theory (DFT) and microkinetic modelling. The experimental results indicate that the active sites of ethanol synthesis from CH4 and syngas are Cu and CoO, over which the ethanol selectivity is approximately 98.30% in a continuous stepwise reactor. DFT and microkinetic modelling results show that *CH3 is the most abundant species and can be formed from *CH4 dehydrogenation or through the process of *CO hydrogenation. Next, the insertion of *CO into *CH3 forms *CH3CO. Finally, ethanol is formed through *CH3CO and *CH3COH hydrogenation. According to our results, small particles of metallic Cu and CoO as well as a strongly synergistic effect between metallic Cu and CoO are beneficial for ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst.

  2. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.

    Science.gov (United States)

    Homsi, Doris; Rached, Jihane Abou; Aouad, Samer; Gennequin, Cédric; Dahdah, Eliane; Estephane, Jane; Tidahy, Haingomalala Lucette; Aboukaïs, Antoine; Abi-Aad, Edmond

    2017-04-01

    The performances of different 5Cu/Co x Mg 6-x Al 2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co 6 Al 2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co 2 Mg 4 Al 2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.

  3. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  4. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  5. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Harish, G.S.; Sreedhara Reddy, P., E-mail: psreddy4@gmail.com

    2015-09-15

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm{sup −1}) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  6. Investigation of syngas interaction in alcohol synthesis catalysts. Quartery technical progress report, July 1, 1995--September 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Akundi, M.A.

    1996-02-01

    This report presents the work done on {open_quotes}Investigation of Syngas Interaction in Alcohol Synthesis Catalysts{close_quotes} during the last three months. In this report the results of the work done on the effect of CO adsorption on the magnetic character of cobalt in the Cu/Co/Cr catalysts is discussed.

  7. ZnS:Cu,Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications

    International Nuclear Information System (INIS)

    Ma Lun; Chen Wei

    2010-01-01

    Cu 2+ and Co 2+ co-doped zinc sulfide water-soluble nanoparticles (ZnS:Cu,Co) were prepared and their afterglow luminescence was observed and reported for the first time. The nanoparticles have a cubic zinc blende structure with average sizes of about 4 nm as determined by high-resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD). In the photoluminescence, two emission peaks are observed at 470 and 510 nm. However, in the afterglow, only one peak is observed at around 525 nm. The blue emission at 470 nm is from surface states and the green emission at 525 nm is from Cu 2+ . This means that Cu 2+ is responsible for the afterglow from the nanoparticles, while the co-doping of Co 2+ is critical for the afterglow because no afterglow could be seen without co-doping with Co 2+ . The successful observation of the afterglow from water-soluble nanoparticles may open up new applications of afterglow phosphors in biological imaging, detection and treatment.

  8. Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites.

    Science.gov (United States)

    Shi, Yongqian; Yu, Bin; Zhou, Keqing; Yuen, Richard K K; Gui, Zhou; Hu, Yuan; Jiang, Saihua

    2015-08-15

    Novel spinel copper cobaltate (CuCo2O4)/graphitic carbon nitride (g-C3N4) (named C-CuCo2O4) nanohybrids with different weight ratios of g-C3N4 to CuCo2O4 were successfully synthesized via a facile hydrothermal method. Then the nanohybrids were added into the thermoplastic polyurethane (TPU) matrix to prepare TPU nanocomposites using a master batch-melt compounding approach. Morphological analysis indicated that CuCo2O4 nanoparticles were uniformly distributed on g-C3N4 nanosheets. Thermal analysis revealed that C-CuCo2O4-7 (proportion of g-C3N4 to CuCo2O4 of 93/7) was an optimal nanohybrid for the properties improvement of TPU. Incorporation of C-CuCo2O4-7 into TPU led to significant improvements in the onset decomposition temperature, temperature at maximal mass loss rate and char yields. The heat release rate and total heat release of TPU/C-CuCo2O4-7 decreased by 37% and 31.3%, respectively, compared with those of pure TPU. Furthermore, the amounts of pyrolysis gaseous products, including combustible volatiles and carbon monoxide (CO), were remarkably reduced, whereas, non-flammable gas (carbon dioxide) increased. Excellent dispersion of C-CuCo2O4-7 in TPU host was achieved, due to the synergistic effect between g-C3N4 and CuCo2O4. Enhancements in the thermal stability and flame retardancy were attributed to the explanations that g-C3N4 nanosheets showed the physical barrier effect and catalytic nitrogen monoxide (NO) decomposition, and that CuCo2O4 catalyzes the reaction of CO with NO and increased char residues. Copyright © 2015. Published by Elsevier B.V.

  9. Mixed Alcohol Synthesis Catalyst Screening

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  10. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Organic Synthesis using Clay Catalysts - Clays for 'Green Chemistry'. Gopalpur Nagendrappa. General Article Volume 7 Issue 1 January 2002 pp 64-77. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Synthesis of the catalyst

    Indian Academy of Sciences (India)

    Admin

    62 11; Palhagen S, Canger R, Henriksen O, Van Parys J A, Riviere M E and Karolchyk M A 2001 Rufinamide: a double-blind, placebo-controlled proof of principle trial in patients with epilepsy; Epilepsy Res. 43, 115; Bakunov S A, Bakunova S M, Wenzler T, Ghebru M, Werbovetz K A, Brun R and Tidwell R R 2010 Synthesis ...

  12. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  13. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu-Co/Al2O3 prepared using the polyol process

    International Nuclear Information System (INIS)

    Lu Chiyuan; Tseng, H.-H.; Wey Mingyen; Liu Lingyi; Chuang, K.-H.

    2009-01-01

    Cu-Co bimetallic catalysts were prepared using a simple polyol process. The effects of various metal precursors (nitrate, acetate, and chloride) and Cu/Co ratios on the activities of the catalysts were evaluated for toluene oxidation and NO reduction. The results indicated that the use of the metal precursor Cu-Co acetate in preparing the bimetallic catalysts resulted in good metal dispersion and high catalytic activity. When the atomic Cu/Co ratio was 0.21 in the Al 2 O 3 -supported catalyst, the dispersion of active sites was promoted by the Cu, and the catalytic activity was stable over the reaction time. CuO and Cu 0 species and large particle sizes (20 nm) formed when the Co loading weight in the catalyst increased, and conversion decreased. When the reaction temperature was 300 deg. C, NO and toluene were able to be simultaneously removed with high conversion rates (83% and 98%)

  14. Magnetically retrievable catalysts for organic synthesis

    Science.gov (United States)

    The use of magnetic nanoparticles (MNPs) as a catalyst in organic synthesis has become a subject of intense investigation. The recovery of expensive catalysts after catalytic reaction and reusing it without losing its activity is an important feature in the sustainable process de...

  15. Alum an Efficient Catalyst for Erlenmeyer Synthesis

    African Journals Online (AJOL)

    NICO

    found to be useful precursors for the synthesis of amino acids,2 peptides,3 and ... tuted imidazoles,21h etc. However, there are no examples of the use of alum as a catalyst for the synthesis of azlactone deriva- tives. 2. Result and Discussion .... 12 P.S. Rao and R.V. Venkataratnam, Indian J. Chem, 1994, 33B, 984–985.

  16. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  17. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  18. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  19. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as ...

    Indian Academy of Sciences (India)

    based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the -isophorone oxidation. C S Thatte ... A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff ...

  20. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    His work includes organic synthesis and reaction mechanisms mainly in the area of organosilicon chemistry. Presently he is also working on organic synthesis under solvent- free conditions and using clay-catalyses. Keywords. Montmorillonite, ion-exchange, clay-nanomaterials, dehydration pyrolysis, rearrangement, steric.

  1. Study of ammonia synthesis using technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  2. Study of ammonia synthesis over uranium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Erofeev, B.V.; Mikhajlenko, I.E.; Gorelkin, I.I.; Ivanov, L.S.

    1980-01-01

    The effect of induced radiactivity and chemical composition of uranium catalysts on their catalytic activity in the ammonia synthesis reaction has been studied. The catalyst samples comprise pieces of metal uranium and chip irradiated in nuclear reactor by the 4.3x10 16 n/cm 2 integral flux of slow neutrons. Studies of catalytic activity was carried out at 1 atm and 340-510 deg C when stoichiometric nitrogen-hydrogen mixture passed through the following installation. At different temperatures uranium nitrides of different composition are shown to be formed. Uranium nitrides with the composition close to UN 2 are the samples with the highest catalYtic activity. The reduction of catalytic activity of uranium catalysts with the increased temperature of their formation above 400 deg C is explained by low catalytic activity of forming UNsub(1.7) in comparison with UN 2 . Catalytic properties of irradiated and nonirradiated samples do not differ from one another

  3. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  4. Investigation of syngas interactions in alcohol synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Akundi, M.A.

    1998-04-15

    The primary objectives of the project are to (a) synthesize, by controlled sequential and co-impregnation techniques, three distinct composition metal clusters (consisting of Cu-Co-Cr and Cu-Fe-Zn): rich in copper (Methanol selective), rich in ferromagnetic metal (Co or Fe-Hydrocarbon selective) and intermediate range (mixed alcohol catalysts); (b) investigate the changes in the magnetic character of the systems due to interaction with CO, through Zero-field Nuclear Magnetic Resonance (ZFNMR) study of cobalt and Magnetic character (saturation magnetization and coercive field) analysis of the composite catalyst of Vibrating Sample Magnetometry (VSM); (c) examine the changes in syngas adsorption character of the catalyst as the composition changes, by FTIR Spectroscopic analysis of CO stretching frequencies; (d) determine the nature and size of these intermetallic clusters by Scanning Electron Microscopy (SEM); and (e) perform catalytic runs on selected samples and analyze the correlations between the physical and chemical characteristics. The catalysts chosen have a greater promise for industrial application than the Rh and Mo based catalysts. Several groups preparing catalysts by synthetic routes have reported divergent results for activity and selectivity. Generally the research has followed an empirical path and less effort is devoted to analyze the mechanisms and the scientific basis. The primary intent of this study is to analyze the nature of the intermetallic and gas-metal interactions and examine the correlations to catalytic properties.

  5. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    synthesis of tetraketones and biscoumarins. JITENDER M KHURANA. ∗ ... designed wherein, polyvinyl pyrrolidone (PVP) stabilized nickel nanoparticles have been used as a catalyst for promoting the synthesis of 2,2 -aryl-methylene ..... synthesis of tetraketones (3) and bis- coumarins (4) using air stable PVP coated nickel.

  6. Activation of catalysts for synthesizing methanol from synthesis gas

    Science.gov (United States)

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  7. The obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis

    International Nuclear Information System (INIS)

    Mansurov, M.M.; Lugovenko, A.N.; Mirzoeva, M.M.

    1993-01-01

    Present article is devoted to obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis. The method of synthesis of iron acetate from processed iron comprising catalyst of ammonia synthesis was elaborated. The structure of complex was determined.

  8. Sulfated polyborate: A mild, efficient catalyst for synthesis of N ...

    Indian Academy of Sciences (India)

    Rapid, efficient and inexpensive method for synthesis of N-tert-butyl/N-trityl protected amides via Ritter reaction of nitriles with tertiary alcohols in the presence of a sulfated polyborate catalyst under solvent-free conditions is described. The catalyst has the advantage of Lewis as well as Bronsted acidity and recyclability ...

  9. Synthesis and characterization of solid heterogeneous catalyst for ...

    African Journals Online (AJOL)

    Synthesis and characterization of solid heterogeneous catalyst for the production of biodiesel from high FFA waste cooking oil. Nasar Mansir, Taufiq-Yap Yun Hin. Abstract. No Abstract. Keywords: Biodiesel, Transesterification, High FFA waste cooking oil, Heterogeneous catalyst, Single step reaction process. Full Text:.

  10. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 907–912. c Indian Academy of Sciences. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins ... Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail: ... and for the synthesis of various heterocyclic com-.

  11. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  12. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  13. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  14. A catalyst-free synthesis of germanium nanowires obtained by ...

    Indian Academy of Sciences (India)

    A catalyst-free innovative synthesis, by combined X-ray chemical vapour deposition and lowtemperature thermal treatments, which has not been applied since so far to the growth of germanium nanowires (Ge-NWs), produced high yields of the nanoproducts with theGeH4 reactant gas. Nanowires were grown on both ...

  15. Effect of different catalysts on urea-formaldehyde resin synthesis

    Science.gov (United States)

    Qi-Ning Sun; Chung-Yun Hse; Todd F. Shupe

    2014-01-01

    Four catalysts (H2SO4, HCl, H3PO4, and NaOH/NH4OH) were studied in the preparation of melamine modified urea– formaldehyde (UFM) resins. 13C-nuclear magnetic resonance spectroscopic analysis of the UFM resins at different synthesis stages revealed the...

  16. zeolite catalysts for the selective synthesis of mono- and diethylamines

    NARCIS (Netherlands)

    Veefkind, V.A.; Lercher, J.A.

    1998-01-01

    The kinetics and mechanism of ethylamine synthesis from ammonia and ethanol over several large pore acid catalysts are described. Mordenite produced higher monoethylamine yields than the zeolites beta, Y, mazzite, and amorphous silica–alumina. The reaction proceeds via the initial formation of

  17. Magnetic solid acid catalyst for biodiesel synthesis from waste oil

    International Nuclear Information System (INIS)

    Li, Junqiao; Liang, Xuezheng

    2017-01-01

    Highlights: • A new magnetic solid acid has been synthesized. • A new solid acid showed high activities for biodiesel synthesis from waste oils under mild condition. • A simple magnetic separation and high stability were the key properties of the new catalyst. - Abstract: A new magnetic solid acid catalyst was synthesized by immobilizing an ionic liquid precursor obtained from (3-aminopropyl)trimethoxysilane onto a magnetic core. The magnetic solid acid catalyst has a core–shell structure, and the acid sites on the shell were easily accessible to reactants. The catalytic activities of the magnetic solid acid were investigated by biodiesel synthesis from waste oils. The solid acid exhibited a higher activity than traditional acid catalysts and the ionic liquid precursor. The core–shell structure and magnetic attraction between the particles provided strong ionic interactions, resulting in the high activity and stability. The main characteristics of the magnetic solid acid catalyst were as follows: easily accessible acidic sites, simple magnetic separation and high waste oil utilization.

  18. Study of the synthesis of ammonia over technetium catalysts

    International Nuclear Information System (INIS)

    Spetsyn, V.I.; Mikhailenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    The catalytic properties of technetium in the synthesis of ammonia have been studied in the present work. Technetium catalysts according to specific yield surpass all know catalysts for the synthesis of ammonia. The enhanced catalytic activity of technetium compared to manganese and rhenium is apparently explained by the presence of the radioactivity of 99 Tc. The processes of adsorption, orientation of the adsorbed molecules, and their binding energies can differ during radiation action. Irradiation of the carrier, occurring through #betta#-emission of 99 Tc, with doses of 4-8 x 10 3 rad/day, increased the number of defects in the crystal structure where stabilization of technetium atoms was possible. The existence of charged centers can cause an increase in the dissociative chemisorption of nitrogen, which is the limiting stage of the process. Technetium catalysts possess a stable catalytic activity and do not require its restoration for several months. Results suggest that the use of technetium as a catalyst for the synthesis of ammonia has real advantages and potential possibilities

  19. In situ investigation of catalysts for alcohol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek; Wu, Qiongxiao

    The need for studying catalyst under realistic conditions is emphasized both by academic and industrial research. Acquiring highly resolved local information from materials under realistic environments by means of Transmission Electron Microscopy (TEM) has been found to be essential in connecting...... microscopic and macroscopic properties of materials, e.g. relating catalytic performance with crystal structure and morphology. This study presents extensive characterization of NiGa and CuNi alloys during catalyst formation, alcohol synthesis, and accelerated aging experiments. The characterization platform...

  20. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  1. Histidine as a catalyst in organic synthesis: A facile in situ synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 4. Histidine as a catalyst in organic synthesis: A facile in situ synthesis of , N-diarylnitrones. H Mallesha K R Ravi Kumar B K Vishu Kumar K Mantelingu K S Rangappa. Organic Volume 113 Issue 4 August 2001 pp 291-296 ...

  2. Dual catalyst bed concept for catalytic partial oxidation of methane to synthesis gas

    NARCIS (Netherlands)

    Zhu, J.J.; Mujeebur Rahuman, M.S.M.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    A system with two catalyst beds instead of one single metal catalyst bed is proposed for catalytic partial oxidation of methane (CPOM) to synthesis gas. In this dual catalyst bed system, an irreducible stable oxide, such as yttrium-stabilized zirconia (YSZ), is used in the first catalyst bed to

  3. Production of biofuels from synthesis gas using microbial catalysts.

    Science.gov (United States)

    Tirado-Acevedo, Oscar; Chinn, Mari S; Grunden, Amy M

    2010-01-01

    World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro

    2018-01-04

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron-treated cobalt catalyst systems as described herein show significant increases in the conversion of CH4 and CO2 during the dry reforming of methane (DRM) reaction as compared to traditional catalysts. Described herein are supported catalysts and methods of using the catalysts for the dry reforming of methane to synthesis gas, with the supported catalysts in the present invention include a boron-treated cobalt catalyst disposed on an oxide support. Also described herein are processes for preparing the supported catalysts.

  5. Synthesis and Activation of Catalysts for Biofuel Synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Elkjær, Christian Fink

    of CuNi and NiGa catalysts for alcohol synthesis using High-Resolution TEM (HRTEM), energy electron-loss spectroscopy (EELS), Energy-Dispersive X-ray Spectroscopy (EDX). Complementary observations have been done using in-situ X-Ray Diffraction (XRD). We focus on structural changes during the catalysts...... synthesis and activation in a reducing atmosphere at elevated temperature. Changes in phase and particle size distribution with respect to the temperature can be directly observed and correlated to catalytic activity and integral phase information from the in-situ XRD....... promising candidates experimentally. Transmission electron microscopy (TEM) is used for microstructural characterization and provides feedback for both theory and synthesis. We have studied the catalysts close to their working conditions in an environmental transmission electron microscope (ETEM) equipped...

  6. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    Science.gov (United States)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  7. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  8. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    Science.gov (United States)

    Blosi, Magda; Ortelli, Simona; Costa, Anna Luisa; Dondi, Michele; Lolli, Alice; Andreoli, Sara; Benito, Patricia; Albonetti, Stefania

    2016-01-01

    This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF) to 2,5-furandicarboxylic acid (FDCA). The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated. PMID:28773672

  9. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    Directory of Open Access Journals (Sweden)

    Magda Blosi

    2016-07-01

    Full Text Available This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF to 2,5-furandicarboxylic acid (FDCA. The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated.

  10. Mathematical Model of Synthesis Catalyst with Local Reaction Centers

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2017-01-01

    Full Text Available The article considers a catalyst granule with a porous ceramic passive substrate and point active centers on which an exothermic synthesis reaction occurs. A rate of the chemical reaction depends on the temperature according to the Arrhenius law. Heat is removed from the pellet surface in products of synthesis due to heat transfer. In our work we first proposed a model for calculating the steady-state temperature of a catalyst pellet with local reaction centers. Calculation of active centers temperature is based on the idea of self-consistent field (mean-field theory. At first, it is considered that powers of the reaction heat release at the centers are known. On the basis of the found analytical solution, which describes temperature distribution inside the granule, the average temperature of the reaction centers is calculated, which then is inserted in the formula for heat release. The resulting system of transcendental algebraic equations is transformed into a system of ordinary differential equations of relaxation type and solved numerically to achieve a steady-state value. As a practical application, the article considers a Fischer-Tropsch synthesis catalyst granule with active cobalt metallic micro-particles. Cobalt micro-particles are the centers of the exothermic reaction of hydrocarbons macromolecular synthesis. Synthesis occurs as a result of absorption of the components of the synthesis gas on metallic cobalt. The temperature distribution inside the granule for a single local center and reaction centers located on the same granule diameter is found. It was found that there is a critical temperature of reactor exceeding of which leads to significant local overheating of the centers - thermal explosion. The temperature distribution with the local reaction centers is qualitatively different from the granule temperature, calculated in the homogeneous approximation. It is shown that, in contrast to the homogeneous approximation, the

  11. Hydrothermal synthesis and characterization of zirconia based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Caillot, T., E-mail: Thierry.caillot@ircelyon.univ-lyon1.fr; Salama, Z.; Chanut, N.; Cadete Santos Aires, F.J.; Bennici, S.; Auroux, A.

    2013-07-15

    In this work, three equimolar mixed oxides ZrO{sub 2}/CeO{sub 2}, ZrO{sub 2}/TiO{sub 2}, ZrO{sub 2}/La{sub 2}O{sub 3} and a reference ZrO{sub 2} have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH{sub 3} and SO{sub 2} probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO{sub 2}/TiO{sub 2} material appears to be the best candidate for further application in acid–base catalysis. - Graphical abstract: Mesoporous amorphous phase with a high surface area of titania zirconia mixed oxide obtained by hydrothermal preparation. - Highlights: • Three zirconia based catalysts and a reference were prepared by hydrothermal synthesis. • Mixed oxides present larger surface areas than the reference ZrO{sub 2}. • ZrO{sub 2}/TiO{sub 2} catalyst presents a mesoporous structure with high surface area. • ZrO{sub 2}/TiO{sub 2} catalyst presents simultaneously strong acidic and basic properties.

  12. The modification of ion exchange heterogeneous catalysts for biodiesel synthesis

    Science.gov (United States)

    Hartono, R.; Mulia, B.; Sahlan, M.; Utami, T. S.; Wijanarko, Anondho; Hermansyah, Heri

    2017-03-01

    Conventionally, biodiesel is produced by using the homogeneous catalyst which has difficulty in high cost of the separation process. The heterogeneous catalysts ion exchange resin by its Solid phase can make an easier separation process, able to be reactivated and used repeatedly. In this research, the heterogeneous catalyst from various source such as Lewatit macro porous resin, Amberlite gel resin and natural zeolite bayah was investigated their performance to produced biodiesel from used cooking oil. Initially, the preparation of the ion exchange process with variations in time, temperature, the concentration of HCl and NaOH solution was investigated. Then, the activity of heterogeneous catalyst to produced biodiesel under the variation of stirring rate, zeolite particle size, and comparison of different ion exchange catalysts were also investigated. Finally, the stability test and regeneration treatment were also investigated. The optimum operating conditions of biodiesel synthesis process is at the temperature of 60 °C for 2 h with a stirring speed of 700 rpm. Natural zeolite Bayah with 6 M of NaOH solution produced 16.19%, Amberlite gel with 6 M HCL produced 65.22% of biodiesel yield and material Lewatit macro porous with 6 M of NaOH solution produced 85.94% as the maximum result. As the best result, Material Lewatit macro porous selected as the material which was used in the variation of stirring speed, temperature, and reaction time, the concentration of base and stability test. According to the results of analysis, calculations yield methyl oleic HPLC produced by Lewatit macro porous with 6 M NaOH at 62.95%.

  13. Synthesis, characterization and performance of bifunctional catalysts for the synthesis of menthol from citronellal

    NARCIS (Netherlands)

    ten Dam, J.; Ramanathan, A; Djanashvili, K.; Kapteijn, F.; Hanefeld, U.

    2017-01-01

    The synthesis of a series of bifunctional catalysts (1 wt% Pt/W-TUD-1 (Technische Universiteit Delft-1) and 1 wt% Pt/WO3/TUD-1) with different tungsten loadings (5-30 wt% WO3) is described. They were characterized using ICP-OES, INAA, N2 physisorption, XRD and

  14. Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts

    NARCIS (Netherlands)

    van den Berg, Roy|info:eu-repo/dai/nl/358212049; Parmentier, Tanja E.; Elkjaer, Christian F.; Gommes, Cedric J.; Sehested, Jens; Helveg, Stig; de Jongh, Petra E.|info:eu-repo/dai/nl/186125372; de Jong, Krijn P.|info:eu-repo/dai/nl/06885580X

    A main reason for catalyst deactivation in supported catalysts for methanol synthesis is copper particle growth. We have functionalized the support surface in order to suppress the formation and/or transport of mobile copper species and thereby catalyst deactivation. A Stober silica support was

  15. The role of potassium as a promoter in iron catalysts for ammonia synthesis

    NARCIS (Netherlands)

    Altenburg, K.; Bosch, H.; van Ommen, J.G.; Gellings, P.J.

    1980-01-01

    Five ammonia synthesis catalysts, mainly differing in potassium content, were prepared from a commercial doubly promoted iron catalyst. The activities of these catalysts were measured at 350–450 °C and 5–200 atm. The experimental reaction rates were fitted to the modified Temkin rate equation.

  16. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  17. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    The feasibility of producing ammonia synthesis catalysts from high-energy ball-milling of a simple mixture of the constituent oxides has been investigated. The effect of ball-milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show...

  18. New bimodal pore catalysts for Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, Misao; Zhang, Yi; Yoneyama, Yoshiharu; Hasegawa, Kiyoshi; Tsubaki, Noritatsu [Department of Material System and Life Science, School of Engineering, Toyama University, Gofuku 3190, Toyama 930-8555 (Japan)

    2004-11-15

    A simple preparation method of bimodal pore supports was developed by introducing SiO{sub 2} or ZrO{sub 2} sols into large pores of SiO{sub 2} gel pellets directly. The pores of the obtained bimodal pore supports distributed distinctly as two kinds of main pores. On the other hand, the increased BET surface area and decreased pore volume, compared to those of original silica gel, indicated that the obtained bimodal pore supports formed according to the designed route. The obtained bimodal pore supports were applied in liquid-phase Fischer-Tropsch synthesis (FTS) where cobalt was supported. The bimodal pore catalysts presented the best reaction performance in liquid-phase Fischer-Tropsch synthesis (FTS) as higher reaction rate and lower methane selectivities, because the spatial promotional effect of bimodal pore structure and chemical effect of the porous zirconia behaved inside the large pores of original silica gel.

  19. Effect of Temperature and Catalyst Concentration on Polyglycerol during Synthesis

    Directory of Open Access Journals (Sweden)

    Carolina Ardila-Suárez

    2015-01-01

    Full Text Available Morphology, molecular weight, polydispersity, functionality, and thermal properties are important characteristics when using polyglycerol as a building block in the development of materials for industrial applications such as hydrogels, surfactants, asphalts additives, cosmetics, pharmaceutical, biomedical, and drug delivery systems. In this study several experimental techniques are used to understand the effect of process variables during synthesis in the catalyzed etherification of glycerol, a coproduct of biodiesel industry. Biobased polyglycerol is a high-valued product, which is useful as building block material because of its remarkable features, for instance, multiple hydrophilic groups, excellent biocompatibility, and highly flexible aliphatic polyether backbone. A connection between polyglycerol characteristics and process variables during synthesis allows the control of glycerol polymerization through reaction conditions. We show that temperature and catalyst concentration can be tuned with the aim of tailoring fundamental polyglycerol parameters including molecular weight, polydispersity, morphology, and functionality.

  20. Nickel-containing catalysts for methane oxidation to synthesis gas

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2014-12-01

    Full Text Available The partial oxidation of methane to synthesis gas was studied on oxides of metals of variable valence (Mn, La, Cr and Ni, supported on a carrier – ɣ-Al2O3. Among the catalysts studied, the sample of 3% Ni/ɣ-Al2O3 showed the best characteristics by yields of hydrogen and carbon monoxide in the reaction of partial oxidation of methane. The optimal conditions of the process (the reaction temperature of 850 °C, the volume rate of 4500 h-1, and the ratio CH4: O2 = 2:1 cause the increase the concentration of hydrogen and carbon monoxide to 72.2 and 75.3%, respectively. The effect of the heat-treatment temperature and textural characteristics of the Ni/ ɣ-Al2O3 catalyst on its catalytic activity was studied. The NiCe/Al2O3 catalyst developed showed a high stability during 30 hours.

  1. Synthesis and application of new polymer bound catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fetterly, Brandon Michael [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Nitric acid has been shown to be a weak acid in acetonitrile. It is conceivable that a nitrate salt of a weakly Lewis acidic cation could furnish a ''naked'' nitrate anion as a basic catalyst in a variety of reactions in non-aqueous solvents. Such a nitrate salt could also be bound to a polymeric support via the cation, thereby allowing for reclamation and recycling of the nitrate ion. This subject is dealt with in Chapter 2, wherein my contributions consisted of performing all the reactions with the polymer supported catalyst and carrying out the experiments necessary to shed light on the reaction mechanisms. Chapter 3 contains a description of the structure and catalytic properties of an azidoproazaphosphatrane. This compound is an air-stable versatile catalyst that has proven useful not only homogeneously, but also when bound to a solid support. The synthesis of a polymer bound proazaphosphatrane containing a trivalent phosphorus is presented in Chapter 4. Such a compound has been sought after by our group for a number of years. Not only does the synthesis I have accomplished for it allow for easier separation of proazaphosphatrane catalysts from reaction mixtures, but recycling of the base is made much simpler. Proazaphosphatranes are useful homogeneous catalysts that activate atoms in other reagents, thus enhancing their reactivity. The next chapters deal with two such reactions with aldehydes and ketones, namely silylcyanations with trialkylsilylcyanides (Chapters 5 and 6) and reductions with poly(methylhydrosiloxane), in Chapter 7. In Chapter 5, Zhigang Wang performed the initial optimization and scoping of the reaction, while repetitions of the scoping experiments for reproducibility, determination of diastereomeric ratios, and experiments aimed at elucidating aspects of the mechanism were performed by me. The proazaphosphatrane coordinates to the silicon atom in both cases, thereby allowing the aforementioned reactions to proceed under

  2. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion.

    Science.gov (United States)

    Casavola, Marianna; Xie, Jingxiu; Meeldijk, Johannes D; Krans, Nynke A; Goryachev, Andrey; Hofmann, Jan P; Dugulan, A Iulian; de Jong, Krijn P

    2017-08-04

    Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na 2 S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer-Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters.

  3. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  4. Environmental Transmission Electron Microscopy of catalysts for the methanol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard

    Ga. Both were synthesized from Cu and Ni nitrate salts as well as Ni and Ga nitrates salts. Both systems got catalytically tested and investigated by in-situ X-Ray Diffraction (XRD) and Environmental Transmission Electron Microscopy (ETEM). It was possible to follow the synthesis of the catalysts......Ni forms a substitutional alloy. During the reaction and artificial ageing a deactivation of the NiGa due to a phase change could be observed. CuNialso changes the the oxidation state during the reaction. Furthermore the influence of the electron beam on the catalytic systems during exposure to gas...... atmosphere and temperature was investigated. CuNi was exposed to the electron beam for 3 different intensities and 3 different temperatures while the oxidation state of the Cu2+ was measured by energy electron loss spectroscopy. It turns out that the electron beam does have an influence but it does not seem...

  5. Methanol synthesis catalyst manufacturing using the green solid-state method

    Directory of Open Access Journals (Sweden)

    Neda Mirhosseini

    2017-01-01

    Full Text Available In this research study, methanol synthesis catalysts were manufactured with various mole ratios of metal carbonates (zinc, copper and aluminum carbonate and ammonium hydrogen carbonate via a green solid-state method that employed a ball mill apparatus. Some parameters for the catalyst preparation, such as Al mole percent, Cu/Zn mole ratio, rotations milling speeds and aging time, were optimized to obtain the maximum catalyst activity. The prepared catalysts were compared with the best quality industrial catalyst under the same temperature and pressure condition in a titanium tabular fixed bed reactor. This novel method has many advantages in comparison to the conventional method. The main advantage of the solid-state method is that the methanol synthesis catalyst can be produced without using solvent. Furthermore, this new method reduces operating costs due to the elimination of the filtration and washing steps. Methanol synthesis catalytic activity was maximized at an optimized mole ratio of Cu/Zn of 1.9234 and an Al mole percent of 8 at the maximum grinding speed (450 rpm during an aging time of 30 min, which showed higher activity (240 gCH3OH/kg cat.h in comparison with an industrial catalyst sample (218 gCH3OH/kg cat.h. The production of a green catalyst, which requires less water and results in higher catalyst activity, can be widely used for methanol synthesis catalytic applications.

  6. An efficient catalyst-free synthesis of novel chromeno[4,3-b ...

    Indian Academy of Sciences (India)

    Sudesh Kumari

    . Introduction. The Michael Initiated Ring Closure ... as eco-friendly reaction media in catalyst free organic synthesis.7 Ethylene glycol has promising ... The multiscan absorption correction was applied. The crystal structure of 8a was solved by ...

  7. Influence of the phase composition on the catalytic properties of ammonia synthesis catalysts

    International Nuclear Information System (INIS)

    Peev, T.M.; Bojinova, A.I.; Krylova, A.V.

    1981-01-01

    The phase composition of CA-1-type catalysts for ammonia synthesis was investigated by means of Moessbauer spectroscopy. A correlation was found between the catalytic activity of the samples and their wuestite content. (author)

  8. Cobalt supported on carbon nanofibers as catalysts for the Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Bezemer, G.L.

    2006-01-01

    The Fischer-Tropsch (FT) process converts synthesis gas (H2/CO) over a heterogeneous catalyst into hydrocarbons. Generally, cobalt catalysts supported on oxidic carriers are used for the FT process, however it appears to be difficult to obtain and maintain fully reduced cobalt particles. To overcome

  9. Nano-catalysts with Magnetic Core: Sustainable Options for Greener Synthesis

    Science.gov (United States)

    Author’s perspective on nano-catalysts with magnetic core is summarized with recent work from his laboratory. Magnetically recyclable nano-catalysts and their use in benign media is an ideal blend for the development of sustainable methodologies in organic synthesis. Water or pol...

  10. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    Green chemistry protocols with the reusability of the nano particle as catalyst in the synthesis of coumarins is described. The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various -hydroxy benzaldehydes with 1,3-dicarbonyl compounds under microwave and thermal conditions to ...

  11. The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts

    International Nuclear Information System (INIS)

    Sineva, L V; Mordkovich, V Z; Asalieva, E Yu

    2015-01-01

    The review deals with the specifics of the Fischer–Tropsch synthesis for the one-stage syncrude production from CO and H 2 in the presence of cobalt–zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer–Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer–Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references

  12. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis.

    Science.gov (United States)

    Sattely, Elizabeth S; Meek, Simon J; Malcolmson, Steven J; Schrock, Richard R; Hoveyda, Amir H

    2009-01-28

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 degrees C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee).

  13. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    Science.gov (United States)

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  14. Fabrication of CeO2–MOx (M = Cu, Co, Ni composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2017-11-01

    Full Text Available CeO2–MOx (M = Cu, Co, Ni composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications.

  15. Fischer-Tropsch synthesis over cobalt catalysts supported on mesoporous metallo-silicates

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomi Okabe; Mingdeng Wei; Hironori Arakawa [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan)

    2003-08-01

    Fischer-Tropsch synthesis was carried out in slurry phase over cobalt-based catalysts supported on mesoporous metallo-silicates prepared by the rapid room-temperature synthesis method. The incorporation of Al and Ti into the silica framework was confirmed by NMR, FT-IR, and UV. Although the catalyst supported on mesoporous silica (MPS) was deactivated during the reaction, the catalysts supported on mesoporous Al- and Ti-silicates (MPAS and MPTS) showed high and stable activity. The selectivity for higher hydrocarbons ({alpha}) increased with the amount of tetrahedral Al incorporated into the silica framework. 26 refs., 11 figs., 3 tabs.

  16. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  17. Conditions for reduction of ironmolybdenum-tungsten catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Simulina, N.A.; Karibdzhanyan, N.A.; Lachinov, S.S.; Anfimov, V.A.; Shumlyakovskij, Ts.I.

    1977-01-01

    The reduction of Fe-Mo-W catalyst MB-5, used for synthesis of ammonia, has been studied in the reactor of extracolumn reduction. The results obtained have been compared with similar results for the catalyst CA-1. It has been shown that reduction of the catalyst MB-5 proceeds more intensive and is completed at lower temperature and for a shorter period of time. The samples of the catalyst MB-5 discharged from different layers in the reactor are more active than CA-1 reduced under identical conditions

  18. Synthesis of iron/GAC catalyst for wastewater treatment using ...

    Indian Academy of Sciences (India)

    Abstract. Iron catalyst dispersed on granular activated carbon (GAC) was prepared by impregnating Fe(NO3)3 solution on GAC. The mixed solution was annealed at 600◦C in muffle furnace under ambient condition for 1 h. The structural property of the catalyst was investigated using X-ray diffraction (XRD). The catalyst's ...

  19. Synthesis of iron/GAC catalyst for wastewater treatment using ...

    Indian Academy of Sciences (India)

    Iron catalyst dispersed on granular activated carbon (GAC) was prepared by impregnating Fe(NO3)3 solution on GAC. The mixed solution was annealed at 600°C in muffle furnace under ambient condition for 1 h. The structural property of the catalyst was investigated using X-ray diffraction (XRD). The catalyst's activity and ...

  20. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis.

    Science.gov (United States)

    Afewerki, Samson; Córdova, Armando

    2016-11-23

    The cooperation and interplay between organic and metal catalyst systems is of utmost importance in nature and chemical synthesis. Here innovative and selective cooperative catalyst systems can be designed by combining two catalysts that complement rather than inhibit one another. This refined strategy can permit chemical transformations unmanageable by either of the catalysts alone. This review summarizes innovations and developments in selective organic synthesis that have used cooperative dual catalysis by combining simple aminocatalysts with metal catalysts. Considerable efforts have been devoted to this fruitful field. This emerging area employs the different activation modes of amine and metal catalysts as a platform to address challenging reactions. Here, aminocatalysis (e.g., enamine activation catalysis, iminium activation catalysis, single occupied molecular orbital (SOMO) activation catalysis, and photoredox activation catalysis) is employed to activate unreactive carbonyl substrates. The transition metal catalyst complements by activating a variety of substrates through a range of interactions (e.g., electrophilic π-allyl complex formation, Lewis acid activation, allenylidene complex formation, photoredox activation, C-H activation, etc.), and thereby novel concepts within catalysis are created. The inclusion of heterogeneous catalysis strategies allows for "green" chemistry development, catalyst recyclability, and the more eco-friendly synthesis of valuable compounds.

  1. Hydrothermal synthesis and characterization of zirconia based catalysts

    Science.gov (United States)

    Caillot, T.; Salama, Z.; Chanut, N.; Cadete Santos Aires, F. J.; Bennici, S.; Auroux, A.

    2013-07-01

    In this work, three equimolar mixed oxides ZrO2/CeO2, ZrO2/TiO2, ZrO2/La2O3 and a reference ZrO2 have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH3 and SO2 probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid-base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO2/TiO2 material appears to be the best candidate for further application in acid-base catalysis.

  2. Synthesis of Supported Bimetal Catalysts using Galvanic Deposition Method.

    Science.gov (United States)

    Mahara, Yuji; Ohyama, Junya; Sawabe, Kyoichi; Satsuma, Atsushi

    2018-02-22

    Supported bimetallic catalysts have been studied because of their enhanced catalytic properties due to metal-metal interactions compared with monometallic catalysts. We focused on galvanic deposition (GD) as a bimetallization method, which achieves well-defined metal-metal interfaces by exchanging heterogeneous metals with different ionisation tendencies. We have developed Ni@Ag/SiO 2 catalysts for CO oxidation, Co@Ru/Al 2 O 3 catalysts for automotive three-way reactions and Pd-Co/Al 2 O 3 catalysts for methane combustion by using the GD method. In all cases, the catalysts prepared by the GD method showed higher catalytic activity than the corresponding monometallic and bimetallic catalysts prepared by the conventional co-impregnation method. The GD method provides contact between noble and base metals to improve the electronic state, surface structure and reducibility of noble metals. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A facile, solvent and catalyst free, microwave assisted one pot synthesis of hydrazinyl thiazole derivatives

    Directory of Open Access Journals (Sweden)

    D. Chinnaraja

    2015-03-01

    Full Text Available A rapid synthesis of hydrazinyl thiazoles under solvent and catalyst free condition is reported within 30 s. A series of aryl ketones/4-benzoyl pyridine thiosemicarbazone, thiosemicarbazide and α-haloketones were used. This is an environmentally benign microwave assisted and efficient method for rapid synthesis of hydrazinyl thiazoles.

  4. Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Manoj B. Gawande

    2013-10-01

    Full Text Available Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and it is possible to recover >95% of catalysts, which is again recyclable for subsequent use. Water is the ideal medium to perform the chemical reactions with magnetically recyclable nano-catalysts, as this combination adds tremendous value to the overall benign reaction process development. In this review, we highlight recent developments inthe use of water and magnetically recyclable nano-catalysts (W-MRNs for a variety of organic reactions namely hydrogenation, condensation, oxidation, and Suzuki–Miyaura cross-coupling reactions, among others.

  5. Synthesis and comparison of the activities of a catalyst supported on two silicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Eduardo G., E-mail: eduardogv5007@gmail.com [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Silva, Rafael O.; Carmo, Devaney R. do [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Junior, Enes F. [Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo (Brazil); Dias Filho, Newton L., E-mail: nldias@unesc.net [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Universidade do Extremo Sul Catarinense, Av. Universitaria, 1105, CP 3167, CEP 88806-000, Criciúma, SC (Brazil)

    2017-04-15

    The focus of this work is inspecting the synthesis and comparison of the activities of a catalyst supported on two silicate materials in the epoxidation of 1-octene. The two new catalyst materials were characterized by infrared spectroscopy, elemental analysis, solid-state {sup 29}Si and {sup 13}C nuclear magnetic resonance, scanning electronic microscope (SEM) and analysis of nitrogen. Lastly, the two new catalysts, Silsesq-TCA-[(W(CO){sub 3}I{sub 2}){sub 3}] and Silica-TCA-[W(CO){sub 3}I{sub 2}] were tested as catalysts in reactions of epoxidation of 1-octene and compared with their analogue not supported [W(CO){sub 3}I{sub 2}(thiocarbamide)]. After an extensive literature search, we verified that our work is the first that has reported the immobilization process of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] on silsesquioxane and silica gel functionalized with propyl-thiocarbamide groups and their applications as catalysts of reactions of catalytic epoxidation of 1-octene. - Highlights: • Immobilization of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] complex onto mesoporous supports. • Synthesis and characterization of new mesoporous catalysts. • The new catalysts exhibit great catalytic activity in the epoxidation of 1-octene. • Recyclable catalysts with excellent reusability and stability.

  6. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  7. The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts

    International Nuclear Information System (INIS)

    Ji, Qinqin

    2017-01-01

    CO 2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO 2 . Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO 2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and good cooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO 2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO 2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO 2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO 2 and H 2 , but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g.kg -1 .h -1 ) of higher alcohols at 350 C and 50 bar. (author) [fr

  8. Synthesis of heterogeneous catalyst for the production of biodiesel ...

    African Journals Online (AJOL)

    This study explore the comparison of a suitable heterogeneous catalyst for conversion of triglyceride into fatty acid methyl ester. A series of heterogeneous cerium, manganese, and zinc oxide catalyst supported at mixture of cinder was prepared by co-precipitation and applied for conversion of triglyceride in oil to biodiesel ...

  9. Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition

    International Nuclear Information System (INIS)

    Liang Xinhua; Lyon, Lauren B.; Jiang Yingbing; Weimer, Alan W.

    2012-01-01

    Atomic layer deposition (ALD) was used to produce Pd/Al 2 O 3 catalysts using sequential exposures of Pd(II) hexafluoroacetylacetonate and formalin at 200 °C in a fluidized bed reactor. The ALD-prepared Pd/alumina catalysts were characterized by various methods including hydrogen chemisorption, XPS, and TEM, and compared with a commercially available 1 wt% Pd/alumina catalyst, which was also characterized. The content of Pd on alumina support and the size of Pd nanoparticles can be controlled by the number of ALD-coating cycles and the dose time of the Pd precursor. One layer of organic component from the Pd precursor remained on the Pd particle surface. The ALD 0.9 wt% Pd/alumina had greater active metal surface area and percent metal dispersion than the commercial 1 wt% Pd/alumina catalyst. The ALD and commercial catalysts were subjected to catalytic testing to determine their relative activities for glucose oxidation to gluconic acid in aqueous solution. The ALD 0.9 wt% Pd/alumina catalyst had comparable activity as compared to the commercial 1 wt% Pd catalyst. No noticeable amount of Pd leaching was observed for the ALD-prepared catalysts during the vigorously stirred reaction.

  10. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the ...

  11. Pd-Modified Cu–Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures : Catalytic Structures and Performance

    NARCIS (Netherlands)

    Fierro, J.L.G.; López Granados, M.; Melián-Cabrera, I.

    2002-01-01

    The effect of palladium incorporation on the performance of a CuO–ZnO catalyst for methanol synthesis by hydrogenation of carbon dioxide is studied. Three different catalysts are prepared: the reference CuO-ZnO (CZ), and two Pd-based CuO–ZnO catalysts, PCZ-CP and PCZ-SP, which are prepared by

  12. Chemical changes in non-reduced catalysts used for ammonia synthesis

    International Nuclear Information System (INIS)

    Peev, T.M.; Kyrova, Z.; Bojinova, A.I.

    1980-01-01

    Samples of non-reduced industrial catalysts CA-1 for ammonia synthesis were studied by using Moessbauer spectroscopy. The conditions of the normal storing of this catalyst were changed. After 6 months it was found that under the influence of moisture and air oxygen a considerable part of the magnetite was converted to α-Fe 2 O 3 , α-FeOOH and γ-FeOOH. (author)

  13. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder.......1 %. A ternary catalyst with the composition of Cu:Zn:Al=45:45:10 has the highest catalytic activity of all samples tested. This catalyst is also very selective and stable towards thermal deactivation. The role of the individual catalyst components in the optimal catalyst is discussed....

  14. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    Science.gov (United States)

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Synthesis and characterization of carbon nanofibers grown on Ni and Mo catalysts by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Yi; Park, Heai Ku; Lee, Chang Seop [Keimyung University, Deagu (Korea, Republic of); Choi, Jong Ha [Dept. of Applied Chemistry, Andong National University, Andong (Korea, Republic of)

    2015-05-15

    In this study, we synthesized carbon nanofibers using Ni and Mo catalysts by chemical vapor deposition. Catalysts used in the synthesis of carbon nanofibers were prepared by changing the molar ratio of nickel nitrate and ammonium molybdate. Precipitates were then obtained by reacting with ammonium carbonate. The optimum temperature for synthesis of carbon nanofibers was found by changing it between 600 and 800 °C. At these temperatures, carbon nanofibers were synthesized with various ratios of catalysts. Structural and physiochemical properties were analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The specific surface area of synthesized carbon nanofibers was measured by BET. It was found that characterization of carbon nanofibers were significantly affected by the synthesis temperature and the concentration ratio of metal catalysts. When the catalyst with the concentration ratio of Ni and Mo was 6:4 at 800 °C, uniform carbon nanofibers with a diameter of 50 nm were grown. Crystallinity and amorphicity of the synthesized carbon nanofiber were excellent compared to those of carbon nanofibers synthesized with metal catalysts in different concentration ratios. A three-electrode cell was prepared by using the synthesized carbon nanofibers as anode of Li secondary battery. The electrochemical properties of carbon nanofibers were examined through cyclic voltammetry and galvanostatic charge–discharge.

  17. Promotion of Nb2O5 on the wustite-based iron catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Han, Wenfeng; Huang, Shiliang; Cheng, Tianhong; Tang, Haodong; Li, Ying; Liu, Huazhang

    2015-01-01

    Highlights: • Niobium enhances the reduction of wustite-based ammonia synthesis catalyst significantly. • Nb 2 O 5 inhibits the segregation or formation of solid solutions on the catalyst surface. • Nb 2 O 5 doping enhances the growth rates of [2 1 1] and [2 0 0] planes rather than their amounts. - Abstract: Niobium was selected and investigated as a potential promoter for wustite-based catalyst (WBC) for ammonia synthesis. Experiments on reduction performance, activity test and H 2 -TGA, in situ XRD as well as XPS were carried out to obtain the promotion effect and mechanism involved. Niobium as a promoter was confirmed to enhance the reduction of WBC significantly. This behavior is highly desired for industry in terms of catalyst regeneration and lesser pretreatment time for fabrication regardless the unimproved catalytic performance for Nb 2 O 5 -doped wustite-based catalyst (Nb-WBC). Possible reasons for these phenomena are discussed. It is suggested that Nb 2 O 5 is not favorable for the segregation or formation of solid solutions on the catalyst surface, which are difficult to be reduced. However, it seems that niobium does not promote the growth of [2 1 1] plane, which is active for ammonia synthesis.

  18. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W; Stair, Peter C

    2013-08-20

    Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition-precipitation to control and tune these factors, to establish structure-performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leads to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe

  19. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...

  20. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2013-06-01

    Full Text Available This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reservedReceived: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 14-33. (doi:10.9767/bcrec.8.1.4394.14-33][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4394.14-33] | View in  |

  1. Fischer-Tropsch synthesis in slurry-phase reactors using Co/SBA-15 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.J.; Lima, L.A.; Lima, W.S.; Rodrigues, M.G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica], e-mail: meiry@deq.ufcg.edu.br; Fernandes, F.A.N. [Universidade Federal do Ceara (UFCE), CE (Brazil). Dept. de Engenharia Quimica

    2011-07-15

    The objective of this work is to describe the production of bifunctional catalysts using the incipient humidity method, producing catalysts with 15 wt.% cobalt supported in SBA-15 molecular sieve, to be applied in the Fischer-Tropsch (FT) reaction. The originality of this work is its focus on the use of a 15 wt.% Co/SBA-15 catalyst in FT synthesis in slurry reactors. The deposition of cobalt over SBA-15 support was accomplished by impregnation with a 0.1-M aqueous solution of cobalt nitrate. The Fischer-Tropsch synthesis was carried out with the catalyst at 240 deg C and 20 atm, under a COH{sub 2} atmosphere (molar ratio= 1), in a slurry reactor for 8 hours. X-ray diffraction measurements showed that the calcined cobalt catalyst did not modify the structure of SBA-15, proving that Co was present under the form of Co{sub 3}O{sub 4} in the catalyst. The addition of cobalt in the SBA-15 decreased the specific superficial area of the molecular sieve. The 15 wt.% Co/SBA-15 catalyst had a 40% CO conversion rate and a high selectivity towards the production of C{sub 5}{sup +} (53.9% after 8 hours). (author)

  2. Synthesis and properties of catalysts prepared from silicomolybdovanadium heteropoly acid

    International Nuclear Information System (INIS)

    Chumachenko, N.N.; Tarasova, D.V.; Nikoro, T.A.; Yaroslavtseva, I.V.

    1984-01-01

    Catalytic properties of samples prepared of silicomolybdovanadium heteropoly acid (HPA) have been investigated. The massive catalyst is shown to be comparatively low effective in the reaction of acrolein oxidation to acrylic acid. Impregnation of coarse-dispersed silica gel by the HPA solution results in the formation of active and selective catalyst, whereas low-active catalyst of deep oxidation is formed on the base of high-dispersed silica gel. The obtained data are explained by the formation and stabilization of different forms of vanadium- and molybdenum-containing compounds on the carrier surface

  3. Synthesis and chemistry of fluorinated alpha-Iminocarboxamide Nickel and Zirconium catalysts

    International Nuclear Information System (INIS)

    Alsaygh, A.A.

    2007-01-01

    Synthesis and investigations of Nickel-based olefin oligomerization and polymerization catalysts, fluorinated alpha-Iminocarboxamide u3-Penzyl (II) Ni Complexes is reported. The synthesis of the above mentioned catalysts by the direct reaction of the potassium salt of the ligand, Ni(COD)2 (bis(1, 5-cyclooctadiene)-nickel and Benzyl halide in THF and starting temperature of -35C led to the formation of the two isomers: The [N-O] and the [N-N]. Moreover, the complexes di alpha-fluorinated Iminocarboxamide Zr-dimmer has been synthesized, investigated and tested for ethylene polymerization. (author)

  4. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles

    Directory of Open Access Journals (Sweden)

    Parvanak Boroujeni Kaveh

    2013-01-01

    Full Text Available Polystyrene-supported pyridinium chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with pyridine followed by reaction with aluminium chloride. This catalyst was used as a new chemoselective Lewis acid catalyst for the exclusive synthesis of 2-substituted benzimidazoles from the reaction of aldehydes with o-phenylenediamines. The catalyst is stable (as a bench top catalyst and can be easily recovered and reused without appreciable change in its efficiency.

  5. Bisphenol A Synthesis - Modeling of Industrial Reactor and Catalyst Deactivation

    Czech Academy of Sciences Publication Activity Database

    Prokop, Zdeněk; Hanková, Libuše; Jeřábek, Karel

    2004-01-01

    Roč. 60, - (2004), s. 77-83 Sp/Iss/ SI ISSN 1381-5148. [Asia-Pacific Congress on Catalysis /3./. Dalian, 12.10.2003-15.10.2003] R&D Projects: GA ČR GA104/02/1104 Institutional research plan: CEZ:AV0Z4072921 Keywords : bisphenol A * catalyst deactivation * ion exchanger catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.582, year: 2004

  6. Mathematical model of Fischer-Tropsch catalyst pellet with pointed centers of synthesis

    Science.gov (United States)

    Derevich, I. V.; Fokina, A. Yu

    2017-11-01

    The productivity of Fischer-Tropsch reactors is determined by the efficiency of heat and mass transfer processes inside the catalyst pellets. To reduce the diffusion resistance, the pellet base is made porous. The porous structure of the granules causes a discrete arrangement of cobalt metallic microparticles whose size can reach tens of microns. The distance between these active centres significantly exceeds their characteristic size and the homogeneous catalyst model is incorrect. A mathematical model of heat and mass transfer processes inside a porous spherical pellet with localised active centres is proposed. The heat of the exothermic synthesis reaction is removed from the surface of the granule to the synthesis gas stream washing the catalyst pellet by heat transfer. The components of the synthesis gas enter the granule surface as a result of mass transfer. On the basis of the self-consistent field method, the values of the temperature and concentration of the synthesis gas components at the active centres were determined. It is shown that there is a critical temperature of the synthesis gas washing the granule, exceeding critical temperature leads to a substantial overheating of the active centres. In this case, the surface of the catalyst pellet is superheated slightly. The principal difference between the homogeneous and heterogeneous models in catalytic reactions is discussed.

  7. Automated synthesis of a 96 product-sized library of triazole derivatives using a solid phase supported copper catalyst.

    Science.gov (United States)

    Jlalia, Ibtissem; Beauvineau, Claire; Beauvière, Sophie; Onen, Esra; Aufort, Marie; Beauvineau, Aymeric; Khaba, Eihab; Herscovici, Jean; Meganem, Faouzi; Girard, Christian

    2010-04-28

    This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.

  8. The role of zeolites in the deactivation of multifunctional fischer-tropsch synthesis catalysts: the interaction between HZSM-5 and Fe-based Ft-catalysts

    Directory of Open Access Journals (Sweden)

    P. C. Zonetti

    2013-12-01

    Full Text Available In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis.

  9. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    International Nuclear Information System (INIS)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G.; Avillez, R. R. de; Sousa-Aguiar, E.F.

    2013-01-01

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  10. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G., E-mail: lucia.appel@int.gov.br [Instituto Nacional de Tecnologia (INT/MCT), Rio de Janeiro, RJ (Brazil); Avillez, R. R. de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa-Aguiar, E.F. [Centro de Pesquisa Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2013-10-15

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  11. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    Science.gov (United States)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane

  12. Synthesis of tributyl citrate using SO 4 2- /Zr-MCM-41 as catalyst ...

    African Journals Online (AJOL)

    Zirconium-containing mesoporous molecular sieve SO42-/Zr-MCM-41 was synthesized for catalyst in synthesis of tributyl citrate. The structure was characterized by XRD, N2 Ad/De isotherms and FT-IR. The results indicated that the solid acids show good catalytic performance and are reusable. Under optimum conditions ...

  13. A novel polymeric catalyst for the one-pot synthesis of 2,4,5-triaryl ...

    Indian Academy of Sciences (India)

    Abstract. An efficient synthesis of 2,4,5-trisubstituted imidazoles is achieved by three component cyclo- condensation of benzil or benzoin, aldehyde and ammonium acetate by using novel polymeric catalyst. [poly(AMPS-co-AA)] under solvent-free conditions. The key advantages of this process are high yields, shorter.

  14. LaCl 3. 7H 2 O: An efficient catalyst for the synthesis of phosphinates ...

    Indian Academy of Sciences (India)

    An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3a-l) through Michaelis-Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1a-l) with dimethyl phenylphosphonite (2) under N2 atmosphere using a heterogeneous catalyst, ...

  15. Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions

    DEFF Research Database (Denmark)

    Kolenko, Yury V.; Zhang, Wei; d'Alnoncourt, Raoul Naumann

    2011-01-01

    Reliable procedures for the controlled synthesis of phase-pure MoVTeNb mixed oxides with M1 structure (ICSD 55097) and tunable crystal dimensions were developed to study the structure sensitivity of the selective oxidation of propane to acrylic acid. A series of powdered M1 catalysts was successf...

  16. The effect of alkaline doped catalysts on the CVD synthesis of carbon nanotubes

    DEFF Research Database (Denmark)

    Nemeth, Krisztian; Nemeth, Zoltan; Fejes, Dora

    2011-01-01

    The aim of this work was to develop new doped catalysts for chemical vapour deposition (CVD) synthesis in order to increase the quantity and quality of carbon nanotubes (CNTs). Doping compounds such as CsBr, CsCl, KBr and KCl were used to reach higher carbon deposit and carbon yield. The amount o...

  17. Facile, eco-friendly, catalyst-free synthesis of polyfunctionalized quinoxalines.

    Science.gov (United States)

    Zhang, Yaohong; Luo, Mengqiang; Li, Yan; Wang, Hai; Ren, Xiaorong; Qi, Chenze

    2018-02-01

    A novel, facile and eco-friendly synthesis of quinoxalines from [Formula: see text] and 1,2-diamines was developed. An attractive feature of this protocol is that the desired products could be generated efficiently in water and without any catalyst, which is in accordance with the aim of green chemistry. A plausible mechanism has been proposed.

  18. Catalyst free, base free microwave irradiated synthesis of aryl nitrites from potassium aryltrifluoroborates and bismuth nitrate

    Science.gov (United States)

    Al-Masum, Mohammad; Welch, Rebecca L.

    2014-01-01

    A mixture of bismuth nitrate pentahydrate and potassium aryltrifluoroborate in toluene under microwave heating at 120 °C for 20 min provides an interesting and mild reaction protocol for the synthesis of aryl nitrite. The conversion to aryl nitrites from aryltrifluoroborates without transition metal catalyst and base in high yields is remarkable. PMID:25242828

  19. Formation, Activity and Growth of Copper Nanoparticles in Methanol Synthesis Catalysts

    NARCIS (Netherlands)

    van den Berg, R.|info:eu-repo/dai/nl/358212049

    2016-01-01

    Supported metal catalysts play a pivotal role in the production of fuels and chemicals, in the purification of exhaust gases and in electrochemical energy conversion systems. Further improvement of these materials requires a fundamental understanding of the processes involved in the synthesis, the

  20. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1 ...

    Indian Academy of Sciences (India)

    Abstract. An efficient green chemistry method has been developed for the synthesis of 1-amidoalkyl-2-naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst.

  1. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1

    Indian Academy of Sciences (India)

    Abstract. An efficient green chemistry method has been developed for the synthesis of 1-amidoalkyl-2-naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst.

  2. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1 ...

    Indian Academy of Sciences (India)

    Multicomponent reaction; amidoalkyl naphthol; boric acid; catalyst; solvent-free synthesis. 1. Introduction. Multicomponent reactions (MCRs), in ... silica-sodium hydrogen sul- phate,14 molybdophosphoric acid (H3[P(Mo3O10)4]),15 ... The solid obtained was collected by filtration and purified by recrystallization from ethanol.

  3. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences,. Kuvempu University, Shankaraghatta 577 ... materials and modern techniques of creating and inves- tigating specific active sites on catalyst .... Optimization of the ZnO nanoparticles catalysed model reaction for synthesis of ethyl ...

  4. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Bahareh Sadeghi

    2013-01-01

    Full Text Available Silica sulfuric acid (SiO2-OSO3H as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  5. Application of Heterogeneous Catalysts in the First Steps of the Oseltamivir Synthesis

    Directory of Open Access Journals (Sweden)

    José M. Fraile

    2017-12-01

    Full Text Available The first steps of oseltamivir synthesis from quinic acid involve acetalization and ester formation. These reactions are catalyzed by either acids or bases, which may be accomplished by heterogeneous catalysts. Sulfonic solids are efficient acid catalysts for acetalization and esterification reactions. Supported tetraalkylammonium hydroxide or 1,5,7-triazabicyclo[4.4.0]dec-5-ene are also efficient base catalysts for lactone alcoholysis and in this work, these catalysts have been applied in two alternative synthetic routes that lead to oseltamivir. The classical route consists of an acetalization, followed by a lactonization, and then a lactone alcoholysis. This achieves a 66% isolated yield. The alternative route consists of esterification followed by acetalization and is only efficient when an acetone acetal is used.

  6. Plasma-chemical synthesis and regeneration of catalysts for CH4 steam conversion

    International Nuclear Information System (INIS)

    Vissokov, G.P.

    2002-01-01

    We carried out experimental studies concerning the plasma-chemical synthesis (PCS) of a catalyst for CH 4 steam conversion and designed and built the equipment for PCS and/or regeneration of spent catalyst for CH 4 steam conversion. Under the conditions of an electric-arc low-temperature plasma (LTP), we studied the Ni-O-Al system and performed a comprehensive physicochemical analysis of the ultradispersed product obtained. It's the first time worldwide when the conditions of plasma-chemical synthesis and/or regeneration of CH 4 steam conversion catalysts under the conditions of electric-arc LTP are investigated depending on the plasma-chemical process (PCP) parameters and the plasma-chemical reactor (PCR) type (with CW-'cold walls' T W =500 K or WW-'warm walls' T W =1500 K), samples with a specific surface of 120 m 2 /g are obtained. Plasma-chemically synthesized and/or regenerated samples have a homogenous chemical composition similar to that the Girdller (USA) conventional industrial catalyst. It is empirically established that the optimal temperature range in PCR for synthesis of samples with maximum dispersity is (2000-3000) K. Results from investigation on dynamics and kinetics of plasma-chemically synthesized and/or regenerated catalysts for CH 4 steam conversion show that under LTP conditions premises for the formation of catalyst compositions are established. They are reduced 3 to 4 times faster than their industrial analogues. High specific surface of the samples, homogenous composition, high rate of active chemical surface formed by reduction, faulty crystal lattice of catalytically active phases and mostly high catalytic activity make them a potential competitor with their industrial analogues for their probable production in catalyst shops

  7. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    Science.gov (United States)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang

    2017-05-01

    High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH4 solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L9(3)4) for Cu-Co-P coating as follows: CoSO4·7H2O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper polyalloy possessed high adhesive strength and the lowest surface resistance (8.06 Ω/sq), while maintaining reliability even after over 1000 times of bending and mechanical stress. The results of scanning electron microscope (SEM) and atomic force microscope (AFM) measurements showed that Cu-Co-P layer formed on PET surface was imparted with fine uniformity and high compactness. Electrochemical test revealed the optimized Cu-Co-P coatings exhibited high corrosion resistance in NaCl, NaOH and HCl solutions, respectively. The excellent electromagnetic interference shielding effectiveness (EMI SE >99.999% at frequency ranging from 30 MHz to 1000 MHz) of copper polyalloy/PET composites was confirmed by the spectrum analyzer. Therefore, this copper polyalloy will

  8. Synthesis and essay of an Ionomer like catalyst of olefins epoxidation

    International Nuclear Information System (INIS)

    Boyaca Mendivelso, Alejandro; Tempesti, Ezio

    1995-01-01

    The purpose of the present work is the preparation of an ionomer with base in Molybdenum and to evaluate its activity like catalyst of olefins epoxidation like alternative of synthesis of catalysts of the Hawk process. A polymer is synthesized with available functional groups to stabilize the metal starting from sodium molybdate; the characterization is made by atomic absorption, spectroscopy to GO, and X.P.S. The characterization indicates that indeed it is possible to stabilize the Mo in the main polymeric. The evaluation in reaction in liquid phase allows similar conversions to those of a homogeneous catalyst. The selective epoxidation of olefins for alkyl hydroperoxides, it has acquired great importance inside the industrial processes obtaining of propylene oxide due to the recent use of the terbutilic alcohol (co-produced together with the epoxide), as preservative in gasoline free of lead. In the environment of these processes, and in particular in the Hawk process possibilities of technological innovation, in the concerning to the heterogenization of conventional catalysts, at the moment used in homogeneous phase. The present work collaborate to some tentative that look for to generate alternative of preparation of catalysts for the process Hawk, synthesizing and testing the activity of an ionomer like epoxidation catalyst, which tries to reproduce the chemical structure of the complexes organ-metallic pear to suppress the separation stages and necessary recovery facilitating its recurrent reutilization with eventual economic repercussions in the industrial process. It is described the procedure of synthesis of the ionomer, the characterization and the evaluation of the activity in reaction under diverse conditions. Of the made characterization it comes off that the heterogenization of catalysts for olefins epoxidation, according to the Hawk process, is possible by means of the preparation of polymers modified appropriately. Likewise the evaluation in

  9. Synthesis of substituted guanidines using Zn–Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    amines under mild conditions that inhibits the forma- tion of highly functionalized guanidines.4 Linton et al. explained ... harsh reaction conditions.9 Thus, the development of an active catalyst for such transformations has become. ∗ ... The products were purified by column chromatography using mixture of ethyl acetate and.

  10. Synthesis, characterization and catalytic application of Ni catalysts ...

    Indian Academy of Sciences (India)

    Alumina and alumina–zirconia mixed oxides were compared as supports to prepare nickel catalysts. The oxideswere prepared by the sol–gel method using aluminum tri-sec-butoxide and zirconium (IV) propoxide as precursors, andits physicochemical properties were determined by BET, TGA, DTA, XRD, SEM and TEM.

  11. Synthesis-Structure-Performance Relationships for Supported Metal Catalysts

    NARCIS (Netherlands)

    Munnik, Peter|info:eu-repo/dai/nl/328228524

    2014-01-01

    Heterogeneous catalysts, which consist of many metal nanoparticles supported on highly porous, mechanically strong and chemically inert supports, are at the center of many existing as well as new and more sustainable processes, such as energy conversion and storage, nanoelectronics and the catalytic

  12. synthesis and charact catalyst for the production o thesis

    African Journals Online (AJOL)

    userpc

    ... 2wt% catalyst loading, 80oC reaction temperature and talyst maintained 79.3% biodiesel yield after five successive reus lyst active sites. ransesterification, High FFA waste cooking oil, Heterogeneous cataly s recently received the iable alternative biofuel l fossil fuel (Atadashi et ased fuel, though the r internal combustion.

  13. Synthesis of substituted guanidines using Zn–Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    Abstract. Substituted guanidines were synthesized by the guanylation of amines with carbodiimides using. Zn–Al hydrotalcite (Zn-Al HT) catalyst. Zn–Al HT was prepared by co-precipitation method and charac- terized by X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman and.

  14. Morphology Changes of Co Catalyst Nanoparticles at the Onset of Fischer-Tropsch Synthesis

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein B.; Voronov, Alexey

    2014-01-01

    Cobalt nanoparticles play an important role as catalysts for the Fischer-Tropsch synthesis, which is an attractive route for production of synthetic fuels. It is of particular interest to understand the varying conversion rate during the first hours after introducing synthesis gas (H-2 and CO...... morphology during in situ experiments. Simultaneous wide-angle X-ray scattering was used for monitoring the reduction from oxide to catalytically active metal cobalt, and anomalous SAXS was used for distinguishing the cobalt particles from the other phases present. After introducing the synthesis gas, we...

  15. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  16. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  17. A novel vanadium n-propylamino phosphate catalyst: synthesis, characterization and applications

    Directory of Open Access Journals (Sweden)

    Rajini Anumula

    2012-01-01

    Full Text Available A novel, lamellar type Vanadium n-propylamino phosphate catalyst is synthesized and characterized by using various physicochemical techniques such as Powder X-ray diffraction, Scanning electron microscopy/Energy dispersive X-ray analysis, Thermogravimetry/Differential thermal analysis, Fourier transform Infrared analysis, Electron spin resonance spectroscopy, Ultraviolet - Visible Diffuse reflectance spectroscopy, X-ray Photoelectron spectroscopy, 31P Magic angle spinning Nuclear Magnetic Resonance spectroscopy and Catalytic applications toward Octahydroquinazolinone synthesis. It is found that the n-propylamine is present as sandwich between Vanadyl phosphate layers. Most of the Vanadium is present as V4+ ions in tetrahedral co-ordination. Vanadium n-propylamino phosphate catalyses Octahydroquinazolinone synthesis more effeciently and the optimum conditions required for Octahydroquinazolinone synthesis are, Benzaldehyde (2 mmol, Dimedone (2 mmol, Urea (4 mmol, Methanol + Water (1:1, 5 mL and Catalyst (0.05 g. A plausible mechanism is also proposed.

  18. A novel vanadium n-propylamino phosphate catalyst: synthesis, characterization and applications

    Directory of Open Access Journals (Sweden)

    Rajini Anumula

    2013-02-01

    Full Text Available A novel, lamellar type Vanadium n-propylamino phosphate catalyst is synthesized and characterized by using various physicochemical techniques such as Powder X-ray diffraction, Scanning electron microscopy/Energy dispersive X-ray analysis, Thermogravimetry/Differential thermal analysis, Fourier transform Infrared analysis, Electron spin resonance spectroscopy, Ultraviolet - Visible Diffuse reflectance spectroscopy, X-ray Photoelectron spectroscopy, 31P Magic angle spinning Nuclear Magnetic Resonance spectroscopy and Catalytic applications toward Octahydroquinazolinone synthesis. It is found that the n-propylamine is present as sandwich between Vanadyl phosphate layers. Most of the Vanadium is present as V4+ ions in tetrahedral co-ordination. Vanadium n-propylamino phosphate catalyses Octahydroquinazolinone synthesis more effeciently and the optimum conditions required for Octahydroquinazolinone synthesis are, Benzaldehyde (2 mmol, Dimedone (2 mmol, Urea (4 mmol, Methanol + Water (1:1, 5 mL and Catalyst (0.05 g. A plausible mechanism is also proposed.

  19. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis

    Science.gov (United States)

    van den Berg, Roy; Prieto, Gonzalo; Korpershoek, Gerda; van der Wal, Lars I.; van Bunningen, Arnoldus J.; Lægsgaard-Jørgensen, Susanne; de Jongh, Petra E.; de Jong, Krijn P.

    2016-01-01

    For decades it has been debated whether the conversion of synthesis gas to methanol over copper catalysts is sensitive or insensitive to the structure of the copper surface. Here we have systematically investigated the effect of the copper particle size in the range where changes in surface structure occur, that is, below 10 nm, for catalysts with and without zinc promotor at industrially relevant conditions for methanol synthesis. Regardless of the presence or absence of a zinc promotor in the form of zinc oxide or zinc silicate, the surface-specific activity decreases significantly for copper particles smaller than 8 nm, thus revealing structure sensitivity. In view of recent theoretical studies we propose that the methanol synthesis reaction takes place at copper surface sites with a unique configuration of atoms such as step-edge sites, which smaller particles cannot accommodate. PMID:27703166

  20. Ammonia synthesis by means of plasma over MgO catalyst

    International Nuclear Information System (INIS)

    Sugiyama, K.; Akazawa, K.; Matsuda, T.; Miura, H.; Oshima, M.

    1986-01-01

    Ammonia synthesis from H 2 -N 2 mixed gas was studied at room temperature in a glow-discharge plasma in the presence of metals or metal oxides. Magnesia (Mg0) and calcia (CaO), which are oxides with solid basicity, revealed catalytic activity in the plasma synthesis of ammonia, although they are catalytically inactive in industrial ammonia synthesis. The acid oxides (Al 2 0 3 W0 3 , and Si0 2 -Al 2 0 3 ) lead to the consumption of the reactant, i.e., the H2-N2 mixed gas. No ammonia was isolated. Metal catalysts showed higher activity than the above basic oxides. They have, however, different activities. The reaction was faster over the active materials than over sodium chloride (NaCl) or glass wool or in a blank reactor without any catalyst

  1. ETBE synthesis over silicotungstic acid and tungstophosphoric acid catalysts calcined at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Levent; Oktar, Nuray; Dogu, Gulsen [Department of Chemical Engineering, Gazi University, 06570 Maltepe, Ankara (Turkey)

    2010-07-15

    Vapor phase ethyl tertiary butyl ether synthesis was investigated using heat treated heteropoly acid catalysts, namely silicotungtsic acid (STA) and tungstophosphoric acid-Keggin (TPA-K) and these results were compared with the results obtained with untreated catalysts. ETBE synthesis experiments showed that heat treatment of TPA-K at temperatures over 473 K had caused significant decrease of its catalytic activity. Activity of STA was more stable and deactivation of this catalyst was observed by heat treatment at 673 K and above. Heat treatment at high temperatures caused loss of constitutional water of STA and TPA-K, causing loss of protons, consequently the loss of acidity of the catalysts, resulting deactivation. FT-IR, TGA-DTA and DRIFTS analyses on pyridine-adsorbed catalysts supported the conclusions related to structural changes of STA and TPA-K with heat treatment. Highest ETBE yields were obtained at around 368 K, while at temperatures over 423 K formation of DEE and ethylene were observed due to dehydration of ethanol. (author)

  2. Synthesis of carbon nanotubes using green plant extract as catalyst: unconventional concept and its realization

    Science.gov (United States)

    Tripathi, Nishant; Pavelyev, Vladimir; Islam, S. S.

    2017-11-01

    Green catalyst derived from plants, a cheap and abundant natural source, is used for the synthesis of multi-walled carbon nanotubes (MWNTs). The concept is unconventional and practically realized into existence by simple CVD growth while keeping away the potential hazards caused by metal catalyst on environment and living organisms. The notable points to mention of such growth are: (1) grown CNTs are free from toxic metal catalyst, (2) low growth temperature (575 °C) required and produced high yield vis-à-vis any other catalyst used so far reported, and (3) no need of expensive and complex systems for its synthesis. Besides, growth of SWNT as well as carbon nano-belts with hollow rectangular cross-section is observed when growth temperature increased to 800 °C, specifically, for the wall-nut extract. The samples were characterized by microscopic and spectroscopic analysis and the results verified our study. The present work provides innovative technique and may open up new avenues for CNTs synthesis and its applications.

  3. Alum as a Catalyst for the Synthesis of Bispyrazole Derivatives

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zolfigol

    2016-01-01

    Full Text Available Compounds with pyrazolemoieties as nitrogen-containing heterocyclic systems have received attention owing to their diverse biological activities. Alum (KAl(SO42∙12H2O is an inexpensive, reusable and nontoxic catalyst used to synthesize 1H-pyrazole derivatives via the reaction of 3-methyl-1-phenyl-1H-pyrazol-5(4H-one and carbonyl compound under solvent-free conditions at 60 °C. The proposed method has been used for the preparation of 1H-pyrazole derivatives to yield green products for cleaning-in-place and to avoid toxic catalysts and hazardous solvents in accordance with the philosophy of sustainable chemistry.

  4. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  5. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2017-05-01

    Highlights: • Electroless plating Cu-Co-P polyalloy was firstly fabricated onto polyethylene terephthalate (PET) substrate. • An etchant-free and amine-free UV/ozonolysis irradiation method UV/ozonolysis was effective for the transition from hydrophilic to hydrophobic of PET sheet. • A time-saving and cost-effective orthogonal experiment (L{sub 9}(3){sup 4}) was utilized to optimize the plating conditions. • The optimized copper polyalloy possessed high corrosion resistance in three aggressive mediums including NaCl, NaOH and HCl, respectively. • The Cu-Co-P coated PET composite showed excellent electromagnetic interference shielding effectiveness (EMI SE > 99.999% at frequency ranging from 30 MHz to 1000 MHz). - Abstract: High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH{sub 4} solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L{sub 9}(3){sup 4}) for Cu-Co-P coating as follows: CoSO{sub 4}·7H{sub 2}O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper

  6. Synthesis of Carbon Nano tubes Using Anadara Granosa Shells as Catalyst Support

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Salwani Asyikin Zakarya; Siti Halimah Sarijo

    2011-01-01

    The synthesis of carbon nano tubes (CNTs) by chemical vapor deposition (CVD) method using natural calcite prepared from Anadara granosa shells (CS), as metal catalyst support was studied. Hexane and iron were used as carbon precursor and catalyst, respectively. The as synthesised CNTs was characterized using XRD, TEM and FESEM. From the XRD patterns the CNTs peak can be seen more incisive after purification process and from the FESEM micrographs the CNTs can be seen as a bunch of rope-like structures. (author)

  7. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    Science.gov (United States)

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  8. Cobalt catalysts for the conversion of methanol and for Fischer-tropsch synthesis to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1987-01-01

    A regeneration stable catalyst is described for the conversion at reaction conditions of methanol or synthesis gas to liquid hydrocarbons which consists essentially of from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added sufficient of a zirconium, hafnium, cerium, or uranium promoter to provide a weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt greater than about 0.101:1

  9. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    DEFF Research Database (Denmark)

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk

    2011-01-01

    The dehydrogenation of ethanol via acetaldehyde for the synthesis of acetic acid over a Cu based catalyst in a new process is reported. Specifically, we have studied a Cu on SiO2 catalyst which has shown very high selectivity to acetic acid via acetaldehyde compared to competing condensation routes....... The dehydrogenation experiments were carried out in a flow through lab scale tubular reactor. Based on 71 data sets a power law kinetic expression has been derived for the description of the dehydrogenation of acetaldehyde to acetic acid. The apparent reaction order was 0.89 with respect to water and 0...

  10. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    in a hierarchical pore size distribution. In this work, the preparation of mesoporous ZSM-12 single crystal catalysts using a new improved procedure for directly introducing carbon in the reaction mixture is reported. The microwave heating technique is also applied for the synthesis of mesoporous silicalite-1...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...

  11. The effect of alkaline doped catalysts on the CVD synthesis of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Krisztian; Nemeth, Zoltan; Fejes, Dora; Reti, Balazs; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, Szeged 6720 (Hungary); Balogh, Zoltan [Center for Electron Nanoscopy, Technical University of Denmark, Building 307, Fysikvej, 2800 Kongens Lyngby (Denmark)

    2011-11-15

    The aim of this work was to develop new doped catalysts for chemical vapour deposition (CVD) synthesis in order to increase the quantity and quality of carbon nanotubes (CNTs). Doping compounds such as CsBr, CsCl, KBr and KCl were used to reach higher carbon deposit and carbon yield. The amount of the dopant alkali compounds varied from 1 to 5%. As prepared CNTs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman microscopy. Results revealed that both carbon yield and deposit could be increased over doped catalysts. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    Science.gov (United States)

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-07

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  13. The effect of zirconium on cobalt catalyst in fischer-tropsch synthesis

    International Nuclear Information System (INIS)

    Moradi, GH.R.; Mahbob Basir, M.; Taeb, A.

    2003-01-01

    A series of 10 wt % Co/SiO 2 catalysts with different loading ratios of zirconia (0, 5, 10, 15, 20) has been prepared through an original pseudo sol-gel method. All catalysts were characterized by BET, XRD, SEM, and TPR experiments. The catalytic performance of the catalysts for the so-called fischer- tropsch synthesis was examined under H 2 /CO=2 at 230 d ig C and 8 bar in a fixed bed microreactor. By increasing zirconia, the Co-SiO 2 interaction decreases and is replaced by Co-Zr interaction which favours reduction of the catalyst at lower temperatures. While it leads to a higher degree of reduction and as increase in the metallic cobalt atoms on the surface. The activity of the promoted catalysts increases with the addition of zirconia (max. by a factor 2.5). The C 1 0 + selectivity increased with the addition of zirconia (from 42.3% in unpromoted catalyst to 68.8 % in the 20 % ZrO 2 promoted. This can be attributed to the higher amount of the surface Cobalt metal present and to the larger Cobalt particle size

  14. Microstructural and Defect Analysis of Metal Nanoparticles in Functional Catalysts by Diffraction and Electron Microscopy: The Cu/ZnO Catalyst for Methanol Synthesis

    OpenAIRE

    Kandemir, T.; Kasatkin, I.; Girgsdies, F.; Zander, S.; Kühl, S.; Tovar, M.; Schlögl, R.; Behrens, M.

    2014-01-01

    The application of different methods for a microstructural analysis of functional catalysts is reported for the example of different Cu/ZnO-based methanol synthesis catalysts. Transmission electron microscopy and diffraction were used as complementary techniques to extract information on the size and the defect concentration of the Cu nano-crystallites. The results, strengths and limitations of the two techniques and of different evaluation methods for line profile analysis of diffraction dat...

  15. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  16. Parametric effects and optimization on synthesis of iron (II) doped carbonaceous catalyst for the production of biodiesel

    International Nuclear Information System (INIS)

    Dhawane, Sumit H.; Kumar, Tarkeshwar; Halder, Gopinath

    2016-01-01

    Highlights: • Iron (II) was doped on activated carbon surface. • L9 orthogonal array was used for experimental design using Taguchi approach. • Parametric effects of catalyst synthesis on biodiesel yield were studied. • Agitation speed was emerged as most influential parameter. • Cost analysis of catalyst shows it is cost effective and eco-friendly. - Abstract: Synthesis of efficient and low cost heterogeneous catalyst for transesterification of triglycerides into esters is the need of the hour. The present study elaborates an indigenous development of ferromagnetic iron (II) doped carbonaceous catalyst (Fe/C) for the production of biodiesel from rubber seed oil. The parametric effects on the synthesis of Fe/C catalyst were studied to identify the most significant parameters affecting the biodiesel yield using Taguchi method. The doping process was optimised for maximum biodiesel yield considering four parameters viz. Impregnation time, temperature, catalyst content and agitation speed. The prepared catalyst was characterized using scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDX), X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared spectrometer (FT-IR). The contribution factor revealed that agitation speed is the most influential parameter affecting the biodiesel yield followed by catalyst content, impregnation time and temperature. The maximum biodiesel yield observed in optimum condition of impregnation time 15 h, impregnation temperature 40 °C, catalyst content 5 wt% and agitation speed 500 rpm was 96.31%. The cost analysis of catalyst synthesis was done and found to be fairly economical. The reusability of the catalyst was tested to check the decay in catalytic activity at the optimised condition and found to decrease in activity by 0.8–1.2% after three cycles. Thus, the experimental results and characterization study confirm that indigenously developed carbonaceous catalyst from waste

  17. Ultrasound assisted synthesis of iron doped TiO2 catalyst.

    Science.gov (United States)

    Ambati, Rohini; Gogate, Parag R

    2018-01-01

    The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.

    1990-05-15

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  19. Use of Graphite Oxide and Graphene Oxide as Catalysts in the Synthesis of Dipyrromethane and Calix[4]pyrrole

    Directory of Open Access Journals (Sweden)

    Sweta Mishra

    2011-08-01

    Full Text Available Graphite oxide and graphene oxides have been used as solid catalysts for the synthesis of 5,5-dialkyldipyrromethanes and calix[4]pyrroles in organic and aqueous solutions at room temperature.

  20. Rapid and Efficient Synthesis of Hydroxytriarylmethanes under Ultra Sonic Irradiation Using Keggin Heteropolyacids and Preyssler Catalysts in Green Conditions

    Directory of Open Access Journals (Sweden)

    Hooshang Hamidian

    2013-01-01

    Full Text Available A new synthesis of hydroxytriarylmethane derived from the reaction of 2-sulfobenzoic anhydride and phenols in the presence of heteropolyacids as green, reusable, and efficient catalyst (using catalytic amount under ultrasonic irradiation is reported in this paper.

  1. A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, Nikolaos E.; Dehghan, Roya; Johnsen, Rune

    2013-01-01

    A cobalt based Fischer-Tropsch synthesis (FTS) catalyst, supported on a carbon nanofibers/carbon felt composite (Co/CNF/CF) was studied in situ at realistic conditions. The catalyst was monitored by Xray absorption spectroscopy (XAS), high-resolution X-ray powder diffraction (HR-XRPD) and Raman...

  2. The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis

    NARCIS (Netherlands)

    van Ommen, J.G.; Bolink, W.J.; Prasad, J.; Mars, P.

    1975-01-01

    The chemical form of the potassium promoter on an iron-alumina catalyst during ammonia synthesis has been studied by two methods, viz, (i) the measurement of the equilibrium constant of the process KNH2 + H2 KH + NH3, and (ii) chemical analysis of the used catalyst. The equilibrium constant

  3. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shareef

    2017-10-01

    Full Text Available This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller, SEM (Scanning Electron Microscopy, TGA (Thermal Gravimetric Analysis, XRD (X-ray diffraction spectroscopy, and FTIR (Fourier Transform Infrared Spectroscopy. Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reserved Received: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 357-363 (doi:10.9767/bcrec.12.3.762.357-363

  4. Open flow hot isostatic pressing assisted synthesis of highly porous materials and catalysts

    Science.gov (United States)

    Siadati, Mohammad Hossein

    Open-flow hot isostatic pressing (OFHIP) technique is applied for synthesizing molecular sieves and highly porous catalytic materials. First, the isostatic pressure is applied to the starting material/catalyst precursor, and then heat is applied. Under this condition, as the organic components gradually decompose and leave the material, the voids left behind are immediately filled/replaced by the gas (pressure medium) in flow. This substitution warrants the preservation as well as the uniformity of the voids/pores. The result is a very porous material with very uniform pore size distribution. Another advantage is the production of the catalyst directly from the precursor, in the absence of solvent (neat), rendering the process simpler and less costly than previous processes. The entire process takes place under flow of the gas that is used as medium to develop the isostatic pressure. Consequently, the entire process, as well as the final product produced, is devoid of any undesirable residues. This endeavor also introduces a viable technique for mass-producing porous materials/catalysts. The resulting materials are termed "amorphous sulfide sieves" to reflect their unique properties that include high surface area, narrow pore size distribution and high activity. The catalysts are potentially licensable to all petroleum and petroleum chemical companies for a wide variety of environmental and product improvement purposes. The results obtained on unpromoted samples synthesized at 300°C indicate that as the synthesis pressure is increased, both surface area and catalytic activity of the materials produced increase. The increase in activity k value from 3 to 6 x 10-7 mol/g.s corresponds to increase in pressure from 100 to 800 psi, respectively. The N2 gas used as pressure medium results in highly porous materials but low activity. H 2 seems to be the ideal gas for both pressure medium and reducing agent. Co-promoted catalysts synthesized at 1400 psi and 300°C show

  5. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn......O as determined by resonant X-ray diffraction. In situ resonant X-ray diffraction reveals that the Cu atoms are extracted from the solid solution by the reduction procedure, forming metallic Cu crystallites. Cu is redispersed in bulk or surface Zn lattice sites upon oxidation by heating in air. The results...... is highly dispersed and in intimate contact with the surface of the host ZnO particles. The possibility of re-forming the (Zn,Cu)O solid solution by oxidation may provide a means of redispersing Cu in a deactivated catalyst....

  6. Synthesis of tributyl citrate using SO42-/Zr-MCM-41 as catalyst

    Directory of Open Access Journals (Sweden)

    Zheng Zhifeng

    2011-04-01

    Full Text Available Zirconium-containing mesoporous molecular sieve SO42-/Zr-MCM-41 was synthesized for catalyst in synthesis of tributyl citrate. The structure was characterized by XRD, N2 Ad/De isotherms and FT-IR. The results indicated that the solid acids show good catalytic performance and are reusable. Under optimum conditions and using SO42-/Zr-MCM-41 as catalyst, the conversion of citric acid was 95%. After easy separation of the products from the solid acid catalyst, it could be reused three times and gave a conversion of citric acid not less than 92%. The structure of tributyl citrate was characterized by FT-IR and 1H-NMR.

  7. In Situ Study of Catalytic Processes: Neutron Diffraction of a Methanol Synthesis Catalyst at Industrially Relevant Pressure

    OpenAIRE

    Kandemir, T.; Girgsdies, F.; Hansen, T.; Liss, K.; Kasatkin, I.; Kunkes, E.; Wowsnick, G.; Jacobsen, N.; Schlögl, R.; Behrens, M.

    2013-01-01

    Studying the workplace: An industrial methanol synthesis catalyst operating at high pressure was studied by in situ neutron diffraction. The peculiar microstructure of Cu/ZnO/Al2O3 nanocatalysts was found to be stable under reaction conditions. Stacking fault annealing and brass formation was only observed at temperatures higher than used in the methanol synthesis process, providing support for active role of defects in this catalyst system.

  8. Methane Sulphonic Acid is Green Catalyst in Organic Synthesis

    OpenAIRE

    Pramod Kulkarni

    2015-01-01

    Methane sulphonic acid is an alkanesulphonic acid and its chemical formula is CH3SO3H. MSA is a strong acid having pKa= 1.9 and completely ionized in 0.1 M in an aqueous solution and has small affinity to oxidize organic compounds, less corrosive and toxic than other mineral acids. MSA is also biodegradable and not evolve toxic gases. Therefore MSA is considered as green acid. Therefore its use in organic synthesis attracts many chemists to use in organic synthesis. In this review we describe...

  9. Are Diatoms "Green" Aluminosilicate Synthesis Microreactors for Future Catalyst Production?

    Science.gov (United States)

    Köhler, Lydia; Machill, Susanne; Werner, Anja; Selzer, Carolin; Kaskel, Stefan; Brunner, Eike

    2017-12-16

    Diatom biosilica may offer an interesting perspective in the search for sustainable solutions meeting the high demand for heterogeneous catalysts. Diatomaceous earth (diatomite), i.e., fossilized diatoms, is already used as adsorbent and carrier material. While diatomite is abundant and inexpensive, freshly harvested and cleaned diatom cell walls have other advantages, with respect to purity and uniformity. The present paper demonstrates an approach to modify diatoms both in vivo and in vitro to produce a porous aluminosilicate that is serving as a potential source for sustainable catalyst production. The obtained material was characterized at various processing stages with respect to morphology, elemental composition, surface area, and acidity. The cell walls appeared normal without morphological changes, while their aluminum content was raised from the molar ratio n (Al): n (Si) 1:600 up to 1:50. A specific surface area of 55 m²/g was measured. The acidity of the material increased from 149 to 320 µmol NH₃/g by ion exchange, as determined by NH₃ TPD. Finally, the biosilica was examined by an acid catalyzed test reaction, the alkylation of benzene. While the cleaned cell walls did not catalyze the reaction at all, and the ion exchanged material was catalytically active. This demonstrates that modified biosilica does indeed has potential as a basis for future catalytically active materials.

  10. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw

    Science.gov (United States)

    Janaun, J.; Safie, N. N.; Siambun, N. J.

    2016-07-01

    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  11. Prospects of Fe/MCM-41 as a Catalyst for Hydrocarbon Synthesis

    International Nuclear Information System (INIS)

    Cagnoli, Maria V.; Gallegos, Norma G.; Bengoa, Jose F.; Alvarez, Ana M.; Marchetti, Sergio G.; Moreno, Sergio M. J.; Roig, Anna; Mercader, Roberto C.

    2005-01-01

    We report the synthesis of cylindrical nanoparticles of metallic Fe entirely included in MCM-41 pores. Their dimensions are approx.3 nm diameter and approx. 3.8 nm length. We show that a coherent analysis of the results yielded by the various techniques is essential to obtain a catalyst supported on an MCM-41 matrix of ≅ 3 nm average pore diameter, which is active and selective toward olefins. The solids were characterized by low-angle x-ray diffraction, high-resolution transmission electron microscopy, high-resolution scanning transmission electron microscopy equipped with a high-angle annular dark-field, CO chemisorption, volumetric oxidation, and Moessbauer spectroscopy (in controlled atmosphere for the reduced catalysts). Catalytic results in the Fischer-Tropsch synthesis, as well as some unexpected results --like the inhomogeneous pore filling and discontinuous Fe particles-- are also discussed

  12. Catalyst synthesis PD/SiO2 and PD/C by irradiation microwave method

    International Nuclear Information System (INIS)

    Sant'Anna, L.S.; Franceschi, E.; Egues, S.; Santos, M.L.; Dariva, C.; Borges, G.R.

    2016-01-01

    The synthesis of nanoparticulate materials has been developed over the years, in order to propose new routes or routes more efficient in the process. The application of microwave irradiation applied in this work allowed to show that metal catalysts may be generated in a faster reaction time compared to conventional mechanical agitation techniques. Catalysts using palladium acetate (OAc) 2 supported on charcoal and commercial silica were synthesized. The solvent used for the preparation was 40 ml of ethanol at a temperature of 100 ° C and 300 W power. The synthesis time was 2 to 5 minutes. The synthesized material was calcined and characterized by ICP, XRD, TEM and BET obtained metal content ranged from 1.1 to 4.1% of the metal support. The particle size was between 7 and 9 nm. The surface areas of the carriers were reduced on its surface due to the metal impregnation. (author)

  13. Towards Green Cyclic Carbonate Synthesis : Heterogeneous and Homogeneous Catalyst Development

    NARCIS (Netherlands)

    Stewart, J.A.

    2015-01-01

    This PhD research serves to implement both known and novel catalytic systems for the purpose of cyclic carbonate synthesis from biomass-derived substrates. Such products have been earmarked as potential monomers for non-isocyanate polyurethanes (NIPUs), amongst other uses. Particular attention has

  14. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  15. Nano copper ferrite: A reusable catalyst for the synthesis of , ...

    Indian Academy of Sciences (India)

    Copper ferrite nano material as reusable heterogeneous initiator in the synthesis of , -unsaturated ketones and allylation to acid chlorides are presented. The reaction of allylichalides with various acid chlorides is achieved in the presence of copper ferrite nano powders at room temperature in tetrahydrofuran (THF).

  16. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry.

    Science.gov (United States)

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie; Binks, Bernard P; Gruber-Woelfler, Heidrun

    2018-01-01

    Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce 0.99- x Sn x Pd 0.01 O 2-δ ( x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.

  17. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  18. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Thorhauge, Max; Falsig, Hanne

    2016-01-01

    Promoter elements enhance the activity and selectivity of heterogeneous catalysts. Here, we show how methanol synthesis from synthesis gas over copper (Cu) nanoparticles is boosted by zinc oxide (ZnO) nanoparticles. By combining surface area titration, electron microscopy, activity measurement......, density functional theory calculations, and modeling, we show that the promotion is related to Zn atoms migrating in the Cu surface. The Zn coverage is quantitatively described as a function of the methanol synthesis conditions and of the size-dependent thermodynamic activities of the Cu and Zn......O nanoparticles. Moreover, experimental data reveal a strong interdependency of the methanol synthesis activity and the Zn coverage. These results demonstrate the size-dependent activities of nanoparticles as a general means to design synergetic functionality in binary nanoparticle systems....

  19. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  20. Synthesis and characterization of novel intermetallic catalysts for hydrogenation of carbon dioxide to methanol

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta Maria; Sharafutdinov, Irek; Chorkendorff, Ib

    formation is observed after calcination. Size distribution analysis reveals that the Pd2Ga nanoparticles have a diameter of 5-10 nm which does not change after reduction, methanol synthesis and rapid ageing. Furthermore, in situ ETEM is used to monitor the development of the materials system during......Novel Ni5Ga3 and Pd2Ga catalysts for CO2 hydrogenation to methanol are prepared by impregnation of aqueous Ni-Ga or Pd-Ga solutions of metal nitrates into high surface area SiO2, followed by drying, calcinations and reduction of the precursor in a H2 flow. Steady state experiments are performed...... synthesis and reaction....

  1. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    DEFF Research Database (Denmark)

    Hellman, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2009-01-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro......-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i...

  2. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    OpenAIRE

    Gary Jacobs; Wenping Ma; Burtron H. Davis

    2014-01-01

    This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing...

  3. Fischer-Tropsch Synthesis on Multicomponent Catalysts: What Can We Learn from Computer Simulations?

    OpenAIRE

    Fajin, Jose L. C.; Cordeiro, M. Natalia D. S.; Gomes, Jose R. B.

    2015-01-01

    In this concise review paper, we will address recent studies based on the generalized-gradient approximation (GGA) of the density functional theory (DFT) and on the periodic slab approach devoted to the understanding of the Fischer-Tropsch synthesis process on transition metal catalysts. As it will be seen, this computational combination arises as a very adequate strategy for the study of the reaction mechanisms on transition metal surfaces under well-controlled conditions and allows separati...

  4. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    Energy Technology Data Exchange (ETDEWEB)

    Pindwal, Aradhana [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  5. Highly Efficient Synthesis of Clean Biofuels from Biomass Using FeCuZnAlK Catalyst

    Science.gov (United States)

    Qiu, Song-bai; Xu, Yong; Ye, Tong-qi; Gong, Fei-yan; Yang, Zhi; Yamamoto, Mitsuo; Liu, Yong; Li, Quan-xin

    2011-12-01

    Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasification was performed over Fe1.5Cu1Zn1Al1K0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcatal·h) with a contribution of 0.57 kg alcohols/(kgcatal·h) and 1.02 kg liquid hydrocarbons/(kgcatal·h). The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2—C6 alcohols) with a content of 73.55%-89.98%. The selectivity of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%. The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg. The effects of the synthesis conditions, including temperature, pressure, and gas hourly space velocity, on the biofuel synthesis were investigated in detail. The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, and the N2 adsorption-desorption isotherms measurements. The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.

  6. Green Biodiesel Synthesis Using Waste Shells as Sustainable Catalysts with Camelina sativa Oil

    Directory of Open Access Journals (Sweden)

    Yelda Hangun-Balkir

    2016-01-01

    Full Text Available Waste utilization is an essential component of sustainable development and waste shells are rarely used to generate practical products and processes. Most waste shells are CaCO3 rich, which are converted to CaO once calcined and can be employed as inexpensive and green catalysts for the synthesis of biodiesel. Herein, we utilized lobster and eggshells as green catalysts for the transesterification of Camelina sativa oil as feedstock into biodiesel. Camelina sativa oil is an appealing crop option as feedstock for biodiesel production because it has high tolerance of cold weather, drought, and low-quality soils and contains approximately 40% oil content. The catalysts from waste shells were characterized by X-ray powder diffraction, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. The product, biodiesel, was studied by 1H NMR and FTIR spectroscopy. The effects of methanol to oil ratio, reaction time, reaction temperature, and catalyst concentration were investigated. Optimum biodiesel yields were attained at a 12 : 1 (alcohol : oil molar ratio with 1 wt.% heterogeneous catalysts in 3 hours at 65°C. The experimental results exhibited a first-order kinetics and rate constants and activation energy were calculated for the transesterification reaction at different temperatures. The fuel properties of the biodiesel produced from Camelina sativa oil and waste shells were compared with those of the petroleum-based diesel by using American Society for Testing and Materials (ASTM standards.

  7. PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Ms. Xiaolei Sun; Professor George W. Roberts

    2000-06-21

    Work during the report period was concentrated on developing analytical techniques. Thin-layer chromatography (TLC) was used in an attempt to define the best mobile phase to separate the components of ''spent'' tetrahydroquinoline by liquid chromatography in a silica gel column. Conditions have been defined for separating the light gases produced by the reaction of carbon monoxide (CO) and hydrogen (H{sub 2}) over promoted ''zinc chromite'' catalysts. This will be done with a temperature-programmed Carboxen-1000 column, using a thermal conductivity detector for analysis. A Petrocol DM 150 capillary column will be purchased to separate the heavier products, which will be analyzed using a flame ionization detector.

  8. Cesium Carbonate as a Heterogeneous Base Catalyst for Synthesis of 2-Aminothiophenes via Gewald Reaction

    International Nuclear Information System (INIS)

    Moeinpour, Farid; Omidinia, Raheleh; Dorostkar-Ahmadi, Nadieh; Khoshdeli, Bentalhoda

    2011-01-01

    We have reported a new simple catalytic method for the synthesis of 2-aminothiophenes via Gewald reaction using Cs 2 CO 3 as an efficient, reusable and green heterogeneous catalyst under heating conditions in refluxing ethanol. The catalyst could be recycled after a simple workup and reused at least three runs without appreciable reduction in its catalytic activity. Low catalyst loading, clean reaction profiles, simple experimental and workup procedures and high yields are some advantages of this protocol. The synthesis of substituted 2-aminothiophenes is attractive to chemical researchers as they are important intermediates in organic synthesis and frequently used as the scaffold motif of a variety of agrochemicals, dyes, and biologically active products. Thus, because of their wide utility, researchers have synthesized the substituted 2-aminothiophenes via efficient and convenient methods. The one-pot cyclocondensation of ketones with an activated α-hydrogen, a cyanomethylene containing an electron-withdrawing group such as cyanoacetate and elemental sulfur in the presence of organic base, for example, morpholine, diethylamine, etc, known as the Gewald reaction, has been one of the most well-studied multicomponent reactions in recent years. To extend the scope of the reaction, many alterations have been made to the original Gewald's base-catalyzed, two-component combination of α-mercapto ketones with cyanoacetate by varying the components and the conditions

  9. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Directory of Open Access Journals (Sweden)

    Valkaj Karolina Maduna

    2016-03-01

    Full Text Available In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.

  10. Cesium Carbonate as a Heterogeneous Base Catalyst for Synthesis of 2-Aminothiophenes via Gewald Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moeinpour, Farid [Islamic Azad University, Bandar Abbas Branch, Abbas (Iran, Islamic Republic of); Omidinia, Raheleh; Dorostkar-Ahmadi, Nadieh; Khoshdeli, Bentalhoda [Islamic Azad University, Mashhad Branch, Mashhad (Iran, Islamic Republic of)

    2011-06-15

    We have reported a new simple catalytic method for the synthesis of 2-aminothiophenes via Gewald reaction using Cs{sub 2}CO{sub 3} as an efficient, reusable and green heterogeneous catalyst under heating conditions in refluxing ethanol. The catalyst could be recycled after a simple workup and reused at least three runs without appreciable reduction in its catalytic activity. Low catalyst loading, clean reaction profiles, simple experimental and workup procedures and high yields are some advantages of this protocol. The synthesis of substituted 2-aminothiophenes is attractive to chemical researchers as they are important intermediates in organic synthesis and frequently used as the scaffold motif of a variety of agrochemicals, dyes, and biologically active products. Thus, because of their wide utility, researchers have synthesized the substituted 2-aminothiophenes via efficient and convenient methods. The one-pot cyclocondensation of ketones with an activated α-hydrogen, a cyanomethylene containing an electron-withdrawing group such as cyanoacetate and elemental sulfur in the presence of organic base, for example, morpholine, diethylamine, etc, known as the Gewald reaction, has been one of the most well-studied multicomponent reactions in recent years. To extend the scope of the reaction, many alterations have been made to the original Gewald's base-catalyzed, two-component combination of α-mercapto ketones with cyanoacetate by varying the components and the conditions.

  11. Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells

    Science.gov (United States)

    Bunazawa, Hideaki; Yamazaki, Yohtaro

    Ultrasonic synthesis was investigated as a synthesis method of non-platinum catalysts for alkaline direct methanol fuel cells (alkaline DMFCs) such as 20% mass Pd/C, Au/C, and PdAu/C. Among four kinds of solvents, ethylene glycol was demonstrated to be the optimum solvent for the synthesis of those catalysts. When ethylene glycol was used, the synthesized metal nanoparticles were highly dispersed on carbon particles. The synthesized Pd/C and PdAu/C showed the high oxygen reduction reaction (ORR) activity in alkaline condition (0.5 M NaOH aqueous solution), which was comparable to conventional Pt/C. Moreover, they showed lower methanol oxidation reaction (MOR) activity. Membrane electrode assemblies (MEAs) containing the synthesized Pd/C cathode catalysts and alkaline ion exchange membranes were fabricated and evaluated by single cell tests. They showed high performance that was comparable to MEAs with Pt/C cathode. In addition, it was found that the synthesized Pd/C was relatively tolerant to methanol crossover.

  12. Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts

    NARCIS (Netherlands)

    Prieto, G.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X; de Jongh, P.E.|info:eu-repo/dai/nl/186125372

    2013-01-01

    The generation of large volumes of nitrate-containing wastewater is a major issue in the industrial production of solid catalysts such as Cu/ZnO/Al2O3 employed in methanol synthesis. Extensive washing with water is needed to remove nitrate (and sodium) residues in the as-precipitated metal

  13. Synthesis of Ni-Pt catalysts and characterization

    International Nuclear Information System (INIS)

    Santos, Everton R.F. dos; Sousa, Bianca Viana de; Barbosa, Antonielly dos Santos; Leite, Romulo C.N.; Rodrigues, Meiry G.F.

    2009-01-01

    In this work, bifunctionals catalysts using the MCM-22 zeolite as support and the nickel and platinum metal as hydrogenation/dehydrogenation sites were prepared. The method used for metal dispersion on the zeolite was the competitive ion exchange, using the amine complex [Pt(NH 3 ) 4 ]Cl 2 and [Ni(NH 3 ) 6 ]Cl 2 . After the exchange reactions, the samples were calcinated at 500 deg C for 2 hours and reduced at this same temperature under hydrogen flow. The MCM-22 zeolite and samples containing the metal were characterized by the techniques of: EDX, XRD, DTA/TGA. The diffractions of the precursor MCM-22 (P) presented typical peaks of the MWW topology composed by intercalated lamellar layers with organic molecules that are constituents of the template (HMI). According to the XRD pattern of the calcinated sample, no peaks related to the organic material which is responsible to produce the MCM-22 zeolite were detected. By thermogravimetry it was verified that the removal of the template took place between 500 and 650 deg C proving the effectiveness of the removal process. The chemical analysis by X-ray spectrometric was evidenced this the incorporation in the zeolites of platinum and nickel for all the texts in study. Results from XRD confirming the stability and crystal in study of zeolites. (author)

  14. Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: Influence of pH on the selective oxidation of propylene

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2015-01-01

    A series of bismuth molybdate catalysts with relatively high surface area was prepared via mild hydrothermal synthesis. Variation of the pH value and Bi/Mo ratio during the synthesis allowed tuning of the crystalline Bi-Mo oxide phases, as determined by X-ray diffraction (XRD) and Raman spectrosc...

  15. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...

  16. Evidence for H2/D2 isotope effects on Fischer-Tropsch synthesis over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Kellner, C.S.; Bell, A.T.

    1981-01-01

    The effects of using D 2 rather than H 2 during Fischer-Tropsch synthesis were investigated using alumina- and silica-supported Ru catalysts. For the alumina-supported catalysts, the rate of CD 4 formation was 1.4 to 1.6 times faster than the formation of CH 4 . A noticeable isotope effect was also observed for higher molecular weight products. The magnitude of the isotope effects observed using the silica-supported catalyst was much smaller than that found using the alumina-supported catalysts. The formation of olefins relative to paraffins was found to be higher when H 2 rather than D 2 was used, independent of the catalyst support. The observed isotope effects are explained in terms of a mechanism for CO hydrogenation and are shown to arise from a complex combination of the kinetic and equilibrium isotope effects associated with elementary processes occurring on the catalyst surface

  17. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as ...

    Indian Academy of Sciences (India)

    effective catalyst systems for the selective oxidation of cyclic olefins under milder conditions. The oxidation of β-isophorone to ketoisophorone is one example of such chemistry, which is an industrially important reac- tion. Ketoisophorone is an important intermediate in the industrial synthesis of vitamin E. Ketoisophorone.

  18. Review of Novel Catalysts for Biomass Tar Cracking and Methane Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.

    2007-10-10

    A review of the literature was conducted to examine the performance of catalysts other than conventional nickel catalysts, and alkaline earth and olivine based catalysts for treating hot raw product gas from a biomass gasifier to convert methane and tars into synthesis gas. Metal catalysts other than Ni included precious metals Rh, Ru, Ir, Pt, and Pd, as well as Cu, Co, and Fe in limited testing. Nickel catalysts promoted with Rh, Zr, Mn, Mo, Ti, Ag, or Sn were also examined, as were Ni catalysts on Ce2O3, TiO2, ZrO2, SiO2, and La2O3. In general, Rh stood out as a consistently superior metal catalyst for methane reforming, tar cracking, and minimizing carbon buildup on the catalyst. Ru and Ir also showed significant improvement over Ni for methane reforming. Ceria stood out as good support material and particularly good promoter material when added in small quantities to another support material such as alumina, zirconia, or olivine. Other promising supports were lanthana, zirconia, and titania.

  19. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst

    International Nuclear Information System (INIS)

    Cheng, Y; Tanaka, M; Watanabe, T; Choi, S Y; Shin, M S; Lee, K H

    2014-01-01

    The catalyst of Ni 2 B nanoparticles was successfully prepared using nickel and boron as precursors with the quenching gas in radio frequency thermal plasmas. The generating of Ni 2 B needs adequate reaction temperature and boron content in precursors. The quenching gas is beneficial for the synthesis of Ni 2 B in RF thermal plasma. The effect of quenching rate, powder feed rate and boron content in feeding powders on the synthesis of nickel boride nanoparticles was studied in this research. The high mass fraction of 28 % of Ni 2 B nanoparticles can be generated at the fixed initial composition of Ni:B = 2:3. Quenching gas is necessary in the synthesis of Ni 2 B nanoaprticles. In addition, the mass fraction of Ni 2 B increases with the increase of quenching gas flow rate and powder feed rate

  20. Cerium Modified Pillared Montmorillonite Supported Cobalt Catalysts for Fischer Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Ali, Z.; Abbas, S. M.; Hussain, F.

    2015-01-01

    Fischer-Tropsch (FT) synthesis was accomplished over Al-pillared Montmorillonite supported 20 wt% Co modified with different weight% of cerium catalysts. These catalysts were prepared by impregnation method while structural characterizations of the prepared samples were performed by XRD, TPR, NH/sub 3/TPD, TGA, BET, XRF and SEM techniques. The Fischer Tropsch reaction was studied in fixed bed micro catalytic reactor at temperature range of 220, 260 and 275 degree C and at different pressure (1, 5 and 10 bars). From the activity results, it was found that by pillaring NaMMT with Al higher catalytic activity and lower methane selectivity of NaMMT was achieved. Furthermore, the results of FT synthesis reaction revealed that cerium incorporation increased the dispersion of Co/sub 3/O/sub 4/ on the surface and consequently resulted in enhanced catalytic activity. Additionally, the C/sub 5/-C/sub 12/ hydrocarbons and methane selectivity increased while C/sub 22+/ hydrocarbons selectivity was decreased over cerium modified catalysts. Higher reaction temperature (>220 degree C) resulted in significant enhancement in CO conversion and methane selectivity. Though, increase in pressure from 1 to 10 bars eventually resulted in increase in C/sub 5+/ hydrocarbons and decrease in methane and C/sub 2/-C/sub 5/ hydrocarbons selectivity. (author)

  1. Innovative Catalyst Development for Synthesis of Dimethyl Ether (DME): A Renewable Diesel Substitute

    Science.gov (United States)

    Taveras, Elizabeth

    As a way to manage increasing levels of atmospheric carbon dioxide, advanced research has focused on efficient and sustainable biofuel production from catalytic carbon dioxide conversion. Furthermore, atmospheric levels of methane remain the second largest greenhouse gas emitted globally. Methane can be used as a feedstock to produce dimethyl ether (DME), a clean fuel that is a substitute for fossil diesel. Production of DME as an alternative diesel fuel is a two-step process: methanol synthesis followed by methanol dehydration. Research has shown that supported Cu-ZnO with gamma alumina is a promising catalyst for DME production. The focus of this research is catalytic dehydration of methanol over catalysts based on nano-sized Ni, Co and Cu. The catalysts were prepared by depositing nano-sized metal particles onto a mesoporous alumina support using sonolysis in a hexadecane solvent. The catalysts were separated from solution by centrifuge, dried and then evaluated for methanol dehydration reaction in a 300-mL Parr batch reactor. Initial reaction conditions were 260 ?C and 150 psig under nitrogen. The data demonstrated that Cu achieved the highest methanol conversion for DME production. DME was identified using FT-IR.

  2. Biodiesel synthesis using K2CO3/Al–O–Si aerogel catalysts

    Directory of Open Access Journals (Sweden)

    IVANA LUKIĆ

    2010-06-01

    Full Text Available In this study, catalysts for fatty acid methyl esters (FAME or bio-diesel synthesis with K2CO3 as the active component on an alumina/silica support were synthesized using the sol–gel method, which was followed by drying the “dense” wet gels with supercritical carbon dioxide to obtain the aerogels. The prepared catalysts were characterized by XRD analysis, FTIR spectroscopy and N2 physisorption at 77 K, and tested in the methanolysis of sunflower oil. The effects of reaction variables, such as reaction time, temperature and methanol to oil molar ratio, on the yield of FAME were investigated. The aerogel catalysts with K2CO3 as the active component on an alumina/silica support exhibited good activity in the methanolysis of sunflower oil. The leaching of potassium when the catalyst was in contact with pure methanol under the working conditions of methanolysis was also tested in this study, indicating that it occurred only at higher temperatures, while at lower ones, it was negligible.

  3. Fischer-Tropsch Synthesis on Multicomponent Catalysts: What Can We Learn from Computer Simulations?

    Directory of Open Access Journals (Sweden)

    José L. C. Fajín

    2015-01-01

    Full Text Available In this concise review paper, we will address recent studies based on the generalized-gradient approximation (GGA of the density functional theory (DFT and on the periodic slab approach devoted to the understanding of the Fischer-Tropsch synthesis process on transition metal catalysts. As it will be seen, this computational combination arises as a very adequate strategy for the study of the reaction mechanisms on transition metal surfaces under well-controlled conditions and allows separating the influence of different parameters, e.g., catalyst surface morphology and coverage, influence of co-adsorbates, among others, in the global catalytic processes. In fact, the computational studies can now compete with research employing modern experimental techniques since very efficient parallel computer codes and powerful computers enable the investigation of more realistic molecular systems in terms of size and composition and to explore the complexity of the potential energy surfaces connecting reactants, to intermediates, to products of reaction. In the case of the Fischer-Tropsch process, the calculations were used to complement experimental work and to clarify the reaction mechanisms on different catalyst models, as well as the influence of additional components and co-adsorbate species in catalyst activity and selectivity.

  4. Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-01-01

    Full Text Available This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.

  5. Surface heterogeneity and ionization of Cs promoter in carbon-based ruthenium catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Kotarba, Andrzej; Dmytrzyk, Jaromir; Rarog-Pilecka, Wioletta; Kowalczyk, Zbigniew

    2003-01-01

    Second-generation ammonia synthesis cesium-doped ruthenium catalyst supported on turbostratic carbon was investigated by the species resolved thermal alkali desorption method (SR-TAD). Energetic barriers for cesium ions (2.86 eV), ground state (1.96 eV) and electronically excited atoms (5.76 eV) desorbing from the Cs-Ru/C catalyst were determined. In the case of ruthenium-free Cs/C system, cesium desorbs as ground state atoms only, with an energy barrier of 2.87 eV. The work functions determined by the thermionic emission of electrons from Cs/C and Cs-Ru/C were of the same value (2.9 eV). It was concluded that ruthenium induces heterogeneous distribution of cesium on the catalyst surface. The promoter stability is reduced on low work function areas and its surface ionization on high work function areas opens the ionic desorption channel. The Cs desorption from the catalyst is discussed in terms of the literature data for the cesium/graphite system

  6. Methanobactin-Mediated Synthesis of Gold Nanoparticles Supported over Al2O3 toward an Efficient Catalyst for Glucose Oxidation

    Directory of Open Access Journals (Sweden)

    Jia-Ying Xin

    2014-11-01

    Full Text Available Methanobactin (Mb is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III to Au(0. In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w. The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.

  7. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity

    International Nuclear Information System (INIS)

    Vu, Thu Ha Thi; Tran, Thanh Thuy Thi; Le, Hong Ngan Thi; Tran, Lien Thi; Nguyen, Phuong Hoa Thi; Nguyen, Minh Dang; Quynh, Bui Ngoc

    2016-01-01

    Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH 4 or ethylene glycol. • Synthesis using NaBH 4 could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH 4 showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated by cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.

  8. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Le, Hong Ngan Thi; Tran, Lien Thi; Nguyen, Phuong Hoa Thi; Nguyen, Minh Dang [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Quynh, Bui Ngoc [Institut de recherches sur la catalyse et l’environnement de Lyon, UMR5256, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2016-01-15

    Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated by cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.

  9. Synthesis, characterization and isomerization activity studies for modified sulfated zirconia catalysts

    Science.gov (United States)

    Vijay, Sameer

    Sulfated zirconia (SZ) is an attractive alternative for use in industrial processes because of its good alkane activation potential as well as being a non-toxic replacement for liquid acid catalysts currently in use. Over the past 10 years, numerous studies have attempted to synthesize non-deactivating SZ-based catalysts by adding modifiers and/or promoters. In this work, a synthesis method is presented that is used to prepare a Pt-modified SZ catalyst, which shows exceptionally high and stable activity for n-pentane isomerization at atmospheric pressure. A 3-step method consisting of calcining a sulfated zirconium hydroxide at high temperature prior to adding platinum, reduction of platinum followed by additional pretreatments is presented. The activity of such an SZ catalyst remains stable for up to 4 hours with conversion of n-pentane exceeding 70%. EXAFS studies showed that the active catalyst contains relatively large crystallites of platinum. Presence of Pt-S in the inactive catalyst gives evidence for the cause of deactivation of the samples prepared in the conventional manner. XANES analysis of the data also shows that the state of platinum in the active catalyst is that of a metallic platinum (Pt0). Using XPS data, it is shown that the surface undergoes rearrangements during the preparation. Use of operando DRIFTS showed the sulfur-oxygen groups on the surface to be more complex than previously reported as species different than just sulfates, were present. During the reaction, a particular species of OH group disappear. This species is replenished by the atomic hydrogen provided by the metallic platinum. The experimental results give evidence of the changes in the catalyst surface during the preparation, pretreatment and the reaction itself. Based on the findings, a Site-Juxtaposition hypothesis is presented. This hypothesis is based on the hydrogen spillover occurring on the metallic crystallites, and the capability of this atomic hydrogen to hydrogenate

  10. Fischer-Tropsch synthesis: Moessbauer studies of pretreated ultrafine iron oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chenshi Huang; Davis, B.H. (Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research); Rao, K.R.P.M.; Huffman, G.P.; Huggins, F.E. (Kentucky Univ., Lexington, KY (United States). Inst. for Mining and Minerals Research)

    1992-01-01

    Moessbauer spectroscopy indicates that a 24 hour-pretreatment in CO at 260{degrees}C and 8 atm. in a tetralin solvent almost completely converts uftrafine iron oxide (about 3 nm) to iron carbide. However, pretreatment in hydrogen under the same conditions resulted in reduction of about 33% of the iron to metallic Fe; the remainder was Fe{sub 3}O{sub 4}. Exposure of the CO pretreated catalyst to a 1:1 HDCO synthesis gas resulted in the gradual reoxidation of the carbides to Fe{sub 3}O{sub 4}. During the first 2 hours of exposure of the H{sub 2} pretreated sample to synthesis gas,.the metallic Fe was converted to iron carbides. Further exposure of the H{sub 2} pretreatment sample to synthesis gas did not result in a composition change of the catalyst. Therefore, it is concluded that iron carbides with different oxidation characteristics were formed in these two cases.

  11. Catalyst synthesis and evaluation using an integrated atomic layer deposition synthesis–catalysis testing tool

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Bunquin, Jeffrey; Shou, Heng; Marshall, Christopher L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Aich, Payoli [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Beaulieu, David R.; Klotzsch, Helmut; Bachman, Stephen [Arradiance Inc., Sudbury, Massachusetts 01776 (United States); Hock, Adam [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Stair, Peter [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-08-15

    An integrated atomic layer deposition synthesis-catalysis (I-ALD-CAT) tool was developed. It combines an ALD manifold in-line with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT delivery system consists of 12 different metal ALD precursor channels, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10{sup −3} to 1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph and a mass spectrometer unit for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the synthesis of platinum active sites and Al{sub 2}O{sub 3} overcoats, and evaluation of catalyst propylene hydrogenation activity.

  12. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  13. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

    DEFF Research Database (Denmark)

    Mendes, Laiza V.P.; Snider, Jonathan L.; Fleischman, Samuel D.

    2017-01-01

    Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle...... and after catalytic testing in a flow reactor at 250 °C and 40 bar. The results show alloyed phases were obtained using the polyol method, resulting in selectivity towards higher alcohols, as high as 11.3% when supported on alumina. Segregation of cobalt and the formation of cobalt carbide were observed...

  14. Synthesis of oxygenated products from carbon monoxide and hydrogen over silica- and alumina-supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Kellner, C.S.; Bell, A.T.

    1981-01-01

    The synthesis of oxygenated products over supported ruthenium catalysts was investigated using both H 2 /CO and D 2 /CO feed mixtures. Acetaldehyde was the principal oxygenated product formed over silica-supported ruthenium. By contrast, methanol was the principal oxygenated species formed over an alumina-supported catalyst. A significant inverse H 2 /D 2 isotope effect was observed on the rate of formation of both acetaldehyde and methanol. The kinetics of acetaldehyde synthesis was determined and compared with those for methane synthesis. The form of the rateexpressions obtained for each product and the origins of the observedisotope effects are explained in terms of a mechanism for the synthesis of both products. A reaction mechanism for methanol synthesis is also proposed

  15. Amberlyst-15: An Efficient and reusable heterogeneous catalyst for the synthesis of β-amino carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Pathakota Venkata Ramana

    2015-12-01

    Full Text Available A simple and efficient method has been developed for the synthesis of β-amino carbonyl compounds from aromatic ketones, aldehydes and amines by Mannich reaction in the presence of amberlyst-15 as a reusable heterogeneous catalyst at room temperature under solvent-free conditions. The noteworthy advantages of the present method are short reaction times, good product yields, simple procedures and use of non-toxic catalyst.

  16. Transient behavior of Cu/ZnO-based methanol synthesis catalysts

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida

    2009-01-01

    Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...... for a gas mixture of H2:CO = 1:1. The gas-dependent morphology of the Cu nanoparticles provides a consistent explanation of the observed coupling between the transient methanol production and pretreatment conditions within the framework of the dynamic microkinetic model by Ovesen et al. [J. Catal. 168 (1997...

  17. Electrolytic copper as cheap and effective catalyst for one-pot triazole synthesis.

    Science.gov (United States)

    Mularski, Jacek; Czaplińska, Barbara; Cieślik, Wioleta; Bebłot, Jakub; Bartczak, Piotr; Sitko, Rafał; Polański, Jarosław; Musiol, Robert

    2018-03-14

    Electrolytic copper is a well-known form of pure, oxygen free copper that is used for industrial applications. In this work, the catalytic potential of this relatively cheap material was studied. The addition of less than 0.015 mol equivalent of copper powder effectively catalysed the one-pot synthesis of triazoles from a diverse range of organic halides and alkynes. Quantitative conversions in aqueous solvents can be achieved within minutes. The heterogenous nature of the catalyst afforded a low level of copper contamination in the products, thus meeting the rigorous criteria of the pharmaceutical industry.

  18. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    in a hierarchical pore size distribution. In this work, the preparation of mesoporous ZSM-12 single crystal catalysts using a new improved procedure for directly introducing carbon in the reaction mixture is reported. The microwave heating technique is also applied for the synthesis of mesoporous silicalite-1...... single crystals using this direct introduction of carbon into the reaction mixture. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed desorption of ammonia (NH3-TPD), and N-2 adsorption...

  19. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3

    International Nuclear Information System (INIS)

    Zhang Yiping; Fei Jinhua; Yu Yingmin; Zheng Xiaoming

    2006-01-01

    The effect of zirconia modification on γ-Al 2 O 3 support to the Cu based catalyst was studied. It is found that the catalytic activity and methanol selectivity of the catalyst after Zr addition are both improved. The influences of reaction temperature, space velocity and the molar ratio of H 2 :CO 2 on Cu/γ-Al 2 O 3 and 12Cu10Zr/γ-Al 2 O 3 catalyst were also studied. The results indicate that low temperature, high space velocity and proper molar ratio of H 2 /CO 2 are advantageous to methanol synthesis. The XRD and TPR characterization show that the addition of Zr enhances the dispersion of CuO species, which is responsible for the enhanced catalytic performance of Cu based catalyst supported on zirconia modified γ-Al 2 O 3 catalyst

  20. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  1. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  2. Promotion of Nb{sub 2}O{sub 5} on the wustite-based iron catalyst for ammonia synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wenfeng, E-mail: hanwf@zjut.edu.cn; Huang, Shiliang; Cheng, Tianhong; Tang, Haodong; Li, Ying; Liu, Huazhang, E-mail: cuihua@zjut.edu.cn

    2015-10-30

    Highlights: • Niobium enhances the reduction of wustite-based ammonia synthesis catalyst significantly. • Nb{sub 2}O{sub 5} inhibits the segregation or formation of solid solutions on the catalyst surface. • Nb{sub 2}O{sub 5} doping enhances the growth rates of [2 1 1] and [2 0 0] planes rather than their amounts. - Abstract: Niobium was selected and investigated as a potential promoter for wustite-based catalyst (WBC) for ammonia synthesis. Experiments on reduction performance, activity test and H{sub 2}-TGA, in situ XRD as well as XPS were carried out to obtain the promotion effect and mechanism involved. Niobium as a promoter was confirmed to enhance the reduction of WBC significantly. This behavior is highly desired for industry in terms of catalyst regeneration and lesser pretreatment time for fabrication regardless the unimproved catalytic performance for Nb{sub 2}O{sub 5}-doped wustite-based catalyst (Nb-WBC). Possible reasons for these phenomena are discussed. It is suggested that Nb{sub 2}O{sub 5} is not favorable for the segregation or formation of solid solutions on the catalyst surface, which are difficult to be reduced. However, it seems that niobium does not promote the growth of [2 1 1] plane, which is active for ammonia synthesis.

  3. Active and Stable Methane Oxidation Nano-Catalyst with Highly-Ionized Palladium Species Prepared by Solution Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Khader

    2018-02-01

    Full Text Available We report on the synthesis and testing of active and stable nano-catalysts for methane oxidation. The nano-catalyst was palladium/ceria supported on alumina prepared via a one-step solution-combustion synthesis (SCS method. As confirmed by X-ray photoelectron spectroscopy (XPS and high-resolution transmission electron microscopy (HTEM, SCS preparative methodology resulted in segregating both Pd and Ce on the surface of the Al2O3 support. Furthermore, HTEM showed that bigger Pd particles (5 nm and more were surrounded by CeO2, resembling a core shell structure, while smaller Pd particles (1 nm and less were not associated with CeO2. The intimate Pd-CeO2 attachment resulted in insertion of Pd ions into the ceria lattice, and associated with the reduction of Ce4+ into Ce3+ ions; consequently, the formation of oxygen vacancies. XPS showed also that Pd had three oxidation states corresponding to Pd0, Pd2+ due to PdO, and highly ionized Pd ions (Pd(2+x+ which might originate from the insertion of Pd ions into the ceria lattice. The formation of intrinsic Ce3+ ions, highly ionized (Pd2+ species inserted into the lattice of CeO2 Pd ions (Pd(2+x+ and oxygen vacancies is suggested to play a major role in the unique catalytic activity. The results indicated that the Pd-SCS nano-catalysts were exceptionally more active and stable than conventional catalysts. Under similar reaction conditions, the methane combustion rate over the SCS catalyst was ~18 times greater than that of conventional catalysts. Full methane conversions over the SCS catalysts occurred at around 400 °C but were not shown at all with conventional catalysts. In addition, contrary to the conventional catalysts, the SCS catalysts exhibited superior activity with no sign of deactivation in the temperature range between ~400 and 800 °C.

  4. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    Science.gov (United States)

    Hellman, A.; Honkala, K.; Remediakis, I. N.; Logadóttir, Á.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K.

    2009-06-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i) that small changes in the relative adsorption potential energies are sufficient to get a quantitative agreement between theory and experiment ( Appendix A) and (ii) that it is possible to reproduce results from the first-principles model by a simple micro-kinetic model ( Appendix B).

  5. Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au-12 Nanoclusters

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Falsig, Hanne

    2012-01-01

    We present density functional theory calculations on the direct synthesis of H2O2 from H-2 and O-2 over an Au-12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary...... that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (E-O). Our model predicts the search direction starting from an Au-12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability...

  6. Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Sayed

    2014-01-01

    Full Text Available Phase transfer catalysts (PTCs have been widely used for the synthesis of organic compounds particularly in both liquid-liquid and solid-liquid heterogeneous reaction mixtures. They are known to accelerate reaction rates by facilitating formation of interphase transfer of species and making reactions between reagents in two immiscible phases possible. Application of PTC instead of traditional technologies for industrial processes of organic synthesis provides substantial benefits for the environment. On the basis of numerous reports it is evident that phase-transfer catalysis is the most efficient way for generation and reactions of many active intermediates. In this review we report various uses of PTC in syntheses and reactions of five-membered heterocycles compounds and their multifused rings.

  7. Synthesis of potential antioxidants by synergy of ultrasound and acidic graphene nanosheets as catalyst in water.

    Science.gov (United States)

    Naeimi, Hossein; Golestanzadeh, Mohsen; Zahraie, Zohreh

    2016-02-01

    Efficient synthesis of a set of bisphenolic compounds, resulting from the incorporation of 2,4-dialkylphenols and aromatic or aliphatic aldehydes, allowed the discovery of new bisphenols with relative modest to good antioxidant activity. Bisphenolic compounds were prepared via easy and simple approach under ultrasound irradiation in water. Sulfonated graphene nanosheets were employed as a catalyst for the synthesis of bisphenolic compounds. These compounds were obtained in high to excellent yields (88-98%) and relatively short reaction times (4-20 min). Moreover, some of the synthetic compounds were investigated and revealed outstanding antioxidant activity, when examined by a 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) decolorization assay system. The proposed method has a novel viewpoint in the preparation of potential antioxidant compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Histidine as a catalyst in organic synthesis: A facile in situ synthesis ...

    Indian Academy of Sciences (India)

    Unknown

    Nitrones are versatile synthetic intermediates in organic synthesis 1–8. Some nitrones are used for trapping and identification of reactive free radicals 9, particularly in biomedical research 10. They are also used in the synthesis of many nitrogen-containing biologically active compounds 11,12. Recently, we synthesized ...

  9. Chemical Synthesis and Characterization of Carbon Supported Palladium Electro-Catalysts

    Science.gov (United States)

    Acosta, J. J.; Favilla, P. C.; Collet-Lacoste, J. R.

    The aim of this work is to present the results obtained for the synthesis of Pd NPs by the modified-polyol method with Vulcan XC-72R as support. Two different ways were used to synthesize catalysts: (a) Maintaining the initial pH of the synthesis equal to 12 and changing the initial concentration of the precursor to obtain an overall 10 wt.% nominal Pd load; (b) Fixing the initial concentration of the precursor at 2mM whilst changing the initial pH of the synthesis at different values to obtain an overall 10wt.% nominal Pd load. Catalysts were characterized using X-ray diffraction (XRD), Transmission electron microscopy (HRTEM, TEM, STEM) and cyclic voltammetry (CV). This work shows that the density of NPs generated during the nucleation process is a consequence of the fluctuation of the concentration. The standard deviation of the diameters varied linearly with the mean volume for values between 0.5mM and 6mM, demonstrating that there was a clear separation between nucleation and growth processes. The final mean diameter strongly depends on the initial pH of the synthesis for the same initial concentration of the precursor; mean diameters are smaller for basic media. The analysis of the voltammograms allowed the determination of the coverage fraction of oxygen on Pd, obtaining a value of 0.51 with a structure type c(2×2). The coverage value found for CO is 0.71 with a structure type p(2×2)-3CO.

  10. Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Jia Lihong; Jia Litao; Li Debao; Hou Bo; Wang Jungang; Sun Yuhan

    2011-01-01

    A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N 2 physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH 3 ) 3 species even after calcinations and H 2 reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH 3 ) 3 for the re-adsorption of α-olefins. -- Graphical abstract: The silylation of an SBA-15 before cobalt impregnation enhanced the reducibility of cobalt oxides on an SBA-15-supported cobalt catalyst and consequently increased the catalytic activity for Fischer-Tropsch synthesis. Display Omitted

  11. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2018-03-01

    Full Text Available Magnetic nanoparticles are a highly worthy reactant for the correlation of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nano catalytic systems by the immobilization of homogeneous catalysts onto magnetic nanoparticles. Catalytic fields include the use of mainly cobalt, nickel, copper, and zinc ferrites, as well as their mixed-metal combinations with Cr, Cd, Mn and sometimes some lanthanides. The ferrite nanomaterials are obtained mainly by co-precipitation and hydrothermal methods, sometimes by the sonochemical technique, micro emulsion and flame spray synthesis route. Catalytic processes with application of ferrite nanoparticles include degradation (in particular photocatalytic, reactions of dehydrogenation, oxidation, alkylation, C–C coupling, among other processes. Ferrite nano catalysts can be easily recovered from reaction systems and reused up to several runs almost without loss of catalytic activity. Finally, we draw conclusions and present a futurity outlook for the further development of new catalytic systems which are immobilized onto magnetic nanoparticles.

  12. Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts

    International Nuclear Information System (INIS)

    Lim, Steven S.; Haller, Gary L.

    2013-01-01

    Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically V 5+ , Co 2+ , and Ni 2+ -incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated

  13. Uranium sesqui nitride synthesis and its use as catalyst for the thermo decomposition of ammonia

    International Nuclear Information System (INIS)

    Rocha, Soraya Maria Rizzo da

    1996-01-01

    The preoccupation to have a secure destination for metallic uranium scraps and wastes and to search new non-nuclear uses for the huge amount of depleted metal uranium accumulated at the nuclear industry encouraged the study of the uranium sesqui nitride synthesis and its use. The use of uranium sesqui nitride as a catalyst for the thermo decomposition of ammonia for the hydrogen production has enormous significance. One of the most important nuclear cycle step is the reduction of the higher uranium oxides for the production of uranium dioxide and its conversion to uranium tetrafluoride. The reduction of the UO 3 and U 3 O 8 oxides is accomplished by the gas-solid reaction with elementary hydrogen. For economical purposes and for the safety concern the nuclear industry prefers to manufacture the hydrogen gas at the local and at the moment of use, exploring the catalytic decomposition of ammonia vapor. Using metallic uranium scraps as the raw material the obtention of its nitride was achieved by the reaction with ammonia. The results of the chemical and physical characterization of the prepared uranium sesqui nitride and its behavior as a catalyst for the cracking of ammonia are commented. A lower ammonia cracking temperature (550 deg C) using the uranium sesqui nitride compared with recommended industrial catalysts iron nitride (650 deg C) and manganese nitride (700 deg C) sounds reliable and economically advantageous. (author)

  14. Synthesis of carbon–titania composite and its application as catalyst support

    International Nuclear Information System (INIS)

    Zhu Jie; Lu Mohong; Li Mingshi; Zhu Jianjun; Shan Yuhua

    2012-01-01

    Graphical abstract: SEM images of the carbon-titania composite (the surface and the cross section of the material, respectively). Highlights: ► C/TiO 2 composite was prepared by methane decomposition over formed TiO 2 . ► C/TiO 2 contained 38% of carbon composed of CNFs (90%) and amorphous carbon (10%) ► 97% of the pore space in Pd/C/TiO 2 catalyst was mesopore ► Pd/C/TiO 2 catalyst exhibited high selectivity to citronellal in citral hydrogenation. - Abstract: We reported the synthesis of a promising carbon–titania composite material, C/TiO 2 , and its application as the catalyst support in citral hydrogenation. The composite was synthesized by methane decomposition over formed TiO 2 using Ni–Cu as a catalyst. C/TiO 2 synthesized was subsequently employed to prepare its supported palladium catalyst, Pd/C/TiO 2 . The textural and structural properties of C/TiO 2 and Pd/C/TiO 2 were characterized by BET, SEM/EDS, TEM, ICP-AES, XRD and TG-DTG. The catalytic properties of Pd/C/TiO 2 were evaluated in selective hydrogenation of citral to citronellal. Results revealed that the addition of a little promoter Cu in composite synthesis helped to the improvement in textural and structural properties of C/TiO 2 . The optimal composite prepared had a BET surface area of 60 m 2 g −1 and 97% of its pore space were mesopore. It contained 38% of carbon composed of 90% of carbon nanofibers and 10% of amorphous carbon. Pd/C/TiO 2 prepared held the similar textural and structural properties as C/TiO 2 did. Although the comparatively lower catalytic activity caused by the lower palladium dispersion, Pd/C/TiO 2 exhibited the high citronellal selectivity (90%) at 90% citral conversion, which was attributed to the elimination of internal diffusion limitations due to its mesoporous structure.

  15. The Effects of Secondary Oxides on Copper-Based Catalysts for Green Methanol Synthesis.

    Science.gov (United States)

    Hayward, James S; Smith, Paul J; Kondrat, Simon A; Bowker, Michael; Hutchings, Graham J

    2017-05-10

    Catalysts for methanol synthesis from CO 2 and H 2 have been produced by two main methods: co-precipitation and supercritical anti-solvent (SAS) precipitation. These two methods are compared, along with the behaviour of copper supported on Zn, Mg, Mn, and Ce oxides. Although the SAS method produces initially active material with high Cu specific surface area, they appear to be unstable during reaction losing significant amounts of surface area and hence activity. The CuZn catalysts prepared by co-precipitation, however, showed much greater thermal and reactive stability than the other materials. There appeared to be the usual near-linear dependence of activity upon Cu specific area, though the initial performance relationship was different from that post-reaction, after some loss of surface area. The formation of the malachite precursor, as reported before, is important for good activity and stability, whereas if copper oxides are formed during the synthesis and ageing process, then a detrimental effect on these properties is seen.

  16. Solution plasma synthesis of a boron-carbon-nitrogen catalyst with a controllable bond structure.

    Science.gov (United States)

    Lee, SeungHyo; Heo, YongKang; Bratescu, Maria Antoaneta; Ueno, Tomonaga; Saito, Nagahiro

    2017-06-14

    Synthesis of boron-carbon-nitrogen (BCN) nanocarbon with a controllable bond structure for enhanced oxygen reduction reaction (ORR) activity and durability was performed using a new method of discharge in organic solution mixtures named the 'Solution Plasma Process'. Using selected precursors a new strategy for the simultaneous synthesis of nanocarbon co-doped with heteroatoms was found. The synergistic effect of N and B in an uncoupling bond state improved the formation of new active sites for the ORR performance by changing the electronic structure of the base carbon. Meanwhile, when B and N are bonded together, the BCN catalyst contributes to a reduced ORR activity by forming a balanced electronic structure in carbon. The BCN nanocarbon with an uncoupling bond state exhibits an enhanced ORR activity under alkaline conditions, with an onset potential of -0.25 V versus -0.31 V for B/N coupling and 3.43 transferred electrons during the ORR. Although the ORR activity of the B/N uncoupling nanocarbon was not as good as the typical Pt/C, the durability of this synthesized material (15.1% current decrease after 20 000 s of operation) was significantly better than that of the Pt/C catalyst (61.5% current drop under the same conditions). After the durability test, the increase of the chemical states containing oxygen was higher for Pt/C than B/N uncoupling.

  17. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage.

    Science.gov (United States)

    Michalsky, R; Avram, A M; Peterson, B A; Pfromm, P H; Peterson, A A

    2015-07-01

    The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH 3 ), a fertilizer and chemical fuel, from N 2 and H 2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH 3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn 6 N 2.58 to Mn 4 N and hydrogenation of Ca 3 N 2 and Sr 2 N to Ca 2 NH and SrH 2 , respectively.

  18. Economy of Catalyst Synthesis-Convenient Access to Libraries of Di- and Tetranaphtho Azepinium Compounds.

    Science.gov (United States)

    Tharamak, Sorachat; Knittl-Frank, Christian; Manaprasertsak, Auraya; Pengsook, Anchulee; Suchy, Lydia; Schuller, Philipp; Happl, Barbara; Roller, Alexander; Widhalm, Michael

    2018-03-24

    Efficient optimization procedures in chiral catalysis are usually linked to a straightforward strategy to access groups of structurally similar catalysts required for fine-tuning. The ease of building up such ligand libraries can be increased when the structure-modifying step (introduction of a substituent) is done at a later stage of the synthesis. This is demonstrated for the extended family of di- and tetranaphtho azepinium compounds, widely used as chiral phase transfer catalysts (PTC). Using 2,6-diiodo-4,5-dihydro-3 H -dinaphtho[2,1-c:1',2'-e]azepine and 4,8-diiodo-6,7-dihydro-5 H -dibenzo[c,e]azepine, respectively, as key intermediates, 18 spiro -azepinium compounds were synthesized in a total yield of 25-42% over 6-7 steps from 1,1'-binaphthyl-2,2'-dicarboxylic acid or diphenic acid, respectively. The replacement of iodo groups with aryl substituents was performed as the last or the penultimate step of the synthesis.

  19. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  20. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part II. Effects of Activation Gases on the Catalytic Performance.

    Science.gov (United States)

    Rhim, Geun Bae; Hong, Seok Yong; Park, Ji Chan; Jung, Heon; Rhee, Young Woo; Chun, Dong Hyun

    2016-02-01

    Fischer-Tropsch synthesis (FTS) was carried out over nanocrystalline ferrihydrite-based (Fe9O2(OH)23) catalysts activated by different reducing agents: syngas (H2+CO), CO, and H2. The syngas activation successfully changed the ferrihydrite-based catalysts into an active and stable catalytic structure with chi-carbide (Fe2.5 C) and epsilon'-carbide (Fe2.2 C). The crystal structure of the catalysts obtained by syngas activation was similar to the structure obtained by CO activation; this similarity was probably due to the peculiar reduction behavior of the ferrihydrite-based catalysts, which exhibit much greater reducibility in CO atmosphere than in H2 atmosphere. The performance of the catalysts activated by syngas was much higher than the performance of the catalysts activated by H2 and was comparable to the performance of the catalysts activated by CO. This strongly demonstrates that the ferrihydrite-based catalysts are advantageous for industrial FTS processes because syngas can be commonly used for both activation pre-treatment and subsequent reaction.

  1. Biodiesel synthesis via transesterification of lipid Chlorophyta cultivated in walne rich carbon medium using KOH/Zeolite catalyst

    Science.gov (United States)

    Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa

    2017-11-01

    Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.

  2. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  3. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts

    International Nuclear Information System (INIS)

    Algoufi, Y.T.; Akpan, U.G.; Kabir, G.; Asif, M.; Hameed, B.H.

    2017-01-01

    Highlights: • Catalytic transesterification with dimethyl carbonate (DMC) converts glycerol into glycerol carbonate (GLC). • DMC and Sr x –Al catalysts affect the reaction mechanisms that convert glycerol into GLC. • The morphology and textural structure of Sr x –Al catalysts perpetuate catalytic activity. • The atomic ratio of Sr/Al has a unique effect on Sr–Al catalytic activity. • Sr 0.5 –Al catalyst exhibits limited leaching after five reaction cycles. - Abstract: The high demand for renewable energy has led to the upsurge of methanol-assisted biodiesel synthesis. Therefore, glycerol as a byproduct entered the waste stream given the oversupply of biodiesel to the market. The dimethyl carbonate (DMC)-assisted transesterification of glycerol on a catalyst has been a popular approach for converting glycerol into valuable glycerol carbonate (GLC). The synthesis of GLC from the DMC-assisted transesterification of glycerol on mixed oxide catalysts (Sr x –Al) with different Sr/Al ratios was examined in this study. A glycerol conversion of 99.4% and a GLC yield of 100% were achieved in a catalyst with Sr/Al = 0.5 (Sr 0.5 –Al). Both values are higher than those in catalysts synthesized with Sr/Al = 0.25 and 0.75. The Sr 0.5 –Al catalyst withstood five transesterification reaction cycles without a serious deactivation induced by the leaching of active SrO. Therefore, the Sr 0.5 –Al catalyst is suitable for consecutive uses in the DMC-assisted transesterification of glycerol with DMC into GLC.

  4. Effect of Lanthanum as a Promoter on Fe-Co/SiO2 Catalyst for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2014-03-01

    Full Text Available Iron-Cobalt catalyst is well known from both operational and economical aspects for Fischer-Tropsch synthesis. Effort to increase the efficiency of this kind of catalyst is an important research topic. In this work, the effect of lanthanum on characteristic behavior, conversion and selectivity of a Fe-Co/SiO2 Fischer-Tropsch catalyst was studied. The Fe-Co-La/SiO2 Catalysts were prepared using an incipient wetness impregnation method. These catalysts were then characterized by XRF-EDAX, BET and TPR techniques, and their performance were evaluated in a lab-scale reactor at 250ºC, H2/CO = 1.8 of molar ratio, 16 barg pressure and GHSV=600 h-1. TPR analysis showed that the addition of La lowered the reduction temperature of Fe-Co catalyst, and due to a lower temperature, the sintering of the catalyst can be mitigated. Furthermore, from the micro reactor tests (about 4 days, it was found that lanthanum promoted catalyst had higher selectivity toward hydrocarbons, and lower selectivity toward CO2.Received: 8th July 2013; Revised: 18th November 2013; Accepted: 1st December 2013[How to Cite: Abbasi, A., Ghasemi, M., Sadighi, S. (2014. Effect of Lanthanum as a Promoter on Fe-Co/SiO2 Catalyst for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 23-27. (doi:10.9767/bcrec.9.1.5142.23-27][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5142.23-27

  5. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  6. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  7. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  8. I 2/K 2 CO 3: An efficient catalyst for the synthesis of 5-aryl-2, 6 ...

    Indian Academy of Sciences (India)

    Molecular iodine in the presence of potassium carbonate has been found to be an efficient and ecofriendly catalyst for the synthesis of polysubstituted dicyanoanilines from aldehydes, acetone and malononitrile under solvent-free thermal condition. The experimental procedure is simple, includes shorter reaction times (less ...

  9. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Boakye, E.; Vittal, M. [and others

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  10. Structural and elemental influence from various MOFs on the performance of Fe@C catalysts for Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Wezendonk, T.A.; Warringa, Quirinus S E; Santos, Vera P.; Chojecki, Adam; Ruitenbeek, Matthijs; Meima, Garry; Makkee, M.; Kapteijn, F.; Gascon Sabate, J.

    2017-01-01

    The structure and elementary composition of various commercial Fe-based MOFs used as precursors for Fischer-Tropsch synthesis (FTS) catalysts have a large influence on the high-temperature FTS activity and selectivity of the resulting Fe on carbon composites. The selected Fe-MOF topologies

  11. I2/K2CO3: An efficient catalyst for the synthesis of 5-aryl-2,6-dicyano ...

    Indian Academy of Sciences (India)

    Abstract. Molecular iodine in the presence of potassium carbonate has been found to be an efficient and eco- friendly catalyst for the synthesis of polysubstituted dicyanoanilines from aldehydes, acetone and malononitrile under solvent-free thermal condition. The experimental procedure is simple, includes shorter reaction ...

  12. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of Zn......O as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent...... where metal-support interactions are important, and this work generally addresses the role of the carrier and the nature of the interactions between carrier and metal in heterogeneous catalysts....

  13. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel.1 Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a pr......Methanol has recently attracted renewed interest because of its potential importance as a solar fuel.1 Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of Zn......O as a promoter for this type of catalyst is still under intense debate.2 Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides...

  14. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    Science.gov (United States)

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Synthesis of biodiesel from sunflower oil over potassium loaded alumina as heterogeneous catalyst: The effect of process parameters

    Directory of Open Access Journals (Sweden)

    Marinkovic Milos M.

    2016-01-01

    Full Text Available Heterogeneous catalysis is in recent focus of research for biodiesel production from vegetable oils because of advantages such as easy separation and reuse of catalysts, although homogeneous catalysis is most commonly used method. The aim of this study was preparation of γ-Al2O3 support by modified sol-gel procedure, synthesis of the KI/Al2O3 catalyst and testing its activity in the transesterification of sunflower oil with methanol. Influences of different process parameters on conversion of sunflower oil to methyl esters were examined. The gained results implicate that the potassium iodide incorporation into/onto the structure of γ-Al2O3 significantly influences textural and structural properties of the catalyst. Additionally, the catalyst basic strength is increased and all together those properties are positively affecting the activity of the catalyst in the reaction of transesterification of sunflower oil with methanol. The impregnation of alumina with potassium iodide resulted in the additional formation of basic catalytically active sites. The surface properties of the catalyst have an essential impact on its catalytic performance. Under relatively mild process conditions and relatively short reaction time, the usage of the KI/Al2O3 catalyst resulted in very high conversion to fatty acids methyl esters (i.e. 99.99 %. [Projekat Ministarstva nauke Republike Srbije, br. 172061 i br. TR 34008

  16. Synthesis of [18F] FDG under ultrasound promoted without phase transfer catalyst

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Wang Wushang; Liu Boli

    2005-01-01

    2- 18 F-Fluoro-2-deoxyl-D-glucose( 18 F-FDG) is one of the most important radiopharma- ceuticals used in PET. Since the synthesis of 18 F-FDG in 1978, many methods have been developed. The common method is based on the phase-transfer catalyst(PTS) to promote nucleophilic fluorination. We try to use chemical effects of ultrasound enhance reaction rates to take place of phase transfer catalyst to synthesis of 18 F-FDG, and accelerate the ester hydrolysis. A ultrasound bath(20 KHz, 50 w) was used in nucleophilic fluorination and hydrolysis in production of 18 F-FDG. The reactor was immersed in center position of ultrasonic bath and the solvent level was under the water bath level by 2 cm, and the temperature of nucleophilic fluorination was 82 degree C. The others were same with classical methods. The yield of 18F F DG O AC4 was measured by radio-TLC. The R f of free F-18 ion was 0, 18 F-FDG was 0.45, 18 F-FDG-OAc 4 was 0.7. The result showed that the 2-nucleophilic substitution of F ion has relationship with PTS and temperature (Table 1). The ultrasound-promoted nucleophilic substitution reaction have completed 98% at 92 degree C without PTS. The normal nucleophilic reaction have reached 92% at 82 degree C with 10 mg K2.2.2 catalyst. Compared with normal nucleophilic reaction, ultrasound promoted method get lower yield at the same temp, but it can get high fluorination yield at high temp without PTS, and the hangover in reactor was lower 4% nearly. We failed in ultrasonic acceleration of 18 F-FDG O AC4 ester hydrolyses with 1 N HCl under room temperature or 90 degree C . Sonochemistry had been used in sonocatalysed nucleophilic reaction and acceleration of ester hydrolyses. We succeed in the synthesis of 18F F DG at substitution reaction. Sonochemistry can been used in other radiopharmaceuticals preparation.

  17. Tailoring Cu Nanoparticle Catalyst for Methanol Synthesis Using the Spinning Disk Reactor

    Directory of Open Access Journals (Sweden)

    Christian Ahoba-Sam

    2018-01-01

    Full Text Available Cu nanoparticles are known to be very active for methanol (MeOH synthesis at relatively low temperatures, such that smaller particle sizes yield better MeOH productivity. We aimed to control Cu nanoparticle (NP size and size distribution for catalysing MeOH synthesis, by using the spinning disk reactor. The spinning disk reactor (SDR, which operates based on shear effect and plug flow in thin films, can be used to rapidly micro-mix reactants in order to control nucleation and particle growth for uniform particle size distribution. This could be achieved by varying both physical and chemical operation conditions in a precipitation reaction on the SDR. We have used the SDR for a Cu borohydride reduction to vary Cu NP size from 3 nm to about 55 nm. XRD and TEM characterization confirmed the presence of Cu2O and Cu crystallites when the samples were dried. This technique is readily scalable for Cu NP production by processing continuously over a longer duration than the small-scale tests. However, separation of the nanoparticles from solution posed a challenge as the suspension hardly settled. The Cu NPs produced were tested to be active catalyst for MeOH synthesis at low temperature and MeOH productivity increased with decreasing particle size.

  18. Tailoring Cu Nanoparticle Catalyst for Methanol Synthesis Using the Spinning Disk Reactor.

    Science.gov (United States)

    Ahoba-Sam, Christian; Boodhoo, Kamelia V K; Olsbye, Unni; Jens, Klaus-Joachim

    2018-01-17

    Cu nanoparticles are known to be very active for methanol (MeOH) synthesis at relatively low temperatures, such that smaller particle sizes yield better MeOH productivity. We aimed to control Cu nanoparticle (NP) size and size distribution for catalysing MeOH synthesis, by using the spinning disk reactor. The spinning disk reactor (SDR), which operates based on shear effect and plug flow in thin films, can be used to rapidly micro-mix reactants in order to control nucleation and particle growth for uniform particle size distribution. This could be achieved by varying both physical and chemical operation conditions in a precipitation reaction on the SDR. We have used the SDR for a Cu borohydride reduction to vary Cu NP size from 3 nm to about 55 nm. XRD and TEM characterization confirmed the presence of Cu₂O and Cu crystallites when the samples were dried. This technique is readily scalable for Cu NP production by processing continuously over a longer duration than the small-scale tests. However, separation of the nanoparticles from solution posed a challenge as the suspension hardly settled. The Cu NPs produced were tested to be active catalyst for MeOH synthesis at low temperature and MeOH productivity increased with decreasing particle size.

  19. A simple synthesis method of sulfur-free Fe-N-C catalyst witih high ORR activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhongfen [Los Alamos National Laboratory; Johnston, Christina M [Los Alamos National Laboratory; Zelenay, Piotr [Los Alamos National Laboratory

    2010-01-01

    To try to deconvolute which factors affect the activity and durability of metal-nitrogen-carbon (M-N-C) type non-precious catalysts for oxygen reduction reaction (ORR), M-N-C catalysts based on ion chloride, polyaniline (PANI) and Ketjen Black carbon support were synthesized using different synthetic conditions. The catalysts were characterized electrochemically and tested as cathodes for Hydrogen fuel cells. PANI is usually chemically oxidative polymerized using ammonium persulfate (APS) as oxidant. To eliminate sulfur in the synthesized catalysts, a simple synthesis method using ion chloride as oxidant for aniline polymerization was developed. Two different aniline polymerization conditions led to very different product morphologies. Synthesized at low initial proton concentration, the final product was composed of dense micrometer sized particles. A decomposable salt was found to be able to prohibit PANI cross linking during the drying and annealing process and thus led to porous product. The porous catalyst has much higher ORR activity than the dense product due to more accessible active sites. Synthesized at high proton concentration, the catalyst appeared to be porous. The decomposable salt treatment did not make too much improvement in the porous structure and electrochemical activity. However, fuel cell testing using air as cathode feeder indicates that the salt treatment improves mass transfer in the cathode layer. Catalyst synthesized using this simple method has performance comparable to our state-of-the art catalyst synthesized in a much more complicated procedure. The factor that sulfur sources are completely eliminated in the synthesis suggests that sulfur is not necessary for the ORR catalysis activity.

  20. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide.

    Science.gov (United States)

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-11-16

    The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  1. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-11-01

    Full Text Available The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  2. Structural and photoluminescence properties of Cd and Cu co-doped zinc oxide nanoparticles

    Science.gov (United States)

    Samuel, T.; Sujatha, K.; Rao, K. Ramachandra; Rao, M. C.

    2016-05-01

    Cd and Cu co-doped ZnO nanoparticles were synthesized by Polyol method and subsequently have been characterized by their structure, optical and photoluminescence studies. XRD and PSA results revealed the formation of Cd and Cu co-doped ZnO nanoparticles with an average crystallite size of 50 nm and average particle size of 246 nm. From Zeta Potential measurements the Zeta Potential was found to be - 29.2 eV indicating the stability of prepared nanoparticles. From Uv-Vis studies, it is found that the absorption of undoped ZnO is less compared with Cd and Cu co-doped ZnO and the absorbance increases with increase in dopant concentration. Photoluminescence studies revealed that the samples are with high structural and optical quality.

  3. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2010-10-01

    Full Text Available Research on synthesis and characterization of ZrO2-Montmorillonit and its application as catalyst in heavy fraction of crude oil (HFCO conversion has been investigated. Synthesis of catalyst was done by pillarization of ZrO2 into silicate interlayer of montmorillonite structure. The success in synthesis is shown by XRD and BET surface area measurement in that basal spacing d001 was increase after pillarization. Activity test of material was showed that ZrO2 dispersion affected catalytic activity in liquid production and the activity was increased asn increasing temperature in the range of 473K-673K. Composition of liquid product indicated that ZrO2-Montmorillonit tend to produce kerosene related to metal oxide distribution in synthesis. © 2008 BCREC UNDIP. All rights reserved.[Received: 3 June 2008, Accepted: 15 July 2008][How to Cite: I. Fatimah, K. Wijaya, K. H. Setyawan. (2008. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 9-13.  doi:10.9767/bcrec.3.1-3.7118.9-13][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7118.9-13 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7118

  4. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil

    Directory of Open Access Journals (Sweden)

    Khoirul Himmi Setyawan

    2008-04-01

    Full Text Available Research on synthesis and characterization of ZrO2-Montmorillonit and its application as catalyst in heavyfraction of crude oil (HFCO conversion has been investigated. Synthesis of catalyst was done by pillarizationof ZrO2 into silicate interlayer of montmorillonite structure. The success in synthesis is shown by XRDand BET surface area measurement in that basal spacing d001 was increase after pillarization. Activitytest of material was showed that ZrO2 dispersion affected catalytic activity in liquid production and the activitywas increased asn increasing temperature in the range of 473K-673K. Composition of liquid productindicated that ZrO2-Montmorillonit tend to produce kerosene related to metal oxide distribution in synthesis. © 2008 BCREC UNDIP. All rights reserved.[Received: 3 June 2008, Accepted: 15 July 2008][How to Cite: I. Fatimah, K. Wijaya, K. H. Setyawan. (2008. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 9-13. doi:10.9767/bcrec.3.1-3.17.9-13

  5. Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Gardini, Diego; Sharafutdinov, Irek; Damsgaard, Christian Danvad

    -Ga alloys as active catalysts for methanol production from syngas mixtures and Ni-Ga nanoparticles supported on highly porous silica have been prepared using an incipient wetness impregnation technique from a solution of nickel and gallium nitrates [2]. Tests conducted in a fixed-bed reactor showed...... silica, on this new support Ni5Ga3 nanoparticles becomes directly exposed to the electron beam (Figure 2) allowing us to obtain high resolution TEM images and perform more accurate electron energy loss spectroscopy (EELS) measurements.......In an effort to find alternative energy sources capable to compete with fossil fuels, methanol synthesis could represent a realistic solution to store “green” hydrogen produced from electrolysis or photo-induced water splitting. Recently, density functional theory (DFT) calculations [1] proposed Ni...

  6. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2015-02-01

    Full Text Available A simple and effective method for the preparation of platinum nanoparticles (Pt NPs grown on amino-func‐ tionalized halloysite nanotubes (HNTs was developed. The nanostructures were synthesized through the func‐ tionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III to potassium hexacyanoferrate(II. The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts.

  7. Sulfated Titania Nanoparticles: an Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multicomponent Reaction

    Directory of Open Access Journals (Sweden)

    A. Tadjarodi

    2015-10-01

    Full Text Available Sulfated titania nanoparticles (SO42-/TiO2 NPs were synthesized using titanium tetraisopropoxide (TTIP by the sol-gel method. The structure and morphology of the prepared nanocatalyst was characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and Brunauer–Emmett–Teller (BET methods as well as Fourier transform infrared (FT-IR and energy dispersive X-ray (EDX spectroscopy. The obtained nanoparticles were used as an efficient, reusable and environmentally friendly catalyst for the synthesis of polyhydroquinoline (PHQ derivatives via a one-pot multicomponent reaction of various aldehydes, ammonium acetate and 1,3-dicarbonyl compounds under reflux conditions. The desired Hantzsch esters were obtained in good to excellent yields and short reaction times. The SO42- /TiO2 NPs could be recycled at least three times without significant loss of their catalytic activity.

  8. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products

    Science.gov (United States)

    Jamison, Christopher R.; Badillo, Joseph J.; Lipshultz, Jeffrey M.; Comito, Robert J.; MacMillan, David W. C.

    2017-12-01

    In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.

  9. Synthesis of Ni-Zn ferrite catalysts by combustion reaction using different fuels

    International Nuclear Information System (INIS)

    Freitas, N.L.; Coutinho, J.P.; Silva, M.C.; Lira, H.L.; Costa, A.C.F.M.; Kiminami, R.H.G.A.

    2009-01-01

    The aim of this work is to evaluate the effect of different fuels in the preparation of Ni-Zn ferrites by combustion reaction. The catalysts were prepared according to the propellants chemistry, in stoichiometric composition, using a vitreous silica container. Carbohydrazide, monohydrated citric acid and glycine fuels were used. During the synthesis parameters as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluated by XRD, textural analysis by nitrogen adsorption and SEM. The fuel monohydrated citric acid presented the greatest time and temperature of combustion reaction. The results show that the type of fuel changed the final characteristics of the powders. The XRD results showed the formation of Ni-Zn ferrite phase for all fuels used in this study. The powders prepared with carbohydrazide resulted in largest value of surface area. All powders showed morphology constituted by soft agglomerates of nanoparticles. (author)

  10. Immobilised carbon nanotubes as carrier for Co-Fischer-Tropsch synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, J.; Rose, A.; Kiendl, I.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering; Curulla-Ferre, D. [Total S.A., Gas and Power, Paris La Defense (France)

    2011-07-01

    A possibility to immobilise carbon nanotubes (CNT) to make them applicable in a technical scale fixed bed reactor is studied. The approach to fabricate millimetre scale composites containing CNT presented in this work is to confine the nano-carbon in macro porous ceramic particles. Thus CNT were grown on the inner surface of silica and alumina pellets and spheres, respectively. Cobalt nano particles were successfully deposited on the carbon surface inside the two types of ceramic carriers and the systems were tested in Fischer - Tropsch synthesis (FTS). The cobalt mass related activity of these novel catalysts is similar to a conventional system. The selectivities of the Co/CNT/ceramic composites were compared with non supported CNT and carbon nanofibres (CNF). (orig.)

  11. Catalyst: and solvent-free synthesis of imidazo[1,2-a]pyridines

    OpenAIRE

    Zhu, Dong-Jian; Chen, Jiu-Xi; Liu, Miao-Chang; Ding, Jin-Chang; Wu, Hua-Yue

    2009-01-01

    A highly efficient and facile method has been described for the synthesis of imidazo[1,2-a]pyridines in good to excellent yields by condensation of the α-haloketones (ArCOCHXR², Ar = C6H5, 4-MeOC6H4, 4-ClC6H4, 2,4-Cl2C6H3; X = Br, Cl; R² = H, CH3) with 2-aminopyridines without the use of any additional catalyst and solvent. Um método altamente eficiente e simples foi descrito para a síntese de imidazo[1,2-a]piridinas pela condensação de α-halocetonas (ArCOCHXR², Ar = C6H5, 4-MeOC6H4, 4-ClC...

  12. HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin.

    Science.gov (United States)

    Yépez, Rebeca; Illescas, Juan F; Gijón, Paulina; Sánchez-Sánchez, Manuel; González-Zamora, Eduardo; Santillan, Rosa; Álvarez, J Raziel; Ibarra, Ilich A; Aguilar-Pliego, Julia

    2016-07-23

    Vanillin (4-hydoxy-3-methoxybenzaldehyde) is the main component of the extract of vanilla bean. The natural vanilla scent is a mixture of approximately 200 different odorant compounds in addition to vanillin. The natural extraction of vanillin (from the orchid Vanilla planifolia, Vanilla tahitiensis and Vanilla pompon) represents only 1% of the worldwide production and since this process is expensive and very long, the rest of the production of vanillin is synthesized. Many biotechnological approaches can be used for the synthesis of vanillin from lignin, phenolic stilbenes, isoeugenol, eugenol, guaicol, etc., with the disadvantage of harming the environment since these processes use strong oxidizing agents and toxic solvents. Thus, eco-friendly alternatives on the production of vanillin are very desirable and thus, under current investigation. Porous coordination polymers (PCPs) are a new class of highly crystalline materials that recently have been used for catalysis. HKUST-1 (Cu3(BTC)2(H2O)3, BTC = 1,3,5-benzene-tricarboxylate) is a very well known PCP which has been extensively studied as a heterogeneous catalyst. Here, we report a synthetic strategy for the production of vanillin by the oxidation of trans-ferulic acid using HKUST-1 as a catalyst.

  13. Impact of potassium promoter on Cu–Fe based mixed alcohols synthesis catalyst

    International Nuclear Information System (INIS)

    Ding, Mingyue; Tu, Junling; Qiu, Minghuang; Wang, Tiejun; Ma, Longlong; Li, Yuping

    2015-01-01

    Highlights: • Adding K facilitated the immigration of bulky iron species to surface layers. • Adding potassium strengthened the interaction of Fe–K on the surface layers. • Increasing K content facilitated the formation of C 2 + OH. • A maximum in catalytic activity is obtained at 0.5 wt.% of potassium loading. - Abstract: Impacts of K promoter on microstructures of a precipitated Cu–Fe based catalyst were studied by N 2 -physisorption (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD) and hydrogen temperature-programmed desorption/reduction (H 2 -TPD/TPR). Mixed alcohols synthesis (MAS) was carried out in a fixed-bed reactor. The results indicated that incorporation of K in the Cu–Fe based catalyst decreased the surface area of the particles, whereas promoted the immigration of bulky iron species to surface layers and strengthened the interaction of surface Fe–Cu. The increase of K concentration weakened the H 2 chemisorption and restrained the reduction of both the Cu and Fe species. The catalytic activity and mixed alcohols selectivity increased accompanied with a gradually increasing K concentration, and reached the highest values as the amount of K increased to 0.5 wt.%. Subsequently, the MAS activity and selectivity C 2 + OH presented a decreasing trend. In addition, the increase of K concentration facilitated the formation of heavy hydrocarbons

  14. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    Directory of Open Access Journals (Sweden)

    Gary Jacobs

    2014-03-01

    Full Text Available This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing surface Co0 site densities (e.g., in research catalysts, ultra-small crystallites (e.g., <2–4.4 nm formed are more susceptible to oxidation at high conversion relative to larger ones. The choice of promoter is important, as certain metals (e.g., Au that promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration cycles. Finally, some elements have been identified to promote reduction but either poison the surface of Co0 (e.g., Cu, or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high loading. Computational studies indicate that certain promoters may inhibit polymeric C formation by hindering C-C coupling.

  15. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    Science.gov (United States)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  16. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis.

    Science.gov (United States)

    Sheng, Zhen-Huan; Shao, Lin; Chen, Jing-Jing; Bao, Wen-Jing; Wang, Feng-Bin; Xia, Xing-Hua

    2011-06-28

    The electronic and chemical properties of graphene can be modulated by chemical doping foreign atoms and functional moieties. The general approach to the synthesis of nitrogen-doped graphene (NG), such as chemical vapor deposition (CVD) performed in gas phases, requires transitional metal catalysts which could contaminate the resultant products and thus affect their properties. In this paper, we propose a facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source. This approach can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated. Detailed X-ray photoelectron spectrum analysis of the resultant products shows that the atomic percentage of nitrogen in doped graphene samples can be adjusted up to 10.1%. Such a high doping level has not been reported previously. High-resolution N1s spectra reveal that the as-made NG mainly contains pyridine-like nitrogen atoms. Electrochemical characterizations clearly demonstrate excellent electrocatalytic activity of NG toward the oxygen reduction reaction (ORR) in alkaline electrolytes, which is independent of nitrogen doping level. The present catalyst-free approach opens up the possibility for the synthesis of NG in gram-scale for electronic devices and cathodic materials for fuel cells and biosensors.

  17. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  18. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.

    Science.gov (United States)

    Zuo, Weiwei; Morris, Robert H

    2015-02-01

    The catalytic hydrogenation of prochiral ketones and imines is an advantageous approach to the synthesis of enantioenriched alcohols and amines, respectively, which are two classes of compounds that are highly prized in pharmaceutical, fragrance and flavoring chemistry. This hydrogenation reaction is generally carried out using ruthenium-based catalysts. Our group has developed an alternative synthetic route that is based on the environmentally friendlier iron-based catalysis. This protocol describes the three-part synthesis of trans-[amine(imine)diphosphine]chlorocarbonyliron(II) tetrafluoroborate templated by iron salts and starting from commercially available chemicals, which provides the precatalyst for the efficient asymmetric transfer hydrogenation of ketones and imines. The use of the enantiopure (S,S) catalyst to reduce prochiral ketones to the (R)-alcohol in good to excellent yields and enantioenrichment is also detailed, as well as the reduction to the amine in very high yield and enantiopurity of imines substituted at the nitrogen with the N-(diphenylphosphinoyl) group (-P(O)Ph2). Although the best ruthenium catalysts provide alcohols in higher enantiomeric excess (ee) than the iron complex catalyst used in this protocol, they do so on much longer time scales or at higher catalyst loadings. This protocol can be completed in 2 weeks.

  19. The synthesis of carbon nanocomposites as fuel cell catalyst support and the characterization of fuel cell catalysts by spatially resolved scanning mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan

    2007-07-01

    Ammonia decomposition over Ni/SiO{sub 2} and Ni/MgO was investigated by temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) in order to produce CO{sub x} free hydrogen fuel for fuel cell application. A highly efficient route for the synthesis of carbon nanocomposites based on electrochemical deposition and iron catalyzed chemical vapor deposition (CVD) was developed in order to obtain a promising substrate for fuel cell catalysts. The duration of electrochemical deposition, temperature and time for the carbon nanotubes (CNTs) growth had been optimized to achieve higher surface area after the growth. Hierarchically structured CNTs composites had been synthesized and electrochemical studies provided evidence for the strong interaction among the substrate and grown CNTs, which are essential for the application in fuel cells. A straightforward strategy was developed to synthesize well dispersed gold nanoparticles with a diameter of 4 to 6 nm on the sidewall of multi-walled carbon nanotubes (MWNTs). A gas flow set-up was developed for the evaluation of fuel cell catalysts by performing scanning mass spectrometry with integrated constant-distance positioning. Methanol oxidation was identified as a suitable test reaction. The diameter of scanning probe was reduced in order to achieve higher spatial resolution. Spatially resolved scanning mass spectrometry was successfully applied to visualize the catalytic activity over Pt-based catalysts and monitor the local activity of a catalysts coated membrane (CCM). The gas-solid phase reaction results were proved to be accurate, reliable and independent of the sample topography. This analytical method opens the way for fast quality control of the catalyst coating with respect to even coating and absence of damages, and for a better understanding of the CCM degradation in polymer membrane electrolyte fuel cells (PEMFCs). (orig.)

  20. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    OpenAIRE

    Zhengyu Bai; Rumeng Huang; Lu Niu; Qing Zhang; Lin Yang; Jiujun Zhang

    2015-01-01

    In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG) is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG) and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO) are also prepared using the similar synthesis conditions for comparison. It is f...

  1. Synthesis of High-quality Single- and Double-walled Carbon Nanotubes on Fe/MgO Catalysts

    Directory of Open Access Journals (Sweden)

    Mehran B. Kashi

    2016-06-01

    Full Text Available In this study, Fe/MgO catalysts with three different iron contents (5, 10, and 15 wt.% were prepared by three catalyst preparation methods: impregnation, solution combustion synthesis, and co-calcination of metal ni‐ trates. The resulting catalysts were subjected to methane at 900°C in order to grow carbon nanotubes (CNTs. The powders and products were then studied by X-ray diffraction (XRD, differential thermal analysis (DTA, scanning and transmission electron microscopy (SEM and TEM, and Raman spectroscopy. Formation of MgFe2O4 upon heating the catalysts to 900°C was confirmed by XRD. After the growth step, corresponding peaks of MgFe2O4 disappeared and metallic iron peaks appeared, indicating that MgFe2O4 is the responsible phase for production of iron nanoparticles. HRTEM images showed that the product on the 5 wt.% catalysts was mostly SWNTs and DWNTs with no evidence of carbon nanofi‐ bres or multi-walled carbon nanotubes on the co-calcina‐ tion catalyst. Furthermore, ID/IG ratios obtained from Raman spectra were all below 0.1, except for one sample, showing the good quality of the products.

  2. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    Directory of Open Access Journals (Sweden)

    Zhengyu Bai

    2015-04-01

    Full Text Available In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO are also prepared using the similar synthesis conditions for comparison. It is found that, among these three catalyst materials, H-PdCu/ppy-NG gives the highest electrochemical active area and both the most uniformity and dispersibility of H-PdCu particles. Electrochemical tests show that the H-PdCu/ppy-NG catalyst can give the best electrocatalytic activity and stability towards the ethanol electrooxidation when compared to other two catalysts. Therefore, H-PdCu/ppy-NG should be a promising catalyst candidate for anodic ethanol oxidation in direct ethanol fuel cells.

  3. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  4. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap

    Directory of Open Access Journals (Sweden)

    Ramesh Karunagaran

    2018-01-01

    Full Text Available Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF and carbon microspheres (N-CMS synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  5. Synthesis of CaOZnO Nanoparticles Catalyst and Its Application in Transesterification of Refined Palm Oil

    Directory of Open Access Journals (Sweden)

    Cicik Herlina Yulianti

    2014-07-01

    Full Text Available The CaOZnO nanoparticle catalysts with Ca to Zn atomic ratios of 0.08 and 0.25 have been successfully synthesized by co-precipitation method. The catalyst was characterized by X-ray Diffraction (XRD analysis provided with Rietica and Maud software, Scanning Electron Microscopy (SEM and Fourier Transform Infrared spectroscopy (FT-IR, and its properties was compared with bare CaO and ZnO catalysts. The phase composition estimated by Rietica software revealed that the CaO catalyst consists of CaO and CaCO3 phases. The estimation of the particle size by Maud software, showed that the particle size of all catalysts increased by the following order: ZnO. © 2014 BCREC UNDIP. All rights reservedReceived: 1st January 2014; Revised: 10th March 2014; Accepted: 18th March 2014[How to Cite: Yulianti, C.H., Ediati, R., Hartanto, D., Purbaningtias, T.E., Chisaki, Y., Jalil, A.A., Hitam, C.K.N.L.C.K., Prasetyoko, D., (2014. Synthesis of CaOZnO Nanoparticles Catalyst and Its Application in Transesterification of Refined Palm Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 100-110. (doi:10.9767/bcrec.9.2.5998.100-110][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.5998.100-110

  6. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

    Science.gov (United States)

    Sato, Katsutoshi; Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-Ichiro; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr 2 O 3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr 2 O 3 . Furthermore, CO 2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH 3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  7. Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline

    International Nuclear Information System (INIS)

    Ahmad, Mushtaq; Farhana, Rafida; Raman, Abdul Aziz Abdul; Bhargava, Suresh K.

    2016-01-01

    Highlights: • A 2-step process is used to synthesize nano oxides integrated ZSM-5 catalysts. • 82% yield of integrated ZSM-5 catalysts is possible at low temperature and pressure. • 59% yield of biogasoline is possible thorough catalytic cracking process. - Abstract: Biofuels produced from palm oil have shown great potential as a useful fossil fuel substitute and are environmental friendly. Utilization of palm oil as biofuel requires zeolite based catalytic technology that facilitates selective conversion of substrates to desired products, including biogasoline and biodiesel. However, the synthesis and integration of suitable zeolite based supported catalysts for the desired products are the key challenges in biofuel production. The alternative to overcome these problems is to use nano heterometallic materials supported on zeolite catalysts. In this study, Zeolite Socony Mobile-5 (ZSM-5) based catalysts loaded with heterometallic nano oxides were synthesized. Next, the catalysts used for the palm oil cracking to produce biogasoline were characterized by field emission electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and Brunauer, Emmett and Teller (BET) analysis. Taguchi method was used to assess and optimize the catalytic cracking process. The catalytic cracking results illustrated that under optimized conditions, ZSM-5 (30), Fe–Zn–Cu–ZSM-5 (31), Fe–Zn–Cu–ZSM-5 (32) and Fe–Zn–ZSM-5 (33) yielded 14%, 59%, 49% and 56% biogasoline, respectively. Higher efficiency of Fe–Zn–Cu–ZSM-5 (31) might be attributed to higher content of loaded metal oxides as compared to the other synthesized catalysts. The yield of biogasoline in this study, catalyzed by Fe–Zn–Cu–ZSM-5 (31), was 8% more than the literature values. Therefore, the present study proved that the newly developed Fe–Zn–Cu–ZSM-5 (31) was an efficient

  8. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  9. Efficient synthesis of functionalized 1,2,3-triazoles by catalyst-free 1,3-dipolar cycloaddition of nitroalkenes with sodium azide

    International Nuclear Information System (INIS)

    Wang, Ting; Hu, Xiao-Chun; Huang, Xu-Jiao; Li, Xin-Sheng; Xie, Jian-Wu

    2012-01-01

    A simple and efficient protocol has been developed for the synthesis of 1,2,3-triazole derivatives by catalyst-free 1,3-dipolar cycloaddition of nitroalkenes with sodium azide under mild conditions (author)

  10. Ultrasound-assisted synthesis of β-amino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Naghi Saadatjoo

    2017-02-01

    The present methodology offers several advantages, such as good yields, short reaction times and a recyclable catalyst with a very easy work up. In addition, the obtained results indicated that MNPs can be used as an effective and inexpensive catalyst for stereoselective synthesis of β-amino carbonyl by a one-pot three component condensation of aldehydes, ketones and amines.

  11. Reverse Topotactic Transformation of a Cu–Zn–Al Catalyst during Wet Pd Impregnation : Relevance for the Performance in Methanol Synthesis from CO2/H2 Mixtures

    NARCIS (Netherlands)

    Fierro, J.L.G.; López Granados, M.; Melián-Cabrera, I.

    2002-01-01

    The effect of palladium metal on the performance of a CuO–ZnO–Al2O3 catalyst is studied for methanol synthesis by hydrogenation of carbon dioxide. The dramatic decrease in the methanol yield (in mol CH3OH/h · gcat) seen for the Pd-containing catalysts is discussed in terms of formation,

  12. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell.

    Science.gov (United States)

    Birla, Ashish; Singh, Bhaskar; Upadhyay, S N; Sharma, Y C

    2012-02-01

    Waste frying oil was used to produce biodiesel using calcined snail shell as a heterogeneous base catalyst. Trans esterification reactions were carried out and the yield and conversion of the product were optimized by varying the methanol to oil molar ratio, catalyst amount, reaction temperature, and time. A biodiesel conversion of 99.58% was obtained with a yield of 87.28%. The reaction followed first order kinetics. The activation energy (E(A)) was 79kJ/mol and the frequency factor (A) was 2.98×10(10)min(-1). The fuel properties of the biodiesel were measured according to ASTM D 6751 and found to be within the specifications. Snail shell is a novel source for the production of heterogeneous base catalyst that can be successfully utilized for synthesis of biodiesel of high purity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Synthesis of Various Ferrite (MFe₂O₄) Nanoparticles and Their Application as Efficient and Magnetically Separable Catalyst for Biginelli Reaction.

    Science.gov (United States)

    Chandel, Madhurya; Ghosh, Barun Kumar; Moitra, Debabrata; Patra, Manoj Kumar; Vadera, Sampat Raj; Ghosh, Narendra Nath

    2018-04-01

    Herein, we reports the application of various spinel ferrite nanoparticles, MFe2O4 (M = Co, Ni, Cu, Zn), as efficient catalyst for Biginelli reaction. All ferrite nanoparticles were synthesized using a novel aqueous solution based method. It was observed that, the catalytic activity of the ferrite nanoparticles followed the decreasing order of CoFe2O4 > CuFe2O4 > NiFe2O4 > ZnFe2O4. The most important feature of these ferrite nanocatalysts is that, these nanoparticles can directly be used as catalyst and no surface modification or functionalization is required. These ferrite nanoparticles are easily separable from reaction mixture after reaction by using a magnet externally. Easy synthesis methodology, high catalytic activity, easy magnetic separation and good reusability make these ferrite nanoparticles attractive catalysts for Biginelli reaction.

  14. Emeraldine Base Form of Polyaniline Nanofibers as New, Economical, Green, and Efficient Catalyst for Synthesis of Z-Aldoximes

    Directory of Open Access Journals (Sweden)

    Rajender Boddula

    2014-01-01

    Full Text Available A facile, clean, economical, efficient, and green process was developed for the preparation of Z-aldoximes at room temperature under solvent-free condition using emeraldine base form of polyaniline as novel catalyst. In this methodology, PANI base absorbed the by-product of HCl (polluting chemical from hydroxylamine hydrochloride and converted to polyaniline-hydrochloride salt (PANI-HCl salt. This PANI-HCl salt could be easily recovered and used in new attempts without any purification in many areas such as catalyst, electrical and electronics applications meant for conducting polymers. As far as our knowledge is concerned, emeraldine base as catalyst in organic synthesis for the first time.

  15. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema

    2016-04-20

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  16. Partial oxidation of methane to synthesis gas in a dual catalyst bed system combining irreducible oxide and metallic catalysts

    NARCIS (Netherlands)

    Zhu, J.J.; Mujeebur Rahuman, M.S.M.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    Operation of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) at very high temperatures (¿900°C) slightly improves the selectivity to synthesis gas, which is caused by some activity of YSZ for steam and dry reforming of methane. LaCoO3 perovskite is not active in

  17. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    International Nuclear Information System (INIS)

    Jiang Yi; Gao Shuyan; Li Zhengdao; Jia Xiaoxia; Chen Yanli

    2011-01-01

    Highlights: → In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. → The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. → The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. → To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. → It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  18. Synthesis of Metallocene Catalyst for Terpolymerization of Ethylene, Propylene and Diene

    Directory of Open Access Journals (Sweden)

    S.M.M. Mortazavi

    2014-04-01

    Full Text Available The bis(indenyl zirconium dichloride catalyst was synthesized by a modified method at room temperature. Terpolymerization of ethylene, propylene and diene monomers were carried out using this metallocene catalyst under different conditions of different feed ratios of monomers, co-catalyst/catalyst ratios and polymerization temperatures. Methylaluminoxane (MAO was used as a co-catalyst. The highest activity of catalyst was obtained at total pressure 4 bar, co-catalyst/catalyst ratio [Al]/[Zr]=600, polymerization temperature 60°C and E/P=67:33 and momomer feed ratio of 1700 kgEPDM/molZrh. The activity of catalyst showed bell-shaped behaviors versus co-catalyst/catalyst ratio ([Al]/[Zr] and polymerization temperatures. The viscosity-average molecular weight (Mv of terpolymers increased with increasing total pressure at different feed ratios of monomers. However, the viscosity-average molecular weight of terpolymers decreased at higher co-catalyst/catalyst ratios ([Al]/[Zr] and higher polymerization temperatures. The increases in propylene and diene monomers in the feed ratios decreased the catalyst activity and viscosity-average molecular weight of terpolymers. The ratio of maximum average rate of terpolymerization to an average rate of terpolymerization at the end of the polymerization (DI for different terpolymerization conditions was relatively high; an indication of the decay kinetics for this type of metallocene catalyst. Increasing the co-catalyst/catalyst ratio up to [Al]/[Zr] = 500 increased the Et% and ENB% in the final obtained polymers. However, increasing the polymerization temperature, diene and propylene concentrations in the feed ratio decreased the Et% and increased the ENB% contents in the final obtained polymers. Tg of the final terpolymers was between -64 and -52°C. The study on microstructures of some polymer revealed block type of chain microstructures.

  19. The Process of Acetonitrile Synthesis over γ-Al2O3 Promoted by Phosphoric Acid Catalysts

    OpenAIRE

    Galanov, Sergey I.; Sidorova, Olga I.; Gavrilenko, Mikhail A.

    2014-01-01

    The influence of principal parameters (reaction temperature, ratio of acetic acid and ammonia, composition of reactionary mixture and promotion of catalysts) on the selectivity and yield of the desired product was studied in the reaction of catalytic acetonitrile synthesis by ammonolysis of acetic acid. The processing of [gamma]-Al[2]O[3] by phosphoric acid increases amount of the centers, on which carries out reaction of acetamide dehydration. The kinetic model of a limiting stage of reactio...

  20. BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room temperature

    Directory of Open Access Journals (Sweden)

    Bi Bi Fatemeh Mirjalili

    2012-07-01

    Full Text Available A rapid one-pot method has been developed for the synthesis of azo dyes via ‎sequential diazotization–diazo coupling of aromatic amines with coupling agents at room ‎temperature in the presence of BF3.SiO2 as acidic catalyst. The obtained aryl diazonium salts bearing silica supported boron tri-flouride counter ion‎ was sufficiently stable to be kept at room ‎temperature in the dry state.‎

  1. On possibility of preparation of catalysts for ammonia synthesis based on cyanocomplexes of some d-metals

    International Nuclear Information System (INIS)

    Sergeeva, A.N.; Dovgej, V.V.; Pavlenko, L.I.; Zubritskaya, D.I.; Tkachenko, Zh.I.; Okorskaya, A.P.; Lyubchenko, Yu.A.

    1983-01-01

    The catalytic properties of the systems prepared on the basis of coordination cyanides of iron, ruthenium, osmium, rhenium, molydenum, vanadium and other d-metals in the ammonia synthesis reaction are studied. It has been found that thermal stability of catalytic systems containing vanadium and molybdenum is considerably higher than that of the industrial sample of similar type containing aluminium. The systems prepared on the basis of hexacyanoferrates, ruthenates and osmates can be referred to low-temperature type catalysts

  2. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin.

    Science.gov (United States)

    Franco, Ana; De, Sudipta; Balu, Alina M; Garcia, Araceli; Luque, Rafael

    2017-01-01

    Vanillin is one of the most commonly used natural products, which can also be produced from lignin-derived feedstocks. The chemical synthesis of vanillin is well-established in large-scale production from petrochemical-based starting materials. To overcome this problem, lignin-derived monomers (such as eugenol, isoeugenol, ferulic acid etc.) have been effectively used in the past few years. However, selective and efficient production of vanillin from these feedstocks still remains an issue to replace the existing process. In this work, new transition metal-based catalysts were proposed to investigate their efficiency in vanillin production. Reduced graphene oxide supported Fe and Co catalysts showed high conversion of isoeugenol under mild reaction conditions using H 2 O 2 as oxidizing agent. Fe catalysts were more selective as compared to Co catalysts, providing a 63% vanillin selectivity at 61% conversion in 2 h. The mechanochemical process was demonstrated as an effective approach to prepare supported metal catalysts that exhibited high activity for the production of vanillin from isoeugenol.

  3. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin

    Directory of Open Access Journals (Sweden)

    Ana Franco

    2017-07-01

    Full Text Available Vanillin is one of the most commonly used natural products, which can also be produced from lignin-derived feedstocks. The chemical synthesis of vanillin is well-established in large-scale production from petrochemical-based starting materials. To overcome this problem, lignin-derived monomers (such as eugenol, isoeugenol, ferulic acid etc. have been effectively used in the past few years. However, selective and efficient production of vanillin from these feedstocks still remains an issue to replace the existing process. In this work, new transition metal-based catalysts were proposed to investigate their efficiency in vanillin production. Reduced graphene oxide supported Fe and Co catalysts showed high conversion of isoeugenol under mild reaction conditions using H2O2 as oxidizing agent. Fe catalysts were more selective as compared to Co catalysts, providing a 63% vanillin selectivity at 61% conversion in 2 h. The mechanochemical process was demonstrated as an effective approach to prepare supported metal catalysts that exhibited high activity for the production of vanillin from isoeugenol.

  4. Raising distillate selectivity and catalyst life time in Fischer-Tropsch synthesis by using a novel dual-bed reactor

    International Nuclear Information System (INIS)

    Tavasoli, A.; Sadaghiani, K.; Khodadadi, A. A.; Mortazavi, Y.

    2007-01-01

    In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diff rent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Raiment promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed reactor system. The methane selectivity in the dual-bed reactor was about 18.9% less compared to that of the single-bed reactor. The C 5+ selectivity for the dual-bed reactor was 10.9% higher than that of the single-bed reactor. Accelerated deactivation of the catalysts in the dual-bed reactor was 42% lower than that of the single-bed reactor. It was revealed that the amount of catalysts activity recovery after regeneration at 400 d eg C in the dual-bed system is higher than that of the single-bed system

  5. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1 ...

    Indian Academy of Sciences (India)

    amidoalkyl-2- naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst. Keywords. Multicomponent reaction; amidoalkyl naphthol; boric acid; catalyst; ...

  6. Sulfated polyborate: A mild, efficient catalyst for synthesis of N-tert ...

    Indian Academy of Sciences (India)

    chemsci

    trityl protected amides via Ritter reaction of nitriles with tertiary alcohols in the presence of a sulfated polyborate catalyst under solvent-free conditions is described. The catalyst has the advantage of Lewis as well as Bronsted acidity and.

  7. Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2012-10-01

    Full Text Available Carbon xerogels characterized by different textural, structural and chemical properties were synthesized and used as supports for Pt catalysts for the application in polymer electrolyte fuel cells. Synthesis conditions were varied in order to synthesize carbon xerogels following the sol-gel method. These included the reactants ratio (precursor/formaldehyde, the catalyst concentration (precursor/catalyst ratio and type (basic and acid, the precursor type (resorcinol and pyrogallol and the solvent (aqueous or acetone based. Stoichiometric mixtures of resorcinol and formaldehyde yielded well polymerized gels and highly developed structures. Slow gelation, favored by the presence of acetone as solvent in the sol and low catalyst concentration, resulted in higher polymerization extent with a highly mesoporous or even macroporous texture and more ordered structure, as evidenced by XPS and Raman spectroscopy. Small Pt particles of ca. 3.5 nm were obtained by using carbon xerogels characterized by an ordered surface structure. The specific activity towards the oxygen reduction reaction, i.e., the limiting catalytic process in low temperature fuel cells, is significantly favored by highly ordered carbon xerogels due to a metal-support enhanced interaction. Nevertheless, surface defects favor the distribution of the metallic particles on the surface of carbon, which in the end influences the effectiveness of the catalyst. Accelerated degradation tests were conducted to evaluate catalyst stability under potential cycling conditions. The observed decay of performance was considerably lower for the catalysts based on ordered carbon xerogels stabilizing Pt particles in a higher extent than the other xerogels and the commercial carbon black support.

  8. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  9. Kinetics and mechanism of NH3 synthesis over Fe(100 and K/Fe(100 model catalysts

    Directory of Open Access Journals (Sweden)

    A. Z. Moshfegh

    2004-06-01

    Full Text Available   In this investigation kinetics and mechanism of NH3 synthesis over Fe(100 and K/Fe(100 model catalysts have been studied. In this context, adsorption kinetics of both N2/Fe (100 and H2/Fe (100systems is initially investigated. By using statistical mechanic approach, we have determined the adsorption coefficient for N2 and H2 molecules as well as transition probability of different states of adsorption and dissociation of the reactants molecules. The effect of surface catalyst temperature on the reaction rate (TOF is studied under different reactant partial pressures. The mechanism of NH3 synthesis is suggested based on LH surface reactions model. According to the obtained results, activation energy for the reaction over Fe (100 and K/Fe(100 (for θk=0.1ML was determined 19.6 and 11.1 kcal/mole, respectively. The order of reaction on both catalysts with respect to PN2 and PH2 was unity and negative, respectively. Based on our data analysis, the NH3 synthesis obeys Temkin isotherm.

  10. Moessbauer investigations of the Fe-Cu-Mn catalysts for Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Spanu, V.; Filoti, G.; Ilie, I.; Zamfirescu, E.

    1990-01-01

    In the selective process of the syngas conversion to synthetic gasoline a bifunctional catalytic system has to be used. It was obtained by combination a Fischer-Tropsch catalyst with the HZSM-5 zeolite. The phase compositions of the precursor and the fresh catalyst were established as well as the optimum thermal treatment. The catalyst was reduced in pure H 2 or in a H 2 +CO mixture. The influence of the reduction and reaction conditions on the catalyst structure was investigated. (orig.)

  11. Facile Synthesis of Effcient and Selective Ruthenium Olefin Metathesis Catalysts with Sulfonate and Phosphate Ligands

    OpenAIRE

    Teo, Peili; Grubbs, Robert H.

    2010-01-01

    A series of novel, air-stable ruthenium NHC catalysts with sulfonate and phosphate anions have been prepared easily in one pot at high yields using commercially available precursors. The catalysts were found to be effective for ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis. The catalysts showed higher cis-selectivity in olefin cross-metathesis reactions as compared to earlier known ruthenium-based olefin metathesis catalysts, with allylbenzene and cis-1...

  12. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  13. Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell.

    Science.gov (United States)

    Bensebaa, Farid; Farah, Abdiaziz A; Wang, Dashan; Bock, Christina; Du, Xiaomei; Kung, Judy; Le Page, Yvon

    2005-08-18

    Platinum-ruthenium nanoparticles stabilized within a conductive polymer matrix are prepared using microwave heating. Polypyrrole di(2-ethylhexyl) sulfosuccinate, or PPyDEHS, has been chosen for its known electrical conductivity, thermal stability, and solubility in polar organic solvents. A scalable and quick two-step process is proposed to fabricate alloyed nanoparticles dispersed in PPyDEHS. First a mixture of PPyDEHS and metallic precursors is heated in a microwave under reflux conditions. Then the nanoparticles are extracted by centrifugation. Physical characterization by TEM shows that crystalline and monodisperse alloyed nanoparticles with an average size of 2.8 nm are obtained. Diffraction data show that crystallite size is around 2.0 nm. Methanol electro-oxidation data allow us to propose these novel materials as potential candidates for direct methanol fuel cells (DMFC) application. The observed decrease in sulfur content in the polymer upon incorporation of PtRu nanoparticles may have adversely affected the measured catalytic activity by decreasing the conductivity of PPyDEHS. Higher concentration of polymer leads to lower catalyst activity. Design and synthesis of novel conductive polymers is needed at this point to enhance the catalytic properties of these hybrid materials.

  14. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  15. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent.

    Science.gov (United States)

    Hazarika, Munmi; Borah, Debajit; Bora, Popymita; Silva, Ana R; Das, Pankaj

    2017-01-01

    This paper describes a simple in-situ process of synthesizing highly dispersed palladium nanoparticles (PdNPs) using aqueous leaf extract of GarciniapedunculataRoxb as bio-reductant and starch (0.3%) as bio-stabilizer. The PdNPs are characterized by techniques like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis of nanoparticles was carried out in absence of starch, agglomeration of particles has been noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl bromides and iodides) with arylboronic acids; selective oxidations of alcohols to corresponding carbonyl compounds; and reduction of toxic Cr(VI) to nontoxic Cr(III). Our catalyst could be reused up to four cycles without much compromising with its activity. Furthermore, the material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PdNPswere found to be 0.06 and 0.12 mM respectively.

  16. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent.

    Directory of Open Access Journals (Sweden)

    Munmi Hazarika

    Full Text Available This paper describes a simple in-situ process of synthesizing highly dispersed palladium nanoparticles (PdNPs using aqueous leaf extract of GarciniapedunculataRoxb as bio-reductant and starch (0.3% as bio-stabilizer. The PdNPs are characterized by techniques like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis of nanoparticles was carried out in absence of starch, agglomeration of particles has been noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl bromides and iodides with arylboronic acids; selective oxidations of alcohols to corresponding carbonyl compounds; and reduction of toxic Cr(VI to nontoxic Cr(III. Our catalyst could be reused up to four cycles without much compromising with its activity. Furthermore, the material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of PdNPswere found to be 0.06 and 0.12 mM respectively.

  17. Synthesis, characterization and cytocompatibility of a degradable polymer using ferric catalyst for esophageal tissue engineering.

    Science.gov (United States)

    Lei, Yu-Na; Zhu, Ya-Bin; Gong, Chang-Feng; Lv, Jing-Jing; Kang, Chen; Hou, Lin-Xi

    2014-02-01

    This study focused on the synthesis, characterization and cytocompatibility of a biodegradable polymer by the cross-linking from poly(ethylene glycol-co-lactide) dimethacrylate (PLEGDMA), polyethylene glycol diacrylate (PEGDA) and N-isopropylacrylamide, where PLEGDMA was synthesized by ring-opening oligomerization of poly(ethylene glycol) with different molecular weights (Mn = 400, 600, 1000, 2000 Da) and L-lactide using low toxic iron(III) acetylacetonate (Fe(acac)3) as the catalyst and subsequently being terminated with dimethacrylate. The product, PLEGDMA, was analyzed to confirm its chemistry using FTIR spectroscopy, (1)H NMR spectra and gel permeation chromatography etc. The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability and cytotoxicity of the cross-linked product were evaluated by differential scanning calorimetry, tensile tests, contact angle measurements and cell cultures. The effects of reaction variables such as PEGDA content and reactants ratio were optimized to achieve a material with low glass transition temperature (Tg), high wettability and preferable mechanical characteristics. Using a tubular mould which has been patented in our group, a tubular scaffold with predetermined dimension and pattern was fabricated, which aims at guiding the growth and phenotype regulation of esophageal primary cells like fibroblast and smooth muscle cell towards fabricating tissue engineered esophagus in future.

  18. In situ Generated Ruthenium Catalyst Systems Bearing Diverse N-Heterocyclic Carbene Precursors for Atom-Economic Amide Synthesis from Alcohols and Amines.

    Science.gov (United States)

    Cheng, Hua; Xiong, Mao-Qian; Cheng, Chuan-Xiang; Wang, Hua-Jing; Lu, Qiang; Liu, Hong-Fu; Yao, Fu-Bin; Chen, Cheng; Verpoort, Francis

    2018-02-16

    The transition-metal-catalyzed direct synthesis of amides from alcohols and amines is herein demonstrated as a highly environmentally benign and atom-economic process. Among various catalyst systems, in situ generated N-heterocyclic carbene (NHC)-based ruthenium (Ru) halide catalyst systems have been proven to be active for this transformation. However, these existing catalyst systems usually require an additional ligand to achieve satisfactory results. In this work, through extensive screening of a diverse variety of NHC precursors, we discovered an active in situ catalyst system for efficient amide synthesis without any additional ligand. Notably, this catalyst system was found to be insensitive to the electronic effects of the substrates, and various electron-deficient substrates, which were not highly reactive with our previous catalyst systems, could be employed to afford the corresponding amides efficiently. Furthermore, mechanistic investigations were performed to provide a rationale for the high activity of the optimized catalyst system. NMR-scale reactions indicated that the rapid formation of a Ru hydride intermediate (signal at δ=-7.8 ppm in the 1 H NMR spectrum) after the addition of the alcohol substrate should be pivotal in establishing the high catalyst activity. Besides, HRMS analysis provided possible structures of the in situ generated catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst

    Science.gov (United States)

    Hartono, R.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Production of biodiesel using homogen catalyst: alkaline catalysts, acid catalysts, biocatalysts, and supercritical methanol are very inefficient, because these catalysts have a very high cost production of biodiesel and non-ecofriendly. The heterogeneous catalyst is then used to avoid adverse reaction of biodiesel production. The heterogeneous catalysts used is ion exchanger using natural zeolit catalists bayah banten (ZABBrht) and macroporous lewatit that can be used to produce biodiesel in the solid phase so that the separation is easier and can be used repeatedly. The results of biodiesel reach its optimum in engineering ion exchange catalyst natural zeolit bayah and macroporous lewatit which has been impregnated and calcinated at temperature 60 °C at reaction time 2 hours, are 94.8% and 95.24%, using 100 gr.KOH/100 mL Aquadest.

  20. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2012-12-01

    Full Text Available Carbon nanotubes have been successfully synthesized using the catalytic chemical vapor deposition (CCVD technique over typical refining hydrotreating catalysts (hydrodesulfurization and hydrodenitrogenation containing Ni–Mo and Co–Mo supported on Al2O3 catalysts at 700°C in a fixed bed horizontal reactor using natural gas as a carbon source. The catalysts and the as-grown CNTs were characterized by transmission electron microscopy, HRTEM, X-ray diffraction patterns, EDX and TGA–DTG. The obtained data clarified that the Ni–Mo catalyst gives higher yield, higher purity and selectivity for CNTs compared to Co–Mo catalyst. XRD, TEM and TGA reveal also that the Ni–Mo catalyst produces mostly CNTs with different diameters whereas the Co–Mo catalyst produces largely amorphous carbon.

  1. A novel semiconductor compatible path for nano-graphene synthesis using CBr4 precursor and Ga catalyst.

    Science.gov (United States)

    Wang, S M; Gong, Q; Li, Y Y; Cao, C F; Zhou, H F; Yan, J Y; Liu, Q B; Zhang, L Y; Ding, G Q; Di, Z F; Xie, X M

    2014-04-11

    We propose a novel semiconductor compatible path for nano-graphene synthesis using precursors containing C-Br bonding and liquid catalyst. The unique combination of CBr4 as precursor and Ga as catalyst leads to efficient C precipitation at a synthesis temperature of 200 °C or lower. The non-wetting nature of liquid Ga on tested substrates limits nano-scale graphene to form on Ga droplets and substrate surfaces at low synthesis temperatures of T ≤ 450 °C and at droplet/substrate interfaces by C diffusion via droplet edges when T ≥ 400 °C. Good quality interface nano-graphene is demonstrated and the quality can be further improved by optimization of synthesis conditions and proper selection of substrate type and orientation. The proposed method provides a scalable and transfer-free route to synthesize graphene/semiconductor heterostructures, graphene quantum dots as well as patterned graphene nano-structures at a medium temperature range of 400-700 °C suitable for most important elementary and compound semiconductors.

  2. Synthesis of CuNi/C and CuNi/γ-Al2O3 Catalysts for the Reverse Water Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Maxime Lortie

    2015-01-01

    Full Text Available A new polyol synthesis method is described in which CuNi nanoparticles of different Cu/Ni atomic ratios were supported on both carbon and gamma-alumina and compared with Pt catalysts using the reverse water gas shift, RWGS, reaction. All catalysts were highly selective for CO formation. The concentration of CH4 was less than the detection limit. Cu was the most abundant metal on the CuNi alloy surfaces, as determined by X-ray photoelectron spectroscopy, XPS, measurements. Only one CuNi alloy catalyst, Cu50Ni50/C, appeared to be as thermally stable as the Pt/C catalysts. After three temperature cycles, from 400 to 700°C, the CO yield at 700°C obtained using the Cu50Ni50/C catalyst was comparable to that obtained using a Pt/C catalyst.

  3. Synthesis of new annulated pyrano[2,3-d]pyrimidine derivatives using organo catalyst (DABCO in aqueous media

    Directory of Open Access Journals (Sweden)

    Ajmal R. Bhat

    2017-01-01

    Full Text Available A selective method for the synthesis of annulated pyrano[2,3-d]pyrimidines has been developed. It was shown that base catalysis is more efficient in this reaction, rather than acid catalysis as it is believed that 1,4-diazabicyclo[2.2.2]octane (DABCO is N-type base catalyst used for the synthesis of pyrano[2,3-d]pyramidine derivatives via one-pot three component condensation reactions of various aromatic aldehydes, active methylene compounds and barbituric acid in aqueous ethanol carried at normal temperature. The potential application of DABCO in organic synthesis increasing rapidly because of its reaction simplicity, less pollution, and minimum reaction time, high yields of the biological active products, uses less toxic solvents and low cost chemicals.

  4. A green and efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using heteropolyanion-based ionic liquids: as a recyclable solid catalyst.

    Science.gov (United States)

    Vahdat, Seyed Mohammad; Baghery, Saeed

    2013-09-01

    In this paper, we introduce two nonconventional ionic liquid compounds which are composed of propane sulfonate functionalized organic cations and heteropolyanions as green solid acid catalysts for the highly efficient and green synthesis of 2,3-disubstitutedquinoxaline derivatives. These ionic liquids are in the solid state at room temperature and the synthesis is carried out via the one-pot condensation reaction of various o-phenylenediamine with 1,2-diketone derivatives. Benzoxazole and benzimidazole derivatives were also synthesized by these novel catalysts via the one-pot condensation from reaction orthoester with o-aminophenol (synthesis of benzoxazole derivatives) and ophenylenediamine (synthesis of benzimidazole derivatives). All experiments successfully resulted in the desired products. The described novel synthesis method has several advantages of safety, mild condition, high yields, short reaction times, simplicity and easy workup compared to the traditional method of synthesis.

  5. Sol-gel (template) synthesis of macroporous Mo-based catalysts for hydrothermal oxidation of radionuclide-organic complexes

    Science.gov (United States)

    Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.

    2017-07-01

    Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.

  6. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis.

    Science.gov (United States)

    Chakraborty, R; Bepari, S; Banerjee, A

    2011-02-01

    This paper explores the feasibility of converting waste Rohu fish (Labeo rohita) scale into a high-performance, reusable, low-cost heterogeneous catalyst for synthesis of biodiesel from soybean oil. The thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) analysis revealed that a significant portion of the main component of fish scale i.e. HAP (hydroxyapatite) could be transformed into β-tri-calcium phosphate when calcined above 900°C for 2 h. Scanning Electron Microscopy (SEM) morphology studies of the calcined scale depicted a fibrous layer of porous structure; while a BET surface area of 39 m(2)/g was measured. Response surface methodology (RSM) was employed to determine the optimal parametric conditions viz. methanol/oil molar ratio, 6.27:1, calcination temperature, 997.42°C and catalyst concentration, 1.01 wt.% of oil corresponding to a maximum FAME yield of 97.73%. Reusability results confirmed that the prepared catalyst could be reemployed up to six times, procreating a potentially applicable avenue in biodiesel synthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Synthesis and Characterization of Silicotungstic Acid Nanoparticles Via Sol Gel Technique as a Catalyst in Esterification Reaction

    International Nuclear Information System (INIS)

    Wan Nor Roslam Wan Ishak; Manal Ismail

    2011-01-01

    The purpose of this work is to study the synthesis, characterization and catalytic performance of silicotungstic acid-silica sol gel (STA-SG) as acid catalyst in esterification reaction. The activity and selectivity of STA-SG have been investigated and compared to the STA bulk (STAB) and sulphuric acid (H 2 SO 4 ). The synthesized catalysts were characterized by various techniques shown that the STA-SG catalyst is relatively high in surface area compared to STAB of 460.11 m 2 /g and 0.98 m 2 /g, respectively. From the XPS analyses, there was a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. Both the H 2 SO 4 and the STAB gave high conversion of 100 % and 98 %, while lower selectivity of glycerol monooleate (GMO) with 81.6 % and 89.9 %, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, while significantly higher GMO selectivity of 95 % rendering it the more efficient acid catalyst. (author)

  8. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst.

    Science.gov (United States)

    Kuld, Sebastian; Conradsen, Christian; Moses, Poul Georg; Chorkendorff, Ib; Sehested, Jens

    2014-06-02

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent picture of surface alloying between copper and zinc. This analysis enables a reinterpretation of the methods that have been used for the determination of the Cu surface area and provides an opportunity to independently quantify the specific Cu and Zn areas. This method may also be applied to other systems where metal-support interactions are important, and this work generally addresses the role of the carrier and the nature of the interactions between carrier and metal in heterogeneous catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Immobilization of Highly Effective Palladium Catalyst onto Poly(4-Vinylpyridine): Synthesis and Characterization

    International Nuclear Information System (INIS)

    Siti Kamilah Che Soh; Intan Shafinass Kassim; Siti Aminah Jusoh; Mustaffa Samsuddin

    2016-01-01

    A commonly known weakness of homogeneous catalysts is the difficulty to recover the active catalyst from the product. Due to the disadvantage, the designing of supported catalyst has been approached to overcome the separation difficulty of the palladium-based homogeneous catalyst. New polymer supported N 2 O 2 metal complex was successfully immobilized by mixing of poly(4-vinylpyridine) with palladium(II) complex in the presence of ethyl acetate as solvent. Then, the reaction was stirred for 72 hours at room temperature to form corresponding P 4 VP-Pd catalyst. The properties of immobilized catalyst were characterized by various techniques such as fourier transform infrared (FTIR), thermogravimetric (TGA), X-ray diffraction (XRD), scanning electron microscopy/ energy dispersive X-ray (SEM/ EDX) and inductively coupled plasma-optical emission (ICP-OES) spectroscopy. (author)

  11. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation.

    Science.gov (United States)

    Jodłowski, Przemysław J; Jędrzejczyk, Roman J; Chlebda, Damian K; Dziedzicka, Anna; Kuterasiński, Łukasz; Gancarczyk, Anna; Sitarz, Maciej

    2017-07-07

    The aim of this study was to obtain nanocrystalline mixed metal-oxide-ZrO₂ catalysts via a sonochemically-induced preparation method. The effect of a stabiliser's addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature.

  12. Ferromagnetic resonance of cobalt nanoparticles used as a catalyst for the carbon nanotubes synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan)], E-mail: duraia_physics@yahoo.com; Abdullin, Kh.A. [Institute of Physics and Technology, Almaty (Kazakhstan)

    2009-12-15

    Catalyst is considered to be the most crucial parameter for the growth of carbon nanotubes. In this work we study the ferromagnetic resonance (FMR) spectra of the catalyst nanoclusters. Moreover we report for the first time the angle FMR studies of catalyst particles with and without CNT layer. The dependencies of the FMR spectra, X-ray diffraction (XRD) patterns, Raman spectra and morphology of the CNT layers on the growth conditions are discussed.

  13. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society....

  14. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over CeO2(X)-ZnO(1-X) nano-catalysts.

    Science.gov (United States)

    Kang, Ki Hyuk; Joe, Wangrae; Lee, Chang Hoon; Kim, Mieock; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2013-12-01

    CeO2(X)-ZnO(1-X) (X = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) nano-catalysts were prepared by a co-precipitation method with a variation of CeO2 content (X, mol%), and they were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of CeO2(X)-ZnO(1-X) nano-catalysts was well confirmed by XRD analysis. The amount of DMC produced over CeO2(X)-ZnO(1-X) catalysts exhibited a volcano-shaped curve with respect to CeO2 content. Acidity and basicity of CeO2(X)-ZnO(1-X) nano-catalysts were measured by NH3-TPD and CO2-TPD experiments, respectively, to elucidate the effect of acidity and basicity on the catalytic performance in the reaction. It was revealed that the catalytic performance of CeO2(X)-ZnO(1-X) nano-catalysts was closely related to the acidity and basicity of the catalysts. Amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, CeO2(0.7)-ZnO(0.3) with the largest acidity and basicity showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

  15. Synthesis of Acrolein from Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    Directory of Open Access Journals (Sweden)

    Akhmad Zainal Abidin

    2016-02-01

    Full Text Available Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration. The catalyst was prepared by three different methods: hydrothermal (catalyst A, deposition at Fe/P = 1.15 (catalyst B, and deposition at Fe/P = 1.20 (catalyst C. The experimental reaction temperature was varied at 220, 240 and 260 °C under constant atmospheric pressure. The results showed that catalyst C provided the best yield (91%, followed by catalyst A (90% and catalyst B (82%. The increasing reaction temperature showed a tendency to increase the yield of acrolein, while the presence of oxygen reduced the yield of acrolein and allowed the reaction to produce more side products such as glycerol propanal, acetaldehyde, and propionate. Catalyst reuse without any regeneration resulted in a yield profile of acrolein that continued to decline.

  16. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  17. An improved solvent-free synthesis of flunixin and 2-(arylamino) nicotinic acid derivatives using boric acid as catalyst.

    Science.gov (United States)

    Yarhosseini, Mahsa; Javanshir, Shahrzad; Dolatkhah, Zahra; Dekamin, Mohammad G

    2017-12-01

    A simple solvent-free protocol for the preparation of flunixin, a potent non-narcotic, non-steroidal anti-inflammatory drugs is reported using boric acid as catalyst. Its salt, flunixin meglumine are then prepared under reflux in EtOH. This sustainable method are then extended for the synthesis of a series of 2-(arylamino) nicotinic acid derivatives. The present protocol combines non-hazardous neat conditions with associated benefits like excellent yield, straightforward workup, and use of readily available and safe catalyst in the absence of any solvent, which are important factors in the pharmaceutical industry. The pathway for catalytic activation of 2-chloronicotic acid with boric acid was also investigated using Gaussian 03 program package.

  18. Study on the synthesis of novel TiO2-copper porphyrin catalyst and photocatalytic degradation of methyl orange

    Directory of Open Access Journals (Sweden)

    Shaorui CHEN

    2017-10-01

    Full Text Available In order to study the effect of different length side chain catalysts on photocatalytic degradation of methyl orange solution, solving the poroblem of water pollution control, four novel porphyrins and their corresponding copper complexes are synthesized from the starting material 1-naphthol, and their structures are characterized by MS, NMR and elemental analysis. Novel TiO2-porphyrins hybrid systems are prepared and its photocatalytic activity is investigated by photodegradation of methyl orange in aqueous solution under visible light. The results indicate that when there are side chains on the benzene ring of copper-porphyrin derivatives, the photocatalytic activity of substituted TiO2-copper porphyrins is better than TiO2-copper tetraphenyl porphyrin, but the effect of the side chains' length on the activity is not obvious. This study provides an idea for the synthesis of highly efficient catalysts in the future.

  19. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction

    Directory of Open Access Journals (Sweden)

    Madhan Vinu

    2017-10-01

    Full Text Available A series of aluminum-based coordination polymers or metal–organic frameworks (Al–MOFs, i.e., DUT-4, DUT-5, MIL-53, NH2-MIL-53, and MIL-100, have been facile prepared by microwave (MW-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al–MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H2O2 as oxidant, even under mild conditions, with more than 95% conversion.

  20. Parameter Optimisation of Carbon Nanotubes Synthesis via Hexane Decomposition over Minerals Generated from Anadara granosa Shells as the Catalyst Support

    Directory of Open Access Journals (Sweden)

    M. Z. Hussein

    2012-01-01

    Full Text Available The synthesis of carbon nanotubes (CNTs by the chemical vapour deposition (CVD method using natural calcite from Anadara granosa shells as the metal catalyst support was studied. Hexane and iron (Fe were used as the carbon precursor and the active component of the catalyst, respectively. Response surface methodology (RSM based on central composite design (CCD was used to optimise the effect of total iron loading, the duration of reaction, and reaction temperature. The optimal conditions were total iron loading of 7.5%, a reaction time of 45 min, and a temperature of 850°C with a resulting carbon yield of 131.62%. Raman spectra, field-emission-scanning electron microscopy (FESEM and transmission electron microscopy (TEM analyses showed that the CNTs were of the multiwalled type (MWNTs.

  1. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  2. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  3. Fischer-Tropsch synthesis: Moessbauer studies of pretreated ultrafine iron oxide catalysts. Partial quarterly progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chenshi Huang; Davis, B.H. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Rao, K.R.P.M.; Huffman, G.P.; Huggins, F.E. [Kentucky Univ., Lexington, KY (United States). Inst. for Mining and Minerals Research

    1992-09-01

    Moessbauer spectroscopy indicates that a 24 hour-pretreatment in CO at 260{degrees}C and 8 atm. in a tetralin solvent almost completely converts uftrafine iron oxide (about 3 nm) to iron carbide. However, pretreatment in hydrogen under the same conditions resulted in reduction of about 33% of the iron to metallic Fe; the remainder was Fe{sub 3}O{sub 4}. Exposure of the CO pretreated catalyst to a 1:1 HDCO synthesis gas resulted in the gradual reoxidation of the carbides to Fe{sub 3}O{sub 4}. During the first 2 hours of exposure of the H{sub 2} pretreated sample to synthesis gas,.the metallic Fe was converted to iron carbides. Further exposure of the H{sub 2} pretreatment sample to synthesis gas did not result in a composition change of the catalyst. Therefore, it is concluded that iron carbides with different oxidation characteristics were formed in these two cases.

  4. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Seetala V. Naidu; Upali Siriwardane

    2005-01-14

    We have developed effective nanoparticle incorporated heterogeneous F-T catalysts starting with the synthesis of Fe, Co, Cu nanoparticles using Fe(acac){sub 3}, Co(acac){sub 2}, and Cu(acac){sub 2} precursors and incorporating the nanoparticles into alumina sol-gel to yield higher alkanes production. SEM/EDX, XRD, BET, VSM and SQUID experimental techniques were used to characterize the catalysts, and GC/MS were used for catalytic product analysis. The nanoparticle oxide method gave the highest metal loading. In case of mixed metals it seems that Co or Cu interferes and reduces Fe metal loading. The XRD pattern for nanoparticle mixed metal oxides show alloy formation between cobalt and iron, and between copper and iron in sol-gel prepared alumina granules. The alloy formation is also supported by DTA and VMS data. The magnetization studies were used to estimate the catalyst activity in pre- and post-catalysts. A lower limit of {approx}40% for the reduction efficiency was obtained due to hydrogenation at 450 C for 4 hrs. About 85% of the catalyst has become inactive after 25 hrs of catalytic reaction, probably by forming carbides of Fe and Co. The low temperature (300 K to 4.2 K) SQUID magnetometer results indicate a superparamagnetic character of metal nanoparticles with a wide size distribution of < 20 nm nanoparticles. We have developed an efficient and economical procedure for analyzing the F-T products using low cost GC-TCD system with hydrogen as a carrier gas. Two GC columns DC 200/500 and Supelco Carboxen-1000 column were tested for the separation of higher alkanes and the non-condensable gases. The Co/Fe on alumina sol-gel catalyst showed the highest yield for methane among Fe, Co, Cu, Co/Fe, Cu/Co, Fe/Cu. The optimization of CO/H{sub 2} ratio indicated that 1:1 ratio gave more alkanes distribution in F-T process with Co/Fe (6% each) impregnated on alumina mesoporous catalyst.

  5. Construction of porous CuCo2S4nanorod arrays via anion exchange for high-performance asymmetric supercapacitor.

    Science.gov (United States)

    Cheng, Siyi; Shi, Tielin; Chen, Chen; Zhong, Yan; Huang, Yuanyuan; Tao, Xiangxu; Li, Junjie; Liao, Guanglan; Tang, Zirong

    2017-07-27

    To push the energy density limit of supercapacitors, proper pseudocapacitive materials with favorable nanostructures are urgently pursued. Ternary transition metal sulfides are promising electrode materials due to the better conductivity and higher electrochemical activity in comparison to the single element sulfides and transition metal oxides. In this work, we have successfully synthesized porous CuCo 2 S 4 nanorod array (NRAs) on carbon textile through a stepwise hydrothermal method, including the growth of the Cu-Co precursor nanowire arrays and subsequent conversion into CuCo 2 S 4 NRAs via anion exchange reaction. The CuCo 2 S 4 NRAs electrode exhibits a greatly enhanced specific capacitance and an outstanding cycling stability. Moreover, an asymmetric supercapacitor using the CuCo 2 S 4 NRAs as positive electrode and activated carbon as negative electrode delivers a high energy density of 56.96 W h kg -1 . Such superior performance demonstrate that the CuCo 2 S 4 NRAs are promising materials for future energy storage applications.

  6. A novel method for fabrication of Fe catalyst used for the synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Carbon nanotubes (CNTs) have been grown by decomposition of propane over a nanocamposite catalyst by chemical vapour deposition (CVD). The catalyst was prepared from an aluminum/iron oxide/graphite mixture milled in a high-energy ball-milling equipment. Scanning and transmission electron.

  7. Confined-interface-directed synthesis of Palladium single-atom catalysts on graphene/amorphous carbon

    DEFF Research Database (Denmark)

    Xi, Jiangbo; Sun, Hongyu; Zhang, Zheye

    2018-01-01

    The maximized atomic efficiency of supported catalysts is highly desired in heterogeneous catalysis. Therefore, the design and development of active, stable, and atomic metal-based catalysts remains a formidable challenge. To tackle these problems, it is necessary to investigate the interaction b...

  8. Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts

    NARCIS (Netherlands)

    Espinosa, S; Mentruit, C; Kapteijn, F; Moulijn, JA; Melián-Cabrera, I.

    Fe-ZSM5 catalysts were fully Fe-exchanged by pretreating the parent zeolite with base a solution prior to the Fe-exchange. The catalysts prepared in this way showed very low amount of inactive FeOx and improved performance in N2O decomposition. Alkaline leaching breaks down the zeolite crystals -

  9. Crystalline niobia with tailored porosity as support for cobalt catalysts for the Fischer–Tropsch synthesis

    NARCIS (Netherlands)

    Hernández Mejía, C.; den Otter, J. H.; Weber, J. L.; de Jong, K. P.

    2017-01-01

    Structure and catalytic performance of niobia-supported cobalt catalysts were studied based on crystal phase, porosity and cobalt loading. Crystalline niobia as support proved to be a prerequisite to obtain highly active and selective Co/niobia Fischer–Tropsch catalysts, whereas amorphous niobia

  10. Nano indium oxide as a recyclable catalyst for the synthesis of ...

    Indian Academy of Sciences (India)

    Nano indium oxide is an effective heterogeneous catalyst for the reaction between aryl cyanamides and sodium azide to synthesize the arylaminotetrazoles in good yields. This method has advantages of high yields, simple methodology, short reaction times and easy work-up. The catalyst can be recovered and reused.

  11. An efficient catalyst-free synthesis of novel chromeno [4, 3-b ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 8. An efficient catalyst-free ... Keywords. Ethylene glycol; 4-hydroxycoumarin; multicomponent reaction; green chemistry ... Catalyst-free conditions along with green solvent system make the process eco-friendly as well aseconomical. High yields of the ...

  12. Nano indium oxide as a recyclable catalyst for the synthesis of ...

    Indian Academy of Sciences (India)

    Nano indium oxide is an effective heterogeneous catalyst for the reaction between aryl cyanamides and sodium azide to synthesize the arylaminotetrazoles in good yields. This method has advantages of high yields, simple methodology, short reaction times and easy work-up. The catalyst can be recovered and reused in ...

  13. Chiral bicycle imidazole nucleophilic catalysts: rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement.

    Science.gov (United States)

    Zhang, Zhenfeng; Xie, Fang; Jia, Jia; Zhang, Wanbin

    2010-11-17

    A new type of chiral bicycle imidazole nucleophilic catalyst was rationally designed, facilely synthesized, and successfully applied in an asymmetric Steglich rearrangement with good to excellent yield and enantioselectivity at ambient temperature. Moreover, it can be easily recycled with almost no reduction of catalytic efficiency. This is the first example for the successful chiral imidazole nucleophilic catalyst without H-bonding assistance.

  14. A novel method for fabrication of Fe catalyst used for the synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    investigate the catalyst and synthesized CNTs. The results show that iron nanoparticles are produced in an ... on a metal catalyst and hydrocarbon pyrolysis (Dai 2002;. Magrez et al 2010), using a metal nanocatalyst ( ..... nanomaterials like nanofibers and nanotubes (Tessonnier et al 2009). The Raman spectra of CNT ...

  15. Synthesis of liquid menthol by hydrogenation of dementholized peppermint oil over Ni catalysts

    Directory of Open Access Journals (Sweden)

    Debora L. Manuale

    2010-01-01

    Full Text Available Hydrogenation of (--menthone and (+-isomenthone was studied at 2.7 MPa and 100 ºC. The objective was to produce a liquid menthol mixture rich in (--menthol from dementholized peppermint oil. Ni-based catalysts were tested and compared for this reaction: a 6 and 12% Ni dispersed into a nonstoichiometric magnesium aluminate (Ni-Mg-Al with spinel structure; b Ni-Raney catalyst. Both types of catalysts were active for (--menthone and (+-isomenthone hydrogenation. Lower conversion but higher selectivity to (--menthol was obtained with Ni-Mg-Al catalysts. However, they rapidly lost their activity. Instead Ni-Raney catalysts kept its original activity even after several hydrogenation runs.

  16. Synthesis of oxide-supported vanadium catalysts and their activity in ethylene polymerization

    International Nuclear Information System (INIS)

    Czaja, K.; Korach, L.; Bialek, M.

    1999-01-01

    The activity of oxide supported vanadium-based catalyst system (VOCl 3 /Et 2 AlCl) in low-pressure ethylene polymerization and the properties of the resulting polyethylenes were studied in relation to the type and mode of modification of the oxide support. Alumina and silica and an unconventional silica-type material prepared by sol-gel process were used as supports. Results are compared with those obtained earlier with a catalyst supported on MgCl 2 (THF) 2 . Of the oxides studied, the silica-type sol-gel material dehydrated and subsequently modified with Et 2 AlCl proved to be the best carrier for the vanadium catalyst. The polyethylene prepared by using this catalyst support was found to exhibit good morphology, especially as compared with the polymer prepared over the more active Mg-V-Al catalyst. (author)

  17. Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production

    Science.gov (United States)

    Anisuzzaman, S. M.; Krishnaiah, D.; Bono, A.; Abang, S.; Sundang, M.; Suali, E.; Lahin, F. A.; Shaik Alawodeen, A.

    2016-06-01

    Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction.

  18. Microwave-induced One-pot Synthesis of 2,4,5-trisubstituted Imidazoles Using Rochelle Salt as a Green Novel Catalyst

    Directory of Open Access Journals (Sweden)

    Balasaheb V. Shitole

    2015-09-01

    Full Text Available Rochelle Salt is used as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles via condensation of benzil, ammonium acetate, and aromatic aldehydes. The key advantages of this process are the usage of an inexpensive and readily available catalyst, simple procedure, shorter reaction time, and high yield of products. DOI: http://dx.doi.org/10.17807/orbital.v7i3.720 

  19. The Simple, Effective Synthesis of Highly Dispersed Pd/C and CoPd/C Heterogeneous Catalysts via Charge-Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    Lawrence D’Souza

    2016-05-01

    Full Text Available Pd/C and CoPd/C heterogeneous catalysts have been synthesized by adopting Charge Enhanced Dry Impregnation (CEDI. The particles size distribution, their high metal surface-to-bulk ratios, and synthesis feasibility are unmatchable to any known noble metal bimetallic heterogeneous catalyst preparation techniques. Next generation Fuel Cells and Fischer-Tropsch catalytic processes economy will be benefited from the proposed methodology.

  20. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  1. A practical synthesis of xylo- and arabinofuranoside precursors by diastereoselective reduction using Corey-Bakshi-Shibata catalyst.

    Science.gov (United States)

    Utley, Lynn M; Maldonado, Jessica; Awad, Ahmed M

    2018-01-02

    The Corey-Bakshi-Shibata (CBS) catalyst provides an efficient mechanism to reduce ketones and achieve desired enantiopure alcohols. Herein, the diastereoselective reduction of C-2' and C-3'-keto ribofuranoside derivatives to the corresponding arabino- and xylofuranosides in greater than 95% diastereomeric excess is reported. The stereo-directed substitution with an azido group as well as the synthesis of prodrugs cytarabine and vidarabine are also described. The reported strategy offers superior diastereoselectivity, shorter reaction times, and obviates cooling required with comparable protocols involving achiral reductants.

  2. Green and selective synthesis of N-substituted amides using water soluble porphyrazinato copper(II) catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsinia, Sara S.E.; Akhlaghinia, Batool; Eshghi, Hossein, E-mail: akhlaghinia@um.ac.ir [Ferdowsi University of Mashhad (Iran, Islamic Republic of). Faculty of Sciences. Department of Chemistry; Safaei, Elham [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of). Department of Chemistry

    2013-06-15

    N, N',N{sup ,} N{sup '}-Tetramethyl tetra-2,3-pyridinoporphyrazinato copper(II) methyl sulfate ([Cu(2,3-tmtppa)](MeSO{sub 4}){sub 4}) efficiently catalyzed the direct conversion of nitriles to N-substituted amides. The one pot selective synthesis of the N-substituted amides from nitriles and primary amines was performed in refluxing H{sub 2}O. The catalyst was recovered and reused at least four times, maintaining its efficiency. (author)

  3. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cu/ZnO aggregates in siliceous mesoporous matrices : development of a new model methanol synthesis catalyst

    OpenAIRE

    Berg, Maurits W. E. van den; Polarz, Sebastian; Tkachenko, Olga P.; Klementiev, Konstantin V.; Bandyopadhyay, Mahuya; Khodeir, Lamma; Gies, Hermann; Muhler, Martin; Grünert, Wolfgang

    2006-01-01

    Copper and zinc were introduced into mesoporous siliceous matrices with the goal of obtaining model methanol synthesis catalysts with intense interaction between copper and the ZnO promoter. The preparation methods included various aqueous routes starting from acetate solutions (into MCM-48) and a route involving an organometallic step thermolysis of a liquid heterocubane of Zn4O4 type ([CH3ZnOCH2CH2OCH3]4) in a wormhole-type silica of 5 nm average pore size followed by aqueous Cu (nitrate) i...

  5. The mild liquid-phase synthesis of 3-picoline from acrolein diethyl acetal and ammonia over heterogeneous catalysts

    Science.gov (United States)

    Luo, Cai-Wu; Chao, Zi-Sheng; Lei, Bo; Wang, Hong; Zhang, Jun; Wang, Zheng-Hao

    2017-11-01

    The liquid-phase synthesis of 3-picoline from the reaction of acrolein diethyl acetal and ammonia over ion-exchanged resins (D402 and D002) and HZSM-5 (Si/Al = 25) was carried out in a batch reactor. Various influencing parameters, including by the addition of water, ion-exchanged resins, reaction temperature and HZSM-5, were systematically investigated. The results showed that the reaction could be directly conducted, and organic acid wasn’t utilized. The highest yield of 3-picoline reached up to 24% using HZSM-5 as catalyst at 110 °C.

  6. Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell

    International Nuclear Information System (INIS)

    Kakati, Nitul; Maiti, Jatindranath; Jee, Seung Hyun; Lee, Seok Hee; Yoon, Young Soo

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → CNTs are homogeneously covered by the porous SnO 2 layer which enhanced the electronic property of the catalyst support as well as the catalyst and fuel interaction. → PtRu/SnO 2 /CNT catalyst shows an electrochemically active surface area of 81.84 m 2 g Pt -1 and a mass activity of 890mAmg Pt -1 . → Hydrothermal synthesis offers small particle size as well as well dispersion of the catalyst nanoparticles. → Addition of SnO 2 with PtRu provides an additional route for OH ads formation and hence accelerates methanol oxidation. - Abstract: An electrocatalyst support comprising of carbon nanotube and tin oxide (CNT/SnO 2 ) was prepared by an ethylene glycol mediated synthesis procedure and proposed as an improved catalyst support for direct methanol fuel cell. CNTs are covered by the porous SnO 2 layer which is homogeneously distributed over CNT surface. PtRu alloy nanoparticles were deposited over this composite material by a hydrothermal synthesis method. The CNT/SnO 2 composite and its supported PtRu catalyst (PtRu/SnO 2 /CNT) were characterized by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The electrocatalytic activity of PtRu/SnO 2 /CNT catalyst for methanol oxidation has been studied by cyclic voltammetry, impedance spectroscopy and chronoamperometry. The results were compared with Pt/SnO 2 /CNT and PtRu/CNT catalysts synthesized by the same procedure. PtRu/SnO 2 /CNT catalyst shows an electrochemically active surface area of 81.84 m 2 g Pt -1 and a mass activity of 890mAmg Pt -1 . The presence of SnO 2 layer over CNT can further improve the electrocatalytic activity of PtRu alloy nanoparticles for methanol oxidation.

  7. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    International Nuclear Information System (INIS)

    Bai Suli; Huang Chengdu; Lv Jing; Li Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N 2 -physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO 2 catalyst showed an enhanced activity, C 5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO 2 catalyst.

  8. Ionophore silica-coated magnetite nanoparticles as a recyclable heterogeneous catalyst for one-pot green synthesis of 2,4,5-trisubstituted imidazoles.

    Science.gov (United States)

    Naeimi, Hossein; Aghaseyedkarimi, Dorsa

    2016-01-21

    Novel multi-SO3H functionalized strong Brønsted acidic ionic liquid coated magnetite nanoparticles have been prepared and applied as catalyst for the synthesis of 2,4,5-trisubstituted imidazoles. The results showed that a novel catalyst was very efficient for the reaction and could be magnetically separated and reused at least 6 times with less reduction in its catalytic activity. Operational simplicity, low cost of the catalyst used, high yields, environmental friendliness, wide applicability, reusability and easy recovery of the catalyst using an external magnet are the most important features of this methodology. The catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), dynamic laser scattering (DLS) and vibrating sample magnetometry (VSM).

  9. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  10. Sulfonic Acid Functionalized Nano-γ-Al2O3: A New, Efficient, and Reusable Catalyst for Synthesis of 3-Substituted-2H-1,4-Benzothiazines

    Directory of Open Access Journals (Sweden)

    Wei Lin Li

    2013-01-01

    Full Text Available A simple and efficient synthetic protocol has been developed for the synthesis of 3-substituted-2H-1,4-benzothiazines by using a novel sulfonic acid functionalized nano-γ-Al2O3 catalyst, devoid of corrosive acidic, and basic reagents. The developed method has the advantages of good to excellent yields, short reaction times, operational simplicity, and a recyclable catalyst. The catalyst can be prepared by a simple procedure from inexpensive and readily available nano-γ-Al2O3 and has been shown to be recoverable and reusable up to six cycles without any loss of activity.

  11. Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in fischer-tropsch synthesis

    Directory of Open Access Journals (Sweden)

    F. E. M Farias

    2011-09-01

    Full Text Available Effects of K addition on the performance of supported Fe catalysts for Fischer - Tropsch synthesis (FTS were studied in a slurry reactor at 240 to 270ºC, 2.0 to 4.0 MPa and syngas H2/CO = 1.0. The catalysts were characterized by N2 adsorption, H2 temperature programmed reduction, X - ray diffraction, X - ray fluorescence, thermogravimetric analysis, scanning electron microscopy and dispersive X - ray spectroscopy. A strong interaction was observed between Fe and K, which inhibited the reduction of Fe catalyst. Addition of potassium increased the production of heavy hydrocarbons (C20+.

  12. Comparison of Cobalt based Catalysts Supported on MWCNT and SBA-15 Supporters for Fischer-tropsch Synthesis by Using Novel Vortex Type Reactor

    International Nuclear Information System (INIS)

    Yakubov, A.; Shahrun, M.S.; Kutty, M.G.; Hamid, S.B.A.; Piven, V.

    2011-01-01

    10 and 40 wt% Co/ Multi wall Carbon Nano tubes (MWCNT) and 10 and 40 wt% Co/ Santa Barbara Amorphous-15 (SBA) catalysts were prepared via incipient wetness impregnation and characterized by Scanning Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy (SEM and EDX), N 2 adsorption-desorption (BET), X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Temperature- Programmed Reduction and H 2 desorption TPD/RO. Co(NO 3 ) 2 * 6H 2 O was used as a cobalt precursor. 200 ml hastelloy autoclave reactor was implemented to see the performance of the catalysts. This report presents details about the catalyst synthesis and reactor study. (author)

  13. Polymer support immobilized acidic ionic liquid: Preparation and its application as catalyst in the synthesis of hantzsch 1,4-dihydro pyridines

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbin, Bentolhoda; Davoodnia, Abolghasem; Behmadi, Hossein; Tavakoli Hoseini, Niloofar [Islamic Azad Univ., Mashhad (Iran, Islamic Republic of)

    2012-07-15

    A polymer support immobilized acidic ionic liquid was prepared by copolymerization of 3-vinyl-1-(4-sulfonic acid)butyl imidazolium hydrogen sulfate with styrene in the presence of benzoyl peroxide and its primary application as a solid acidic heterogeneous catalyst to the synthesis of Hantzsch 1,4-dihydro pyridines through a one-pot three-component reaction of aromatic aldehydes, ethyl acetoacetate and ammonium acetate was investigated. The results showed that this heterogeneous catalyst has high catalytic activity and the desired products were obtained in good to high yields. Moreover, the catalyst was found to be reusable and a considerable catalytic activity still could be achieved after third run.

  14. Synthesis of seaweed based carbon acid catalyst by thermal decomposition of ammonium sulfate for biodiesel production

    Science.gov (United States)

    Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai

    2017-04-01

    Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.

  15. Cascade synthesis of dihydrobenzofuran via Claisen rearrangement of allyl aryl ethers using FeCl3/MCM-41 catalyst

    Directory of Open Access Journals (Sweden)

    Sachin S. Sakate

    2018-05-01

    Full Text Available Dihydrobenzofuran as one of the active ingredients of the naturally occurring motif is synthesized by using in situ generation of ortho allyl phenols. Aryl allyl ethers on reacting with catalytic amounts of non noble metal iron (III chloride supported on MCM-41 under moderate reaction conditions yield dihydrobenzofuran. First step via Claisen rearrangement gives ortho allyl phenol followed by its in situ cyclization to yield dihydrobenzofuran in very good yields. Both Lewis as well as Brønsted acidity of the catalyst as evidenced by Py-FTIR studies was found to catalyze the cascade synthesis of dihydrobenzofuran. The scope of the present strategy was successfully demonstrated for several substrates with varying electronic effects for the synthesis of corresponding dihydrobenzofuran with high yields in a range of 71–86%. Keywords: Claisen rearrangement, Dihydrobenzofuran, Aryl allyl ether, MCM-41, Ferric chloride

  16. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring Closing Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.

    2010-01-01

    (eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172

  17. Combined XRD and XANES studies of a Re-promoted Co/γ-Al2O3 catalyst at Fischer–Tropsch synthesis conditions

    DEFF Research Database (Denmark)

    Rønning, Magnus; Tsakoumis, Nikolaos E.; Voronov, Alexey

    2010-01-01

    products (FT synthesis at 483K, 18bar and low GHSV). The data analysis shows no significant changes in the cobalt crystallites during the first hours of Fischer–Tropsch synthesis. Running the reaction at higher temperatures and predominantly methanation conditions led to significant sintering of the cobalt......A cobalt based Fischer–Tropsch catalyst was studied during the initial stages of the reaction at industrially relevant conditions. The catalyst consists of 20wt% cobalt supported on γ-Al2O3 and promoted by 1wt% of rhenium. X-ray diffraction (XRD) in combination with X-ray absorption near edge...

  18. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices

    International Nuclear Information System (INIS)

    Teixeira, Ana Paula de Carvalho

    2010-01-01

    Molybdenum is known for its synergistic effect in the synthesis of carbon nanotubes (CNs) by chemical vapor deposition (CVD method). When added to typical catalysts like iron, nickel, and cobalt, even in small quantities, it is increases the yield of these nanostructures. The presence of Mo also has an influence on the type and number of CN walls formed. Although this effect is widely documented in the literature, there is not yet a consensus about the mechanism of action of molybdenum in catalytic systems. The objective of the present work is to study the influence of molybdenum on the catalytic activity of iron nanoparticle-based catalysts supported on magnesium oxide (Fe/MgO system) in the synthesis of carbon nanotubes by the CVD method. The Mo concentration was systematically varied from null to molar ratio values four times greater than the quantity of Fe, and the obtained material (catalysts and carbon nanotubes) were broadly characterized by different techniques. In order to also study the influence of the preparation method on the final composition of the catalytic system phases, the catalytic systems (Fe/MgO e FeMo x /MgO) were synthesized by two different methods: co-precipitation and impregnation. The greatest CN yields were observed for the catalysts prepared by coprecipitation. The difference was attributed to better dispersion of the Fe and Mo phases in the catalyst ceramic matrix. In the precipitation stage, it was observed the formation of layered double hydroxides whose concentration increased with the Mo content up to the ratio of Mo/Fe equal to 0.2. This phase is related to a better distribution of Fe and Mo in this concentration range. Another important characteristic observed is that the ceramic matrix is not inert. It can react both with Fe and Mo and form the iron solid solution in the magnesium oxide and the phases magnesium-ferrite (MgFe 2 0 4 ) and magnesium molybdate (MgMo0 4 ). The MgFe 2 0 4 phase is observed in all catalytic systems

  19. SYNTHESIS OF ZEOLITE SOCONY MOBIL FROM BLUE SILICA GEL AND RICE HUSK ASH AS CATALYSTS FOR HYDROTHERMAL LIQUEFACTION

    Directory of Open Access Journals (Sweden)

    SUYITNO

    2015-08-01

    Full Text Available Renewable biofuels produced by the hydrothermal liquefaction of rice husks have received much attention because of rapid increases in fuel consumption and corresponding declines in fossil fuel resources. To increase biofuel yields, template-free syntheses of Zeolite Socony Mobil (ZSM catalysts based on blue silica gel and rice husk ash as silica sources were studied. After ZSM synthesis in a closed reactor at 170°C, the crystallinity and crystalline diameters of the products were determined by X-ray diffraction, affording values of 56.33%– 65.81% and 64.3–68.5 nm, respectively. The hydrothermal liquefaction of rice husks with or without a catalyst was conducted in a closed reactor (1200 mm length × 100 mm diameter at 275°C for 45 min. The light biofuel was separated from the ethanol solvent and heavy biofuel via vacuum evaporation. The ZSM catalysts increased the biofuel yields by 2.9%–6.0%. The light biofuels exhibited heating values, flash points, and viscosities of approximately 4.2–4.3 kcal·g−1, 19°C, and 1.48–1.52 cSt, respectively. However, further studies are required to enhance the activity of the ZSMs and increase the quality of the biofuels.

  20. Mn3O4-CeO2 nano-catalysts: Synthesis, characterization and application

    Science.gov (United States)

    Anushree, Sharma, C.; Kumar, S.

    2016-05-01

    Nano-sized Mn3O4-CeO2 catalysts were synthesized by a cost effective co-precipitation method, and were studied as a heterogeneous catalyst for wet air oxidation of paper industry wastewater at mild operating conditions of 90 °C and 1 atm. The structural, micro-structural and textural properties of synthesized catalysts were studied through various characterization techniques, i.e. XRD, TEM, N2-sorption and EDS. The catalytic activity of Mn3O4-CeO2 was interestingly found to be higher than the corresponding single-metal oxides, and the Ce50Mn50 nano-catalyst with small crystallite size (4.5 nm), high specific surface area (75 m2g-1) and high porosity (0.24 ccg-1) was found to be most efficient with 69% color, 60% COD, 59% TOC, 48% AOX removal.

  1. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de

    2016-01-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  2. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  3. Nano-Ticl .SiO : a Versatile and Efficient Catalyst for Synthesis of ...

    African Journals Online (AJOL)

    NICO

    . Furthermore, the catalyst could be recovered conveniently and reused for at least ... metric carbon exists at the 4-position of the dihydropyrimidone ring and they are generally formulated as racemic mixtures. The absolute configuration in the ...

  4. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  5. The Synthesis of 2-Aminobenzoxazoles Using Reusable Ionic Liquid as a Green Catalyst under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Ya Zhou

    2017-04-01

    Full Text Available A facile, green, and efficient method for the direct oxidative amination of benzoxazoles using heterocyclic ionic liquid as catalyst has been developed. The reaction proceeded smoothly at room temperature and gave the desirable 2-aminobenzoxazoles with good to excellent yields (up to 97%. The catalyst 1-butylpyridinium iodide can be easily recycled and reused with similar efficacies for at least four cycles.

  6. Synthesis and characterization of nanosized Cu/ZnO catalyst by polyol method.

    Science.gov (United States)

    Altinçekiç, Tuba Gürkaynak; Boz, Ismail; Aktürk, Selçuk

    2008-02-01

    Nanosized catalysts composed of metallic copper supported on zinc oxide have been synthesized by the polyol process. Average crystallite size of copper was between 10 and 45 nm. Cu/ZnO catalyst particles were characterized by various techniques, such as X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and dynamic light scattering analysis (DLS).

  7. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  8. Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae.

    Science.gov (United States)

    Samorì, Chiara; Torri, Cristian; Fabbri, Daniele; Falini, Giuseppe; Faraloni, Cecilia; Galletti, Paola; Spera, Silvia; Tagliavini, Emilio; Torzillo, Giuseppe

    2012-08-01

    Acid catalysts were prepared by sulfonation of carbon materials obtained from the pyrolysis of sugar beet molasses, a cheap, viscous byproduct in the processing of sugar beets into sugar. Conditions for the pyrolysis of molasses (temperature and time) influenced catalyst performance; the best combination came from pyrolysis at low temperature (420 °C) for a relatively long time (8-15 h), which ensured better stability of the final material. The most effective molasses catalyst was highly active in the esterification of fatty acids with methanol (100 % yield after 3 h) and more active than common solid acidic catalysts in the transesterification of vegetable oils with 25-75 wt % of acid content (55-96 % yield after 8 h). A tandem process using a solid acid molasses catalyst and potassium hydroxide in methanol was developed to de-acidificate and transesterificate algal oils from Chlamydomonas reinhardtii, Nannochloropsis gaditana, and Phaeodactylum tricornutum, which contain high amounts of free fatty acids. The amount of catalyst required for the de-acidification step was influenced by the chemical composition of the algal oil, thus operational conditions were determined not only in relation to free fatty acids content in the oil, but according to the composition of the lipid extract of each algal species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simple organic molecules as catalysts for enantioselective synthesis of amines and alcohols.

    Science.gov (United States)

    Silverio, Daniel L; Torker, Sebastian; Pilyugina, Tatiana; Vieira, Erika M; Snapper, Marc L; Haeffner, Fredrik; Hoveyda, Amir H

    2013-02-14

    The discovery of catalysts that can be used to synthesize complex organic compounds by enantioselective transformations is central to advances in the life sciences; for this reason, many chemists aim to discover catalysts that allow for preparation of chiral molecules as predominantly one mirror-image isomer. The ideal catalyst should not contain precious elements and should bring reactions to completion in a few hours through operationally simple procedures. Here we introduce a set of small organic molecules that can catalyse reactions of unsaturated organoboron reagents with imines and carbonyls; the products of the reactions are enantiomerically pure amines and alcohols, which might serve as intermediates in the preparation of biologically active molecules. A distinguishing feature of this catalyst class is the presence of a 'key' proton embedded within their structure. Catalysts are derived from the abundant amino acid valine and are prepared in large quantities in four steps with inexpensive reagents. Reactions are scalable, do not demand stringent conditions, and can be performed with as little as 0.25 mole per cent catalyst in less than six hours at room temperature to generate products in more than 85 per cent yield and ≥97:3 enantiomeric ratio. The efficiency, selectivity and operational simplicity of the transformations and the range of boron-based reagents are expected to render this advance important for future progress in syntheses of amines and alcohols, which are useful in chemistry, biology and medicine.

  10. Active Heterogeneous CaO Catalyst Synthesis from Anadara granosa (Kerang Seashells for Jatropha Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Reddy ANR

    2017-01-01

    Full Text Available Heterogeneous catalysts are often used at large to produce biodiesel from non-edible vegetable crude oils such as Jatropha curcas oil (JCO. In this study, an active heterogeneous CaO catalyst was synthesized from a tropical biodiversity seashells Anadara granosa (A.granosa. The catalytic efficiency of A.granosa CaO was investigated in transesterification of JCO as biodiesel. The A.granosa CaO catalyst was synthesized using ‘Calcination – hydration – dehydration’ protocol. The spectral characterization of the catalyst were investigated by employing FT-IR, SEM, BET and BJH spectrographic techniques. The experimental design was executed with four reaction parameters that include catalyst concentration (CC, methanol ratio (MR, transesterification time (TT and reaction temperature (RT. The JCO transesterification reactions as well as impact of reaction parameters on the Jatropha biodiesel yield (JBY were analyzed. The sufficiency of the experimental results conformed through sequential validation tests, as a result, an average of 96.2% JMY was noted at optimal parametric conditions, CC of 3wt. %, TT of 120 min, MR of 5 mol. and RT of 60ºC at a constant agitation speed of 300rpm. An average JMY of 87.6% was resulted from the A.granosa CaO catalyst during their recycling and reuse studies up to third reuse cycle.

  11. Commercial- and whitewashing-grade limestone as a heterogeneous catalyst for synthesis of fatty acid methyl esters from used frying oil (UFO)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shweta; Singh, Bhaskar; Sharma, Yogesh C. [Banaras Hindu University, Department of Applied Chemistry, Institute of Technology, Varanasi (India); Frometa, Amado Enrique N. [Universidad Tecnologica de Izucar de Matamoros, Puebla (Mexico)

    2012-12-15

    Commercial-grade limestone used in whitewashing which is a low-cost material has been used as a catalyst for the synthesis of fatty acid methyl esters. The catalyst was characterized by differential thermal analysis/thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy for the study of its physicochemical nature. The catalyst was calcined at 900 C for 2.5 h for the decomposition of calcium carbonate to calcium oxide. The catalyst was further activated by dissolving 1.5 wt% of catalyst in 30 ml methanol (7.5:1, methanol to used frying oil molar ratio) and stirred at 25 C for 1 h on a magnetic stirrer. The transesterification reaction was performed using calcium oxide as a catalyst and then with the ''activated calcium oxide.'' The conversion obtained was 94.4 % with calcium oxide and was found to be lower for the ''activated calcium oxide'' (i.e., 87.36 %). The conversion increased to 96.8 % on increasing the catalyst amount to 2.0 wt% in 5 h. A high yield (>95 %) of fatty acid methyl esters was observed when either calcium oxide or ''activated calcium oxide'' was taken as catalyst. The catalytic activity of calcium oxide obtained from low-grade limestone has been found to be comparable with the laboratory-grade CaO. (orig.)

  12. The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process

    Science.gov (United States)

    Widayat, Widayat; Roesyadi, A.; Rachimoellah, M.

    2009-09-01

    Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m 2 / gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation borth as feed. The operation condition is 150° C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

  13. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  14. Effect of Concentration of Catalyst (BF3-Diethyl Etherate on Synthesis of Polyester From Palm Fatty Acid Distillate (PFAD

    Directory of Open Access Journals (Sweden)

    Renita Manurung

    2013-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Palm Fatty Acid Distillate (PFAD can be used as raw material for synthesis polyester. The aim of this research is to synthesis of polyester and to determine the effect of concentration of catalyst on polymerization methyl ester PFAD. The esterification stage was done at temperature 70oC, reaction time 120 minute, reactant ratio 1:8 (PFAD: methanol, concentration of catalyst (H2SO4 1% (w/w PFAD; polymerization stage was done at temperature 126-132°C, polymerization reaction time 4 hours; variation of concentration of catalyst (BF3-diethyl etherate 0%, 6.9%, 9.2%, 11.5% (w/w methyl ester; and polyesterification stage was done at temperature 175-200 oC, reactant ratios (w/w 1:1 (polymerized ME : ethylene glycol, reaction time 4 hours and all of stage was stirred at 150 rpm. The results showed, in the esterification stage was obtained methyl ester with iodine value 77.29 g I2/100 g, viscosity 6.90 cP, density 859.91 kg/m3 and analysis by using GC-MS showed that the purity of methyl ester was 82.23% and molecular weight 267.97 g/mol. Decreasing in iodine value from 77.29 I2 g/100 g to 74.97-59.99 g I2/100 g indicated that the polymerization process had taken place. In polyesterification stage was obtained light brown colored

  15. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    OpenAIRE

    Galip Akay

    2016-01-01

    A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV) induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous s...

  16. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  17. Skin effect suppression for Cu/CoZrNb multilayered inductor

    Science.gov (United States)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  18. A solvent approach to the size-controllable synthesis of ultrafine Pt catalysts for methanol oxidation in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Ye, Feng; Liu, Hui; Feng, Yan; Li, Jianling; Wang, Xindong; Yang, Jun

    2014-01-01

    Graphical abstract: - Highlights: • An ethylene glycol-based approach for the synthesis of Pt/C catalysts with uniform Pt nanoparticles. • Superior catalytic activity of Pt/C catalysts synthesized at EG/water volume ratio of 1/1 for methanol oxidation reaction. • High performance of MEA for DMFC using Pt/C catalysts synthesized at EG/water volume ratio of 1/1 at anode. - Abstract: An ethylene glycol (EG)-based approach has been developed for the synthesis of Pt/C catalysts with uniform Pt nanoparticles. A number of characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements are used to characterize the as-prepared Pt catalysts. The well-dispersed Pt nanoparticles with average size of approximate 2 nm could be obtained in the EG/water mixture with volume ratio of 1/1, which display higher activity for methanol oxidation than that of the Pt/C products prepared at other EG/water volume ratios (0:1, 2:1, and 1:0). In particular, the performance of the Pt nanoparticles prepared at EG/water volume ratio of 1/1 in the membrane electrode assembly for direct methanol fuel cells has also been evaluated and benchmarked by commercial Pt/C catalysts. This study offers a vivid example to synthesize Pt nanoparticles with fine size and good catalytic activity by simply tuning the solvent ratio in colloidal chemistry methods

  19. Bio diesel synthesis from pongamia pinnata oil over modified CeO2 catalysts

    International Nuclear Information System (INIS)

    Venkatesh; Sathgatta Z, M. S.; Manjunatha, S.; Thammannigowda V, V.

    2014-01-01

    This study investigates the use of CeO 2 , ZrO 2 , Mg O and CeO 2 -ZrO 2 , CeO 2 -Mg O, CeO 2 -ZrO 2 -Mg O mixed oxides as solid base catalysts for the transesterification of Pongamia pinnata oil with methanol to produce bio diesel. SO 4 2- /CeO 2 and SO 4 2- /CeO 2 -ZrO 2 were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. The oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH 3 -Tpd for surface acidity, CO 2 -Tpd for surface basicity and powder X-ray diffraction for crystallinity. The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated. The catalytic materials were reactive d and reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction. The test results also revealed that the CeO 2 -ZrO 2 modified with Mg O could have potential for use in the large scale bio diesel production. (Author)

  20. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2015-11-01

    Full Text Available Mixed metal nanoparticles (NPs have attracted significant attention as catalysts for various organic transformations. In this study, we have demonstrated the preparation of nickel–manganese mixed metal oxide NPs doped with X% nano cerium oxide (X = 1, 3, 5 mol% by a facile co-precipitation technique using surfactant and surfactant free methodologies. The as-synthesized materials were calcined at different temperatures (300 °C, 400 °C, and 500 °C, and were characterized using various spectroscopic techniques, including, FTIR and XRD. SEM analysis, TEM analysis and TGA were employed to evaluate the structural properties of the as-prepared catalyst. These were evaluated for their catalytic behaviour towards the conversion of benzyl alcohol to benzaldehyde, which was used as a model reaction with molecular oxygen as oxidant. Furthermore, the effect of the variation of the percentage of nano ceria doping and the calcination temperature on the performance of as-prepared mixed metal catalysts was also evaluated. The kinetic studies of the reactions performed employing gas chromatographic technique have revealed that the mixed metal oxide catalyst doped with 5% nano ceria displayed excellent catalytc activity, among various catalysts synthesized.

  1. Synthesis of Bimetal Fe and Cu Altered TUD-1: A Mesoporous Catalyst for Phenol Hydroxylation Reaction.

    Science.gov (United States)

    Pachamuthu, Muthusamy Poomalai; Subhapriya, Pushparaju

    2018-04-01

    Fe and Cu ions incorporated (Si/Cu = 50, Si/Fe = 50 and Si/Cu + Fe = 50) amorphous, wormhole structured mesoporous catalysts (CuTUD-1, FeTUD-1 and FeCuTUD-1) (TUD-1-Technische Universiteit Delft) have been synthesized hydrothermally using low cost, non-surfactant template triethanolamine (TEA). Physicochemical properties of the catalysts were made using X-ray diffraction (XRD), Nitrogen sorption, FT-IR, DRS UV Visible, FT Raman, SEM, TEM and TG-DTG techniques. The results showed that the materials possess mesoporous, foam type morphology, surface area 485-634 m2/g, pore size 4.8-6.8 nm, pore volume 0.67-0.83 cm3/g and metal ions (Cu2+ and Fe3+) coordinative environment. The highly dispersed Cu2+ and Fe3+ active sites are observed in FeCuTUD-1 catalyst. Also, the synthesized catalysts are tested in the oxidation of phenol with hydrogen peroxide (H2O2) oxidant. Further, reaction parameters such as time, temperature, and catalyst were also investigated.

  2. Manganese carbonate-zinc glycerolate, synthesis, characterization and application as catalyst for transesterification of soybean oil

    Directory of Open Access Journals (Sweden)

    Zhu Xiaochan

    2016-01-01

    Full Text Available In this study, mixed system containing manganese carbonate (MnCO3 and zinc glycerolate (ZnGly was synthesized, and tested as solid catalyst for transesterification of soybean oil and biodiesel production. The samples of MnCO3/ZnGly before and after usage for transesterification process were characterized using different techniques: determination of basic strength, determination of specific surface area according to Brunauer-Emmett-Teller (BET, measuring the mass change using thermal gravimetric analysis (TGA, investigating the solid phase content and presence of different specific elements and groups by X-Ray diffraction (XRD, the Fourier transform infrared (FT-IR spectroscopy, the scanning electron microscopy (SEM with energy dispersive spectroscopy (EDS. The effects of different working parameters of transesterification were also investigated: temperature (438-458K, duration of transesterification (0-3.5h, methanol to oil molar ratio (12:1-36:1 and used amounts of catalyst (1-5 mass%. The reusability and stability of MnCO3/ZnGly were analyzed and obtained results showed that MnCO3/ZnGly exhibited a good activity with 100% TG conversion and 81.5% FAME yield with fresh catalyst, and can give 95-100% TG conversion and 62-78% FAME yield after 13 repeated use of same amount of catalyst without regeneration processes. Content of Mn and Zn in biodiesel and glycerol was analyzed by ICP-AAS after each reuse of catalyst.

  3. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    Science.gov (United States)

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    Science.gov (United States)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal–air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  5. In situ synthesis of nanoclay filled polyethylene using polymer supported metallocene catalyst system

    Directory of Open Access Journals (Sweden)

    Z. V. P Murthy

    2011-01-01

    Full Text Available In situ ethylene polymerizations were performed using bis(cyclopentadienetitanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadienetitanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18amine (FA and 25-30 wt% trimethyl stearyl ammonium (FB. These fillers were pretreated with methylaluminoxine (MAO; cocatalyst for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.

  6. Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts

    Science.gov (United States)

    Abdelsayed, V.; Saoud, K. M.; El-Shall, M. Samy

    2006-08-01

    The laser vaporization controlled condensation (LVCC) technique coupled with a differential mobility analyzer (DMA) is used to synthesize size-selected alloy nanoparticles and nanoparticle catalyst systems. The formation of Au-Ag alloy nanoparticles is concluded from the observation of only one plasmon band. The maximum of the plasmon absorption is found to vary linearly with the gold mole fraction. For the Au-Pd system, the XRD data confirms the formation of the alloy nanoparticles with no evidence of any of the pure components. The Au/CeO2 nanoparticle catalyst prepared by the LVCC method is a promising catalyst for low temperature CO oxidation due to its high activity and stability.

  7. Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Linde, Kasper; Hansen, Thomas Klint

    2011-01-01

    The first alumina supported and unsupported cobalt molybdenum hydrotreating catalysts have been prepared by one-step flame spray pyrolysis (FSP) by spraying and combusting tris(acetylacetonato)aluminum, cobalt 2-ethylhexanoate and molybdenum 2-ethylhexaoate dissolved in toluene. The oxide particles...... agglomerates with 5–10nm primary particles were produced. As the molybdenum loading on the alumina was increased from 8 to 32wt.% and for the unsupported reference the primary particle size increased to up to 20nm and the morphology became more irregular due to primary particle sintering and aggregation.......After activation by sulfidation the activity of the catalysts were measured for the three hydrotreating reactions hydrodesulfurization, hydrodenitrogenation and hydrogenation using a model oil containing dibenzothiophene, indole and naphthalene in n-heptane solution. The best catalyst was the FSP-produced material...

  8. Influence of Multi-Valency, Electrostatics and Molecular Recognition on the Adsorption of Transition Metal Complexes on Metal Oxides: A Molecular Approach to Catalyst Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-31

    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and alumina materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.

  9. An Undergraduate Chemistry Laboratory: Synthesis of Well-Defined Polymers by Low-Catalyst-Concentration ATRP and Postpolymerization Modification to Fluorescent Materials

    Science.gov (United States)

    Tsarevsky, Nicolay V.; Woodruf, Shannon R.; Wisian-Neilson, Patty J.

    2016-01-01

    A two-session experiment is designed to introduce undergraduate students to concepts in catalysis, transition metal complexes, polymer synthesis, and postpolymerization modifications. In the first session, students synthesize poly(glycidyl methacrylate) via low-catalyst-concentration atom transfer radical polymerization (ATRP). The…

  10. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  11. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    Science.gov (United States)

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-12-14

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds.

  12. Synthesis, characterization and testing of a new V2O5/Al2O3−MgO catalyst for butane dehydrogenation and limonene oxidation

    NARCIS (Netherlands)

    Strassberger, Z.; Ramos-Fernandez, E.V.; Boonstra, A.; Jorna, R.; Tanase, S.; Rothenberg, G.

    2013-01-01

    We report the synthesis and characterization of new V2O5/Al2O3-MgO catalysts and their application in oxidative dehydrogenation and epoxidation reactions. The materials were prepared by wet impregnation under excess acid conditions. Anchoring of the desired species on the support occurs via an

  13. Catalyst-free synthesis of α1-oxindole-α-hydroxyphosphonates via phospha-aldol reaction of isatins employing N-heterocyclic phosphine (NHP)-thiourea.

    Science.gov (United States)

    Molleti, Nagaraju; Yong Kang, Jun

    2016-09-26

    A highly efficient phospha-aldol reaction for the synthesis of α 1 -oxindole-α-hydroxyphosphonates is developed utilizing N-heterocyclic phosphine (NHP)-thiourea as a phosphonylation reagent under catalyst, additive free conditions. This methodology encompasses a variety of isatin derivatives to provide α 1 -oxindole- α-hydroxyphosphonates up to 99% yield.

  14. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    Science.gov (United States)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  15. Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands.

    Science.gov (United States)

    Vougioukalakis, Georgios C; Grubbs, Robert H

    2008-02-20

    A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy3)2Cl2Ru=CHPh or (PCy3)Cl2Ru=CH(o-iPrO-Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective.

  16. An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst.

    Science.gov (United States)

    Madhu, Devarapaga; Chavan, Supriya B; Singh, Veena; Singh, Bhaskar; Sharma, Yogesh C

    2016-08-01

    Biodiesel has emerged as a prominent source to replace petroleum diesel. The cost incurred in the production of biodiesel is higher than that for refining of crude oil to obtain mineral diesel. The heterogeneous catalyst was prepared from crab shells by calcining the crushed mass at 800°C. The solid waste catalyst was characterized with XRD, XPS, BET, SEM-EDS, and FT-IR. Millettia pinnata (karanja) oil extracted from its seeds was used as a feedstock for the synthesis of biodiesel. Biodiesel was synthesized through esterification followed by transesterification in a two-step process. Characterization of biodiesel was done using proton NMR spectroscopy. Reaction parameters such as reaction time, reaction temperature, concentration of catalyst and stirrer speed were optimized. Reusability of catalyst was checked and found that there was no loss of catalytic activity up to five times. Copyright © 2016. Published by Elsevier Ltd.

  17. OSU-6: A Highly Efficient, Metal-Free, Heterogeneous Catalyst for the Click Synthesis of 5-Benzyl and 5-Aryl-1H-tetrazoles

    Directory of Open Access Journals (Sweden)

    Baskar Nammalwar

    2015-12-01

    Full Text Available OSU-6, an MCM-41 type hexagonal mesoporous silica with mild Brönsted acid properties, has been used as an efficient, metal-free, heterogeneous catalyst for the click synthesis of 5-benzyl and 5-aryl-1H-tetrazoles from nitriles in DMF at 90 °C. This catalyst offers advantages including ease of operation, milder conditions, high yields, and reusability. Studies are presented that demonstrate the robust nature of the catalyst under the optimized reaction conditions. OSU-6 promotes the 1,3-dipolar addition of azides to nitriles without significant degradation or clogging of the nanoporous structure. The catalyst can be reused up to five times without a significant reduction in yield, and it does not require treatment with acid between reactions.

  18. Novel Approach: Tungsten Oxide Nanoparticle as a Catalyst for Malonic Acid Ester Synthesis via Ozonolysis

    Directory of Open Access Journals (Sweden)

    Bilal A. Wasmi

    2014-01-01

    Full Text Available Malonic acid ester was synthesized via the one-step ozonolysis of palm olein. Malonic acid ester was spectroscopically characterized using gas chromatography mass spectroscopy (GC-MS. Tungsten oxide nanoparticles were used as the catalyst, which was characterized via X-ray powder diffraction (XRD and field emission scanning electron microscopy (FE-SEM. Tungsten oxide provided several advantages as a catalyst for the esterification malonic acid such as simple operation for a precise ozonation method, an excellent yield of approximately 10%, short reaction times of 2 h, and reusability due to its recyclability.

  19. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Science.gov (United States)

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  20. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking

    Science.gov (United States)

    Zhang, Pengfei; Wang, Li; Yang, Shize; Schott, Jennifer A.; Liu, Xiaofei; Mahurin, Shannon M.; Huang, Caili; Zhang, Yu; Fulvio, Pasquale F.; Chisholm, Matthew F.; Dai, Sheng

    2017-01-01

    Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic–organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4–10 nm), large pore volumes (up to 0.96 cm3 g−1) and high-surface areas exceeding 1,000 m2 g−1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm). PMID:28452357

  1. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.

    2015-04-16

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process, the reported oil was cracked using a catalyst, as the latter improves the fuel properties better than the former. In a bid to make the production process economically viable, a waste and cheap catalyst, RFA (raw fly ash), has been capitalized for the cracking process as against the conventional zeolite catalyst. The fuel production process, which is performed in a fixed bed catalytic reactor, was done methodologically after comprehensively studying the characteristics of fly ash catalyst. Significantly, fly ash characterization was realized using SEM and EDS, which demarcated the surface and internal structures of fly ash particles before and after cracking. After the production of hydrocarbon fuel from C. inophyllum oil, the performed compositional analysis in GC-MS revealed the presence of esters, parfins and olefins. Followed by the characterization of catalytically cracked C. inophyllum oil, suitable blends of it with diesel were tested in a single cylinder diesel engine. From the engine experimental results, BTE (brake thermal efficiency) of the engine for B25 (25% cracked C. inophyllum oil and 75% diesel) was observed to be closer to diesel, while it decreased for higher blends. On the other hand, emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke were found to be comparable for B25 with diesel. © 2015 Elsevier Ltd. All rights reserved.

  2. Nano copper ferrite: A reusable catalyst for the synthesis of β, γ ...

    Indian Academy of Sciences (India)

    clearly evident that there was no leaching of catalyst and was confirmed by performing the reaction with the filtrate. Atomic absorption spectroscopy was employed to determine the copper content of copper ferrite nano particles and it was found to be 27.3%. The leaching of metal after three cycles was found to be 0.156%.

  3. Hydrotalcite-based catalysts for the synthesis of Methyl Isobutyl Ketone

    NARCIS (Netherlands)

    Winter, Ferry

    2006-01-01

    The investigations for more environmentally benign solid base catalysts have increased significantly for the production of bulk as well as fine chemicals due to the demands for cleaner processes and more stringent legislation. An interesting candidate for industrial applications in the production of

  4. Synthesis, characterization and analysis of platinum-based multiphase catalysts for direct ethanol fuel cells

    Science.gov (United States)

    Mann, Jonathan R.

    Platinum-based particles are synthesized via the polyol process in an effort to include various metal oxides in a multi-phase catalyst for the direct ethanol fuel cell anode. Among Eu, In, La and Nb, no single metal oxide with platinum yields open circuit potentials or maximum current densities as high as tin oxide with platinum. For this reason, particles with platinum, tin oxide and the oxide of a third metal were developed. Platinum tin/indium oxide slightly outperforms platinum tin oxide. The particles are characterized by TEM, EDX, XRD and ICP. The metal oxides and the platinum are located together in one particle, uniformly 5.3 nm in diameter. ICP analysis indicates that the catalysts are 20% platinum on carbon and the metals of the oxides are on the order of 1-2% by mass. The catalytic abilities of the particles were evaluated in a single cell direct ethanol fuel cell where polarization curves were taken up to 130°C, and oxidation products were analyzed by gas chromatography. Open circuit voltages of as high as 0.82 V were obtained for platinum tin/indium oxide catalysts and current densities as high as 0.4 A cm-2 were seen. The cells produced large amounts of acetaldehyde and acetic acid, as well as small amounts of methanol and carbon dioxide. A spillover mechanism is proposed for the oxidation of ethanol to CO2 on these platinum/metal oxide catalysts.

  5. Biodiesel synthesis catalyzed by transition metal oxides: ferric-manganese doped tungstated/molybdena nanoparticle catalyst.

    Science.gov (United States)

    Alhassan, Fatah Hamid; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard.

  6. Cu-MCM-41 nanoparticles: An efficient catalyst for the synthesis of 5 ...

    Indian Academy of Sciences (India)

    MCM-41 with Si/Cu molar ratio of 20 has considerably better catalytic activity compared to the other molar ratios. To investigate reusability, the .... chromatography was not necessary. 2.3 Physical and spectroscopic data for selected ..... The most important benefit of the applied catalyst is its reusability. Thus, the recovery and ...

  7. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour

    NARCIS (Netherlands)

    de Smit, E.|info:eu-repo/dai/nl/304824232; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2008-01-01

    Iron-based Fischer–Tropsch catalysts, which are applied in the conversion of CO and H2 into longer hydrocarbon chains, are historically amongst the most intensively studied systems in heterogeneous catalysis. Despite this, fundamental understanding of the complex and dynamic chemistry of the

  8. SELECTIVE SYNTHESIS OF PEG-MONOESTER USING CESIUM HETEROPOLY ACID AS HETEROGENEOUS CATALYST

    Directory of Open Access Journals (Sweden)

    Fatimah Zahara Abdullah

    Full Text Available Esterification of oleic acid with polyethylene glycol 600 (PEG-600 to produce polyethylene glycol monooleate (PEG-monooleate and polyethylene glycol dioleate (PEG-dioleate as by-product has been studied in the presence of heterogeneous acid catalysts, i.e. cesium heteropoly acid (Cs HPA. The results are compared with those obtained from a classical homogeneous acid catalyst; p-toluene sulphonic acid (p-TSA. The reaction was conducted under nitrogen flow with vigorous stirring at 130 ºC and 150 ºC. The catalyst loading kept at 4% and the reaction was monitored at 1, 3, 7 and 24 hours. Reaction samples were analyzed using high performance liquid chromatography (HPLC equipped with evaporative light scattering detector (ELSD. The results obtained showed that Cs HPAs exhibit 100% selectivity of PEG-monooleate from the first hour until 24 hours. However, this does not happen with homogeneous p-TSA, where formation of by-product; PEG-dioleate is observed in the initial stage. It is also showed that the mole ratio is the most important parameter not only to produce high yield of monoester but also to maintain it along the reaction. Chemical and physical properties of catalysts were characterized using Thermal Gravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC, Fourier Tranmittance Infra-Red (FTIR, ammonia temperature programmed desorption (NH3-TPD and X-ray Diffraction (XRD.

  9. Synthesis of Magnetic Carbon Supported Manganese Catalysts for Phenol Oxidation by Activation of Peroxymonosulfate

    Directory of Open Access Journals (Sweden)

    Yuxian Wang

    2016-12-01

    Full Text Available Magnetic core/shell nanospheres (MCS were synthesized by a novel and facile one-step hydrothermal method. Supported manganese oxide nanoparticles (Fe3O4/C/Mn were obtained from various methods (including redox, hydrothermal and impregnation using MCS as the support material and potassium permanganate as the precursor of manganese oxide. The Mn/MCS catalysts were characterized by a variety of characterization techniques and the catalytic performances of Fe3O4/C/Mn nanoparticles were tested in activation of peroxymonosulfate to produce reactive radicals for phenol degradation in aqueous solutions. It was found that Fe3O4/C/Mn catalysts can be well dispersed and easily separated from the aqueous solutions by an external magnetic field. Kinetic analysis showed that phenol degradation on Fe3O4/C/Mn catalysts follows the first order kinetics. The peroxymonosulfate activation mechanism by Fe3O4/C/Mn catalysts for phenol degradation was then discussed.

  10. Relations Between Morphology and Catalytic Activity of Ion Exchanger Catalysts for Synthesis of Bisphenol A

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Karel; Hanková, Libuše; Prokop, Zdeněk; Lundquist, E. G.

    2002-01-01

    Roč. 232, 1-2 (2002), s. 181-188 ISSN 0926-860X R&D Projects: GA ČR GA104/99/0125 Keywords : ion exchangers * catalyst * morphology Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.915, year: 2002

  11. Cu-MCM-41 nanoparticles: An efficient catalyst for the synthesis of 5 ...

    Indian Academy of Sciences (India)

    absorption and potentiometric titration. The reactions data verified characterization results and show that Cu-. MCM-41 with Si/Cu molar ratio of 20 has considerably better catalytic activity compared to the other molar ratios. To investigate reusability, the catalyst was recovered by simple filtration and reused for several cycles.

  12. NBS as a Powerful Catalyst for the Synthesis of β-Hydroxysulphides ...

    African Journals Online (AJOL)

    N-Bromosuccinimide (NBS) catalyses the ring opening of various epoxides with different thiols in CH3CN at room temperature under mild reaction conditions. The corresponding β-hydroxysulphides are obtained in short reaction times and in good to high yields with nearly complete regioselectivity. The catalyst was ...

  13. Nano-Ticl .SiO : a Versatile and Efficient Catalyst for Synthesis of ...

    African Journals Online (AJOL)

    NICO

    The progress of the reaction was monitored by TLC. (chloroform:petroleum ether, 80:20). After completion of the reaction, the mixture was cooled to room temperature and diluted with acetone. The catalyst was recovered by filtration and washed with acetone (2 × 5 mL). The solvent was evapo- rated and the crude product ...

  14. PbO as an efficient and reusable catalyst for one-pot synthesis of ...

    Indian Academy of Sciences (India)

    21 amines22 and (NH4)2HPO4.23. The benzylidene malonitriles were synthesized using catalysts such as calcium oxide,24 TEBA,25 PEG,26 base,27. NH2SO3NH4,28. MgBr2.OEt2,29 organo-base mediation,30 quaternary ammonium salts,31.

  15. A DRIFTS STUDY OF THE MORPHOLOGY AND SURFACE ADSORBATE COMPOSITION OF AN OPERATING METHANOL SYNTHESIS CATALYST

    NARCIS (Netherlands)

    BAILEY, S; FROMENT, GF; SNOECK, JW; WAUGH, KC

    1995-01-01

    The nature of the species adsorbed on a Cu/ZnO/Al2O3 catalyst while it was producing methanol has been elucidated in this study using DRIFTS. The species are carbonates, formate, CO, oxygen atoms (similar to 2% of a monolayer) and methoxy on the Cu and methoxy on the ZnO. The frequencies observed

  16. Synthesis and characterization of Ni-CeO2 catalysts by the hydrothermal method

    International Nuclear Information System (INIS)

    Lazcano O, I.

    2013-01-01

    At the present time the necessity exists to reduce the level of atmospheric pollutants, because these are the main originators of such problems as: the greenhouse effect, acid rain, global heating, among others and that are affecting the human being seriously. In this context, is necessary to look for new solutions that contribute to the improvement of the problems without appealing to limitations in the energy production, because this would imply a non only delay in the economic development, but also in the cultural, technological and of research in our country. An alternative for the energy solution is the use of renewable fuels, because they will decrease the production costs with the time, as well as to diminish the dependence of the fossil fuels, contributing this way to the improvement of the environment quality. The use of the hydrogen as an alternating fuel to the petroleum, is intends as energy solution. The objective of the present work is to develop Ni-CeO 2 catalysts through the hydrothermal method for the hydrogen production starting from the partial oxidation reaction of methanol for the clean fuel generation that does not produce polluting emissions to the environment. As well as, to determine the importance of the metallic load in the catalytic activity for which catalysts to 1 and 2% in weight of Ni were prepared. To achieve these objective different techniques were used to characterize the prepared catalysts, as: Temperature Programmed Reduction to evidence the metal-support interaction, Scanning Electron Microscopy (Sem) to determine the morphology of the catalysts, Surface Area (Bet) with respect to the adsorption-desorption of N 2 and X-Rays Diffraction (XRD) to know the crystalline structure of the catalysts. Also the catalytic properties (activity and selectivity) were studied under the reaction: CH 3 OH + 1/2 O 2 obtaining as products to the CO 2 + 2H 2 , with the help of the multi-tasks equipment Rig-100 that operated to temperatures among

  17. “Flash” Solvent-free Synthesis of Triazoles Using a Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Ibtissem Jlalia

    2009-01-01

    Full Text Available A solvent-free synthesis of 1,4-disubstituted-1,2,3-triazoles using neat azides and alkynes and a copper(I polymer supported catalyst (Amberlyst® A21•CuI is presented herein. As it provides the products in high yields and purities within minutes, this method thus being characterized as a "flash" synthesis, and was exemplified through the synthesis of a 24-compound library on a small scale.

  18. Synthesis of polymer-supported dendritic palladium nanoparticle catalysts for Suzuki coupling reaction

    Science.gov (United States)

    Murugan, Eagambaram; Jebaranjitham, J. Nimita; Usha, A.

    2012-09-01

    New bead-shaped heterogeneous nanoparticle catalysts viz., amino-terminated poly(amidoamine) (PAMAM) grafted on poly(styrene)-co-Poly(vinylbenzylchloride) (PS-Poly(VBC)) matrices immobilized/stabilized with palladium nanoparticle were prepared by simplified procedure. The first step is the preparation of PS-Poly(VBC) beads by suspension polymerization method. Second, the PAMAM G(0) G(1) and G(2) dendrimers were grafted individually onto the PS-Poly(VBC) matrices via divergent method by repeating two reactions, i.e., Michael addition of methyl acrylate to surface amino groups of aminomethylated PS-Poly(VBC) matrixes followed by amidation of the resulting esters with ethylene diamine. The resulting three types of PAMAM G(0), G(1) and G(2) grafted on PS-Poly(VBC) matrices were complexed individually with PdCl2 and thus yielded the corresponding new bead-shaped heterogeneous nanoparticle catalyst immobilized with PdNPs. The appearance of surface plasmon resonance band noticed at 547 nm in UV confirms the formation of PdNPs. The SEM result shows that the intensity of white patches due to immobilization of PdNPs increases with generation number and XRD reveals that the crystalline nature was decreased against generation number of the PAMAM. The catalytic efficiency of PS-Poly(VBC)-NH2-PdNPs-G(0), G(1) and G(2) catalysts were examined by Suzuki coupling reaction performed in mixture of water/ethanol. The observed reaction yield reveals that the activity was proportional to the generation number of PAMAM grafted onto the PS-Poly(VBC) matrices. The percentage of reaction yield (biphenyl) is sustained to ≈70 % even up to five cycles and this in turn confirms the stability of the catalysts. These catalysts can be used to conduct the Suzuki-coupling reaction in continuous mode operation in industrial scale.

  19. Bio diesel synthesis from pongamia pinnata oil over modified CeO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh; Sathgatta Z, M. S.; Manjunatha, S.; Thammannigowda V, V., E-mail: mohamed.shamshuddin@gmail.com [HMS Institute of Technology, Chemistry Research Laboratory, NH4, Kyathsandra, Tumkur, 572104 Karnataka (India)

    2014-07-01

    This study investigates the use of CeO{sub 2}, ZrO{sub 2}, Mg O and CeO{sub 2}-ZrO{sub 2}, CeO{sub 2}-Mg O, CeO{sub 2}-ZrO{sub 2}-Mg O mixed oxides as solid base catalysts for the transesterification of Pongamia pinnata oil with methanol to produce bio diesel. SO{sub 4}{sup 2-}/CeO{sub 2} and SO{sub 4}{sup 2-}/CeO{sub 2}-ZrO{sub 2} were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. The oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH{sub 3}-Tpd for surface acidity, CO{sub 2}-Tpd for surface basicity and powder X-ray diffraction for crystallinity. The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated. The catalytic materials were reactive d and reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction. The test results also revealed that the CeO{sub 2}-ZrO{sub 2} modified with Mg O could have potential for use in the large scale bio diesel production. (Author)

  20. Fabrication and temperature dependent magnetic properties of Ni-Cu-Co composite nanowires

    Science.gov (United States)

    Hussain, Muhammad; Khan, Maaz; Sun, Hongyu; Nairan, Adeela; Karim, Shafqat; Nisar, Amjad; Maqbool, M.; Ahmad, Mashkoor

    2015-10-01

    Ni-Cu-Co composite magnetic nanowires have been successfully synthesized by electrochemical deposition. Microstructural and compositional analyses were carried out using FESEM, TEM, HRTEM and XRD. Magnetic measurements were performed from in the temperature range 5-300 K. A strong diamagnetic contribution, which results from the polycarbonate template, was found to show s-shape behavior of the hysteresis loops of the nanowires. The coercivity of the samples was found to increase with the decreasing temperature following simple model of thermal activation of particle's moment over the anisotropy barrier in the temperature range 50-300 K. Saturation magnetization was found to increase with decreasing temperature following the modified Bloch's law at low temperatures.

  1. Resonant magnetic X-ray reflectivity on Co/Cu/Co

    Energy Technology Data Exchange (ETDEWEB)

    Paz, Valeriano Ferreras; Brueck, Sebastian; Goering, Eberhard; Schuetz, Gisela [Max Planck Institut fuer Metallforschung, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2007-07-01

    The interaction between ferromagnetic layers across a nonmagnetic or isolating spacer layer has reached great technological importance during the last years, i.e. GMR sensors. A Co/Cu/Co has been grown epitaxially on a Cu(100) single crystal substrate by molecular beam epitaxy. The quality of the film is controlled by LEED and TEM. On this system resonant magnetic X-ray reflectivity measurements were performed at BESSY II, which allows the determination of the magnetic depth profile in an element selective way. This has been done on the Co and Cu L{sub 3} edge in order to learn more about the origin of the oscillatory exchange coupling in such systems.

  2. An efficient PEG-400 mediated catalyst free green synthesis of 2 ...

    Indian Academy of Sciences (India)

    This green protocol can be utilized for fast synthesis of various 2-aminothiazoles in good yields. Keywords. 2-amino thiazole; α-diazoketone; PEG-400; green synthesis. 1. Introduction. Heterocyclic amines such as 2-amino thiazoles are very interesting compounds as they are found to be useful in the treatment of allergies,1 ...

  3. Amberlyst A-15: Reusable catalyst for the synthesis of 2,4,5 ...

    Indian Academy of Sciences (India)

    Abstract. One-pot multi-component condensation of benzyl, aldehydes, ammonium acetate and primary amines were used for synthesis of 2 ... Heterocyclic compounds with imidazole ring systems have many pharmaceutical activities and ... in the synthesis of many therapeutic agents. Omepra- zole, Pimobendan, Losarton ...

  4. A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions.

    Science.gov (United States)

    Kausar, Nazia; Masum, Abdulla Al; Islam, Md Maidul; Das, Asish R

    2017-05-01

    A catalyst-free green methodology for the synthesis of pharmacologically important spirooxindole derivatives has been developed by a three-component domino reaction between isatin, various amino compounds, and 1,3-dicarbonyl or 3-phenylisoxazolone compounds in ethyl L-lactate medium at room temperature. This new efficient synthetic method facilitated the formation of a wide range of biologically significant spirooxindole derivatives (including 17 new spirooxindoles) under very mild conditions. The cytotoxic activity of one of the isoxazole-fused spirooxindoles was evaluated in MDA-MB 468 breast cancer cell line. It was found that cell survivability decreases with increasing concentration of the selected compound in MDA-MB 468 breast cancer cells.

  5. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  6. Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines.

    Science.gov (United States)

    Maleki, Ali; Jafari, Abbas Ali; Yousefi, Somayeh

    2017-11-01

    A cellulose-based nanobiocomposite decorated with Fe 3 O 4 nanoparticles was prepared, characterized and applied as an easily recoverable and reusable green nanocatalyst in the synthesis of pyrano[2,3-d]pyrimidine derivatives in water at room temperature. The characterization was performed by using a variety of conventional analytical instruments such as Fourier transform infrared spectra (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), vibrating sample magnetometer (VSM), thermal analysis (TGA/DTA) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses. Two series of pyranopyrimidine and pyrazolopyranopyrimidines derivatives were synthesized by using the present cellulose-based nanocomposite. This protocol has valuable features like high yield of the products, short reaction times, mild conditions and easy work-up procedure. In addition, the catalyst can be prepared easily with cheap and green starting materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Disproportionation phenema of wistite phase in the model iron catalysts for ammonia synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Pattek-Janczyk, A.; Miczko, B.

    1990-01-01

    A model iron catalysts for ammonia synthesis containing a large amount of wustite (35 wt%) has been studied during the annealing in an inert atmosphere in the temperature range of 573-773 K. Changes in magnetite and wustite phases were followed by Muessbauer spectroscopy (MS). Before starting the thermal treatment, two kinds of wustite of different structures have been found by MS and X-ray diffraction. The behaviour of both kinds of wustite during the annealing was different. One of them, closer to the stoichiometric compound, disproportionated at once into magnetite and iron; its content decreased systematically without changes in the Muessbauer parameters. In the second wustite, only qualitatieve changes were observed at first (its nonstoichiometry decreases without changes in content and, next, this phase started to disproportionate too. (auhtor). 31 refs.; 6 figs.; 2 tabs

  8. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    Science.gov (United States)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  9. Single transition metal atom embedded into a MoS2nanosheet as a promising catalyst for electrochemical ammonia synthesis.

    Science.gov (United States)

    Zhao, Jia; Zhao, Jingxiang; Cai, Qinghai

    2018-03-21

    The electrochemical reduction of N2 to NH3 (NRR) under ambient conditions is significant for sustainable agriculture. Here, by means of density functional theory (DFT) computations, the potential of a series of single transition metal (TM) atoms embedded into a MoS2 monolayer with an S-vacancy (TM/MoS2) as electrocatalysts for NRR was systematically investigated. Our DFT results revealed that among all these considered candidate catalysts, the single Mo atom embedded into the MoS2 nanosheet was found to be the most active catalyst for NRR with an onset potential of -0.53 V, in which the hydrogenation of the adsorbed N2* to N2H* is the potential-determining step. The high stabilization of the N2H* species is responsible for the superior performance of the embedded Mo atom for the NRR, which is well consistent with its d-band center. Our findings may facilitate the further design of single-atom electrocatalysts with high efficiency for NH3 synthesis at room temperature.

  10. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    Science.gov (United States)

    Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James

    2017-11-01

    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  11. Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.

    2013-08-01

    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab

  12. Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals.

    Science.gov (United States)

    Liu, Guanyu; Hall, Jeremy; Nasiri, Noushin; Gengenbach, Thomas; Spiccia, Leone; Cheah, Mun Hon; Tricoli, Antonio

    2015-12-21

    Chemical energy storage by water splitting is a promising solution for the utilization of renewable energy in numerous currently impracticable needs, such as transportation and high temperature processing. Here, the synthesis of efficient ultra-fine Mn3O4 water oxidation catalysts with tunable specific surface area is demonstrated by a scalable one-step flame-synthesis process. The water oxidation performance of these flame-made structures is compared with pure Mn2O3 and Mn5O8, obtained by post-calcination of as-prepared Mn3O4 (115 m(2)  g(-1)), and commercial iso-structural polymorphs, probing the effect of the manganese oxidation state and synthetic route. The structural properties of the manganese oxide nanoparticles were investigated by XRD, FTIR, high-resolution TEM, and XPS. It is found that these flame-made nanostructures have substantially higher activity, reaching up to 350 % higher surface-specific turnover frequency (0.07 μmolO2  m(-2)  s(-1)) than commercial nanocrystals (0.02 μmolO2  m(-2)  s(-1)), and production of up to 0.33 mmolO2  molMn (-1)  s(-1). Electrochemical characterization confirmed the high water oxidation activity of these catalysts with an initial current density of 10 mA cm(-2) achieved with overpotentials between 0.35 and 0.50 V in 1 m NaOH electrolyte. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  14. Synthesis of MnO-NiO-SO4−2/ZrO2 solid acid catalyst for methyl ester production from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Al-Jaberi, Salam H.H.; Rashid, Umer; Al-Doghachi, Fairs A.J.; Abdulkareem-Alsultan, G.; Taufiq-Yap, Y.H.

    2017-01-01

    Highlights: • MnO-NiO-SO 4 −2 /ZrO 2 catalyst was synthesized using impregnation method. • Synthesized catalyst had showed strong amount of acidy (2757.2 µmol/g). • Esterification reaction parameters were optimized. • The yield over 97% was obtained at 90 °C for 3 h. • Synthesized catalyst depicted five times recycle without significant loss of activity. - Abstract: Biodiesel is a found promising alternative biofuel to popular fossil fuel because of to its renewable and biodegradable nature and thus is considered as environmentally benign. This paper reports on the synthesis of a novel heterogeneous manganese-nickel doped on sulfated zirconia catalyst (MnO-NiO-SO 4 −2 /ZrO 2 ) by using simple wet impregnation method for biodiesel production from palm fatty acid distillate (PFAD). The synthesized catalyst was characterized through ammonia temperature programmed desorption (TPD-NH 3 ), X-ray diffraction (XRD), Fourier transform infrared (FTIR), pyridine adsorption via FTIR, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA) techniques. The synthesized catalyst was tested for PFAD through esterification reaction where more than 97% of biodiesel yield was observed under the optimized reaction conditions of 15:1 methanol to PFAD ratio, 70 °C reaction temperature, 3 wt% catalyst loading and 3 h reaction time. The reusability of the catalyst was tested and found that it could be reused for at least five times without significant reduction in activity. Hence, the catalyst was found suitable for biodiesel production from low grade feedstock.

  15. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    International Nuclear Information System (INIS)

    Awadallah, Ahmed E.; Aboul-Enein, Ateyya A.; Kandil, Usama F.; Taha, Mahmoud Reda

    2017-01-01

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  16. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  17. Facile synthesis of PtAu nanoparticles supported on polydopamine reduced and modified graphene oxide as a highly active catalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Ren, Fangfang; Zhai, Chunyang; Zhu, Mingshan; Wang, Caiqin; Wang, Huiwen; Bin, Duan; Guo, Jun; Yang, Ping; Du, Yukou

    2015-01-01

    Graphical abstract: A facile and clean method for the synthesis of PtAu nanoparticles with different Pt/Au ratios supported on polydopamine reduced and modified graphene oxide (PtAu/PDA-RGO) is reported, which exhibit higher electro-catalytic performance and stability towards methanol oxidation in alkaline medium. - Highlights: • GO could be reduced and modified simultaneously by PDA without using reducing agents. • PDA plays an important role in enhancing the dispersion and stability of the catalyst. • The bimetallic PtAu/PDA-RGO catalysts exhibits higher catalytic activity than the monometallic Pt/PDA-RGO toward MOR. • The PtAu(3:1)/PDA-RGO catalyst also shows better catalytic activity for MOR than PtAu(3:1)/RGO and PtAu(3:1)/C catalysts. - Abstract: In this paper, a facile strategy for the synthesis of PtAu nanoparticles (NPs) with different Pt/Au ratios supported on polydopamine reduced and modified graphene oxide (PtAu/PDA-RGO) is reported. The as-prepared PtAu/PDA-RGO composites were extensively analyzed by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. It is found that PDA plays an important role in enhancing the dispersion and stability of the catalyst. Moreover, the bimetallic PtAu/PDA-RGO catalysts exhibits higher catalytic activity than the monometallic Pt/PDA-RGO toward methanol oxidation reaction (MOR), with the best performance found for the Pt/Au molar ratio of 3/1. The PtAu(3:1)/PDA-RGO catalyst also shows better catalytic activity for MOR than PtAu(3:1)/RGO and PtAu(3:1)/C catalysts, suggesting that PDA-RGO can be a promising catalyst support for fuel cells. These findings also indicate that the molar ratios of Pt/Au and the catalyst support are the two critical factors to affect the overall performance of the catalyst

  18. ZnS nanoparticles as an efficient and reusable heterogeneous catalyst for synthesis of 1-substituted-1 H-tetrazoles under solvent-free conditions

    Science.gov (United States)

    Naeimi, Hossein; Kiani, Fatemeh; Moradian, Mohsen

    2014-09-01

    An efficient and green protocol for the synthesis of 1-substituted-1 H-tetrazoles through cyclization reaction of various primary amines, sodium azide, and triethyl orthoformate was described. In this method, a series of tetrazole derivatives was synthesized by using ZnS nanoparticles as an effective, recoverable, and reusable catalyst under solvent-free conditions. This strategy is a magnificent improvement for the synthesis of these heterocycles due to the non-acidic, clean, and solvent-free conditions via a solid recyclable catalyst. The catalyst was separated by simple filtration and reused seven times without significant loss of activity. The ZnS nanoparticles with high surface area and fine monodisperse particles were prepared using the simple microwave-assisted method without using any surfactant. The ZnS nanoparticle catalyst is a good candidate to replace brønsted acids and metal salts or other catalyst for the preparation of 1-substituted-1 H-tetrazoles in high yields and has potential values for industrial applications.

  19. Evaluation of catalytic ferrispinel MFe{sub 2}O{sub 4} (M = Cu, Co, Mn and Ni) in transesterification reaction; Avaliacao catalitica de ferroespinelios MFe{sub 2}O{sub 4} (M = Cu, Co, Mn e Ni) em reacao de transesterificacao visando obtencao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant' Ana, E-mail: klebersonric@usp.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Cornejo, Daniel Reinaldo [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2014-07-01

    Among the existing biofuels, biodiesel has achieved great economic and technological, for its potential to replace petroleum diesel and being biodegradable, have low emission of gaseous and be from renewable sources highlighted. In this context we propose to evaluate the performance of ferrispinel type MFe{sub 2}O{sub 4}, where M represents divalent metals (Cu, Co, Ni and Mn) in methyl transesterification reaction of soybean oil. The ferrispinel were synthesized by combustion reaction and characterized by XRD, FTIR and magnetic measurements. The results indicate that the synthesis is conducive to the production of ferrispinel with magnetization values ranging from 11.0 to 58.0 emu/g. The conversion values were 53; 55; 57 and 52 %, respectively, concluding that the type of divalent metal affects the morphology and hence the catalytic conversion. (author)

  20. Application of Ce{sub x}Zr{sub 1-x}O{sub 2} catalysts for the synthesis of diethyl carbonate from ethanol and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, I.; Kalevaru, V.N.; Kollmorgen, P.; Wohlrab, S. [Leibniz-Institut fuer Katalyse e.V. an der Universitaet Rostock (Germany); Martin, A.

    2013-11-01

    The direct synthesis of diethyl carbonate (DEC) from ethanol and CO{sub 2} is indeed an attractive approach from both academic and commercial points of view. In the present study, we report on the synthesis, characterization and catalytic evaluation of Ce-Zr-O solids with varying Ce/Zr ratios. The catalysts were prepared by citrate complexation method, and characterized by various techniques such as N{sub 2} adsorption (BET-SA), XRD, H{sub 2}-TPR, NH{sub 3}-TPD etc. The catalytic performance of these catalysts was evaluated towards the synthesis of DEC from ethanol and CO{sub 2} under suitable reaction conditions. According to thermodynamic data, the reaction is favorable at low reaction temperatures and high reaction pressures. Thus, the catalytic experiments were carried out in a continuous mode using a plug-flow reactor that was operated up to 200 bar and ca. 200 C. The effect of the reaction temperature (30-180 C) and pressure (80-180 bar) on the yield of DEC was investigated. Among various catalysts tested, Ce-Zr-O catalyst with 80 mol% Ce content has exhibited a relatively better performance compared to all other Ce-Zr-O catalysts. DEC yield increased with increasing reaction temperature up to 140 C. The highest yield of DEC obtained from the best case was 0.7 % at 140 C and at 140 bars. Further increase in temperature to 180 C caused a decrease in the DEC formation due to thermodynamic reasons as mentioned above. The ceria proportion has shown a considerable influence on the BET surface areas and thereby catalytic activity as well. The results revealed that the redox properties as well as acidity characteristics of the solids are strongly influenced by the content of Ce in the catalysts, which in turn showed a clear impact on the catalytic performance. (orig.)

  1. Catalyst-Free Synthesis of Hollow-Sphere-Like ZnO and Its Photoluminescence Property

    Directory of Open Access Journals (Sweden)

    Junye Cheng

    2014-01-01

    Full Text Available Hollow-sphere-like ZnO was successfully prepared by a facile combustion route at 950°C, and no external catalysts or additives were introduced. The morphology and structure of the hollow-sphere-like ZnO were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, and energy dispersive spectrometer (EDS. The possible growth mechanism was discussed in detail. In addition, the as-obtained hollow-sphere-like ZnO exhibited a strong green emission at 518 nm and a weak UV emission at 385 nm. We believe that the hollow-sphere-like ZnO material may be a good candidate for application in optical devices and catalyst systems.

  2. Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for Synthesis of Poly(ethylene oxide)

    KAUST Repository

    Xia, Yening

    2017-08-24

    We herein report a case study on the toxicity of residual catalyst in metal-free polymer. Eight-arm star-like poly(ethylene oxide)s were successfully synthesized via phosphazene-catalyzed ring-opening polymerization of ethylene oxide using sucrose as an octahydroxy initiator. The products were subjected to MTT assay using human cancer cell lines (MDA-MB-231 and A2780). Comparison between the crude and purified products clearly revealed that the residual phosphazenium salts were considerably cytotoxic regardless of the anionic species, and that the cytotoxicity of more bulky t-BuP4 salt was higher than that of t-BuP2 salt. Such results have therefore put forward the necessity for removal of the catalyst residues from PEO-based polymers synthesized through phosphazene catalysis for bio-related applications, and for the development of less or non-toxic organocatalysts for such polymers.

  3. Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performance

    International Nuclear Information System (INIS)

    Kang, Shuai; Shen, Pei Kang

    2015-01-01

    Graphical Abstract: A porous α-Fe 2 O 3 supported Pt catalyst has been synthesized by a facial thermal treatment assisted precipitation method and the materials show a illumination enhanced performance for ethanol oxidation. Display Omitted -- Highlights: •A porous α-Fe 2 O 3 supported Pt catalyst has been synthesized for the first time. •With the addition of α-Fe 2 O 3 , the current density of Pt/C grows about 51% under illumination and 32% in the dark compared with unsupported catalyst. •The current increases under illuminationin chronoamperometric experiments at a given potential of 0.7 V due to the photons from light provide energy for CO stripping. •This work demostrates an optical strategy to accelerate electrode reactions towards ethanol oxidation reaction. -- Abstract: The porous α-Fe 2 O 3 supported Pt catalyst is synthesized by a facial thermal treatment assisted precipitation method. The particle size of Pt is less than 3 nm. The pore diameters of α-Fe 2 O 3 particles are concentrated to 2.46 nm in a mesooporous scale. Its electrochemical performance is tested. The ethanol oxidation current of the Pt/Fe 2 O 3 catalsyt obviously improves under illumination, compared with that in the dark, during the optical switching operation. Moreover, with the addition of α-Fe 2 O 3 , the ethanol oxidation current of Pt/C grows about 51% under illumination and 32% in the dark; the onset potential shifts negtively for about 20 mV. This work demostrates an optical strategy which can be a potential alternative to accelerate electrode reactions towards ethanol oxidation reaction

  4. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  5. Synthesis of Acrolein From Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    OpenAIRE

    Abidin, Akhmad Zainal; Afandi, Rani Guslianti; Graha, Hafis Pratama Rendra

    2016-01-01

    Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO) and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration....

  6. Synthesis of Magnetic Carbon Supported Manganese Catalysts for Phenol Oxidation by Activation of Peroxymonosulfate

    OpenAIRE

    Yuxian Wang; Yongbing Xie; Chunmao Chen; Xiaoguang Duan; Hongqi Sun; Shaobin Wang

    2016-01-01

    Magnetic core/shell nanospheres (MCS) were synthesized by a novel and facile one-step hydrothermal method. Supported manganese oxide nanoparticles (Fe3O4/C/Mn) were obtained from various methods (including redox, hydrothermal and impregnation) using MCS as the support material and potassium permanganate as the precursor of manganese oxide. The Mn/MCS catalysts were characterized by a variety of characterization techniques and the catalytic performances of Fe3O4/C/Mn nanoparticles were tested ...

  7. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  8. Synthesis of bis-quinoxaline derivatives using Tonsil clay as a catalyst

    African Journals Online (AJOL)

    ... 9-ethyl-3,6-di(1,2-dioxoethyl)carbazole in the presence of Tonsil clay, a readily available and inexpensive catalyst. The structures of all new products were identified by 1H-NMR, 13C-NMR and FT-IR spectral data and microanalysis. KEY WORDS: bis-Quinoxaline, bis-Glyoxal, Green chemistry, 1,2-Diamine, Tonsil clay.

  9. Nano-Ticl 4 .SiO 2 : a Versatile and Efficient Catalyst for Synthesis of ...

    African Journals Online (AJOL)

    Nano-TiCl4.SiO2 has been found to be an extremely efficient catalyst for the preparation of 3,4-dihydropyrimidinones/thiones via three-component reactions of an aldehyde, β-ketoester or β-diketone and urea or thiourea under mild conditions. Nano-TiCl4.SiO2 as a solid Lewis acid has been synthesized by reaction of ...

  10. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  11. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Shelepova, Ekaterina V. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Vedyagin, Aleksey A., E-mail: vedyagin@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Ilina, Ludmila Yu.; Nizovskii, Alexander I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); Tsyrulnikov, Pavel G. [Institute of Hydrocarbon Processing SB RAS, Neftezavodskaya st., 54, Omsk, 644040 (Russian Federation)

    2017-07-01

    Highlights: • Carbon-supported copper catalyst was studied in dehydrogenation of methanol. • Reduction temperature affected size of Cu particles and Cu{sup 0}/Cu{sup 2+} ratio. • Reduction at 400 °C was required to obtain high methyl formate yield. - Abstract: Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200–400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12–17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  12. Synthesis of low cost organometallic-type catalysts for their application in microbial fuel cell technology.

    Science.gov (United States)

    Zerrouki, A; Salar-García, M J; Ortiz-Martínez, V M; Guendouz, S; Ilikti, H; de Los Ríos, A P; Hernández-Fernández, F J; Kameche, M

    2018-03-05

    Microbial fuel cells (MFCs) are a promising technology that generates electricity from several biodegradable substrates and wastes. The main drawback of these devices is the need of using a catalyst for the oxygen reduction reaction at the cathode, which makes the process relatively expensive. In this work, two low cost materials are tested as catalysts in MFCs. A novel iron complex based on the ligand n-phenyledenparaethoxy aniline has been synthesized and its performance as catalyst in single chamber MFCs containing ionic liquids has been compared with a commercial inorganic material such as Raney nickel. The results show that both materials are suitable for bioenergy production and wastewater treatment in the systems. Raney nickel cathodes allow MFCs to reach a maximum power output of 160 mW.m -3 anode , while the iron complex offers lower values. Regarding the wastewater treatment capacity, MFCs working with Raney nickel-based cathodes reach higher values of chemical oxygen demand removal (76%) compared with the performance displayed by the cathodes based on Fe-complex (56%).

  13. Dry re-forming of methane to synthesis gas over lignite semicokes catalyst at high pressure

    Directory of Open Access Journals (Sweden)

    Fengbo Guo

    2016-11-01

    Full Text Available Dry re-forming of methane has been carried out in a high temperature–pressure reactor at different pressures, using Hongce lignite semicokes catalyst. The results show that CH4 and CO2 conversions are decreased as the reaction pressure increased, but both of them kept basically stable when the reaction pressure is between 0.3 and 1 MPa. The comparison shows that the effects of the temperature and the flow of reactant gas on dry re-forming of methane are consistent with between high pressure and atmospheric pressure. The ratio of CO/H2 decreased as the ratio of CH4/CO2 increased, yet the value of CO/H2 is always more than 1 at different pressures. Hongce lignite semicokes catalyst is characterized by FTIR, XRD, SEM and BET, and the analysis results reveled that the physical specific adsorption peak of CO2 at 2350 cm−1 is strengthened significantly at different pressures, the micropore area and volume of Hongce lignite semicokes reduced form 40.2 m2  g−1 and 0.019 cm3  g−1 to 34.9 m2  g−1 and 0.017 cm3  g−1, respectively. Hongce lignite semicokes catalyst exhibited better activity and stability within 0.3–1 MPa range.

  14. Hydrothermal synthesis of bismuth ferrite Fenton-like catalysts and their properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Li, Wenjuan, E-mail: liwenjuan2801@163.com; Du, Yong; Kong, Defen; Wang, Ze; Meng, Yi; Sun, Xiaolan; Yan, Tingjiang; Kong, Desheng; You, Jinmao [Qufu Normal University, Shandong Province Key Laboratory of Life-Organic Analysis (China)

    2016-11-15

    Bismuth ferrite, Fenton-like catalysts have been successfully synthesized via simple hydrothermal methods without any templates. Through changing the molar ratio of Bi/Fe, the two main phases BiFeO{sub 3} and Bi{sub 25}FeO{sub 40} can be synthesized under different temperatures. Furthermore, different morphologies of the BiFeO{sub 3} phase can be adjusted by changing different concentrations of HNO{sub 3} and NaOH which were used to dissolve the reactants and adjust the pH values in the prepared process. When the concentration of HNO{sub 3}/NaOH was 8/12 M, some uniform cylindrical bodies with equal height (1 μm) and width (0.6 μm) were obtained, which have not been reported before. The uniform structures exhibited better activities in the photoassisted Fenton-like oxidation process for the degradation of rhodamine B (RhB) under visible light irradiation (420 nm < λ < 800 nm). Through the detection of the degradation mechanism, it showed that the concerted effect of the catalysts and H{sub 2}O{sub 2} can increase the generation of the charge carriers and accelerate the photogenerated charge transfer between the catalysts and dyes. The BiFeO{sub 3} samples also showed magnetic properties at room temperature, which may have potential applications in multiferroic or magnetoelectric sensors and devices.

  15. Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst

    OpenAIRE

    Dewi Tristantini; Ricky Kristanda Suwignjo

    2016-01-01

    This study investigated lump kinetic analysis of Fischer-Tropsch synthesis over Cobalt and Cobalt-Rhenium Alumina supported catalyst (Co/γ-Al2O3 and Co-Re/γ-Al2O3) at 20 bars and 483 K using feed gas with molar H2/CO ratios of 1.0 to 2.1. Syngas with H2/CO molar ratio of 1.0 represents syngas characteristic derived from biomass, while the 2.1 molar ratio syngas derived from coal. Rhenium was used as the promoter for the cobalt catalyst. Isothermal Langmuir adsorption mechanism was used to bui...

  16. Synthesis of uranium, iron and manganese nitrides for use as catalysts; Sintese dos nitretos de uranio, ferro e manganes para uso como catalisadores

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Soraya Maria Rizzo; Abrao, Alcidio [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1996-07-01

    The synthesis of uranium, iron and manganese nitrides and their use for the hydrogen generation from the cracking of ammonia is described. From the practical and economic point of view it is allowed to conclude that the uranium nitride as a catalyst is highly efficient and operates at lower temperature than the iron and manganese nitrides. With the uranium nitride and yield > 99% for the thermal decomposition of ammonia was reached at 550 deg C. This operation temperature is lower than the correspondent from the iron and manganese nitrides, used as commercial catalysts. (author)

  17. A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient hydrogenolysis of ester

    KAUST Repository

    Samal, Akshaya Kumar

    2016-11-24

    A versatile synthetic method was applied for the preparation of Sn containing bimetallic catalysts. The synthesis was performed by simply mixing the super hydride [LiB(C2H5)(3)H], with a metal (Ru, Rh or Ir) salt and an organotin complex in tetrahydrofuran solvent without using any surfactant. This leads to the formation of monodispersed M-Sn (M = Ru, Rh or Ir) bimetallic nanoparticles (NPs). These bimetallic catalysts show high performances in the hydrogenolysis of ester to the corresponding alcohol.

  18. KF/Al2O3 as a Recyclable Basic Catalyst for 1,3-Dipolar Cycloaddition Reaction: Synthesis of Indolizine-1-Carbonitrile Derivatives

    Directory of Open Access Journals (Sweden)

    Abaszadeh Mehdi

    2017-07-01

    Full Text Available KF/Al2O3 as a green and efficient catalyst has been used for synthesis of indolizine-1-carbonitrile derivatives. It can be proceeded by using 1,3-dipolar cycloaddition reaction of 1-alkyl-2-chloropyridinium bromides, malononitrile and benzaldehyde in ethanol, at reflux. The great advantage of this catalyst is the ease of handling. KF/Al2O3 can be used and removed by filtration, avoiding cumbersome aqueous workups and decreasing solvent waste handling issues. High conversions, short reaction times and a cleaner reaction profiles are some of the outstanding advantages of this method.

  19. Heteropolyacids as Green and Reusable Catalysts for the Synthesis of 3,1,5-Benzoxadiazepines

    Directory of Open Access Journals (Sweden)

    Fatemeh F. Bamoharram

    2007-02-01

    Full Text Available Synthesis of 3,1,5-benzoxadiazepines from the condensation of o-phenylenediamine (o-PDA and acyl chlorides in the presence of a catalytic amount of various heteropolyacids (HPAs is reported.

  20. PbO as an efficient and reusable catalyst for one-pot synthesis of ...

    Indian Academy of Sciences (India)

    free synthesis of tetrahydrobenzo pyrans (yields 81-91%) and benzylidene malonitriles (yields 90-96%) at room temperature using green chemistry approach. PbO nanoparticles were found to be highly efficient, eco-friendly and recyclable ...

  1. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  2. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    Directory of Open Access Journals (Sweden)

    Ya-Li Du

    2017-02-01

    Full Text Available As a favorably clean fuel, syngas (synthesis gas production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature reporting syngas production with Ni-based catalysts from HTLc precursors via methane or ethanol reforming. The discussion was initiated with catalyst preparation (including conventional and novel means, followed by subsequent thermal treatment processes, then composition design and the addition of promoters in these catalysts. As Ni-based catalysts have thermodynamic potential to deactivate because of carbon deposition or metal sintering, measures for dealing with these problems were finally summarized. To obtain optimal catalytic performances and resultantly better syngas production, based on analyzing the achievements of the references, some perspectives were finally proposed.

  3. Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts

    Science.gov (United States)

    Xiong, Bin; Zhou, Yingke; O'Hayre, Ryan; Shao, Zongping

    2013-02-01

    In this work, we present a facile route to prepare electrocatalysts for methanol oxidation. The catalyst synthesis route involves the simultaneous reduction and nitrogen doping of graphene oxide (GO) along with the reduction of H2PtCl6 to Pt by a facile ammonia gas heat-treatment and quenching process. The resulting catalysts are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy while their electrocatalytic activity toward the oxidation of methanol is evaluated by cyclic voltammetry. The obtained Pt/graphene composites consist of crystalline Pt nanoparticles in the range of 1-4 nm which are well-dispersed on the N-doped graphene sheets. The best Pt/N-graphene catalyst composite is obtained after a 5 min ammonia treatment at 800 °C followed by rapid ammonia gas quenching at room temperature. This catalyst demonstrates superior catalytic activity for methanol electro-oxidation, with a peak current density of 0.218 A mgPt-1, which is about five times higher than an undoped (hydrogen treated and quenched) Pt/graphene control catalyst. The excellent electrocatalytic performance of the ammonia quenched catalyst is attributed to the nitrogenous functional groups and dopants in the graphene sheets that are formed during the facile quenching process in ammonia.

  4. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst.

    Science.gov (United States)

    Maleki, Ali; Rahimi, Jamal; Demchuk, Oleg M; Wilczewska, Agnieszka Z; Jasiński, Radomir

    2018-05-01

    A green approach for the one-pot four-component sonochemical synthesis of 5-methyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylic esters from the reaction of 2-cyano-guanidine, sodium azide, various aromatic aldehydes and methyl or ethyl acetoacetate in the presence of a catalytic amount of Fe 2 O 3 @SiO 2 -(CH 2 ) 3 NHC(O)(CH 2 ) 2 PPh 2 as a new hybrid organic-inorganic core-shell nanomagnetic catalyst is described. This is the first design, preparation, characterization and application of the present nanomaterial and also the first ultrasound irradiated synthesis of the biologically and pharmaceutically important heterocyclic compounds in water as a green solvent. This novel sonocatalysis/nanocatalysis protocol offers several advantages such as high yields, short reaction times, environmentally-friendly reaction media, easily isolation of the products, simple preparation, full characterization and recoverability of the nanocatalyst by an external magnet and reusing several times without significant loss of activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Synthesis route to supported gold nanoparticle layered double hydroxides as efficient catalysts in the electrooxidation of methanol.

    Science.gov (United States)

    Ballarin, Barbara; Mignani, Adriana; Scavetta, Erika; Giorgetti, Marco; Tonelli, Domenica; Boanini, Elisa; Mousty, Christine; Prevot, Vanessa

    2012-10-23

    This work describes a new one-step method for the preparation of AuNP/LDH nanocomposites via the polyol route. The novelty of this facile, simple synthesis is the absence of additional reactants such as reductive agents or stabilizer, which gives the possibility to obtain phase-pure systems free of undesiderable effect. The AuNP formation is confirmed by SEM, TEM, PXRD, and XAS; moreover, the electrochemical characterization is also reported. The electrocatalytic behavior of AuNP/LDH nanocomposites has been investigated with respect to the oxidation of methanol in basic media and compared with that of pristine NiAl-Ac. The 4-fold highest catalytic efficiency observed with AuNP/LDH nanocomposites suggests the presence of a synergic effect between Ni and AuNP sites. The combination of these experimental findings with the low-cost synthesis procedure paves the way for the exploitation of the presented nanocomposites materials as catalysts for methanol fuel cells.

  6. Cobalt–iron nano catalysts supported on TiO{sub 2}–SiO{sub 2}: Characterization and catalytic performance in Fischer–Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Feyzi, Mostafa, E-mail: Dalahoo2011@yahoo.com [Faculty of Chemistry, Razi University, P. O. Box: +98-67149, Kermanshah (Iran, Islamic Republic of); Yaghobi, Nakisa; Eslamimanesh, Vahid [Iran Polymer and Petrochemical Institute, P. O. Box: +98- 14965 Tehran, Iran, (Iran, Islamic Republic of)

    2015-12-15

    Graphical abstract: The Co–Fe/TiO{sub 2}–SiO{sub 2} catalysts were prepared. The prepared catalysts were tested for light olefins and C{sub 5}–C{sub 12} production. The best operational conditions are 250 °C, H{sub 2}/CO = 1/1 under 5 bar pressure. - Highlights: • The TiO{sub 2}–SiO{sub 2} supported cobalt–iron catalysts were prepared via sol–gel method. • The best operational conditions were 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO = 1/1 and 5 bar. • The (Co/Fe)/TiO{sub 2}–SiO{sub 2} is efficient catalyst for light olefins and C{sub 5}–C{sub 12} production. - Abstract: A series of Co–Fe catalysts supported on TiO{sub 2}–SiO{sub 2} were prepared by the sol–gel method. This research investigated the effects of (Co/Fe) wt.%, the solution pH, different Co/Fe molar ratio, calcination conditions and different promoters on the catalytic performance of cobalt–iron catalysts for the Fisher–Tropsch synthesis (FTS). It was found that the catalyst containing 35 wt.% (Co–Fe)/TiO{sub 2}–SiO{sub 2} (Co/Fe molar ratio is 80/20) promoted with 1.5 wt.% Cu and calcined in air atmosphere at 600 °C for 7 h with a heating rate of 3 °C min{sup −1} is an optimal nano catalyst for converting synthesis gas to light olefins and C{sub 5}–C{sub 12} hydrocarbons. The effects of operational conditions such as the H{sub 2}/CO ratio, gas hourly space velocity (GHSV), different reaction temperature, and reaction pressure were investigated. The results showed that the best operational conditions for optimal nano catalyst are 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO molar ratio 1/1 under 5 bar total pressure. Catalysts and precursors were characterized by, X-ray diffraction (XRD), scanning electron microcopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), temperature program reduction (TPR) and N{sub 2} adsorption–desorption measurements.

  7. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.; Miller, Jeffrey T.; Delferro, Massimiliano; Stair, Peter C.; Marks, Tobin J.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (Oc)2Mo(=O)2@C, was prepared via direct grafting of MoO2Cl2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H2 (TPR-H2), and temperature-programmed NH3 desorption (TPD-NH3). The single-site nature of the Mo species is corroborated by XPS and TPR-H2 data, and it exhibits the lowest reported MoOx Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (Oc)2Mo(=O)2@C catalyzes the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (Oc)2Mo(=O)2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol-1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.

  8. Direct Synthesis of Phenol from Benzene on an Activated Carbon Catalyst Treated with Nitric Acid

    Science.gov (United States)

    Chen, Cui-hong; Xu, Jia-quan; Jin, Ming-ming; Li, Gui-ying; Hu, Chang-wei

    2011-06-01

    Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetonitrile. Boehm titration, X-ray photoelectron spectroscopy, scanning electron microscope coupled with an energy dispersive X-ray microanalyzer, and Brunauer-Emmett-Teller method were used to characterize the samples. The number of carboxyl groups on the surface was found to be the main factor affecting the catalytic activity. An optimum catalytic performance with a yield of 15.7% and a selectivity of 87.2% to phenol was obtained.

  9. Large-scale synthesis of aluminum diboride nanowires by Ni(NO3)2 catalyst

    Science.gov (United States)

    Fan, Q. H.; Zhao, Y. M.; Huang, J.; Ouyang, L. S.; Kuang, Q.

    2012-05-01

    Large-scale aluminum diboride (AlB2) nanowires have been successfully fabricated for the first time using the facile catalysis method with aluminum (Al) powders and boron trichloride (BCl3) gas mixed with hydrogen and argon and Ni(NO3)2 as the catalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) were used to characterize the morphologies and structures of the samples. Our results show that the AlB2 nanowires are single crystal.

  10. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization

    OpenAIRE

    Sultana, S.S.P.; Kishore, D.H.V.; Kuniyil, Mufsir; Khan, Mujeeb; Alwarthan, Abdulrahman; Prasad, K.R.S.; Labis, Joselito P.; Adil, S.F.

    2015-01-01

    Mixed metal nanoparticles (NPs) have attracted significant attention as catalysts for various organic transformations. In this study, we have demonstrated the preparation of nickel–manganese mixed metal oxide NPs doped with X% nano cerium oxide (X = 1, 3, 5 mol%) by a facile co-precipitation technique using surfactant and surfactant free methodologies. The as-synthesized materials were calcined at different temperatures (300 °C, 400 °C, and 500 °C), and were characterized using various spectr...

  11. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    Maurizio Selva

    2016-08-01

    Full Text Available The use of ionic liquids (ILs as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic activation of reactants.

  12. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    KAUST Repository

    Solovyeva, Vera A.

    2014-10-13

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  13. Facile One-Pot Synthesis of Amidoalkyl Naphthols and Benzopyrans Using Magnetic Nanoparticle-Supported Acidic Ionic Liquid as a Highly Efficient and Reusable Catalyst

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-11-01

    Full Text Available An efficient and eco-friendly procedure for the synthesis of 1-amidoalkyl-2-naphthol and tetrahydrobenzo[b]pyran derivatives has been developed through a one-pot three-component condensation of aldehydes with 2-naphthol and amides, or with malononitrile and dimedone in the presence of magnetic nanoparticle supported acidic ionic liquid (AIL@MNP as a novel heterogeneous catalyst under solvent-free conditions. This new procedure offers several advantages such as short reaction time, excellent yields, operational simplicity and without any tedious work-up for catalyst recovery or product purification. Moreover, the catalyst could be simply separated by an external magnet and reused six times without significant loss of catalytic activity.

  14. Ultrasound-promoted one-pot three component synthesis of tetrazoles catalyzed by zinc sulfide nanoparticles as a recyclable heterogeneous catalyst.

    Science.gov (United States)

    Naeimi, Hossein; Kiani, Fatemeh

    2015-11-01

    Ultrasound irradiation was applied for the appropriate and rapid synthesis of 1-substituted tetrazoles through cyclization reaction of various primary amines, sodium azide and triethyl orthoformate. This reaction was effectively catalyzed by ZnS nanoparticles as an efficient, recoverable and reusable catalyst. Compared with conventional methods, this method has the considerable advantages such as shorter reaction times, easier work-up, purer products with high yields and mild conditions. The ZnS nanoparticles catalyst is an excellent instance to replace Brønsted acids for the preparation of 1-substituted tetrazole derivatives in very short reaction times with excellent yields. The catalyst can be recovered and reused several times without significant loss of its catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  16. A facile synthesis of phenazine and quinoxaline derivatives using magnesium sulfate heptahydrate as a catalyst

    Directory of Open Access Journals (Sweden)

    BAHADOR KARAMI

    2011-09-01

    Full Text Available Convenient and simple procedures for the synthesis of phenazine and quinoxaline derivatives were developed via a reaction of o-phenylenediamines and 1,2-dicarbonyl compounds. In addition, the synthesis of two new 1,4-benzodiazine derivatives and the catalytic activity of magnesium sulfate heptahydrate (MgSO4·7H2O in the room temperature condensation of o-phenylenediamines and 1,2-dicarbonyl compounds in ethanol as solvent are reported. This method has many appealing attributes, such as excellent yields, short reaction times, and simple work-up procedures.

  17. Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst

    Science.gov (United States)

    Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.; Umar, Ahmad; Maaza, M.

    2018-02-01

    Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.

  18. Synthesis of triazole-based and imidazole-based zinc catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, Carlos A.; Satcher, Jr., Joe H.; Aines, Roger D.; Baker, Sarah E.

    2013-03-12

    Various methods and structures of complexes and molecules are described herein related to a zinc-centered catalyst for removing carbon dioxide from atmospheric or aqueous environments. According to one embodiment, a method for creating a tris(triazolyl)pentaerythritol molecule includes contacting a pentaerythritol molecule with a propargyl halide molecule to create a trialkyne molecule, and contacting the trialkyne molecule with an azide molecule to create the tris(triazolyl)pentaerythritol molecule. In another embodiment, a method for creating a tris(imidazolyl)pentaerythritol molecule includes alkylating an imidazole 2-carbaldehyde molecule to create a monoalkylated aldehyde molecule, reducing the monoalkylated aldehyde molecule to create an alcohol molecule, converting the alcohol molecule to create an alkyl halide molecule using thionyl halide, and reacting the alkyl halide molecule with a pentaerythritol molecule to create a tris(imidazolyl)pentaerythritol molecule. In another embodiment, zinc is bound to the tris(triazolyl)pentaerythritol molecule to create a zinc-centered tris(triazolyl)pentaerythritol catalyst for removing carbon dioxide from atmospheric or aqueous environments.

  19. Are Diatoms “Green” Aluminosilicate Synthesis Microreactors for Future Catalyst Production?

    Directory of Open Access Journals (Sweden)

    Lydia Köhler

    2017-12-01

    Full Text Available Diatom biosilica may offer an interesting perspective in the search for sustainable solutions meeting the high demand for heterogeneous catalysts. Diatomaceous earth (diatomite, i.e., fossilized diatoms, is already used as adsorbent and carrier material. While diatomite is abundant and inexpensive, freshly harvested and cleaned diatom cell walls have other advantages, with respect to purity and uniformity. The present paper demonstrates an approach to modify diatoms both in vivo and in vitro to produce a porous aluminosilicate that is serving as a potential source for sustainable catalyst production. The obtained material was characterized at various processing stages with respect to morphology, elemental composition, surface area, and acidity. The cell walls appeared normal without morphological changes, while their aluminum content was raised from the molar ratio n(Al:n(Si 1:600 up to 1:50. A specific surface area of 55 m2/g was measured. The acidity of the material increased from 149 to 320 µmol NH3/g by ion exchange, as determined by NH3 TPD. Finally, the biosilica was examined by an acid catalyzed test reaction, the alkylation of benzene. While the cleaned cell walls did not catalyze the reaction at all, and the ion exchanged material was catalytically active. This demonstrates that modified biosilica does indeed has potential as a basis for future catalytically active materials.

  20. LaCl 3. 7H 2 O: An efficient catalyst for the synthesis of phosphinates ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Abstract. An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3a-l) through Michaelis-Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1a-l) with dimethyl ...