WorldWideScience

Sample records for synthesis characterization thermal

  1. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Sm3+-doped ZnAl2O4 phosphor was synthesized by citrate sol–gel method and characterized using. X-ray diffraction and scanning electron microscopy to identify the crystalline phase and determine the parti- cle size. Photoluminescence (PL) studies on the sample showed emission peaks at 563, 601, 646 and ...

  2. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    grinding and heating in (Ar + 10% H2) atmosphere. 2.2 Sample characterization. The as-synthesized ... with literature value of cell parameter a = 8⋅059 A. No impurity phase was observed. The XRD pattern was ..... are thankful to Dr N D Dahale, Fuel Chemistry Division,. BARC, Dr T K Seshagiri, former scientist, and Shri.

  3. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  4. synthesis, characterization, thermal behavior and antimicrobial

    African Journals Online (AJOL)

    The present work deals with the synthesis and characterization of Co, Ni, Cd, Zn and Cu(II) complexes of 3-methyl benzoic acid with/without hydrazine. EXPERIMENTAL. The chemicals and solvents used were of AR grade received from Fluka Chemicals. The double distilled water was used for the preparation and chemical ...

  5. Synthesis and characterization of thermally stable oligomer-metal ...

    African Journals Online (AJOL)

    Synthesis and characterization of thermally stable oligomer-metal complexes of copper(II), nickel(II), zinc(II) and cobalt(II) derived from oligo- p - nitrophenylazomethinephenol. ... Based on half degradation temperature parameters Cu(II) and Zn(II) complexes were more resistant than the others. KEY WORDS: Oligomer metal ...

  6. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  7. Synthesis And Thermal Characterization Of Polypropylene ...

    African Journals Online (AJOL)

    The present work investigates the heat transfer and specifically, thermal conductivity, diffusivity and specific heat in Aluminium composite materials. The composites were obtained by mixing polypropylene (PP) with oxidized Aluminium (Al) under various volume fractions. Two sizes of filler are used in the sample composite ...

  8. Synthesis, characterization and thermal properties of inorganic-organic hybrid

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Poly (St-MAn-APTES/silica hybrid materials were successfully prepared from styrene (St, maleic anhydride (MAn and tetraethoxysilane (TEOS in the presence of a coupling agent 3-aminopropyltriethoxysilane (APTES, by freeradical solution polymerization and in situ sol-gel process. The TEOS content varied from 0 to 25 wt%. Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids (condensed siloxane bonds designated as Q1, Q2, Q3, Q4, with 3-aminopropyltriethoxysilane having mono-, di-, tri, tetra-substituted siloxane bonds designated as T1, T2 and T3. The results revealed that Q3, Q4 and T3 were the major microstructure elements in forming a network structure. The hybrid materials were also characterized by the methods of solvent extraction, Transmission Electron Microscopy (TEM, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA for determining the gel contents, particle size and thermal performance. The results showed that gel contents in the hybrid materials were much higher, the SiO2 phase were well dispersed in the polymer matrix, silicon dioxide existed at nanoscale in the composites, which had excellent thermal stability.

  9. Synthesis, characterization and thermal behavior of rare earth amido sulfonates

    International Nuclear Information System (INIS)

    Luiz, Jose Marques; Nunes, Ronaldo Spezia; Matos, Jivaldo do Rosario

    2013-01-01

    Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H 3 NSO 3 ] and suspensions of rare earth hydroxycarbonates [Ln 2 (OH) x (CO 3 ) y .zH 2 O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH 2 SO 3 ) 3 .xH 2 O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H 2 O molecules and NH 2 SO 3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln 2 (SO 4 ) 3 ] and (Ln 2 O 2 SO 4 ), besides formation of their oxides, was determined by thermogravimetry. (author)

  10. synthesis and characterization of thermally stable poly(amide-imide)

    African Journals Online (AJOL)

    Preferred Customer

    -imide)- montmorillonite nanocomposite, Thermal properties. INTRODUCTION. Polymer-clay nanocomposites typically exhibited mechanical, thermal and gas barrier properties, which are superior to those of the corresponding pure polymers ...

  11. Synthesis and characterization of thermally stable poly(amide-imide ...

    African Journals Online (AJOL)

    ... polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermal gravimetry analysis (TGA) and water uptake measurements. KEYWORDS: Bis(4-carboxyphenyl)-N,N'-pyromellitimide acid moiety, Poly(amide-imide)-montmorillonite nanocomposite, Thermal properties.

  12. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Metallic zinc thin films were deposited onto glass substrates using vacuum thermal evaporation method. By thermal oxidation of as-deposited Zn films, in ambient conditions, at different temperatures (570,. 670 and 770 K, respectively, for 1 h) zinc oxide thin films were obtained. The structural characteristics of the.

  13. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  14. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    Science.gov (United States)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  15. Synthesis and Thermal Characterization of Hydroxyapatite Powders Obtained by Sol-Gel Technique

    Science.gov (United States)

    Jiménez-Flores, Y.; Camacho, N.; Rojas-Trigos, J. B.; Suárez, M.

    The development of bioactive materials presents an interesting and an extremely relevant problem to solve, in the development of customized cranial and maxillofacial prosthesis, bioactive coating, and cements, for example. In such areas, one of the more employed materials is the synthetic hydroxyapatite, due to its proved biocompatibility with the human body; however, there are few studies about the thermal affinity with the biological surroundings, and most of them are centered in the thermal stability of the hydroxyapatite instead of its transient thermal response. In the present paper, the synthesis and physical-chemical characterization of hydroxyapatite samples, obtained by the sol-gel technique employing ultrasonic mixing, are reported. Employing X-ray diffraction patterns, XEDS and FTIR spectra, the crystal symmetry, chemical elements, and the present functional groups of the studied samples were determined and found to correspond to those reported in the literature, with a stoichiometry close to the ideal for biological applications. Additionally, by means of the photoacoustic detection and infrared photothermal radiometry (IPTR) techniques, the thermal response of the samples was obtained. Analyzing the photoacoustic data, the synthetized samples show photoacoustic opaqueness, responding in the thermally thick regime in the measurement range, and their thermal effusivity was also determined, having values of 1.47 folds the thermal effusivity of the mandibular human bone. Finally, from the IPTR measurements, the thermal diffusivity and thermal conductivity of the samples were also determined, having good agreement with the reported values for synthetic hydroxyapatite. The structural and thermophysical properties of the here reported samples show that the synthesized samples have good thermal affinity with the mandibular human bone tissue, and are suitable for biomedical applications.

  16. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  17. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  18. Synthesis and characterization of Nd2O3 nanoparticles in a radiofrequency thermal plasma reactor

    Science.gov (United States)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Dhole, S. D.; Ghorui, S.

    2016-02-01

    The synthesis of nanocrystalline Nd2O3 through an inductively coupled radiofrequency thermal plasma route is reported. Unlike in conventional synthesis processes, plasma-synthesized nanoparticles are directly obtained in a stable hexagonal crystal structure with a faceted morphology. The synthesized nanoparticles are highly uniform with an average size around 20 nm. The nanoparticles are characterized in terms of phase formation, crystallinity, morphology, size distribution, nature of chemical bonds and post-synthesis environmental effects using standard characterization techniques. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy are used for structural and morphological studies. The thermo-gravimetric technique, using a differential scanning calorimeter, is used to investigate the purity of phase. Fourier transform infrared spectroscopy is used to investigate the nature of existing bonds. The optical response of the nanoparticles is investigated through the electronic transition of Nd3+ ions in its crystalline structure via UV-visible spectroscopy. The presence of defect states and corresponding activation energies in the nanocrystalline Nd2O3 compared to those of the precursors are studied using thermoluminescence.

  19. Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition

    International Nuclear Information System (INIS)

    Simeonidis, K.; Mourdikoudis, S.; Moulla, M.; Tsiaoussis, I.; Martinez-Boubeta, C.; Angelakeris, M.; Dendrinou-Samara, C.; Kalogirou, O.

    2007-01-01

    Iron oxide nanoparticles were synthesized by the thermal decomposition of Fe(acac) 3 and Fe(CO) 5 . Three different homogeneous procedures were used for the controlled synthesis of Fe 3 O 4 , γ-Fe 2 O 3 and Fe 3 O 4 /γ-Fe 2 O 3 mixture nanocrystals. A combination of characterization techniques was used in order to distinguish these oxides. The controllable size, the narrow distribution and the rhombic self-assembly of the nanoparticles were revealed by the high-resolution transmission electron microscopy images and the X-ray powder diffraction results. For the quantitative analysis of the samples manganometry was used. Preliminary magnetic measurements indicated the size and composition dependence of saturation magnetization, a superparamagnetic behavior of the samples and some ferromagnetic features

  20. Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition

    Science.gov (United States)

    Simeonidis, K.; Mourdikoudis, S.; Moulla, M.; Tsiaoussis, I.; Martinez-Boubeta, C.; Angelakeris, M.; Dendrinou-Samara, C.; Kalogirou, O.

    2007-09-01

    Iron oxide nanoparticles were synthesized by the thermal decomposition of Fe(acac) 3 and Fe(CO) 5. Three different homogeneous procedures were used for the controlled synthesis of Fe 3O 4, γ-Fe 2O 3 and Fe 3O 4/γ-Fe 2O 3 mixture nanocrystals. A combination of characterization techniques was used in order to distinguish these oxides. The controllable size, the narrow distribution and the rhombic self-assembly of the nanoparticles were revealed by the high-resolution transmission electron microscopy images and the X-ray powder diffraction results. For the quantitative analysis of the samples manganometry was used. Preliminary magnetic measurements indicated the size and composition dependence of saturation magnetization, a superparamagnetic behavior of the samples and some ferromagnetic features.

  1. Synthesis, Characterization and Thermal Studies of Co(II), Ni(II), Cu ...

    African Journals Online (AJOL)

    NICO

    2010-06-15

    Jun 15, 2010 ... Ni(II) and Zn(II). TG curves indicated that the complexes decompose in three to four steps. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. KEY WORDS. Synthesis, Schiff bases, 1,2,4-triazine, thermal study. 1. Introduction. Triazine chemistry ...

  2. Synthesis, Characterization, Thermal Analyses, and Spectroscopic Properties of Novel Naphthyl-Functionalized Imidazolium Ionic Liquids

    Science.gov (United States)

    Yao, Meihuan; Li, Qing; Xia, Yanqiu; Liang, Yongmin

    2018-03-01

    A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf- 2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF- 6, BF- 4, and Br- decreases the thermal stabilities of such ionic liquids. Fluorescence and UV-Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV-Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.

  3. Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability

    Directory of Open Access Journals (Sweden)

    Fabio R. Simões

    2009-01-01

    Full Text Available In this work, a detailed chemical route to prepare thermally stable polyaniline (PANI/carbon black (CB composites is described. The syntheses were performed by chemical polymerization of aniline over CB particles, using different PANI/CB mass ratios. The thermal and electrical properties were characterized. Composites with mass ratio up to 65:35 (PANI:CB showed excellent thermal stability maintaining their conducting properties when thermally treated at 230 °C for two hours, which is adequate to process these materials. Moreover, the results showed an important reduction in the surface area of the composites which have a good relationship with the improvement of the rheological properties in melt processing.

  4. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    International Nuclear Information System (INIS)

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  5. Synthesis and thermal degradation characterization of novel poly(phosphazene-aryl amides

    Directory of Open Access Journals (Sweden)

    Z. P. Zhao

    2012-04-01

    Full Text Available New fully aromatic poly(phosphazene-aryl amides were prepared by polycondensation reaction of our synthesized aromatic diamine: 1,1,3,5-tetraphenoxy-4,6-bis(4-aminophenoxyoligocyclotriphosphazene (monomer 1 with terephthaloyl dichloride. Their chemical structure and composition were characterized by elemental analysis, 1H and 31P NMR (Nuclear Magnetic Resonance, and FT-IR (Fourier transform infrared spectroscopy, whereas their thermal degradation properties were determined by DSC (Differential Scanning Calorimetry and TGA (Thermal Gravimertic Analysis techniques. The solid residues of all samples were analysed by FT-IR and SEM (Scanning Electron Microscopy. Compared to conventional PPTA (poly(p-phenylene terephthamide, PPAA (poly(phosphazene-aryl amide shows excellent thermal stability and solubility in polar protic solvents. All poly(phosphazene-aryl amides show two thermal degradation in the temperature range 150–600°C. The monomer 1, due to its structure, shows the first maximum rate of thermal decomposition temperature around 150–350°C, which may be due to the decomposition of the P–O–C bone. Morphology of the solid residues by Scanning Electron Microscope exhibit that the granular of the solid residues gradual disappearance with the increase of monomer 1 content. The surface layer of PPAA solid residues has been grumous, for the syneresis of P–O–P took place.

  6. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  7. Synthesis and characterization of CdSe nanoparticles via thermal treatment technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available The synthesis of CdSe nanoparticles was undertaken via the thermal treatment method at varying calcination temperatures from 450 to 700 °C in alternate oxygen and nitrogen environment. Selenium powder was dissolved in ethylenediamine at 200 °C for 2 h before mixing with the metal precursor, cadmium nitrate and the capping agent polyvinylpyrrolidone to materialize the CdSe nanoparticles upon calcination. A series of measurements were employed to analyze the structural, elemental and optical properties of the attained nanoparticles at room temperatures using FTIR, XRD, EDX, SEM and TEM spectroscopies. XRD patterns and FTIR spectra revealed of the fact that, prior to calcination, an amorphous phase of the unheated material has taken shape, which after calcination achieved the crystalline structure of CdSe nanoparticles. The CdSe nanoparticle samples confirmed to be pure cadmium and selenium through EDX and FTIR analyses. The TEM images showed that as the calcination temperature raised from 450 to 700 °C the average particle size increased from 11 to 32 nm and the optical band gap energy decreased from 2.36 to 1.80 eV. Keywords: Cadmium selenide nanoparticles, Thermal treatment method, Structural and optical properties

  8. Tetradentate Schiff base ligands and their complexes: Synthesis, structural characterization, thermal, electrochemical and alkane oxidation

    Science.gov (United States)

    Ceyhan, Gökhan; Köse, Muhammet; McKee, Vickie; Uruş, Serhan; Gölcü, Ayşegül; Tümer, Mehmet

    Three Schiff base ligands (H2L1-H2L3) with N2O2 donor sites were synthesized by condensation of 1,5-diaminonapthalene with benzaldehyde derivatives. A series of Cu(II), Co(II), Ni(II), Mn(II) and Cr(III) complexes were prepared and characterized by spectroscopic and analytical methods. Thermal, electrochemical and alkane oxidation reactions of the ligands and their metal complexes were investigated. Extensive application of 1D (1H, 13C NMR) and 2D (COSY, HETCOR, HMBC and TOSCY) NMR techniques were used to characterize the structures of the ligands and establish the 1H and 13C resonance assignments of the three ligands. Ligands H2L1 and H2L3 were obtained as single crystals from THF solution and characterized by X-ray diffraction. Both molecules are centrosymmetric and asymmetric unit contains one half of the molecule. Catalytic alkane oxidation reactions with the transition metal complexes investigated using cyclohexane and cyclooctane as substrates. The Cu(II) and Cr(III) complexes showed good catalytic activity in the oxidation of cyclohexane and cyclooctane to desired oxidized products. Electrochemical and thermal properties of the compounds were also investigated.

  9. Synthesis, characterization, anticancer activity, thermal and electrochemical studies of some novel uranyl Schiff base complexes

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, Zahra; Asadi, Mozaffar; Firuzabadi, Fahimeh Dehghani [Shiraz Univ. (Iran, Islamic Republic of). Dept. of Chemistry; Yousefi, Reza; Jamshidi, Mehrnaz [Shiraz Univ. (Iran, Islamic Republic of). Protein Chemistry Lab. (PCL)

    2014-04-15

    Some tetradentate N{sub 2}O{sub 2} Schiff base ligands, such as N,N{sup '}-bis(naphtalidene)-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-methyl-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-chloro-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-nitro-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-carboxyl-1,2-phenylenediamine, and their uranyl complexes were synthesized and characterized by {sup 1}H NMR, IR, UV-Vis spectroscopy, TG (thermogravimetry), and elemental analysis (C.H.N.). Thermogravimetric analysis shows that uranyl complexes have very different thermal stabilities. This method is used also to establish that only one solvent molecule is coordinated to the central uranium ion and this solvent molecule does not coordinate strongly and is removed easier than the tetradentate ligand and also trans oxides. The electrochemical properties of the uranyl complexes were investigated by cyclic voltammetry. Electrochemistry of these complexes showed a quasireversible redox reaction without any successive reactions. Also, the kinetic parameters of thermal decomposition were calculated using Coats-Redfern equation. According to Coats-Redfern plots the kinetics of thermal decomposition of the studied complexes is first-order in all stages. Anticancer activity of the uranyl Schiff base complexes against cancer cell lines (Jurkat) was studied and determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide) assay.

  10. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wydra, Robert J.; Kruse, Anastasia M. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Bae, Younsoo [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506 (United States); Anderson, Kimberly W. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Hilt, J. Zach, E-mail: hilt@engr.uky.edu [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe{sub 3}O{sub 4}) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy. - Highlights: • Utilized atomic transfer radical polymerization (ATRP) to coat iron oxide nanoparticles with PEG • Investigated the surface coating by surface characterization methods • Demonstrated the potential use of nanoparticles for cancer therapy applications.

  11. Synthesis and innovation of PLA/clay nanocomposite characterization againts to mechanical and thermal properties

    Science.gov (United States)

    Salim, S.; Agusnar, H.; Wirjosentono, B.; Tamrin; Marpaung, H.; Rihayat, T.; Nurhanifa; Adriana

    2018-03-01

    Plastic polymer is one of the most dominant materials of daily human activities because of its multifunctional nature, light and strong and anti-corrosion so it is easy to apply in various equipment. Plastic is generally derived from petroleum material so it is nonbiodegradable. Therefore, this study aims to create a breakthrough of natural and biodegradable biodegradable plastic materials from plant starch (pisok kepok starch) with the help of 3 types of acid (HNO3, HCl and H2SO4) called Poly Lactid Acid (PLA). PLA is enhanced by mixing with a clay material with a variation of 1, 3 and 5% composition to form a PLA / Clay Nanocomposite material which is expected to have superior properties and resemble conventional plastics in general. Several types of characterization were performed to see the quality of the resulting material including tensile strength test with UTM tool, thermal endurance test with TGA tool, morphological structure test using SEM tool and additional test to see filler clay quality through X-RD tool. Based on the characterization of tensile and thermal test, 5B nanocomposite with addition of 5% clay and HCl acid aid showed the best tensile strength of 36 Mpa and the highest stability was 446,63 oC. Based on the results of morphological analysis of the best samples (5B) showed good interface ties. Meanwhile, based on the results of filler analysis, the opening of clay layer d-spacing occurred at 0.355 nm.

  12. Synthesis and characterization of alanine boron hydrate for its use in thermal neutron dosimetry

    International Nuclear Information System (INIS)

    Yanez S, J.C.

    1994-01-01

    Alanine boron hydrate was synthesized for its possible use as intercomparison dosimeter for thermal neutron irradiation. The irradiations were performed in the Nuclear Reactor of the Nuclear Center of Mexico. The salt was prepared by reacting alanine and boric acid in a (1:1) stoichiometric ratio in neutral pH 7.5 aqueous solution and also in a basic pH 13 solution. The latter reaction was prepared with the addition of ammonia hydroxide (25%). Solutions were stirred and afterwards were let to evaporate. The obtained product in each reaction is a white solid. Dosimeters were prepared with the obtained reaction products and irradiated under thermal neutron flux of 5 x 10 7 n/cm 2 s. For 30 hours. The analysis of irradiated samples was made in a Variant E-15 Electron Paramagnetic Resonance spectrometer. The observed response of the samples prepared with the reaction product at the basic pH is approximately 50% higher than the neutral pH samples. In order to investigate the optimum signal enhancement samples were prepared in a basic pH medium in the following stoichiometric ratios: (1:0.5); (1:0.75); (1:1.25); (1:1.5) and (1:1.75). It was observed that the samples of the reaction (1:0.75) produced the higher response. The response was 2728% higher than the alanine only dosimeters. The reaction product was chemically characterized by X-ray diffraction, Nuclear Magnetic Resonance, Chromatography, Refractometry and Solubility tests. Results indicate that alanine boron hydrate is formed in basic media and in a stoichiometric ratio (1:0.75). The dosimetric characterization of alanine boron hydrate was performed, results are reported. It is concluded that alanine boron hydrate may be a good intercomparison dosimeter for thermal neutron irradiation. (Author)

  13. Novel HPC-ibuprofen conjugates: synthesis, characterization, thermal analysis and degradation kinetics

    International Nuclear Information System (INIS)

    Hussain, M.A.; Lodhi, B.A.; Abbas, K.

    2014-01-01

    Naturally occurring hydrophilic polysaccharides are advantageously used as drug carriers because they provide a mechanism to improve drug action. Hydroxypropylcellulose (HPC) is water-soluble, biocompatible and bears hydroxyl groups for drug conjugation outside the parent polymeric chains. This unique geometry allows the attachment of drug molecules with higher covalent loading. The HPC-Ibuprofen conjugates as macromolecular prodrugs were therefore synthesized employing homogenous and one pot reaction methodologies using p-toluenesulfonyl chloride in N,N-dimethylacetamide solvent at 80 degree C for 24 h under nitrogen atmosphere. The imidazole was used as a base for neutralization of acidic impurities. Present strategy appeared effective to get high yield (77-81%) and high degree of drug substitution (DS 0.88-1.40) onto the HPC polymer as determined by the acid-base titration and verified by 1H-NMR spectroscopy. The gel permeation chromatography has shown uni-modal absorption which indicates no significant degradation of polymer during reaction. Macromolecular prodrugs with different DS of ibuprofen were synthesized, purified, characterized and found soluble in organic solvents. From thermogravimetric analysis, initial, maximum and final degradation temperatures of the conjugates were calculated and compared for relative thermal stability. Thermal degradation kinetics was also studied and results have indicated that degradation of conjugates follows about first order kinetics as calculated by Kissinger model. The energy of activation was also found moderate 92.38, 99.34 and 87.34 kJ/mol as calculated using Friedman, Broido and Chang models. It was found that these novel prodrugs of ibuprofen were thermally stable therefore these may have potential pharmaceutical applications. (author)

  14. Synthesis, characterization, conductivity and antimicrobial study of a novel thermally stable polyphenol containing azomethine group

    Science.gov (United States)

    Yılmaz Baran, Nuray; Karakışla, Meral; Demir, Hacı Ökkeş; Saçak, Mehmet

    2016-11-01

    Poly(4-[[(4-methylphenyl)methylene]amino]phenol) (P(4-MMAP)), which is a Schiff base polymer, was synthesized by an oxidative polycondensation reaction of 4-[[(4-methylphenyl)methylene]amino]phenol (4-MMAP) with the oxidants NaOCl, H2O2 and O2 in an aqueous alkaline medium. The polymerizations were carried out at various temperatures and times, and the highest polymer yield could be obtained when using 37% with NaOCl oxidant. The structures of the monomer and polymer were characterized by UV-Vis, FTIR 1H NMR and X-ray diffraction techniques. The thermal behaviors of the monomer and polymer were identified by the TG and DTG techniques. The thermal degradation of the polymer which was observed thermally stable up to 1000 °C, was also supported by the Thermo-IR spectra recorded in the temperature range of 25-800 °C. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymer were found to be 16682, 57796 g/mol and 3.4, respectively. The highest electrical conductivity value of P(4-MMAP) doped with iodine vapor at different temperatures and times was measured to be 7.8 × 10-5 Scm-1 after doping for 48 h at 60 °C. The antibacterial and antifungal activities of 4-MMAP and P(4-MMAP) were also assayed against the bacteria Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Bacillus subtilis and the fungi Candida albicans, Saccharomyces cerevisiae, respectively.

  15. Synthesis, Characterization and Biological Studies of New Linear Thermally Stable Schiff Base Polymers with Flexible Spacers.

    Science.gov (United States)

    Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid

    2016-01-01

    Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.

  16. Synthesis, Optical Characterization, and Thermal Decomposition of Complexes Based on Biuret Ligand

    Directory of Open Access Journals (Sweden)

    Mei-Ling Wang

    2016-01-01

    Full Text Available Four complexes were synthesized in methanol solution using nickel acetate or nickel chloride, manganese acetate, manganese chloride, and biuret as raw materials. The complexes were characterized by elemental analyses, UV, FTIR, Raman spectra, X-ray powder diffraction, and thermogravimetric analysis. The compositions of the complexes were [Ni(bi2(H2O2](Ac2·H2O (1, [Ni(bi2Cl2] (2, [Mn(bi2(Ac2]·1.5H2O (3, and [Mn(bi2Cl2] (4 (bi = NH2CONHCONH2, respectively. In the complexes, every metal ion was coordinated by oxygen atoms or chlorine ions and even both. The nickel and manganese ions were all hexacoordinated. The thermal decomposition processes of the complexes under air included the loss of water molecule, the pyrolysis of ligands, and the decomposition of inorganic salts, and the final residues were nickel oxide and manganese oxide, respectively.

  17. Synthesis and Characterization of [60]Fullerene-Glycidyl Azide Polymer and Its Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Ting Huang

    2015-05-01

    Full Text Available A new functionalized [60]fullerene-glycidyl azide polymer (C60-GAP was synthesized for the first time using a modified Bingel reaction of [60]fullerene (C60 and bromomalonic acid glycidyl azide polymer ester (BM-GAP. The product was characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, and nuclear magnetic resonance spectroscopy (NMR analyses. Results confirmed the successful preparation of C60-GAP. Moreover, the thermal decomposition of C60-GAP was analyzed by differential scanning calorimetry (DSC, thermogravimetric analysis coupled with infrared spectroscopy (TGA-IR, and in situ FTIR. C60-GAP decomposition showed a three-step thermal process. The first step was due to the reaction of the azide group and fullerene at approximately 150 °C. The second step was ascribed to the remainder decomposition of the GAP main chain and N-heterocyclic at approximately 240 °C. The final step was attributed to the burning decomposition of amorphous carbon and carbon cage at around 600 °C.

  18. Synthesis and Characterization of Novel Polythiophenes Containing Pyrene Chromophores: Thermal, Optical and Electrochemical Properties.

    Science.gov (United States)

    Valderrama-García, Bianca X; Rodríguez-Alba, Efraín; Morales-Espinoza, Eric G; Moineau Chane-Ching, Kathleen; Rivera, Ernesto

    2016-01-30

    A novel series of pyrene containing thiophene monomers TPM1-5 were synthesized and fully characterized by FTIR, MS, ¹H- and (13)C-NMR spectroscopy; their thermal properties were determined by TGA and DSC. These monomers were chemically polymerized using FeCl3 as oxidizing agent to give the corresponding oligomers TPO1-5) and they were electrochemically polymerized to obtain the corresponding polymer films deposited onto ITO. All oligomers exhibited good thermal stability, with T10 values between 255 and 299 °C, and Tg values varying from 36 to 39 °C. The monomers showed an absorption band at 345 nm due to the S0 → S2 transition of the pyrene group, whereas the fluorescence spectra showed a broad emission band arising from the "monomer" emission at 375-420 nm. The obtained polymers exhibited two absorption bands at 244 and 354 nm, due to the polythiophene and the pyrene moieties, respectively. The fluorescence spectra of polymers showed a broad "monomer" emission at 380-420 nm followed by an intense excimer emission band at 570 nm, due to the presence of intramolecular pyrene-pyrene interactions in these compounds.

  19. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method

    International Nuclear Information System (INIS)

    Goodarz Naseri, M.; Bin Saion, E.; Ahangar, H. Abbastabar; Hashim, M.; Shaari, A.H.

    2011-01-01

    Cubic structured manganese ferrite nanoparticles were synthesized by a thermal treatment method followed by calcination at various temperatures from 723 to 873 K. In this investigation, we used polyvinyl pyrrolidon (PVP) as a capping agent to control the agglomeration of the nanoparticles. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes of manganese ferrite nanoparticles were determined by TEM, which increased with the calcination temperature from 12 to 22 nm and they had good agreement with XRD results. Fourier transform infrared spectroscopy confirmed the presence of metal oxide bands at all temperatures and the absence of organic bands at 873 K. Magnetic properties were demonstrated by a vibrating sample magnetometer, which showed a super-paramagnetic behavior for all samples and also saturation magnetization (M s ) increases from 3.06 to 15.78 emu/g by increasing the calcination temperature. The magnetic properties were also confirmed by the use of electron paramagnetic resonance spectroscopy, which revealed the existence of unpaired electrons and also measured peak-to-peak line width, resonant magnetic field and the g-factor. - Research highlights: → Cubic structured manganese ferrite nano particles were synthesized by a thermal treatment method. → Polyvinylpyrrolidon (PVP) has been used as a capping agent to control the agglomeration of the nanoparticles. → The average particle sizes of manganese ferrite nano particles were determined by TEM.

  20. Synthesis and Characterization of Novel Polythiophenes Containing Pyrene Chromophores: Thermal, Optical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Bianca X. Valderrama-García

    2016-01-01

    Full Text Available A novel series of pyrene containing thiophene monomers TPM1–5 were synthesized and fully characterized by FTIR, MS, 1H- and 13C-NMR spectroscopy; their thermal properties were determined by TGA and DSC. These monomers were chemically polymerized using FeCl3 as oxidizing agent to give the corresponding oligomers TPO1–5 and they were electrochemically polymerized to obtain the corresponding polymer films deposited onto ITO. All oligomers exhibited good thermal stability, with T10 values between 255 and 299 °C, and Tg values varying from 36 to 39 °C. The monomers showed an absorption band at 345 nm due to the S0 → S2 transition of the pyrene group, whereas the fluorescence spectra showed a broad emission band arising from the “monomer” emission at 375–420 nm. The obtained polymers exhibited two absorption bands at 244 and 354 nm, due to the polythiophene and the pyrene moieties, respectively. The fluorescence spectra of polymers showed a broad “monomer” emission at 380–420 nm followed by an intense excimer emission band at 570 nm, due to the presence of intramolecular pyrene-pyrene interactions in these compounds.

  1. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source

    International Nuclear Information System (INIS)

    Lawal, O.S.; Lechner, M.D.; Kulicke, W.M.

    2008-05-01

    Starch isolated from an under-utilized legume plant (pigeon pea) was carboxymethylated. Influences of reaction parameters were investigated on the degree of substitution (DS) and the reaction efficiency (RE). Studies showed that optimal DS of 1.12 could be reached at reaction efficiency of 80.6 % in isopropanol-water reaction medium (40 deg. C, 3h). The scanning electron microscopy showed that after carboxymethylation, the granular appearance of the native starch was distorted. Wide-angle X-ray diffractometry revealed that crystallinity was reduced significantly after carboxymethylation. The infrared spectra revealed new bands in the carboxymethyl starch at ν =1600, 1426 and 1324 cm -1 and they were attributed to carbonyl functional groups vibration, -CH2 scissoring and OH bending vibration respectively. Broad band 13 C NMR of carboxymethyl starch showed intense peak at δ 180.3 ppm and it was assigned for carbonyl carbon on the carboxymethyl substituent on the AGU (Anhydroglucose Unit). DEPT (Distortionless Enhancement by Polarization Transfer) 135 NMR showed negative signals which correspond to methylene carbons on the AGU. The differential scanning calorimetry (DSC) suggests loss of crystallinity after carboxymethylation. Thermogravimetry (TG), Derivative Thermogravimetry (DTG) and Differential Thermal Analysis (DTA) show that thermal stability improved after carboxymethylation. The study provides information on the preparation and characterization of a biomaterial from a new source which could be used alone or in the preparation of other functional polymers for diverse polymer applications. (author)

  2. Highly crystalline zinc incorporated hydroxyapatite nanorods' synthesis, characterization, thermal, biocompatibility, and antibacterial study

    Science.gov (United States)

    Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi

    2017-10-01

    Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.

  3. Synthesis, characterization and thermal analysis of urea–formaldehyde/nanoSiO2 resins

    International Nuclear Information System (INIS)

    Roumeli, E.; Papadopoulou, E.; Pavlidou, E.; Vourlias, G.; Bikiaris, D.; Paraskevopoulos, K.M.; Chrissafis, K.

    2012-01-01

    Highlights: ► UF/nanosilica resins have been produced using the minimum cost method. ► The new resins had good dispersion and enhanced properties. ► Nanosilica interacts with polymer chains as was proved by FTIR and DSC. ► Nanosilica does not affect the resin's thermal stability but enhances its mechanical properties. - Abstract: In the present work urea–formaldehyde resins (UF) containing different amounts of SiO 2 nanoparticles were synthesized and studied in depth. All the hybrids were characterized with Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffractometry (XRD), while the dispersion of nanoparticles was studied with scanning electron microscopy with associated energy dispersive X-ray spectrometer (SEM/EDS). It was found that even though silanol groups of SiO 2 can interact with UF resin and form hydrogen bonds, aggregates of SiO 2 nanoparticles can still be formed in UF resin. Their size increases as SiO 2 content is increased. The curing reactions were examined with differential scanning calorimetry (DSC) and it was revealed that curing temperature of UF resin is slightly affected by the addition of nanoparticles. Furthermore, the activation energy of the curing reactions, for every hybrid, was calculated using the Kissinger's method, which implied the existence of interactions between the nanoparticles and the polymer chain. Thermogravimetric analysis (TGA) revealed that SiO 2 nanoparticles do not have an effect in the thermal stability of the resin. From the application of the prepared UF/SiO 2 resins in wood panels it was found that the mechanical properties of the panels, like the internal bond and the modulus of rapture, are enhanced with increasing nanoSiO 2 concentration.

  4. Synthesis, characterization, spectral, thermal analysis and computational studies of thiamine complexes

    Science.gov (United States)

    Masoud, Mamdouh S.; Ghareeb, Doaa A.; Ahmed, Shahenda Sh.

    2017-06-01

    Thiamine metal complexes were synthesized and characterized by elemental analysis, IR, electronic spectra, magnetic susceptibility, ESR spectra of Cu(II) complex and EDX for structural investigation of the complexes to know their geometries and mode of bonding. All the manganese, iron, copper, zinc, tungsten and mercury complexes are with octahedral geometry, while cobalt and nickel complexes are with tetrahedral geometry. The selenium and palladium complexes are with square planner geometry, while vanadium complex with stoichiometry (2:1) is with square pyramidal geometry. The thermal properties of the complexes were examined. The kinetic thermodynamic parameters were estimated from the TGA and DTA curves. Molecular modeling of the ligand and its complexes was performed using PC computer to give extra spot lights on the bonding properties of these compounds. Some theoretical studies were carried out to obtain the charges, bond lengths, bond angles and dihedral angles, energies of highest occupied molecular orbital (EHOMO), energies of lowest unoccupied molecular orbital (ELUMO), the separation energy (ΔE), chemical potential, electronegativity, hardness, softness, ionization potential and electron affinity of the studied ligand and its complexes. Correlation analysis was done to explore the relationships between some different parameters of the studied complexes.

  5. Synthesis, Characterization, and Thermal and Antimicrobial Activities of Some Novel Organotin(IV: Purine Base Complexes

    Directory of Open Access Journals (Sweden)

    Reena Jain

    2013-01-01

    Full Text Available A new series of organotin(IV complexes with purine bases theophylline (HL1 and theobromine (L2 of the types R3Sn(L1, R2Sn(L1Cl, R3Sn(L2Cl, and R2Sn(L2Cl2 (R = C6H5CH2–; p-ClC6H4CH2– have been synthesized in anhydrous THF. The complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations, UV-vis, IR, 1H, 13C NMR, and mass spectral studies. Various kinetic and thermodynamic parameters of these complexes have also been determined using TG/DTA technique. The thermal decomposition techniques indicate the formation of SnO2 as a residue. The results show that the ligands act as bidentate, forming a five-member chelate ring. All the complexes are 1 : 1 metal-ligand complexes. In order to assess their antimicrobial activity, the ligands and their corresponding complexes have also been tested in vitro against bacteria (E. coli, S. aureus, and P. pyocyanea and fungi (Rhizopus oryzae and Aspergillus flavus. All the complexes exhibit remarkable activity, and the results provide evidence that the studied complexes might indeed be a potential source of antimicrobial agents.

  6. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method

    Science.gov (United States)

    Goodarz Naseri, M.; Saion, E. Bin; Ahangar, H. Abbastabar; Hashim, M.; Shaari, A. H.

    2011-07-01

    Cubic structured manganese ferrite nanoparticles were synthesized by a thermal treatment method followed by calcination at various temperatures from 723 to 873 K. In this investigation, we used polyvinyl pyrrolidon (PVP) as a capping agent to control the agglomeration of the nanoparticles. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes of manganese ferrite nanoparticles were determined by TEM, which increased with the calcination temperature from 12 to 22 nm and they had good agreement with XRD results. Fourier transform infrared spectroscopy confirmed the presence of metal oxide bands at all temperatures and the absence of organic bands at 873 K. Magnetic properties were demonstrated by a vibrating sample magnetometer, which showed a super-paramagnetic behavior for all samples and also saturation magnetization (Ms) increases from 3.06 to 15.78 emu/g by increasing the calcination temperature. The magnetic properties were also confirmed by the use of electron paramagnetic resonance spectroscopy, which revealed the existence of unpaired electrons and also measured peak-to-peak line width, resonant magnetic field and the g-factor.

  7. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  8. Synthesis, characterization and thermal properties of the silsesquioxane organically modified with 4,5-diphenyl-2-Imidazoltiol

    International Nuclear Information System (INIS)

    Silvestrini, D.R.; Carmo, D.R. do

    2014-01-01

    The present paper describes the preparation of a nanostructured silsesquioxane, the octa-(3-chloropropyl)-octasilsesquioxane (S) that was organofunctionalised with the 4,5-Diphenyl-2-imidazolethiol (DIT). The modification of silsesquioxane with DIT proposed in this paper follows two steps. The composite prepared after functionalization was ascribed as SDIT. The composite SDIT and precursors were characterized by infrared (FTIR), 13 C and 29 Si Nuclear Resonance Magnetic (NMR) in solid state, Scanning Electron microscopy (SEM); X-Ray Diffraction (XRD); Energy-Dispersive X-ray spectroscopy (EDS) and Thermogravimetry. By spectroscopic analysis using above techniques, we conclude with that the SDIT synthesis was conducted with success. It was observed a cluster of particles containing cavities in an orderly fashion. The thermogravimetry analyzes performed in two different atmospheres, concluding that the materials (S, DIT and SDIT) when in air atmosphere has a slower degradation process in relation to nitrogen atmosphere. The thermogravimetry of SDIT indicate a greater thermal stability in nitrogen atmosphere. (author)

  9. Synthesis and Characterization of Thermally Stable Photocurable Polymer with Cyclohexane Moiety.

    Science.gov (United States)

    Kim, Dong Mm; Yu, Seong Hun; Lee, Jun Young

    2016-03-01

    Photocurable polymers with high transparency and thermal stability were synthesized by reaction between a commercial epoxy resin (NC9110) containing cyclohexane moiety and various kinds of cinnamic acids such as trans-cinnamic acid (CA), 3-hydroxy-trans-cinnamic acid (HCA) and 4-methoxy-trans-cinnamic acid (MCA). The photocurable polymers were synthesized with equal equivalent weight ratio of epoxy and cinnamate group. The chemical structures of the synthesized polymers were confirmed by 1H-NMR and FT-IR spectroscopies. Optical transmittance and thermal stability of the photocured polymers were investigated using UV-Visible spectroscopy and thermogravimetric analysis (TGA), respectively. It was confirmed that the polymers could form thin films with very smooth surface and could be efficiently cured by UV irradiation. It was also found that the polymer after curing showed a good thermal stability and optical transmittance. There was no significant transmittance change after heat treatment at 250 degrees C for 1 h and showed no noticeable weight loss up to 360 degrees C.

  10. Synthesis and Characterization of Titanium Slag from Ilmenite by Thermal Plasma Processing

    Science.gov (United States)

    Samal, Sneha

    2016-09-01

    Titanium rich slag has emerged as a raw material for alternative titanium source. Ilmenite contains 42-50% TiO2 as the mineralogical composition depending on the geographical resources. Application of titanium in paper, plastic, pigment and other various industries is increasing day by day. Due to the scarcity of natural raw mineral rutile (TiO2), ilmenite is considered as precursor for the extraction of TiO2. Ilmenite is reduced at the initial stage for the conversion of complex iron oxide into simpler form. Therefore, pre-reduction of ilmenite concentrate is essential to minimize the energy consumption during thermal plasma process. Thermal plasma processing of ilmenite for the production of titania rich slag is considered to be the direct route to meet the current demand of industrial needs of titanium. Titania rich slag contains 70-80% TiO2 as the major component with some other minor impurities, like oxide phases of Si, Al, Cr, Mg, Mn, Ca, etc. Usually titanium is present in tetravalent forms with globular metallic iron in the slag. Titania rich slag undergoes leaching for the removal of iron and transforming the slag into synthetic rutile having 85-95% of TiO2.

  11. Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available A simple thermal treatment was used to synthesize ZnSe nanoparticles at different calcination temperatures in a nitrogen flowing. The samples of ZnSe nanoparticles were prepared by reacting zinc nitrate (source of zinc and selenium powder with Polyvinylpyrrolidone (capping agent. Analysis of their X-ray diffraction patterns suggested the formation of an amorphous phase of the unheated material before calcination, which then transformed into a cubic crystalline structure of ZnSe nanoparticles after calcination. The phase analyses using energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy confirmed the presence of Zn and Se as the original compounds of prepared ZnSe nanoparticle samples. The average particle size of the samples increased from 7 ± 5 to 18 ± 3 nm as the calcination temperature was increased from 450 to 700 °C, which is also supported by the transmission electron microscopy results. Diffuse UV–visible reflectance spectra were used to determine the optical band gap through the Kubelka–Munk equation; the energy band gap was found to decrease from 4.24 to 3.95 eV with increasing calcination temperature. Keywords: Metals, Calcination, Differential thermal analysis (DTA, Fourier transform infrared spectroscopy (FTIR

  12. Synthesis and Characterization of TiO2-CNTs Nanocomposite and Investigation of Viscosity and Thermal Conductivity of a New Nanofluid

    Directory of Open Access Journals (Sweden)

    E. Khosravifard

    2012-06-01

    Full Text Available Nanofluids are kinds of fluids engineered by dispersing nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer. This paper presents synthesis and characterization of TiO2-CNTs nanocomposites by sonochemical method and investigation of some properties of TiO2-CNTs nanocomposite suspended in 50:50 (by weight propylene glycol and water mixture as a new nanofluid.

  13. Synthesis, thermal and nonlinear optical characterization of L-arginine semi-oxalate single crystals

    Science.gov (United States)

    Vasudevan, P.; Gokulraj, S.; Sankar, S.

    2012-06-01

    Optically good quality L-arginine semi-oxalate, an organic nonlinear optical crystal, has been synthesized from aqueous solution by slow evaporation method. Single crystal X-ray diffraction (XRD) analysis reveals that the synthesized L-arginine semi-oxalate crystal possesses triclinic structure with unit cell dimensions as a=5.05Å, b=9.73Å, c=13.12Å, α=111.030, β=92.790 and γ=91.910. The Fourier transform infra-red (FTIR) spectroscopy was analyzed and the presence of functional groups of L-arginine semi-oxalate was confirmed. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies show that the material is thermally stable up to 1460C and the melting point is 1500C. Kurtz and Perry powder technique confirms that the second harmonic generation (SHG) efficiency is 0.32 times that of standard organic materials urea and KDP.

  14. Synthesis and characterization of oligobenzimidazoles: Electrochemical, electrical, optical, thermal and rectification properties

    Science.gov (United States)

    Anand, Siddeswaran; Muthusamy, Athianna

    2018-03-01

    A series of benzimidazole monomers, (2-(2, 4-dihydroxyphenyl)-1H-benzimidazol-5-yl)(phenyl) methanone (BIKH), 2-(3-ethoxy-2-hydroxyphenyl)-1H-benzo [d]imidazole-5-yl) (phenyl) methanone (BIKE) and 2-(5-bromo-2-hydroxyphenyl)-1H-benzo [d]imidazole-5-yl) (phenyl) methanone (BIKB) were prepared by condensing three substituted aromatic aldehydes with 3, 4-diaminobenzophenone. In aqueous alkaline medium the benzimidazoles were converted in to oligomers by oxidative polycondensation using NaOCl as oxidant. The formation of monomers and oligomers were confirmed with 1H, 13C NMR, FT-IR, and UV-visible spectroscopic techniques. The oligomers were investigated for their optical, electrical, electrochemical and thermal properties. The electrochemical and optical band gaps of monomers and oligomers were calculated using both UV-visible spectroscopy and cyclic voltametry respectively. The band gap values of monomers are compared with band gap values obtained from quantum theoretical calculations with DFT. The electrical conductivity studies of iodine doped and undoped oligomers were done using two point probe technique. It is found that these values are showing good correlation with the charge densities on imidazole nitrogen obtained from Huckel method. The conductivity of oligomers increases with increase in iodine vapour contact time. The dielectric properties of oligomers have been investigated at different temperature and frequency. The dielectric measurement data were used to calculate the AC conductivity and activation energy of oligomers. Oligomer OBIKH is having greater thermal stability due to its number of chain propagation sites than other oligomers and is shown by its high carbines residue of around 60% at 600 °C in thermogravimetric analysis. I-V characteristics of oligobenzimidazole p-n diodes have shown good rectifying nature in the range -4 to 4 V.

  15. Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell

    International Nuclear Information System (INIS)

    Ma, Yanjie; Zong, Jiwen; Li, Wei; Chen, Long; Tang, Xiaofen; Han, Na; Wang, Jianping; Zhang, Xingxiang

    2015-01-01

    Two kinds of (microencapsulated phase change materials) MicroPCMs with acrylic-based copolymer as shell and n-dodecanol as core were successfully fabricated via suspension-like polymerization and photo-induced microencapsulation, respectively. Morphology and core–shell structure were observed by (field emission scanning electron microscope) FE-SEM. Thermal properties of the microencapsulated n-dodecanol were investigated by (differential scanning calorimeter) DSC and (thermogravimetric analysis) TGA. The results indicate that the mass ratio of core to shell has great influence on the morphology, inner structure, microencapsulated efficiency and durability of the microcapsules. Besides, the effects of various solvents and UV irridiation time on the microcapsule surface were discussed as well. In the experiment carried out, metal-ion complexation was conducted by the reaction between Mn ion and carboxyl groups on copolymer shell to enhance the performance of the microcapsules with n-dodecanol encapsulated. As the results indicate, the physicochemical properties and thermal conductivity of the shell were improved after Mn ion complexation reaction. Supercooling phenomenon of n-dodecanol was depressed to some extent. In the end, the thermo-regulated fiber containing acrylic-based copolymer microcapsules was fabricated, and thermo-regulated performance test of the fiber was also conducted. - Graphical abstract: (a)∼(d) schematic diagram of microencapsulation and (e) microcapsule with core–shell structure. - Highlights: • Microencapsulated n-dodecanol with acrylic polymer shell. • Microencapsulated n-dodecanol was fabricated by photo-induced microencapsulation. • Acrylic-based copolymer microcapsules with manganese-ion complexation

  16. Hydrothermal synthesis, structural and thermal characterizations of three open-framework gallium phosphites

    Science.gov (United States)

    Hamchaoui, Farida; Alonzo, Véronique; Marlart, Isabelle; Auguste, Sandy; Galven, Cyrille; Rebbah, Houria; Le Fur, Eric

    2017-11-01

    Three new gallium phosphites A[Ga(HPO3)2], where A = K (1), NH4 (2), Rb (3), have been synthesized by using mild hydrothermal conditions under autogeneous pressure. Their structures have been determined by single-crystal X-ray diffraction. These compounds crystallize in the hexagonal P63mc space group with a = 5.2567 (2) Å and c = 12.2582 (3) Å for 1, a = 5.2576 (2) Å and c = 12.9113 (4) Å for 2, a = 5.27020 (10) Å and c = 12.7619 (5) Å for 3, with Z = 2 in the three phases. The three compounds are isostructural and exhibit the same framework topology, consisting of a layered structure stacked along the c-axis with the A+ cations located in the interlayer spaces. The [Ga(HPO3)2]- sheets contain GaO6 octahedra interconnected by phosphite units through sharing vertices. Thermal analysis under air atmosphere shows a large range stability for alkali cations containing compounds with decomposition starting around 750 K leading to phosphate phases. Under nitrogen, a disproportionation of the phosphite into red phosphorus and phosphates is expected, accompanied by a release of H2.

  17. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    E-mail: a-ahmadi@kiau.ac.ir; ahmadikiau@yahoo.com. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL EVALUATION OF. SOME NOVEL DERIVATIVES OF 2-BROMOMETHYL-BENZIMIDAZOLE. Abbas Ahmadi*. Department of Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University,.

  18. Hydrothermal synthesis, characterization, and thermal properties of alumino silicate azide sodalite, Na8[AlSiO4]6(N3)2

    Science.gov (United States)

    Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.

    2017-07-01

    First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.

  19. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    Science.gov (United States)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  20. Synthesis, characterization and thermal behaviour of solid-state compounds of benzoates with some bivalent transition metal ions

    Directory of Open Access Journals (Sweden)

    Adriano B. Siqueira

    2007-04-01

    Full Text Available Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA, differential scanning calorimetry (DSC, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn or three (Fe, Cu steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.

  1. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  2. Synthesis, characterization and thermal decomposition of [Pd2 (C2-dmba (µ-SO4 (SO22

    Directory of Open Access Journals (Sweden)

    Caires Antonio Carlos Fávero

    1998-01-01

    Full Text Available The bridged sulphate complex [Pd2 (C²,dmba (µ-SO4 (SO22] has been obtained by reacting a saturated solution of SO2 in methanol and the cyclometallated compound [Pd(C²,N-dmba(µ-N3] 2; (dmba = N,N-dimethylbenzylamine, at room temperature for 24 h. Reaction product was characterized by elemental analysis, NMR comprising 13C{¹H} and ¹H nuclei and I.R. spectrum's measurements. Thermal behavior has been investigated and residual products identified by X-ray powder diffraction.

  3. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: synthesis, spectral characterization, antibacterial, fluorescence and thermal studies.

    Science.gov (United States)

    Ali, Omyma A M; El-Medani, Samir M; Abu Serea, Maha R; Sayed, Abeer S S

    2015-02-05

    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π(∗)) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis, Characterization, Thermal Stability and Sensitivity Properties of New Energetic Polymers—PVTNP-g-GAPs Crosslinked Polymers

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2016-01-01

    Full Text Available A series of energetic polymers, poly(vinyl 2,4,6-trinitrophenylacetal-g-polyglycidylazides (PVTNP-g-GAPs, were synthesized via cross-linking reactions of PVTNP with three different molecular weight GAPs using toluene diisocyanate as the cross-linking agent. The structures of these energetic polymers were characterized by ultraviolet visible spectra (UV–Vis, attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR, and nuclear magnetic resonance spectrometry (NMR. The glass-transition temperatures of these energetic polymers were measured with differential scanning calorimetry (DSC method, and the results showed that all the measured energetic polymers have two distinct glass-transition temperatures. The thermal decomposition behaviors of these energetic polymers were evaluated by differential thermal analysis (DTA, thermogravimetric analysis (TGA and thermogravimetric analysis tandem infrared spectrum (TGA-IR. The results indicated that all the measured energetic polymers have excellent resistance to thermal decomposition up to 200 °C, and the initial thermal decomposition was attributed to the breakdown of azide group. Moreover, the sensitivity properties of these energetic polymers were measured with the national military standard methods and their compatibilities with the main energetic components of 2,4,6-trinitrotoluene (TNT-based melt-cast explosive were evaluated by using the DTA method. The results indicate that these energetic polymers have feasible mechanical sensitivities and can be safely used with TNT, cyclotetramethylene tetranitramine (HMX, 1,1-diamino-2,2-dinitroethene (FOX-7, 3-nitro-1,2,4-triazol-5-one (NTO and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB.

  5. Synthesis and Characterization of PEDOT:P(SS-co-VTMS with Hydrophobic Properties and Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Wonseok Cho

    2016-05-01

    Full Text Available Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene, i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane (PEDOT:P(SS-co-VTMS copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS copolymers. PSS and P(SS-co-VMTS copolymers were successfully synthesized via radical solution polymerization, and PEDOT:P(SS-co-VTMS was synthesized via Fe+-catalyzed oxidative polymerization. The characterization of PEDOT:P(SS-co-VTMS was performed through an analysis of Fourier transform infrared spectroscopy (FTIR results, water contact angle and optical images. The electrical properties of conductive PEDOT:P(SS-co-VTMS thin films were evaluated by studying the influence of the VTMS content on the electrical and physical properties. The conductivity of PEDOT:P(SS-co-VTMS decreased with an increase in the VTMS content, but was close to that of the PEDOT:PSS, 235.9 S·cm−1. The introduction of VTMS into the PSS copolymer improved the mechanical properties and thermal stability and increased the hydrophobicity. The thermal stability test at a temperature over 240 °C indicated that the sheet resistance of PEDOT:PSS increased by 3,012%. The sheet resistance of PEDOT:P(SS-co-VTMS, on the other hand, only increased by 480%. The stability of PEDOT:P(SS-co-VTMS was six-times higher than that of the reference PEDOT:PSS.

  6. Synthesis, characterization and thermal behavior of rare earth amido sulfonates; Sintese, caracterizacao e comportamento termico de amidossulfonatos de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Jose Marques; Nunes, Ronaldo Spezia, E-mail: jmluiz@feg.unesp.br [Universidade Estadual Paulista Julio Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia. Departamento de Fisica e Quimica; Matos, Jivaldo do Rosario [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-09-01

    Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H{sub 3}NSO{sub 3}] and suspensions of rare earth hydroxycarbonates [Ln{sub 2}(OH){sub x}(CO{sub 3}){sub y}.zH{sub 2}O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH{sub 2}SO{sub 3}){sub 3}.xH{sub 2}O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H{sub 2}O molecules and NH{sub 2}SO{sub 3} groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln{sub 2}(SO{sub 4}){sub 3}] and (Ln{sub 2}O{sub 2}SO{sub 4}), besides formation of their oxides, was determined by thermogravimetry. (author)

  7. Synthesis, spectral, thermal and structural characterization of two complexes containing [N-(2-hydroxyethyl)-ethylenediamine] with carboxylate

    Science.gov (United States)

    Aycan, Tuǧba; Paşaoǧlu, Hümeyra

    2018-02-01

    Compounds based on the [Zn(hydet-en)2].(tpht).(H2O) (1) (tpht=dianion of terephthalic acid, hydet-en=N-(2-hydroxyethyl)ethylenediamine) has been synthesized which is characterized by single crystal X-ray determination, IR and thermal analysis. In 1, the Zinc(II) ion is six-coordinated that sandwiched by two hydet-en ligands which lies each hydeten ligand adopts a tripodal conformation and acts as tridentate ligand, carboxylate is uncoordinated. The coordination monomer is connected by C(13) chains and linear chains are connected by O-H...O H-bonds formed by DA:AD type 4 organization of aqua ligands and tpa2- ions resulting in R44(12 ) synthons to 3D structure. The FT-IR investigation of the complex were performed within the mid-IR region, mainly focusing on the characteristic vibrations of its free state and ligand behaviour in the case of complex formation. Thermal behaviours of 1 were followed using TG, DTA and DTG techniques.

  8. Synthesis, characterization, spectroscopic study and thermal analysis of rare-earth picrate complexes with L-arginine

    International Nuclear Information System (INIS)

    Martins, T.S.; Araujo, A.A.S.; Silva, S.M. da; Matos, J.R.; Isolani, P.C.; Vicentini, G.

    2003-01-01

    Rare-earth picrate complexes with L-arginine were synthesized and characterized. Analysis of carbon, hydrogen, nitrogen and thermal analysis data suggest a general formula Ln(pic) 3 ·2L-Arg·2H 2 O (Ln=La-Lu, Y, pic=picrate, L-Arg=arginine). IR spectra indicate the presence of water molecules and suggest that L-arginine is coordinated to the central ion through the nitrogen of the amine group. Bands due to picrate ions also indicate that at least in part they are coordinated as bidentate through the phenoxo group and one oxygen of an ortho-nitro group. X-ray diffraction powder pattern results indicate that these complexes are very similar in structure. The parameters obtained from the absorption spectrum of the solid Nd compound indicated that the metal-ligand bonds present weak covalent character. The emission spectra of the Eu compound indicate the existence of different europium coordinaton environments. Thermal analyses results indicated that all the compounds present a similar behavior

  9. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent.

    Science.gov (United States)

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2015-01-25

    The vanadyl(IV) adenine complex; [VO(Adn)2]⋅SO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  11. Synthesis, characterization and thermal study of Rb−U(IV)−Mo−O and Rb−U(VI)−Mo−O systems

    Energy Technology Data Exchange (ETDEWEB)

    Keskar, Meera, E-mail: mskeskar@barc.gov.in; Sali, S.K.; Krishnan, K.; Kannan, S.

    2016-09-15

    Four novel rubidium uranium (IV) molybdate compounds, Rb{sub 4}U{sub 5}(MoO{sub 4}){sub 12}, Rb{sub 2}U(MoO{sub 4}){sub 3}, Rb{sub 4}U(MoO{sub 4}){sub 4} and Rb{sub 8}U(MoO{sub 4}){sub 6} have been prepared by solid state route, reacting Rb{sub 2}MoO{sub 4}, UMoO{sub 5} and MoO{sub 3} in desired molar proportions in evacuated sealed quartz ampoules at 823 K and characterized by powder X-ray diffraction (XRD) and thermal analysis techniques. Thermal stability of the compounds was determined in helium atmosphere and oxidation behavior was studied in air using Thermogravimetric (TG) technique. The sub-solidus phase relations in Rb−U(VI)−Mo−O system were determined at 873 K in air. A pseudo-ternary phase diagram of Rb{sub 2}O−UO{sub 3}−MoO{sub 3} system was drawn on the basis of phase analysis of various phase mixtures prepared in Rb−U−Mo−O system and phase fields were established by powder X-ray diffraction. Rb{sub 2}UMo{sub 2}O{sub 10}, Rb{sub 6}UMo{sub 4}O{sub 18} and Rb{sub 2}U{sub 2}Mo{sub 3}O{sub 16} were identified during phase diagram study. Melting and thermal stability of these compounds were determined using differential thermal analysis (DTA) technique. - Highlights: • Synthesis of novel quaternary rubidium uranium (IV) molybdates by solid state route. • XRD analysis of the compounds. • Thermal stability in helium atmosphere and oxidation in air using TG/DTG/DTA technique. • Phase diagram of Rb−U−Mo−O system at 873 K.

  12. Synthesis, Characterization, and Photocatalytic Behavior of Praseodymium Carbonate and Oxide Nanoparticles Obtained by Optimized Precipitation and Thermal Decomposition

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Sadeghpour Karimi, Meisam; Norouzi, Parviz

    2017-07-01

    Direct precipitation of insoluble praseodymium carbonate salt by reaction of the corresponding cation and anion was utilized in this study. This facile, routine, and effective route was optimized statistically through an orthogonal array design for fabrication of nanoparticles, using a Taguchi method to quantitatively evaluate the effects of the major operation conditions on the particle diameter via analysis of variance. The results indicated that high-purity particles with very small dimension (30 nm) could be produced simply by regulating the cation and anion concentrations and flow rate of introducing the cation into the anion solution. The product was thermally decomposed to yield praseodymium oxide nanoparticles by single-stage reaction. Both products were characterized using various conventional techniques including x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy to monitor the effects of the optimization on their physicochemical properties. Furthermore, the photocatalytic behavior of the nanoparticles was evaluated for treatment of water polluted with methyl orange, revealing high efficiency for degradation of the organic pollutant.

  13. Synthesis and characterization of carbon nanotubes over iron carbide nanoparticles coated Al powder using thermal chemical vapor deposition

    Science.gov (United States)

    Singhal, S. K.; Seth, R. K.; Rashmi; Teotia, Satish; Mamta; Chahal, Rajeev; Mathur, R. B.

    2013-02-01

    A simple method is described to synthesize carbon nanotubes (CNTs) by the thermal decomposition of toluene at 750°C over a thin catalyst film deposited on Al powder. This method allows the bulk metal surface to act as both the catalyst and support for CNT growth. The catalyst film on Al was prepared from an ethanol solution of iron nitrate. Under the growth conditions, iron nitrate formed an amorphous iron oxide layer that transform into crystalline Fe2O3, which was further reduced to Fe3O4 and Fe3C. It is believed that the growth of CNTs took place on iron carbide nanoparticles that were formed from FeO. The characterization of CNTs was mainly carried out by powder X-ray diffraction and scanning electron microscopy, X-ray fluorescence and thermogravimatric analysis. The CNTs were found to be highly dispersed in Al powder. This composite powder could be further used for the fabrication of Al matrix composites using powder metallurgy process in which the powder were first cold pressed at 500-550 MPa followed by sintering at 620°C for 2 h under a vacuum of 10-2 torr. The mechanical properties of the sintered composites were measured using a microhardness tester and a Universal testing Instron machine.

  14. Novel thiourea derivative and its complexes: Synthesis, characterization, DFT computations, thermal and electrochemical behavior, antioxidant and antitumor activities

    Science.gov (United States)

    Yeşilkaynak, Tuncay; Muslu, Harun; Özpınar, Celal; Emen, Fatih Mehmet; Demirdöğen, Ruken Esra; Külcü, Nevzat

    2017-08-01

    A novel thiourea derivative, N-((2-chloropyridin-3-yl)carbamothioyl) thiophene-2-carboxamide,C11H8ClN3OS2 (HL) and its Co(II), Ni(II) and Cu(II) complexes (ML2 type) were prepared and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The crystal structure of HL was also investigated by single crystal X-ray diffraction study. The HL crystallizes in the orthorhombic crystal system with P 21 21 21 space group, Z = 4, a = 3.8875(3) Å, b = 14.6442(13) Å, c = 21.8950(19) Å. The [ML2] complex structures were optimized by using B97D/TZVP level. Molecular orbitals of HL ligand were calculated at the same level. Thermal and electrochemical behaviors of the complexes were investigated. Anticancer and antioxidant activities of the complexes were also investigated. Antioxidant activities were determined by using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2‧-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assays. Anticancer activities were studied via MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in MCF-7 (Michigan Cancer Foundation-7) breast cancer cells.

  15. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    International Nuclear Information System (INIS)

    Sesha Bamini, N; Choedak, Tenzin; Muthukrishnan, P; Ancy, C J; Vidyalakshmy, Y; Kejalakshmy, N

    2015-01-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes. (paper)

  16. Metal complexes of Schiff base derived from sulphametrole and o-vanilin . Synthesis, spectral, thermal characterization and biological activity

    Science.gov (United States)

    Mohamed, Gehad G.; Sharaby, Carmen M.

    2007-04-01

    Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [ N1-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H 2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M 2X 3(HL)(H 2O) 5]· yH 2O (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, y = 0-3); [Fe 2Cl 5(HL)(H 2O) 3]·2H 2O; [(FeSO 4) 2(H 2L)(H 2O) 4] and [(UO 2) 2(NO 3) 3(HL)(H 2O)]·2H 2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H 2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi ( Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.

  17. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  18. Synthesis, characterization, and thermal stability of novel poly(azomethine-urethane)s and polyphenol derivatives derived from 2,4-dihydroxy benzaldehyde and toluene-2,4-diisocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Ismet, E-mail: kayaismet@hotmail.com [Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, 17020, Canakkale (Turkey); Avc Latin-Small-Letter-Dotless-I , Ali [Celal Bayar University, Faculty of Sciences and Arts, Department of Chemistry, 45040, Manisa (Turkey)

    2012-03-15

    Graphical abstract: Black-Right-Pointing-Triangle Synthesis, characterization, and thermal stability of novel poly(azomethine-urethane)s and polyphenol derivatives derived from 2,4-dihydroxy benzaldehyde and toluene-2,4-diisocyanate. Highlights: Black-Right-Pointing-Pointer New pol(azomethine-urethane)s were synthesized. Black-Right-Pointing-Pointer PAMUs were converted to their polyphenol species by oxidative polymerization reaction with NaOCl. Black-Right-Pointing-Pointer The synthesized compounds were characterized by solubility tests, TGA and DSC. Black-Right-Pointing-Pointer T{sub g} values of PAMUs were between 137 and 178 Degree-Sign C and thermal stabilities of them were very good. Black-Right-Pointing-Pointer Obtained compounds can be promising candidates for aerospace applications. - Abstract: Up to date, only a few kinds of poly(azomethine-urethane)s (PAMUs) were synthesized and studied with thermal degradation steps. However, polyphenol based PAMUs including azomethine linkages have not been investigated yet. The polyurethanes were prepared by condensation reaction of 2,4-dihydroxybenzaldehyde (2,4-DHBA) with toluene-2,4-diisocyanate (TDI) under argon atmosphere. Synthesized polyurethane was converted to its poly(azomethine urethane) species (TP-2AP, TP-3AP, and TP-4AP) by graft copolymerization reactions with amino phenols (2-amino phenol, 3-amino phenol, and 4-amino phenol). Obtained poly(azomethine urethane)s were converted to their polyphenol species (P-TP-2AP, P-TP-3AP, and P-TP-4AP) by oxidative polymerization reaction (OP) using NaOCl as the oxidant. The structures of the obtained compounds were confirmed by FT-IR, UV-vis, {sup 1}H NMR, and {sup 13}C NMR techniques. The molecular weight distribution parameters of the synthesized compounds were determined by the size exclusion chromatography (SEC). The synthesized compounds were also characterized by solubility tests, TG-DTA, and DSC. Fluorescence measurements were carried out in various

  19. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  20. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand.

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-05

    A series of novel coordination polyurethanes [HTPU-M, where M=Mn(II) 'd 5 ', Ni(II) 'd 8 ', and Zn(II) 'd 10 '] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1 H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II)>HTPU-Mn(II)>HTPU-Zn(II)>HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. C V MYTHILI, A MALAR RETNA and S GOPALAKRISHNAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. MS received 28 August 2003; revised 19 February 2004.

  2. Synthesis, characterization and thermal behavior: Gd(NO3)3.6H2O to Gd2O3

    International Nuclear Information System (INIS)

    Ghonge, Darshana K.; Sheelvantra, Smita S.; Kalekar, Bhupesh B.; Raje, Naina

    2015-01-01

    Gadolinium oxide finds its application in nuclear as well as medical industry. It has been prepared from the thermal decomposition of gadolinium nitrate hexahydrate. Surface area of the synthesized compound was measured as 19 m 2 /g. EDS data shows only the presence of gadolinium and oxygen in the synthesized compound with the Gd to O ratio as calculated for Gd 2 O 3 , suggests the formation of pure Gd 2 O 3 . XRD analysis confirms the formation of pure cubic phase Gd 2 O 3 . In the absence of any report on the thermal behavior of GdNH, present studies have been carried out to understand the decomposition mechanism using simultaneous TG - DTA - EGA measurements

  3. Supercritical hydrothermal synthesis of Cu2O(SeO3): Structural characterization, thermal, spectroscopic and magnetic studies

    International Nuclear Information System (INIS)

    Larranaga, Aitor; Mesa, Jose L.; Lezama, Luis; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    Cu 2 O(SeO 3 ) has been synthesized in supercritical hydrothermal conditions, using an externally heated steel reactor with coupled hydraulic pump for the application of high pressure. The compound crystallizes in the P2 1 3 cubic space group. The unit cell parameter is a = 9.930(1) A with Z = 12. The crystal structure has been refined by the Rietveld method. The limit of thermal stability is, approximately, 490 deg. C. Above this temperature the compound decomposes to SeO 2 (g) and CuO(s). The IR spectrum shows the characteristic bands of the (SeO 3 ) 2- oxoanion. In the diffuse reflectance spectrum two intense absorptions characteristic of the Cu(II) cations in five-coordination are observed. The ESR spectra are isotropic from room temperature to 5 K, with g = 2.11(2). The thermal evolution of the intensity and line width of the signals suggest a ferromagnetic transition in the 50-45 K range. Magnetic measurements, at low temperatures, confirm the existence of a ferromagnetic transition with a critical temperature of 55 K

  4. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    Li, Shu-Ming; Fu, Lian-Hua; Ma, Ming-Guo; Zhu, Jie-Fang; Sun, Run-Cang; Xu, Feng

    2012-01-01

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO 3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  5. Synthesis, characterization, thermal and electrical conductance studies of La(III) complexes with 3-substituted triazole Schiff bases

    International Nuclear Information System (INIS)

    Siddappa, K.; Angadi, S.D.; Shikkargol, R.K.

    2009-01-01

    Lanthanum (III) complexes of Schiff bases of 3-aminomethyl-4-amino-5-mercapto-l, 2, 4-triazole (I-IV) and 3-methyl- 4-amino-5-mercapto-l, 2, 4-triazole (V-VIII) have been synthesized and characterised by elemental analysis, spectral and thermal studies. The molar conductance measurement indicates that they are non-electrolytes. The elemental analysis for these complexes shows that the ligands (I-IV) form, the complexes of the type ML.C1.H 2 O (where L is a doubly deprotonated ligand) whereas ligands (V-VIII) forms the complexes of the type ML 2 .C1.H 2 O (where L is singly deprotonated ligand). In all the complexes La (III) ion shows coordination number of six.. The DC electrical conductivity of La(III) complexes shows semiconductive nature. (author)

  6. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane

    Energy Technology Data Exchange (ETDEWEB)

    Montazerozohori, Morteza, E-mail: mmzohori@mail.yu.ac.ir [Department of Chemistry, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Zahedi, Saeedeh [Department of Chemistry, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Naghiha, Asghar [Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj (Iran, Islamic Republic of); Zohour, Mostafa Montazer [Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan (Iran, Islamic Republic of)

    2014-02-01

    In this work, synthesis of a new series of zinc halide/pseudohalide complexes of a bidentate Schiff base ligand entitled as bis (3-(4-dimethylaminophenyl)-allylidene)-1,2-diaminoethane(L) is described. The ligand and its zinc complexes were characterized by various techniques such as elemental analysis, FT-IR, UV–visible, {sup 1}H and {sup 13}C NMR spectra, cyclic voltammetry, and conductometry. Accordingly ZnLX{sub 2} (X = Cl{sup −}, Br{sup −}, I{sup −}, SCN{sup −} and N{sub 3}{sup −}) was suggested as molecular formula of the complexes. Redox behaviors of ligand and its zinc complexes were investigated by cyclic voltammetry method. Furthermore, the ligand and its zinc halide/pseudohalide complexes were tested for their in vitro antibacterial activities against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Also in vitro antifungal activities of them against Candida albicans and Aspergillus niger were investigated. The results indicated that all compounds are antibacterial and antifungal active. Thermal behaviors of ligand and its zinc complexes were studied from room temperature to 1100 °C under argon atmosphere. It was found that the ligand and zinc iodide are decomposed completely via three and four steps respectively while other zinc complexes leave out the metal or organometallic compounds as final residuals after 3–4 decomposition steps at above temperature range. Moreover evaluation of some thermo-kinetic parameters such as activation energy (∆E{sup ⁎}), enthalpy (∆H{sup ⁎}), entropy (∆S{sup ⁎}) and Gibbs free energy change (∆G{sup ⁎}) of the thermal decomposition steps were performed based on the Coats–Redfern relation. - Highlights: • Some novel complexes of Zn(II) with a bidentate Schiff base ligand have been synthesized. • Redox behavior of ligand and zinc complexes was investigated by cyclic voltammetry. • The

  7. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane

    International Nuclear Information System (INIS)

    Montazerozohori, Morteza; Zahedi, Saeedeh; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-01-01

    In this work, synthesis of a new series of zinc halide/pseudohalide complexes of a bidentate Schiff base ligand entitled as bis (3-(4-dimethylaminophenyl)-allylidene)-1,2-diaminoethane(L) is described. The ligand and its zinc complexes were characterized by various techniques such as elemental analysis, FT-IR, UV–visible, 1 H and 13 C NMR spectra, cyclic voltammetry, and conductometry. Accordingly ZnLX 2 (X = Cl − , Br − , I − , SCN − and N 3 − ) was suggested as molecular formula of the complexes. Redox behaviors of ligand and its zinc complexes were investigated by cyclic voltammetry method. Furthermore, the ligand and its zinc halide/pseudohalide complexes were tested for their in vitro antibacterial activities against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Also in vitro antifungal activities of them against Candida albicans and Aspergillus niger were investigated. The results indicated that all compounds are antibacterial and antifungal active. Thermal behaviors of ligand and its zinc complexes were studied from room temperature to 1100 °C under argon atmosphere. It was found that the ligand and zinc iodide are decomposed completely via three and four steps respectively while other zinc complexes leave out the metal or organometallic compounds as final residuals after 3–4 decomposition steps at above temperature range. Moreover evaluation of some thermo-kinetic parameters such as activation energy (∆E ⁎ ), enthalpy (∆H ⁎ ), entropy (∆S ⁎ ) and Gibbs free energy change (∆G ⁎ ) of the thermal decomposition steps were performed based on the Coats–Redfern relation. - Highlights: • Some novel complexes of Zn(II) with a bidentate Schiff base ligand have been synthesized. • Redox behavior of ligand and zinc complexes was investigated by cyclic voltammetry. • The ligand and its zinc complexes are antibacterial and

  8. Synthesis, Characterization, Thermal Stability and Sensitivity Properties of New Energetic Polymers—PVTNP-g-GAPs Crosslinked Polymers

    OpenAIRE

    Bo Jin; Juan Shen; Xiaoshuang Gou; Rufang Peng; Shijin Chu; Haishan Dong

    2016-01-01

    A series of energetic polymers, poly(vinyl 2,4,6-trinitrophenylacetal)-g-polyglycidylazides (PVTNP-g-GAPs), were synthesized via cross-linking reactions of PVTNP with three different molecular weight GAPs using toluene diisocyanate as the cross-linking agent. The structures of these energetic polymers were characterized by ultraviolet visible spectra (UV–Vis), attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR), and nuclear magnetic resonance spectrometry (NMR). Th...

  9. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Mitra, Samiran; Kundu, Parimal; Singh, Rajkumar Bhubon

    1998-01-01

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph) 2 (DCA) 2 ], [Ni(tmorph) 2 (TCA) 2 ].2H 2 O, [Cu(DMP) 2 (TCA) 2 ],[ML 2 X 2 ].nH 2 O where M=Zn II or Cd II , L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph) 2 (TCA) 2 ] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. E a * , ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between E a * and ΔS for the decomposition of the complexes. (author)

  10. Oxidative polycondensation of benzimidazole using NaOCl: Synthesis, characterization, optical, thermal and electrical properties of polybenzimidazoles

    Science.gov (United States)

    Anand, Siddeswaran; Muthusamy, Athianna; Dineshkumar, Sengottuvelu; Chandrasekaran, J.

    2017-11-01

    A series of polybenzimidazole polymers, poly-2-(1H-benzo[d] imidazole-2-yl) phenol (PBIP2), poly-3-(1H-benzo[d] imidazole-2-yl) phenol (PBIP3) and poly-4-(1H-benzo[d] imidazole-2-yl) phenol (PBIP4) were synthesized by oxidative polycondensation of benzimidazole monomers 2-(1H-benzo [d] imidazole-2-yl) phenol (BIP2), 3-(1H-benzo [d] imidazole-2-yl) phenol (BIP3) and 4-(1H-benzo [d] imidazole-2-yl) phenol (BIP4). The structure of benzimidazoles monomers and polybenzimidazoles (PBI) were confirmed by various spectroscopic techniques. The quantum theoretical calculations of band gap energy values of monomers were done with DFT and are compared with its optical band gap energy values. Fluorescence spectra of these compounds showed maximum emission in blue region. The electrical conductivity of PBIs was measured by four-point probe technique and showed good electrical response on iodine doping and conductivity increases with increase iodine doping time. The differences in conductivities among the three PBIs are in accordance with the charge density on imidazole nitrogens calculated by Huckel method. The high carbines residue (∼40%) at 500 °C in thermo gravimetric analysis shows that the PBIs are having reasonably good thermal stability. Polymers have recorded high dielectric constant at low applied frequency of 50 Hz at 393 K. The I-V characteristics of polybenzimidazoles p-n diodes showed rectifying nature with a typical forward to reverse current in the range -4 to 4 V. The high n values are caused by non homogeneities and effect of series resistance.

  11. Synthesis and characterization of nanosized MgxMn1-xFe2O4 ferrites by both sol-gel and thermal decomposition methods

    Science.gov (United States)

    De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco

    2017-04-01

    This work reports the synthesis of MgxMn1-xFe2O4 (x=0-1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11-15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.

  12. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    C−H⋅⋅⋅O bonds leading to an intricate hydrogen bonding network. Keywords. Synthesis .... in the refinement riding on their respective parent atoms. ..... nent peaks at 326 and 255 nm which can be assigned to transitions of the intramolecularly hydrogen-bon- ded salicylidenimino chromophore. Cotton effects of negative ...

  13. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  14. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL AND ...

    African Journals Online (AJOL)

    Preferred Customer

    This is further evidenced by the appearance of a new band in the spectra of the complexes at 1507-1539 cm-1 attributed to the ... coordinated to the thorium ion in a monodentate fashion [21]. A new strong band at 1230-1260 .... The kinetic parameters show a somewhat different trend from that of thermal stability. This can be ...

  15. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  16. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  17. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA HAQ NAWAZ SHEIKH. Volume 39 Issue 4 August 2016 pp 943-952 ...

  18. SHORT COMMUNICATION SYNTHESIS, CHARACTERIZATION ...

    African Journals Online (AJOL)

    Preferred Customer

    oxazine-. 2-ol methyl-2,3-diphenyl-2H-1,4-oxazine-2-ol (2). Characterization was performed using elemental analysis, UV-Vis and 1HNMR spectroscopy. The structure of this oxazine compound was determined by X-ray crystallography, and we ...

  19. Synthesis, spectral, thermal, optical dispersion and dielectric ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Ahmed Farouk Al-Hossainy. Volume 39 Issue 1 February 2016 pp 209-222 ...

  20. Synthesis, crystal structure, thermal analysis and dielectric

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis, crystal structure, thermal analysis and dielectric properties of two mixed trichlorocadmiates (II).

  1. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  2. Solar Thermal Reactor Materials Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  3. Synthesis, Characterization and Thermal Analysis of a New Acetic Acid (2-Hydroxy-benzylidene-hydrazide and its Complexes with Hg(II and Pd(II

    Directory of Open Access Journals (Sweden)

    Hajar Sahebalzamani

    2011-01-01

    Full Text Available The new complexes have been synthesized by the reaction of Hg(II and Pd(II with acetic acid(2-hydroxy-benzylidene- hydrazide (L. These new complexes were characterized by elemental analysis, IR, H NMR spectroscopy and UV spectral techniques. The changes observed between the FT-IR, H NMR and UV-Vis spectra of the ligands and of the complexes allowed us to establish the coordination mode of the metal in complexes. Thermal properties, TG-DTA of these complexes were studied. TG- DTA and other analytical methods have been applied to the investigation of the thermal behavior and structure of the compounds [M(L2]Cl2 M= Hg, Pd. Thermal decomposition of these compounds is multi-stage processes.

  4. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  5. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  6. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  7. Synthesis and thermal degradation Kinetics of D - (+ - galactose containing polymers

    Directory of Open Access Journals (Sweden)

    Fehmi Saltan

    2013-01-01

    Full Text Available In this study, it is investigated the synthesis and characterizations of polymerizable vinyl sugars. Carbohydrate containing polymers were synthesized via free radical polymerization. Thermal behavior of polymer derivatives was analyzed by using DSC and TG. Molecular weight dispersion of polymer derivatives was also analyzed with GPC. Molecular structures were analyzed by FT-IR and 1H-NMR spectrophotometer. We found that molecular weight of copolymers could effect to the thermal stability. According to TG data related to the copolymers, molecular weight of polymers increased while the thermal stability decreased. Thermogravimetric analysis of polymers also investigated. The apparent activation energies for thermal degradation of carbohydrate containing polymers were obtained by integral methods (Flynn - Wall - Ozawa, Kissinger - Akahira - Sunose, and Tang.

  8. Synthesis, characterization and thermal decomposition kinetics of Sm(III)complex with 2,4-dichlorobenzoate and 2,2'-bipyridine

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu, Su-Ling; Zhang Yonghua; Tian Liang; Song Huihua

    2008-01-01

    The complex of [Sm(2,4-DClBA) 3 (bipy)] 2 (2,4-DClBA, 2,4-dichlorobenzoate; bipy, 2,2'-bipyridine) was synthesized and characterized by elemental analysis, molar conductivity, IR and UV spectra. The thermal decomposition process of the complex was studied by means of TG-DTG and IR techniques. And its thermal decomposition kinetics was investigated via the analysis of the TG-DTG curves by jointly using double equal-double steps method and nonlinear integral isoconversional method. The activation energy E, the pre-exponential factor A and the most probable mechanism functions of the first decomposition stage were obtained. Meanwhile, the thermodynamic parameters (ΔH ≠ , ΔG ≠ and ΔS ≠ ) were also calculated. The lifetime equation at weight-loss of 10% was deduced as ln τ = -35.53 + 20200/T by isothermal thermogravimetric analysis

  9. Tris dithiocarbamate of Co(III) complexes: Synthesis, characterization, thermal decomposition studies and experimental and theoretical studies on their crystal structures

    Science.gov (United States)

    Sonia, Ayyavoo Sait; Bhaskaran, Ramalingam

    2017-04-01

    New homoleptic complexes of the form [Co(L1)3] & [Co(L2)3] where L1 = (ethylaminoethanol dithiocarbamate) 1 and L2 = (methylaminoethanol dithiocarbamate) 2 have been prepared and characterized by elemental analysis, IR, UV-visible absorption spectra, Cyclic voltammetry,1H and C13 NMR. The thermal properties were studied using a simultaneous thermal analyzer, and showed two main steps of decomposition. In addition, structures for 1 and 2 have been elucidated by X-ray crystallography. The single-crystal X-ray analysis for both the complexes showed distorted octahedral geometry. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/6-31G(d,p) level of theory in gas phase.

  10. Synthesis and Characterization of Novel Dendrons Bearing Amino-Nitro-Substituted Azobenzene Units and Oligo(ethylene glycol Spacers: Thermal, Optical Properties, Langmuir Blodgett Films and Liquid-Crystalline Behaviour

    Directory of Open Access Journals (Sweden)

    Ernesto Rivera

    2013-01-01

    Full Text Available In this work, we report the synthesis and characterization of a novel series of first and second generation Fréchet type dendrons bearing amino-nitro substituted azobenzene units and tetra(ethylene glycol spacers. These compounds were fully characterized by FTIR, 1H and 13C-NMR spectroscopies, and their molecular weights were determined by MALDI-TOF-MS. The thermal properties of the obtained dendrons were studied by TGA and DSC and their optical properties by absorption spectroscopy in solution and cast film. Molecular calculations were performed in order to determine the optimized geometries of these molecules in different environments. Besides, Langmuir and Langmuir Blodgett films were prepared with the first generation dendrons that were shown to be amphiphilic. Finally, some of the dendrons showed a liquid crystalline behaviour, which was studied by light polarized microscopy as a function of the temperature in order to determine the transition temperatures and the structure of the mesophase.

  11. Synthesis, Characterization and Reactions of (Azidoethynyltrimethylsilane

    Directory of Open Access Journals (Sweden)

    Klaus Banert

    2015-12-01

    Full Text Available Synthesis of azido(trimethylsilylacetylene (6 was performed by treating the iodonium salt 5 with highly soluble hexadecyltributylphosphonium azide (QN3 at −40 °C. Although this product is very unstable, it can nevertheless be trapped by the click reaction with cyclooctyne to give the corresponding 1,2,3-triazole, and also directly characterized by 1H- and 13C-NMR data as well as IR-spectra, which were measured in solution at low temperature and in the gas phase. The thermal or photochemical decay of azide 6 leads to cyano(trimethylsilylcarbene. This is demonstrated not only by quantum chemical calculations, but also by the trapping reactions with the help of isobutene.

  12. Optomechanics for thermal characterization of suspended graphene

    NARCIS (Netherlands)

    Dolleman, R.J.; Houri, S.; Davidovikj, D.; Cartamil Bueno, S.J.; Blanter, Y.M.; van der Zant, H.S.J.; Steeneken, P.G.

    2017-01-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a

  13. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity

    Science.gov (United States)

    Mohamed, Gehad G.; Soliman, Madiha H.

    2010-08-01

    Sulpiride (SPR; L) is a substituted benzamide antipsychotic which is reported to be a selective antagonist of central dopamine receptors and claimed to have mood-elevating properties. The ligation behaviour of SPR drug is studied in order to give an idea about its potentiality towards some transition metals in vitro systems. Metal complexes of SPR have been synthesized by reaction with different metal chlorides. The metal complexes of SPR with the formula [MCl 2(L) 2(H 2O) 2]· nH 2O [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); n = 0-2] and [FeCl 2(HL)(H 2O) 3]Cl·H 2O have been synthesized and characterized using elemental analysis (CHN), electronic (infrared, solid reflectance and 1H NMR spectra) and thermal analyses (TG and DTA). The molar conductance data reveal that the bivalent metal chelates are non-electrolytes while Fe(III) complex is 1:1 electrolyte. IR spectra show that SPR is coordinated to the metal ions in a neutral monodentate manner with the amide O. From the magnetic and solid reflectance spectra, octahedral geometry is suggested. The thermal decomposition processes of these complexes were discussed. The correlation coefficient, the activation energies, E*, the pre-exponential factor, A, and the entropies, Δ S*, enthalpies, Δ H*, Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves. The synthesized ligand and its metal complexes were also screened for their antibacterial and antifungal activity against bacterial species ( Escherichia coli and Staphylococcus aureus) and fungi ( Aspergillus flavus and Candida albicans). The activity data show that the metal complexes are found to have antibacterial and antifungal activity than the parent drug and less than the standard.

  14. Synthesis and characterization of Taurine

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-10-01

    Full Text Available Have been obtained 2-aminoethanesulfonic acid (taurine from ethanolamine, sulfuric acid and sodium sulfite during the synthesis in laboratory condition. The process involves two steps of reactions, the first was esterification of ethanolamine with sulfuric acid to produce the intermediate product of 2-aminoethyl ester which than was extended to the second step by sulfonation with sodium sulfite to produce 2-aminoethanesulfonic acid. Resulting product was analyzed using 1H-NMR, IR, FAB-MS analysis and examined purity characterizations of the synthesized products. DOI: http://dx.doi.org/10.5564/mjc.v14i0.200 Mongolian Journal of Chemistry 14 (40, 2013, p57-60

  15. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity

    Science.gov (United States)

    Refat, Moamen S.

    2013-03-01

    Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.

  16. Cu(II) and Ni(II) 4-cyanobenzoate complexes with nicotinamide: Synthesis, spectral, structural and optical characterization and thermal behavior

    Science.gov (United States)

    Özbek, Füreya Elif; Sertçelik, Mustafa; Yüksek, Mustafa; Necefoğlu, Hacali; Çelik, Raziye Çatak; Nayir, Gamze Yılmaz; Hökelek, Tuncer

    2017-12-01

    Two new copper(II) and nickel(II) complexes [M(NCsbnd C6H4COO)2(C6H6N2O)2(H2O)2] (where M:Cu and Ni) have been synthesized and characterized by elemental analysis, FT-IR and UV-Vis spectroscopy, spectroscopic ellipsometer (SE), X-ray crystallography, thermal analysis and molar conductivity. X-ray measurements showed that both of the complexes crystallized in triclinic system with the space group P-1. The isostructure complexes have distorted octahedral geometry around the metal atom center. In both of the crystal structures, the metal atoms are coordinated by two nitrogen atoms from two different nicotinamide ligands, two carboxyl oxygen atoms from two different 4-cyanobenzoate anions and two oxygen atoms from two different water molecules. From the linear absorption spectra and spectroscopic ellipsometer measurements, it was observed that these complexes showed different optical behaviors.

  17. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  18. Ion exchange synthesis and thermal characteristics of some [N

    Indian Academy of Sciences (India)

    Ionic liquid; thermal energy storage; ion exchange synthesis; heat transfer fluid. ... to high values of thermal energy storage capacity coupled with handsome liquid phase thermal conductivity, ILs under investigation were recommended as materials for thermal energy storage (TES) as well as heat transfer applications.

  19. Ion exchange synthesis and thermal characteristics of some [ N ...

    Indian Academy of Sciences (India)

    Thermal conductivity of the samples was determined both in solid and liquid phases. Owing to high values of thermal energy storage capacity coupled with handsome liquid phase thermal conductivity, ILs under ... Ionic liquid; thermal energy storage; ion exchange synthesis; heat transfer fluid. 1. .... with a scanning rate of 10.

  20. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  1. Degradation Characterization of Thermal Interface Greases: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackman, G. S. [DuPont Experimental Station; Wong, A. [DuPont Experimental Station; Meth, J. S. [DuPont Experimental Station

    2017-08-03

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization of several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.

  2. Degradation Characterization of Thermal Interface Greases

    Energy Technology Data Exchange (ETDEWEB)

    Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackman, Gregory [DuPont; Wong, Arnold [DuPont; Meth, Jeffery [DuPont

    2018-02-12

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization of several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.

  3. Sonochemical synthesis, characterization, thermal and semiconducting behavior of nano-sized azidopentaamminecobalt(III) complexes containing anion, CrO42-or Cr2O72.

    Science.gov (United States)

    Bala, Ritu; Behal, Jagriti; Shah, Nikesh A; Rathod, K N; Prakash, Vinit; Khunt, Ranjan C

    2018-03-01

    New nano-sized cobalt(III) coordination complexes, [Co(NH 3 ) 5 N 3 ]CrO 4 (1N) and [Co(NH 3 ) 5 N 3 ]Cr 2 O 7 (2N) were synthesized using an innovative sonochemical methodology based on reaction between [Co(NH 3 ) 5 N 3 ]Cl 2 and potassium salt of CrO 4 2- or Cr 2 O 7 2- in aqueous medium. These complexes were also compared with their respective bulks which were synthesized under identical conditions in the absence of sonicaion. All the complexes were characterized by elemental analysis and spectroscopic techniques (UV-visible and IR). Morphology and particle size of nano-sized complexes was determined by SEM and Zeta-sizer respectively. TGA was used for comparative thermal stability and XRD to identify the phase difference between nano structures and bulk complexes. Furthermore, the electrical property was investigated and all complexes were found to be electrical semiconducting materials and 2N shows better result than others. The single crystals X-ray structure study of new [Co(NH 3 ) 5 N 3 ]Cr 2 O 7 revealed the presence of discrete ions, [Co(NH 3 ) 5 N 3 ] 2+ and Cr 2 O 7 2- , crystallizes in monoclinic, space group P c , with R=0.0636 in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals

    Science.gov (United States)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  5. Synthesis and characterization of thermally stable poly(amide-imide-montmorillonite nanocomposites based on bis(4-carboxyphenyl-N,N'-pyromellitimide acid

    Directory of Open Access Journals (Sweden)

    M. Hajibeygi

    2013-04-01

    Full Text Available Two new poly(amide-imide-montmorillonite reinforced nanocomposites containing bis(4-carboxyphenyl-N,N'-pyromellitimide acid moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide (PAI as a source of polymer matrix was synthesized by the direct polycondensation reaction of bis(4-carboxyphenyl-N,N'-pyromellitimide acid with 4,4'-diamino diphenyl sulfone in the presence of triphenyl phosphite (TPP, CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP. Morphology and structure of the resulting PAI-nanocomposite films with 10 and 20% silicate particles were characterized by FT-IR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermal gravimetry analysis (TGA and water uptake measurements.DOI: http://dx.doi.org/10.4314/bcse.v27i1.10

  6. Synthesis, characterization, thermal behavior, and DNA-cleaving studies of cyano-bridged nickel(II)-copper(II) complexes of 4-(pyridin-2-ylazenyl)resorcinol.

    Science.gov (United States)

    Karipcin, Fatma; Ozmen, Ismail; Cülü, Burcin; Celikoğlu, Umut

    2011-10-01

    We present here the syntheses of a mononuclear Cu(II) complex and two polynuclear Cu(II)-Ni(II) complexes of the azenyl ligand, 4-(pyridin-2-ylazenyl)resorcinol (HL; 1). The reaction of HL (1) and copper(II) perchlorate with KCN gave a mononuclear complex [CuL(CN)] (4). Using 4, one pentanuclear complex, [{CuL(NC)}(4) Ni](ClO(4))(2) (5) and one trinuclear complex, [{CuL(CN)}(2) NiL]ClO(4) (6), were prepared and characterized by elemental analyses, magnetic susceptibility, molar conductance, IR, and thermal analysis. Stoichiometric and spectral results of the mononuclear Cu(II) complex indicated that the metal/ligand/CN ratio was 1 : 1 : 1, and the ligand behaved as a tridentate ligand forming neutral metal chelates through the pyridinyl and azenyl N-, and resorcinol O-atom. The interaction between the compounds (the ligand 1, its Ni(II) and Cu(II) complexes without CN, i.e., 2 and 3, and its complexes with CN, 4-6) and DNA has also been investigated by agarose gel electrophoresis. The pentanuclear Cu(4) Ni complex (5) with H(2) O(2) as a co-oxidant exhibited the strongest DNA-cleaving activity. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of saturated polyester and nanocomposites derived from glycolyzed PET waste ... construction industries. PET is widely used in the packaging of beverages and drugs. ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the estimation of the maximum. 277 ...

  8. Synthesis, characterization and application of semiconducting oxide ...

    Indian Academy of Sciences (India)

    Nanostructured; Cu2O nanostructures; electrolysis based oxidation; aligned ZnO nanorods. Abstract. In the present study, we report the synthesis, characterization and application of nanostructured oxide materials. The oxide ... The copper electrode served as a sacrificial anode for the synthesis of different nanostructures.

  9. Synthesis, Characterization and Antibacterial Activity of Imidazole ...

    African Journals Online (AJOL)

    NICO

    Synthesis, Characterization and Antibacterial Activity of. Imidazole Derivatives of 1,10-Phenanthroline and their .... Synthesis of Ligands (L1, L2). Ligands (L1. , L2) were synthesized by a method similar to one ... (50 mL). Dropwise addition of concentrated aqueaus ammonia to neutralize gave a yellow precipitate, which was ...

  10. Synthesis and characterization of tetraethylammonium tetrachloro ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and characterization of tetraethylammonium tetrachloro- cobaltate crystals. M A KANDHASWAMY and V SRINIVASAN*. Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India. MS received 7 February 2000; revised 27 December 2001. Abstract.

  11. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Biological synthesis and characterization of silver nanoparticles using. Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. PARAMASIVAM PREMASUDHA1, MUDILI VENKATARAMANA2,∗, MARRIAPPAN ABIRAMI3,. PERIYASAMY VANATHI4, KADIRVELU KRISHNA2 and RAMASAMY ...

  12. Synthesis, characterization, thermal properties and theoretical investigation on Bis(guanidinium) 4,4‧- Azo-1H-1,2,4-triazol-5-one

    Science.gov (United States)

    Cao, Wen-li; Guo, Jia-jia; Chen, Xiang; Ding, Zi-mei; Xu, Kang-zhen; Song, Ji-rong; Fan, An; Huang, Jie

    2017-11-01

    Bis(guanidinium) 4,4‧-Azo-1H-1,2,4-triazol-5-one [G2(ZTO)] was synthesized and characterized by X-ray single crystal diffraction, elemental analyzer and Fourier Transform Infrared (FT-IR) spectrometer. The result from X-ray single crystal diffraction indicates that G2(ZTO) crystallizes in the monoclinic space group P2(1)/c with parameters of a = 4.779(2) Å, b = 9.081(4) Å, c = 14.676(6) Å, α = 90.00°, β = 92.43(7)°, γ = 90.00°, V = 636.4(5) Å3, Z = 2, μ(Mo Kα) = 0.131, F(000) = 328, S = 1.071, Dc = 1.640 g·cm-3, R1 = 0.0510 and wR2 = 0.1389. Interestingly enough, its structure does not contain crystallization water, which is a unique characteristic in this material. Besides, the molecular geometry of the compound was optimized by using Density Functional Theory (DFT) method at B3LYP/6-31G (d, p) level in the ground state, revealing that the obtained geometric parameters are in accordance with the X-ray result of the structure. The experimental vibrational spectrum was compared with the calculated spectrum. Besides, molecular electrostatic potential (MEP) of G2(ZTO) was computed with the same method in gas phase, theoretically. The thermal properties of this compound were investigated by DSC, TG/DTG and micro-DSC methods. The results manifest that its thermal behavior can be divided into two main decomposition stages, the first intense decomposition peak temperature is 248.11 °C at the heating rate of 10 °C·min-1, which is higher than that of RDX (219 °C) but slightly lower than that of G(ZTO)·H2O (252.08 °C). The constant-volume combustion heat (ΔcU) of G2(ZTO), G(ZTO)·H2O and ZTO were determined and then the enthalpy of formation were calculated. The results show that G2(ZTO) possesses the highest standard molar enthalpy of formation, which may be explained by the fact that G2(ZTO) contains no water and possesses the highest nitrogen content in all guanidine salts. Moreover, the apparent activation energy (E), thermal stability and safety

  13. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  14. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  15. Ionothermal synthesis and structural characterization of [Cu ...

    Indian Academy of Sciences (India)

    bSchool of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Shida Road Limin development Zone, Harbin 150025, P. R. China e-mail: caiqinghai@yahoo.com. MS received 29 December 2014; revised 2 April 2015; accepted 3 April 2015. Abstract. The ionothermal synthesis and spectroscopic, thermal ...

  16. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  17. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The V atoms in the complexes are in octahedral coordination. Thermal stabilities of the complexes have also been studied. KEY WORDS: Oxovanadium complex, Aroylhydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. INTRODUCTION. Coordination chemistry of vanadium has attracted considerable ...

  18. Synthesis and characterization of cuprate superconductors

    International Nuclear Information System (INIS)

    Schaeffer, R.W. III.

    1992-01-01

    Superconducting powders and films were synthesized by a variety of methods and solvent systems: chemical solidification, freeze drying, and spray pyrolysis from livid ammonia (to form powders and films); reactions in molten sodium hydroxide/sodium peroxide and sodium nitrate/potassium nitrate mixtures (to form powders); and gel formation, coprecipitation, and spray drying from aqueous/organic mixtures (to form powders and films). These materials were characterized for elemental content and phase purity by gravimetric and volumetric analysis, atomic absorption spectroscopy, x-ray fluorescence and x-ray diffraction techniques. Particle size and surface morphology were determined by scanning electron microscopy and x-ray diffraction analysis. Also, precursor reactions were followed as a function of temperature with thermal gravimetric analysis and differential scanning calorimetry. Finally, physical properties determined for the resulting superconducting phases included resistivity, magnetic susceptibility, critical current, and percent Meissner effect. These results are discussed as a function of process parameters with particular attention to the role of atomic level mixing in solid state synthesis

  19. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION ... on the electron density in the phenyl ring and the respective accelerating and decelerating effects on the rate of ... compounds were determined using Nujol mulls and of liquids either in dichloromethane or chloroform ...

  20. SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED ...

    African Journals Online (AJOL)

    2016-07-30

    E-mail: b_mohtat@yahoo.com. This work is licensed under the Creative Commons ... Department of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran. (Received July 30, 2016; revised ..... Chem. 2013, 9, 2846-2851. 7. Mohamed, K.S.; Soliman, M.A.; El-Remaily, M.A.A.; Abdel-Ghany, H. Eco-friendly synthesis of ...

  1. Synthesis, structural characterization, thermal analysis, and DFT calculation of a novel zinc (II)-trifluoro-β-diketonate 3D supramolecular nano organic-inorganic compound with 1,3,5-triazine derivative

    Energy Technology Data Exchange (ETDEWEB)

    Mirtamizdoust, Babak, E-mail: babakm.tamizdoust@gmail.com [Department of Chemistry, Yasouj University, Yasouj, 75918-74831 (Iran, Islamic Republic of); Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Islamic Republic of Iran (Iran, Islamic Republic of); Ghaedi, Mehrorang [Department of Chemistry, Yasouj University, Yasouj, 75918-74831 (Iran, Islamic Republic of); Hanifehpour, Younes, E-mail: y_hanifehpour@yu.ac.kr [School of Mechanical Engineering, WCU Nano Research Center, Yeungnam University, Gyongsan, 712-749 (Korea, Republic of); Mague, Joel T. [Department of Chemistry, Tulane University, New Orleans (United States); Joo, Sang Woo, E-mail: swjoo1@gmail.com [School of Mechanical Engineering, WCU Nano Research Center, Yeungnam University, Gyongsan, 712-749 (Korea, Republic of)

    2016-10-01

    A sonochemical method was used to synthesize a novel nano-structure of a zinc(II) organic-inorganic compound [Zn(dapt){sub 2}(ttfa){sub 2}] (1) [dapt = 2,4-diamino-6-phenyl-1,3,5-triazine and ttfa = 2-thenoyltrifluoroacetonate]. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, elemental analysis, and thermal analysis. The single-crystal X-ray structure shows that 1 is a discrete coordination compound. Strong intra- and intermolecular hydrogen bonds are observed in the structure with the latter forming chains of molecules running parallel to (110). The chains are further extended into a three-dimensional supramolecular structure by intermolecular C−F⋯π interactions between trifluoromethyl and triazine moieties. The coordination number of the zinc(II) ion is six (ZnN{sub 2}O{sub 4}), and the coordination sphere is tetragonally elongated octahedral. The structure of the title complex was optimized by DFT calculations. - Highlights: • A new zinc(II) 3D coordination supramolecular compound was synthesized. • Ultrasound synthesis of nano coordination compound have been reported. • The X-ray crystal structure of the compound is reported.

  2. Synthesis, thermal and spectral characterization of nanosized Ni(x)Mg(1-x)Al2O4 powders as new ceramic pigments via combustion route using 3-methylpyrozole-5-one as fuel.

    Science.gov (United States)

    Ahmed, Ibrahim S; Shama, Sayed A; Dessouki, Hassan A; Ali, Ayman A

    2011-10-15

    New Ni(x)Mg(1-x)Al(2)O(4) nanosized in different composition (0.1≤x≤0.8) powders have been synthesized successively for first time by using low temperature combustion reaction (LTCR) of corresponding metal chlorides, carbonates and nitrates as salts with 3-methylpyrozole-5-one (3MP5O) as fuel at 300°C in open air furnace. Magnesium aluminate spinel (MgAl(2)O(4)) was used as crystalline host network for the synthesis of nickel-based nano ceramic pigments. The structure of prepared samples was characterized by using different techniques such as thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). UV/Visible and Diffuse reflectance spectroscopy (DRS) using CIE-L*a*b* parameters methods have been used for color measurements. The obtained results reveal that Ni(x)Mg(1-x)Al(2)O(4) powder of samples is formed in the single crystalline and pure phase with average particle size of 6.35-33.11 nm in the temperature range 500-1200°C. The density, particle size, shape and color are determined for all prepared samples with different calcination time and temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A two-dimensional bismuth coordination polymer with tartaric acid: synthesis, characterization and thermal decomposition to Bi.sub.2./sub.O.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ahadiat, G.; Tabatabaee, M.; Gholivand, K.; Zare, K.; Dušek, Michal; Kučeráková, Monika

    2017-01-01

    Roč. 16, č. 1 (2017), s. 7-16 ISSN 1024-1221 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : bismuth coordination polymer * tartrate ligand * thermal decomposition * alpha-Bi 2 O 3 nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.565, year: 2016

  4. Characterization of Nanocomposites by Thermal Analysis

    Directory of Open Access Journals (Sweden)

    Mariaenrica Frigione

    2012-12-01

    Full Text Available In materials research, the development of polymer nanocomposites (PN is rapidly emerging as a multidisciplinary research field with results that could broaden the applications of polymers to many different industries. PN are polymer matrices (thermoplastics, thermosets or elastomers that have been reinforced with small quantities of nano-sized particles, preferably characterized by high aspect ratios, such as layered silicates and carbon nanotubes. Thermal analysis (TA is a useful tool to investigate a wide variety of properties of polymers and it can be also applied to PN in order to gain further insight into their structure. This review illustrates the versatile applications of TA methods in the emerging field of polymer nanomaterial research, presenting some examples of applications of differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, dynamic mechanical thermal analysis (DMTA and thermal mechanical analysis (TMA for the characterization of nanocomposite materials.

  5. Thermal characterization of metakaolin-based geopolymer

    Czech Academy of Sciences Publication Activity Database

    Samal, Sneha Manjaree; Thanh, N.P.; Marvalová, B.; Petrikova, I.

    2017-01-01

    Roč. 69, č. 12 (2017), s. 2480-2484 ISSN 1047-4838 Institutional support: RVO:68378271 Keywords : thermal * characterization * geopolymer Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.860, year: 2016

  6. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Among all the renewable energy technologies, such as wind turbines, hydropower, wave and tidal power, solar cells, solar thermal, biomass-derived liquid fuels and biomass-fired electricity generation, photovoltaic technology utilizing solar energy is considered as the most promising one [5]. An ideal light harvesting system ...

  7. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    Science.gov (United States)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  8. Synthesis and characterization of ceria nanomaterials

    Science.gov (United States)

    Cheong Ng, Nitzia

    Cerium dioxide or ceria, CeO2, has been widely used in industry as catalyst for automotive exhaust controls, chemical mechanical polishing (CMP) slurries, and high temperature fuel cells because of its unique metal oxide properties. This well-known rare metal oxide has high thermal stability, electrical conductivity and chemical diffusivity. Proper synthesis method requires knowledge of reaction temperature, concentration, and time effects on the synthesis. In this work, ceria nanomaterials were prepared via the hydrothermal method using a Teflon autoclave. Cerium nitrate solution was used as the source and three different precursors: NaOH, H2O 2, and NH4OH were used as the oxidizing agents. CeO 2 nanoplates, nanocubes and nanorods were produced and studied using transmission electron microscopy (TEM), BET specific surface area, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Through characterization, CeO2 nanomaterials showed the presence of mixed valence states (Ce3+ and Ce4+) through XPS spectra. Deconvolution was performed to investigate the ratio of Ce 3+/Ce4+ concentration in the synthesized CeO2 nanostructures. Nanocubes showed a higher Ce3+ concentration. CeO2 nanomaterials were found to be mesoporous. Nanoplates synthesized with H2O2, and NH4OH were found with surface areas of 95.11 m2/g and 62.07 m2/g, respectively. Nanorods and nanocubes showed surface areas of 16.77 m2/g and 16.55 m2/g, respectively. The prepared ceria nanoplates, nanocubes and nanorods had crystallite size in the range of 5--25 nm and pore size range of 7--15 nm. XRD spectra confirmed that the peaks were indexed to the cubic phase of CeO2 with fluorite structure and with an average lattice parameter, 5.407 A. Higher Ce3+ concentration and exposed surface of crystalline planes suggest that nanorods are better catalyst for CO oxidation and oxygen storage capacity (OSC).

  9. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    Science.gov (United States)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  10. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  11. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological me- thods of ... Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced ... for the biomimetic synthesis and characterization of protein capped silver nanoparticles.

  12. Synthesis and optical characterization of copper nanoparticles ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. SAMIRA MONIRI MAHMOOD GHORANNEVISS MOHAMMAD REZA HANTEHZADEH MOHSEN ASADI ASADABAD. Volume 40 Issue 1 February 2017 pp 37-43 ...

  13. Synthesis and characterization of gold nanoparticles incorporated ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). Pankaj Kumar Rastogi Dharmendra Kumar Yadav Shruti Pandey Vellaichamy Ganesan Piyush Kumar Sonkar Rupali Gupta. Regular Articles Volume 128 Issue 3 March 2016 pp 349-356 ...

  14. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Assem Barakat, Bandar M. Al-Qahtani, Abdullah M. Al-Majid, M. Ali Mohammed Rafi Shaik, Mohamed H.M. Al-Agamy, Abdul Wadood ...

  15. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 2. Synthesis and characterization of a ... Shivaiah Samar K Das. Inorganic and Analytical Volume 114 Issue 2 April 2002 pp 107-114 ... Compound (1) crystallizes in a cubic space group 3 ¯ , with = 22.2001(6) Å and = 8. The anion [VVO4W 10 VI V 2 ...

  16. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...

  17. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  18. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Synthesis, characterization and photochemistry of a new heptamolybdate supported magnesium-aqua coordination complex. Savita S Khandolkar Pallepogu Raghavaiah Bikshandarkoil R Srinivasan. Volume 127 Issue 9 September 2015 pp 1581-1588 ...

  19. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A BINUCLEAR. COMPLEX AND A COORDINATION POLYMER OF COPPER(II). Masoumeh Tabatabaee1*, Reza Mohamadinasab1, Kazem Ghaini1 and Hamid Reza Khavasi2. 1Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran.

  20. Synthesis, characterizations and applications of some nanomaterials

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT{blood platelet clusters). O N Srivastava A Srivastava D Dash D P Singh R M Yadava P R Mishra J ...

  1. Synthesis, characterization and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    Synthesis of a new nano hybrid of 5,10,15,20-mesotetra(4-aminophenyl) porphyrin (TAP) functionalized with multi-walled carbon nanotubes (MWCNTs) through an amide linkage is reported for the first time. ThisMWCNT-TAP hybrid was characterized by Raman, Fourier transform infrared (FT-IR), Transmissionelectron ...

  2. Synthesis, characterization and electrochemical performance of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Synthesis, characterization and electrochemical performance of Li 2 Ni x Fe 1 − x SiO 4 cathode materials for lithium ion batteries. A Y SHENOUDA M M S SANAD. Volume 40 Issue 6 October 2017 pp 1055-1060 ...

  3. Synthesis, characterization and antibacterial evaluation of ...

    African Journals Online (AJOL)

    The synthesis, characterization and anti-bacterial evaluation of two palmitoyl amino acids is reported in this work. The reported antimicrobial activity of some fatty acid derivatives encouraged the investigation of the possible influence of an aromatic group substituent on a saturated fatty acid residue. The compounds were ...

  4. Synthesis, characterizations and applications of some ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT{blood platelet clusters). O N Srivastava A Srivastava D Dash D P Singh R M Yadava P R Mishra J ...

  5. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Unknown

    disposal or to minimize the environmental impact. One of the approaches is the conversion of fly ash to zeolites, which have wide applications in ion exchange, as mole- cular sieves, catalysts, and adsorbents (Breck 1974). The present study is concerned with the synthesis of zeolite from coal fly ash and its characterization ...

  6. Synthesis, Characterization and Antibacterial Evaluations of the ...

    African Journals Online (AJOL)

    MBI

    2014-06-05

    Jun 5, 2014 ... 39. Synthesis, Characterization and Antibacterial Evaluations of the Schiff. Base 2-(1-(2-(Piperazin-1-yl)ethylimino)ethyl)Phenol and its Complexes of. Mn(II), Ni(II) and Zn(II). Salga, M. S., Sada, I. and Abdullahi, A. Department of Pure and Industrial Chemistry, Umaru Musa 'Yar Adua University, Katsina.

  7. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Pope and Flynn reported a series of such compounds of the general formula VtVnW12−n. −+. )3(. 40. O n. (where Vt is the vanadium in the center of the tertrahedron, n = 2, 3, 4)5,6. The synthesis and characterization of these heteropolytungstovanadates have been described many years ago, but the reduced analogue of ...

  8. Thermal plasma synthesis of Fe1−xNix alloy nanoparticles

    International Nuclear Information System (INIS)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-01-01

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe 1−x Ni x ; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  9. Thermal Characterization of Metakaolin-Based Geopolymer

    Science.gov (United States)

    Samal, Sneha; Thanh, Nhan Phan; Marvalova, Bohdana; Petrikova, Iva

    2017-12-01

    Thermal characterization of geopolymer powder was investigated at room and elevated temperatures. The physical, chemical and mass change with respect to various temperatures have been studied. The physical properties such as density, porosity, and particle size were analyzed in geopolymer powder. The chemical and phase compositions were determined by x-ray fluorescence. The surface images of solid blocks of geopolymer were examined at room and elevated temperatures using scanning electron microscopy. Thermal expansion, shrinkage, and mass loss behavior towards the elevated temperatures were investigated by differential scanning calorimetry (DSC). The endothermic peak arising in the DSC curve is due to evaporation of water, chemical, gases and weight loss.

  10. (C7H7NO4Mo)n: Synthesis, characterization and thermal stability of a new oxo-bridged helical-1D-polymer cluster

    Science.gov (United States)

    Pathak, Sayantan; Jana, Barun; Ghosh, Mithun K.; Ghorai, Tanmay K.

    2017-12-01

    A new look of helical-1D-polymeric cluster of molybdenum (C7H7NO4Mo)n (1) is herein reported. The one dimensional polymeric molybdenum cluster was generated from a mixture of Na2MoO4, 2, 6-pyridinedimethanol (pdm), RuCl3 and chloroacetic acid in methanol. Single crystal X-ray diffraction study of the isolated crystal shows that it is a μ2-oxo bridged 1D-Polymer assembly of molybdenum pdm2- complex where the nitrogen atom, two de-protonated 'O' atoms of the pdm2- ligand are connected to the central metal atoms. Furthermore, terminally connected double bonded 'O' atoms fulfilled the distorted octahedral environment of the metal atoms. In addition, BVS calculations show that Mo atoms are exists in +VI oxidation state in complex 1. The oxidation state of the metal atoms is further confirmed from the cyclic voltammogram. FT-IR spectroscopy and elemental analysis of the isolated crystals further supports the functional group attached to the periphery of the metal ion. Thermal gravimetric analysis of complex 1 confirms the thermodynamic stability of the polymer up to 190 °C.

  11. Synthesis, Structural Characterization, and Thermal Properties of the Poly(methylmethacrylate/δ-FeOOH Hybrid Material: An Experimental and Theoretical Study

    Directory of Open Access Journals (Sweden)

    Silviana Corrêa

    2016-01-01

    Full Text Available The δ-FeOOH/PMMA nanocomposites with 0.5 and 2.5 wt.% of δ-FeOOH were prepared by grafting 3-(trimethoxysilylpropyl methacrylate on the surface of the iron oxyhydroxide particles. The FTIR spectra of the δ-FeOOH/PMMA nanocomposites showed that the silane monomers were covalently attached to the δ-FeOOH particles. Because of the strong interaction between the PMMA and δ-FeOOH nanoparticles, the thermal stability of the δ-FeOOH/PMMA nanocomposites was improved compared to the pure PMMA. The SEM analysis conferred the size agglomerate of particles regarding the morphology of samples. The theoretical study enabled a better understanding of the interaction of the polymer with the iron oxyhydroxide. The DFT-based calculations reinforce the radical trapping mechanism of stabilization of nanocomposites; that is, Fe3+ species might be able to accept electrons coming from the organic phase that decomposes via radical unzipping. The radical scavenge effect delays the weight loss of polymer.

  12. Simple cerium-triethanolamine complex: Synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming

    Science.gov (United States)

    Wattanathana, Worawat; Nootsuwan, Nollapan; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laosiripojana, Navadol; Laobuthee, Apirat

    2015-06-01

    Cerium-triethanolamine complex was synthesized by simple complexation method in 1-propanol solvent using cerium(III) chloride as a metal source and triethanolamine as a ligand. The structures of the prepared complex were proposed based on FT-IR, FT-Raman and ESI-MS results as equimolar of triethanolamine and cerium chelated complex having monomeric tricyclic structure with and without chloride anion as another coordinating group known as ceratrane. The complex was used as a precursor for ceria material done by thermal decomposition. XRD result revealed that when calcined at 600 °C for 2 h, the cerium complex was totally turned into pure ceria with cubic fluorite structure. The obtained ceria was then employed to synthesize platinum doped ceria catalysts for methane steam reforming. Various amounts of platinum i.e. 1, 3, 5 and 10 mol percents were introduced on the ceria support by microwave-assisted wetness impregnation using ammonium tetrachloroplatinate(II). The platinum-impregnated ceria powders were subjected to calcination in 10% hydrogen/helium atmosphere at 500 °C for 3 h to reduce platinum(II) to platinum(0). XRD patterns of the catalysts confirmed that the platinum particles doped on the ceria support were in the form of platinum(0). Catalytic activity test showed that the catalytic activities got higher as the amounts of platinum doped increased. Besides, the portions of coke formation on the surface of catalysts were reduced as the amounts of platinum doped increased.

  13. Ion exchange synthesis and thermal characteristics of some [N

    Indian Academy of Sciences (India)

    These ionic liquids (ILs) were characterized using thermal methods, infrared spectroscopy and densitometry. Thermophysical properties such as density, coefficient of volume expansion, heat of fusion, heat capacity and thermal energy storage capacity were determined. Thermal conductivity of the samples was determined ...

  14. SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE ...

    African Journals Online (AJOL)

    ABSTRACT. In this work, nano ferrite spinel NiFe2O4 was synthesized by sol-gel method and characterized by. SEM, XRD, FT-IR, and VSM. In second step Schiff base made from salicylaldehyde and amino propyl triethoxy silane was used for modification of the synthesized nano ferrit. In the third step removal of Ni(II) was ...

  15. Synthesis, structure, spectral characterization and thermal analysis of the tetraaquabis (isothiocyanato-κN) cobalt (II)-bis(caffeine)-tetrahydrate complex

    Science.gov (United States)

    EL Hamdani, H.; EL Amane, M.; Duhayon, C.

    2018-04-01

    The complex 2(C8H10N4O2).[Co(H2O)4(NCS)2].4H2O was prepared in the water-ethanol solution at room temperature and characterized by the single crystal X-ray diffraction analysis, 1H, 13C NMR, TGA/DTA and IR spectroscopy. This complex was crystallized in the monoclinic system (P 21/c). The unit cell parameters are a = 10.65854 (19) A°, b = 8.16642 (14) A°, c = 18.0595 (3) A° with β = 96.4701° (15). The cobalt (II) cation is coordinated by four oxygen atoms of the water molecules and two nitrogen in isothiocyanato a trans octahedral geometry, stabilized by hydrogen bonds with caffeine molecule and free water molecule, The intermolecular hydrogen bonds: Osbnd H⋯N, Osbnd H⋯O, Csbnd H⋯S, π···π interactions are together playing a vital role in the stabilization of the crystal packing.

  16. PREPARATION, CHARACTERIZATION AND THERMAL BEHAVIOR OF ALKYL SUBSTITUTED PHENOLIC EPOXY RESIN

    OpenAIRE

    Jyoti Chaudhary*, Supriya Dadhich, Giriraj Tailor

    2017-01-01

    The present article deals with the synthesis of phenolic epoxy resin by the reaction of phenolic resin and epichlorohydrin. The synthesis of phenolic resin was carried out by using p-ethylphenol, formaldehyde and naphthol. The structures of phenolic and epoxy resins were confirmed by spectroscopic analysis. The synthesized epoxy resin showed solubility in polar solvents like DMF, dioxane, acetone, DMSO, THF, ethyl acetate, and chloroform. Thermal characterization of epoxy resin was monitored ...

  17. Synthesis and characterization of poly aniline for electrochemical biosensor construction

    International Nuclear Information System (INIS)

    Magalhaes, Gleice S.L.; Southgate, Erica F.; Alhadeff, Eliana M.; Guimaraes, Maria Jose O.C.

    2011-01-01

    Conductors polymers have many attractive interests to the industry due their highly technological applications. This work treats specially of polyaniline because it's large electrical conductivity, electrochemical properties, associate to the chemical stability in environmental conditions and synthesis facility. The main of this work is the application in a construction of an electrochemical biosensor for ethanol detection and quantification. Different conditions of synthesis of the conductor emeraldine polyaniline form were studied, investigated the influence of the dopant agent and the reactional environment conditions temperature on the reaction yield and conductivities. The polyaniline that showed the best conductivity were characterized by differential and thermal gravimetric analysis, infrared spectroscopy, X ray diffraction, and cycle voltammetry, comparing with the commercial polyaniline. (author)

  18. Biomimetic synthesis and characterization of semiconducting hybrid

    Indian Academy of Sciences (India)

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of ...

  19. Synthesis, characterization, sintering and dielectric properties of ...

    Indian Academy of Sciences (India)

    Nanoparticles of barium gadolinium antimonate (Ba2GdSbO6), a complex perovskite-type oxide, has been synthesized using an auto ignition combustion process for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermogravimetric analysis, differential thermal analysis, ...

  20. Biomimetic synthesis and characterization of semiconducting hybrid ...

    Indian Academy of Sciences (India)

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of ...

  1. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  2. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  3. Synthesis and characterization of -phosphorylated thioureas ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 3. Synthesis and characterization of -phosphorylated thioureas RNHC(S)NHP(O)(OPr)2 (R = 2-MeC6H4, 2,6-Me2C6H3, 2,4,6-Me3C6H2). Damir A Safin Maria G Babashkina Michael Bolte Axel Klein. Full Papers Volume 122 Issue 3 May 2010 pp 409- ...

  4. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    compounds of the general formula VtVnW12−n. −+. )3(. 40. O n. (where Vt is the vanadium in the center of the tertrahedron, n = 2, 3, 4)5,6. The synthesis and characterization of these heteropolytungstovanadates have been described many years ago, but the reduced analogue of any of these in the series has yet to be ...

  5. Oxidative synthesis of a novel polyphenol having pendant Schiff base group: Synthesis, characterization, non-isothermal decomposition kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Dilek, Deniz [Faculty of Education, Secondary Science and Mathematics Education, Canakkale Onsekiz Mart University, 17100 Canakkale (Turkey); Dogan, Fatih, E-mail: fatihdogan@comu.edu.tr [Faculty of Education, Secondary Science and Mathematics Education, Canakkale Onsekiz Mart University, 17100 Canakkale (Turkey); Bilici, Ali, E-mail: alibilici66@hotmail.com [Control Laboratory of Agricultural and Forestry Ministry, 34153 Istanbul (Turkey); Kaya, Ismet [Department of Chemistry, Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale (Turkey)

    2011-05-10

    Research highlights: {yields} In this study, the synthesis and thermal characterization of a new functional polyphenol are reported. {yields} Non-isothermal methods were used to evaluate the thermal decomposition kinetics of resulting polymer. {yields} Thermal decomposition of polymer follows a diffusion type kinetic model. {yields} It is noted that this kinetic model is quite rare in polymer degradation studies. - Abstract: In here, the facile synthesis and thermal characterization of a novel polyphenol containing Schiff base pendant group, poly(4-{l_brace}[(4-hydroxyphenyl)imino]methyl{r_brace}benzene-1,2,3-triol) [PHPIMB], are reported. UV-vis, FT-IR, {sup 1}H NMR, {sup 13}C NMR, GPC, TG/DTG-DTA, CV (cyclic voltammetry) and solid state conductivity measurements were utilized to characterize the obtained monomer and polymer. The spectral analyses results showed that PHPIMB was composed of polyphenol main chains containing Schiff base pendant side groups. Thermal properties of the polymer were investigated by thermogravimetric analyses under a nitrogen atmosphere. Five methods were used to study the thermal decomposition of PHPIMB at different heating rate and the results obtained by using all the kinetic methods were compared with each other. The thermal decomposition of PHPIMB was found to be a simple process composed of three stages. These investigated methods were those of Flynn-Wall-Ozawa (FWO), Tang, Kissinger-Akahira-Sunose (KAS), Friedman and Kissinger methods.

  6. Synthesis, characterization and catalytic activity of CdO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gsingh4us@yahoo.com [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India); Kapoor, I.P.S.; Dubey, Reena; Srivastava, Pratibha [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)

    2011-02-15

    In this paper, we report the synthesis of nanocrystalline cadmium oxide (CdO) and its characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Its catalytic activity was investigated on the thermal decomposition of 1,2,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), ammonium perchlorate (AP), hydroxyl terminated polybutadiene (HTPB) and composite solid propellants (CSPs) using thermogravimetric analysis (TG), simultaneous thermogravimerty and differential scanning calorimetry (TG-DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + CdO has also been investigated using model free (isoconversional) and model-fitting approaches which have been applied to data for isothermal TG decomposition. All these studies show enhancement in the rate of decomposition of AP, HTPB and CSPs but no effect on HMX. The burning rate of CSPs has also been found to be increased with CdO nanocrystals.

  7. Synthesis and characterization of nanosized Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} ferrites by both sol-gel and thermal decomposition methods

    Energy Technology Data Exchange (ETDEWEB)

    De-León-Prado, Laura Elena, E-mail: laura.elena.prado@gmail.com [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294, Saltillo, Coahuila, México (Mexico)

    2017-04-01

    This work reports the synthesis of Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  8. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    drop-wise to the solution with constant stirring. Tempera- ture was maintained at 0–5 °C. The solutions ... This reaction leads to the evolution of nitrogen (II) oxide and production of Fe(NO3)2, which led to further .... unique to water only, therefore, the presence of this band along with the O–H stretch vibration at 3446 cm–1 is.

  9. Synthesis, characterization and thermal properties of thiosalicylate ...

    Indian Academy of Sciences (India)

    Journal of Chemical Sciences. Current Issue : Vol. 129, Issue 12 · Current Issue Volume 129 | Issue 12. December 2017. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  10. Synthesis, characterization, thermal degradation and electrical ...

    African Journals Online (AJOL)

    Poly-4-[(pyridin-2-yl-imino)methyl]benzene-1,3-diol (P-4-PIMBD) was synthesized via the oxidative polycondensation reaction by using sodium hypo chloride (NaOCl) oxidant in an aqueous alkaline medium at 70 oC. The yield of the polymer was found to be 68 %. The structures of the compounds were confirmed by FT-IR, ...

  11. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    known as hybrid materials, which are the current inquisi- tion among material scientists. These hybrid systems possess varied properties and find applications in various fields like catalysis, sensors, bio-medical field (Greene et al 1975) and in corrosion study. Ethanolamines commonly known as aminoalcohols include ...

  12. Synthesis, characterization, ab initio calculations, thermal behaviour ...

    Indian Academy of Sciences (India)

    Administrator

    by IR, UV–Vis, mass spectrometry, elemental analysis, magnetic moment and thermogravimetry in order ... properties superior to those of VOSO4 in cell culture .... Table 2. UV-Vis a. , mass spectral, elemental analysis and magnetic moments data of the compounds. Elemental analysis (%, Found). Mass spectra. Μeff B.M..

  13. Synthesis, characterization, ab initio calculations, thermal behaviour ...

    Indian Academy of Sciences (India)

    Administrator

    adjusted with 10% sodium bicarbonate solution to. pH 4⋅0. A green precipitate began to form and was collected by filtration. These materials were purified by dissolving the complexes in chloroform, as nei- ther the vanadyl hydroxide nor sodium bicarbonate is soluble in this solvent. The solid compound was obtained by ...

  14. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    The anticorrosive property of a coating of PANI/[Co(mea)2(H2O)2Cl2] composite on mild steel coupon in 3 M HNO3 was evaluated using weight loss measurement and compared with pure polyaniline coating. The said composite has shown anticorrosive property and can thus, act as a potent dopant for enhancing corrosion ...

  15. Synthesis, characterization, ab initio calculations, thermal behaviour ...

    Indian Academy of Sciences (India)

    Also, formation constants of the complexes have been determined by UV-Vis absorption spectroscopy through titration of the ligands with the metal ions at constant ionic strength (0.1 M NaClO4) and at 25°C. According to the thermodynamic studies, as the steric character of the ligand increases, the complexation tendency ...

  16. Synthesis, characterization, thermal behavior and antimicrobial ...

    African Journals Online (AJOL)

    Reaction of the ligands, 3-methyl benzoic acid (mbH) and hydrazine with transition metal ions form the complexes of formulae, [M(N2H4)2(mb)2].H2O where M = Co(II) and Zn(II) at pH = 5-6, [M(N2H4)n(mb)2].xH2O where M = Ni(II), n = 2, x = 0 at pH = 5 and M = Cd, n = 1, x = 1 at pH = 6. The same acid also forms metal ...

  17. Synthesis, characterization and thermal properties of thiosalicylate ...

    Indian Academy of Sciences (India)

    Wilkes J S 2004 J. Mol. Catal. A 214 11. 11. Huddleston J G, Visser A E, Reichert W M, Willauer. H D, Broker G A and Rogers R D 2001 Green Chem. 3 156. 12. (a) Pandey S, Baker G A, Sze L, Pandev S, Kamath G,. Zhao H and Baker S N 2013 New J. Chem. 37 909;. (b) Cojocaru O A, Shamshina J L, Gurau G, Syguda A,.

  18. Thermal Damage Characterization of Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P C; DeHaven, M R; Springer, H K; Maienschein, J L

    2009-08-14

    We conducted thermal damage experiments at 180?C on PBXN-9 and characterized its material properties. Volume expansion at high temperatures was very significant which led to a reduction in material density. 2.6% of weight loss was observed, which was higher than other HMX-based formulations. Porosity of PBXN-9 increased to 16% after thermal exposure. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability and density were proved to be possible at higher temperatures.

  19. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  20. SYNTHESIS, SPECTRAL AND THERMAL PROPERTIES OF SOME ...

    African Journals Online (AJOL)

    The infrared spectral studies reveal that the ligand HNAAPTS is coordinated in neutral tridentate (N,N,S) fashion. The coordination number of Th(IV) in these coordination compounds varies from 6, 8, 10 or 11; while for U(VI) the coordination number are 8, 9 or 10. Thermal stabilities of these complexes were investigated ...

  1. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Roushani, Mahmoud [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Department of Chemistry, Ilam University, Ilam (Iran, Islamic Republic of); Pourmortazavi, Seied Mahdi [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was found that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.

  2. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  3. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  4. Synthesis report on thermally driven coupled processes

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  5. Low thermal conductivity CoSb3 materials prepared by rapid synthesis process

    Science.gov (United States)

    Deng, L.; Ni, J.; Qin, J. M.; Ma, H. A.; Jia, X. P.

    2018-02-01

    Nano-particles and defects have effective influence on reducing the lattice thermal conductivity. In this work, a serious of high concentration Te doping bulk polycrystalline materials Co4Sb11.2Te0.8 has been synthesized successfully at different pressures by the high pressure and high temperature (HPHT) method. All samples were characterized by X-ray diffraction. The Seebeck coefficient α, electrical resistivity ρ and thermal conductivity κ were all measured from 373 K to 673 K. It could be observed obviously that, as the synthesis pressure rised, the thermal conductivity of Co4Sb11.2Te0.8 decreased remarkably. The minimum thermal conductivity of 1.36 W m-1 K-1 was obtained by Co4Sb11.2Te0.8 sample synthesized at 3.7 GPa. The corresponding microstructures were also studied by SEM and HRTEM images.

  6. Synthesis and characterization of LiMg y Mn 2–y O 4 cathode ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of LiMgyMn2–yO4 cathode materials by a modified Pechini process for lithium batteries. A Subramania N Angayarkanni ... 1 : 1 (v/v) mixture of EC and DEC. The charge–discharge studies were performed and the results were compared with materials prepared by a solid state thermal method.

  7. Design, synthesis, characterization and study of novel conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wu [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.

  8. Synthesis and Characterization of Novel Quaternary Thioaluminogermanates

    KAUST Repository

    Al-Bloushi, Mohammed

    2013-05-01

    Metal chalcogenides form an important class of inorganic materials, which include several technologically important applications. The design of metal chlcogenides is of technological interest and has encouraged recent research into moderate temperature solid-state synthetic methods for the single crystal growth of new materials. The aim of this project is the investigation and development of synthetic methodology for the synthesis of novel metal chlcogenides. The new inorganic compounds of the type “M(AlS2)(GeS2)” (M = Na and K) are new metal-chalcogenides, synthesized by the classical solid state approach. The characterization of these compounds was carried out by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Single crystal and powder X-ray diffraction, solid state Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-VIS), Infrared (IR) and Raman spectroscopy. These theses study the synthesis of metal chalcogenides through the use of standard chemical techniques. The systematic studies demonstrate the effect of the reactants ratio and reaction temperature on the synthesis and growth of the single crystals. Metal chalcogenides have several potential applications in gas separation, ion exchange, environmental remediation, and energy storage. Especially, the ion exchange materials have found\\tpossible applications in waste-water treatment, water softening, metal separation, and production of high purity water.

  9. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Cardanol, an excellent monomer for polymer production, has been isolated from CNSL and allowed to react with formaldehyde in a particular mole ratio in the presence of glutaric acid catalyst to give high-ortho novolac resin. Such characterized polyol has been condensed with diphenylmethane diisocyanate to.

  10. Synthesis, sintering properties and thermal conductivity of uranium carbonitrides

    International Nuclear Information System (INIS)

    Wolters, R.A.M.

    1978-01-01

    An introduction to the applications and chemistry of uranium carbonitrides is given including the potential use as a nuclear fuel. The powder synthesis of UC, UN and mixtures of UC and UN by a cyclic process is described. The correlation between the composition ratio UN/(UC+UN) in the final product and the parameters of the process is only determined qualitatively. Batch synthesis of a powder does not lead to an increase of the content of metallic impurities and oxygen. The impurity level is determined by that of the starting uranium metal and the thermal conductivity of the sintered compacts of uranium carbonitrides are determined via the measurement of the thermal diffusivity at 1100-1700 K. (Auth.)

  11. Synthesis and characterization of peapods and DWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Anis, B.; Kuntscher, C.A. [Experimentalphysik 2, Universitaet Augsburg, 86195 Augsburg (Germany); Fischer, M.; Schreck, M. [Experimentalphysik 4, Universitaet Augsburg, 86195 Augsburg (Germany); Haubner, K.; Dunsch, L. [Center of Spectroelectrochemistry, IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany)

    2012-12-15

    We report the synthesis and characterization of C{sub 60} rate at SWCNT peapods and double-walled carbon nanotubes (DWCNTs) derived from the peapods. Single-walled carbon nanotubes (SWCNTs), C{sub 60} rate at SWCNT peapods, and DWCNTs were characterized by Raman and optical spectroscopy. The radial breathing modes (RBMs) of the tubes in C{sub 60} rate at SWCNT peapods are shifted to higher energies compared to the RBMs in SWCNTs, while in the case of DWCNTs the RBMs related to the outer tubes are shifted to lower energies compared to SWCNTs. A similar trend is observed for the absorption bands. These results suggest that the filling of the SWCNTs with C{sub 60} molecules decreases the average diameter of the electron cloud around the tubes, whereas the filling with an inner tube increases it. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Synthesis, Transfer, and Characterization of Nanoscale 2-Dimensional Materials

    Science.gov (United States)

    2015-09-01

    stack is floating on top of the DDI water surface. Instead of removing the stack with the target substrate, a graphene/copper foil substrate (graphene...demonstrated the synthesis of graphene, hexagonal boron nitride, and bismuth telluride using chemical and physical vapor deposition techniques. Making...for material synthesis, transfer, and characterization. 15. SUBJECT TERMS graphene, hexagonal boron nitride, bismuth telluride, synthesis, transfer

  13. Synthesis and characterization of homogeneous interstitial solutions of nitrogen and carbon in iron-based lattices

    DEFF Research Database (Denmark)

    Brink, Bastian Klüge

    work in synthesis and characterization of interstitial solutions ofnitrogen and carbon in iron-based lattices. In order to avoid the influences of gradients incomposition and residual stresses, which are typically found in treated surface layers,homogenous samples are needed. These were prepared from...... pure iron or austeniticstainless steel using gaseous mixtures of ammonia, hydrogen, acetylene and propene atelevated temperatures.Structural and magnetic properties have been characterized with neutron diffraction,vibrating sample magnetometry and Mössbauer spectroscopy. Thermal expansion...

  14. Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor

    International Nuclear Information System (INIS)

    Guo, Liang; Zhang, Xusheng; Huang, Yong; Hu, Richa; Liu, Chunlong

    2017-01-01

    Highlights: • It is a new passively actuated differential thermal expansion heat switch for CCD. • Automatic adjusting function decreases difficulty of manufacture and assembly. • Good operational stability and high ratio of effective thermal resistance. • A fairly good agreement between theoretical analysis and experiment results. - Abstract: Thermal control for Charge Converse Device (CCD) is a key issue in space optical remote sensor. Heat switch is appropriate for heat dissipation of CCD. This paper provides thermal characterization of a new passively actuated differential thermal expansion heat switch (DTE-HS) with automatic adjusting function for CCD thermal control in space optical remote sensor. The radiation thermal resistance is developed to study how the radiation parameters affect the thermal resistance of the heat switch. The heat conduction thermal resistance is developed to describe the thermal characterization of the DTE-HS. A prototype of the DTE-HS is manufactured and tested. The experimental results are consistent well with the theoretical results.

  15. Synthesis and Characterization of a Schiff Base Cobalt (III) Complex ...

    African Journals Online (AJOL)

    2017-12-18

    Dec 18, 2017 ... Synthesis and Characterization of a Schiff Base Cobalt (III) Complex and ... zinc, palladium, magnesium and gold and most ..... Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5 ...

  16. Synthesis and characterization of zeolite L

    International Nuclear Information System (INIS)

    Ko, Yong Sig; Ahn, Wha Seung

    1999-01-01

    Substantial reduction in synthesis time was achieved for zeolite L crystallization by attempting a hydrothermal synthesis at elevated temperature of 443K in a Na + /K+ mixed alkali system. Pure zeolite L could be obtained from a gel with the molar composition 5.4K 2 O-5.7Na 2 O-Al 2 O 3 -30SiO 2 -500H 2 O after 24h. Zeolite L could be obtained in high purity at the optimum Na 2 O/(K 2 O+Na 2 O) ratio of around 0.5, while zeolite W was formed when the Na 2 O/(K 2 O+Na 2 O) ratio was more than 0.66. The crystalline zeolite L samples obtained were characterized by means of elemental chemical analysis, XRD, SEM, FTi.r. spectroscopy, and particle size analyzer. In addition, two probe reaction studies were conducted. In toluene alkylation, H-L catalyst showed high catalytic activity at the beginning, but was deactivated quickly probably due to one-dimensional pore structure being blocked by the coke formed. High amounts of trimethylbenzene or diethylbenzene were observed due to the large 12-membered ring pore structure of zeolite L. Pt/NaKL catalyst prepared showed a high conversion of n-hexane and high selectivity to benzene in n-hexane aromatization reaction

  17. Green synthesis and characterization of graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Farnosh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-03-15

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductant but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.

  18. Synthesis and characterization of a cerebral radiotracer

    International Nuclear Information System (INIS)

    Ben hamouda, Salem

    2010-01-01

    The development of nuclear medicine is based on research of new radiopharmaceuticals, in particular, relying on technetium-99m, the most used radioisotope in terms of availability and low cost. A similar study on Rhenium (185/187Re) is essential for monitoring physico-chemical studies due to the high specific activity of technetium-99m. During this work, we have synthesized and labeled with technetium the N-methyl-4-hydroxy piperidinyl ferrocenyl carboxylate. The marking is done by exchange of ligands between the iron group of ferrocene and tricabonyl technetium core. We have succeeded to synthesis the N-methyl-4-hydroxy piperidinyl carboxyl cyclopentadienyl tricarbonyl rhenium (the molecular analogue of the technetium). We characterized it by MS, IR and NMR (1H, 13C) The structure of N-methyl-4-hydroxy piperidinyl carboxyl cyclopentadienyl tricarbonyl technetium is well justified.

  19. Synthesis and characterization of mesoporous Si-MCM-41 materials ...

    Indian Academy of Sciences (India)

    Administrator

    good thermal stability, high surface area as well as retention of surface area at high temperature. ... 4 ion exchange and subsequent thermal decompo- .... ing rate of 2 °C/min. The final material obtained was used for all further studies. 2.2c Synthesis of Al-MCM-41: In the present synthetic endeavour the objective is to ...

  20. Synthesis and characterization of Fe{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} ferrite magnetic nanoclusters using simple thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Ibrahim; Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir; Behnamghader, Aliasghar

    2016-08-15

    This paper presents experimental results regarding the effect of the quantity of solvent on formation of the Fe–Zn ferrite nanoparticles during thermal decomposition. A ternary system of Fe{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} has been synthesized by a thermal decomposition method using metal acetylacetonate in high temperature boiling point solvent and oleic acid. The X-ray diffraction study was used to determine phase purity, crystal structure, and average crystallite size of iron–zinc ferrite nanoparticles. The average crystallite size of nanoparticles was increased from 13 nm to 37 nm as a result of reducing the solvent from 30 ml to 10 ml in a synthesis batch. The diameter of particles and morphology of the particles were determined by transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM). Mid and far Fourier transform infrared (FT-IR) measurement confirmed monophasic spinel structure of ferrite. Furthermore, the DC magnetic properties of the samples were studied using the vibrating sample magnetometer (VSM). The largest Fe–Zn ferrite nanoparticles exhibited a relatively high saturation magnetization of 96 emu/g. Moreover, Low-field AC susceptibility measurement indicated blocking temperature of nanoparticles around 170–200 K. - Highlights: • Narrow dispersed nanoclusters Fe–Zn ferrites prepared by a simple thermal decomposition route. • Increase of solvent content in reaction cause reduce the size of nanoparticles. • The XRD parameters are refined by the Rietveld method. • Saturation magnetization increases while coercivity decreases with increasing the particle size of ferrites.

  1. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  2. Lanthanum and yttrium oxysulfides activated by europium: (Ln1-x Eux)2 O2 S - Synthesis and characterization

    International Nuclear Information System (INIS)

    Luiz, J.M.

    1989-01-01

    The synthesis of lanthanum and yttrium oxysulfides activated by europium were obtained by thermal decomposition of lanthanum and yttrium oxalates doped with europium, under an argon and sulphur atmosphere. The thermal decomposition of these compounds is studied by differential thermal analysis (DTA). The characterization of these oxysulfides were made by chemical analyses, infrared spectroscopy, X-ray diffraction, scanning electron microscopy and emission spectroscopy. (M.V.M.)

  3. Synthesis and characterization of dental composites

    Science.gov (United States)

    Djustiana, Nina; Greviana, Nadia; Faza, Yanwar; Sunarso

    2018-02-01

    During the last few decades, the increasing demands in esthetic dentistry have led to the development of dental composites material that provide similar appearance to the natural teeth. Recently, esthetic trend was an issue which increase the demand for teeth restorations that is similar with the origin. The esthetics of dental composite are more superior compared to amalgam, since its color look similar with natural teeth. Various dental composites have been developed using many type of fillers such as amorphous silica, quartz), borosilicate, Li-Sr-Ba-Al glass and oxide: zirconia and alumina. Researchers in Faculty of Dentistry University of Padjadjaran have prepared dental composites using zirconia-alumina-silica (ZAS) system as the filler. The aim is to improve the mechanical properties and the esthetic of the dental composites. The ZAS was obtained from chemical grade purity chemicals and Indonesia's natural sand as precursors its characterization were also presented. This novel method covers the procedure to synthesis and characterize dental composites in Padjadjaran University and some review about dental composites in global research.

  4. Synthesis and characterization of fluorine compounds

    International Nuclear Information System (INIS)

    Martinez Carrillo, M.

    1991-01-01

    The ( 18 F) D-glucose, 2-deoxy fluorine ( 18 FDG) is a radio pharmaceutic that is used in nuclear medicine it is utilized mainly in the glucose metabolism. It allows recently to observe the tumors accumulation and growing. The obtention of this radio pharmaceutic can realize by a nucleophilic or electrophilic process through the use of different fluorinated agents obtained as intermediates for introducing the 18 F radionuclide in a final step of synthesis. The first methods already has been studied in the National Institute of Nuclear Research. The second one which is based this work and it was realized through the reaction of acetyl hypo fluorite (CH 3 COOF) with tri acetyl glucal (TAG) in turn they require the obtention of several fluorated compounds that they serve as intermediates for their obtention so that objective of this work was to find the adequate technique for the obtention of anhydride hydrofluoric acid (HF), KF.2 HF and elemental fluorine so as the design and construction of the systems and equipment used for carry out each one of the reactions. Moreover it was designed the system that will be used for the obtention of acetyl hypo fluoride and the synthesis of composite tetraacetilide 3,4,6 tri-D-glucopyranosil fluoride (TAG-F) for that finally by hydrolysis it was obtained the 2-deoxy fluoride-D-glucose (TAG) in inactive. In this system were realized several preliminary tests. The results are showed in the content of this work also the techniques for compounds characterization were given. (Author)

  5. Synthesis and characterization of carboxymethyl tamarind

    Directory of Open Access Journals (Sweden)

    Shunwei WU

    2015-10-01

    Full Text Available Series of carboxymethyl tamarind kernel polysaccharide (CMTKP with different degree of substitution (DS were prepared by the reactions of tamarind kernel polysaccharide (TKP and sodium monochloroacetic acid (SMCA in alkaline aqueous isopropanol. The influence of mole ratio of NaOH to SMCA, SMCA concentration, reaction temperature and time on DS, reaction efficiency (RE as well as the transmittance and apparent viscosity of CMTKP aqueous solution was investigated. The maximum DS of 0.92 and the RE of 77% were obtained. The solubility of CMTKP in cold water and the freeze-thaw stability were apparently improved and the transmittance of the mass fraction of 2% CMTKP aqueous solution could be up to 97%. Thermal stability decreased showed by TGA, and crystalline region reduced with the increasing of DS after carboxymethylation showed by XRD. The structure was characterized by FT-IR and solid-state 13C NMR.

  6. Energetic Di- and Trinitromethylpyridines: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Yiying Zhang

    2017-12-01

    Full Text Available Pyridine derivatives based on the addition of trinitromethyl functional groups were synthesized by the reaction of N2O4 with the corresponding pyridinecarboxaldoximes, then they were converted into dinitromethylide hydrazinium salts. These energetic compounds were fully characterized by IR and NMR spectroscopy, elemental analysis, differential scanning calorimetry (DSC, and X-ray crystallography. These pyridine derivatives have good densities, positive enthalpies of formation, and acceptable sensitivity values. Theoretical calculations carried out using Gaussian 03 and EXPLO5 programs demonstrated good to excellent detonation velocities and pressures. Each of these compounds is superior in performance to TNT, while 2,6-bis(trinitromethylpyridine (D = 8700 m·s−1, P = 33.2 GPa shows comparable detonation performance to that of RDX, but its thermal stability is too low, making it inferior to RDX.

  7. Synthesis and Characterization of Nano Scale YBCO

    International Nuclear Information System (INIS)

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  8. Synthesis and characterization of biomorphic ceramics

    International Nuclear Information System (INIS)

    Rambo, Carlos Renato

    2001-01-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO 2 originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  9. Synthesis and characterization of struvite nano particles

    Science.gov (United States)

    Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.

    2015-06-01

    Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.

  10. Encapsulated Nanoparticle Synthesis and Characterization for Improved Storage Fluids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G. C.; Pradhan, S.; Kang, J.; Curtis, C.; Blake, D.

    2010-10-01

    Nanoparticles are typically composed of 50--500 atoms and exhibit properties that are significantly different from the properties of larger, macroscale particles that have the same composition. The addition of these particles to traditional fluids may improve the fluids' thermophysical properties. As an example, the addition of a nanoparticle or set of nanoparticles to a storage fluid may double its heat capacity. This increase in heat capacity would allow a sensible thermal energy storage system to store the same amount of thermal energy in half the amount of storage fluid. The benefit is lower costs for the storage fluid and the storage tanks, resulting in lower-cost electricity. The goal of this long-term research is to create a new class of fluids that enable concentrating solar power plants to operate with greater efficiency and lower electricity costs. Initial research on this topic developed molecular dynamic models that predicted the energy states and transition temperatures for these particles. Recent research has extended the modeling work, along with initiating the synthesis and characterization of bare metal nanoparticles and metal nanoparticles that are encapsulated with inert silica coatings. These particles possess properties that make them excellent candidates for enhancing the heat capacity of storage fluids.

  11. Thermal effects on cognition: a new quantitative synthesis.

    Science.gov (United States)

    López-Sánchez, José Ignacio; Hancock, P A

    2017-07-05

    There is little doubt that increases in thermal load beyond the thermo-neutral state prove progressively stressful to all living organisms. Increasing temperatures across the globe represent in some locales, and especially for outdoors workers, a significant source of such chronic load increase. However, increases in thermal load affect cognition as well as physical work activities. Such human cognition has perennially been viewed as the primary conduit through which to solve many of the iatrogenic challenges we now face. Yet, thermal stress degrades the power to think. Here, we advance and refine the isothermal description of such cognitive decrements, founded upon a synthesis of extant empirical evidence. We report a series of mathematical functions which describe task-specific patterns of performance deterioration, linking such degrees of decrement to the time/temperature conditions in which they occur. Further, we provide a simple, free software tool to support such calculations so that adverse thermal loads can be monitored, assessed and (where possible) mitigated to preserve healthy cognitive functioning.

  12. Synthesis, characterization, and antiplasmodial activity of polymer-incorporated aminoquinolines

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2014-01-01

    Full Text Available In this research, aminoquinoline compounds were synthesized, characterized and incorporated into water soluble polymers to form conjugates. The conjugates were characterized by X ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), Scanning...

  13. Synthesis of Thermally Spherical CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nittaya Tamaekong

    2014-01-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDS, and high resolution transmission electron microscopy (HRTEM, respectively. The specific surface area (SSABET of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm. The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm.

  14. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  15. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  16. Synthesis and Characterization of 2-D Materials

    Science.gov (United States)

    Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.

    Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.

  17. Synthesis and characterization of novel nanothermometers

    Energy Technology Data Exchange (ETDEWEB)

    Baumert, Delphine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Larsen, George [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Schyck, Sarah [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-23

    A straightforward approach was developed for the synthesis of Pd, Pd-Fe2O3, Au-Fe2O3, and Au-Pd-Fe2O3 nanothermometers, using a single SL DNA. These NP-DNA conjugates were characterized using techniques including EDX measurements, ζ-potential of NPs before and after DNA functionalization, electron microscopy studies and fluorescence spectroscopy. The fluorescence studies of the NP-DNA demonstrate the interaction between the NP and the fluorophore, which is quenched in the case of Au-Pd-Fe2O3 NPs and is perhaps enhanced (when compared to AuNPs) in the case of Pd and Pd-Fe2O3 NPs. In order to achieve more accurate and reproducible measurements, designing a system that is able to hold the NP-DNA conjugates at a temperature for a longer period of time to allow them to 12 equilibrate is currently underway. Our studies show that Au-Pd-Fe2O3 NPs are the best candidate material to serve as nanothermometers when compared to Pd, Pd-Fe2O3, and Au-Fe2O3 materials.

  18. Synthesis and characterization of new optically active poly(amide ...

    African Journals Online (AJOL)

    The resulting polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, and solubility tests. Thermal properties of these polymers were investigated by thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG). All of the polymers were readily soluble in a ...

  19. SYNTHESIS AND CHARACTERIZATION OF IRON (II) AND NICKEL ...

    African Journals Online (AJOL)

    DR. AMINU

    SYNTHESIS AND CHARACTERIZATION OF IRON (II) AND NICKEL (II). SCHIFF BASE COMPLEXES. * Aliyu, H. N. and A. S. ... synthesis and magnetic studies on schiff base complexes of copper (II). Recently, Xishi et al. (2003) .... pyridylmethanimines as Tuneable Alternatives to Bipyridine Ligan in Copper Medicated Atom.

  20. Synthesis and characterization of six-membered pincer ...

    Indian Academy of Sciences (India)

    0013167

    SUPPORTING INFORMATION. REGULAR ARTICLE. Synthesis and characterization of six-membered pincer nickelacycles and application in alkylation of benzothiazole. †. HANUMANPRASAD PANDIRI,a DIPESH M SHARMA,a RAJESH G GONNADEb and. BENUDHAR PUNJI*,a. aOrganometallic Synthesis and Catalysis ...

  1. Synthesis and characterization of carbon fibers obtained through plasma techniques

    International Nuclear Information System (INIS)

    Valdivia B, M.

    2005-01-01

    The study of carbon, particularly the nano technology is a recent field, the one which has important implications in the science of new materials. It investigation is of great interest for industries producers of ceramic, metallurgy, electronic, energy storage, biomedicine, among others. The diverse application fields are a reason at national as international level, so that many works are focused in the production of nano fibers of carbon. The Thermal plasma applications laboratory (LAPT) of the National Institute of Nuclear Research (ININ), it is carrying out works about carbon nano technology. The present work has as purpose to carry out the synthesis and characterization of the carbon nano fibers which are obtained by electric arch of alternating current (CA) to high frequencies and by a plasma gun of non transferred arch, where are used hydrocarbons like benzene, methane, acetylene like carbon source and ferrocene, nickel, yttrium and cerium oxide like catalysts. For both techniques its were thought about a relationship among hydrocarbon-catalyst that it favored to the nano fibers production. The obtained product of each experiment outlined it was analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD), analysis with those were obtained pictures and diffraction graphs, which were observed to arrive to one conclusion on the operation conditions, same analysis with those were characterized the tests carried out according to the nano structures formation of carbon. (Author)

  2. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    International Nuclear Information System (INIS)

    Nunes, D.; Livramento, V.; Mateus, R.; Correia, J.B.; Alves, L.C.; Vilarigues, M.; Carvalho, P.A.

    2011-01-01

    Highlights: → The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. → Preservation of nD crystalline structure during high-energy milling was demonstrated. → Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. → Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. → Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  3. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  4. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  5. Synthesis, spectroscopic and DFT characterization of 4 β -(4- tert ...

    African Journals Online (AJOL)

    Synthesis, spectroscopic and DFT characterization of 4 β -(4-tert-butylphenoxy) phthalocyanine positional isomers for non-linear optical absorption. Denisha Gounden, Grace N. Ngubeni, Marcel S. Louzada, Samson Khene, Jonathan Britton, Nolwazi Nombona ...

  6. Gold (I)-selenolate complexes: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    selenolate complexes: Synthesis, characterization and ligand exchange reactions. Krishna P Bhabak ... This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the ...

  7. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 116; Issue 5. Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. Bikash Kumar Panda. Volume 116 ... Keywords. Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium.

  8. Thermal Characterizations of Exponential Fin Systems

    Directory of Open Access Journals (Sweden)

    A.-R. A. Khaled

    2010-01-01

    Full Text Available Exponential fins are mathematically analyzed in this paper. Two types are considered: (i straight exponential fins and (ii pin exponential fins. The possibility of having increasing or decreasing cross-sectional areas is considered. Different thermal performance indicators are derived. The maximum ratio between the thermal efficiency of the exponential straight fin to that of the rectangular fin is found to be 1.58 at an effective thermal length of 2.0. This ratio is even larger when exponential fins are compared with triangular and parabolic straight fins. Moreover, the maximum ratio between the thermal efficiency of the exponential pin fin to that of the rectangular pin fin is found to be 1.17 at an effective thermal length of 1.5. However, exponential pin fins thermal efficiencies are found to be lower than those of triangular and parabolic pin fins. Moreover, exponential joint-fins may transfer more heat than rectangular joint-fins especially when differences between their senders and receivers portions dimensionless indices are very large. Finally, it is found that increasing the joint-fin exponential index may cause straight exponential joint-fins to transfer more heat than rectangular joint-fins.

  9. Synthesis and characterization of boehmites obtained from gibbsite in presence of different environments

    Energy Technology Data Exchange (ETDEWEB)

    Denigres Filho, Ricardo Wilson Nastari; Rocha, Gisele de Araujo; Vieira-Coelho, Antonio Carlos, E-mail: acvcoelh@usp.br [Universidade de Sao Paulo (LPSS/EP/USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Materias-Primas Particuladas; Montes, Celia Regina [Centro de Energia Nuclear na Agricultura (NUPEGEL/CENA/USP), Piracicaba, SP (Brazil). Nucleo de Pesquisas Geoquimicas e Geofisicas da Listosfera

    2016-05-15

    In this study, results related to boehmite synthesis by hydrothermal processes starting from a Bayer commercial gibbsite are reported. The processes have been conducted from aqueous suspensions with initial acidic or alkaline pH, without or with acetate ion, at 160 deg C for 72h to 168h. The final materials were characterized by X-ray diffraction (XRD), thermal methods (DTA and TGA) and scanning electron microscopy (SEM). The influence of the synthesis conditions on the morphology of the boehmite crystals obtained from the gibbsite at different hydrothermal processes are discussed. (author)

  10. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    Abstract. In this study, oxides Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln = La,Nd and M = Mn,Fe) have been prepared and characterized to study the influence of the different cations on thermal expansion coefficient (TEC). TEC decreases favourably with replacement of Nd3+ and Mn3+ ions in the lattice. Nd3+ leads to decreasing ...

  11. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  12. Novel Green Synthesis and Characterization of Nanopolymer ...

    African Journals Online (AJOL)

    Purpose: To develop a novel approach to green synthesis of nano-polymer porous gold oxide nanoparticles, and examine the effects of the temperatures on their surface. Methods: Green synthesis of nano-polymer porous gold oxide nanoparticles (GONPs) using cetyle trimethylammonium bromide (CTAB) surfactant with a ...

  13. Synthesis, spectroscopic characterization and electronic structure of ...

    Indian Academy of Sciences (India)

    Unknown

    Copper(I) carbene complex; carbene complex synthesis; Cu(I)–carbene electronic structure. 1. Introduction. Metal carbene complexes are arguably the most ver- satile organometallic reagents that have been devel- oped for organic synthesis.1 Different reactions of these complexes have been reported since their dis-.

  14. High Power Solid State Retrofit Lamp Thermal Characterization and Modeling

    Directory of Open Access Journals (Sweden)

    J. Jakovenko

    2012-04-01

    Full Text Available Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL retrofit LED lamp are presented in this paper. Paramount importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and CoventorWare software tools to compere different simulation approaches. Simulated thermal distribution has been validated with thermal measurement on a commercial 8W LED lamp. Materials parametric study has been carried out to discover problematic parts for heat transfer from power LEDs to ambient and future solutions are proposed. The objectives are to predict the thermal management by simulation of LED lamp, get more understanding in the effect of lamp shape and used materials in order to design more effective LED lamps and predict light quality, life time and reliability.

  15. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  16. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  17. Fabrication, structural and optical characterizations of thermally ...

    African Journals Online (AJOL)

    The bi-layer of metallic Cu-Sn precursors was thermally evaporated sequentially on microscopic glass substrates at the controlled thickness of 100nm, 500nm and 1000nm and at different substrate temperatures of 270C, 1000C and 2000C. The bi-layer was subsequently sulphurized in a custom-built reactor for 1hour at ...

  18. Global characterization of the Holocene Thermal Maximum

    NARCIS (Netherlands)

    Renssen, H.; Seppä, H.; Crosta, X.; Goosse, H.; Roche, D.M.V.A.P.

    2012-01-01

    We analyze the global variations in the timing and magnitude of the Holocene Thermal Maximum (HTM) and their dependence on various forcings in transient simulations covering the last 9000 years (9 ka), performed with a global atmosphere-ocean-vegetation model. In these experiments, we consider the

  19. Preparation, Structure Characterization and Thermal Decomposition ...

    African Journals Online (AJOL)

    NJD

    m-Methylbenzoic acid, 1,10-phenanthroline, dysprosium complex, crystal structure, thermal analysis. 1. Introduction. The complexes of rare earth ions and aromatic carboxylic acids have various coordination modes, and various crystal structures, which show interesting polymeric networks or chain struc- tures.1–3 They are ...

  20. Carbon nanotubes: Synthesis, characterization, and applications

    Science.gov (United States)

    Deck, Christian Peter

    Carbon nanotubes (CNTs) possess exceptional material properties, making them desirable for use in a variety of applications. In this work, CNTs were grown using two distinct catalytic chemical vapor deposition (CVD) procedures, floating catalyst CVD and thermal CVD, which differed in the method of catalyst introduction. Reaction conditions were optimized to synthesize nanotubes with desired characteristics, and the effects of varying growth parameters were studied. These parameters included gas composition, temperature, reaction duration, and catalyst and substrate material. The CNT products were then examined using several approaches. For each CVD method, nanotube growth rates were determined and the formation and termination mechanisms were investigated. The effects of reaction parameters on nanotube diameters and morphology were also explored to identify means of controlling these important properties. In addition to investigating the effects of different growth parameters, the material properties of nanotubes were also studied. The floating catalyst CVD method produced thick mats of nanotubes, and the mechanical response of these samples was examined using in-situ compression and tension testing. These results indicated that mat structure is composed of discontinuous nanotubes, and a time-dependent response was also observed. In addition, the electrical resistance of bulk CNT samples was found to increase for tubes grown with higher catalyst concentrations and with bamboo morphologies. The properties of nanotubes synthesized using thermal CVD were also examined. Mechanical testing was performed using the same in-situ compression approach developed for floating catalyst CVD samples. A second characterization method was devised, where an optical approach was used to measure the deflection of patterned nanotubes exposed to an applied fluid flow. This response was also simulated, and comparisons with the experimental data were used to determine the flexural

  1. Thermal characterization of intumescent fire retardant paints

    International Nuclear Information System (INIS)

    Calabrese, L; Bozzoli, F; Rainieri, S; Pagliarini, G; Bochicchio, G; Tessadri, B

    2014-01-01

    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect

  2. Thermal characterization of intumescent fire retardant paints

    Science.gov (United States)

    Calabrese, L.; Bozzoli, F.; Bochicchio, G.; Tessadri, B.; Rainieri, S.; Pagliarini, G.

    2014-11-01

    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect.

  3. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    –1 dry exchanger, respectively. The material ... been found to have better properties than the simple salts of metals. The selectivity may be enhanced ... capacity and higher stability at elevated temperature. This paper deals with the synthesis, ...

  4. Thermal Characterization of the Overload Carbon Resistors

    Directory of Open Access Journals (Sweden)

    Ivana Kostić

    2013-01-01

    Full Text Available In many applications, the electronic component is not continuously but only intermittently overloaded (e.g., inrush current, short circuit, or discharging interference. With this paper, we provide insight into carbon resistors that have to hold out a rarely occurring transient overload. Using simple electrical circuit, the resistor is overheating with higher current than declared, and dissipation is observed by a thermal camera.

  5. Synthesis, Characterization and Antimicrobial Activity of Copper(II ...

    African Journals Online (AJOL)

    This study presents the synthesis, characterization and antimicrobial activity of copper(II) complexes of some ortho-substituted aniline Schiff bases (L1–L8). The Schiff bases and their respective copper(II) complexes were characterized by a combination of elemental analysis, infrared and UV/Visible studies. The structures of ...

  6. Synthesis and characterization of poly(2,5-dimethoxyaniline) and ...

    Indian Academy of Sciences (India)

    Unknown

    Mater. Sci., Vol. 24, No. 4, August 2001, pp. 389–396. © Indian Academy of Sciences. 389. Synthesis and characterization of poly(2,5-dimethoxyaniline) and poly(aniline-Co-2 ... remarkably improved solubility in common organic solvents, were obtained by chemical polymerization, and characterized by a host of physical ...

  7. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  8. Synthesis, characterization, biological and electrical conductivity ...

    African Journals Online (AJOL)

    The thermal analysis evidenced that thermal transformations of complexes are processes according to TG curves including dehydration, thermolysis and oxidative degradation of Schiff base. The final product of decomposition is the most stable metallic oxide. The kinetic analysis of the thermogravimetric data was performed ...

  9. SYNTHESIS, CHARACTERIZATION AND PHOTO BEHAVIOR OF ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Nanocomposite, Poly(amide-imide), Silicate particle, Polycondensation, Thermal behavior. INTRODUCTION. Polymer-clay nanocomposites typically exhibited good mechanical, thermal and gas barrier properties, which are superior to those of the corresponding pure polymers [1-9]. Unique properties of the ...

  10. Synthesis and characterization of pillared stevensites: application to chromate adsorption.

    Science.gov (United States)

    Benhammou, A; Yaacoubi, A; Nibou, L; Bonnet, J P; Tanouti, B

    2011-01-01

    The purpose of this work was to study the synthesis of pillared interlayered clays from Moroccan stevensite called locally 'Ghassoul'. This clay has been intercalated with cetyltrimethylammonium surfactant (CTA-Stv) and aluminium hydroxypolycation (Al13-Stv). Characterization studies were performed using XRF, XRD, FTIR and DTA/TG analysis. Basal spacing values of Al13-Stv and CTA-Stv increased respectively from 13.5 A for natural stevensite to 17.5 and 17.6 A with increasing Al13(7+)/clay and CTA+/clay ratios. The DTA/TG results showed that Al13-Stv has a relatively high thermal stability compared with CTA-Stv. A quasi-irreversible intercalation by exchanging the interlayer inorganic cations with voluminous pillars Al13(7+) or CTA+ was observed. Batch adsorption of chromate anions from aqueous solutions was investigated and the results showed that both pillared clays had great affinity for the chromate compared with untreated stevensite. The Dubinin-Kaganer-Radushkevich (DKR) model was selected to describe the adsorption isotherms. The maximum adsorption capacities for natural stevensite, Al13-Stv and CTA-Stv are 13.7, 75.4 and 195.6 mmol/kg, respectively.

  11. Synthesis and characterization of tricalcium phosphate ceramics doped with zinc

    International Nuclear Information System (INIS)

    Kai, K.C.; Marchi, J.; Ussui, V.; Bressiani, A.H.A.

    2011-01-01

    Due to its biocompatibility, the tricalcium phosphate (TCP) is used as a biomaterial for bone replacement and reconstruction. Zinc (Zn) can replace calcium in the crystal structure of TCP to be added in small quantities, can result in stimulatory effects on bone formation in vitro and in vivo. In this work, pure TCP and Zn-TCP, with general formula (Ca 1-x Zn x ) 3 (PO 4 ) 2 and 0 ≤ x ≤ 0.0225, were prepared by wet synthesis, from precursors Ca(OH) 2 , H 3 PO 4 and ZnO, after calcinated at 800 deg C and characterized by X-ray diffraction, specific surface area, agglomerate size distribution, differential thermal analysis and scanning electron microscopy. The results showed that the addition of small amounts of Zn resulted in TCP with suitable densification and higher specific surface area, may be promising as biomaterial due to the stimulatory effects of zinc associated with suitable mechanical properties of the final material. (author)

  12. Synthesis and Characterization of Metal Phosphates for Photocatalytic Applications

    KAUST Repository

    Al-Sabban, Bedour

    2012-07-01

    Solar energy is the most abundant efficient and important source of renewable energy. The objective of this study is to develop highly efficient visible light responsive photocatalysts for overall water splitting. This is done by using silver or copper containing materials. Phosphate compounds have caught much attention due to their rigid structure, thermal stability and resistance to chemical attacks. Solid phosphates can be prepared by direct solid-state reaction between metal cations and phosphate anions at high temperatures. Double metal phosphates of the Nasion-type structure had shown further technological importance. It has been reported that well-crystallized double metal phosphate particles have excellent ordering and cationic conduction channels in the Nasicon framework. In this study, several Nasion-type structured materials have been synthesized by solid-state method (e.g. CuTi2(PO4)3 and AgTi2(PO4)3) heated up under different temperatures (400–1100C) in N2 or air atmosphere. These materials were characterized by XRD, SEM, DR-UV-Vis spectroscopy and tested for photocatalytic applications. A new method for direct synthesis of photoelectrode on Ti Plate had been demonstrated. Further investigations on controlling the size and morphology for better performance of single and double metal phosphates will be done.

  13. Synthesis, characterization, crystal structure, and thermal analysis of 2-chloro-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) acetamide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. [University of Jammu, X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics (India); Nayak, P. S.; Narayana, B. [Mangalore University, Mangalagangotri, Department of Studies in Chemistry (India); Kant, R., E-mail: rkvk.paper11@gmail.com [University of Jammu, X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics (India)

    2015-12-15

    The title compound, C{sub 13}H{sub 14}O{sub 2}N{sub 3}Cl, has been synthesized by the reaction of chloroacetyl chloride with 4-aminoantipyrine in basic media and characterized by FT-IR, CHN elemental analysis, UV-Vis, TGA, DTA, DSC and single crystal X-ray diffraction. crystals are monoclinic, sp. gr. P2{sub 1}/c, a = 6.9994(6), b = 12.4035(13), c = 15.836(2) Å, β = 100.367(9)°, Z = 4. The crystal structure is stabilized by N–H···O and C–H···O interactions, the former interactions result in the formation of dimers corresponding to R{sub 2}{sup 2} (10) graphset motif and the dimers are further connected by C–H···O hydrogen bonding forming chains. In addition, the thermal stability of the compound was determined by TGA, DTA, DSC analysis, and absorption at λ{sub max} = 298 nm was determined by UV-Vis spectrophotometer.

  14. Thermal characterization of gallium nitride p-i-n diodes

    Science.gov (United States)

    Dallas, J.; Pavlidis, G.; Chatterjee, B.; Lundh, J. S.; Ji, M.; Kim, J.; Kao, T.; Detchprohm, T.; Dupuis, R. D.; Shen, S.; Graham, S.; Choi, S.

    2018-02-01

    In this study, various thermal characterization techniques and multi-physics modeling were applied to understand the thermal characteristics of GaN vertical and quasi-vertical power diodes. Optical thermography techniques typically used for lateral GaN device temperature assessment including infrared thermography, thermoreflectance thermal imaging, and Raman thermometry were applied to GaN p-i-n diodes to determine if each technique is capable of providing insight into the thermal characteristics of vertical devices. Of these techniques, thermoreflectance thermal imaging and nanoparticle assisted Raman thermometry proved to yield accurate results and are the preferred methods of thermal characterization of vertical GaN diodes. Along with this, steady state and transient thermoreflectance measurements were performed on vertical and quasi-vertical GaN p-i-n diodes employing GaN and Sapphire substrates, respectively. Electro-thermal modeling was performed to validate measurement results and to demonstrate the effect of current crowding on the thermal response of quasi-vertical diodes. In terms of mitigating the self-heating effect, both the steady state and transient measurements demonstrated the superiority of the tested GaN-on-GaN vertical diode compared to the tested GaN-on-Sapphire quasi-vertical structure.

  15. Synthesis of mixed-linked xylans for enzyme characterization

    DEFF Research Database (Denmark)

    Boos, Irene; Clausen, Mads Hartvig

    of arabinoxylans. This can be achieved by chemical synthesis of well-defined oligosaccharides as models for the more complex macromolecules. Moreover, the utilization of enzyme resistant substrates can support the mapping of the active site of glycosyl-hydrolases. The talk will highlight the synthesis of mixed O......- and S-linked tetraxylans as possible interesting candidates for the investigation and characterization of arabinoxylan degrading enzymes....

  16. Studies on bismuth carboxylates—synthesis and characterization of ...

    Indian Academy of Sciences (India)

    synthesis and characterization of a new structural form of bismuth(III) dipicolinate ... Synthesis and X-ray structure of a new bismuth dipicolinate cooordination polymer, {[Bi((2,6-O2C)2C5H3N)((2-HO2C-6-O2C)C5H3N)(H2O)]2.5H2O} (7) are ...

  17. Synthesis, characterization and application of an inorgano organic ...

    Indian Academy of Sciences (India)

    , followed by its derivatization using para-chlorophenol (CP). The resulting compound is abbreviated as ZWCP. ZWCP has been characterized for elemental analysis, spectral analysis (FTIR), X-ray analysis and thermal analysis (TGA).

  18. A novel vanadium n-propylamino phosphate catalyst: synthesis, characterization and applications

    Directory of Open Access Journals (Sweden)

    Rajini Anumula

    2012-01-01

    Full Text Available A novel, lamellar type Vanadium n-propylamino phosphate catalyst is synthesized and characterized by using various physicochemical techniques such as Powder X-ray diffraction, Scanning electron microscopy/Energy dispersive X-ray analysis, Thermogravimetry/Differential thermal analysis, Fourier transform Infrared analysis, Electron spin resonance spectroscopy, Ultraviolet - Visible Diffuse reflectance spectroscopy, X-ray Photoelectron spectroscopy, 31P Magic angle spinning Nuclear Magnetic Resonance spectroscopy and Catalytic applications toward Octahydroquinazolinone synthesis. It is found that the n-propylamine is present as sandwich between Vanadyl phosphate layers. Most of the Vanadium is present as V4+ ions in tetrahedral co-ordination. Vanadium n-propylamino phosphate catalyses Octahydroquinazolinone synthesis more effeciently and the optimum conditions required for Octahydroquinazolinone synthesis are, Benzaldehyde (2 mmol, Dimedone (2 mmol, Urea (4 mmol, Methanol + Water (1:1, 5 mL and Catalyst (0.05 g. A plausible mechanism is also proposed.

  19. A novel vanadium n-propylamino phosphate catalyst: synthesis, characterization and applications

    Directory of Open Access Journals (Sweden)

    Rajini Anumula

    2013-02-01

    Full Text Available A novel, lamellar type Vanadium n-propylamino phosphate catalyst is synthesized and characterized by using various physicochemical techniques such as Powder X-ray diffraction, Scanning electron microscopy/Energy dispersive X-ray analysis, Thermogravimetry/Differential thermal analysis, Fourier transform Infrared analysis, Electron spin resonance spectroscopy, Ultraviolet - Visible Diffuse reflectance spectroscopy, X-ray Photoelectron spectroscopy, 31P Magic angle spinning Nuclear Magnetic Resonance spectroscopy and Catalytic applications toward Octahydroquinazolinone synthesis. It is found that the n-propylamine is present as sandwich between Vanadyl phosphate layers. Most of the Vanadium is present as V4+ ions in tetrahedral co-ordination. Vanadium n-propylamino phosphate catalyses Octahydroquinazolinone synthesis more effeciently and the optimum conditions required for Octahydroquinazolinone synthesis are, Benzaldehyde (2 mmol, Dimedone (2 mmol, Urea (4 mmol, Methanol + Water (1:1, 5 mL and Catalyst (0.05 g. A plausible mechanism is also proposed.

  20. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    of silver tungstate nanoparticles. 2. Experimental. Silver tungstate nanoparticles were synthesized by reacting AR grade silver nitrate. (AgNO3) and sodium tungstate (Na2WO4) using distilled water as solvent at room temperature. The method followed for this synthesis is similar to that used by. Takahashi et al [9]. However ...

  1. Synthesis and Characterization of Colloidal MCM-41

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Zukalová, Markéta; Kooyman, P. J.; Zukal, Arnošt

    2004-01-01

    Roč. 241, - (2004), s. 81-86 ISSN 0927-7757 Institutional research plan: CEZ:AV0Z4040901 Keywords : colloidal MCM-41 * homogeneous precipitation * salt effect in the synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.513, year: 2004

  2. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    NARCIS (Netherlands)

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.

    2010-01-01

    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  3. Synthesis and Characterization of Nanostructured Sulfated Zirconias

    Czech Academy of Sciences Publication Activity Database

    Lutecki, M.; Šolcová, Olga; Werner, S.; Breitkopf, C.

    2010-01-01

    Roč. 53, č. 1 (2010), s. 13-20 ISSN 0928-0707 Grant - others:DFG(DE) BR2068/2-1; DFG(DE) BR2068/2-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : sulfated zirconia * template assisted synthesis * porous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  4. Synthesis, spectral characterization and in vitro antibacterial ...

    African Journals Online (AJOL)

    Shafqat Nadeem

    2015-12-17

    Dec 17, 2015 ... Petra/Osiris/Molinspiration analysis. Abstract The paper emphasizes on the synthesis of Palladium(II) iodide complexes containing based ligands. The new compounds .... The spectral conditions were as follows: 32 K data points,. 1.822 s acquisition time, 2.00 s pulse delay and 6.00 ls pulse width. The 13C ...

  5. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    Abstract. The synthesis, crystal structure, redox characteristics and photochemistry of a new heptamolyb- date supported magnesium-aqua coordination complex viz. (hmtH)2[{Mg(H2O)5}2{Mo7O24}]·3H2O 1 (hmt. = hexamethylenetetramine) is reported. The cyclic voltammogram reveals quasireversible redox behaviour.

  6. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    ... nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent ...

  7. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    eral plant extracts, particularly Lantana camara, Moringa oleifera, Catharanthus roseus, Eucalyptus hybrid, Cassia auriculata.23 However, potential of the plants as biologi- cal materials for the synthesis of nanoparticles is still under exploitation. In the present study, we developed an optimized method for syntheses of silver ...

  8. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    sants.20 Comparative structure of drugs and reported bio-active quinoline derivatives shown in figure 1. As a result of remarkable pharmacological efficiency of quinoline, pyrimidine and morpholine derivatives, our studies have been focused towards the synthesis and bio-evaluation of these derivatives by hybrid approach.

  9. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes ..... 6. Benzyl alcohol. Benzaldehyde. 57. 1-Phenylethanol. Acetophenone. 65. Cyclohexanol. Cyclohexanone. 49 a Reaction time, 5 h. b Yields based on substrate.

  10. Synthesis, stabilization, and characterization of metal nanoparticles

    Science.gov (United States)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  11. Synthesis, Characterization and Application of Nano Lepidocrocite ...

    African Journals Online (AJOL)

    NICO

    were finely ground with a pestle in an agate mortar and were stored in an airtight bottle. 2.3. Synthesis of Magnetite (Fe3O4) Nanoparticles. Fe3O4 nanoparticles were synthesized in a similar fashion as mentioned for FeOOH except that the washing was done 3–4. RESEARCH ARTICLE. A. Agarwal, H. Joshi and A. Kumar,.

  12. Synthesis and characterization of silver molybdate nanowires ...

    Indian Academy of Sciences (India)

    Wintec

    approaches have been proved to provide an alternative route for the synthesis of 1-D nanomaterials (Buhro et al ... magnetic stirring to form a homogeneous greenish-yellow precipitate. The resulting precipitate was ... the size-dependent optical properties of the nanomaterials, due to the quantum confinements of the photo- ...

  13. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    tion in the development of catalysis, magnetism, molec- ular architectures and materials chemistry. Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes used for oxidation reactions are cytochrome P-450, per- oxidases ...

  14. Synthesis, Characterization and Antimicrobial Activities of Some ...

    African Journals Online (AJOL)

    user

    of metal ions with vitamin.111: Synthesis and infrared spectra of metal complexes with pyridoxamine and pyridoxine. Inorg. Chim. Acta, 46, 191-197. Gary, J and Adeyemo, A (1981) Interaction of vitamin B1 with Zn(II), Cd (II) and Hg(II) in. Deuterated Dimethyl Sulfoxide. Inorg. Chim. Acta, 55, 93-98. Gohzalez-vergara, E ...

  15. Thermal Behaviour and Detonation Characterization of N-Benzoyl-3 ...

    African Journals Online (AJOL)

    NICO

    The apparent activation energy, pre-exponential factor and the mechanism function are 170.77 kJ mol–1, 1014.12 s–1 and f(a) = (1–a)–1/2, respec- tively. ... The detonation velocity. (D) and ... N-benzoyl-3,3-dinitroazetidine(BDNAZ), thermal behaviour, non-isothermal kinetics, thermal safety, detonation characterization. 1.

  16. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  17. Synthesis and characterization of poly iodine anilines by plasma

    International Nuclear Information System (INIS)

    Enriquez P, M.A.

    2003-01-01

    The polymers and organic materials present a numberless quantity of applications. However, it has not been but until recent times that it has been found that some of these materials can possess semiconductor properties. This has generated a great interest for the investigation in the area of semiconductor polymers. The poly aniline (Pan) it is one of the main semiconductor polymers because their electric properties change depending on the doping and of the state of oxidation to the one the molecules are subjected. The synthesis of this material has been carried out by means of chemical oxidation or electrochemistry. In this work a study is presented on the formation of poly aniline polymers with halogens chemically united to the aniline ring, poly(m-iodine aniline) (m-PAnI) and poly(m-chloroaniline) (m-PAnCI) for plasma. The plasma is generated by means of discharges of splendor with an r f amplifier to 13.5 MHz to drops pressures (10 -2 mbar). The synthesized polymers were obtained in form of thin film in the walls of the reactor and in the substrate introduced in the one. The electric properties of the polymers were evaluated in function of the time of reaction. Also, the conductivity of the polymers was compared synthesized in this work with reported data of synthesized poly aniline and doped with iodine for plasma. The highest values in conductivity are obtained in the poly aniline where the halogens are chemically connected to the ring that if it is doped with iodine. The atomic proportion in the surface of the polymers was analyzed by dispersive energy spectroscopy with which is deduced that the halogens come off of the molecules of the monomers or of the polymer in formation and that the atoms of iodine get lost more easily than those of chlorine. Other techniques that were used to characterize to the poly aniline were scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis and X-ray diffraction. The results are presented in

  18. Synthesis and characterization of hybrid nanostructures

    OpenAIRE

    Mokari, Taleb

    2011-01-01

    There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal...

  19. Synthesis, characterization and applications of different nanostructures

    Science.gov (United States)

    Snyder, Whitney Elaine

    There has been a growing interest in the field of nanoscience for the last several decades including the use in optical, electrical, biological and medicinal applications. This thesis focuses on the synthesis of different nanoparticles for their potential uses in drug delivery and antimicrobial agents as well as porous alumina membranes as surface enhanced Raman scattering or SERS substrates. The synthesis of nanocomposites (NCs) composed of silica and poly(4-vinyl pyridine) (P4VP) in a basic ethanol solution is presented in chapter 2. The composition of the NCs appears to be homogenous after synthesis and is greatly affected by heat and pH changes. When the NCs are heated, a core-shell nanostructure is produced with silica forming a shell around a P4VP core. At lower pHs, the NCs form a silica core with a P4VP shell while at higher pHs the silica is etched away causing the NC to decompose. A novel synthesis method of growing stable copper oxide nanoparticles with poly(acrylic acid) (PAA) is presented in chapter 3. Insoluble copper (I) oxide is dissolved with ammonium hydroxide and reduced using sodium borohydride to form metallic copper nanoparticles that oxidize overtime to form copper oxide nanoparticles stable in an aqueous environment. In addition to copper oxide nanoparticles, copper (I) iodide and copper (II) sulfide particles were also synthesized in the presence of PAA. In chapter 4, alumina membranes with 100nm and 200nm pores were coated with silver and used as SERS substrates to detect small molecules. The alumina membranes are coated with silver by reducing silver (I) oxide with ethanol. The thickness of the silver layer depends primarily on the length of time the substrate comes into contact with the Ag2O in solution with longer exposure times producing thicker films. Raman scattering of 10-100nM adenine concentrations were collected.

  20. Combustion synthesis and characterization of nanocrystalline WO3.

    Science.gov (United States)

    Morales, Walter; Cason, Michael; Aina, Olawunmi; de Tacconi, Norma R; Rajeshwar, Krishnan

    2008-05-21

    The energy payback time associated with the semiconductor active material is an important parameter in a photovoltaic solar cell device. Thus lowering the energy requirements for the semiconductor synthesis step or making it more energy-efficient is critical toward making the overall device economics more competitive relative to other nonpolluting energy options. In this communication, combustion synthesis is demonstrated to be a versatile and energy-efficient method for preparing inorganic oxide semiconductors such as tungsten trioxide (WO3) for photovoltaic or photocatalytic solar energy conversion. The energy efficiency of combustion synthesis accrues from the fact that high process temperatures are self-sustained by the exothermicity of the combustion process, and the only external thermal energy input needed is for dehydration of the fuel/oxidizer precursor mixture and bringing it to ignition. Importantly, we show that, in this approach, it is also possible to tune the optical characteristics of the oxide semiconductor (i.e., shift its response toward the visible range of the electromagnetic spectrum) in situ by doping the host semiconductor during the formative stage itself. As a bonus, the resultant material shows enhanced surface properties such as markedly improved organic dye uptake relative to benchmark samples obtained from commercial sources. Finally, this synthesis approach requires only very simple equipment, a feature that it shares with other "mild" inorganic semiconductor synthesis routes such as sol-gel chemistry, chemical bath deposition, and electrodeposition. The present study constitutes the first use of combustion synthesis for preparing WO3 powder comprising nanosized particles.

  1. Chemical synthesis and characterization of highly soluble conducting polyaniline in the mixtures of common solvents

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem

    2015-01-01

    Full Text Available This work presents the synthesis and characterization of soluble and conducting polyaniline PANI-PIA according to chemical polymerization route. This polymerization pathway leads to the formation of poly(itaconic acid doped polyaniline salts, which are highly soluble in a number of mixtures between organic common polar solvents and water, the solubility reaches 4 mg mL-1. The effect of synthesis parameters such as doping level on the conductivity and the study of solubility and other properties of the resulting PANI salts were also undertaken. The maximum of conductivity was found equal to 2.48×10-4 S cm-1 for fully protonated PANI-EB. In addition, various characterizations of the synthesized materials were also done with the help of viscosity measurements, UV-vis spectroscopy, XRD, FTIR and finally TGA for the thermal properties behaviour.

  2. Synthesis, characterization and conductivity studies of polypyrrole ...

    Indian Academy of Sciences (India)

    Unknown

    Fly ash is a waste product produced from coal fired thermal power stations during the combustion of coal. It is an alkaline grey powder with pH ranging from 9–9⋅9. ... ing and construction; the remaining is directly dumped on land side as land fill or simply piled up. Due to envi- ronmental regulations, new ways of utilizing FA ...

  3. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    Abstract. Zirconium(IV) tungstoiodophosphate has been synthesized under a variety of conditions. The most chemically and thermally stable sample is prepared by adding a mixture of aqueous solutions of 0⋅5 mol L–1 sodium tungstate, potassium iodate and 1 mol L–1 orthophosphoric acid to aqueous solution of 0⋅1 mol ...

  4. Synthesis, characterization and studies on antioxidant and ...

    Indian Academy of Sciences (India)

    DPPH, H2O2 and NO) and ferric reducing ... 2.1 Materials and physical measurements ..... During the heating, the complexes have undergone a series of thermal changes associated with a weight loss in the samples. The TGA curves of the com-.

  5. Hydrothermal synthesis, structure and characterization of new ...

    Indian Academy of Sciences (India)

    Unknown

    The structure has tunnel-type cavities and are congenial for ion transportation through them. The compound exhibits moderate thermal stability. Keywords. Hydrothermal; crystal structure; solid electrolyte; iron (III) pyrophosphate. 1. Introduction. NASICON and related compounds belong to the well known family of solid ...

  6. Synthesis and characterization of tetraethylammonium tetrachloro ...

    Indian Academy of Sciences (India)

    Unknown

    vibrational frequencies corresponding to (TEA)+ ions and. −. 2. 4. CoCl ions were assigned from the IR spectral data of this crystal. Keywords. Single crystals; unit cell parameters; first order phase transition; thermal anomaly; tetragonal lattice. 1. Introduction. Tetraethylammonium tetrachlorocobaltate (TEATC–Co) belongs to ...

  7. Synthesis, structural and surface morphological characterizations of ...

    African Journals Online (AJOL)

    The nanoparticles have wide energy bandgap that varied from 3.80 to 4.00±0.05 eV and is therefore good candidate for solar cell and solar thermal applications. It also presents an attractive alternative material for biomedical implants due to its biocompatibility and mechanical strength. Keywords: Sulfated zirconia, sol-gel, ...

  8. Synthesis and Characterization of Oleic Acid Stabilized ...

    African Journals Online (AJOL)

    Oleic acid stabilized magnetite nanocrystals have been synthesized by the organic phase thermal decomposition of iron oleate complex in 1-octadecene for potential application as magnetic resonance imaging (MRI) contrast agent. The synthetic process resulted in 13.5 and 15.1 nm highly monodisperse nanocrystals as ...

  9. Synthesis and characterization of microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.; ten Elshof, Johan E.; Blank, David H.A.

    2004-01-01

    A procedure for the preparation of microporous titania membranes by the polymeric sol-gel technique is reported. The influence of acid/titanium ratio, water/titanium ratio, method of mixing components and refluxing time on particle size and sol stability was investigated. The thermal evolution,

  10. Characterization of thermal properties of municipal solid waste landfills.

    Science.gov (United States)

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Synthesis and characterization of Trichloroisocyanouric acid ...

    Indian Academy of Sciences (India)

    Abstract. Trichloroisocyanouric acid (TCCA)-functionalized mesoporous silica nanocomposites (SBA/. TCCA) were synthesized and characterized for the acylation of indole. The uniform incorporation of TCCA inside the SBA-15 matrix was confirmed by standard characterization techniques (PXRD, Adsorption studies,. FT-IR ...

  12. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  13. Monodisperse hollow silica nanospheres for nano insulation materials: synthesis, characterization, and life cycle assessment.

    Science.gov (United States)

    Gao, Tao; Jelle, Bjørn Petter; Sandberg, Linn Ingunn C; Gustavsen, Arild

    2013-02-01

    The application of manufactured nanomaterials provides not only advantages resulting from their unique properties but also disadvantages derived from the high energy use and CO(2) burden related to their manufacture, operation, and disposal. It is therefore important to understand the trade-offs of process economics of nanomaterial production and their associated environmental footprints in order to strengthen the existing advantages while counteracting disadvantages. This work reports the synthesis, characterization, and life cycle assessment (LCA) of a new type of superinsulating materials, nano insulation materials (NIMs), which are made of hollow silica nanospheres (HSNSs) and have great flexibility in modifying their properties by tuning the corresponding structural parameters. The as-prepared HSNSs in this work have a typical inner pore diameter of about 150 nm and a shell thickness of about 10-15 nm and exhibit a reduced thermal conductivity of about 0.02 W/(m K) because of their size-dependent thermal conduction at the nanometer scale. The energy and raw material consumption related to the synthesis of HSNSs have been analyzed by the LCA method. The results indicate that the recycle of chemicals, up-scaling production, and use of environmentally friendly materials can greatly affect the process of environmental footprints. New synthesis routes for NIMs with improved thermal performance and energy and environmental features are also recommended on the basis of the LCA study.

  14. Crystal growth, FTIR and thermal characterization of bis ...

    Indian Academy of Sciences (India)

    The grown crystals were characterized by elemental analysis, powder X-ray diffraction, thermal analysis, nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infra-red spectroscopy (FTIR) techniques. The chemical ... The second harmonic generation behaviour was tested by Nd:YAG laser source.

  15. Thermal analysis of kidney stones and their characterization

    Czech Academy of Sciences Publication Activity Database

    Kohútová, A.; Honcová, P.; Podzemná, V.; Bezdička, Petr; Večerníková, Eva; Louda, M.; Seidel, J.

    2010-01-01

    Roč. 101, č. 2 (2010), s. 695-699 ISSN 1388-6150 Institutional research plan: CEZ:AV0Z40320502 Keywords : kidney stones * characterization * thermal analysis * decomposition Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.752, year: 2010

  16. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    thermal analyses (DTA) of a powdered sample of 1 were performed in ... 6.91; O, 36.52; Mo, 41.44; Mg, 3.0%. Found % (1):. C, 15.48; H, 5.25; N, 17.96%. IR data: 3447, 3186,. 2963, 2891, 2405, 1834, 1658, 1466, 1440, 1377, 1300,. 1259, 1236, 1149 ... details of data acquisition and selected refinement results are listed in.

  17. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei

    2018-03-19

    Executive Summary The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  18. Synthesis and characterization of surfactant assisted Mn2+ doped ZnO nanocrystals

    Directory of Open Access Journals (Sweden)

    N. Shanmugam

    2016-09-01

    Full Text Available We report the synthesis and characterization of Mn doped ZnO nanocrystals, both in the free standing and PVP capped particle forms. The nanocrystals size could be controlled by capping them with polyvinylpyrollidone and was estimated by X-ray diffraction and transmission electron microscopy. The chemical compositions of the products were characterized by FT-IR spectroscopy. UV–Vis absorption spectroscopy measurements reveal that the capping of ZnO leads to blue shift due to quantum confinement effect. The morphology of the particles was evaluated by Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. Both the Thermo Gravimetric Analysis (TGA and Differential Thermal Analysis (DTA curves of the ZnO show no further weight loss and thermal effect at a temperature above 510 °C.

  19. Synthesis and characterization of nanosize sodium titanates

    Energy Technology Data Exchange (ETDEWEB)

    Elvington, M. C.; Tosten, M.; Taylor-Pashow, K. M. L.; Hobbs, D. T., E-mail: david.hobbs@srnl.doe.gov [Savannah River National Laboratory (United States)

    2012-11-15

    This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST). The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST). Key modifications to this process include altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The BET surface area and isoelectric point of the nMST measured 285 m{sup 2} g{sup -1} and 3.34 pH units, respectively, which is more than an order of magnitude higher in surface area and a pH unit lower than that measured for the microsize MST. The nMST material serves as an effective ion exchanger under both weakly acidic and strongly alkaline conditions and was converted to a peroxotitanate form by reaction with hydrogen peroxide.

  20. Synthesis and characterization of CuO nanoparticles using strong ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of CuO nanoparticles using strong base electrolyte ... Fourier transform infrared spectrum showed that the CuO ..... Hydrogen bub- bles play a key role in generation of sparks and metal removal in the electrochemical discharge process. Flower-like morphology could be attained with both the.

  1. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    School of Chemistry, University College of Science, University of Tehran, Tehran, Iran. Email: alnema@khayam.ut.ac.ir ... nation polymers and coordination complexes, is a suit- able building block for supramolecular ..... Kianpour G, Salavati-Niasari M and Emadi H 2013. Precipitation synthesis and characterization of cobalt.

  2. Synthesis and characterization of cupric oxide (CuO) nanoparticles ...

    African Journals Online (AJOL)

    Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. ... Thermodynamic and kinetic studies were also performed to determine the feasibility of the process. The maximum MB removal was observed to be 88.93%. The pH of point zero charge (pHPZC) of adsorbent ...

  3. Synthesis, spectral characterization and redox properties of iron (II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, spectral characterization and redox properties of iron. (II) complexes of 1-alkyl-2-(arylazo)imidazole. U S RAY, D BANERJEE and C SINHA*. Department of Chemistry, The University of Burdwan, Burdwan 713 104,. India e-mail: c_r_sinha@yahoo.com. MS received 26 February 2003; revised 12 May 2003.

  4. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  5. Synthesis and characterization of nano silicon and titanium nitride ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique ... nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor.

  6. Synthesis, characterization, crystal structure and DNA-binding study ...

    Indian Academy of Sciences (India)

    BOLIN

    SYNOPSIS. Synthesis and characterization of four mononuclear eight coordinated cadmium(II) complexes with newly explored carboxamide derivatives and study of interaction with calf-thymus DNA are reported. The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, ...

  7. Synthesis, spectral characterization of Schiff base transition metal ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. N RAMAN,* J DHAVEETHU RAJA and A SAKTHIVEL. Department of Chemistry, VHNSN College, Virudhunagar 626 001 e-mail: drn_ raman@yahoo.co.in. MS received 1 May 2007; revised 7 July ...

  8. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. BIKASH KUMAR PANDA. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032,. India e-mail: b_panda@hotmail.com. MS received 2 June 2004; revised 21 July 2004.

  9. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  10. Synthesis, characterization of N-, S-, O-substituted naphtho- and ...

    Indian Academy of Sciences (India)

    Sci. Vol. 124, No. 3, May 2012, pp. 657–667. c Indian Academy of Sciences. Synthesis, characterization of N-, S-, O-substituted naphtho- and benzoquinones and a structural study. CEMIL IBIS. ∗ and NAHIDE GULSAH DENIZ. Engineering Faculty, Department of Chemistry, Division of Organic Chemistry, Istanbul University,.

  11. Synthesis, characterization and self-assembly of Co 3 complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups. Afsar Ali Deepak Bansal Rajeev Gupt. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1535-1546 ...

  12. Synthesis, characterization and investigation of catalytic activity of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 827–834. c Indian Academy of Sciences. Synthesis, characterization and investigation of catalytic activity ..... 2004 J. Catal. 222 107. 8. Rajgopal R, Vetrivel R and Rao B S 2000 Catal. Lett. 65 99. 9. Rao B S, Sreekumar K and Jyothi T M 1998 Indian. Patent 2707/98. 10.

  13. Synthesis, spectral characterization and antihaemostatic activity of 1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 2. Synthesis, spectral characterization and antihaemostatic activity of 1,2,4-triazoles ... Author Affiliations. Ravindra R Kamble1 Belgur S Sudha1. Department of Chemistry and Food Science, Yuvaraja's College, University of Mysore, Mysore 570 005 ...

  14. Synthesis and photoelectrochemical characterization of a high molar ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 4. Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex. L Giribabu Vrun Kumar Singh M Srinivasu Ch Vijay Kumar V Gopal Reddy Y Soujnya P Yella Reddy. Volume 123 Issue 4 July ...

  15. An efficient synthesis, X-ray and spectral characterization of ...

    Indian Academy of Sciences (India)

    An efficient synthesis, X-ray and spectral characterization of biphenyl derivatives. Ravindra R Kamble Dharesh B Biradar Gangadhar Y Meti Tasneem Taj Tegginamath Gireesh Imthiyaz Ahmed M Khazi Sundar T Vaidyanathan Raju Mohandoss Balasubramanian Sridhar Viraraghav Parthasarathi. Volume 123 Issue 4 July ...

  16. Synthesis and characterization of magnetite/hydroxyapatite tubes ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Synthesis and characterization of magnetite/hydroxyapatite tubes using natural template for biomedical applications. M SNEHA N MEENAKSHI SUNDARAM A KANDASWAMY. Volume 39 Issue 2 April ...

  17. Synthesis, characterization and magnetic properties of polyaniline/ γ ...

    Indian Academy of Sciences (India)

    Administrator

    deposition technique by placing fine-graded γ-Fe2O3 in a polymerization mixture of aniline. The composites are characterized by using ... All chemicals of analytical grade procured from Sigma-. Aldrich were used for the synthesis of .... PANI seem to exhibit transition peaks in the temperature range of 125–175°C. In case of ...

  18. Synthesis, characterization of N-, S-, O-substituted naphtho- and ...

    Indian Academy of Sciences (India)

    657–667. c Indian Academy of Sciences. Synthesis, characterization of ... naphthoquinone) were investigated.16 Novel vitamin K3 analogues were ... 1.2Ueq(C). The selected bond distances, bond and tor- sion angles for compound 13 were listed in tables 2 and 3, respectively. Drawings were performed with the program ...

  19. organic-inorganic hybrid materials. i: synthesis, characterization and ...

    African Journals Online (AJOL)

    a

    organic-inorganic nanocomposites, and models in the area of biomimetics [13]. Hence, with a focus towards developing a potential photoresist material that has a lithographic action [14], we report herein the facile synthesis, characterization and properties of a novel octasilsesquioxane, which by virtue of its terminal chlorine ...

  20. Synthesis, characterization, X-ray crystal structure, electrochemical ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0978-8. Synthesis, characterization, X-ray crystal structure, electrochemical evaluation and anti-cancer studies of a mixed ligand Cu(II) complex of (E)-N -((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide. IRAN SHEIKHSHOAIEa, S YOUSEF EBRAHIMIPOURa,∗, MAHDIEH SHEIKHSHOAIEa,.

  1. Synthesis, characterization and isotherm studies of new composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Synthesis, characterization and isotherm ... With different methods, different molar ratios and different surfactants have been investigated to reach the optimum conditions for synthesized zirconium tungstate (Zr(IV)W). Zr(IV)W with different molar ratios of ...

  2. Synthesis, characterization and ion recognition studies of lower rim ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6. Synthesis, characterization and ion recognition studies of lower rim 1,3-di{rhodamine} conjugate of calix[4]arene. Jugun Prakash Chinta Jayaraman Dessingou Chebrolu Pulla Rao. Regular Articles Volume 125 Issue 6 November 2013 pp 1455-1461 ...

  3. Synthesis and characterization of new meso-substituted ...

    Indian Academy of Sciences (India)

    The synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins has been described. A new modified Adler method ... P Bandgar1 Pradip B Gujarathi1. Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431 606 ...

  4. Synthesis and characterization of solid heterogeneous catalyst for ...

    African Journals Online (AJOL)

    Synthesis and characterization of solid heterogeneous catalyst for the production of biodiesel from high FFA waste cooking oil. Nasar Mansir, Taufiq-Yap Yun Hin. Abstract. No Abstract. Keywords: Biodiesel, Transesterification, High FFA waste cooking oil, Heterogeneous catalyst, Single step reaction process. Full Text:.

  5. Synthesis, characterization and photo-epoxidation performance of ...

    Indian Academy of Sciences (India)

    Synthesis, characterization and photo-epoxidation performance of Au-loaded photocatalysts. VAN-HUY NGUYEN, HSIANG-YU CHAN and JEFFREY C S WU. ∗. Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan e-mail: cswu@ntu.edu.tw. MS received 7 November 2012; revised 11 ...

  6. Synthesis, characterization and evaluation of biological activities of ...

    African Journals Online (AJOL)

    Original Research Article. Synthesis, characterization and evaluation of biological activities of manganese-doped zinc oxide nanoparticles. Shakeel Ahmad Khan1*, Sammia Shahid1, Waqas Bashir1, Sadia Kanwal2 and. Ahsan Iqbal3. 1Department of Chemistry, University of Management and Technology, Lahore-54000, ...

  7. SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY Zn2+, Cu2+ ...

    African Journals Online (AJOL)

    The work extended to synthesis the Zn2+, Ni2+, Cu2+, Co2+, Mn2+, Ru3+, Fe3+,. VO2+ and UO2. 2+ complexes with the prepared ligand to evaluate the effect of azo group on the microbicides activities of the prepared compounds. All compounds were characterized by spectroscopic and analytical tools like elemental and ...

  8. Synthesis, structural characterization and biological activity of a ...

    Indian Academy of Sciences (India)

    3.1 Synthesis and formulation. Schiff base ligand H2L was synthesized by 1:1 conden- sation of O-aminophenol and O-vanillin in dehydrated alcohol. 1 was prepared using reaction among Zn(II) salt and the ligand in methanol. Coordination geo- metry of 1 was determined by different spectroscopic characterization.

  9. Large scale synthesis and characterization of Ni nanoparticles by ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Huazhi Wang Xinli Kou Jie Zhang Jiangong Li. Nanomaterials Volume 31 Issue 1 February 2008 pp 97-100 ...

  10. Synthesis and characterization of bi-functional magneto-luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 7. Synthesis and characterization of bi-functional magneto-luminescent Fe₃O₄ @ SiO₂ @ NaLuF₄ :Eu³⁺ hybrid core / shell nanospheres. JIGMET LADOL HEENA KHAJURIA HAQ NAWAZ SHEIKH YUGAL KHAJURIA. Regular Article Volume 128 Issue ...

  11. SYNTHESIS AND CHARACTERIZATION OF N, N'-BIS-(3 ...

    African Journals Online (AJOL)

    user

    base complexes derived from Salicylaldehyde and histidine with some divalent transition metal ions. Furthermore, Syed (1993) reported the synthesis, characterization and biological evaluation of some. Schiff base metal complexes derived from Anthranilic acid-sugar and naturally occurring amino acid-sugar. Schiff bases ...

  12. Synthesis, characterization and antimicrobial studies of cadmium(II)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 130; Issue 4. Synthesis, characterization and antimicrobial studies of cadmium(II) complexes with a tetraazamacrocycle (LB) and its cyanoethyl N-pendent derivative (LBX). MD SHAH ALAM SASWATA RABI MD MASUDUR RAHMAN ADRITY BAIDYA MANASHI DEBI ...

  13. Synthesis and spectroscopic characterization of palladium-doped ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we reported synthesis of palladium (Pd)-doped titanium dioxide (TiO2) (Pd-TiO2) nanopar- ticles by the sol–gel-assisted method. The synthesized Pd-doped TiO2 nanoparticles were characterized using X-ray diffraction, transmission electronic microscopy, energy-dispersive spectroscopy, Fourier ...

  14. Synthesis and Characterization of Pyridine Functionalized ...

    African Journals Online (AJOL)

    picolyl) imidazolium salts (1). Treatment of the synthesized imidazolium salt with silver(I) oxide resulted in the formation of bis NHC silver(I) complex (2). The compound was characterized spectroscopically (NMR, mass spectrometry), by elemental ...

  15. Electrochemical synthesis and spectroscopic characterization of ...

    African Journals Online (AJOL)

    phenylpyrrole) coatings in an organic medium on iron and platinum electrodes. ... XPS measurements, infrared (FT-IR) and electronic absorption (UV-vis) spectroscopies were used to characterize the iron and platinum-coated electrodes. Finally the ...

  16. Synthesis, characterization and electrochemistry of heterobimetallic ...

    African Journals Online (AJOL)

    dimethylpyrazolyl) borate with a series of manganese(II) Schiff bases have been synthesized. Characterization by UV, IR, MS and elemental analysis support their formulations. Cyclic and differential pulse voltammograms of manganese(II) Schiff base ...

  17. Synthesis and characterization of hybrid nanostructures

    Directory of Open Access Journals (Sweden)

    Taleb Mokari

    2011-05-01

    Full Text Available There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal-semiconductor heterojunctions formed by the growth of Au, Pt, or other binary catalytic metal systems on metal (Cd, Pb, Cu-chalcogenide nanostructures. We show the ability to grow the metal on various shapes (spherical, rods, hexagonal prisms, and wires. Furthermore, manipulating the composition of the metal nanoparticles is also shown, where PtNi and PtCo alloys are our main focus. The magnetic and electrical properties of the developed hybrid nanostructures are shown.

  18. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  19. Hydrochemical characterization of recreational thermal regions in Uruguay

    International Nuclear Information System (INIS)

    Carrión, R.; Massa, E.

    2010-01-01

    The deep drilling in Uruguay yields thermal groundwater aquifer formations contained in Mesozoic and Permo-Carboniferous in the North Basin. This paper characterizes thermal environments from the standpoint of physical-chemical, used primarily recreational, noting also the presence of heavy metals of natural origin. We worked over 62 analytical results from various information sources between 1946 and 2007. Using appropriate software the results were entered selected based on reliability and study area, 11 wells, analyzed different diagrams to characterize the water. Based on the drilling location and classification hydrogeochemistry thermal, thermal environments proposes five sorted from North to South: Arapey, Salto, Guaviyú, Guichon and Paso Ullestie. The proposed thermal environments were differentiated by the constitution hydrochemistry of waters, from north to south evolve bicarbonate calcium bicarbonate to sodium chloride, and increase the presence of sulfates. Groundwater Arapey environments and Salto aquifers are contained in Jurassic-Cretaceous, while for the remaining three environments (Guaviyú, Guichon and Paso Ullestie), aquifers are geological formations Permo - Carboniferous. In the past, it was determined the presence of As, funded by pre-Early Paleozoic formations Guarani Aquifer System: Buena Vista and Yaguarí Resumen ampliado Introducción

  20. Synthesis, characterization, crystal structure determination, catalytic activity and thermal study of a new oxidovanadium(IV) Schiff base complex: production of V.sub.2./sub.O.sub.5./sub. nano-particles

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Khalaji, A.D.; Fejfarová, Karla; Dušek, Michal; Tahmasebi, V.; Delkosh, S.

    2014-01-01

    Roč. 11, č. 4 (2014), s. 953-962 ISSN 1735-207X Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : uranium complex * isothiosemicarbazone * crystallography * spectra * thermal stability Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.087, year: 2014

  1. A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach

    International Nuclear Information System (INIS)

    Salavati-Niasari, Masoud; Mir, Noshin; Davar, Fatemeh

    2010-01-01

    In order to raise the need of co-surfactant in the synthesis of NiO nanoparticles, [bis(2-hydroxy-1-naphthaldehydato)nickel(II)] complex was employed as a novel precursor in thermal decomposition process using oleylamine (C 18 H 37 N) as surfactant. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-Vis) spectroscopy. Also the novel precursor thermally was treated in solid state reaction in different temperature, 400, 500, and 600 o C. Synthesized nickel oxide nanoparticles have a cubic phase with average size of 15-20 nm.

  2. Castor Oil Based Polyurethanes: Synthesis and Characterization

    Science.gov (United States)

    Macalino, AD; Salen, VA; Reyes, LQ

    2017-09-01

    In this study, polyurethanes based on castor oil and 1,6-hexamethylene diisocyanate (HMDI) were synthesized with varying weight ratio of the castor oil and HMDI. The formation of urethane linkages was verified through the use of a fourier transform infrared spectroscopy (FTIR). The hydrophilicity of the films was evaluated through the use of a contact angle meter and it was found that the contact angle of all the films were below 90 degrees which confirms their hydrophilicity. The thermal stability of the PU films were studies through the use of a thermal gravimetric analyzer and found that all of the polyurethane films exhibited two weight loss events at elevated temperatures wherein the first weight loss event was observed to occur at 285°C to 384°C while the second weight loss event was observed at around 521°C to 551°C. The hardness, elastic modulus, and tensile elongation of the PU films were determined by using a universal testing machine (UTM) where it was found out that the hardness and the elastic modulus of the film is directly proportional with HMDI loading while the tensile elongation is inversely proportional to it. Lastly, it was known through the swelling studies of the PU films that it does not swell, this is due to the presence of unreacted triglycerides in the material, which prevents water from permeating to the films.

  3. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    Science.gov (United States)

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  4. Thermal Damage Detection and Characterization in Porous Materials

    Science.gov (United States)

    2011-11-30

    Thermal Damage Detection and Characterization in Porous Materials H.T. Banks ∗ and Amanda Keck Criner† Center for Research in Scientific Computation...methods described in [3], which are denoted Ωi with boundaries ∂Ωi for i = 1, 2 . . . nr. The undamaged perforated domain Ω is given by Ω̂ \\ (∪ nri =1Ωi... Banks , Brittany Boudreaux, Amanda Keck Criner, Krista Foster, Cerena Uttal, Thomas Vogel, and William P. Winfree, Thermal based damage detection in porous

  5. Synthesis, characterization and photophysical studies of ...

    Indian Academy of Sciences (India)

    These novel zinc(II) porphyrin-benzo--pyrone dyads successfully underwent demetallation in the presence of concentrated hydrochloric acid in chloroform at 25°C to form the corresponding free-base porphyrin analogues in good yields. The newly synthesized products were characterized on the basis of spectral data and ...

  6. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc.

  7. Synthesis and characterization of fluorophore attached silver ...

    Indian Academy of Sciences (India)

    Silver nanoparticles stabilized by soluble starch were synthesized and characterized. in vivo studies in rats showed no toxicity and revealed their distribution in various tissues and permeability across BBB. This starch stabilized silver nanoparticles have good biological characteristics to act as a potential promising vector for ...

  8. Synthesis, characterization and photocatalytic reactions of ...

    Indian Academy of Sciences (India)

    Titanium dioxide is one of the most extensively investigated photocatalyst and is the subject of extensive .... with commercial titania powder from Merck. 2.2 Characterization. X-ray diffraction patterns of the ..... Bickley R I and Navio J A 1985 Photocatalytic production of energy-rich compounds (eds) G Grassi and D O Hall ...

  9. Synthesis, crystal structures, spectroscopic characterization and in ...

    Indian Academy of Sciences (India)

    Both the complexes were structurally characterized by single crystal XRD. The crystal structure of complex 1 displays a distorted square pyramidal geometry in which Schiff base is coordinated to the Cu(II) ion via ONO-donor in the axial mode, whereas, the chelating diamine displays axial and equatorial mode of binding via ...

  10. Synthesis and characterization of multicolour fluorescent ...

    Indian Academy of Sciences (India)

    Abstract. In this study, we successfully developed Y2O3 nanoparticles doped with Tb3+ and Eu3+ ions to generate fluorescent images of latent fingerprints. The optical and structural characterization of the nanoparticles was carried out and the fluorescence mechanisms are discussed. In our studies, the developed ...

  11. SYNTHESIS AND CHARACTERIZATION OF NEW HEAT ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. New series of olefinic poly(ether-amide)s (OPEA)s 6a-f was synthesized from 4,4′-bis(1,4- diphenoxybutane)diacrylic acid 4 and aromatic diamine 5a-f via a direct polycondensation reaction. The resulting polymers were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance ...

  12. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    A new series of Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) mixed ligands-metal complexes derived from salicylic acid (SA) and 1,10-phenanthroline (PHEN) have been synthesized and characterized by spectroscopic studies. The coordination of the two ligands towards central metal ions has been proposed in the light of ...

  13. Synthesis, spectrometric characterization and trypanocidal activity of ...

    African Journals Online (AJOL)

    ... Coupled with High-Performance Liquid Chromatography) and they were characterized using spectrometry IR, NMR 1H and 13C (Nuclear Magnetic Resonance). These compounds were then tested in vitro on Trypanosoma brucei brucei according to the “LILIT, Alamar Blue” method to estimate their trypanocidal activity.

  14. Synthesis, characterization and gas sensing performance of ...

    Indian Academy of Sciences (India)

    The product obtained was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear magneticresonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by applying ...

  15. synthesis, characterization and antibacterial studies of metal

    African Journals Online (AJOL)

    Preferred Customer

    sulfonamide (sulfadiazine) with some N-alkyl-N-phenyl dithiocarbamate have been synthesized and characterized by elemental analysis, conductivity measurements, UV-Vis and FTIR spectroscopy. The complexes are formulated as four coordinate MN2S2 species in which the metal ions are coordinated to one molecule of.

  16. Synthesis, Characterization, Antimicrobial Activity and Antioxidant ...

    African Journals Online (AJOL)

    The Schiff base ligand and the metal (II) complexes prepared were characterized by melting point/decomposition temperature, solubility, conductivity, FT-IR spectra and elemental analysis results. IR spectra of the free ligand showed a band at 1655cm-1 which is assigned to the (-C=N-) stretching vibration of the azomethine.

  17. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    These compounds were characterized using X-ray diffraction technique and IR spectroscopy. The elemental analysis was carried out by CHNS analyser and atomic emission spectroscopy. Normal chain sodium alkoxides were found to exhibit tetragonal crystal structure. Crystal structures of sodium ethoxide and sodium ...

  18. Synthesis, characterization and antibacterial studies of metal ...

    African Journals Online (AJOL)

    Co(II), Cu(II), Pd(II) and Pt(II) complexes of 4-amino-N-(2-pyrimidinyl)benzene sulfonamide (sulfadiazine) with some N-alkyl-N-phenyl dithiocarbamate have been synthesized and characterized by elemental analysis, conductivity measurements, UV-Vis and FTIR spectroscopy. The complexes are formulated as four ...

  19. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Compound (1) crystallizes in a cubic space group 3 ¯ , with = 22.2001(6) Å and = 8. The anion [VVO4W 10 VI V 2 IV O36]7- is a typical Keggin type structure with VVO4 as the central tetrahedron. (1) has further been characterized by elemental analyses, redox titration, IR, EPR, and electronic spectroscopy and room ...

  20. Synthesis and characterization of superabsorbent hydrogel based ...

    African Journals Online (AJOL)

    In this work, acrylonitrile (AN) and acrylic acid (AA) monomers were directly grafted onto chitosan using ammonium persulfate (APS) as an initiator and methylenebisacrylamide (MBA) as a crosslinking agent under an inert atmosphere. The hydrogels structure was characterized by Fourier transform infrared (FTIR) ...

  1. Synthesis, characterization and gas sensing property of ...

    Indian Academy of Sciences (India)

    Hydroxyapatite (HAp) biomaterial ceramic was synthesized by three different processing routes viz. wet chemical process, microwave irradiation process, and hydrothermal technique. The synthesized ceramic powders were characterized by SEM, XRD, FTIR and XPS techniques. The dielectric measurements were carried ...

  2. Synthesis, characterization and gas sensing performance of ...

    Indian Academy of Sciences (India)

    The product obtained was characterized by Fourier transform infrared spectroscopy,. X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear mag- netic resonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by ...

  3. Synthesis, physical characterization, antibacterial activity and ...

    African Journals Online (AJOL)

    Some five-coordinated cobalt(III) complexes were synthesized and characterized using elemental analysis, 1H NMR and IR spectra. The formation constants and the thermodynamic parameters were measured spectrophotometrically for the 1:1 adduct formation of [Co(Chel)(PBu3)]ClO4.H2O where Chel = cd3OMesalen, ...

  4. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    chloroquinolin-3-yl)-6-(aryl)pyrimidin-2-yl)-2-morpholinoacetamides (5a-l) were synthesized by multistep reactions. Compounds were characterized by IR, NMR and mass spectra. Antimicrobial screening of title compounds (5a-l) was carried out ...

  5. Synthesis, Characterization and Antimicrobial Activities of Some ...

    African Journals Online (AJOL)

    Some transition metal complexes of nicotinamide have been prepared and characterized using melting point, conductivity measurement, infrared, electronic, HNMR and atomic absorption spectroscopic methods. . The antibacterial and antifungal studies of the metal complexes and the ligand have been evaluated against ...

  6. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2011-05-01

    Full Text Available Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally-friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned.

  7. Synthesis and characterization of semi-IPNs based on PVP and PLLA

    International Nuclear Information System (INIS)

    Camilo, A.P.R.; Mano, V.; Felisberti, M.I.

    2010-01-01

    The specific interest in the synthesis of semi-IPNs based on PLLA and PVP homopolymers due to the fact these are biodegradable and biocompatible, which allows us to infer applications in the medical field as sutures, implants, matrices for controlled release of drugs etc. The objective was to prepare a multicomponent material amphiphile in the form of semi-interpenetrating polymer networks, based on poly (L-lactide), PLLA, hydrophobic homopolymer, and poly (vinylpyrrolidone), PVP, hydrophilic component. The preparation of semi-IPN combined the polymerization and crosslinking of N-vinylpyrrolidone in the presence of poly (L-lactide). The products were characterized by spectroscopic and thermal methods. (author)

  8. Synthesis and Characterization of MAX Ceramics (MAXCERs)

    Science.gov (United States)

    Nelson, Johnny Carl

    This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.

  9. Synthesis and characterization of phenol/formaldehyde nanocomposites: Studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology and thermal stability

    Directory of Open Access Journals (Sweden)

    Walaa S.E. Solyman

    2017-01-01

    Full Text Available In this work, phenol/formaldehyde nanocomposites were synthesized using reactive rubber nanoparticles (RRNP and cloisite30B nanoclay with different percentages and were fully investigated. A little amount of these nanomaterials enhanced the mechanical properties of the produced composites. This enhancement is attributed to the interaction of these nanomaterials with the bakelite matrix. In bakelite/RRNP, the mechanical properties enhancement is due to the chemical connection of RRNP to the bakelite matrix while in bakelite/Cloisite30B, this enhancement is due to polar/polar interaction. It was observed that the composites exhibited an intercalated disordered structure by means of Xray diffraction (XRD and transmission electronic microscopy. The crosslinking density of the bakelite network was greatly influenced by the presence and type of nanomaterial that was added to the resin. The thermal stability was investigated with TGA/DSC which proved that these nanocomposite are (10–20% more thermally stable than neat Bakelite resin.

  10. Synthesis and characterization of melanin in DMSO

    Science.gov (United States)

    Bronze-Uhle, Erika S.; Batagin-Neto, Augusto; Xavier, Pedro H. P.; Fernandes, Nicole I.; de Azevedo, Eduardo R.; Graeff, Carlos F. O.

    2013-09-01

    Recently soluble melanin derivatives have been obtained by a synthetic procedure carried out in DMSO (D-melanin). In this work a comparative study of the structural characteristics of synthetic melanin derivatives obtained by oxidation of L-DOPA in H2O and DMSO are presented. To this end, Fourier-transform infrared spectroscopy as well as proton and carbon nuclear magnetic resonance techniques has been employed. In addition, aging effects have been investigated for D-melanin. The results suggest that sulfonate groups (-SO2CH3) from the oxidation of DMSO, are incorporated into melanin, which confers protection to the phenolic hydroxyl group present in its structure. The solubility of D-melanin in DMSO is attributed to the presence of these groups. When D-melanin is left in air for long time periods, the sulfonate groups leave the structure, and an insoluble compound is obtained. NaOH and water have been used, in order to accelerate the release of the sulfonate groups attached to D-melanin, thereby corroborating the proposed structure and the synthesis mechanism.

  11. Synthesis and characterization of porous calcium phosphate

    International Nuclear Information System (INIS)

    Granados C, F.; Serrano G, J.; Bonifacio M, J.

    2007-01-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO 3 ) 2 .4H 2 O and NH 4 H 2 PO 4 salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  12. Synthesis, characterization and evaluation of bioactivity and ...

    Indian Academy of Sciences (India)

    Abstract. Bioactive glasses in the systems SiO2–CaO–P2O5–MgO (BGZn0) and SiO2–CaO–P2O5–MgO–ZnO. (BGZn5), were prepared by sol–gel method and then characterized. Surface reactivity was studied in simulated body fluid (SBF) to determine the effect of zinc (Zn) addition as a trace element. The effect of Zn ...

  13. Synthesis, characterization and performance of bifunctional catalysts for the synthesis of menthol from citronellal

    NARCIS (Netherlands)

    ten Dam, J.; Ramanathan, A; Djanashvili, K.; Kapteijn, F.; Hanefeld, U.

    2017-01-01

    The synthesis of a series of bifunctional catalysts (1 wt% Pt/W-TUD-1 (Technische Universiteit Delft-1) and 1 wt% Pt/WO3/TUD-1) with different tungsten loadings (5-30 wt% WO3) is described. They were characterized using ICP-OES, INAA, N2 physisorption, XRD and

  14. Thermal characterization of screen printed conductive pastes for RFID antennas

    International Nuclear Information System (INIS)

    Janeczek, Kamil; Jakubowska, Małgorzata; Młożniak, Anna; Kozioł, Grażyna

    2012-01-01

    Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 °C, −12 °C, −40 °C/+85 °C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one – the paste with conductive polymer PEDOT:PSS.

  15. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    Science.gov (United States)

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis and characterization of new ionic liquids; Sintese e caracterizacao de novos liquidos ionicos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S., E-mail: luanaufrn@hotmail.co [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica; Iglesias, M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica; Universidad de Santiago de Compostela (Spain). Escuela Tecnica Superior de Ingenieria. Dept. de Ingenieria Quimica

    2010-07-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  17. Synthesis and characterization of Co nanoparticles

    Science.gov (United States)

    Singh, J.; Tripathi1, J.; Kaurav, N.

    2017-05-01

    Nanoparticles of Cobalt (Co) have attracted great interest in recent years because of their unique physical and optical properties that are of industrial importance. To understand their basic properties, Co nanoparticles were synthesized by Polyol method using Cobalt acetate and ethylene glycol in the presence of some pellets of sodium hydroxide. The synthesized powder was characterized X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The average particle size and lattice parameter estimated by XRD were found to be ˜37.3 nm and 3.1653 Å respectively. The results suggest suitability of these nanoparticles as dopants in other materials such as polymer materials and oxides.

  18. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  19. Synthesis and characterization of nanostructured powders of hydroxyapatite and β-calcium phosphate

    International Nuclear Information System (INIS)

    Prants, W.T.; Muller, D.T.; Orzechowski, L.G.; Feit, G.; Delima, S.A.; Camargo, N.H.A.; Gemelli, E.

    2009-01-01

    Biphasic calcium phosphate (BCP) bioceramics are composed in a general manner from a mixture between hydroxyapatite (HA), and β-calcium phosphate. In the recent years, the BCP bioceramics are pointed out in researches from regeneration and reconstitution in osseous tissue, in reason of their similar mineralogical characteristics of the human bone structure, as great biodegradation, absorption and formation of precocious osseous tissue. The biphasic materials (BCP) are detached for use in medical and dental application, as filling bone cavities, maxillofacial treatment, medicaments discharge for treatment cancerous osteomyelitis and antibiotics discharge related with orthopedic injuries reparation. The aim of this work focused in synthesis and characterization of hydroxyapatite and β-calcium phosphate. The presented results are related with the mineralogical characterization with X-ray diffraction, thermal behavior with Differential Scanning Calorimetry and Dilatometer. The Scanning Electronic Microscopy (SEM) was used to help in the morphological characterization of the nanostructured powders. (author)

  20. Synthesis and Thermal-Stability Study of Polybutylene Itaconate Modified with Divinyl Benzene and Glycerol

    Directory of Open Access Journals (Sweden)

    Atmanto Heru Wibowo

    2014-10-01

    Full Text Available Polybutylene itaconate (PBI for modification with divinyl benzene (DVB and glycerol has been synthesized at 180 °C for 3 h via polycondensation of itaconic acid (IA and butanediols using catalyst of Ti(OBu4. Modification on PBI was done with addition of 15%, 20% and 25% DVB (w/w using benzoyl peroxide. With glycerol, weight variations of glycerol:1,4-butanediol (BDO in the synthesis were 10%, 30%, and 50% (mole/mole. PBI and PBI modified with DVB and glycerol were characterized with FTIR and TG-DTA. PBI showed a wavenumber shift from 1703 cm-1 to 1728 cm-1 of the C=O functional group from acid to esther. The DVB modification on PBI also showed that the intensity decrease of C=C stretching was due to the formation of crosslinking on the double bond. In the modification with glycerol, three dimensional networking on the polyester occurred through bonding between hydroxyl of glycerol and acid group of IA. Constant intensity of C=C stretching on polyester was seen. The thermal stability of PBI modified with DVB increased, accompanied by rigidity change of the structure. The thermal stability of PBI modified with glycerol decreased, caused by the decrease of regularity degree and the elasticity increase of the three dimensional structure of polyester.

  1. An unsymmetrical porphyrin and its metal complexes: synthesis, spectroscopy, thermal analysis and liquid crystal properties

    Directory of Open Access Journals (Sweden)

    CHANGFU ZHUANG

    2009-09-01

    Full Text Available The synthesis and characterization of a new unsymmetrical porphyrin liquid crystal, 5-(4-stearoyloxyphenylphenyl-10,15,20-triphenylporphyrin (SPTPPH2 and its transition metal complexes (SPTPPM, M(II = Zn, Fe, Co, Ni, Cu or Mn are reported. Their structure and properties were studied by elemental analysis, and UV–Vis, IR, mass and 1H-HMR spectroscopy. Their luminescent properties were studied by excitation and emission spectroscopy. The quantum yields of the S1 ® S0 fluorescence were measured at room temperature. According to thermal studies, the complexes have a higher thermal stability (no decomposition until 200 °C. Differential scanning calorimetry (DSC data and an optical textural photograph, obtained using a polarizing microscope (POM, indicate that the porphyrin ligand had liquid crystalline character and that it exhibited more than one mesophase and a low-lying phase transition temperature, with transition temperatures of 19.3 and 79.4 °C; the temperature range of the liquid crystal (LC phase of the ligand was 70.1 °C.

  2. Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2013-05-01

    Full Text Available Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  3. Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing

    International Nuclear Information System (INIS)

    Hou Jinbo; Wang Xinwei; Zhang Lijun

    2006-01-01

    In this work, the thermal diffusivity of single submicron (∼800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed

  4. Synthesis and characterization of carbon nano fibers for its application in the adsorption of toxic gases

    International Nuclear Information System (INIS)

    Juanico L, J.A.

    2004-01-01

    The production of carbon nano fibers (CNF's) by diverse techniques as the electric arc, laser ablation, or chemical deposition in vapor phase, among other, they have been so far used from final of the 90's. However, the synthesis method by discharge Glow arc of alternating current and high frequency developed by Pacheco and collaborators, is a once alternative for its obtaining. In the plasma Application Laboratory (LAP) of the National Institute of Nuclear Research (INlN) it was designed and manufactured a reactor of alternating current and high frequency that produces a Glow arc able to synthesize carbon nano fibers. Its were carried out nano fibers synthesis with different catalysts to different proportions and with distinct conditions of vacuum pressure and methane flow until obtaining the best nano fibers samples and for it, this nano structures were characterized by Scanning and Transmission Electron Microscopy, X-ray Diffraction, Raman spectrometry and EDS spectrometry. Once found the optimal conditions for the nano fibers production its were contaminated with NO 2 toxic gas and it was determined if they present adsorption, for it was used the thermal gravimetric analysis technique. This work is divided in three parts, in the first one, conformed by the chapters 1, at the 3, they are considered the foundations of the carbon nano fibers, their history, their characteristics, growth mechanisms, synthesis techniques, the thermal gravimetric analysis principles and the adsorption properties of the nano fibers. In the second part, consistent of the chapters 4 and 5, the methodology of synthesis and characterization of the nano fibers is provided. Finally, in third part its were carried out the activation energy calculation, the adsorption of the CNF's is analyzed and the conclusions are carried out. The present study evaluates the adsorption of environmental gas pollutants as the nitrogen oxides on carbon nano fibers at environmental or near conditions. Also

  5. Synthesis and characterization of bio-based polyurethane from ...

    Indian Academy of Sciences (India)

    Benzoylated tannin prepared by benzoylation of cashewnut husk tannin, was treated with hexame-thylenediisocyanate in the presence of 1,4-butanediol as an extender to prepare thermosetting polyurethane. The sample was characterized using FT–IR and 13C NMR spectra. Thermal, morphological, physico-chemical and ...

  6. Synthesis and characterization of deuterated polyethylene

    International Nuclear Information System (INIS)

    Jia Xianbin; Luo Xuan; Chang Guanjun; Du Kai; Zhang Lin; Xie Zhengwei; Li Xinjuan; Lu Zaijun

    2009-01-01

    Due to its remarkable isotope effects, excellent kinetic stability towards C-D bond break, high degree of deuteration, and being non-radioactive, deuterated polyethylene (d-PE) is widely used in many fields, such as in inertially confined fusion (ICF) as target material, in production of low loss plastic optical fibers, and in study of the compatibility of different polymers. For the necessary of ICF, the d-PE was synthesized by the anionic polymerization and palladium-catalyzed hydrogenation. Furthermore, by the method of FTIR, 1H NMR and GPC, the deuterated ratio and structure of d-PE have been characterized. The results show that the d-PE has the high deuterated ratio and molecular weight, narrow molecular-weight distribution, the polymer material fits the basic necessary of ICF. (authors)

  7. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  8. Synthesis and Characterization Studies of MIL-101

    Directory of Open Access Journals (Sweden)

    Emine Kaya EKİNCİ

    2017-12-01

    Full Text Available MIL-101 is a kind of Metal Organic Frameworks (MOFs, which have attracted much attention in the past decade due to its promising application in chemical industries. MIL-101 is also known as “Porous Chromium Terephthalate”. It has very high surface area and pore volume. MIL-101 exhibits exceptional stability against moisture and other chemicals and is composed of coordinately unsaturated Cr- sites with high concentration available for catalysis and adsorption. MIL-101 was synthesized by hydrothermal method and characterized by XRD, nitrogen adsorption and desorption analyses and SEM. XRD patterns show the presence of MIL-101’s crystal structure with high surface area (~2400 m2/g. Nitrogen adsorption-desorption analyzes showed that the material exhibited mesoporous material behavior.

  9. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  10. Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite

    OpenAIRE

    M. Meskinfam; M. S. Sadjadi; H. Jazdarreh

    2012-01-01

    In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM...

  11. MFI-molecular sieve membranes:synthesis, characterization and modelling

    OpenAIRE

    Jareman, Fredrik

    2002-01-01

    This work concerns evaluation by permeation measurements and modeling of thin (<2µm) MFI molecular sieve membranes and, to a smaller extent, synthesis of such materials. The membranes have been synthesized on graded a-alumina microfiltration filters using The seed film method. Scanning electron microscopy and x-ray diffraction were used for characterization in addition to permeation measurements. Mathematical models describing membrane flux for real membranes and defect distributions were ...

  12. Electronic, electrical and magnetic ceramics synthesis and characterization

    International Nuclear Information System (INIS)

    Calix, V.S.; Saligan, P.P.; Naval, P.C.

    1989-01-01

    This paper describes the research and development activities of the Philippine Nuclear Research Institute (PNRI) on the synthesis and characterization of soft and hard ferrites and some beta alumina type superionic conductor materials. XRD, XRF and Moessbauer effect spectrometry are used to determine the structure phases, compositions and some magnetic properties of the materials. Effects of composition and preparation methods on the bulk electronic and magnetic properties are also discussed. (Auth.). 6 figs.; 3 tabs

  13. Open-Framework Germanates and Nickel Germanates : Synthesis and Characterization

    OpenAIRE

    Huang, Shiliang

    2012-01-01

    Microporous materials have a wide range of important applications in separation, gas adsorption, ion-exchange and catalysis. Open-framework germanates are a family of microporous compounds and are of particular interest. This thesis focuses on the synthesis and characterization of new open-framework germanates as well as introducing the transition-metal nickel into germanate structures. One new microporous germanosilicate, SU-78 and four new open-framework germanates, SU-74, SU-75, SU-69 and ...

  14. Synthesis and characterization of new amino acyl-4-thiazolidones

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lima Leite

    2007-04-01

    Full Text Available A series of heterocyclic compounds with a 4-thiazolidone nucleus and amino acyl moiety were synthesized by protection reaction of thiosemicarbazide using the symmetrical anhydride (Boc2O and cyclization with chloroacetic acid under mild conditions. Trifluoroacetic acid was used to obtain 4-thiazolidone and the alpha-amino acid condensation reactions were carried out using strategies for peptide synthesis. The characterization of this new class of compounds was performed using IR and ¹H-NMR spectroscopy.

  15. Synthesis, characterization and TG-DSC study of cadmium halides adducts with caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Robson F. de; Silva, Ademir O. da; Silva, Umberto G. da

    2003-11-28

    The synthesis, characterization and TG-DSC study of the compounds CdX{sub 2}{center_dot}ncaff, for which X: Cl, Br and I; n=1 and 2 and caff: caffeine is reported. It is verified that caffeine is coordinated through more than one coordination site, despite the fact that the nitrogen of the imidazole ring is the main coordination site. The following thermal stability trend is observed: Cl>Br>I and monoadducts are more stable than bisadducts. The thermal degradation (td) enthalpies have the values (kJ mol{sup -1}): 58.2 and 71.5; 74.9 and 91.4; 31.1 and 47.5 for Cl, Br and I mono and bisadducts, respectively.

  16. Synthesis and characterization of boron nitrides nanotubes; Sintese e caracterizacao de nanotubos de nitreto de boro

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T.H.; Sousa, E.M.B. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Nanotecnologia

    2010-07-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  17. Synthesis and characterization of Sr doped LaMnO3 electrospun fibers

    International Nuclear Information System (INIS)

    Lubini, M.; Alves, A. K.; Bergmann, C.P.; Malfatti, C.

    2012-01-01

    In this paper, fibers of lanthanum manganite doped with strontium were obtained by electrospinning using lanthanum chloride, manganese nitrate, strontium chloride and polyvinyl butyral as precursors. During the electrospinning process, we studied the influences of parameters such as the concentration of polymer (10 and 15 wt%), the flow, and the distance between the electrodes in the morphologic characteristics of the fibers. After synthesis the fibers were heat treated at different temperatures. Morphological characterization was performed by electron microscopy, thermal analysis was used to evaluate the thermal behavior, and X-ray diffraction to identify the phases present. We observed the formation of micro-and nanostructured fibers consisting mainly of LaMnO 3 . (author)

  18. Polypeptide Grafted Hyaluronan: Synthesis and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun [ORNL; Messman, Jamie M [ORNL; Mays, Jimmy [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. 1H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael addition at high [PLeu- NH2]/[acrylate]TBAHA ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, 1H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a -sheet conformation for aggregates of poly(L-leucine).

  19. Solvothermal synthesis and characterization of CZTS nanocrystals

    Science.gov (United States)

    Dumasiya, Ajay; Shah, N. M.

    2017-05-01

    Cu2ZnSnS4 (CZTS) is a promising thin film absorber material for low cost solar cell applications. CZTS nanoparticle ink synthesized using solvothermal route is an attractive option to deposit absorber layer using screen printing or spin coating method in CZTS thin film solar cell. In this study we have synthesized CZTS nanocrystals using solvothermal method from aqueous solution of Copper nitrate [Cu(NO3)2], Zinc nitrate [Zn(NO3)2], tin chloride [SnCl4] and thiourea with varying concentration of Cu(NO3)2 (viz 0.82 mmol,1.4 mmol, 1.7 mmol) keeping concentrations of rest of solutions constant. As synthesized CZTS nanocrystals are characterized using Energy Dispersive Analysis of X-rays (EDAX) to verify stoichiometry of elements. Analysis of EDAX data suggests that CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole is near stoichiometric. X-ray diffraction analysis study of CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole reveals the preferred orientation of the grains in (112), (220) and (312) direction confirming Kesterite structure of CZTS.

  20. Synthesis and characterization of luminescence magnetic nanocomposite

    International Nuclear Information System (INIS)

    Kiplagat, Ayabei; Onani, Martin O.; Meyer, Mervin; Akenga, Teresa A.; Dejene, Francis B.

    2016-01-01

    We report a new type of indium based quantum dots which were conjugated to the magnetic Fe 2 O 3 nanoparticles. They were characterized by photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) and fourier transform infra-red (FTIR). The photoluminescence characteristics of the coupled and uncoupled indium based quantum dots were investigated to determine whether the fluorescing property could be retained in the bifunctional system. Generally, the PL intensity of the quantum dots was observed to reduce significantly and with huge red shift most probably due to quenching effects for the MNPs. The average size of the coupled nanoparticles were found to range between 4 and 5 nm for the quantum dots and range of 6–13 nm for the Fe 2 O 3 magnetic nanoparticles as revealed by both HRTEM and XRD. The highest magnetic saturation reached for both bare and functionalized magnetic nanoparticles was 68.58 emu/g. The FTIR data revealed that the postulated functional groups were actually present in both the bare and functionalized nanoparticles. For instance, Fe–O was observed at around 580 cm −1 , O–H at 3432 cm −1 and thiol group at 2929 cm −1 for meso-2,3-dimercaptosuccinic acid capped Fe 2 O 3 magnetic nanoparticles. The energy dispersive spectroscopy (EDS) also confirmed that all the elements of the nanocomposite were actually present in the designed material.

  1. Synthesis and Behavior of Nanostructured Coatings Using Thermal Spraying

    National Research Council Canada - National Science Library

    Lavernia, E

    2003-01-01

    ... (powder as well as coatings) for structure, composition, properties, and performance. One of the program's accomplishments was the successful synthesis of diverse nanostructured feedstock powders using mechanical milling in different...

  2. Synthesis and characterization of polymer matrix nanocomposites and their components

    Science.gov (United States)

    Burnside, Shelly Dawn

    Herein we present synthesis schemes and characterization results for polymer matrix nanocomposite reinforced with organically modified layered silicates. These host materials with ultrafine dimensions are promising candidates for polymer and have been previously shown to yield substantial property enhancements at low silicate loadings due to their extreme geometry. Siloxane nanocomposites with a variety of nanostructures were formed. Thermal stability, solvent uptake and moduli of the nanocomposites were explores. Exfoliated nanocomposites displayed enhanced properties when compared to unreinforced siloxanes, and at lower volume fraction filler than in conventional composites. Large amounts of bound polymer, polymer affected by the silicate, were found in exfoliated nanocomposites as a result of the extreme geometry of the layered silicate. This bound polymer was related to the dramatic property enhancements in the nanocomposites. The behavior of these nanocomposites is compared to behavior expected from traditional models developed for conventional composites and model elastomeric networks. A lightly brominated polymer has been intercalated into a single crystal of organically exchanged vermiculite. The intercalation was followed using x-ray diffraction by monitoring the gallery height of the vermiculite host. Rutherford Backscattering Spectroscopy, used to confirm polymer intercalation, showed a constant bromine content in the direction normal to the layers. Atomic Force Microscopy images of a cleaved polymer-intercalated crystal showed raised hemispheres on an otherwise flat background. The hemispheres consist of single chains or aggregates of 3-40 polymer chains resulting from relaxations following cleaving. Three component or Hansen solubility parameters (delta) of organically modified layered silicates, the reinforcing agent in polymer matrix nanocomposites presented herein, have been determined. Two experimental techniques, temporal turbidimetry and

  3. Synthesis and characterization of polyimide silica hybrids

    International Nuclear Information System (INIS)

    Ullah, S.M.

    2010-01-01

    Flexible-chain polyimide (PIF) was synthesized from 4, 4'-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) and the stiff-chain polyimide (PI S ) was derived from 1, 5-diaminonepthaline (DAN) and pyromellitic anhydride (PMDA). Molecular composites of polyimide were prepared by embedding the stiff-chain polyimide (PIS) in to ductile matrix of flexible-polyimide (PI F ) by blending their respective poly(amic acid) solution (20:80). Blend of rigid and flexible polyimide (20:80) was reinforced with silica up to 35 wt % by sol-gel process to form the silica reinforced molecular composite (SRMC). Silica reinforced molecular composite (SRMC) were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and tensile testing (TT). FTIR results showed the shifting of Si - O - Si peak toward lower wave number with the increase in the silica wt % indicates the increase in the silica particle size. The oxidative degradation of SRMC showed an improvement of 23 degree C in composite having 30 wt% silica contents. Similarly, modulus of SRMC was increased as the concentration of silica was increased. Silica reinforced (co-)polyimide (SRCO) was prepared from the same monomers DAN, ODA and PMDA (20:80:100) and reinforced with different of silica up to 35 wt%. Comparison of thermo-mechanical properties of SRMC with SRCO was also done. Both the composite showed similar peak shift to low wave number with the increase in the wt% of silica was observed as in the case of SRMC. TG results of SRCO showed the 13 degree C improvement in the oxidative degradation with 30 wt% silica content. Tensile testing shows the 80% increase in the modulus with 35 wt% silica content. The result showed that SRMC are 15 degree C more stable than SRCO with 30 wt% silica. SRMC have 15% more modulus than SRCO with 30 wt% silica. This shows that thermo mechanical stability of SRMC's over SRCO's composites. (author)

  4. Synthesis and characterization of luminescence magnetic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Kiplagat, Ayabei [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Meyer, Mervin [DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville (South Africa); Akenga, Teresa A. [Department of Chemistry, University of Eldoret, P.O. Box 1125, Eldoret (Kenya); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthadithaba 9866 (South Africa)

    2016-01-01

    We report a new type of indium based quantum dots which were conjugated to the magnetic Fe{sub 2}O{sub 3} nanoparticles. They were characterized by photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) and fourier transform infra-red (FTIR). The photoluminescence characteristics of the coupled and uncoupled indium based quantum dots were investigated to determine whether the fluorescing property could be retained in the bifunctional system. Generally, the PL intensity of the quantum dots was observed to reduce significantly and with huge red shift most probably due to quenching effects for the MNPs. The average size of the coupled nanoparticles were found to range between 4 and 5 nm for the quantum dots and range of 6–13 nm for the Fe{sub 2}O{sub 3} magnetic nanoparticles as revealed by both HRTEM and XRD. The highest magnetic saturation reached for both bare and functionalized magnetic nanoparticles was 68.58 emu/g. The FTIR data revealed that the postulated functional groups were actually present in both the bare and functionalized nanoparticles. For instance, Fe–O was observed at around 580 cm{sup −1}, O–H at 3432 cm{sup −1} and thiol group at 2929 cm{sup −1} for meso-2,3-dimercaptosuccinic acid capped Fe{sub 2}O{sub 3} magnetic nanoparticles. The energy dispersive spectroscopy (EDS) also confirmed that all the elements of the nanocomposite were actually present in the designed material.

  5. Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Qian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Childers, Matthew I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Correa, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zwoster, Andy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-26

    Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed for single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.

  6. Characterizing Interferences in an NOy Thermal Dissociation Inlet

    Science.gov (United States)

    Womack, C.; Veres, P. R.; Brock, C. A.; Neuman, J. A.; Eilerman, S. J.; Zarzana, K. J.; Dube, W. P.; Wild, R. J.; Wooldridge, P. J.; Cohen, R. C.; Brown, S. S.

    2016-12-01

    Nitrogen oxides (NOx = NO and NO2) are emitted into the troposphere by various anthropogenic and natural sources, and contribute to increased levels of ambient ozone. Reactive nitrogen species (NOy), which include nitric acid, peroxy acetyl and organic nitrates, and other species, serve as reservoirs and sinks for NOx, thus influencing O3 production. Their detection is therefore critical to understanding ozone chemistry. However, accurate measurements of NOy have proven to be difficult to obtain, and measurements of total NOy sometimes do not agree with the sum of measurements of its individual components. In recent years, quartz thermal dissociation (TD) inlets have been used to thermally convert all NOy species to NO2, followed by detection by techniques such as laser induced fluorescence (LIF) or cavity ringdown spectroscopy (CRDS). Here we discuss recent work in characterizing the NOy channel of our four-channel TD-CRDS instrument. In particular, we have examined the thermal conversion efficiency of several representative NOy species under a range of experimental conditions. We find that under certain conditions, the conversion efficiency is sensitive to inlet residence time and to the concentration of other trace gases found in ambient sampling, such as ozone. We also report the thermal dissociation curves of N2O5 and ammonium nitrate aerosol, and discuss the interferences observed when ammonia and ozone are co-sampled in the inlet.

  7. Ion exchange synthesis and thermal characteristics of some [ N ...

    Indian Academy of Sciences (India)

    als in thermal applications (Kenisarin and Mahkamov 2007). Recently, an organoclay composite with a remarkable energy storage capacity has been reported (Sarier et al 2011). A vari- ety of inorganic salts of alkali and alkaline earth metals find a place in thermal energy storage (Prabhu et al 2012). Major disadvantages of ...

  8. Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl-3-{[(E-(2-hydroxyphenylmethylidene]amino}-2,3-dihydroquinazolin-4(1H-one

    Directory of Open Access Journals (Sweden)

    Ikram Muhammad

    2017-12-01

    Full Text Available The novel Schiff base ligand 2-(2-hydroxyphenyl-3-{[(E-(2-hydroxyphenylmethylidene]amino}-2,3-dihydroquinazolin-4(1H-one (H-HHAQ derived from 2-aminobenzhydrazide was synthesized and characterized by elemental analyses, ES+-MS, 1H and 13C{1H}-NMR, and IR studies. The characterization of the ligand was further confirmed by single crystal analysis. The Schiff base ligand was complexed with metal ions like Co(II, Ni(II, Cu(II and Zn(II to obtain the bis-octahedral complexes. The ligand and its metal complexes were also studied for their urease inhibitory activities. All the tested compounds show medium to moderate activities for the enzyme, whereas the copper based complex was found to be much more active against urease with an IC50 = 0.3 ± 0.1 μM±SEM, which is even more potent than the standard thiourea. The IC50 of the cobalt complex was 43.4±1.2 μM±SEM, whereas that of the nickel complex was 294.2±5.0 μM±SEM. The ligand H-HHAQ and the zinc complex were inactive against the tested enzyme.

  9. Synthesis, characterization and sensing application of novel semiconductor oxides.

    Science.gov (United States)

    Li, G J; Kawi, S

    1998-02-01

    Mesoporous SnO(2) with high surface areas were synthesized using a cationic surfactant (N-cetyl-N,N,N-trimethylammonium bromide) as a synthetic template. Acidity of the starting synthesis slurry was used as one of the controlling parameters for the synthesis. After the SnO(2) was synthesized at pH 7.15, it was calcined at 723 K for 10 h in air. It had a BET surface area of 156.8 m(2) g(-1) with a pore diameter of 38.4 A. Infrared spectroscopy (FTIR) and thermal analysis techniques (thermogravimetry and differential thermal analysis) showed that the surfactant was incorporated in the mesopores of SnO(2) and calcination in air at 673-723 K was needed to remove the surfactant completely from the mesopores. The effects of SnO(2) surface area on its gas sensing properties were also investigated. It was observed that SnO(2) with higher surface areas had much higher sensitivities to hydrogen at 573 K.

  10. Flame synthesis and characterization of nanocrystalline titania powders

    Directory of Open Access Journals (Sweden)

    Bhaskaran Manjith Kumar

    2012-09-01

    Full Text Available Flame reactors are considered to be one of the most promising and versatile synthesis routes for the largescale production of submicron and nanosized particles. An annular co-flow type oxy-gas diffusion burner was designed for its application in a modular flame reactor for the synthesis of nanocrystalline oxide ceramics. The burner consisted of multiple ports for the individually regulated flow of a precursor vapour, inert gas, fuel gas and oxidizer. The nanopowders formed during flame synthesis in the reaction chamber were collected by a suitable set of filters. In the present study, TTIP was used as the precursor for the synthesis of nanocrystalline TiO2 and helium was used to carry the precursor vapour to the burner head. Methane and oxygen were used as fuel and oxidizer respectively. The operating conditions were varied by systematically changing the flow rates of the gases involved. The synthesized powders were characterized using standard techniques such as XRD, SEM, TEM, BET etc., in order to determine the crystallite size, phase content, morphology, particle size and degree of agglomeration. The influences of gas flow rates on the powder characteristics are discussed.

  11. Design, synthesis, and characterization of new materials for thermoelectric applications

    Science.gov (United States)

    Reynolds, Thomas Kent

    Currently, the best known material for thermoelectric refrigeration at room temperature is and alloy of Bi2Te3 and Sb 2Te3. This material has been the basis for room temperature thermoelectric cooling for over 40 years, but its low cooling efficiency (≈10% of Carnot Efficiency) has limited its adaptation to small-market specialty applications. Since Bi2Te3 and its alloys have been studied so extensively, it is doubtful that large improvements in efficiency can be made by further modifications of Bi2Te3 (ie. by changing doping or processing of the material). Therefore, this dissertation deals with the discovery and exploration of completely new systems of compounds. The most important parameter for characterizing the efficiency of a thermoelectric material is the dimensionless quantity ZT, where ZT = S2T/rhokappa. Here, S is the thermopower, T is the temperature, kappa is the thermal conductivity, and rho is the electrical resistivity. These variables are not independent of each other, and usually if one of the values is altered by changing composition or doping, the others change as well. Understanding these parameters in depth leads us to several guidelines for searching for better thermoelectric materials and these are discussed in the dissertation. The concept of obtaining highly symmetric crystal structures and also its relation to increasing the value of ZT is discussed. The synthesis of several new quaternary compounds by starting with highly symmetric tetrahedral anion building blocks is presented. While some of these compounds did in fact have high symmetry structures, none were suitable for further studies because they all had large bandgaps. Further systems we explored include heavy metal telluride compounds and compounds that have multiple ordered anions. These systems were chosen based on the concept of minimizing thermal conductivity. A brief chapter on skutterudite materials explores a few new compounds discovered in this highly researched area. The

  12. Thermal interface material characterization for cryogenic electronic packaging solutions

    Science.gov (United States)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  13. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  14. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  15. Supramolecular structures of Ni(II) and Pt(II) based on the substituted 2, 2‧: 6‧, 2″-terpyridine: Synthesis, structural characterization, luminescence and thermal properties

    Science.gov (United States)

    Momeni, Badri Z.; Rahimi, Farzaneh; Jebraeil, S. Mohammad; Janczak, Jan

    2017-12-01

    Three new d8 transitions metal complexes containing substituted-2,2‧:6‧,2″-terpyridine ligands of [NiII(pytpy)2]Cl2. H2O (pytpy = 4‧- (4-pyridyl)-2,2‧:6‧,2″-terpyridine) (1), [Pt(tpyOH)Cl]+Cl-. 2H2O (2) (tpyOH = 4‧-hydroxy-2,2‧:6‧,2″-terpyridine) and [Pt(tpySH)Cl]+Cl-.2H2O (3) (tpySH = 4‧-mercapto-2,2‧:6‧,2″-terpyridine) have been prepared. The crystal structure of 1 reveals that the nickel(II) is six-coordinated by six nitrogen atoms of pytpy in a distorted octahedral geometry NiN6, while the platinum complex (2) is four-coordinated by one Cl- and three nitrogen atoms of tpyOH in a distorted square planar geometry PtClN3. The lattice crystal water molecule plays a significant structure directing role in the complexes 1 and 2. Many strong noncovalent interactions are present in the crystal structure of 1 and 2. For example, the supramolecular network of Csbnd H⋯Cl, Osbnd H⋯Cl and Cl⋯Cl interactions connected molecules and ions in the crystalline 1, while there are several Pt⋯Pt, Csbnd H⋯Cl, H2O⋯H2O, Csbnd OH⋯H2O, Cl⋯H2O and π-π interactions in 2. The solution luminescence properties of 2 and 3 have been investigated. The emissions of the platinum complexes 2 and 3 exhibit the high-energy intense π→π* intraligand and low-energy MLCT transitions in solution. The solid-state emissions of complexes 1-3 due to the MLCT and π-π interactions are also observed in the solid state. The thermal stability of all complexes reveals that the loss of terpyridine ligand is observed at higher temperatures due to the strong metal-nitrogen bonds of terpyridine ligands.

  16. A Peltier thermal cycling unit for radiopharmaceutical synthesis

    International Nuclear Information System (INIS)

    McKinney, C.J.; Nader, M.W.

    2001-01-01

    We have investigated the use of Peltier devices to rapidly cycle the temperature of reaction vessels in a radiopharmaceutical synthesis system. Peltier devices have the advantage that they can be actively cooled as well as heated, allowing precise and rapid control of vessel temperatures. Reaction vessel temperatures of between -6 deg. C and 110 deg. C have been obtained with commercially available devices with reasonable cycle times. Two devices have been used as the basis for a general purpose, two-pot synthesis system for production of [ 11 C] compounds such as raclopride

  17. A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes.

    Science.gov (United States)

    Xu, Yaolin; Sherwood, Jennifer; Qin, Ying; Holler, Robert A; Bao, Yuping

    2015-08-07

    A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes were reported, where the nanocubes were synthesized by the thermal decomposition of metal-oleate complexes following a step-heating method. The doping ions were introduced during the precursor preparation by forming M(2+)/Fe(3+) oleate mixed complex (M(2+) = Fe(2+), Mn(2+), Zn(2+), Cu(2+), Ca(2+), and Mg(2+)). The mechanistic studies showed that the presence of sodium oleate in combination with step-heating was critical for the formation of the cubic shapes for the doped magnetic ferrites. The nanocubes were extensively characterized, including morphology and crytsal structure by advanced transmission electron microscopy, doping level and distribution by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, cation distribution within the spinel structures by Fourier transform infrared and Raman spectroscopy, and magnetic properties by alternating gradient magnetometer at room temperature.

  18. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue.

    Science.gov (United States)

    Baek, Jin Woong; Mallampati, Srinivasa Reddy; Park, Hung Suck

    2016-03-01

    The present paper reports the novel synthesis and application of Thiomer solidification for heavy metal immobilization in hazardous automobile shredder residues and industrial solid waste (ASR/ISW) thermal residues. The word Thiomer is a combination of the prefix of a sulfur-containing compound "Thio" and the suffix of "Polymer" meaning a large molecule compound of many repeated subunits. To immobilize heavy metals, either ASR/ISW thermal residues (including bottom and fly ash) was mixed well with Thiomer and heated at 140°C. After Thiomer solidification, approximately 91-100% heavy metal immobilization was achieved. The morphology and mineral phases of the Thiomer-solidified ASR/ISW thermal residue were characterized by field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD), which indicated that the amounts of heavy metals detectable on the ASR/ISW thermal residue surface decreased and the sulfur mass percent increased. XRD indicated that the main fraction of the enclosed/bound materials on the ASR/ISW residue contained sulfur associated crystalline complexes. The Thiomer solidified process could convert the heavy metal compounds into highly insoluble metal sulfides and simultaneously encapsulate the ASR/ISW thermal residue. These results show that the proposed method can be applied to the immobilization of ASR/ISW hazardous ash involving heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Characterization and thermal behavior of polymer-modified asphalt

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Cavalcante Lucena

    2004-12-01

    Full Text Available A styrene-butadiene-styrene modified asphalt cement was characterized by infrared, differential scanning calorimetry, thermogravimetric analysis and empirical tests such as ring and ball softening point, penetration and elastic recovery. After aging in the rolling thin-film oven, the polymer-modified asphalt presented structural changes relating to oxidation of the material. The infrared spectra showed an increase in hydroxyl groups and the formation of carbonyl compounds and sulphoxides. The percentage of crystallized fraction calculated from differential scanning calorimetry was 0.41%. Thermogravimetric analyses in inert and oxidative atmospheres revealed distinct events during thermal decomposition; the initial activation energies were similar, but changed as the process evolved.

  20. Use of thermal imaging in characterization of ceramic fiber structures

    International Nuclear Information System (INIS)

    Järveläinen, Matti; Keskinen, Lassi; Levänen, Erkki

    2013-01-01

    Fibrous bodies that contain open porosity can have a very heterogeneous structure that is difficult to characterize in terms of local flow resistance changes within the same sample. This article presents a method that is applicable for a quick analysis of flow distribution even with large samples. In this first attempt to understand how our flow distribution thermal imaging works, we present how the measuring parameters and the results correlate with sample's thickness and density. The results indicate that our method can quickly make a distinction between areas that have different flow resistances because of variations in the sample's density or wall thickness

  1. Rapid thermal synthesis of GaN nanocrystals and nanodisks

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Sedmidubský, D.; Huber, Š.; Šimek, P.; Šaněk, F.; Jankovský, O.; Gregorová, E.; Fiala, R.; Matějková, Stanislava; Mikulics, M.

    2013-01-01

    Roč. 15, č. 1 (2013), 1411/1-1411/7 ISSN 1388-0764 Institutional support: RVO:61388963 Keywords : gallium nitride * thermal ammonolysis * nanodisks * nanocrystals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.278, year: 2013

  2. Second harmonic chalcone crystal: Synthesis, growth and characterization

    Energy Technology Data Exchange (ETDEWEB)

    D' Silva, E.D., E-mail: deepak.dsilva@gmail.co [Department of studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India); Narayan Rao, D. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India); Butcher, Ray J. [Department of Chemistry, Howard University, Washington, DC 20059 (United States); Rajnikant [Department of Physics and Electronics, University of Jammu, Jammu Tawi 180006 (India); Dharmaprakash, S.M. [Department of studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India)

    2011-05-15

    The novel nonlinear optical chalcone derivative (2E)-3-[4-(methylsulfanyl)phenyl]-1-(3-bromophenyl)prop-2-en-1-one (3Br4MSP) crystals have been grown by slow evaporation technique at ambient temperature. The crystal was subjected to different types of characterization method in order to study its possible application in nonlinear optics. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. The morphology of the crystal is studied. The crystal was subjected to thermal analysis to find its thermal stability. The grown crystals were characterized for their optical transmission and mechanical hardness. The second harmonic generation (SHG) efficiency of the crystal is obtained by classical powdered technique. The laser damage threshold for 3Br4MSP crystal was determined using Q-switched Nd:YAG laser.

  3. Synthesis and structural characterization of a novel peroxo bridged ...

    Indian Academy of Sciences (India)

    The explosive nature of [Co(en)2(suc)(-O2)Co(en)2(suc)](NO3)2.2H2O, 1, precluded its thermal characterization. Compound 1 crystallises in the monoclinic space group 21/ and a half of the molecule, constitutes its asymmetric unit. In the centrosymmetric dinuclear complex 1, two Co(III) centres are linked by a planar ...

  4. Synthesis by irradiation and mechanism and structural characterization study of high melt strength polypropylene

    International Nuclear Information System (INIS)

    Lugao, Ademar Benevolo

    2004-01-01

    Polypropylene molecular structure is made only by linear molecules interacting by weak forces. The resulting PP has very low melt strength (MS). MS is important to make feasible to process PP by all the transformation technologies based on the free expansion of the melt. The aim of this work was to develop a new process to synthesize PP with crosslinks and/or long chain branches, known as High Melt Strength Polypropylene (HMSPP) and to characterize its structure and synthesis mechanism. HMSPP was obtained by the irradiation of PP under a crosslinking (acetylene) atmosphere or inert or oxidative one, followed by thermal treatment for radical recombination and thermal treatment for annihilation of the remaining radicals under reactive or inert atmosphere. The results from rheological characterization showed that the highest levels of MS were obtained by conducting irradiation and thermal treatments under crosslinking atmospheres. The results for the elucidation of reaction mechanism by electron spin resonance (ESR) showed that acetylene irradiation is effective in promoting the creation of double bonds, based on the formation of polyenil radicals. The results of structural unraveling showed that radiation promotes predominantly the degradation of atactic molecules or molecules with atactic defects. These results support the hypothesis of formation of branched PP molecules based on the reaction of those fragments with the double bonds created in the PP molecules. (author)

  5. Synthesis of the Mg Al alloy, their characterization and use for storing hydrogen

    International Nuclear Information System (INIS)

    Sampayo P, A.; Iturbe G, J. L.; Lopez M, B. E.; Sandoval J, A.

    2008-01-01

    This paper presents the synthesis and characterization of the MgAI intermetallic in two Mg25AI and Mg50AI stoichiometric relationships and its possible use for storing hydrogen. The intermetallic was prepared by thermal induction and argon atmosphere. The slug obtained was subjected to heat treatment for homogenization at 300 C during 72 hours. It decreased the particle size with a Spex mill high-energy type built at the National Institute of Nuclear Research, the milling time was 30 to 60 minutes. The material was characterized by scanning electron microscopy and X- ray diffraction tests were carried out hydrogenation in a micro-reactor by varying pressure, temperature and reaction time. The material was analyzed by thermal gravimetric system before and after the hydrogenation process. The results indicate that the intermetallic phase gamma through the milling process does not change with the times used for this purpose were obtained particle sizes smaller than a micron, as demonstrated by the analysis of scanning electron microscopy. X-ray diffraction it was found that there is no phase change in the structure of intermetallic with times of up to one hour of milling. Regarding the amount of hydrogen absorbed in this material with the experimental conditions made especially pressure and temperature, the first results reported 3% hydrogen around, these results were obtained by thermal gravimetric system. (Author)

  6. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2′ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    International Nuclear Information System (INIS)

    Mudsainiyan, R.K.; Jassal, Amanpreet Kaur; Chawla, S.K.

    2015-01-01

    The 1-D polymeric complex (I) is having formula [Mn(2,2′-BP).(N 3 ) 2 ] n , which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn–azide–Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J 1 =64.3 K (45.3 cm −1 ), and J 2 =−75.7 K (−53.3 cm −1 ). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L–L)(N 3 ) 2 ] n type. - - Highlights: • Synthesized 1-D polymeric complex of Mn (II) ions with 2, 2′ bipyridyl and azide group. • X-ray data of complex (I) is in a good agreement with TGA and other spectroscopic techniques. • DFT calculations were done and compared with the parameter of experimental and theoretical data. • Intermolecular interactions calculated by Hirshfeld surface analysis compared with X-ray data

  7. Polyesteramides based on PET and nylon 2,T part 2. synthesis and thermal stability

    NARCIS (Netherlands)

    Bouma, K.; Groot, G.M.M.; Feijen, Jan; Gaymans, R.J.

    2000-01-01

    The synthesis and the thermal stability of polyesteramides based on PET and nylon 2,T (PETA) using DMT, T2T-dimethyl (N,N′-bis(p-carbo-methoxybenzoyl)ethanediamine) and 1,2-ethanediol as starting materials has been studied. The catalysts that were used are tetraisopropyl orthotitanate, manganese

  8. Thermal-mechanical-noise-based CMUT characterization and sensing.

    Science.gov (United States)

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure.

  9. Thermal-Mechanical Noise Based CMUT Characterization and Sensing

    Science.gov (United States)

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Since the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics where a direct connection to CMUT array element terminals is not available. These measurements can be performed in air at the wafer level, suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm diameter CMUT-on-CMOS array designed for intravascular imaging in the 10-20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element method and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  10. Thermal characterization of commercially pure titanium for dental applications

    Directory of Open Access Journals (Sweden)

    Enori Gemelli

    2007-09-01

    Full Text Available Thermal characterization of commercially pure titanium was carried out in dry air to investigate the oxidation kinetics, the oxide structures and their properties. Oxidation kinetics were performed by thermogravimetry in isothermal conditions between 300 and 750 °C for 48 hours and the oxide structures were studied by differential thermal analyses and X ray diffraction between room temperature and 1000 °C. The oxidation kinetic increases with temperature and is very fast in the initial period of oxidation, decreasing rapidly with time, especially up to 600 °C. Kinetic laws varied between the inverse logarithmic for the lower temperatures (300 and 400 °C and the parabolic for the higher temperatures (650, 700 and 750 °C. Evidences from X ray diffraction and differential thermal analyses showed that crystallization of the passive oxide film, formed at room temperature, into anatase occurs at about 276 °C. The crystallized oxide structure is composed of anatase between 276 and 457 °C, anatase and rutile sublayers between 457 and 718 °C, and a pure layer of rutile after 718 °C. Rockwell-C adhesion tests reveled that the oxide films formed up to 600 °C have a good adhesion. Vickers indentations on the oxidized surfaces showed that the hardness of the oxide film, measured at 600 and 650 °C, is approximately 9500 MPa. At these temperatures the surface roughness varied between 0.90 and 1.30 mm.

  11. Characterization of the Ljubljana TRIGA thermal column neutron radiographic facility

    International Nuclear Information System (INIS)

    Nemec, T.; Rant, J.; Kristof, E.; Glumac, B.

    1995-01-01

    An extensive characterization of the neutron beam of the existing neutron radiographic facility in the thermal column of the Ljubljana Triga Mark II research reactor is in progress. Neutron beam characteristics are needed to determine the effect of various neutron and gamma radiation on the neutron radiographic image. Commercially available medical scintillator converter screens based on Gd dioxy sulphite as well as Gd metal neutron converters are used to record neutron radiographic image. Thermal, epithermal and fast neutron fluxes were measured using Au and In activation detectors and cadmium ratio is determined. Neutron beam flux profiles are measured by film densitometry and by Au activation detector wires. By exposing films shielded by boral or lead plates individual contributions of thermal, epithermal neutrons and gamma radiation are estimated by densitometric measurements. By recording images of neutron image quality indicators BPI (Beam Purity Indicator) and SI (Sensitivity Indicator) produced by Riso, standard neutron radiography image characteristic are established. In gamma dosimetric measurements thermoluminescent detectors (CaF 2 Mn) are used. (author)

  12. Carbon fiber composite characterization in adverse thermal environments.

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  13. Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank analyses. Thermal analysis was examined using combined Thermogravimetric (TG and Derivative Thermogravimetric analyses (DTG. Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC. The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC. The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4 endothermic peaks corresponding to loss of moisture (drying, volatile matter (devolatization, and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel.

  14. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst

    International Nuclear Information System (INIS)

    Cheng, Y; Tanaka, M; Watanabe, T; Choi, S Y; Shin, M S; Lee, K H

    2014-01-01

    The catalyst of Ni 2 B nanoparticles was successfully prepared using nickel and boron as precursors with the quenching gas in radio frequency thermal plasmas. The generating of Ni 2 B needs adequate reaction temperature and boron content in precursors. The quenching gas is beneficial for the synthesis of Ni 2 B in RF thermal plasma. The effect of quenching rate, powder feed rate and boron content in feeding powders on the synthesis of nickel boride nanoparticles was studied in this research. The high mass fraction of 28 % of Ni 2 B nanoparticles can be generated at the fixed initial composition of Ni:B = 2:3. Quenching gas is necessary in the synthesis of Ni 2 B nanoaprticles. In addition, the mass fraction of Ni 2 B increases with the increase of quenching gas flow rate and powder feed rate

  15. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  16. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    Science.gov (United States)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  17. Synthesis and Biophysical Characterization of Chlorambucil Anticancer Ether Lipid Prodrugs

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Christensen, Mikkel Stochkendahl; Ruysschaert, Tristan

    2009-01-01

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability...... to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A2, resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A2, with IC50 values in the 8-36 μM range....

  18. Synthesis and Characterization of Biscoumarin and Benzopyrano Dicoumarin Derivatives

    International Nuclear Information System (INIS)

    Nik Khairunissa' Nik Abdullah Zawawi; Muhammad Taha; Norizan Ahmat; Nor Hadiani Ismail; Nik Khairunissa' Nik Abdullah Zawawi; Muhammad Taha; Norizan Ahmat; Nor Hadiani Ismail

    2016-01-01

    The wide-ranging biological activities of 4-hydroxycoumarin have stimulated considerable interest in this class of compounds, and various biscoumarin derivatives have been synthesized. Recently, a number of methods have been reported for the synthesis of biscoumarin by the reaction of 4-hydroxycoumarin and various aldehydes in the presence of catalysts. In the present study, a new series of biscoumarin and benzopyrano dicoumarin were synthesized and physically characterized by nuclear magnetic resonane ( 1 H and 13 C NMR), fourier transform infrared spectroscopy (FTIR), mass spectrometry (MS) and melting point. (author)

  19. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Characterization of mouthguard materials: thermal properties of commercialized products.

    Science.gov (United States)

    Gould, Trenton E; Piland, Scott G; Shin, Junghwan; McNair, Olivia; Hoyle, Charles E; Nazarenko, Sergei

    2009-12-01

    Several mechanisms have been purported to describe how mouthguards protect the orofacial complex against injury. As the properties needed for these mechanisms to be effective are temperature and frequency dependent, the specific aim of this study was to provide a comprehensive thermal characterization of commercial mouthguard materials. Five commercially representative thermoplastic mouthguard materials (Essix Resin, Erkoflex, Proform-regular, Proform-laminate, and Polyshok) were tested. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques were implemented to measure thermal transitions and mechanical properties. Measurements were conducted three times per sample. One-way ANOVA and one-sample t-tests were used to test for differences between commercial products on selected mean thermal property values. The DSC measurements indicated no differences between commercial materials for mean glass transition (p=0.053), onset melt (p=0.973), or peak melt (p=0.436) temperatures. Likewise, DMA measurements revealed no differences between commercial materials for the mean glass transition (p=0.093), storage modulus (p=0.257), or loss modulus (p=0.172) properties, respectively. The one-sample t-tests revealed that glass transition temperatures were different from intra-oral temperature (psensitive to repetitive heating and cooling cycles, prolonged thermal treatment, and have glass transitions well below their end-use intra-oral temperature. As such, these materials are functioning as elastomers and not optimal mechanical damping materials. Dental clinicians, healthcare practitioners, or end-users should be aware that these materials are at best problematic with respect to this protective mechanism.

  1. Synthesis and thermal decomposition study of dysprosium trifluoroacetate

    DEFF Research Database (Denmark)

    Opata, Y. A.; Grivel, J.-C.

    2018-01-01

    A study of the thermal decomposition process of dysprosium trifluoroacetate hydrate under flowing argon is presented. Thermogravimetry, differential thermal analysis, evolved gas analysis and ex-situ x-ray diffraction techniques have been employed in the investigation. Three main stages were...... at temperatures just above the decomposition step and at 828 °C showed a variation in the sample color, being dark in the first case and rather bright at the higher quenching temperature. Based on this fact, we concluded that some carbon remains in the sample up to 800 °C. With the temperature reaching 1300 °C...

  2. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

    Science.gov (United States)

    Muradov, Mustafa B.; Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Maharramov, Abel M.; Qahramanli, Lala R.; Eyvazova, Goncha M.; Aghamaliyev, Zohrab A.

    2018-03-01

    Convenient and environmentally friendly synthesis of Co9S8/PVA, CoxSy/EG and CoxSy/3-MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and sodium sulfide (Na2S·9H2O) were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co9S8/PVA is 1.81 eV and for CoxSy/EG is 2.42 eV, where the direct band gap of bulk cobalt sulfide is (0.78-0.9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co9S8, CoS2 and Co3S4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

  3. Materials Research Society Symposium Proceedings Volume 635. Anisotropic Nanoparticles - Synthesis, Characterization and Applications

    National Research Council Canada - National Science Library

    Lyon, L

    2000-01-01

    This volume contains a series of papers originally presented at Symposium C, "Anisotropic Nanoparticles Synthesis, Characterization and Applications," at the 2000 MRS Fall Meeting in Boston, Massachusetts...

  4. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity.

    Science.gov (United States)

    Shaik, Mohammed Rafi; Ali, Zuhur Jameel Qandeel; Khan, Mujeeb; Kuniyil, Mufsir; Assal, Mohamed E; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Khan, Merajuddin; Adil, Syed Farooq

    2017-01-19

    The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.

  5. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2017-01-01

    Full Text Available The synthesis of Palladium (Pd nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs using an aqueous extract of aerial parts of Origanum vulgare L. (OV as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs were analyzed using ultraviolet-visible spectroscopy (UV-Vis, Fourier-transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and thermal gravimetric analysis (TGA. Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.

  6. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    In solid oxide fuel cells (SOFCs) the cathode functions as the site for thee lectrochemical reduction of oxygen. There- fore, thec athode must have high electronic conductivity, ade- quate porosity, stability under an oxidizing atmosphere and high catalytic activity. In addition, it is crucial for the cathode to have matched thermal ...

  7. Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles

    NARCIS (Netherlands)

    Lei, P.Y.; Boies, A.M.; Calder, S.A.; Girshick, S.L.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer,

  8. A convenient thermal decomposition-co-reduction synthesis of ...

    Indian Academy of Sciences (India)

    Unknown

    (Hojo and Ishizaka 1997) can also prepare WSi2 powder. In this paper, nanocrystalline tungsten disilicide has been synthesized by a convenient thermal decomposition- co-reduction route via the reaction of metallic potassium with sodium fluorosilicate and tungsten hexachloride in an autoclave at 650°C. This reaction can ...

  9. Facile synthesis of new thermally stable and organosoluble ...

    Indian Academy of Sciences (India)

    mise between solubility, high thermal properties and processability.23–25. According to the phosphorylation technique first described by Yamazaki et al., a series of high- molecular-weight PAIs are synthesized from the imide ring bearing dicarboxylic acids with phosphorus and silicon containing new aromatic diamines.26 ...

  10. Synthesis, thermal properties and photoisomerization of trans-[Ru ...

    Indian Academy of Sciences (India)

    chemsci

    Keywords. Ruthenium nitrosyl complexes; pyridine; X-ray crystallography-thermal analysis; photoinduced linkage isomer; ruthenium phosphide; DSC. 1. Introduction. Ruthenium phosphides RuP and Ru2P are known as stable catalysts for electrochemical oxygen reduction, seem to be good candidates as substrate in fuel ...

  11. A convenient thermal decomposition-co-reduction synthesis of ...

    Indian Academy of Sciences (India)

    Nanocrystalline WSi2 was synthesized by a thermal decomposition-co-reduction route via the reaction of anhydrous tungsten hexachloride and sodium fluorosilicate with metallic potassium in an autoclave at 650°C. X-ray powder diffraction pattern indicated that it was tetragonal WSi2. Transmission electron microscope ...

  12. Synthesis and Spectroscopic, Thermal and Crystal Structure Studies ...

    African Journals Online (AJOL)

    NICO

    The salt undergoes melting followed by decomposition to give gaseous products. KEYWORDS. Hydrazine, succinic acid, hydrazinium hydrogensuccinate, crystal structure, thermal studies. 1. Introduction. Dibasic acids are known to form N2H5HA, (N2H5)2A and. N2H5HA.H2A type salts (H2A = dibasic acid) with hydrazine.

  13. Synthesis and characterization of ferrous phosphate (vivianite) and its behavior in aqueous media

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2003-01-01

    The synthesis and characterization of materials that can be useful in Environmental Chemistry is very important because their characteristics are exposed and its behavior in chemical phenomena as the sorption in aqueous media is understand to use it in the human being benefit. With the object of using, in a future, the octa hydrated ferrous phosphate (vivianite) as a potential candidate for matrix confinement in contention walls for the storage of radioactive waste of long half life, it was synthesized and it characterized physico chemically and their properties of surface of this compound were evaluated. Presently work was carried out the synthesis and structural characterization of the iron phosphate II by infrared spectroscopy with having Fourier transform, high vacuum scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis, the BET multipoint surface area and Moessbauer spectroscopy; as well as, the determination between aqueous media of the isoelectric point and the density of sites of surface of the compound. The octa hydrated ferrous phosphate was obtained pure. The results indicate that the product corresponds to the prospective mineral, the vivianite. The thermal gravimetric analysis demonstrated that the ferrous phosphate is a stable salt after the lost of water. The isoelectric point is since an important parameter because allows to know the behavior of the surface of the material in aqueous systems, in this case the isoelectric point, of the octa hydrated ferrous phosphate, in distilled water is of pH 4.20 and in solution of potassium nitrate 0.5 M is of pH = 3.75. This indicates that the material has an amphoteric surface depending on the pH. On the other hand, the density of active sites of surface obtained by titrations acid-base is of 20 sites by nm 2 . (Author)

  14. Electrochemical synthesis and characterization of copper (I oxide

    Directory of Open Access Journals (Sweden)

    Bugarinović Sanja J.

    2009-01-01

    Full Text Available The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2.

  15. Synthesis and Characterization of Soluble Alkylalcohol-derivatized Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seunghyun; Sohn, Honglae [Chosun Univ., Gwangju (Korea, Republic of); Ko, Young Chun [Sehan Univ., Chonnnam (Korea, Republic of)

    2013-04-15

    So, many effective synthetic methodologies have been developed for graphene oxide. Since the successful synthetic methods of graphene oxide were invented by Brodie in 1859 and by Hummers and Offeman in 1958, during eight years of the modern period studies graphene oxide synthesis have been achieved considerably by modifying Brodie's, and Hummers and Offeman's methods. Most exfoliation of graphite oxide has been possible either by sudden thermal expansion or ultrasonic dispersion of graphite to obtain graphene. Graphene oxide is a water-insoluble nanomaterial containing carboxylic, epoxy, and hydoxyl groups. That is, graphene oxide is an oxidized nanomaterial with acidic functional group and the oxidants intercalated in the inter-thin layer space. This guides to a route for exfoliation of graphite by rapid de-intercalation. The graphene oxide is considered as a special and new material possessing a high area to volume ratio and violent charge transport properties. These novel properties can be made graphene oxide greatly promising for the diverse applications including high functional batteries, sensors, solar energy system, and highly sophisticated micro-electrical devices such as field-effect transistors and electromechanical resonators. Here, therefore, we report a synthesis on derivatization of graphene oxide with alkylalcohol to give soluble graphenes. Because the soluble alkoxy-derivatized graphene oxides may be presented a particular electronic transport properties. In this paper we study to yield a basic optical properties data of the soluble graphene oxides.

  16. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    Science.gov (United States)

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc.

  17. Synthesis, characterization and luminescence properties of zinc oxide nanostructures

    Science.gov (United States)

    Khan, Aurangzeb

    Zinc oxide (ZnO) represents an important semiconductor material due to its wideband gap (3.37 eV at room temperature), large exciton binding energy (60 meV), high optical gain, and luminescence as well as piezoelectric properties [1]. From the 1960s, ZnO thin films have been extensively studied because of their applications as sensors, transducers and catalysts [2]. Since a few decades, one-dimensional nanostructures have become the focus point in nanoscience and nanotechnology. Nanostructures are considered to have unique physical, chemical, catalytic and optical properties that are profoundly different from their bulk counterparts. Since the discovery of carbon nanotubes (CNTs) in 1991, a string of research activities led to the growth and characterization of nanostructures of various materials including semiconductors such as Si, Ge and also compound semiconductors such as InP, GaAs, GaN and ZnO. ZnO is a versatile material and has shown potential for the synthesis of various types of nanostructures such as nanocombs, nanorings, nanohelices/nanosprings, nanobelts, nanowires and nanocages under specific growth conditions and probably has the richest family of nanostructures among all materials, both in structure and properties. This dissertation presents the synthesis, characterization and luminescence properties of ZnO nanostructures with the development of a PVD system. The nanostructures of ZnO are synthesized on various kinds of substrates such as Silicon, Sapphire and Alumina. We have synthesized a large family of nanostructures such as nanowires, nanorods, nanobelts, aligned nanorods, nanosheets, nanospheres, nanocombs, microspheres, hexagons etc. The nanostructures are then characterized by SEM, EDX, TEM, HRTEM, XRD, Raman Spectroscopy, PL and CL. From the characterization of the materials, we observed that these nanostructures are of good crystalline quality. PL and CL spectra reveal that all the nanostructures emit a ˜380 nm (UV) usually called the near

  18. Synthesis and characterization of five-coordinated indium amidinates

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Yasaman

    2016-07-29

    The focus of this work is synthesis, characterization and exploring the reactivity of new indium amidinate compounds of the type R{sub 2}InX (R = R''NCR'NR''; R' = Ph, R'' = SiMe{sub 3}, iPr, dipp; X = Br, Cl) with the coordination number of five and R{sub 3}In (R = Me{sub 3}SiNCPhNSiMe{sub 3}) with the coordination number of six. By using amidinates as chelating ligands the electron deficiency of indium atom will be resolved. Additionally, by using different substituents the study of the different synthesized indium amidinates has become possible. The selected method for the synthesis allows the carbodiimides to react with organolithium compounds to get the corresponding lithium amidinates. Afterwards the resulting lithium amidinates take part in transmetalation reactions with InBr{sub 3} and InCl{sub 3}. The study of the reactivity of indium amidinate complexes including nucleophilic reactions as well as their reduction were also examined. Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as well as elemental analysis has been applied to characterize the compounds.

  19. Phenylethynyl Silsesquioxanes: Monomer Synthesis, Characterization,Thermolysis and Thermal Properties

    Science.gov (United States)

    2016-12-14

    Lamb , J. Reams, K. Ghiassi, J. Mabry, A. Guenthner 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...AVENUE E H IG H W A Y 14 LA N C A S TE R B LV D . 14 0t h S TR E E T E A S T RESERVATION BOUNDARY 0 5 10 SCALE IN MILES HWY 395 ROSAMOND BLVD. MERCURY...Materials Group • Dr. Jeffrey Alston • Dr. Kamran Ghiassi • Mr. Kevin Greeson • Dr. Andrew Guenthner • Dr. Timothy Haddad • Mr. Jason Lamb • Mr.

  20. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Electrical conductivity measurements were performed and it was observed that, after performing a heat treatment, the electrical conductivity of analysed samples decreased with one or two orders of magnitude. The gas sensitivity was investigated for some reducing gases such as acetone, methane and liquefied petroleum ...

  1. Synthesis, structure, thermal and NLO characterization of 4-hydroxy ...

    Indian Academy of Sciences (India)

    Abstract. Good quality single crystals of 4-hydroxy tetramethylpiperazinium picrate (TMPP) were grown by slow evaporation solution growth method at room temperature. The average dimensions of the grown crys- tals were 0.6 × 0.2 × 0.2 cm3. The solubility of the compound was estimated using methanol and acetone. The.

  2. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    was investigated for some reducing gases such as acetone, methane and liquefied petroleum gas and it was observed that the films studied were selective to acetone. Keywords. Zinc oxide; structural analysis; optical parameters; electrical conductivity; gas sensitivity. 1. Introduction. In recent years, transparent conducting ...

  3. Characterizing the thermal effects of High Energy Arc Faults

    Energy Technology Data Exchange (ETDEWEB)

    Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)

    2015-12-15

    International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.

  4. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  5. Synthesis and nanoscale thermal encoding of phase-change nanowires

    International Nuclear Information System (INIS)

    Sun Xuhui; Yu Bin; Meyyappan, M.

    2007-01-01

    Low-dimensional phase-change nanostructures provide a valuable research platform for understanding the phase-transition behavior and thermal properties at nanoscale and their potential in achieving superdense data storage. Ge 2 Sb 2 Te 5 nanowires have been grown using a vapor-liquid-solid technique and shown to exhibit distinctive properties that may overcome the present data storage scaling barrier. Local heating of an individual nanowire with a focused electron beam was used to shape a nano-bar-code on a Ge 2 Sb 2 Te 5 nanowire. The data encoding on Ge 2 Sb 2 Te 5 nanowire may promote novel device concepts to implement ultrahigh density, low energy, high speed data storage using phase-change nanomaterials with diverse thermal-programing strategies

  6. Synthesis and characterization of PMMA/silylated MMTs

    International Nuclear Information System (INIS)

    De Maria, A.; Aurora, A.; Montone, A.; Tapfer, L.; Pesce, E.; Balboni, R.; Schwarz, M.; Borriello, C.

    2011-01-01

    Commercially available Sodium clay (Dellite HPS) and organo-clay (Dellite 72T) are modified via a silylation reaction. These silylated clays are characterized by IR, XRD, thermogravimetric analyses, and their equilibrium contact angles are measured. They are used to prepare nanocomposites at different loading percentage (1, 3, 5% wt) by in situ intercalative polymerization of Methyl methacrylate and morphology and thermal properties of nanocomposites are examined. SEM images of nanocomposites fractured surface show the absence of clays aggregates, confirming a good dispersion and distribution of montmorillonites in the polymer matrix. The effects of modified clays on the thermal properties of nanocomposites are analyzed by differential scanning calorimetry and thermogravimetric analyses showing an increase of glass and decomposition temperatures of all nanocomposites respect to homopolymer ones. The best results are obtained in the presence of silylated montmorillonites, clearly the organosilane improves the compatibility between polymer matrix and clay and as effect the properties of nanocomposites.

  7. Characterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique

    Science.gov (United States)

    Liu, Jing; Wang, Xinwei

    2015-06-01

    This work reports on the development of a Johnson noise electro-thermal (JET) technique to directly characterize the thermal conductivity of one-dimensional micro-/nanoscale materials. In this technique, the to-be-measured micro-/nanoscale sample is connected between two electrodes and is subjected to steady-state Joule heating. The average temperature rise of the sample is evaluated by simultaneously measuring the Johnson noise over it and its electrical resistance. The system's Johnson noise measurement accuracy is evaluated by measuring the Boltzmann constant ( k B). Our measured k B value (1.375 × 10-23 J/K) agrees very well with the reference value of 1.381 × 10-23 J/K. The temperature measurement accuracy based on Johnson noise is studied against the resistance temperature detector method, and sound agreement (4 %) is obtained. The thermal conductivity of a glass fiber with a diameter of 8.82 μm is measured using the JET technique. The measured value 1.20 W/m K agrees well with the result using a standard technique in our laboratory. The JET technique provides a very compelling way to characterize the thermophysical properties of micro-/nanoscale materials without calibrating the sample's resistance-temperature coefficient, thereby eliminating the effect of resistance drift/change during measurement and calibration. Since JET technique does not require resistance-temperature correlation, it is also applicable to semi-conductive materials which usually have a nonlinear I- V relation.

  8. Characterization of a Hall Effect Thruster Using Thermal Imaging

    National Research Council Canada - National Science Library

    Tomaszewski, James W

    2007-01-01

    .... Therefore, thermal information was gathered and analyzed in order to better understand the thermal characteristics of an operating thruster and to provide data applicable to improving the thruster...

  9. Characterization of Molten CZT Using Thermal Conductivity and Heat Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Nero, Franco [Y-12 National Security Complex, Oak Ridge, TN (United States); Jackson, Maxx [Y-12 National Security Complex, Oak Ridge, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-10

    To compare thermal conductivity of a polycrystalline semiconductor to the single crystal semiconductor using thermo-physical data acquired from Simultaneous Thermal Analysis and Transient Plane Source heating.

  10. Solvothermal synthesis and characterization of ceria-zirconia mixed oxides for catalytic applications

    Science.gov (United States)

    Devaraju, M. K.; Liu, Xiangwen; Yusuke, Kikuchi; Yin, S.; Sato, T.

    2009-10-01

    Solvothermal synthesis under supercritical conditions (400 °C) and high autogenous pressure (about 40 MPa), has been carried out for the direct preparation of nanocrystalline powders of CeO2, Ce0.85Zr0.15O2, Ce0.75Zr0.25O2, Ce0.65Zr0.35O2 and Ce0.5Zr0.5O2 which are characterized for applications as catalysts for oxygen storage in automotive catalysis. The synthesis was carried out in the presence of polyethylene glycol and water. For the characterization, x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS) and the Brunauer-Emmet-Teller (BET) technique were employed. The oxygen storage capacity (OSC) of as-prepared and calcined samples without loading of noble metals was measured using thermogravimetric-differential thermal analysis (TG-DTA) at 600 °C with a continuous flow of CO-N2 gas and air alternately. Ce0.5Zr0.5O2 nanoparticles with a BET surface area of 102 m2 g-1 exhibited the highest OSC of 0.073 50 mol-O2/mol-CeO2. The OSC values obtained increased with increasing the amount of ZrO2 doping in the samples.

  11. An experimental study of thermal characterization of parabolic trough receivers

    International Nuclear Information System (INIS)

    Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin

    2013-01-01

    Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed

  12. Pollutant content in marine debris and characterization by thermal decomposition.

    Science.gov (United States)

    Iñiguez, M E; Conesa, J A; Fullana, A

    2017-04-15

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400-500K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  14. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  15. Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion

    Science.gov (United States)

    Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)

    2001-01-01

    An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.

  16. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    International Nuclear Information System (INIS)

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide

  17. Synthesis and characterization of interpenetrating phase ceramic metal composites

    International Nuclear Information System (INIS)

    Kanwal, T.

    2011-01-01

    Alumina powder was sintered in MW furnace under vacuum, without vacuum and conventional sintering furnace at different temperatures followed by characterization to observe the effect of sintering mode. Zirconia-Nickel and Alumina-Nickel systems were selected to study the effect of metallic phase interconnectivity on the electrical and thermal behavior in interpenetrating phase composites (IPCs). In order to obtain the homogenous mixture of Alumina and Nick powders, a detailed investigation was performed on the de-agglomeration and prop mixing of powders. Sintering parameters were optimized for the homogenization o Alumina with Nickel in planetary ball mill without sticking of powders with jar.- Homogenization of Zirconia-Nickel and Alumina-Nickel powders was perform using planetary ball mill as well as pestle mortar. Compaction of composites was performed uniaxially and sintering was carried in microwave furnace, tubular furnace with Argon environment and in vacuum sintering furnace. Electrical and thermal behavior of microwave as well as conventionally sintered ZrO/sub 2/-Ni and Al/sub 2/O/sub 3/-Ni IPCs was also observed. Electrical behavior of Composites was characterized b determining the impedance of the composites. To find the percolation limit for both Alumina-Nickel and Zirconia-Nickel composite systems the real part of impedance was used. On the basis of electrical characterization, samples were selected for SEM, BET surface area and CTE analysis. SEM of selected samples was performed t observe the connectivity of Nickel in composites. Finally, the effect of percolation limit on thermal behavior of IPCs was investigated with the help of CTE. (author)

  18. Analysis of the competitiveness and development of the thermal solar sector in France. Synthesis

    International Nuclear Information System (INIS)

    KAAIJK, Paul

    2013-10-01

    This synthesis reports a comprehensive study (October 2013) for ADEME, the French office for energy management and sustainable development, which presents an assessment of the present structure of the solar thermal sector in France (and overseas territories): main actors, Research and Development activities, qualification and certification of equipment, distribution, design and education aspects, installation, etc. In the second and third parts of the report, the demand and the perception of the offer by clients are assessed, followed by a presentation of the sector cost structure and a comparison of various competitive systems. In the last part of the synthesis, a diagnostic of the sector is exposed, with propositions and recommendations

  19. Eco-Friendly Synthesis and Characterization of Reduced Graphene Oxide

    Science.gov (United States)

    Ickecan, D.; Zan, R.; Nezir, S.

    2017-09-01

    Graphene is a single sheet of sp2 bonded carbon having a two-dimensional (2D) layer. It has remarkable electronic, mechanical and thermal properties. In this paper, the graphene oxide (GO) was reduced by reducing chemicals such as ascorbic acid and hydrazine and then characterized by transmission electron microscopy (TEM), Raman spectroscopy and Fourier transform infrared spectroscopy. TEM results of the chemically reduced graphene were showed that the structure consists of a mixture of single and few layers of reduced graphene oxide (rGO).

  20. Synthesis, Characterization and Copolymerization of N-(phenylaminomaleimide with MMA

    Directory of Open Access Journals (Sweden)

    B. L. Hiran

    2007-01-01

    Full Text Available The free radical copolymerization of N-(phenylaminomaleimide (N-PAMI was carried. The copolymerization with methyl methacrylate (MMA was performed at 65°C with AIBN as the initiator in THF solvent. Resulting copolymer was characterized by density measurement, intrinsic viscosity, solubility, FT-IR & 1H NMR spectroscopy. Effect of the solvent and time on copolymer yield was also investigated. The molecular weight of copolymer was determined by gel permeation chromatography (GPC. The thermal stability of copolymer was determined by Thermogravimetric analysis (TGA.