WorldWideScience

Sample records for synthesis biological evaluation

  1. Synthesis and Biological Evaluation of Some Pyridine Derivatives as ...

    African Journals Online (AJOL)

    Synthesis and Biological Evaluation of Some Pyridine Derivatives as Antimicrobial Agents. ... Ethiopian Pharmaceutical Journal ... In this study, several pyridine derivatives were synthesized and evaluated for their in vitro antimicrobial activity against Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus), ...

  2. Synthesis and Biological Evaluation of Novel Thiosemicarbazone ...

    African Journals Online (AJOL)

    NICO

    tron density synthesis was 0.139 e–/Е3 and the largest hole was. –0.675 e–/Е3 with an RMS deviation of 0.047 e–/Е3. On the basis of the final model, the calculated density was 1.353 g/cm3 and. F(000), 1248 e–. Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre ...

  3. Synthesis, characterization and evaluation of biological activities of ...

    African Journals Online (AJOL)

    Original Research Article. Synthesis, characterization and evaluation of biological activities of manganese-doped zinc oxide nanoparticles. Shakeel Ahmad Khan1*, Sammia Shahid1, Waqas Bashir1, Sadia Kanwal2 and. Ahsan Iqbal3. 1Department of Chemistry, University of Management and Technology, Lahore-54000, ...

  4. Synthesis, characterization and biological evaluation of ...

    Indian Academy of Sciences (India)

    5H-thiazolo[3,2-a]pyrimidine-2,6-dicarboxylic acid diethyl ester (3e) was verified by single crystal X-ray diffraction method. The antimicrobial activity was evaluated against four bacterial strains and one fungal species. Few of the derivatives ...

  5. Biological conversion of synthesis gas. Topical report: Economic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of the proposed research is to develop a technically and economically feasible process for biologically producing H{sub 2} from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; mass transfer and kinetic studies in which equations necessary for process design are developed; bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; evaluation of biological synthesis gas conversion under limiting conditions in preparation for industrial demonstration studies; process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses. The purpose of this report is to present economic evaluations for H{sub 2} production from synthesis gone by Rhodospirillum rubrum. Cases are presented with and without light requirements and in stirred tank and immobilized cell reactors. In addition, economic information is presented for isolate ERIH{sub 2} (from Engineering Resources, Inc.) in the two reactors with and without H{sub 2} recovery.

  6. Simple synthesis and biological evaluation of flocoumafen and its ...

    Indian Academy of Sciences (India)

    Full Papers Volume 122 Issue 6 November 2010 pp 833-838 ... Abstract. Simple synthesis and biological properties of flocoumafen 1 and its structural isomers are described. The key synthetic strategies involve Knoevenagel condensation, Grignard reaction, intramolecular ring cyclization and coupling reaction.

  7. Simple synthesis and biological evaluation of flocoumafen and its ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Simple synthesis and biological properties of flocoumafen 1 and its structural isomers are described. The key synthetic strategies involve Knoevenagel condensation, Grignard reaction, intramolecu- lar ring cyclization and coupling reaction. Flocoumafen 1 was easily separated into cis and trans forms using flash ...

  8. Synthesis and Biological Evaluation of 7-Deoxy-Epothilone Analogues

    Directory of Open Access Journals (Sweden)

    Laura M. Woods

    2017-03-01

    Full Text Available The synthesis of two deoxygenated analogues of potent epothilones is reported in an effort to analyze the relative importance of molecular conformation and ligand–target interactions to biological activity. 7-deoxy-epothilone D and 7-deoxy-(S-14-methoxy-epothilone D were prepared through total synthesis and shown to maintain the conformational preferences of their biologically active parent congeners through computer modeling and nuclear magnetic resonance (NMR studies. The significant decrease in observed potency for each compound suggests that a hydrogen bond between the C7-hydroxyl group and the tubulin binding site plays a critical role in the energetics of binding in the epothilone class of polyketides.

  9. Molecular design, synthesis and evaluation of chemical biology tools

    NARCIS (Netherlands)

    Hoogenboom, Jorin

    2017-01-01

    Chapter 1 provides a perspective of synthetic organic chemistry as a discipline involved in the design, synthesis and evaluation of complex molecules. The reader is introduced with a brief history of synthetic organic chemistry, all the while dealing with different aspects of

  10. Synthesis and biological evaluation of chalcone derivatives (mini review).

    Science.gov (United States)

    Bukhari, Syed Nasir Abbas; Jasamai, Malina; Jantan, Ibrahim

    2012-11-01

    Chalcones are the principal precursors for the biosynthesis of flavonoids and isoflavonoids. A three carbon α, β-unsaturated carbonyl system constitutes chalcones. Chalcones are the condensation products of aromatic aldehyde with acetophenones in attendance of catalyst. They go through an assortment of chemical reactions and are found advantageous in synthesis of pyrazoline, isoxazole and a variety of heterocyclic compounds. In synthesizing a range of therapeutic compounds, chalcones impart key role. They have showed worth mentioning therapeutic efficacy for the treatment of various diseases. Chalcone based derivatives have gained heed since they own simple structures, and diverse pharmacological actions. A lot of methods and schemes have been reported for the synthesis of these compounds. Amongst all, Aldol condensation and Claisen-Schmidt condensation still grasp high up position. Other distinguished techniques include Suzuki reaction, Witting reaction, Friedel-Crafts acylation with cinnamoyl chloride, Photo-Fries rearrangement of phenyl cinnamates etc. These inventive techniques utilize various catalysts and reagents including SOCl(2) natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, Na(2)CO(3), PEG400, silicasulfuric acid, ZrCl(4) and ionic liquid etc. The development of better techniques for the synthesis of α, β- unsaturated carbonyl compounds is still in high demand. In brief, we have explained the methods and catalysts used in the synthesis of chalcones along with their biological activities in a review form to provide information for the development of new-fangled processes targeting better yield, less reaction time and least side effects with utmost pharmacological properties.

  11. Solid-phase synthesis and biological evaluation of Joro spider toxin-4 from Nephila clavata

    DEFF Research Database (Denmark)

    Barslund, Anne Fuglsang; Poulsen, Mette Homann; Bach, Tinna Brøbech

    2011-01-01

    to be exploited in biological studies. Here, we have used solid-phase synthetic methodology for the efficient synthesis of Joro spider toxin-4 (JSTX-4) (1) from Nephila clavata, providing sufficient amounts of the toxin for biological evaluation at iGlu receptor subtypes using electrophysiology. Biological...

  12. Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents

    Science.gov (United States)

    1989-06-30

    TITLE (Include Securrty Clasification ) Synthesis and Biological Evaluation of Brain Specific Anti-RNA Viral Agents 12. PERSONAL. AUTHOR(S) Marcus E...AD (FRONT COVER Contract No.: DAMD17-88-C-8011 Title: Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents Principal...matr s---. Further in vivo testing included tissue distribution studies and antiviral activity studies performed in a murine viral encephalitic model. 20

  13. Synthesis and Biological Evaluation of Glycosidase Inhibitors: gem-Difluoromethylenated Nojirimycin Analogues

    DEFF Research Database (Denmark)

    Bols, Mikael; Wang, Ruo-Wen; Qiu, Xiao-Long

    2006-01-01

    In our ongoing program aimed at the design, synthesis, and biological evaluation of novel gem-difluoromethylenated glycosidase inhibitors, gem-4,4-difluoromethylenated iminosugars (5-9) were synthesized. The biological evaluation of these synthetic iminosugars showed that the gem...

  14. Synthesis, characterization and biological evaluation of tryptamine based benzamide derivatives.

    Science.gov (United States)

    Aftab, Kiran; Aslam, Kinza; Kousar, Shazia; Nadeem, Muhammad Jawad Ul Hasan

    2016-03-01

    Benzamides and tryptamine are biologically significant compounds, therefore, various benzamide analogous of tryptamine have been efficiently synthesized using tryptamine and different benzoyl chlorides, in order to find new biologically active compounds. The resulting products were then characterized by melting point determination, calculation of Rf values and LC-MS techniques. At last, structure activity relationship (SAR) of the synthesized compounds was evaluated against two microbial strains; Bacillus subtilis and Aspergillus niger. All the five prepared products have shown high yield, sharp characterization and significant resistance against the growth of tested microorganism, providing a new range of tryptamine based benzamide derivatives having significant antimicrobial activities.

  15. Design, Synthesis, and Biological Evaluation of PKD Inhibitors

    Directory of Open Access Journals (Sweden)

    Marie-Céline Frantz

    2011-04-01

    Full Text Available Protein kinase D (PKD belongs to a family of serine/threonine kinases that play an important role in basic cellular processes and are implicated in the pathogenesis of several diseases. Progress in our understanding of the biological functions of PKD has been limited due to the lack of a PKD-specific inhibitor. The benzoxoloazepinolone CID755673 was recently reported as the first potent and kinase-selective inhibitor for this enzyme. For structure-activity analysis purposes, a series of analogs was prepared and their in vitro inhibitory potency evaluated.

  16. Novel Carbonyl Analogs of Tamoxifen: Design, Synthesis, and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Konstantinos M. Kasiotis

    2017-09-01

    Full Text Available Aim of this work was to provide tamoxifen analogs with enhanced estrogen receptor (ER binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known ER inhibitor ICI182,780. Theoretical calculations and molecular modeling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.

  17. Novel Carbonyl Analogues of Tamoxifen: Design, Synthesis, and Biological Evaluation

    Science.gov (United States)

    Kasiotis, Konstantinos M.; Lambrinidis, George; Fokialakis, Nikolas; Tzanetou, Evangelia N.; Mikros, Emmanuel; Haroutounian, Serkos A.

    2017-09-01

    Aim of this work was to provide tamoxifen analogues with enhanced estrogen receptor binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known estrogen receptor inhibitor ICI182,780. Theoretical calculations and molecular modelling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.

  18. Design, Synthesis and Biological Evaluation of Quorum Sensing Modulators

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert

    a solid-phase strategy. Another library in which the amide bond was replaced with a triazole unit was synthesized by means of the copper- and ruthenium-catalyzed azide-alkyne cycloadditions. Finally, the synthesis of compounds with biaryl functionalities in the position of the acyl chain was carried out...... and oxadiazolone products. Optimization afforded a method for the selective synthesis of either oxazolidinones or oxadiazolones and a small compound library was synthesized. Ring-closing metathesis of Abstract iv appropriately situated alkene moieties incorporated in the Petasis 3-CR products yielded five...

  19. The synthesis, characterization and biological evaluation of a stable ...

    African Journals Online (AJOL)

    A convenient one pot synthesis of two novel compounds including a stable phosphorus ylide and an imidazole from electron-poor acetylenes in fairly good yields by the condensation of triphenylphosphine and acetylene derivatives, in the presence of dimethyl thiourea from the 1:1:1 addition reactions is described.

  20. Medicinal Chemistry of Annonaceous Acetogenins: Design, Synthesis, and Biological Evaluation of Novel Analogues

    Directory of Open Access Journals (Sweden)

    Naoto Kojima

    2009-09-01

    Full Text Available Most Annonaceous acetogenins are characterized by between one and three THF ring(s with one or two flanking hydroxyl group(s in the center of a C32/34 fatty acid, and the terminal carboxylic acid is combined with a 2-propanol unit to form an α,β-unsaturated γ-lactone. While many studies have addressed the properties and synthesis of natural acetogenins due to their attractive biological activities and unique structural features, a number of analogues have also been described. This review covers the design, synthesis, and biological evaluation of acetogenin analogues.

  1. Synthesis and biological evaluation of biaryl analogs of antitubulin compounds

    Directory of Open Access Journals (Sweden)

    Camila Santos Suniga Tozatti

    2012-01-01

    Full Text Available This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [³H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site.

  2. Synthesis and biological evaluation of biaryl analogs of antitubulin compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tozatti, Camila Santos Suniga; Khodyuk, Rejane Goncalves Diniz; Silva, Adriano Olimpio da; Santos, Edson dos Anjos dos; Amaral, Marcos Serrou do; Lima, Denis Pires de, E-mail: denis.lima@ufms.br [Centro de Ciencias Exatas e Tecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Hamel, Ernest [Screening Technologies Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, MD (United States)

    2012-07-01

    This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [{sup 3}H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site. (author)

  3. Synthesis and Biological Evaluation of Resveratrol Derivatives as Melanogenesis Inhibitors

    Directory of Open Access Journals (Sweden)

    Qing Liu

    2015-09-01

    Full Text Available Resveratrol (1, a naturally occurring stilbene compound, has been suggested as a potential whitening agent with strong inhibitory activity on melanin synthesis. However, the use of resveratrol in cosmetics has been limited due to its chemical instability and poor bioavailability. Therefore, resveratrol derivatives were prepared to improve bioavailability and anti-melanogenesis activity. Nine resveratrol derivatives including five alkyl ether derivatives with C2H5, C4H9, C5H11, C6H13, and C8H17 (2a–2e and four ester derivatives with CH3, CH=C(CH32, CH(C2H5C4H9, C7H15 (3a–3d were newly synthesized and their effect on melanin synthesis were assessed. All the synthetic derivatives efficiently reduced the melanin content in α-MSH stimulated B16F10 melanoma cells. Further investigation showed that the inhibitory effect of 2a on melanin synthesis was achieved not by the inhibition of tyrosinase activity but by the inhibition of melanogenic enzyme expressions such as tyrosinase and tyrosinase-related protein (TRP-1. Our synthetic resveratrol derivatives have more lipophilic properties than resveratrol by the addition of alkyl or acyl chains to free hydroxyl moiety of resveratrol; thus, they are expected to show better bioavailability in skin application. Therefore, we suggest that our synthetic resveratrol derivatives might be promising candidates for better practical application to skin-whitening cosmetics.

  4. Spirocyclic β-Lactams: Synthesis and Biological Evaluation of Novel Heterocycles

    Science.gov (United States)

    Bari, Shamsher S.; Bhalla, Aman

    β-Lactam rings containing compounds are a group of antibiotics of unparalleled importance in chemotherapy. Considerable effort has been reported in the development of novel, more effective β-lactam compounds as well as their biological evaluation. This article reviews the progress made in the stereoselective synthesis of spiro-β-lactams, a unique class of heterocycles, their biological evaluation, and their applications in various related fields. The introductory paragraph highlights the significance of the β-lactam chemistry and is followed by an overview of monocyclic-, bicyclic-, and tricyclic-β-lactams. The other sections of the article deal with the stereoselective synthesis and biological evaluation of spiro-β-lactams, including their use as synthetic intermediates for β-turn mimics and β-turn nucleators. The potential of spiro-β-lactams as cholesterol absorption inhibitors, β-lactamase inhibitors, and antiviral, antibacterial, and antimicrobial agents has also been described.

  5. Design, Synthesis, and Biological Evaluation of Isothiosemicarbazones with Antimycobacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Novotná, E.; Waisser, K.; Kuneš, J.; Palát, K.; Skálová, L.; Szotáková, B.; Buchta, V.; Stolaříková, J.; Ulmann, V.; Pávová, Marcela; Weber, Jan; Komrsková, J.; Hašková, P.; Vokřál, I.; Wsól, V.

    2017-01-01

    Roč. 350, č. 8 (2017), č. článku e1700020. ISSN 0365-6233 Institutional support: RVO:61388963 Keywords : biological activity * cytotoxicity * isocitrate lyase * isothiosemicarbazone * tuberculosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.994, year: 2016

  6. Synthesis, analysis and biological evaluation of new RGD mimetics

    Czech Academy of Sciences Publication Activity Database

    Balacheva, A. A.; Lambev, M. K.; Pashov, I.; Detcheva, R. L.; Sázelová, Petra; Momekov, G. Ts.; Kašička, Václav; Pajpanova, T. I.; Golovinsky, E. V.

    2017-01-01

    Roč. 49, SI E (2017), s. 7-10 ISSN 0324-1130. [Bulgarian Peptide Symposium /7./. Blagoevgrad, 10.06.2016-12.06.2016] Institutional support: RVO:61388963 Keywords : RGD * biologically active peptides * cytotoxicity Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 0.238, year: 2016

  7. Synthesis and biological evaluation of benzazepine oxazolidinone antibacterials.

    Science.gov (United States)

    Johnson, Paul D; Aristoff, Paul A; Zurenko, Gary E; Schaadt, Ronda D; Yagi, Betty H; Ford, Charles W; Hamel, Judith C; Stapert, Douglas; Moerman, Judy K

    2003-12-01

    Novel benzazepine oxazolidinone antibacterials were synthesized and evaluated against clinically relevant susceptible and resistant organisms. The effect of ring nitrogen position and N-substitution on antibacterial activity is examined.

  8. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Compound 4, i.e., 1,3,4-oxadiazole-2-thione and its corresponding Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme. Furthermore, the targeted compounds were evaluated for their in vitro urease inhibition and ...

  9. Total synthesis and biological evaluation of fluorinated cryptophycins

    Directory of Open Access Journals (Sweden)

    Christine Weiß

    2012-11-01

    Full Text Available Cryptophycins are cytotoxic natural products that exhibit considerable activities even against multi-drug-resistant tumor cell lines. As fluorinated pharmaceuticals have become more and more important during the past decades, fluorine-functionalized cryptophycins were synthesized and evaluated in cell-based cytotoxicity assays. The unit A trifluoromethyl-modified cryptophycin proved to be highly active against KB-3-1 cells and exhibited an IC50 value in the low picomolar range. However, the replacement of the 3-chloro-4-methoxyphenyl-substituent in unit B by a pentafluorophenyl moiety resulted in a significant loss of activity.

  10. Synthesis and biological evaluation of 11' imidazolyl antiprogestins and mesoprogestins.

    Science.gov (United States)

    Nickisch, Klaus; Elger, Walter; Santhamma, Bindu; Garfield, Robert; Killeen, Zachary; Amelkina, Olga; Schneider, Birgitt; Meister, Reinhard

    2014-12-01

    Antiprogestins with a 4' para imidazolylphenyl moiety were synthesized and their biochemical interactions with the progesterone and glucocorticoid receptor were investigated. Depending on the substitution pattern at the 17 position partial progesterone receptor (PR)-agonistic derivatives like compounds EC339 and EC336 or pure antagonists like compound EC317 were obtained. EC317 was investigated in vivo and found to be significantly more potent than RU 486 in cycling and pregnant guinea pigs. For testing the biological action progesterone receptor modulators (PRM), guinea pigs appears as a specific model when compare to pregnant human uterus. This model correlates to human conditions such as softening and widening of the cervix, the elevation of the uterine responsiveness to prostaglandins and oxytocin, and finally to induction of labor. The use of non-pregnant guinea pigs permitted the simultaneous assessment of PR-agonistic and PR-antagonistic properties and their physiological interactions with uterine and vaginal environment. These can histologically be presumed from the presence of estrogen or progesterone dominance in the genital tract tissues. The ovarian histology indicated the effects on ovulation. Corpora lutea in guinea pigs further reflects inhibitory effects of the progesterone-dependent uterine prostaglandin secretion. PRMs are initially synthesized as analogues of RU 486. They represent a heterogeneous group of compounds with different ratios of PR-agonistic and-antagonistic properties. PR-agonistic properties may be essential for uterine anti-proliferative effects. In various clinical studies these were also attributed to RU 486 or Ulipristal [1,2]. Adjusted PR-agonistic PRMs (EC312, EC313) [3] may be more effective in achieving a mitotically resting endometrium and superior uterine tumor inhibition. For the use in termination of pregnancy, progesterone-inhibitory effects are essentially needed. Even minor PR-agonistic properties compromise the

  11. Synthesis, Biological Evaluation, and Pharmacokinetic Study of Novel Liguzinediol Prodrugs

    Directory of Open Access Journals (Sweden)

    Long Chen

    2013-04-01

    Full Text Available Liguzinediol (LZDO ester prodrugs 3–5 were synthesized and evaluated in vitro and in vivo for their potential use in prolonging the half-life of the parent drug LZDO (1a in vivo. Prodrugs 3–5 were found to display a potent positive inotropic effect on the myocardium, without the risk of arrhythmia. Prodrugs 3–5 rapidly underwent enzymatic hydrolysis to release the parent compound LZDO in 1–3 h in rat liver microsomes and rat plasma. The half-life of the parent compound was prolonged after intragastric administration of prodrug 3, which was found to be a superior prodrug candidate for increasing myocardial contractility.

  12. Synthesis, characterization and biological evaluation of some newer carbazole derivatives

    Directory of Open Access Journals (Sweden)

    Sharma Divyanshu

    2014-01-01

    Full Text Available A series of novel 5-((9H-carbazol-9-ylmethyl-N-((substituted phenyl(piperazin-1-ylmethyl-1,3,4-oxadiazol-2-amine (4a-4o derivatives was synthesized by starting with carbazole which on reaction with ethyl choloroacetate yielded ethyl 2-(9H-carbazole-9-ylacetate (1, compound (1 on reaction with semicarbazide followed by cyclisation with sulphuric acid gave 5-((9H-carbazole-9-yl-1,3,4-oxadiazol-2-amine (3 which through Mannich reaction with piperazine and a variety of aromatic aldehydes in the presence of acetic acid yielded the titled compounds (4a-4o. The structures of compounds were characterized by UV, FT-IR, 1H-NMR, MS spectral studies and elemental analysis. All the derivatives were evaluated for their antibacterial, antifungal and anticancer activities. Among the tested compounds 4a, 4d, 4e and 4n exhibited significant antibacterial and antifungal activity while the compounds 4a, 4d, 4k and 4n were found to be active on Human Breast Cancer Cell Line i.e. MCF7.

  13. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  14. Reevaluating synthesis by biology.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2010-06-01

    The two cornerstones of synthetic biology are the introduction of the new technology of chemical DNA synthesis and its subsequent emphasis on the use of standardized biological parts in the construction of genetic systems aimed at eliciting of desired cellular behavior. A number of high-impact applications have been proposed for this technology, notable among them being the biological synthesis of valuable compounds for chemical or pharmaceutical use. To this end, synthetic biologists propose assembling metabolic pathways in toto by combining genes isolated from a variety of sources. While pathway construction is similar to approaches established long ago by Metabolic Engineering, the two methods deviate significantly when it comes to pathway optimization. Synthetic biologists opt for gene-combinatorial methods whereby large numbers of pathways, comprising several combinations of genes from different sources, and their mutants, are evaluated in search for an optimal pathway configuration. Metabolic engineering, on the contrary, aims to optimize pathways by tuning the activity of the intermediate reaction steps. Both, rational methods based on kinetics and regulation, as well as combinatorial methods, typically in this order, are used to this end. We argue that a systematic approach consisting of fine-tuning the properties of individual pathway components, prominently enzymes, is a superior strategy to searches spanning large genetic spaces in engineering optimal microbes for the production of chemical and pharmaceutical products. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Heteroaryl Chalcones: Design, Synthesis, X-ray Crystal Structures and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2013-10-01

    Full Text Available Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a–i containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.

  16. Design, synthesis, and biological evaluation of achiral analogs of duocarmycin SA.

    Science.gov (United States)

    Daniell, Kristen; Stewart, Michelle; Madsen, Erik; Le, Minh; Handl, Heather; Brooks, Natalie; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2005-01-03

    The design, synthesis, as well as biochemical and biological evaluation of two novel achiral analogs of duocarmycin SA (DUMSA), 1 and 2, are described. Like CC-1065 and adozelesin, compounds 1 and 2 covalently reacted with adenine-N3 in AT-rich sequences and led to the formation of DNA strand breaks upon heating. The cytotoxicity of compounds 1 and 2 against human cancer cells (K562, LS174T) was determined using a MTT assay giving IC(50) values in the low nanomolar. Further cytotoxicity screening of compound 2 conducted by the NCI against a panel of 60 different human cancer cell lines indicated that it was particularly active against several solid tumor cells lines derived from the lung, colon, CNS, skin, and breast.

  17. Synthesis and Biological Evaluation of New (−)‐Englerin Analogues

    Science.gov (United States)

    López‐Suárez, Laura; Riesgo, Lorena; Bravo, Fernando; Ransom, Tanya T.

    2016-01-01

    Abstract We report the synthesis and biological evaluation of a series of (−)‐englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier‐to‐synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties. The high selectivity and growth‐inhibitory activity shown by these new derivatives in renal cancer cell lines opens new ways toward the final goal of finding effective drugs for the treatment of renal cell carcinoma (RCC). PMID:27005578

  18. Asymmetric chemoenzymatic synthesis of miconazole and econazole enantiomers. The importance of chirality in their biological evaluation.

    Science.gov (United States)

    Mangas-Sánchez, Juan; Busto, Eduardo; Gotor-Fernández, Vicente; Malpartida, Francisco; Gotor, Vicente

    2011-04-01

    A simple and novel chemoenzymatic route has been applied for the first time in the synthesis of miconazole and econazole single enantiomers. Lipases and oxidoreductases have been tested in stereoselective processes; the best results were attained with oxidoreductases for the introduction of chirality in an adequate intermediate. The behaviors of a series of ketones and racemic alcohols in bioreductions and acetylation procedures, respectively, have been investigated; the best results were found with alcohol dehydrogenases A and T, which allowed the production of (R)-2-chloro-1-(2,4-dichlorophenyl)ethanol in enantiopure form under very mild reaction conditions. Final chemical modifications have been performed in order to isolate the target fungicides miconazole and econazole both as racemates and as single enantiomers. Biological evaluation of the racemates and single enantiomers has shown remarkable differences against the growth of several microorganisms; while (R)-miconazole seemed to account for most of the biological activity of racemic miconazole on all the strains tested, both enantiomers of econazole showed considerable biological activities. In this manner, (R)-econazole showed higher values against Candida krusei , while higher values were observed for (S)-econazole against Cryptococcus neoformans, Penicillium chrysogenum, and Aspergillus niger.

  19. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents.

    Science.gov (United States)

    Hu, Yang; Shen, Yufeng; Wu, Xiaohu; Tu, Xiao; Wang, Gao-Xue

    2018-01-01

    Emergence of multidrug-resistant bacteria causes an urgent need for new generation of antibiotics, which may have a different mechanism of inhibition or killing action from the existing. Here, we report on the design, synthesis, and biological evaluation of thirty-nine coumarin derivatives in order to solve the antibacterial resistance by targeting at the inhibition of biosynthesis pathway of fatty acids. Their antibacterial activities against Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Flavobacterium cloumnare are tested and action mechanism against the key enzyme in bacterial fatty acid synthesis pathway are studied. The results show that compounds 13 and 18 have potent and broad spectrum antimicrobial activity. In addition, 9, 14 and 19 show eminent antimicrobial efficacy toward S. aureus, S. agalactiae, and F. cloumnare. Mechanistically, coumarin derivatives display the antibacterial activity via the control of FabI and FabK function. The structure-activity relationship analysis indicate that the length of linker and imidazole substitute group could significantly influence the antimicrobial activity, as well as the inhibitory activity against FabI and FabK. The structural optimization analysis of coumarin suggest that derivatives 9, 13, 14, 18 and 19 could be a viable way of preventing and controlling bacteria and considered as promising lead compounds for the development of commercial drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Potent oxazoline analog of apratoxin C: Synthesis, biological evaluation, and conformational analysis.

    Science.gov (United States)

    Yoshida, Masahito; Onda, Yuichi; Masuda, Yuichi; Doi, Takayuki

    2016-11-04

    In this research, the synthesis, biological evaluation, and conformational analysis of an apratoxin C oxazoline analog (3) have been demonstrated. The preparation of synthetic key intermediate 9 was achieved using an improved strategy that involves commercially available 3-methylglutaric anhydride (12), an enzymatic enantioselective alcoholysis, and a diastereoselective reduction. The Pro-Dtrina (3,7-dihydroxy-2,5,8-trimethylnonanoic acid) moiety 8 was successfully synthesized in a similar manner as our previously reported synthesis of apratoxin C (1). The cyclization precursor 5 was formed after the coupling of Pro-Dtrina 8 with a known tetrapeptide 7 to afford a linear peptide 6, the formation of an oxazoline, and the removal of the protecting groups. Finally, the macrolactamization of 5 with O-(7-aza-1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU)/N,N-diisopropylethylamine (DIEA) furnished an apratoxin C oxazoline analog (3), which exhibited a potent cytotoxicity against HeLa cells (IC50 value of 22 nM) that was comparable with the cytotoxicity of apratoxin C (1) (IC50 value of 4.2 nM). Conformational analyses of 1 and 3 through NMR experiments showed that oxazoline analog 3 formed a tertiary structure that was similar to the apratoxin C (1) structure in CD3 CN, which provided a probable explanation for their comparable cytotoxicities. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 404-414, 2016. © 2015 Wiley Periodicals, Inc.

  1. Synthesis and biological evaluation of 3,6-dialkylsubstituted-[1,2,4 ...

    Indian Academy of Sciences (India)

    VIJAYENDAR VENEPALLY

    2018-02-16

    Feb 16, 2018 ... Abstract. A series of 3,6-dialkyl-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazole (10) analogues were prepared through multistep synthesis and evaluated them for their antimicrobial and cytotoxic activities. Synthesis of target compounds was carried out using undecenoic acid as starting material, which is the ...

  2. The synthesis, characterization and biological evaluation of a new nitric oxide donor agent

    Directory of Open Access Journals (Sweden)

    Profire Lenuta

    2014-01-01

    Full Text Available The synthesis of a new xanthine nitric oxide donor (TSP-81 has been discussed. The designed compound includes two structural moieties - theophylline (1,3-dimethylxanthine and acetaminophen (4-hydroxyacetanilide linked by the nitric oxide donor alkyl chain as a spacer. The compound has been characterized by microanalysis (CHN, 1H-NMR, 13C-NMR, FT-IR, UV-vis, TG and DTG. The thermal behaviour showed that TSP-81 melts with decomposition, in four steps, the most important ones being the 2nd one (the registered weight loss being 17.6 % and the 3rd one (with a registered weight loss of 30.4 %. The toxicity degree, the anti-inflammatory effect and the ability of releasing nitric oxide of the TSP-81 have also been evaluated. The biological assays established that TSP-81 exhibits enhanced biological properties such as lower toxicity and higher anti-inflammatory effect in reference with theophylline and acetaminophen, the drugs used as parents molecules. The TSP-81 is approximately 2 times more active than theophylline and 4 times more active than acetaminophen in reducing cotton pellet-granuloma formation. Furthermore, the release of nitric oxide (NO appears to have an important contribution to enhancing the anti-inflammatory effect.

  3. Synthesis and biological evaluation of dihydropyrano-[2,3-c]pyrazoles as a new class of PPARγ partial agonists

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Jensen, Jakob Feldthusen; Sørensen, Mikael S.

    2017-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a well-known target for thiazolidinedione antidiabetic drugs. In this paper, we present the synthesis and biological evaluation of a series of dihydropyrano[2,3-c]pyrazole derivatives as a novel family of PPARγ partial agonists. Two analogue...

  4. A new tiazofurin pronucleotide: synthesis and biological evaluation of cyclosaligenyl-tiazofurin monophosphate.

    Science.gov (United States)

    Cappellacci, L; Barboni, G; Franchetti, P; Martini, C; Jayaram, H N; Grifantini, M

    2003-01-01

    Synthesis and biological activities of cyclosaligenyl-tiazofurin monophosphate (CycloSal-TRMP), a new tiazofurin pronucleotide, are reported. CycloSal-TRMP proved to be active in vitro against human myelogenous leukemia K562 cell line and as A1 adenosine receptor agonist.

  5. Microwave-assisted synthesis and biological evaluation of novel uracil derivatives inhibiting human thymidine phosphorylase.

    Science.gov (United States)

    Corelli, Federico; Botta, Maurizio; Lossani, Andrea; Pasquini, Serena; Spadari, Silvio; Focher, Federico

    2004-12-01

    New 5-chloro-6-substituted-uracil derivatives have been prepared by microwave assisted-synthesis and tested in vitro as thymidine phosphorylase inhibitors. One of these compounds showed potent inhibitory activity, with an IC50 value in the submicromolar range. The biological activity of the new compounds is discussed in terms of structure-activity relationship.

  6. Synthesis and biological evaluation of some novel 1-substituted fentanyl analogs in Swiss albino mice

    Directory of Open Access Journals (Sweden)

    Yadav Shiv Kumar

    2014-06-01

    Full Text Available Fentanyl [N-(1-phenethyl-4-piperidinylpropionanilide] is a potent opioid analgesic agent, but a has narrow therapeutic index. We reported earlier on the synthesis and bioefficacy of fentanyl and its 1-substituted analogs (1-4 in mice. Here we report the synthesis and biological evaluation of four additional analogs, viz. N-isopropyl-3-(4-(N-phenylpropionamidopiperidin-1-ylpropanamide (5, N-tbutyl- 3-(4-(N-phenylpropionamidopiperidin-1-ylpropanamide (6, isopropyl 2-[4-(N-phenylpropionamidopiperidin-1-yl]propionate (7 and t-butyl 2-[4-(N-phenylpropionamidopiperidin-1-yl]propionate (8. The median lethal dose (LD50 determined by intravenous, intraperitoneal and oral routes suggests these analogs to be comparatively less toxic than fentanyl. On the basis of observational assessment on spontaneous activities of the central, peripheral, and autonomic nervous systems, all the analogs were found to be similar to fentanyl. Naloxone hydrochloride abolished the neurotoxic effects of these analogs, thereby ascertaining their opioid receptor-mediated effects. All the analogs displayed significant analgesic effects, measured by formalin-induced hind paw licking and tail immersion tests at their respective median effective dose (ED50. They also exhibited 8-12 fold increase in therapeutic index over fentanyl. However, 5 and 6 alone produced lower ED50 (20.5 and 21.0 μg/kg, respectively and higher potency ratio (1.37 and 1.33, respectively compared to fentanyl. They could thus be considered for further studies on pain management

  7. Design, Synthesis, and Biological Evaluation of Vanillin Hydroxamic Acid Derivatives as Novel Peptide Deformylase Inhibitors.

    Science.gov (United States)

    Gao, Jian; Qiu, Shengzhi; Liang, Li; Hao, Zhixiang; Zhou, Qianqian; Wang, Fanfan; Mou, Jie; Lin, Qisi

    2018-01-01

    Infectious disease is increasingly hampering human health, which challenge the discovery of new antibacterial target. Peptide deformylase (PDF), a metalloenzyme responsible for catalyzing the removal of the N-formyl group from nascent proteins, was considered as an important target in antibacterial drug discovery. Reported here are the design, synthesis and biological evaluation of vanillin hydroxamic acid derivatives. Analysis of the structure-activity relationships lead to the discovery of compound 8, which exhibits promising antibacterial activity against Escherichia coli, Staphylococcus aureus, Aspergillus oryzae, and Aspergillus foetidus with the MIC value of 0.32 µg/ml, 0.32 µg/ml, 0.16 µg/ml and 0.16 µg/ml, respectively. Furthermore, molecular docking study was applied to elucidate binding interaction between compound 8 and PDF, which indicate that compound 8 not only shares the same binding pocket with actinonin, but also has a similar binding pattern. In silico pharmacokinetic and toxicity prediction studies also suggested that compound 8 has a relatively high drug score of 0.80, and has no risk of toxicity. Compound 8 might represent a promising scaffold for the further development of novel antibacterial drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  9. Synthesis of 2-18F-fluoroisonicotinic acid hydrazide and initial biological evaluation

    International Nuclear Information System (INIS)

    Al Jammaz, I.; Abu Durrah, B.; Amartey, J.

    2002-01-01

    Isonicotinic acid hydrazide (isonizide) is one of the most effective agents in tuberculosis therapy. This agent rapidly permeates the bacterial cell membrane via passive diffusion. The central nervous system tuberculosis is being observed in patients who are intravenous drug abusers, with AIDS and AIDS-related complex. Therefore, radiopharmaceuticals for diagnosis of tuberculosis may become important. Very few attempts have been made to develop isonicotinic acid and derivatives for the same application. As part of an on-going research effort to develop radiotracers for fluorination of proteins and peptides via prosthetic groups approach, we have synthesized ethyl 2-[18F]-fluoroisonicotinate and 2-[18F]-fluoroisonicotinic acid hydrazide. The synthetic approach starts from treatment of ethyl-2-(trimethylammonium)-isonicotinate precursor using no-carrier-added radiofluoride produced by the 18O(p,n)18F nuclear reaction on 18O-enriched (95 %) water and Kryptofix 222 as nucleophilic catalyst in anhydrous acetonitrile at 100 0 C, gave ethyl 2-[18F]-fluoroisonicotinate in greater than 90% radiochemical yield (decay corrected) within two minutes reaction time. The ether extract of fluorinated ethylester evaporated and residue was re-dissolved in ethanol and treated with hydrazine for 15 minutes in boiling water to obtain 2-[18F]-fluoroisonicotinic acid hydrazide in excellent radiochemical yield. The overall radiochemical yield was greater that 70% with total synthesis time of approximately one hour. This synthetic approach hold considerable promise as a rapid and simple method for fluorination of radiopharmaceuticals of high radiochemical yield. Biological evaluation was performed in normal mice. The data obtained shown that the lungs appear to retain some activity that someone may presume that such radiotracer maybe useful in detection of tuberculosis

  10. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues.

    Science.gov (United States)

    Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia

    2017-11-01

    A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.

  11. Synthetic Studies on Quassinoids: Total Synthesis and Biological Evaluation of (+)-Des-D-chaparrinone.

    Science.gov (United States)

    Grieco, Paul A.; Speake, Jason D.

    1998-08-21

    A total synthesis of des-D-chaparrinone (2), which lacks the ring D delta-lactone of (-)-chaparrinone (1) has been developed. The synthesis commences with the known, readily available tricyclic ketone 3 (R = Me). Elaboration of the configuration at C(5) followed by resolution of 6 employing 2(R),3(R)-2,3-butanediol gave rise to 9. Installation of the ring C functionality provided 15 which was transformed into tricyclic diketone 25. Introduction of the ring A functional groups afforded 29, which upon exposure to aluminum trichloride and sodium iodide gave rise directly to (+)-des-D-chaparrinone (2). Biological studies revealed that (+)-2 was devoid of any solid tumor activity.

  12. Dimeric ligands for GPCRs involved in human reproduction : synthesis and biological evaluation

    NARCIS (Netherlands)

    Bonger, Kimberly Michelle

    2008-01-01

    Dimeric ligands for G-protein coupled receptors that are involved in human reproduction, namely the gonadotropin releasing hormone receptor, the luteinizing hormone receptor and the follicle-stimulating hormone receptor, were synthesized and biologically evaluated.

  13. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Biological synthesis and characterization of silver nanoparticles using. Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. PARAMASIVAM PREMASUDHA1, MUDILI VENKATARAMANA2,∗, MARRIAPPAN ABIRAMI3,. PERIYASAMY VANATHI4, KADIRVELU KRISHNA2 and RAMASAMY ...

  14. Synthesis, biological evaluation, QSAR analysis, and molecular docking of chalcone derivatives for antimalarial activity

    Directory of Open Access Journals (Sweden)

    Jufrizal Syahri

    2017-01-01

    Full Text Available Objective: To synthesize chalcone derivatives and investigate their antimalarial activity toward chloroquine-sensitive Plasmodium falciparum 3D7 (Pf3D7 strain; to develop quantitative structureactivity relationships (QSAR model to estimate IC50 values for biological activity of antimalarial and compared to experimental measurement; and to determine the binding interactions of the most active compounds with targeting P. falciparum dihydrofolate reductase-thymidylate synthase using molecular docking simulation. Methods: Seven chalcone derivatives have been synthesized from substituted acetophenone and substituted benzaldehyde in ethanol with the presence of bases catalysis at reflux condition. The QSAR analysis was conducted by using Gaussian 09 software to predict IC50 value for antimalarial activity. The in vitro test was evaluated against the chloroquine-sensitive Pf3D7 strain. Finally, the docking studies were performed with the CDOCKER protocol under the receptor-ligand interaction section in Discovery Studio® 3.1 (Accelrys, Inc., San Diego, USA. Results: Among the synthesized chalcone, a prenylated chalcone 5c and an allylated chalcones 10a showed the best IC 50 values of 1.08 and 1.73 μg/mL respectively against Pf3D7 strain (1.37 and 2.33 μg/mL based on QSAR analysis. Comparison between the prediction of IC50 value generated from the QSAR and the outcome from an in vitro assay showed a similar result as seen from the r2 value (r2 = 0.99. The most active compound 5c was employed in the docking simulation to determine the potential binding interactions with active sites of P. falciparum dihydrofolate reductase-thymidylate synthase (protein data bank ID: 1J3I. The docking simulation study showed 5c bind well with Ala16, Ser108, Ile164, Trp48, and Phe58 which are the crucial interactions that could possibly interrupt the sequential catalysis reactions in the thymidylate cycle and subsequently prevent deoxythymidine monophosphate production

  15. Synthesis and Biological Evaluation of Novel 3-Alkylpyridine Marine Alkaloid Analogs with Promising Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Alessandra Mirtes Marques Neves Gonçalves

    2014-07-01

    Full Text Available Cancer continues to be one of the most important health problems worldwide, and the identification of novel drugs and treatments to address this disease is urgent. During recent years, marine organisms have proven to be a promising source of new compounds with action against tumoral cell lines. Here, we describe the synthesis and anticancer activity of eight new 3-alkylpyridine alkaloid (3-APA analogs in four steps and with good yields. The key step for the synthesis of these compounds is a Williamson etherification under phase-transfer conditions. We investigated the influence of the length of the alkyl chain attached to position 3 of the pyridine ring on the cytotoxicity of these compounds. Biological assays demonstrated that compounds with an alkyl chain of ten carbon atoms (4c and 5c were the most active against two tumoral cell lines: RKO-AS-45-1 and HeLa. Micronucleus and TUNEL assays showed that both compounds are mutagenic and induce apoptosis. In addition, Compound 5c altered the cellular actin cytoskeleton in RKO-AS-45-1 cells. The results suggest that Compounds 4c and 5c may be novel prototype anticancer agents.

  16. Synthesis and biological evaluation of flexible and conformationally constrained LpxC inhibitors

    DEFF Research Database (Denmark)

    Löppenberg, Marius; Müller, Hannes; Pulina, Carla

    2013-01-01

    , conformationally constrained C-glycosidic as well as open chained hydroxamic acids with a defined stereochemistry were prepared. Diversity was introduced by performing C–C coupling reactions like the Sonogashira and Suzuki cross-coupling reactions. The biological evaluation of the synthesized compounds revealed...

  17. Synthesis and biological evaluation of dihydropyrano-[2,3-c]pyrazoles as a new class of PPARγ partial agonists.

    Directory of Open Access Journals (Sweden)

    Katrine Qvortrup

    Full Text Available Peroxisome proliferator-activated receptor γ (PPARγ is a well-known target for thiazolidinedione antidiabetic drugs. In this paper, we present the synthesis and biological evaluation of a series of dihydropyrano[2,3-c]pyrazole derivatives as a novel family of PPARγ partial agonists. Two analogues were found to display high affinity for PPARγ with potencies in the micro molar range. Both of these hits were selective against PPARγ, since no activity was measured when tested against PPARα, PPARδ and RXRα. In addition, a novel modelling approach based on multiple individual flexible alignments was developed for the identification of ligand binding interactions in PPARγ. In combination with cell-based transactivation experiments, the flexible alignment model provides an excellent analytical tool to evaluate and visualize the effect of ligand chemical structure with respect to receptor binding mode and biological activity.

  18. PASS-predicted design, synthesis and biological evaluation of cyclic nitrones as nootropics.

    Science.gov (United States)

    Marwaha, Alka; Goel, R K; Mahajan, Mohinder P

    2007-09-15

    Out of 400 virtually designed imidazoline N-oxides, five cyclic nitrones were selected on the basis of PASS prediction as potent nootropics and were evaluated for their biological activities in albino mice. The selected N-alkyl and aryl-substituted nitrones were found to be excellent nootropics. A series of lead compounds acting as cognition enhancers have been provided, which can be further exploited in search of such New Chemical Entities (NCEs).

  19. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Oxadiazole-Stilbene Hybrids against Phytopathogenic Fungi

    Science.gov (United States)

    Jian, Weilin; He, Daohang; Song, Shaoyun

    2016-08-01

    Natural stilbenes (especially resveratrol) play important roles in plant protection by acting as both constitutive and inducible defenses. However, their exogenous applications on crops as fungicidal agents are challenged by their oxidative degradation and limited availability. In this study, a new class of resveratrol-inspired oxadiazole-stilbene hybrids was synthesized via Wittig-Horner reaction. Bioassay results indicated that some of the compounds exhibited potent fungicidal activity against Botrytis cinerea in vitro. Among these stilbene hybrids, compounds 11 showed promising inhibitory activity with the EC50 value of 144.6 μg/mL, which was superior to that of resveratrol (315.6 μg/mL). Remarkably, the considerably abnormal mycelial morphology was observed in the presence of compound 11. The inhibitory profile was further proposed by homology modeling and molecular docking studies, which showed the possible interaction of resveratrol and oxadiazole-stilbene hybrids with the cytochrome P450-dependent sterol 14α-demethylase from B. cinerea (BcCYP51) for the first time. Taken together, these results would provide new insights into the fungicidal mechanism of stilbenes, as well as an important clue for biology-oriented synthesis of stilbene hybrids with improved bioactivity against plant pathogenic fungi in crop protection.

  20. Gold–Pluronic core–shell nanoparticles: synthesis, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Simon, Timea; Boca, Sanda; Biro, Dominic; Baldeck, Patrice; Astilean, Simion

    2013-01-01

    This study presents the synthesis of gold–Pluronic core–shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9–10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold–Pluronic core–shell nanoparticles with a mean hydrodynamic diameter of ∼35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV–Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold–Pluronic core–shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold–Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold–Pluronic core–shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  1. Synthesis and biological evaluation of porphyrin-polyamine conjugates as potential agents in photodynamic therapy

    International Nuclear Information System (INIS)

    Lamarche, Francois

    2004-01-01

    The synthesis of photosensitizers that specifically recognize tumoral cells constitutes a challenging step in the field of photodynamic therapy. To this end, we designed a new class of porphyrins linked to natural polyamines (spermidine, spermine). As a first step, we synthesized para and ortho-carboxy-propyl-oxy-phenyl-tritolyl-porphyrins bearing spermidine or spermine. Then, we designed two precursors, N4-aminobutyl-spermidine-Boc2 and N4-aminobutyl-spermine-Boc3. These derivatives have been fixed on carboxy-porphyrins, protoporphyrin IX and chlorin e6. These new compounds have been characterized by MALDI spectrometry, UV-Visible and 1 H NMR spectroscopy. They have been found to produce singlet oxygen. Biological activity study of these photosensitizers has been realized on K562 cell line, irradiated with fluorescent bulbs. In vitro tests of these porphyrins have shown their photo-cytotoxic activity and protoporphyrins-polyamines have been able to trigger early apoptotic events. Finally, preliminary results obtained with chlorin e6-polyamines, irradiated with red light, seem to show that these structures are good candidates for an application in PDT. (author) [fr

  2. Synthesis of New Indole Derivatives Structurally Related to Donepezil and Their Biological Evaluation as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Samar I. Faggal

    2012-04-01

    Full Text Available New series of indole derivatives analogous to donepezil, a well known anti-Alzheimer and acetylcholinesterase inhibitor drug, was synthesized. A full chemical characterization of the new compounds is provided. Biological evaluation of the new compounds as acetylcholinesterase inhibitors was performed. Most of the compounds were found to have potent acetylcholinesterase inhibitor activity compared to donepezil as standard. The compound 1-(2-(4-(2-fluorobenzyl piperazin-1-ylacetylindoline-2,3-dione (IIId was found to be the most potent.

  3. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072 ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.686, year: 2015

  4. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    Science.gov (United States)

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Synthesis, biological evaluation, and docking studies of gigantol analogs as calmodulin inhibitors.

    Science.gov (United States)

    Reyes-Ramírez, Adelfo; Leyte-Lugo, Martha; Figueroa, Mario; Serrano-Alba, Trinidad; González-Andrade, Martín; Mata, Rachel

    2011-07-01

    Several analogs of gigantol (1) were synthesized to evaluate their effect on the complexes Ca(2+)-calmodulin (CaM) and Ca(2+)-CaM-CaM sensitive phosphodiesterase 1 (PDE1). The compounds belong to four structural groups including, 1,2-diphenylethanes (2-11), diphenylmethanes (13-15), 1,3-diphenylpropenones (16-18), and 1,3-diphenylpropanes (20-22). In vitro enzymatic studies showed that all compounds except 11 inhibited the complex Ca(2+)-CaM-PDE1 with IC(50) values ranging from 9 to 146 μM. On the other hand, all analogs but 11, 12 and 15 quenched the extrinsic fluorescence of the CaM biosensor hCaM-M124C-mBBr to different extent, then revealing different affinities to CaM; their affinity constants (K(m)) values were in the range of 3-80 μM. Molecular modeling studies indicated that all these compounds bound to CaM at the same site that the classical inhibitors trifluoperazine (TFP) and chlorpromazine (CPZ). Some of these analogs could be worthy candidates for developing new anti-tumor, local anesthetics, antidepressants, antipsychotic, or smooth muscle relaxant drugs, with anti-CaM properties due to their good affinity to CaM and the straightforwardness of their synthesis. In addition they could be valuable tools for the study of Ca(2+)-CaM functions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Synthesis and preliminary biological evaluation of beta-carotene and retinoic acid oxidation products.

    Science.gov (United States)

    Kithsiri Wijeratne, E M; Liu, Manping X; Kantipudi, Narendra B; Brochini, Claudia B; Leslie Gunatilaka, A A; Canfield, Louise M

    2006-12-01

    Synthesis of the beta-carotene oxidation product, 2,3-dihydro-5,8-endoperoxy-beta-apo-carotene-13-one (1) was achieved in six steps starting from beta-ionone. Photo-oxygenation of all trans-retinoic acid (8) and 13-cis-retinoic acid (9) produced a mixture of 5S*,8S*-epidioxy-5,8-dihydroretinoic acid (10) and 13-cis-5S*,8S*-epidioxy-5,8-dihydroretinoic acid (11). Methylation of the crude photo-oxygenation mixture afforded the corresponding methyl esters 12 and 13, respectively, both of which underwent ready aerial oxidation yielding hitherto unknown oxidation products of retinoic acid identified as methyl 5S*,8S*-epidioxy-9,10beta-epoxy-5,8,9,10-tetrahydroretinoate (14) and methyl 13-cis-5S*,8S*-epidioxy-9,10beta-epoxy-5,8,9,10-tetrahydroretinoate (15). Evaluation of 1, all trans-retinoic acid (8), 13-cis-retinoic acid (9), and the photo-oxygenation products 10-15 in a panel of five cancer cell lines showed 1 to be inactive and that 11 is significantly cytotoxic compared with the other retinoic acid analogs suggesting the requirement of the carboxylic acid moiety and the cis-geometry of the 13(14) double bond for cytotoxic activity.

  7. Design, Synthesis, and Biological Evaluation of 1,2-Dihydroisoquinolines as HIV-1 Integrase Inhibitors.

    Science.gov (United States)

    Tandon, Vibha; Urvashi; Yadav, Pooja; Sur, Souvik; Abbat, Sheenu; Tiwari, Vinod; Hewer, Raymond; Papathanasopoulos, Maria A; Raja, Rameez; Banerjea, Akhil C; Verma, Akhilesh K; Kukreti, Shrikant; Bharatam, Prasad V

    2015-10-08

    6-Endo-dig-cyclization is an efficient method for the synthesis of 1,2-dihydroisoquinolines. We have synthesized few 1,2-dihydroisoquinolines having different functionality at the C-1, C-3, C-7, and N-2 positions for evaluation against HIV-1 integrase (HIV1-IN) inhibitory activity. A direct nitro-Mannich condensation of o-alkynylaldimines and dual activation of o-alkynyl aldehydes by inexpensive cobalt chloride yielded desired compounds. Out of 24 compounds, 4m and 6c came out as potent integrase inhibitors in in vitro strand transfer (ST) assay, with IC50 value of 0.7 and 0.8 μM, respectively. Molecular docking of these compounds in integrase revealed strong interaction between metal and ligands, which stabilizes the enzyme-inhibitor complex. The ten most active compounds were subjected to antiviral assay. Out of those, 6c reduced the level of p24 viral antigen by 91%, which is comparable to RAL in antiviral assay. Interestingly, these compounds showed similar ST inhibitory activity in G140S mutant, suggesting they can act against resistant strains.

  8. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents.

    Science.gov (United States)

    Elizondo-Jimenez, Silvia; Moreno-Herrera, Antonio; Reyes-Olivares, Rogelio; Dorantes-Gonzalez, Edith; Nogueda-Torres, Benjamín; Oliveira, Eduardo A Gamosa de; Romeiro, Nelilma C; Lima, Lidia M; Palos, Isidro; Rivera, Gildardo

    2017-01-01

    Chagas disease is a public health problem caused by Trypanosoma cruzi. Cruzain is a pharmacological target for designing a new drug against this parasite. Hydrazone and Nacylhydrazone derivatives have been traditionally associated as potential Cruzain inhibitors. Additionally, benzenesulfonyl derivatives show trypanocidal activity. Therefore, in this study, the combination of both structures has been taken into account for drug design. Seven benzenesulfonylhydrazone (BS-H) and seven N-propionyl benzenesulfonylhydrazone (BS-NAH) derivatives were synthetized and elucidated by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis. All compounds were evaluated biologically in vitro against two strains of Trypanosoma cruzi (NINOA and INC-5), which are endemic in Mexico, and compared with the reference drugs nifurtimox and benznidazole. In order to gain insight into the putative molecular origin of the trypanocidal properties of these derivatives, docking studies were carried out with Cruzain. Compounds 4 and 6 (BS-H) and 10, 12-14 (BS-NAH) showed the best biological activity against NINOA and INC-5 strains, respectively. Compound 13 was the most potent trypanocidal compound showing a LC50 of 0.06 µM against INC-5 strain. However, compound 4 showed the best activity against both strains (LC50 activity. Benzenesulfonyl and N-propionyl benzenesulfonyl hydrazone derivatives are good options for developing new trypanocidal agents. Particularly, compound 4 could be considered a lead compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents.

    Science.gov (United States)

    El Shehry, Mohamed F; Ghorab, Mostafa M; Abbas, Samir Y; Fayed, Eman A; Shedid, Said A; Ammar, Yousry A

    2018-01-01

    In an attempt for development of new antimicrobial agents, three series of quinoline derivatives bearing pyrazole moiety have been synthesized. The first series was synthesized through the synthesis of 4-(quinolin-2-yloxy)benzaldehyde and 4-(quinolin-2-yloxy)acetophenone and then treatment with ketone or aldehyde derivatives to afford the corresponding chalcones. Cyclization of the latter chalcones with hydrazine derivatives led to the formation of new pyrazoline derivatives. The second series was synthesized via the synthesis of 2-hydrazinylquinoline and then treatment with formylpyrazoles to afford the corresponding hydrazonyl pyrazole derivatives. The third series was synthesized through the treatment of 2-hydrazinylquinoline with ethoxyethylidene, dithioacetal and arylidene derivatives to afford the corresponding pyrazole derivatives. The synthesized compounds were evaluated for their expected antibacterial and antifungal activities; where, the majority of these compounds showed potent antibacterial and antifungal activities against the tested strains of bacteria and fungi. Pyrazole derivative 13b showed better results when compared with the reference drugs as revealed from their MIC values (0.12-0.98 μg/mL). The pyrazole derivative 13b showed fourfold potency of gentamycin in inhibiting the growth of S. flexneri (MIC 0.12 μg/mL). Also, compound 13b showed fourfold potency of amphotericin B in inhibiting the growth of A. clavatus (MIC 0.49 μg/mL) and C. albicans (MIC 0.12 μg/mL), respectively. The same compound showed twofold potency of gentamycin in inhibiting the growth of P. vulgaris (MIC 0.98 μg/mL), equipotent to the ampicillin and amphotericin B in inhibiting the growth of S. epidermidis (MIC 0.49 μg/mL), A. fumigatus (MIC 0.98 μg/mL), respectively. Thus, these studies suggest that quinoline derivatives bearing pyrazole moiety are interesting scaffolds for the development of novel antibacterial and antifungal agents. Copyright © 2017

  10. Discovery and optimization of ATX inhibitors via modeling, synthesis and biological evaluation.

    Science.gov (United States)

    Balupuri, Anand; Lee, Myeong Hwi; Chae, Sangeun; Jung, Eunmi; Yoon, Woosub; Kim, Yunki; Son, So Jung; Ryu, Jeonghee; Kang, Dae-Hyuck; Yang, Young-Jae; You, Ji-Na; Kwon, Hyunjin; Jeong, Jong-Woo; Koo, Tae-Sung; Lee, Dae-Yon; Kang, Nam Sook

    2018-02-17

    Autotaxin (ATX) is a potential target for the treatment of various cancers. A new series of ATX inhibitors was rationally designed and synthesized based on our previous study. Biological evaluation and structure-activity relationship (SAR) of this series are discussed. Among fourteen synthesized derivatives, six compounds (2, 3, 4, 12, 13 and 14) exhibited enhanced ATX inhibitory activities with IC 50 values in the low nanomolar range. Molecular interactions of all the synthesized compounds within the active site of ATX were studied through molecular docking studies. Herein, we describe our lead optimization efforts that resulted in the identification of a potent ATX inhibitor (compound 4 with IC 50  = 1.23 nM, FS-3 and 2.18 nM, bis-pNPP). Furthermore, pharmacokinetic properties of this most promising compound are profiled. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Synthesis and Biological Evaluation of Polar Functionalities Containing Nitrodihydroimidazooxazoles as Anti-TB Agents.

    Science.gov (United States)

    Yempalla, Kushalava Reddy; Munagala, Gurunadham; Singh, Samsher; Kour, Gurleen; Sharma, Shweta; Chib, Reena; Kumar, Sunil; Wazir, Priya; Singh, G D; Raina, Sushil; Bharate, Sonali S; Khan, Inshad Ali; Vishwakarma, Ram A; Singh, Parvinder Pal

    2015-10-08

    Novel polar functionalities containing 6-nitro-2,3-dihydroimidazooxazole (NHIO) analogues were synthesized to produce a compound with enhanced solubility. Polar functionalities including sulfonyl, uridyl, and thiouridyl-bearing NHIO analogues were synthesized and evaluated against Mycobacterium tuberculosis (MTB) H37Rv. The aqueous solubility of compounds with MIC values ≤0.5 μg/mL were tested, and six compounds showed enhanced aqueous solubility. The best six compounds were further tested against resistant (Rif(R) and MDR) and dormant strains of MTB and tested for cytotoxicity in HepG2 cell line. Based on its overall in vitro characteristics and solubility profile, compound 6d was further shown to possess high microsomal stability, solubility under all tested biological conditions (PBS, SGF and SIF), and favorable oral in vivo pharmacokinetics and in vivo efficacy.

  12. Design, synthesis and biological evaluation of lapachol derivatives possessing indole scaffolds as topoisomerase I inhibitors.

    Science.gov (United States)

    Zhang, Chong; Qu, Yan; Niu, Bingxuan

    2016-11-15

    A series of novel lapachol derivatives possessing indole scaffolds was designed and synthesized. The in vitro anti-proliferative activity of these novel compounds was evaluated in Eca109 and Hela cell lines. Almost all the tested compounds showed manifested potent inhibitory activity against the two tested cancer cell lines. Topo I-mediated DNA relaxation activity indicated that these novel compounds have potent Topoisomerase I inhibition activity. The most potent compounds 4n and 4k demonstrated more cytotoxicity than camptothecin and was comparable to camptothecin in inhibitory activities on Topoisomerase I in our biological assay. In addition, the Hoechst 33342 staining method also showed that the complex can induce Hela cell apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Synthesis, biological evaluation, and structure-activity relationship of clonazepam, meclonazepam, and 1,4-benzodiazepine compounds with schistosomicidal activity.

    Science.gov (United States)

    Menezes, Carla M S; Rivera, Gildardo; Alves, Marina A; do Amaral, Daniel N; Thibaut, Jean Pierre B; Noël, François; Barreiro, Eliezer J; Lima, Lídia M

    2012-06-01

    The inherent morbidity and mortality caused by schistosomiasis is a serious public health problem in developing countries. Praziquantel is the only drug in therapeutic use, leading to a permanent risk of parasite resistance. In search for new schistosomicidal drugs, meclonazepam, the 3-methyl-derivative of clonazepam, is still considered an interesting lead-candidate because it has a proven schistosomicidal effect in humans but adverse effects on the central nervous system did not allow its clinical use. Herein, the synthesis, in vitro biological evaluation, and molecular modeling of clonazepam, meclonazepam, and analogues are reported to establish the first structure-activity relationship for schistosomicidal benzodiazepines. Our findings indicate that the amide moiety [N(1) H-C(2) (=O)] is the principal pharmacophoric unit of 1,4-benzodiazepine schistosomicidal compounds and that substitution on the amide nitrogen atom (N(1) position) is not tolerated. © 2012 John Wiley & Sons A/S.

  14. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity.

    Science.gov (United States)

    Martins, Filomena; Santos, Susana; Ventura, Cristina; Elvas-Leitão, Ruben; Santos, Lídia; Vitorino, Susana; Reis, Marina; Miranda, Vanessa; Correia, Henrique F; Aires-de-Sousa, João; Kovalishyn, Vasyl; Latino, Diogo A R S; Ramos, Jorge; Viveiros, Miguel

    2014-06-23

    The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds 1, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC ≤ 0.28 μM), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (i.e., 6.9 vs. 43.8 μM). All compounds were ineffective against H37RvINH (ΔkatG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Design, Synthesis, and Biological Evaluation of New Peptide Analogues as Selective COX-2 Inhibitors.

    Science.gov (United States)

    Ahmaditaba, Mohammad A; Shahosseini, Soraya; Daraei, Bahram; Zarghi, Afshin; Houshdar Tehrani, Mohammad H

    2017-10-01

    A new class of peptide derivatives possessing SO 2 Me and N 3 pharmacophores at the para position of a phenyl ring bound to different aromatic amino acids were synthesized based on solid-phase synthesis methodology, and evaluated as selective cyclooxygenase-2 (COX-2) inhibitors. One of the analogues, i.e., compound 2a as the representative of this series, was recognized as the highest selective COX-2 inhibitor with a COX-2 selectivity index of >500. The structure-activity relationships (SARs) acquired indicated that compound 2a containing a 4-(methylsulfonyl)benzoyl group as a pharmacophore and tyrosine as a ring bearing amino acid in the second position and glutamic acid as the C-terminal amino acid can give the essential geometry to provide selective COX-2 inhibitory activity. Antiproliferative activity of the synthesized peptides (1a-7b) was also determined against four different human cancer cell lines, including MCF-7, HepG2, A549, and HeLa. According to our results, A549, HepG2, and MCF7 seemed to be more sensitive cell lines than HeLa cells encountering these compounds, which gave inhibitory action with IC 50 values from 4.8 to 64.4 µM. In this regard, compounds 3a and 2b displayed the best inhibitory activity against the cell lines. Moreover, a good correlation was observed between the antiproliferative potency and the COX-2 inhibitory activity of compounds 1a, 2a, 2b, and 5b. Such findings suggest that one of the mechanism of anticancer activity of these peptides may be through the COX-2 inhibitory action. © 2017 Deutsche Pharmazeutische Gesellschaft.

  16. Synthesis and biological evaluation of novel imidazolidine derivatives as candidates to schistosomicidal agents

    Directory of Open Access Journals (Sweden)

    Thiago José Matos-Rocha

    Full Text Available ABSTRACT Introduction: Schistosomiasis is an infectious parasitic disease caused by trematodes of the genus Schistosoma, which threatens at least 258 million people worldwide and its control is dependent on a single drug, praziquantel. The aim of this study was to evaluate the anti-Schistosoma mansoni activity in vitro of novel imidazolidine derivatives. Material and methods: We synthesized two novel imidazolidine derivatives: (LPSF/PTS10 (Z-1-(2-chloro-6-fluorobenzyl-4-(4-dimethylaminobenzylidene-5-thioxoimidazolidin-2-one and (LPSF/PTS23 (Z-1-(2-chloro-6-fluoro-benzyl-5-thioxo-4-(2,4,6-trimethoxy-benzylidene-imidazolidin-2-one. The structures of two compounds were determined by spectroscopic methods. During the biological assays, parameters such as motility, oviposition, mortality and analysis by Scanning Electron Microscopy were performed. Results: LPSF/PTS10 and LPSF/PTS23 were considered to be active in the separation of coupled pairs, mortality and to decrease the motor activity. In addition, LPSF/PTS23 induced ultrastructural alterations in worms, after 24 h of contact, causing extensive erosion over the entire body of the worms. Conclusion: The imidazolidine derivatives containing the trimetoxy and benzylidene halogens showed promising in vitro schistosomicidal activity.

  17. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  18. Solid-phase synthesis and biological evaluation of a combinatorial library of philanthotoxin analogues

    DEFF Research Database (Denmark)

    Strømgaard, K; Brier, T J; Andersen, K

    2000-01-01

    The modular structure of philanthotoxins was exploited for construction of the first combinatorial library of these compounds using solid-phase parallel synthesis. (S)-Tyrosine and (S)-3-hydroxyphenylalanine were used as amino acid components, spermine, 1,12-dodecanediamine, and 4,9-dioxa-1,12-do...

  19. Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified d-phenylalanine residues

    NARCIS (Netherlands)

    Knaap, M. van der; Engels, E.; Busscher, H.J.; Otero, J.M.; Llamas-Saiz, A.L.; Raaij, M.J. van; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2009-01-01

    The synthesis of new analogues of the cationic antimicrobial peptide gramicidin S, having a modified d-phenylalanine residue, their antibacterial properties against several Gram positive and negative strains, as well as their hemolytic activity is reported. © 2009 Elsevier Ltd. All rights reserved.

  20. Synthesis and biological evaluation of new salicylate macrolactones from anacardic acids

    Energy Technology Data Exchange (ETDEWEB)

    Logrado, Lucio P.L.; Santos, Maria Lucilia dos [Brasilia Univ., DF (Brazil). Inst. de Quimica. Lab. de Isolamento e Transformacao de Moleculas Organicas]. E-mail: mlsantos@unb.br; Silveira, Damaris [Brasilia Univ., DF (Brazil). Faculdade de Ciencias da Saude; Romeiro, Luiz A.S. [Universidade Catolica de Brasilia, Taguatinga, DF (Brazil). Nucleo de Quimica Bioorganica e Medicinal; Moraes, Manoel O. de; Cavalcanti, Bruno C.; Costa-Lotufo, Leticia V.; Pessoa, Claudia do O [Ceara Univ., Fortaleza, CE (Brazil). Lab. de Oncologia Experimental

    2005-11-15

    onnection with our ongoing investigation in the search for new bioactive compounds using non-isoprenoid phenolic lipids from Anacardium occidentale as starting material, we describe the synthesis and cytotoxicity screening of some novel salicylate macrolactones prepared from anacardic acids, the major constituents of natural cashew nut-shell liquid (CNSL). (author)

  1. Synthesis and Biological Evaluation of Sulfonamide 1,3-Thiazole Azo Dyes and Their Textile Printing Application

    OpenAIRE

    , K.A. Ahmed; , H.M. El-Hennawi; , H.A. Abdel-Aziz; , M.A. Elkashouti

    2016-01-01

    1,3-Thiazoles and sulphonamides have received considerable attention, because they are widely employed as promising chromophores as well as their biological activities as anti-microbial, antiviral, anti-tumor agents. The synthetic potency of sulfonamide hydrazonyl chlorides, were used as a key precursor in the synthesis of some new 1,3-thiazoles, in this study the synthesis of 4-[(2-amino-4-methylthiazol-5-yl)diazenyl]benzene sulfonamides were used as a synthone for the synthesis of 1,3-thiaz...

  2. Synthesis and biological evaluation of structurally simplified noscapine analogues as microtubule binding agents

    Czech Academy of Sciences Publication Activity Database

    Ghaly, P.E.; Churchill, C.D.M.; Abou El-Magd, R.M.; Hájková, Zuzana; Dráber, Pavel; West, F.G.; Tuszyński, J.A.

    2017-01-01

    Roč. 95, č. 6 (2017), s. 649-655 ISSN 0008-4042 R&D Projects: GA ČR GA15-22194S Institutional support: RVO:68378050 Keywords : noscapine * microtubule * tubulin * cytotoxicity * microtubule dynamics * docking Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 1.080, year: 2016

  3. Quinoline based furanones and their nitrogen analogues: Docking, synthesis and biological evaluation

    Directory of Open Access Journals (Sweden)

    Sukhbir Lal Khokra

    2016-11-01

    Full Text Available A small library of twenty-four quinoline based butenolides also known as furanones and their nitrogen analogues was prepared by using two different aroylpropionic acids, viz. 3-(2-naphthoylpropionic acid (3 and 3-(biphenyl-4-ylpropionic acid (4, as starting materials. The 3-aroylpropionic acids were reacted with different 6-substituted-2-chloroquinolin-3-carbaldehydes (2a–d to obtain the corresponding furan-2(3H-ones (5a–h. The purified and characterized furanones were then converted into their corresponding 2(3H-pyrrolones (6a–h and N-benzyl-pyrrol-2(3H-ones (7a–h. The antimicrobial activities of the title compounds were evaluated against two strains of each Gram +ve (Staphylococcus aureus and Bacillus subtilis, Gram −ve bacteria (Escherichia coli and Pseudomonas aeruginosa and against fungal strains of Aspergillus niger and Aspergillus flavus. In vivo anti-inflammatory potential of the title compounds was investigated by standard method. Majority of the compounds showed significant antibacterial activity against both the Gram +ve strains. Eight most potent anti-inflammatory compounds (5b, 5d, 5h, 6b, 7b, 7d, 7f, 7h which exhibited >53% inhibition in edema, were also screened for their in vivo analgesic activity. All the tested compounds were found to have significant reduction in ulcerogenic action but only three compounds (5d, 5h and 7h showed comparable analgesic activity to standard drug, diclofenac. The results were also validated using in silico approach and maximum mol doc score was obtained for compounds 7a–h. On comparing the in vivo and in silico anti-inflammatory results of synthesized compounds, N-benzyl pyrrolones (7a–h emerged as the potent anti-inflammatory agents. It was also observed that compounds that possess electron withdrawing group such as Cl or NO2 are more biologically active.

  4. Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo

    International Nuclear Information System (INIS)

    Kopka, Klaus; Breyholz, Hans-Joerg; Wagner, Stefan; Law, Marilyn P.; Riemann, Burkhard; Schroeer, Sandra; Trub, Monika; Guilbert, Benedicte; Levkau, Bodo; Schober, Otmar; Schaefers, Michael

    2004-01-01

    Non-invasive measurement of matrix metalloproteinase (MMP) activity in vivo is a clinical challenge in many disease processes such as inflammation, tumor metastasis and atherosclerosis. Therefore, radioiodinated analogues of the non-peptidyl broad-spectrum MMP inhibitor (MMPI) CGS 27023A 1a were synthesized for non-invasive detection of MMP activity in vivo using single photon emission computed tomography (SPECT). The compounds Br-CGS 27023A 1b and HO-CGS 27023A 1d were synthesized from the amino acid D-valine and used as precursors for radioiodinated derivatives of CGS 27023A and their non-radioactive references I-CGS 27023A 1c and HO-I-CGS 27023A 1e. Radioiodination of the precursors with [ 123 I]NaI or [ 125 I]NaI produced the no-carrier-added MMP inhibitors [ 123 I]I-CGS 27023A 1f, [ 125 I]I-CGS 27023A 1g, HO-[ 123 I]I-CGS27023A 1h, and HO-[ 125 I]I-CGS 27023A 1i. In vitro studies showed that the non-radioactive analogues of the MMP inhibitors exhibited affinities against gelatinase A (MMP-2) and gelatinase B (MMP-9) in the nanomolar range, comparable to the parent compound CGS 27023A. In vivo biodistribution using HO-[ 125 I]I-CGS 27023A 1i in CL57 Bl6 mice showed rapid blood and plasma clearance and low retention in normal tissues. The preliminary biological evaluation warrant further studies of these radioiodinated MMP inhibitors as potential new radiotracers for imaging MMP activity in vivo

  5. Synthesis, Characterization, and Biological Evaluation of Nanostructured Hydroxyapatite with Different Dimensions

    Directory of Open Access Journals (Sweden)

    Zhen Geng

    2017-02-01

    Full Text Available Nanosized hydroxyapatite (HA is a promising candidate for a substitute for apatite in bone in biomedical applications. Furthermore, due to its excellent bone bioactivity, nanosized strontium-substituted HA (SrHA has aroused intensive interest. However, the size effects of these nanoparticles on cellular bioactivity should be considered. In this study, nanosized HA and SrHA with different dimensions and crystallization were synthesized by hydrothermal methods. The phase, crystallization and chemical composition were analyzed by X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR, respectively. The morphology was observed under field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM. The degradation behaviors of the samples were monitored by determining the ions release profile with inductively coupled plasma mass spectrometry (ICP-MS. The releasing behavior of Ca2+ and Sr2+ showed that the degradation rate was proportional to the specific surface area and inversely proportional to crystallization. The in vitro experiment evaluated by MG63 cells showed that SrHA nanorods with a length greater than 100 nm had the best biological performance both in cell proliferation and differentiation (* p < 0.05 compared with HA-1 and SrHA-1; * p < 0.01 compared with HA-2. In addition, HA nanoparticles with a lower aspect ratio had better bioactivity than higher ones (* p < 0.05. This study demonstrated that nanosized HA and SrHA with subtle differences (including dimensions, crystallization, specific surface area, and degradation rate could affect the cellular growth and thus might have an impact on bone growth in vivo. This work provides a view of the role of nano-HAs as ideal biocompatible materials in future clinical applications.

  6. Polycyclic Aromatic Compounds as Anticancer Agents: Synthesis and Biological Evaluation of Methoxy Dibenzofluorene Derivatives

    Directory of Open Access Journals (Sweden)

    Bimal Krishna Banik

    2014-08-01

    Full Text Available Synthesis of a new methoxy dibenzofluorene through alkylation, cyclodehydration and aromatization in a one-pot operation is achieved for the first time. Using this hydrocarbon, a few derivatives are prepared through aromatic nitration, catalytic hydrogenation, coupling reaction with a side chain and reduction. The benzylic position of this hydrocarbon with the side chain is oxidized and reduced. Some of these derivatives have demonstrated excellent antitumor activities in vitro. This study confirms antitumor activity depends on the structures of the molecules.

  7. Gram-Scale, Stereoselective Synthesis and Biological Evaluation of (+)-Armillariol C.

    Science.gov (United States)

    Reddy, M Damoder; Kobori, Hajime; Mori, Takumi; Wu, Jing; Kawagishi, Hirokazu; Watkins, E Blake

    2017-09-22

    Natural products with heteroaromatic cores are ample and widespread in nature, with many compounds exhibiting promising therapeutic properties. (+)-Armillariol C (1a) is a furan-based natural product isolated from Armillaria species. Herein, we report the first enantioselective synthesis of (+)-armillariol C (1a, 79% overall yield), its enantiomer (1b), and four other analogues, on a gram-scale, using microwave-mediated, Suzuki-Miyaura cross-coupling and Sharpless asymmetric dihydroxylation reactions. Compounds were tested for plant- and mycelia-growth regulatory activity, with 1b, 7a, and 7b showing the strongest inhibitory properties in a lettuce assay and 7b and 9b inhibiting Flammulina velutipes.

  8. Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists.

    Science.gov (United States)

    Zhang, Guoning; Liu, Shuainan; Tan, Wenjuan; Verma, Ruchi; Chen, Yuan; Sun, Deyang; Huan, Yi; Jiang, Qian; Wang, Xing; Wang, Na; Xu, Yang; Wong, Chiwai; Shen, Zhufang; Deng, Ruitang; Liu, Jinsong; Zhang, Yanqiao; Fang, Weishuo

    2017-03-31

    Farnesoid X receptor (FXR), a nuclear receptor mainly distributed in liver and intestine, has been regarded as a potential target for the treatment of various metabolic diseases, cancer and infectious diseases related to liver. Starting from two previously identified chalcone-based FXR antagonists, we tried to increase the activity through the design and synthesis of a library containing chalcones, flavones and chromenes, based on substitution manipulation and conformation (ring closure) restriction strategy. Many chalcones and four chromenes were identified as microM potent FXR antagonists, among which chromene 11c significantly decreased the plasma and hepatic triglyceride level in KKay mice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Biological evaluation and simple method for the synthesis of tetrahydrobenzo[a]xanthenes-11-one derivatives

    Directory of Open Access Journals (Sweden)

    Ali Akbari

    2017-01-01

    Full Text Available A simple method for the synthesis of Tetrahydrobenzo[a]xanthenes-11-one derivatives in the presence of BF3.SiO2, and its antibacterial activity was assessed against Pseudomonas syringae, Xanthomonas citi and Pectobacterium carotovorum. The structure of the isolated compounds has been determined by means of 1H/13C NMR and FT-IR spectroscopy. The reactions were carried out in water at room temperature for 5 h. This method has some advantages such as good to excellent yield, mild reaction condition, ease of operation and workup, high product purity and green process.

  10. Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: Synthesis and biological evaluation.

    Science.gov (United States)

    Mesenzani, Ornella; Massarotti, Alberto; Giustiniano, Mariateresa; Pirali, Tracey; Bevilacqua, Valentina; Caldarelli, Antonio; Canonico, Pierluigi; Sorba, Giovanni; Novellino, Ettore; Genazzani, Armando A; Tron, Gian Cesare

    2011-01-15

    In the chalcone scaffold, it is thought that the double bond is an important structural linker but it is likely not essential for the interaction with tubulin. Yet, it may be a potential site of metabolic degradation and interaction with biological nucleophiles. In this letter, we have replaced this olefinic portion of chalcones with two metabolically stable and chemically inert heterocyclic rings, namely triazole or tetrazole. Yet, our biologic data suggest that, unlike in other antitubulinic structures, the olephinic ring might not be merely a structural linker. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Design, synthesis and biological evaluation of renin inhibitors guided by simulated annealing of chemical potential simulations.

    Science.gov (United States)

    Cloudsdale, Ian S; Dickson, John K; Barta, Thomas E; Grella, Brian S; Smith, Emilie D; Kulp, John L; Guarnieri, Frank; Kulp, John L

    2017-08-01

    We have applied simulated annealing of chemical potential (SACP) to a diverse set of ∼150 very small molecules to provide insights into new interactions in the binding pocket of human renin, a historically difficult target for which to find low molecular weight (MW) inhibitors with good bioavailability. In one of its many uses in drug discovery, SACP provides an efficient, thermodynamically principled method of ranking chemotype replacements for scaffold hopping and manipulating physicochemical characteristics for drug development. We introduce the use of Constrained Fragment Analysis (CFA) to construct and analyze ligands composed of linking those fragments with predicted high affinity. This technique addresses the issue of effectively linking fragments together and provides a predictive mechanism to rank order prospective inhibitors for synthesis. The application of these techniques to the identification of novel inhibitors of human renin is described. Synthesis of a limited set of designed compounds provided potent, low MW analogs (IC 50 s20-58%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis and Preliminary Biological Evaluations of Fluorescent or 149Promethium Labeled Trastuzumab-Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Jonathan Fitzsimmons

    2015-12-01

    Full Text Available Background: Radioimmunotherapy utilize a targeting antibody coupled to a therapeutic isotope to target and treat a tumor or disease. In this study we examine the synthesis and cell binding of a polymer scaffold containing a radiotherapeutic isotope and a targeting antibody. Methods: The multistep synthesis of a fluorescent or 149Promethium-labeled Trastuzumab-polyethyleneimine (PEI, Trastuzumab, or PEI is described. In vitro uptake, internalization and/or the binding affinity to the Her2/neu expressing human breast adenocarcinoma SKBr3 cells was investigated with the labeled compounds. Results: Fluorescent-labeled Trastuzumab-PEI was internalized more into cells at 2 and 18 h than fluorescent-labeled Trastuzumab or PEI. The fluorescent-labeled Trastuzumab was concentrated on the cell surface at 2 and 18 h and the labeled PEI had minimal uptake. DOTA-PEI was prepared and contained an average of 16 chelates per PEI; the compound was radio-labeled with 149Promethium and conjugated to Trastuzumab. The purified 149Pm-DOTA-PEI-Trastuzumab had a radiochemical purity of 96.7% and a specific activity of 0.118 TBq/g. The compound demonstrated a dissociation constant for the Her2/neu receptor of 20.30 ± 6.91 nM. Conclusion: The results indicate the DOTA-PEI-Trastuzumab compound has potential as a targeted therapeutic carrier, and future in vivo studies should be performed.

  13. Seco-B-Ring Steroidal Dienynes with Aromatic D Ring: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Marcin Szybinski

    2017-10-01

    Full Text Available Continuing our structure-activity studies on the vitamin D analogs with the altered intercyclic seco-B-ring fragment, we designed compounds possessing dienyne system conjugated with the benzene D ring. Analysis of the literature data and the docking experiments seemed to indicate that the target compounds could mimic the ligands with a good affinity to the vitamin D receptor (VDR. Multi-step synthesis of the C/D-ring building block of the tetralone structure was achieved and its enol triflate was coupled with the known A-ring fragments, possessing conjugated enyne moiety, using Sonogashira protocol. The structures of the final products were confirmed by NMR, UV and mass spectroscopy. Their binding affinities for the full-length human VDR were determined and it was established that compound substituted at C-2 with exomethylene group showed significant binding to the receptor. This analog was also able to induce monocytic differentiation of HL-60 cells.

  14. Synthesis and biological evaluation of novel N-aryl maleimide derivatives clubbed with α-hydroxyphosphonates.

    Science.gov (United States)

    Patil, Nilesh S; Deshmukh, Ganesh B; Patil, Sambhaji V; Bholay, Avinash D; Gaikwad, Nitin D

    2014-08-18

    A series of novel molecules 5a-g containing N-aryl maleimide and α-hydroxyphosphonate moieties were synthesized. A distinct approach for high-yielding synthesis of α-hydroxyphosphonates has been discovered using various catalyst and solvents. The structures of the synthesized compounds were elucidated by IR, NMR, MS and CHN analysis. All the synthesized compounds were tested for qualitative (Zone of inhibition) and quantitative (MIC) antimicrobial activities against two pathogenic bacteria such as Bacillus subtilis (NCIM 2250) and Escherichia coli (ATCC 25922) and four pathogenic fungi such as Candida albicans (MTCC 277), Candida tropicalis (MTCC184), Aspergillus niger (MCIM 545) and Aspergillus clavatus (MTCC 132). The investigation of antimicrobial screening data revealed that most of the tested compounds are moderate to good microbial inhibitors. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Synthesis and biological evaluation of boronated polyglycerol dendrimers as potential agent for neutron capture therapy

    International Nuclear Information System (INIS)

    Silva, Gerald S.; Camillo, Maria A.P.; Higa, Olga Z.; Pugliesi, Reynaldo; Fermamdes, Edson G.R.; Queiroz, Alvaro A.A. de

    2005-01-01

    In this work, the polyglycerol dendrimer (PGLD) generation 5 was used to obtain a boronated macromolecule for boron neutron capture therapy. The PGLD dendrimer was synthesized by the ring opening polymerization of deprotonated glycidol using polyglycerol as core functionality in a step-growth processes denominated divergent synthesis. The PGLD dendritic structure was confirmed by gel permeation chromatography, nuclear magnetic resonance ( 1 H-NMR, 13 C-NMR) and matrix assisted laser desorption/ionization techniques. The synthesized dendrimer presented low dispersion in molecular weights (M w /M n = 1.05) and a degree of branching of 0.82, which characterize the polymer dendritic structure. Quantitative neutron capture radiography was used to investigate the boron-10 enrichment of the polyglycerol dendrimer. The in vitro cytotoxicity to Chinese hamster ovary cells of 10 B-PGLD dendrimer indicate lower cytotoxicity, suggesting that the macromolecule is a biocompatible material. (author)

  16. Synthesis and biological evaluation of α,β-unsaturated lactones as potent immunosuppressive agents.

    Science.gov (United States)

    Lee, Sun-Mi; Lee, Won-Gil; Kim, Young-Chul; Kim, Yong-Chul; Ko, Hyojin

    2011-10-01

    Compounds having α,β-unsaturated lactones display a variety of biological activities. Many research groups have tested both natural and unnatural α,β-unsaturated lactones for as-yet undiscovered biological properties. We synthesized α,β-unsaturated lactones with various substituents at the δ-position and studied their immunosuppressive effects, that is, the inhibition of Interleukin-2 (IL-2) production. Among the compounds synthesized, the benzofuran-substituted α,β-unsaturated lactone 4h showed the best inhibitory activity toward IL-2 production in Jurkat e6-1 T lymphocytes (IC(50)=66.9 nM) without cytotoxicity at 10 μM. The results indicated that 4h may be useful as a potent immunosuppressive agent, as well as in IL-2-related studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Synthesis and preliminary biological evaluation of a compound library of triazolylcyclitols.

    Science.gov (United States)

    Carrau, Gonzalo; Drewes, Carine C; Shimada, Ana Lúcia B; Bertucci, Ana; Farsky, Sandra H P; Stefani, Helio A; Gonzalez, David

    2013-07-15

    A small library of compounds was prepared by a combination of toluene dioxygenase (TDO)-catalyzed enzymatic dihydroxylation and copper(I)-catalyzed Hüisgen cycloaddition. Some compounds were obtained by coupling an alkyne and a conduritol derivative, while more complex structures were obtained by a double Hüisgen reaction of a dialkyne and two molecules of the cyclitol. The compounds were fully characterized and subjected to preliminary biological screening. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. New derivatives of aryl-propionic acid. Synthesis and biological evaluation.

    Science.gov (United States)

    Vasincu, Ioana; Apotrosoaei, Maria; Tuchiluş, Cristina; Pânzariu, Andreea Teodora; Dragostin, Oana; Lupaşcu, D; Profire, Lenuta

    2013-01-01

    To design new derivatives of aryl-propionic acid with potential antibacterial and antioxidant activity. New hydrazone of ibuprofen (2-(4-isobutylphenyl)propionic acid) have been synthesized by reaction of ethyl ester of ibuprofen with hydrazine hydrate and then condensation of corresponding hydrazide with various aromatic aldehydes. The synthesized compounds were screened for their antibacterial activity against Gram positive (Staphylococcus aureus ATCC 25923, Sarcinalutea ATCC 9341, Bacillus cereus ATCC 14579, Bacillus subtilis) and Gram negative bacterial strains (Escherichia coli ATCC 25922). Some of them were found to have good antibacterial activity. The antioxidant activity of these compounds was also tested using the total antiox idant capacity test. The chemical modulations performed on ibuprofen structure have a good influence on the biological activity of the synthesized compounds.

  19. Synthesis and biological evaluation of new thiazolyl/benzothiazolyl-amides, derivatives of 4-phenyl-piperazine.

    Science.gov (United States)

    Papadopoulou, Christina; Geronikaki, Athina; Hadjipavlou-Litina, Dimitra

    2005-01-01

    A series of thiazolyl-N-phenyl piperazines has been synthesised and tested for anti-inflammatory activity. Their R(M) values were determined as an expression of their lipophilicity. Theoretical calculation of their lipophilicity, as clog P and logPsk also performed. The effect of the synthesised compounds on inflammation, using the carrageenin induced mouse paw oedema model was studied. In general, the studied compounds were found to be potent anti-inflammatory agents (44-74.1%). Anti-inflammatory activity was influenced by some structural characteristics of the synthesised compounds. An attempt was made to correlate their biological activity with some physicochemical parameters using a quantitative structure-activity relationship approach (QSAR).

  20. Indazole N-oxide derivatives as antiprotozoal agents: synthesis, biological evaluation and mechanism of action studies.

    Science.gov (United States)

    Gerpe, Alejandra; Aguirre, Gabriela; Boiani, Lucía; Cerecetto, Hugo; González, Mercedes; Olea-Azar, Claudio; Rigol, Carolina; Maya, Juan D; Morello, Antonio; Piro, Oscar E; Arán, Vicente J; Azqueta, Amaia; de Ceráin, Adela López; Monge, Antonio; Rojas, María Antonieta; Yaluff, Gloria

    2006-05-15

    A series of indazole N-oxide derivatives have been synthesized and their antichagasic and leishmanocidal properties studied. 3-Cyano-2-(4-iodophenyl)-2H-indazole N1-oxide exhibited interesting antichagasic activity on the two parasitic strains and the two parasitic stages evaluated. Furthermore, besides its trypanocidal activity, 3-cyano-2-(4-nitrophenyl)-2H-indazole N1-oxide showed leishmanocidal activity in the three parasitic strains evaluated. To gain insight into the mechanism of action, electrochemical behaviour, ESR experiment, inhibition of parasitic respiration and QSAR were performed.

  1. Novel electrophilic synthesis of 6-[{sup 18}F]fluorodopamine and comprehensive biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Eskola, Olli; Forsback, Sarita [Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku (Finland); Groenroos, Tove J.; Marjamaeki, Paeivi; Haaparanta, Merja [University of Turku, Medicity/PET Preclinical Imaging, Turku PET Centre, Turku (Finland); Naum, Alexandru [Haukeland University Hospital, Nuclear Medicine/PET Center, Department of Radiology, Bergen (Norway); Bergman, Joergen; Solin, Olof [Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku (Finland); Aabo Akademi University, Turku PET Centre, Accelerator Laboratory, Turku (Finland); Laenkimaeki, Sami [Kuopio University Hospital, Centre for Prehospital Emergency Care, Kuopio (Finland); Kiss, Jan [University Medical Center Freiburg, Department of Cardiovascular Surgery, Freiburg (Germany); Savunen, Timo [Turku University Hospital, Department of Surgery, Turku (Finland); Knuuti, Juhani [University of Turku, Turku PET Centre, Turku (Finland)

    2012-05-15

    6-[{sup 18}F]Fluorodopamine (4-(2-aminoethyl)-5-[{sup 18}F]fluorobenzene-1,2-diol, 6-[{sup 18}F]FDA) is a tracer for imaging sympathetically innervated tissues. Previous electrophilic labelling methods produced 6-[{sup 18}F]FDA with low specific radioactivity (SA) which has limited its wider use. Our aim was to employ electrophilic labelling and increase the SA to around 15 GBq/{mu}mol. We also sought to determine an extensive biodistribution pattern for 6-[{sup 18}F]FDA in rats in order to thoroughly identify tissues with dense sympathetic innervation that were specifically labelled with 6-[{sup 18}F]FDA. In addition, to investigate the safety profile of 6-[{sup 18}F]FDA in larger animals, we performed in vivo studies in pigs. 6-[{sup 18}F]FDA was synthesised using high SA electrophilic [{sup 18}F]F{sub 2} as the labelling reagent. Biodistribution and metabolism of 6-[{sup 18}F]FDA was determined ex vivo in rats, and in vivo studies were done in pigs. 6-[{sup 18}F]FDA was synthesised with 2.6 {+-} 1.1% radiochemical yield. The total amount of purified 6-[{sup 18}F]FDA was 663 {+-} 291 MBq at the end of synthesis (EOS). SA, decay corrected to EOS, was 13.2 {+-} 2.7 GBq/{mu}mol. Radiochemical purity exceeded 99.0%. Specific uptake of 6-[{sup 18}F]FDA was demonstrated in heart, lung, pancreas, adrenal gland, lower large intestine (LLI), eye, thyroid gland, spleen and stomach tissue. 6-[{sup 18}F]FDA in rat plasma declined rapidly, with a half-life of 2 min, indicating fast metabolism. In vivo PET studies in pigs confirmed the tracer could be used safely without pharmacological effects. 6-[{sup 18}F]FDA was synthesised with good radiopharmaceutical quality and yields high enough for several human PET studies. The SA of 6-[{sup 18}F]FDA was improved by 50- to 500-fold compared to previous electrophilic methods. Uptake of 6-[{sup 18}F]FDA was specific in various peripheral organs, indicating that 6-[{sup 18}F]FDA PET can be used to investigate sympathoneural functions

  2. Parallel synthesis and biological evaluation of 837 analogues of procaspase-activating compound 1 (PAC-1).

    Science.gov (United States)

    Hsu, Danny C; Roth, Howard S; West, Diana C; Botham, Rachel C; Novotny, Chris J; Schmid, Steven C; Hergenrother, Paul J

    2012-01-09

    Procaspase-Activating Compound 1 (PAC-1) is an ortho-hydroxy N-acyl hydrazone that enhances the enzymatic activity of procaspase-3 in vitro and induces apoptosis in cancer cells. An analogue of PAC-1, called S-PAC-1, was evaluated in a veterinary clinical trial in pet dogs with lymphoma and found to have considerable potential as an anticancer agent. With the goal of identifying more potent compounds in this promising class of experimental therapeutics, a combinatorial library based on PAC-1 was created, and the compounds were evaluated for their ability to induce death of cancer cells in culture. For library construction, 31 hydrazides were condensed in parallel with 27 aldehydes to create 837 PAC-1 analogues, with an average purity of 91%. The compounds were evaluated for their ability to induce apoptosis in cancer cells, and through this work, six compounds were discovered to be substantially more potent than PAC-1 and S-PAC-1. These six hits were further evaluated for their ability to relieve zinc-mediated inhibition of procaspase-3 in vitro. In general, the newly identified hit compounds are two- to four-fold more potent than PAC-1 and S-PAC-1 in cell culture, and thus have promise as experimental therapeutics for treatment of the many cancers that have elevated expression levels of procaspase-3.

  3. Synthesis and Biological Evaluation of a Chitobiose-Based Peptide N-Glycanase Inhibitor Library

    NARCIS (Netherlands)

    Witte, Martin D.; Horst, Danielle; Wiertz, Emmanuel J.H.J.; Marel, Gijsbert A. van der; Overkleeft, Herman S.

    2009-01-01

    Peptide N-glycanase (PNGase), the enzyme responsible for the deglycosylation of N-linked glycoproteins, has an active site related to that of cysteine proteases. Chitiobiose was equipped with electrophilic traps often used in cysteine protease inhibitors, and the resulting compounds were evaluated

  4. Exploring new Probenecid-based carbonic anhydrase inhibitors: Synthesis, biological evaluation and docking studies.

    Science.gov (United States)

    Mollica, Adriano; Costante, Roberto; Akdemir, Atilla; Carradori, Simone; Stefanucci, Azzurra; Macedonio, Giorgia; Ceruso, Mariangela; Supuran, Claudiu T

    2015-09-01

    Novel Probenecid-based amide derivatives, incorporating different natural amino acids, were synthesized and assayed to test their effect on the human carbonic anhydrase (hCA, EC 4.2.1.1) transmembrane isoforms hCA IX and XII over the ubiquitous isoforms hCA I and II. Most of them presented a complete loss of hCA II inhibition (K(i)s > 10,000 nM) and strong inhibitory activity against hCA IX and XII in the nanomolar range with respect to the parent compound. A residual activity against hCA I was observed for some of them. These biological results have been explained by docking studies within the active sites of the four studied human carbonic anhydrases (with or without the zinc-bound water) and helped us to better comprehend the rationale behind the design of tertiary sulfonamide compounds as potent but atypical inhibitors of specific isoforms of human carbonic anhydrase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A.

    Science.gov (United States)

    Teng, Yu-Han Gary; Berger, William T; Nesbitt, Natasha M; Kumar, Kunal; Balius, Trent E; Rizzo, Robert C; Tonge, Peter J; Ojima, Iwao; Swaminathan, Subramanyam

    2015-09-01

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxin known to humans, and are classified as Category A bioterrorism agents by the Centers for Disease Control and prevention (CDC). There are seven known BoNT serotypes (A-G) which have been thus far identified in literature. BoNTs have been shown to block neurotransmitter release by cleaving proteins of the soluble NSF attachment protein receptor (SNARE) complex. Disruption of the SNARE complex precludes motor neuron failure which ultimately results in flaccid paralysis in humans and animals. Currently, there are no effective therapeutic treatments against the neurotoxin light chain (LC) after translocation into the cytosols of motor neurons. In this work, high-throughput in silico screening was employed to screen a library of commercially available compounds from ZINC database against BoNT/A-LC. Among the hit compounds from the in silico screening, two lead compounds were identified and found to have potent inhibitory activity against BoNT/A-LC in vitro, as well as in Neuro-2a cells. A few analogs of the lead compounds were synthesized and their potency examined. One of these analogs showed an enhanced activity than the lead compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Design, synthesis, and biological evaluation of a highly water-soluble psoralen-based photosensitizer.

    Science.gov (United States)

    Uruma, Yoshiyuki; Nonomura, Takuya; Yen, Priscilla Yoong Mei; Edatani, Marie; Yamamoto, Ryotaro; Onuma, Kunishige; Okada, Futoshi

    2017-04-15

    In recent years, photodynamic therapy (PDT) has been approved for treating various medical conditions, including cancer. PDT is a treatment that employs a particular drugs, called photosensitizers which work along with specific light source. The growth of this medical industry is expanding as it is another promising alternative to treat cancer which lessen the burden of treatments in patients. This includes the benefits of minimally invasive procedures and delivering high accuracy in targeting mutations. In recent two decades, cancer researchers have produced remarkable studies on developing photosensitizers that enhance understanding of biology and genetics of cancer. It is unfortunate that not all PDT can work as well as other profound treatment because PDT has various limitations like PDT leads photosensitivity reaction that arises when the photosensitizer remains in the body for a long period of time. In this paper, our studies centers on synthesizing a highly soluble photosensitizing agent with improved effectiveness on detecting cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthesis and biological evaluation of novel urea and thiourea derivatives of valacyclovir

    Directory of Open Access Journals (Sweden)

    Katla Ramana Venkata

    2014-01-01

    Full Text Available A series of novel urea and thiourea derivatives of valacyclovir were efficiently synthesized in high yields and evaluated their antiviral activity. 2-((6-Amino-4-oxo-4,5-dihydro-1H-imidazo[4,5-c]pyridin-1-ylmethoxyethyl-2-amino-3-ethylbutanoate (valacyclovir 1 is reacted with various aromatic isocyanates/thiocyanates 2 in the presence of N, N- dimethyl piperazine as a base in THF: pyridine (4:1 to obtain valacyclovir urea/thiourea derivatives 3(a-j. The structures of the title compounds 3(a-j were confirmed by IR, NMR (1H, 13C, mass spectral and elemental analysis. The newly synthesized compounds were screened for their antiviral activity against Tobacco mosaic virus (TMV and antioxidant activity was evaluated by DPPH, SOD and GST methods. The title compounds exhibited potent antiviral and good antioxidant activities.

  8. Bis-spirochromanones as potent inhibitors of Mycobacterium tuberculosis: synthesis and biological evaluation.

    Science.gov (United States)

    Dongamanti, Ashok; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Gundu, Srinivas; Balabadra, Saikrishna; Manga, Vijjulatha; Yogeeswari, Perumal; Sriram, Dharmarajan; Balasubramanian, Sridhar

    2017-11-01

    On the basis of reported antimycobacterial property of chroman-4-one pharmacophore, a series of chemically modified bis-spirochromanones were synthesized starting from 2-hydroxyacetophenone and 1,4-dioxaspiro[4.5] decan-8-one using a Kabbe condensation approach. The synthesized bis-spirochromanones were established based on their spectral data and X-ray crystal structure of 6e. All synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain, finding that some products exhibited good antimycobacterial activity with minimum inhibitory concentration as low as [Formula: see text]. Docking studies were carried out to identify the binding interactions of compounds II, 6a and 6n with FtsZ. Compounds exhibiting good in vitro potency in the MTB MIC assay were further evaluated for toxicity using the HEK cell line.

  9. Synthesis and biological evaluation of arabinose 5-phosphate mimics modified at position five.

    Science.gov (United States)

    Cipolla, Laura; Airoldi, Cristina; Sperandeo, Paola; Gianera, Serena; Polissi, Alessandra; Nicotra, Francesco; Gabrielli, Luca

    2014-05-07

    A set of new metabolically stable arabinose 5-phosphate analogues possessing phosphate mimetic groups at position 5 was synthesised. Their ability to interact with arabinose 5-phosphate isomerase from Pseudomonas aeruginosa was evaluated by STD-NMR studies. The synthesised compounds were also characterised for their activity in vivo on P. aeruginosa and Escherichia coli strains. Unfortunately, none of the synthesised compounds was able neither to bind API nor to inhibit bacterial growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synthesis and biological evaluation of sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474.

    Science.gov (United States)

    Gamage, Swarna A; Giddens, Anna C; Tsang, Kit Y; Flanagan, Jack U; Kendall, Jackie D; Lee, Woo-Jeong; Baguley, Bruce C; Buchanan, Christina M; Jamieson, Stephen M F; Shepherd, Peter R; Denny, William A; Rewcastle, Gordon W

    2017-10-15

    Replacement of one of the morpholine groups of the phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 (1) with sulfonamide containing substituents produced a new class of active and potent PI3Kα inhibitors. Solubility issues prevented all but the 6-amino derivative 17 from being evaluated in vivo, but the clear activity of this compound demonstrated that this class of PI3K inhibitor shows great promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis and Biological Evaluation of Some New Chalcones Containing 2,5-Dimethylfuran Moiety

    OpenAIRE

    Sridhar, S.; Dinda, S. C.; Prasad, Y. Rajendra

    2011-01-01

    A series of new chalcones (3a-g) were prepared by Claisen-Schmidt condensation of 3-acetyl-2,5-dimethylfuran with various substituted aromatic aldehydes in presence of aqueous solution of potassium hydroxide and ethanol at room temperature. The synthesized chalcones were characterized by means of their IR, 1H NMR spectral data and elemental analyses. When these chalcones were evaluated for antimicrobial and anti-inflammatory activities, some of them were found to possess significant activity,...

  12. Design, synthesis, and biological evaluation of callophycin A and analogues as potential chemopreventive and anticancer agents.

    Science.gov (United States)

    Shen, Li; Park, Eun-Jung; Kondratyuk, Tamara P; Guendisch, Daniela; Marler, Laura; Pezzuto, John M; Wright, Anthony D; Sun, Dianqing

    2011-11-01

    Callophycin A was originally isolated from the red algae Callophycus oppositifolius and shown to mediate anticancer and cytotoxic effects. In our collaborative effort to identify potential chemopreventive and anticancer agents with enhanced potency and selectivity, we employed a tetrahydro-β-carboline-based template inspired by callophycin A for production of a chemical library. Utilizing a parallel synthetic approach, 50 various functionalized tetrahydro-β-carboline derivatives were prepared and assessed for activities related to cancer chemoprevention and cancer treatment: induction of quinone reductase 1 (QR1) and inhibition of aromatase, nitric oxide (NO) production, tumor necrosis factor (TNF)-α-induced NFκB activity, and MCF7 breast cancer cell proliferation. Biological results showed that the n-pentyl urea S-isomer 6a was the strongest inducer of QR1 with an induction ratio (IR) value of 4.9 at 50 μM [the concentration to double the activity (CD)=3.8 μM] and its corresponding R-isomer 6f had an IR value of 4.3 (CD=0.2 μM). The isobutyl carbamate derivative 3d with R stereochemistry demonstrated the most potent inhibitory activity of NFκB, with the half maximal inhibitory concentration (IC(50)) value of 4.8 μM, and also showed over 60% inhibition at 50 μM of NO production (IC(50)=2.8 μM). The R-isomer urea derivative 6j, having an appended adamantyl group, exhibited the most potent MCF7 cell proliferation inhibitory activity (IC(50)=14.7 μM). The S-isomer 12a of callophycin A showed the most potent activity in aromatase inhibition (IC(50)=10.5 μM). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Synthesis and biological evaluation of novel pyrazolic chalcone derivatives as novel hepatocellular carcinoma therapeutics.

    Science.gov (United States)

    Hawash, Mohammed M A; Kahraman, Deniz Cansen; Eren, Fikriye; Cetin Atalay, Rengul; Baytas, Sultan Nacak

    2017-03-31

    Despite having the second highest mortality associated with cancer, currently Sorafenib is the only FDA-approved chemotherapeutic agent available for liver cancer patients which can only improve survival for few months. In this study, various pyrazolic chalcone analogous compounds were synthesized and evaluated as potential chemotherapeutic agents for the treatment of hepatocellular carcinoma (HCC). Modifying the central pyrazole ring at the C(3)-position with different heteroaryl rings and substituting the C(4)-position of pyrazole with differently substituted chalcone moiety produced fouthy two variant compounds. For all these compounds, cytotoxicity was evaluated using sulforhodamine B assay and real time cell growth tracking, respectively. Based on 50% inhibitory concentration (IC 50 ) values, compounds 39, 42, 49, and 52 were shown to exhibit potent cytotoxic activity against all the cancer cell lines tested, and had better cytotoxic activities than the well-known chemotherapeutic drug 5-FU. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Flow cytometric analysis of HCC cells treated with compounds 39, 42, 49, and 52 demonstrated that these compounds caused cell cycle arrest at G2/M phase followed by the apoptotic cell death and impaired cell growth as shown by real-time cell growth surveillance. Consistent with these results, western blotting of HCC cells treated with the compounds resulted in molecular changes for cell cycle proteins, where p21 levels were increased independent of p53 and the levels of the key initiators of mitosis Cyclin B1 and CDK1 were shown to decrease upon treatment. In conclusion, chalcone derivatives 42 and 52 show potent bioactivities by modulating the expression of cell-cycle related proteins and resulting in cell-cycle arrest in the HCC cell lines tested here, indicating that the compounds can be considered as preclinical candidates. Copyright © 2017 Elsevier Masson SAS. All rights

  14. Synthesis and Biological Evaluation of Some New Chalcones Containing 2,5-Dimethylfuran Moiety

    Directory of Open Access Journals (Sweden)

    S. Sridhar

    2011-01-01

    Full Text Available A series of new chalcones (3a-g were prepared by Claisen-Schmidt condensation of 3-acetyl-2,5-dimethylfuran with various substituted aromatic aldehydes in presence of aqueous solution of potassium hydroxide and ethanol at room temperature. The synthesized chalcones were characterized by means of their IR, 1H NMR spectral data and elemental analyses. When these chalcones were evaluated for antimicrobial and anti-inflammatory activities, some of them were found to possess significant activity, when compared to standard drugs.

  15. Synthesis and biological evaluation of a novel 99mTc-labelled MPP

    International Nuclear Information System (INIS)

    Lin Yan; Zhang Junbo; Tang Zhigang; Wang Xuebin; Zhang Xianzhong

    2008-01-01

    The 5-HT 1A receptor is tightly implicated in numerous mental illnesses, such as depression, anxiety, eating disorders and so on. Thus, it has become a key target for various efforts in developing in vivo imaging agents. Many efforts have been focused on the development of 99m Tc labeled 5-HT 1A receptor-bound radiotracer. In this study, a dithiocarbamate ligand containing the MPP ((2-methoxyphenyl)piperazine) moiety was labeled with [ 99m TcN] 2+ core and evaluated as potential imaging agent for 5-HT 1A receptor. (authors)

  16. Synthesis, characterization and evaluation of biological activities of some 2,3-diaryl bicyclo methanones

    Directory of Open Access Journals (Sweden)

    Thirunarayanan Ganesamoorthy

    2016-06-01

    Full Text Available Sixteen (3,4-dichlorophenyl-3-(substituted phenylbicyclo[2.2.1]hept-5-ene-2-yl methanone derivatives have been synthesized by an aqueous phase fly-ash catalyzed [4+2] cycloaddition Diels-Alder reaction of cyclopentadiene and 3,4-dichloro phenyl chalcones. The yields of the methanones were greater than 60%. The synthesized methanones were characterized by their physical constants and spectral data. The antimicrobial and antioxidant activities of the synthesized methanones were evaluated using a variety of bacterial and fungal species and DPPH radical scavenging methods.

  17. Microwave-Assisted Synthesis of Some Quinoxaline-Incorporated Schiff Bases and Their Biological Evaluation

    Directory of Open Access Journals (Sweden)

    L. Achutha

    2013-01-01

    Full Text Available Quinoxaline-incorporated Schiff bases (4a–j were synthesized by the condensation of 2-[(3-methylquinoxalin-2-yloxy]acetohydrazide (3 with indole-3-carbaldehyde, furfuraldehyde, 5-(4-nitrophenyl-2-furfuraldehyde, and substituted benzaldehydes under conventional and microwave irradiation methods. The microwave method was found to be remarkably successful with higher yields, less reaction time, and environmentally friendly compared to conventional heating method. The chemical structures of the synthesized compounds have been confirmed by analytical and spectral data. All the compounds have been evaluated for antitubercular and anti-inflammatory activities.

  18. Synthesis and Biological Evaluation of Novel Acenaphthene Derivatives as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Ying-Lan Zhao

    2011-03-01

    Full Text Available Twelve novel acenaphthene derivatives have been synthesized. The structures of all compounds were confirmed by 1H-NMR, MS and elemental analysis. Their antitumor activities were evaluated in six human solid tumor cell lines, namely non-small cell lung cancer (H460, human colon adenocarcinoma (SW480, human breast cancer cell (MDA-MB-468 and SKRB-3, human melanoma cell (A375 and human pancreatic cancer (BxPC-3 . Among them, compound 3c shows the best antitumor activity against SKRB-3 cell line, as high as the positive control adriamycin.

  19. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Asma Agrebi

    2014-05-01

    Full Text Available Several new pyrazolopyrimidine compounds were achieved from aminocyanopyarazole 1. The starting material 1 was initially coupled with orthoester at refluxed with various primary amines, ammonia, hydrazines and hydroxylamine to furnish a series of pyrazolo[3,4-d]pyrimidines. The reaction of imidate 2a-b with hydrazide derivatives led to the formation of pyrazolo[3,4-d][1,2,4]triazolo[4,3-c]pyrimidines. Some of the synthesized compounds 3a and 4c were evaluated for their anti-inflammatory, antipyretic and nociceptive activities. We start by studing the toxicity of these two molecules by measuring the corresponding DL50. The DL50 of 3a and 4c are estimated to 1333.2mg / kg and 1593.5mg / kg respectively. Pharmacological evaluation showed that compounds 3a and 4c at doses (5.5-22.2 mg / Kg, i.p exhibited anti-inflammatory activities compared to Ibuprofen (150 mg / Kg, i.p, used as a refer ence drug. Further, our study showed that the injection of derived pyrazolopyrimidines on hyperthermic animal leads to a decrease in temperature after 1 hours of treatment compared to paracetamol used as reference. In addition, the injection of derived pyrazolopyrimidines at different doses contains a potent nociceptive activity. This effect is dose-dependent compared to aspirin.

  20. Synthesis and Biological Evaluation of Novel 2-Methoxypyridylamino-Substituted Riminophenazine Derivatives as Antituberculosis Agents

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhang

    2014-04-01

    Full Text Available Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis. However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. With the goal of maintaining potent antituberculosis activity while improving physicochemical properties and lowering skin pigmentation potential, a series of novel riminophenazine derivatives containing a 2-methoxypyridylamino substituent at the C-2 position of the phenazine nucleus were designed and synthesized. These compounds were evaluated for antituberculosis activity against M. tuberculosis H37Rv and screened for cytotoxicity. Riminophenazines bearing a 3-halogen- or 3,4-dihalogen-substituted phenyl group at the N-5 position exhibited potent antituberculosis activity, with MICs ranging from 0.25~0.01 μg/mL. The 3,4-dihalogen- substituted compounds displayed low cytotoxicity, with IC50 values greater than 64 μg/mL. Among these riminophenazines, compound 15 exhibited equivalent in vivo efficacy against M. tuberculosis infection and reduced skin discoloration potential in an experimental mouse infection model as compared to clofazimine. Compound 15, as compared to clofazimine, also demonstrated improved physicochemical properties and pharmacokinetic profiles with a short half-life and less drug tissue accumulation. This compound is being evaluated as a potential drug candidate for the treatment of multidrug resistant tuberculosis.

  1. Synthesis and biological evaluation of the codrug of Leonurine and Aspirin as cardioprotective agents.

    Science.gov (United States)

    Gao, Huan; Yang, Xiaohong; Gu, Xianfeng; Zhu, Yi-Zhun

    2016-10-01

    The novel codrugs of Leonurine and Aspirin, compounds 545 and 503 have been synthesized and evaluated on their cardioprotective effects. Preliminary pharmacological studies showed that both compounds 545 and 503 were able to increase cell viability of hypoxia-induced H9c2 cells, and compound 545 exhibited at least ten fold potency than 503 and their parent drugs (Leonurine and Aspirin). Further mechanisms studies indicated that the cardioprotective effect of 545 due to its (1) anti-oxidative ability by increasing SOD and CAT enzymes activity and decreasing MDA content and LDH leakage rate, (2) anti-apoptosis activity by regulating apoptosis-associated proteins expression during hypoxia, (3) anti-inflammatory effect by suppression of pro-inflammatory mediators. All of these results demonstrate that compound 545 as a new class of Leonurine analogue could be a drug candidate in our further drug development studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material.

    Science.gov (United States)

    Zheng, Junping; Su, Qiang; Wang, Chen; Cheng, Gang; Zhu, Ran; Shi, Jin; Yao, Kangde

    2011-04-01

    Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Poly (methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization with dodecylamine used as MMT-modifier. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structures of the nanocomposites. Cytotoxicity test, hemolysis test, acute systemic toxicity test, oral mucous membrane irritation test, guinea-pig maximization test and mouse bone-marrow micronucleus test were used to evaluate the biocompatibility of PMMA/MMT nanocomposites. The results indicated that an exfoliated nanocomposite was achieved, and the resulting nanocomposites exhibited excellent biocompatibility as denture base material and had potential application in dental materials.

  3. Synthesis and biological evaluation of curcumin analogs as β-amyloid imaging agents.

    Science.gov (United States)

    Gan, Changsheng; Hu, Jingyi; Nan, Dou-Dou; Wang, Shanshan; Li, Hong

    2017-09-01

    Detection of β-amyloid (Aβ) plaques in the brain is a very promising biomarker approach for early diagnosis of Alzheimer's disease (AD). A series of curcumin analogs (1,5-diphenyl-1,4-pentadien-3-one derivatives) were synthesized and evaluated. Specific binding to Aβ plaques was demonstrated in vitro using postmortem AD homogenates, and the fluorescent staining and autoradiography in vitro of postmortem AD brain sections were performed. Some compounds showed high binding affinities with Aβ plaques. Fluorescent staining indicated that compound 4e clearly stained Aβ plaques within AD brain sections. In biodistribution, radioiodinated ligand [ 125 I]4e exhibited high brain uptake and favorable clearance from the brain. Autoradiography in vitro further confirmed the high affinities of [ 125 I]4e. The results strongly suggested that [ 125 I]4e might be developed into potential amyloid imaging agent for the detection of senile plaques in AD. [Formula: see text].

  4. Design, Synthesis and Biological Evaluation of C(6-Modified Celastrol Derivatives as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Kaiyong Tang

    2014-07-01

    Full Text Available New six C6-celastrol derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activities against nine human cancer cell lines (BGC-823, H4, Bel7402, H522, Colo 205, HepG2 and MDA-MB-468. The results showed that most of the compounds displayed potent inhibition against BGC823, H4, and Bel7402, with IC50s of 1.84–0.39 μM. The best compound NST001A was tested in an in vivo antitumor assay on nude mice bearing Colo 205 xenografts, and showed significant inhibition of tumor growth at low concentrations. Therefore, celastrol C-6 derivatives are potential drug candidates for treating cancer.

  5. Synthesis and biological evaluation of coumarin based isoxazoles, pyrimidinthiones and pyrimidin-2-ones

    Directory of Open Access Journals (Sweden)

    Divyesh Patel

    2017-05-01

    Full Text Available The titled compounds (6′a–k, (7′a–k and (8′a–k were synthesized from chalcones (5a–k having coumarin moiety. Cyclization of chalcones (5a–k with hydroxyl amine hydrochloride, thiourea and urea resulted in corresponding isoxazoles (6′a–k, pyrimidinthiones (7′a–k and pyrimidin-2-ones (8′a–k. Structures of newly synthesized compounds were established on the basis of their elemental analysis, IR, 1H NMR, 13C NMR, and mass spectral data. The synthesized analogs were evaluated for their antimycobacterial activity and antimicrobial activity against eight bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, and Shigella flexneri and four fungi (Aspergillus niger, Candida albicans, Aspergillus fumigatus, and Aspergillus clavatus.

  6. Synthesis, Biological Evaluation and Molecular Modelling of 2′-Hydroxychalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Sri Devi Sukumaran

    2016-07-01

    Full Text Available A series of 2′-hydroxy- and 2′-hydroxy-4′,6′-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE. The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40–85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE.

  7. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents.

    Science.gov (United States)

    Poudapally, Suresh; Battu, Shankar; Velatooru, Loka Reddy; Bethu, Murali Satyanarayana; Janapala, Venkateswara Rao; Sharma, Somesh; Sen, Subhabrata; Pottabathini, Narender; Iska, Vijaya Bhaskara Reddy; Katangoor, Vidya

    2017-05-01

    A robust economic approach to N-(quinazoline-4-yl)sulfonamides was developed and synthesized different aryl, hetero aryl, alkyl and cyclopropyl sulfonamides in excellent yields. All the compounds were evaluated for cytotoxic affinity to SKOV3, DU145, THP1, U937, and COLO205 cell lines. Interesting to find that the bulkiness of substituent at C-2 position of quinazoline forces the molecule to flip around in order to bind in the active site, when compared to the binding preference of previously known quinazoline compounds. Among the 21 compounds synthesized 2b, 2d, 2e, 2h, 2i, 3c, 3d, 3f, 3g and 3h found to be active on all the cell lines tested with IC 50 values <10µg/mL. Performed docking simulations to understand the binding preference of various C-2 substituted quinazoline sulfonamides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents.

    Science.gov (United States)

    Congiu, Cenzo; Onnis, Valentina

    2013-11-01

    We have designed, synthesized, and evaluated as potential antitumor agents a series of 2-hydroxybenzylidene derivatives of the N-(2-trifluoromethylpiridyn-4-yl)anthranilic acid hydrazide, and some analogues bearing a (2-trifluoromethyl)piridyn-4-ylamino group in 3- or 4-position of benzohydrazide or 4-position of phenylacetohydrazide. Compounds 12e, 13e, 15e, and 16e, bearing a 4-(diethylamino)salicylidene group exhibited potent cytotoxicity, with averaged GI50 values in sub-micromolar range, and a variety of cell selectivity at nanomolar concentrations. The determination of acute toxicity in athymic nudes mice proved some compounds to be non-toxic, making them good candidates for further study as antitumor agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity

    Science.gov (United States)

    Guilger, Mariana; Pasquoto-Stigliani, Tatiane; Bilesky-Jose, Natália; Grillo, Renato; Abhilash, P. C.; Fraceto, Leonardo Fernandes; Lima, Renata De

    2017-03-01

    White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.

  10. Synthesis and Biological Evaluation of Mannich Bases of Isoxazoline Derivatives as Novel Anti-Microbial Agents

    Directory of Open Access Journals (Sweden)

    Pawar Sudhir

    2012-01-01

    Full Text Available A novel series of compounds were synthesized by condensation reaction of substituted acetophenone (1a-b with substituted aldehyde (2a-b in presence of alcoholic sodium hydroxide to get intermediate chalcones (3a-c, which were further treated with hydroxylamine hydrochloride in presence of sodium hydroxide to get isoxazolines derivatives (4a-c. The latter were refluxed with substituted primary amines and formaldehyde for 6-10 h to afford Mannich bases. The synthesized compounds were characterized on the basis of their spectral (IR, 1HNMR data and evaluated for the antimicrobial activity by using Zone of Inhibition by cup plate method and Minimum Inhibitory Concentration by broth dilution method.

  11. Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs). Part I.

    Science.gov (United States)

    Aikawa, Katsuji; Miyawaki, Toshio; Hitaka, Takenori; Imai, Yumi N; Hara, Takahito; Miyazaki, Junichi; Yamaoka, Masuo; Kusaka, Masami; Kanzaki, Naoyuki; Tasaka, Akihiro; Shiraishi, Mitsuru; Yamamoto, Satoshi

    2015-05-15

    To develop effective drugs for hypogonadism, sarcopenia, and cachexia, we designed, synthesized, and evaluated selective androgen receptor modulators (SARMs) that exhibit not only anabolic effects on organs such as muscles and the central nervous system (CNS) but also neutral or antagonistic effects on the prostate. Based on the information obtained from a docking model with androgen receptor (AR), we modified a hit compound A identified through high-throughput screening. Among the prepared compounds, 1-(4-cyano-1-naphthyl)-2,3-disubstituted pyrrolidine derivatives 17h, 17m, and 17j had highly potent AR agonistic activities in vitro and good tissue selectivity in vivo. These derivatives increased the weight of the levator ani muscle without influencing the prostate and seminal vesicle. In addition, these compounds induced sexual behavior in castrated rats, indicating that the compounds could also act as agonists on the CNS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α-glucosidase inhibitors.

    Science.gov (United States)

    Wang, Guangcheng; Chen, Ming; Wang, Jing; Peng, Yaping; Li, Luyao; Xie, ZhenZhen; Deng, Bing; Chen, Shan; Li, Wenbiao

    2017-07-01

    A series of chromone hydrazone derivatives 4a-4p have been synthesized, characterized by 1 H NMR and 13 C NMR and evaluated for theirinvitro α-glucosidase inhibitory activity. Out of these tested compounds, six (4a, 4b, 4d, 4j, 4o and 4p) displayed potent α-glucosidase inhibitory activity with IC 50 values in the range of 20.1±0.19μM to 45.7±0.23μM, as compared to the standard drug acarbose (IC 50 =817.38±6.27μM). Among this series, compound 4d (IC 50 =20.1±0.19μM) with 4-sulfonamide substitution at phenyl part of hydrazide was found to be the most active compound. Lineweaver-Burk plot analysis indicated that compound 4d is a non-competitive inhibitor of α-glucosidase. The binding interactions of the most active analogs were confirmed through molecular docking studies. Docking studies showed 4d are interacting with the residues Glu-276, Asp-214, Asp-349 and Arg-439 through hydrogen bonds, arene-anion and arene-cation interactions. In summary, our studies shown that these chromone hydrazone derivatives are a new class of α-glucosidase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Design, synthesis, docking and biological evaluation of 4-phenyl-thiazole derivatives as autotaxin (ATX) inhibitors.

    Science.gov (United States)

    Balupuri, Anand; Lee, Dae-Yon; Lee, Myeong Hwi; Chae, Sangeun; Jung, Eunmi; Kim, Yunki; Ryu, Jeonghee; Kang, Nam Sook

    2017-09-01

    The autotaxin-lysophophatidic acid (ATX-LPA) signaling pathway is involved in several human diseases such as cancer, autoimmune diseases, inflammatory diseases neurodegenerative diseases and fibrotic diseases. Herein, a series of 4-phenyl-thiazole based compounds was designed and synthesized. Compounds were evaluated for their ATX inhibitory activity using FS-3 and human plasma assays. In the FS-3 assay, compounds 20 and 21 significantly inhibited the ATX at low nanomolar level (IC 50 =2.99 and 2.19nM, respectively). Inhibitory activity of 21 was found to be slightly better than PF-8380 (IC 50 =2.80nM), which is one of the most potent ATX inhibitors reported till date. Furthermore, 21 displayed higher potency (IC 50 =14.99nM) than the first clinical ATX inhibitor, GLPG1690 (IC 50 =242.00nM) in the human plasma assay. Molecular docking studies were carried out to explore the binding pattern of newly synthesized compounds within active site of ATX. Docking studies suggested the putative binding mode of the novel compounds. Good ATX inhibitory activity of 21 was attributed to the hydrogen bonding interactions with Asn230, Trp275 and active site water molecules; electrostatic interaction with catalytic zinc ion and hydrophobic interactions with amino acids of the hydrophobic pocket. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement

    Energy Technology Data Exchange (ETDEWEB)

    Fritzberg, A.R.; Kasina, S.; Eshima, D.; Johnson, D.L.

    1986-01-01

    A new technetium-chelating agent based on a triamide monomercaptide tetradentate set of donor groups, mercaptoacetylglycylglycylglycine (MAG3), was synthesized and evaluated. Chelation with /sup 99m/Tc resulted in a single radiochemical product as expected. Studies in mice of (/sup 99m/Tc)MAG3 indicated excretion rates faster than omicron-iodohippurate (OIH) both in normal and in probenecid treated animals. Specificity for renal excretion was essentially complete. Clearance studies in rats resulted in 2.84 ml/min/100 g for (/sup 99m/Tc)MAG3, 2.17 for OIH, and 1.29 for (125I)iothalamate. Extraction efficiencies were 85% for (/sup 99m/Tc)MAG3, 69% for OIH and 39% for (125I)iothalamate. Probenicid depressed the clearance both of (/sup 99m/Tc)MAG3 and OIH at 25 and 50 mg/kg/hr, but to a greater extent with (/sup 99m/Tc)MAG3. The greater effect is offset, however, by the larger fraction secreted by the renal tubular cells. The animal results suggest that (/sup 99m/Tc)MAG3 may be a useful alternative to (131I)OIH.

  15. New 2-Phenylthiazoles as Potential Sortase A Inhibitors: Synthesis, Biological Evaluation and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Smaranda Dafina Oniga

    2017-10-01

    Full Text Available Sortase A inhibition is a well establish strategy for decreasing bacterial virulence by affecting numerous key processes that control biofilm formation, host cell entry, evasion and suppression of the immune response and acquisition of essential nutrients. A meta-analysis of structures known to act as Sortase A inhibitors provided the starting point for identifying a new potential scaffold. Based on this template a series of new potential Sortase A inhibitors, that contain the 2-phenylthiazole moiety, were synthesized. The physicochemical characterisation confirmed the identity of the proposed structures. Antibacterial activity evaluation showed that the new compounds have a reduced activity against bacterial cell viability. However, the compounds prevent biofilm formation at very low concentrations, especially in the case of E. faecalis. Molecular docking studies performed estimate that this is most likely due to the inhibition of Sortase A. The new compounds could be used as add-on therapies together with known antibacterial agents in order to combat multidrug-resistance enterococcal infections.

  16. Synthesis, biological evaluation, and metabolic stability of phenazine derivatives as antibacterial agents.

    Science.gov (United States)

    Krishnaiah, Maddeboina; de Almeida, Nathalia Rodrigues; Udumula, Venkatareddy; Song, Zhongcheng; Chhonker, Yashpal Singh; Abdelmoaty, Mai M; do Nascimento, Valter Aragao; Murry, Daryl J; Conda-Sheridan, Martin

    2018-01-01

    Drug-resistant pathogens are a major cause of hospital- and community-associated bacterial infections in the United States and around the world. These infections are increasingly difficult to treat due to the development of antibiotic resistance and the formation of bacterial biofilms. In the paper, a series of phenazines were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive (methicillin resistant staphylococcus aureus, MRSA) and Gram negative (Escherichia coli, E. coli) bacteria. The compound 6,9-dichloro-N-(methylsulfonyl)phenazine-1-carboxamide (18c) proved to be the most active molecule (MIC = 16 μg/mL) against MRSA whereas 9-methyl-N-(methylsulfonyl)phenazine-1-carboxamide (30e) showed good activity against both MRSA (MIC = 32 μg/mL) and E. coli (MIC = 32 μg/mL). Molecule 18c also demonstrated significant biofilm dispersion and inhibition against S. aureus. Preliminary studies indicate the molecules do not disturb bacterial membranes and there activity is not directly linked to the generation of reactive oxygen species. Compound 18c displayed minor toxicity against mammalian cells. Metabolic stability studies of the most promising compounds indicate stability towards phase I and phase II metabolizing enzymes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Flavonoids as Vasorelaxant Agents: Synthesis, Biological Evaluation and Quantitative Structure Activities Relationship (QSAR Studies

    Directory of Open Access Journals (Sweden)

    Yongzhou Hu

    2011-09-01

    Full Text Available A series of 2-(2-diethylamino-ethoxychalcone and 6-prenyl(or its isomers-flavanones 10a,b and 11a–g were synthesized and evaluated for their vasorelaxant activities against rat aorta rings pretreated with 1 μM phenylephrine (PE. Several compounds showed potent vasorelaxant activities. Compound 10a (EC50 = 7.6 μM, Emax = 93.1%, the most potent one, would be a promising structural template for development of novel and more efficient vasodilators. Further, 2D-QSAR analysis of compounds 10a,b and 11c-e as well as thirty previously synthesized flavonoids 1-3 and 12-38 using Enhanced Replacement Method-Multiple Linear Regression (ERM-MLR was further performed based on an optimal set of molecular descriptors (H5m, SIC2, DISPe, Mor03u and L3m, leading to a reliable model with good predictive ability (Rtrain2 = 0.839, Qloo2 = 0.733 and Rtest2 = 0.804. The results provide good insights into the structure- activity relationships of the target compounds.

  18. Synthesis and Biological Evaluation of Liguzinediol Mono- and Dual Ester Prodrugs as Promising Inotropic Agents

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-11-01

    Full Text Available The potent positive inotropic effect, together with the relatively low safety risk of liguzinediol (LZDO, relative to currently available inotropic drugs, has prompted us to intensively research and develop LZDO as a potent positive inotropic agent. In this study, to obtain LZDO alternatives for oral chronic administration, a series of long-chain fatty carboxylic mono- and dual-esters of LZDO were synthesized, and preliminarily evaluated for physicochemical properties and bioconversion. Enhanced lipophilic properties and decreased solubility of the prodrugs were observed as the side chain length increased. All esters showed conspicuous chemical stability in phosphate buffer (pH 7.4. Moreover, the enzymatic hydrolysis of esters in human plasma and human liver microsomes confirmed that the majority of esters were converted to LZDO, with release profiles that varied due to the size and structure of the side chain. In vivo pharmacokinetic studies following oral administration of monopivaloyl (M5, monodecyl (M10 and monododecyl (M12 esters demonstrated the evidently extended half-lives relative to LZDO dosed alone. In particular the monopivaloyl ester M5 exhibited an optimal pharmacokinetic profile with appropriate physiochemical characteristics.

  19. Synthesis, characterization and biological evaluation of some novel nitrogen and sulphur containing organometallic heterocycles

    Directory of Open Access Journals (Sweden)

    Humaira Parveen

    2017-12-01

    Full Text Available A series of some novel sulphur and nitrogen containing ferrocenyl linked heterocyclic compounds were synthesized by multistep reactions and evaluated for in vitro antimicrobial activity against 15 ATCC strains out of which 8 were bacterial (Pseudomonas aeruginosa, Streptococcus bovis, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Methicillin-resistant Staphylococcus aureus and Streptococcus mutans and 7 were fungal (Candida albicans, Candida dubliniensis, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida kefyr and Candida krusei strains. The results clearly depict that the compounds (1–12 gave an average antimicrobial activity against the tested strains with an exception of compound 12 which stood out in terms of its activity against the tested organisms. All these compounds gave a range of MIC value between 32–64 μg/ml against S. bovis, E. coli and C. tropicalis except compound 12 which gave a MIC of 16 μg/ml against each of them. The MIC values of all these compounds against biofilm forming P. aeruginosa and S. mutans were 64–256 μg/ml and 64–128 μg/ml respectively which is apparently high, concluding that these compounds hold immense potential to be employed as a two in one formulation of antibacterial as well as antifungal agents.

  20. Facile synthesis, biological evaluation and molecular docking studies of novel substituted azole derivatives

    Science.gov (United States)

    Rafiq, Muhammad; Saleem, Muhammad; Jabeen, Farukh; Hanif, Muhammad; Seo, Sung-Yum; Kang, Sung Kwon; Lee, Ki Hwan

    2017-06-01

    In this study, we synthesized the series of novel azole derivatives and evaluated for enzyme inhibition assays, corresponding kinetic analysis and molecular modeling. Among the investigated bioassays, the oxadiazole derivatives 4a-k were found potent α-glucosidase inhibitors while the Schiff base derivatives 7a-k exhibited considerable potential toward urease inhibition. The inhibition kinetics for the most active compounds were analyzed by the Lineweaver-Burk plots to investigate the possible binding modes of the synthesized compounds toward the tested proteins. Moreover, the detailed docking studies were performed on the synthesized library of 4a-k and 7a-k to study the molecular interaction and binding mode in the active site of the modeled yeast α-glucosidase and Jack Bean Urease, respectively. It could be inferred from docking results that theoretical studies are in close agreement to that of the experimental results. The structure of one of the compound 7k was characterized by the single crystal X-ray diffraction analysis in order to find out the predominant conformation of the molecules.

  1. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol.

    Science.gov (United States)

    Du, Cheng; Dong, Ming-Hui; Ren, Yu-Jie; Jin, Lu; Xu, Cheng

    2017-09-01

    A new series of resveratrol heterocyclic analogs (4a-m) were designed and synthesized, and their inhibitiory effects on MCF-7 cells were evaluated to investigate structure-activity relationship. The effects of these analogs on human breast cancer MCF-7 cells were also determined. Results showed that MCF-7 cells could be inhibited more potently by these analogs than by resveratrol (IC 50  = 80.0 μM). Among the analogs, compounds 4c, 4e, and 4k showed a significantly higher activity (IC 50  = 42.7, 48.1, and 43.4 μM) than resveratrol. Furthermore, the derivatives without additional heterocyclic structure in the 4'-OH position exhibited a more potent activity than that with addition heterocyclic structure. In addition, docking simulation was performed to adequately position compound 4c in a human F 1 -ATPase active site to determine a probable binding model. These heterocyclic analogs could be effective candidates for the chemoprevention of human breast cancer.

  2. Synthesis and biological evaluation of triazole based uracil derivatives as novel DPP-4 inhibitors.

    Science.gov (United States)

    Li, Qing; Han, Li; Zhang, Bin; Zhou, Jinpei; Zhang, Huibin

    2016-10-12

    A series of triazole based uracil derivatives were designed and synthesized as novel DPP-4 inhibitors. Compound A01 was identified as a lead compound for SAR studies focused on the structural modification at the S 2' subsite of DPP-4. The novel analogues A02-A25 were obtained by modifying the substituents at the phenyl group, and B01-B09, by introducing the carbonyl group. On screening in DPP-4, compounds B03, B04 and B08 showed a significant improvement in DPP-4 inhibitory activities compared to compound A01 and showed comparable activities to the marketed DPP-4 inhibitor, alogliptin. Docking studies revealed new favorable binding modes of designed compounds in the S 2' subsite and proved that structural modifications in the S 2' subsite were an effective option to increase the inhibition of DPP-4. In vitro DPP-8 and DPP-9 tests indicated that all compounds showed excellent selectivity against DPP-8 and DPP-9. Further in vivo evaluation showed that compound B04 could significantly improve oral glucose tolerance in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. These data suggest that compound B04 could be a promising DPP-4 inhibitor for future treatment of T2DM.

  3. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone–Nucleoside Bioconjugates

    Directory of Open Access Journals (Sweden)

    Brigitta Bodnár

    2016-09-01

    Full Text Available 2′-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne–azide click reaction (CuAAC. For the introduction of the azido group the 5′-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3′-hydroxy groups of the nucleosides were protected by acetyl groups and the 5′-hydroxy groups were modified by the tosyl–azide exchange method. The commonly used conditions for click reaction between the protected-5′-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780 and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1 was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM. The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM.

  4. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  5. Synthesis and biological evaluation of carbamates derived from aminocombretastatin A-4 as vascular disrupting agents.

    Science.gov (United States)

    Conesa-Milián, Laura; Falomir, Eva; Murga, Juan; Carda, Miguel; Meyen, Eef; Liekens, Sandra; Alberto Marco, J

    2018-03-10

    A series of twenty-six carbamates derived from aminocombretastatin A-4 (AmCA-4) were synthesized and evaluated for their capacity to affect cell proliferation, tubulin polymerization, mitotic cell arrest, microtubule network organization, apoptosis and endothelial tubular structures in vitro. The anti-proliferative activity of the synthetic carbamates was measured on several human tumor cell lines (i.e. HT-29, MCF-7, HeLa, A-549, MDA-MB-231, HL-60) as well as on the endothelial cell line HMEC-1 and the non-tumor cell line HEK-293. The compounds showed anti-proliferative activity in the nanomolar range thereby exceeding by far the activity of combretastatin A-4 (CA-4) and, in some cases, the activity of AmCA-4. The most active compounds proved to be the carbamates bearing chloro, bromo or methoxy groups in the meta position of the phenyl ring. Moreover, all carbamates inhibited in vitro tubulin polymerization, in a similar manner to that of CA-4 and AmCA-4 by interacting with the colchicine binding site in tubulin. The synthetic carbamates proved as active as AmCA-4 in causing mitotic arrest, as assessed in A549 human lung cancer cells, and disruption of the microtubule cellular network. Some selected carbamates induced apoptosis at concentrations as low as 10 nM, being more active than AmCA-4. Finally, these selected carbamates displayed a vascular disrupting activity on endothelial cells in a dose-dependent manner. In conclusion, our data indicate that carbamates derived from aminocombretastatin A-4 represent interesting lead compounds for the design of vascular disrupting agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Synthesis and Biological Evaluation of Apigenin Derivatives as Antibacterial and Antiproliferative Agents

    Directory of Open Access Journals (Sweden)

    Jinyi Wang

    2013-09-01

    Full Text Available Two series of apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl-4H-chromen-4-one] derivatives, 3a–3j and 4a–4j, were synthesized. The apigenin and alkyl amines moieties of these compounds were separated by C2 or C3 spacers, respectively. The chemical structures of the apigenin derivatives were confirmed using 1H-NMR, 13C-NMR, and electrospray ionization mass spectroscopy. The in vitro antibacterial and antiproliferative activities of all synthesized compounds were determined. Among the tested compounds, 4a–4j displayed significant antibacterial activity against the tested strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. Additionally, 4i showed the best inhibitory activity with minimum inhibitory concentrations of 1.95, 3.91, 3.91, and 3.91 μg/mL against S. aureus, B. subtilis, E. coli, and P. aeruginosa, respectively. The antiproliferative activity of the apigenin derivatives was evaluated by an MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide] assay. We determined that 4a–4j displayed better growth inhibition activity against four human cancer cell lines, namely, human lung (A549, human cervical (HeLa, human hepatocellular liver (HepG2, and human breast (MCF-7 cancer cells, than the parent apigenin. Compound 4j was found to be the most active antiproliferative compound against the selected cancer cells. Structure-activity relationships were also discussed based on the obtained experimental data.

  7. Studies on the Synthesis, Photophysical and Biological Evaluation of Some Unsymmetrical Meso-Tetrasubstituted Phenyl Porphyrins

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2017-10-01

    Full Text Available Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT: 5-(4-hydroxy-3-methoxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin (P2.2, Zn(II-5-(4-hydroxy-3-methoxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin (Zn(II2.2 and Cu(II-5-(4-hydroxy-3-methoxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin (Cu(II2.2. The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II2.2 exhibited PDT-acceptable values of singlet oxygen generation. A “dark” cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts and for blood (peripheral mononuclear cells. Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II or Cu(II altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT.

  8. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    Directory of Open Access Journals (Sweden)

    Ahmed Haider

    2016-07-01

    -vein injection. Evaluation of the CB2-positive spleen, however, showed no accumulation of the radiotracer. Despite the promising in vitro binding affinities, specific binding of [11C]AAT-015 and [11C]AAT-778 could not be demonstrated.

  9. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Sankappa Rai U.

    2015-05-01

    Full Text Available Synthesis and characterization of new heterocyclic pyrazole chalcones (4a–e and diamide (6a–e derivatives are described. Pyrazole chalcones were synthesized by the reaction of pyrazole aldehydes and suitable aromatic ketones. Diamides were synthesized by the reaction of phthalic acid and amines. Newly synthesized compounds were characterized by spectral studies and their biological activity was assessed in vitro using MCF-7 (human breast adenocarcinoma and HeLa (human cervical tumor cells cell lines. Few of the synthesized molecules inhibited the growth of the human breast cancer cell lines and human cervical tumor cell lines at low micromolar to nanomolar concentrations.

  10. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors

    DEFF Research Database (Denmark)

    Wu, Gaochan; Gao, Yun; Kang, Dongwei

    2018-01-01

    We report herein the design and synthesis of a series of 11 novel tacrine-1,2,3-triazole derivatives via a Cu(i)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction. The newly synthesized compounds were evaluated for their inhibition activity against Electrophorus electricus...... (SAR) and molecular modeling studies may provide valuable insights into the design of better tacrine-triazole analogues with potential therapeutic applications for AD....

  11. Novel Penicillin-Type Analogues Bearing a Variable Substituted 2-Azetidinone Ring at Position 6: Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Margherita De Rosa

    2015-12-01

    Full Text Available The synthesis and the biological activity of novel semi-synthetic β-lactam compounds containing an azetidinone moiety joined to the amino-nitrogen of the (+-6-aminopenicillanic acid (6-APA as new antibacterial agents is reported. The synthesized compounds were screened for their in vitro antimicrobial activity against a panel of Gram positive and Gram negative pathogens and environmental bacteria. Tested compounds displayed good antimicrobial activity against all tested Gram positive bacteria and for Staphylococcus aureus and Staphylococcus epidermidis antimicrobial activity resulted higher than that of the reference antibiotic. Additionally, in vitro cytotoxic screening was also carried out indicating that the compounds do not cause a cell vitality reduction effective at concentration next to and above those shown to be antimicrobial.

  12. Novel Penicillin-Type Analogues Bearing a Variable Substituted 2-Azetidinone Ring at Position 6: Synthesis and Biological Evaluation.

    Science.gov (United States)

    De Rosa, Margherita; Vigliotta, Giovanni; Palma, Giuseppe; Saturnino, Carmela; Soriente, Annunziata

    2015-12-10

    The synthesis and the biological activity of novel semi-synthetic β-lactam compounds containing an azetidinone moiety joined to the amino-nitrogen of the (+)-6-aminopenicillanic acid (6-APA) as new antibacterial agents is reported. The synthesized compounds were screened for their in vitro antimicrobial activity against a panel of Gram positive and Gram negative pathogens and environmental bacteria. Tested compounds displayed good antimicrobial activity against all tested Gram positive bacteria and for Staphylococcus aureus and Staphylococcus epidermidis antimicrobial activity resulted higher than that of the reference antibiotic. Additionally, in vitro cytotoxic screening was also carried out indicating that the compounds do not cause a cell vitality reduction effective at concentration next to and above those shown to be antimicrobial.

  13. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sirsendu; Koul, Veena, E-mail: veenak@iitd.ac.in

    2016-02-01

    A novel, elastic, non-adhesive and antimicrobial hydrogel PVA scaffold (loaded with AgNPs) synthesized using freeze-thaw method has been characterized in this study. The direct visualization of the as synthesized (one-pot green synthesis methodology) AgNPs using TEM shows particle size in the range of 7 ± 3 nm. The minimum inhibitory concentration (MIC) of AgNPs for Staphylococcus aureus and Escherichia coli was estimated to be 7.81 μg/mL, whereas for Pseudomonas aeruginosa (gram negative) it was around 3.90 μg/mL. The antimicrobial efficacy of AgNPs was further studied by protein leakage, ROS and LDH activity assay. The quantitative elemental analysis of silver was calculated before and after release in phosphate buffer (pH-7.4) by atomic absorption spectroscopy. The antimicrobial efficacy of the scaffold was retained even after 96 h of release of AgNPs which suggests that the scaffold can be used as a reservoir for AgNPs to maintain a moist and sterile environment for a long period of time. - Highlights: • Green synthesis of AgNPs and evaluation of its antimicrobial efficacy • Synthesis of PVA hydrogel by freeze thaw technique • Antimicrobial activity of AgNPs loaded PVA hydrogel by zone of inhibition • Release kinetics of AgNPs from hydrogel by atomic absorption spectroscopy.

  14. Convenient Synthesis and Biological Evaluation of Modafinil Derivatives: Benzhydrylsulfanyl and Benzhydrylsulfinyl [1,2,3]triazol-4-yl-methyl Esters

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-12-01

    Full Text Available Simple synthesis and biological activities of modafinil derivatives are described. The key reactions include condensation of acid and propargyl alcohol, subsequent 1,3-dipolar cycloaddition reaction of alkynes and (3-azido-propylcyclohexane or (4-azido-butylbenzene in the presence of sodium ascorbate and CuSO4·5H2O in excellent yield. They were then evaluated for the suppression of LPS-induced NO generation in vitro. It was found that all compounds showed moderate effects for suppression of LPS-induced NO generation.

  15. Synthesis and biological evaluation of the progenitor of a new class of cephalosporin analogues, with a particular focus on structure-based computational analysis.

    Directory of Open Access Journals (Sweden)

    Anna Verdino

    Full Text Available We present the synthesis and biological evaluation of the prototype of a new class of cephalosporins, containing an additional isolated beta lactam ring with two phenyl substituents. This new compound is effective against Gram positive microorganisms, with a potency similar to that of ceftriaxone, a cephalosporin widely used in clinics and taken as a reference, and with no cytotoxicity against two different human cell lines, even at a concentration much higher than the minimal inhibitory concentration tested. Additionally, a deep computational analysis has been conducted with the aim of understanding the contribution of its moieties to the binding energy towards several penicillin-binding proteins from both Gram positive and Gram negative bacteria. All these results will help us developing derivatives of this compound with improved chemical and biological properties, such as a broader spectrum of action and/or an increased affinity towards their molecular targets.

  16. Synthesis and biological evaluation of the progenitor of a new class of cephalosporin analogues, with a particular focus on structure-based computational analysis.

    Science.gov (United States)

    Verdino, Anna; Vigliotta, Giovanni; Giordano, Deborah; Caputo, Ivana; Soriente, Annunziata; De Rosa, Margherita; Marabotti, Anna

    2017-01-01

    We present the synthesis and biological evaluation of the prototype of a new class of cephalosporins, containing an additional isolated beta lactam ring with two phenyl substituents. This new compound is effective against Gram positive microorganisms, with a potency similar to that of ceftriaxone, a cephalosporin widely used in clinics and taken as a reference, and with no cytotoxicity against two different human cell lines, even at a concentration much higher than the minimal inhibitory concentration tested. Additionally, a deep computational analysis has been conducted with the aim of understanding the contribution of its moieties to the binding energy towards several penicillin-binding proteins from both Gram positive and Gram negative bacteria. All these results will help us developing derivatives of this compound with improved chemical and biological properties, such as a broader spectrum of action and/or an increased affinity towards their molecular targets.

  17. Synthesis and biological evaluation of dialkylaminoalkylamino benzo[c][1,7] and [1,8]phenanthrolines as antiproliferative agents.

    Science.gov (United States)

    Serbetçi, Tuba; Genès, Constance; Depauw, Sabine; Prado, Soizic; Porée, François-Hugues; Hildebrand, Marie-Paule; David-Cordonnier, Marie-Hélène; Michel, Sylvie; Tillequin, François

    2010-06-01

    Benzo[c][1,7] and [1,8]phenanthroline substituted by dialkylaminoalkyl side chains at position C2 and C1, respectively, were synthesized and their biological activity evaluated. These compounds displayed more potent cytotoxicity toward L1210 cells than the parent unsubstituted compounds, associated with strong DNA interaction. The moderate TopoI inhibitory activity induced by the novel compounds suggests that other cellular targets should be responsible for the antiproliferative activity. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  18. Synthesis of nanoparticles and nanomaterials biological approaches

    CERN Document Server

    Abdullaeva, Zhypargul

    2017-01-01

    This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate ...

  19. Synthesis and Biological Evaluation of 2H-Indazole Derivatives: Towards Antimicrobial and Anti-Inflammatory Dual Agents

    Directory of Open Access Journals (Sweden)

    Jaime Pérez-Villanueva

    2017-10-01

    Full Text Available Indazole is considered a very important scaffold in medicinal chemistry. It is commonly found in compounds with diverse biological activities, e.g., antimicrobial and anti-inflammatory agents. Considering that infectious diseases are associated to an inflammatory response, we designed a set of 2H-indazole derivatives by hybridization of cyclic systems commonly found in antimicrobial and anti-inflammatory compounds. The derivatives were synthesized and tested against selected intestinal and vaginal pathogens, including the protozoa Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis; the bacteria Escherichia coli and Salmonella enterica serovar Typhi; and the yeasts Candida albicans and Candida glabrata. Biological evaluations revealed that synthesized compounds have antiprotozoal activity and, in most cases, are more potent than the reference drug metronidazole, e.g., compound 18 is 12.8 times more active than metronidazole against G. intestinalis. Furthermore, two 2,3-diphenyl-2H-indazole derivatives (18 and 23 showed in vitro growth inhibition against Candida albicans and Candida glabrata. In addition to their antimicrobial activity, the anti-inflammatory potential for selected compounds was evaluated in silico and in vitro against human cyclooxygenase-2 (COX-2. The results showed that compounds 18, 21, 23, and 26 display in vitro inhibitory activity against COX-2, whereas docking calculations suggest a similar binding mode as compared to rofecoxib, the crystallographic reference.

  20. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological me- thods of ... Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced ... for the biomimetic synthesis and characterization of protein capped silver nanoparticles.

  1. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents.

    Science.gov (United States)

    Kandanur, Sai Giridhar Sarma; Nanduri, Srinivas; Golakoti, Nageswara Rao

    2017-07-01

    Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III a-f) are reported. The substitutions include various sulfonamide moieties -SO 2 -NH-R 1 . The new derivatives (III a-e) exhibited improved cytotoxicity (GI 50 , TGI and LC 50 ) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion.

    Science.gov (United States)

    Prescher, Horst; Frank, Martin; Gütgemann, Stephan; Kuhfeldt, Elena; Schweizer, Astrid; Nitschke, Lars; Watzl, Carsten; Brossmer, Reinhard

    2017-02-09

    Natural killer cells are able to directly lyse tumor cells, thereby participating in the immune surveillance against cancer. Unfortunately, many cancer cells use immune evasion strategies to avoid their eradication by the immune system. A prominent escape strategy of malignant cells is to camouflage themselves with Siglec-7 ligands, thereby recruiting the inhibitory receptor Siglec-7 expressed on the NK cell surface which subsequently inhibits NK-cell-mediated lysis. Here we describe the synthesis and evaluation of the first, high-affinity low molecular weight Siglec-7 ligands to interfere with cancer cell immune evasion. The compounds are Sialic acid derivatives and bind with low micromolar K d values to Siglec-7. They display up to a 5000-fold enhanced affinity over the unmodified sialic acid scaffold αMe Neu5Ac, the smallest known natural Siglec-7 ligand. Our results provide a novel immuno-oncology strategy employing natural immunity in the fight against cancers, in particular blocking Siglec-7 with low molecular weight compounds.

  3. 2-C-Branched mannosides as a novel family of FimH antagonists—Synthesis and biological evaluation

    Directory of Open Access Journals (Sweden)

    Wojciech Schönemann

    2017-01-01

    Full Text Available Urinary tract infections (UTIs, which are among the most prevalent bacterial infections worldwide, are mainly attributed to uropathogenic Escherichia coli (UPEC. Because of frequent antibiotic treatment, antimicrobial resistance constitutes an increasing therapeutic problem. Antagonists of the mannose-specific bacterial lectin FimH, a key protein mediating the adhesion of UPEC to human bladder cells, would offer an alternative anti-adhesive treatment strategy. In general, FimH antagonists consist of a mannose moiety and a wide range of lipophilic aglycones. Modifications of the mannose core led to a distinct drop in affinity. A visual inspection of the crystal structure of FimH revealed a previously unexplored cavity surrounded by Ile13, Phe142 and Asp140, which could be reached by functional groups in the equatorial 2-position of the mannose. Here, we describe the synthesis of 2-C-branched mannosides and evaluation of their pharmacodynamic properties. ITC experiments with the selected antagonists revealed a drastic enthalpy loss for all 2-C-branched antagonists, which, however, is partially compensated by an entropy gain. This supports the hypothesis that the target cavity is too small to accommodate 2-C-substituents.

  4. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity.

    Science.gov (United States)

    Salerno, Alejandra; Celentano, Ana M; López, Julieta; Lara, Virginia; Gaozza, Carlos; Balcazar, Darío E; Carrillo, Carolina; Frank, Fernanda M; Blanco, María M

    2017-01-05

    In this work, the synthesis of a series of 2-arylazoimidazole derivatives 6-20 has been achieved through the reaction of imidazole with aryldiazonium salts, followed by ultrasound-assisted alkylation. This approach has important advantages including higher yield, shorter reaction times and milder reaction conditions. The structures of the compounds obtained were determined by MS, IR; and 1 H and 13 C NMR. The anti-Trypanosoma cruzi activity of the 15 compounds obtained was evaluated. Two compounds with piperidino substituents in the carboxamide moiety proved to be effective inhibitors of epimastigote proliferation, obtaining inhibition values comparable to those achieved with the reference drug Benznidazole. Besides, these compounds displayed low cytotoxicity on mammalian cells. In vivo, both compounds protected mice against a challenge with a lethal Trypanosoma cruzi strain. These results allow us to propose 2-arylazoimidazoles as lead compounds for the design of novel drugs to treat Chagas' disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Synthesis and Biological Evaluation of Novel Jatrorrhizine Derivatives with Amino Groups Linked at the 3-Position as Inhibitors of Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-01-01

    Full Text Available Jatrorrhizine was considered as one of the active constituents of Coptis chinensis Franch. Herein, jatrorrhizine derivatives with substituted amino groups linked at the 3-position were designed, synthesized, and biologically evaluated as inhibitors of acetylcholinesterase. Jatrorrhizine derivatives inhibited the activity of acetylcholinesterase (AChE to a greater extent than the lead compound jatrorrhizine. All these jatrorrhizine derivatives were proved to be potent inhibitors of acetylcholinesterase (AChE with submicromolar IC50 values, but less sensitive to butyrylcholinesterase (BuChE, which suggests that these jatrorrhizine derivatives are selective for AChE/BuChE. Compound 3g gave the most potent inhibitor activity for AChE (IC50 = 0.301 μM, which is greater than the lead compound jatrorrhizine. All these results demonstrated that these jatrorrhizine derivatives are potential inhibitors for AChE.

  6. Synthesis and Biological Evaluation of Novel Benzimidazole Derivatives Bearing a Heterocyclic Ring at 4/5 Position

    Energy Technology Data Exchange (ETDEWEB)

    Wubulikasimu, Reyila; Yang, Yanbing; Xue, Fei; Luo, Xianjin; Shao, Dongping [Shanghai Jiaotong Univ., Shanghai (China); Li, Yuhuan; Gao, Rongmei [Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Ye, Weidong [Zhejiang Medicine Co. Ltd., Zhejiang (China)

    2013-08-15

    A series of novel benzimidazole derivatives bearing a heterocyclic ring as oxadiazole (21-32), thiadiazole (33-34), triazole (35-36) were synthesized and evaluated for their activities against Coxsackie virus B3 and B6 in Vero cells. Compounds 21-26, 31-36 with moieties of 2'-pyridyl, 3'-pyridyl and 4'-pyridyl at the 2-position and oxadiazoles, thiadiazole, or triazole substituent at the 4- or 5-position generally displayed activities against CVB3 and CVB6. Especially compound 24 (IC{sub 50} = 1.08 μg/mL, SI = 61.7 against CVB3) was the promising candidate as lead compound for anti-enteroviral drug. It was observed in the incorporation of heterocyclic rings in benzimidazole at the 5-position could enhance their biological activities.

  7. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    Energy Technology Data Exchange (ETDEWEB)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V. [Laboratoire de Chimie Organique Fine et Heterocyclique, UMR 6014, IRCOF, CNRS, Universite et INSA de Rouen, B.P. 08 F-76131, Mont- Saint-Aignan Cedex (France); Gourand, F.; Dhilly, M.; Barre, L. [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, CEA/DSV/I2BM/CI-NAPS UMR6232, Universite de Caen Basse Normandie, Caen (France); Bohn, P.; Costentin, J. [Laboratoire de Neuropharmacologie Experimentale associe au CNRS, FRE-2735, Faculte de Medecine et de pharmacie, Universite de Rouen, F-76000 (France); Abbas, A. [Inserm-EPHE-Universite de Caen Basse-Normandie, Unite U923, GIP Cyceron, CHU Cote de Nacre, Caen (France)

    2009-07-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [{sup 11}C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [{sup 11}C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [{sup 11}C]1a into the corresponding quinolinium salt [{sup 11}C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  8. Structure-based design, synthesis, X-ray studies, and biological evaluation of novel HIV-1 protease inhibitors containing isophthalamide-derived P2-ligands.

    Science.gov (United States)

    Ghosh, Arun K; Takayama, Jun; Kassekert, Luke A; Ella-Menye, Jean-Rene; Yashchuk, Sofiya; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2015-11-01

    We describe the design, synthesis and biological evaluation of a series of novel HIV-1 protease inhibitors bearing isophthalamide derivatives as the P2-P3 ligands. We have investigated a range of acyclic and heterocyclic amides as the extended P2-P3 ligands. These inhibitors displayed good to excellent HIV-1 protease inhibitory activity. Also, a number of inhibitors showed very good antiviral activity in MT cells. Compound 5n has shown an enzyme Ki of 0.17 nM and antiviral IC50 of 14 nM. An X-ray crystal structure of inhibitor 5o-bound to HIV-1 protease was determined at 1.11Å resolution. This structure revealed important molecular insight into the inhibitor-HIV-1 protease interactions in the active site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synthesis and biological evaluation of novel acyclic and cyclic glyoxamide based derivatives as bacterial quorum sensing and biofilm inhibitors.

    Science.gov (United States)

    Nizalapur, Shashidhar; Kimyon, Onder; Yee, Eugene; Bhadbhade, Mohan M; Manefield, Mike; Willcox, Mark; Black, David StC; Kumar, Naresh

    2017-07-21

    Bacteria regulate the expression of various virulence factors and processes such as biofilm formation through a chemically-mediated communication mechanism called quorum sensing. Bacterial biofilms contribute to antimicrobial resistance as they can protect bacteria embedded in their matrix from the effects of antibiotics. Thus, developing novel quorum sensing inhibitors, which can inhibit biofilm formation, is a viable strategy to combat antimicrobial resistance. We report herein the synthesis of novel acyclic and cyclic glyoxamide derivatives via ring-opening reactions of N-acylisatins. These compounds were evaluated for their quorum sensing inhibition activity against P. aeruginosa MH602 and E. coli MT102. Compounds 20, 21 and 30 displayed the greatest quorum sensing inhibition activity against P. aeruginosa MH602, with 71.5%, 71.5%, and 74% inhibition, respectively, at 250 μM. Compounds 18, 20 and 21 exhibited the greatest QSI activity against E. coli MT102, with 71.5%, 72.1% and 73.5% quorum sensing inhibition activity, respectively. In addition, the biofilm inhibition activity was also investigated against P. aeruginosa and E. coli at 250 μM. The glyoxamide compounds 16, 18 and 19 exhibited 71.2%, 66.9%, and 66.5% inhibition of P. aeruginosa biofilms, respectively; whereas compounds 12, 20, and 22 showed the greatest inhibitory activity against E. coli biofilms with 87.9%, 90.8% and 89.5%, respectively. Finally, the determination of the in vitro toxicity against human MRC-5 lung fibroblast cells revealed that these novel glyoxamide compounds are non-toxic to human cells.

  10. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors.

    Science.gov (United States)

    Wang, Yinhu; Mowla, Rumana; Ji, Shengli; Guo, Liwei; De Barros Lopes, Miguel A; Jin, Chaobin; Song, Di; Ma, Shutao; Venter, Henrietta

    2018-01-01

    A novel series of 4-substituted 2-naphthamide derivatives were designed, synthesized and evaluated for their biological activity. In particular, the ability of the compounds to potentiate the action of antibiotics, to inhibit Nile Red efflux and to target AcrB specifically was investigated. The results indicated that most of the 4-substituted 2-naphthamide derivatives were able to synergize with the antibiotics tested, and inhibit Nile Red efflux by AcrB in the resistant phenotype. Subsequent exclusion of compounds with off target effects such as outer- or inner membrane permeabilization identified compounds 7c, 7g, 12c, 12i and 13g as efflux pump inhibitors (EPIs). Particularly, compounds 7c, 7g and 12i were found to be the most potent EPIs, which synergized with the two substrates tested at lower concentrations than that of parent A3, demonstrating an improvement in potency as compared to A3. Additionally, when the outer membrane of E. coli was permeabilized, compound 12c displayed a huge increase in efficacy and was able to synergize with erythromycin at a concentration that was 16 times lower than that of the parent A3. Hence we were able to design and synthesize compounds that displayed significant increase in efficacy as EPIs against AcrB. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Silver nanoparticle-embedded poly(vinyl pyrrolidone) hydrogel dressing: gamma-ray synthesis and biological evaluation.

    Science.gov (United States)

    Khampieng, Thitikan; Brikshavana, Pasakorn; Supaphol, Pitt

    2014-01-01

    Silver nanoparticle (nAg)-embedded poly(vinyl pyrrolidone) (PVP) hydrogels, to be used as antibacterial wound dressings, were prepared by γ-irradiation at various doses: 25, 35, and 45 kGy. The formation and characteristics of the silver nanoparticles were investigated with a UV-vis spectrophotometer, transmission electron microscopy, and scanning electron microscopy with energy-dispersive X-ray. The hydrogels were characterized for physical and biological properties. Based on the antibacterial determination, the 1 and 5 mM nAg-embedded PVP hydrogels were effective, with 99.99% bactericidal activity at 12 and 6 h, respectively. The indirect cytotoxicity evaluation based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that both the neat and the nAg-embedded PVP hydrogels were non-toxic to mouse fibroblasts (L929). The 5 mM nAg-embedded PVP hydrogels not only provided a clean, moist environment for wound healing, but also effectively prevented bacterial infection and enhanced wound recovery.

  12. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroprotoberberine Derivatives (THPBs) as Selective α1A-Adrenoceptor Antagonists.

    Science.gov (United States)

    Guo, Diliang; Li, Jing; Lin, Henry; Zhou, Yu; Chen, Ying; Zhao, Fei; Sun, Haifeng; Zhang, Dan; Li, Honglin; Shoichet, Brian K; Shan, Lei; Zhang, Weidong; Xie, Xin; Jiang, Hualiang; Liu, Hong

    2016-10-27

    A novel series of tetrahydroprotoberberine derivatives (THPBs) were designed, synthesized, and evaluated as selective α 1A -adrenergic receptors (AR) antagonists for the treatment of benign prostatic hyperplasia. On the basis of the pharmacophore model of the marketed drug silodosin, THPBs were modified by introducing an indole segment into their core scaffolds. In calcium assays, 7 out of 32 compounds displayed excellent antagonistic activities against α 1A -ARs, with IC 50 less than 250 nM. Among them, compound (S)-27 had the most potent biological activity; its IC 50 toward α 1A -AR was 12.8 ± 2.2 nM, which is 781 and 20 times more selective than that toward α 1B - and α 1D -AR, respectively. In the functional assay using isolated rat tissues, compound (S)-27 inhibited norepinephrine-induced urethra smooth muscle contraction potently (IC 50 = 0.5 ± 0.3 nM), without inhibiting the aortic contraction (IC 50 > 1000 nM), displaying a better tissue selectivity than the marketed drug silodosin. Additional results of preliminary safety studies (acute toxicity and hERG inhibition) and pharmacokinetics studies indicated the potential druggability for compound (S)-27 which is a promising lead for the development of selective α 1A -AR antagonists for the treatment of BPH.

  13. Novel Benzothiazole, Benzimidazole and Benzoxazole Derivatives as Potential Antitumor Agents: Synthesis and Preliminary in Vitro Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li Yang

    2012-01-01

    Full Text Available In a previous hit-to-lead research program targeting anticancer agents, two promising lead compounds, 1a and 1b, were found. However, the poor solubility of 1a and 1b made difficult further in vivo studies. To solve this problem, a lead optimization was conducted through introducing N-methyl-piperazine groups at the 2-position and 6-position. To our delight, the optimized analogue 1d showed comparable antiproliferative activity in vitro with better solubility, compared with 1a. Based on this result, the replacement of the benzothiazole scaffold with benzimidazole and benzoxazole moieties afforded 1f and 1g, whose activities were fundamentally retained. In the preliminary in vitro biological evaluation, the immunofluorescence staining of HCT116 cells indicated that 1d, 1f and 1g led to cytosolic vacuolization which was not induced by 1a at low micromolecular concentrations. These results suggest that these optimized compounds might potentially constitute a novel class of anticancer agents, which merit further studies.

  14. Rational Design, Efficient Synthesis, Biological Evaluation of New Ν,Ν'-bis-substituted Butylimidazole Analogs as Potent Angiotensin Receptor Blockers

    Czech Academy of Sciences Publication Activity Database

    Agelis, G.; Resvani, A.; Koukoulitsa, C.; Afantitis, A.; Melagraki, G.; Siafaka, A.; Gkini, E.; Tůmová, Tereza; Spyridaki, K.; Kalavrizioti, D.; Androutsou, M-E.; Slaninová, Jiřina; Liapakis, G.; Vlahakos, D.; Mavromoustakos, T.; Matsoukas, J.

    2012-01-01

    Roč. 18, S1 (2012), S123-S123 ISSN 1075-2617. [European Peptide Symposium /32./. 02.09.2012-07.09.2012, Athens] Institutional research plan: CEZ:AV0Z40550506 Keywords : angiotensin II AT1 receptor * in vitro * antagonism * inhibitor * in vitro antagonism * synthesis Subject RIV: CE - Biochemistry

  15. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  16. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    eral plant extracts, particularly Lantana camara, Moringa oleifera, Catharanthus roseus, Eucalyptus hybrid, Cassia auriculata.23 However, potential of the plants as biologi- cal materials for the synthesis of nanoparticles is still under exploitation. In the present study, we developed an optimized method for syntheses of silver ...

  17. Synthesis and biological evaluation of S-acyl-3-thiopropyl prodrugs of N-phosphonoacetyl-L-aspartate (PALA).

    Science.gov (United States)

    Gagnard, Valérie; Leydet, Alain; Le Mellay, Véronique; Aubenque, Marielle; Morère, Alain; Montero, Jean-Louis

    2003-10-01

    The synthesis of new prodrugs of PALA characterised by the presence of S-acyl-3-thiopropyl, as enzyme-labile groups on the phosphonate moiety of PALA, is reported. The cytotoxic activities of PALA prodrugs were determined against human cell line (SW1573 lung carcinoma cells). A number of prodrugs bearing S-pivaloyl as acyl groups displayed cytotoxic activity in the same order of magnitude of PALA.

  18. Synthesis, characterization and biological evaluation of novel diesters of 4,4'-dihydroxy azoxy benzene with long chain carboxylic acid

    International Nuclear Information System (INIS)

    Shehzadi, S.; Siddiqi, H.M.; Qasim, M.M.

    2014-01-01

    Synthesis of novel symmetrical azoxy diesters have been prepared by the reaction of 4,4'-dihydroxyazoxy benzene with aliphatic acid halides of varying chain lengths. The synthesized compounds have been characterized by spectral and analytical means. These symmetrical azoxy diesters exhibit good antifungal against six fungal strains (Mucor species, Aspergillus niger, Aspergillus flavus, Alternaria solani, Fusarium solani and Aspergillus fumigatus) and antitumor activities while no significant antibacterial activity has been observed. These synthesized compounds are also potent free radical scavengers. (author)

  19. The discovery of a novel and selective inhibitor of PTP1B over TCPTP: 3D QSAR pharmacophore modeling, virtual screening, synthesis, and biological evaluation.

    Science.gov (United States)

    Ma, Ying; Jin, Yuan-Yuan; Wang, Ye-Liu; Wang, Run-Ling; Lu, Xin-Hua; Kong, De-Xin; Xu, Wei-Ren

    2014-06-01

    Given the special role of insulin and leptin signaling in various biological responses, protein-tyrosine phosphatase-1B (PTP1B) was regarded as a novel therapeutic target for treating type 2 diabetes and obesity. However, owing to the highly conserved (sequence identity of about 74%) in active pocket, targeting PTP1B for drug discovery is a great challenge. In this study, we employed the software package Discovery Studio to develop 3D QSAR pharmacophore models for PTP1B and TCPTP inhibitors. It was further validated by three methods (cost analysis, test set prediction, and Fisher's test) to show that the models can be used to predict the biological activities of compounds without costly and time-consuming synthesis. The criteria for virtual screening were also validated by testing the selective PTP1B inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed a novel and selective inhibitor of PTP1B over TCPTP. After that, a most likely binding mode was proposed. Thus, the findings reported here may provide a new strategy in discovering selective PTP1B inhibitors. © 2014 John Wiley & Sons A/S.

  20. Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents.

    Science.gov (United States)

    Figueiredo, Joana; Serrano, João L; Cavalheiro, Eunice; Keurulainen, Leena; Yli-Kauhaluoma, Jari; Moreira, Vânia M; Ferreira, Susana; Domingues, Fernanda C; Silvestre, Samuel; Almeida, Paulo

    2018-01-01

    Barbituric and thiobarbituric acid derivatives have become progressively attractive to medicinal chemists due to their wide range of biological activities. Herein, different series of 1,3,5-trisubstituted barbiturates and thiobarbiturates were prepared in moderate to excellent yields and their activity as xanthine oxidase inhibitors, antioxidants, antibacterial agents and as anti-proliferative compounds was evaluated in vitro. Interesting bioactive barbiturates were found namely, 1,3-dimethyl-5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6c) and 1,3-dimethyl-5-[1-[2-(4-nitrophenyl)hydrazinyl]ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6e), which showed concomitant xanthine oxidase inhibitory effect (IC 50 values of 24.3 and 27.9 μM, respectively), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC 50 values of 18.8 and 23.8 μM, respectively). In addition, 5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6d) also revealed DPPH radical scavenger effect, with an IC 50 value of 20.4 μM. Moreover, relevant cytotoxicity against MCF-7 cells (IC 50  = 13.3 μM) was observed with 5-[[(2-chloro-4-nitrophenyl)amino]methylene]-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (7d). Finally, different 5-hydrazinylethylidenepyrimidines revealed antibacterial activity against Acinetobacter baumannii (MIC values between 12.5 and 25.0 μM) which paves the way for developing new treatments for infections caused by this Gram-negative coccobacillus bacterium, known to be an opportunistic pathogen in humans with high relevance in multidrug-resistant nosocomial infections. The most promising bioactive barbiturates were studied in silico with emphasis on compliance with the Lipinski's rule of five as well as several pharmacokinetics and toxicity parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Synthesis and biological evaluation of indeno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity.

    Science.gov (United States)

    Alonso, Concepción; Fuertes, María; González, María; Rubiales, Gloria; Tesauro, Cinzia; Knudsen, Birgitta R; Palacios, Francisco

    2016-06-10

    In an effort to establish new candidates with improved anticancer activity, we report here the synthesis of various series of 7H-indeno[2,1-c][1,5]-naphthyridines and novel 7H-indeno[2,1-c][1,5]-naphthyridine-7-ones and 7H-indeno[2,1-c][1,5]-naphthyridine-7-ols. Most of the products which were synthesized were able to inhibit Topoisomerase I activity. Moreover, in vitro testing demonstrated that a subset of the products exhibited a cytotoxic effect on cell lines derived from human breast cancer (BT 20), human lung adenocarcinoma (A 549), or human ovarian carcinoma (SKOV3). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Novel approach for heterocyclization: a clean and efficient synthesis and biological evaluation of 4-oxothiazolidines under microwave technique

    International Nuclear Information System (INIS)

    Desai, Krunal G.; Desai, K.R.

    2006-01-01

    A new selective method has been developed for rapid synthesis of 2-(aryl)-3-[2-benzoimidazolythio)-acetamidyl]-4-oxothiazolidines 4a-j by the heterocyclization of 2-{(1H-benzemidazol)-ylthio}-N-benzylidene aceto hydrazide 3a-j with HSCH2COOH under microwave irradiation (MWI) is described. The reaction rate and yield is enhanced tremendously under MWI as compared to conventional methods. All the compounds have been screened for their antifungal activity against Candida albicans and Aspergillus niger, antibacterial activity against Escherchia coli and Staphylococcus aureus. In the primary screening, some of the compounds exhibited appreciable activity. The structures of the synthesized compounds 4a-j have been characterized on the basis of their elemental analysis, IR, HNMR and Mass spectral data. (author)

  3. Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy.

    Science.gov (United States)

    Zha, Chuantao; Deng, Wenjia; Fu, Yan; Tang, Shuai; Lan, Xiaojing; Ye, Yan; Su, Yi; Jiang, Lei; Chen, Yi; Huang, Ying; Ding, Jian; Geng, Meiyu; Huang, Min; Wan, Huixin

    2018-03-25

    CDK4/6 pathway is an attractive chemotherapeutic target for antitumor drug discovery and development. Herein, we reported the structure-based design and synthesis of a series of novel tetrahydronaphthyridine analogues as selective CDK4/6 inhibitors. Compound 5 was identified as a hit and then systematically structure optimization study was conducted. These efforts led to compound 28, which exhibited excellent in vitro potencies against CDK4/6 enzymatic activity with high selectivity over CDK1, and against Colo-205 cell growth. The compound demonstrated favorable in vitro metabolic and robust mice pharmacokinetic properties. In Colo-205 xenograft models, compound 28 showed potent tumor growth inhibition with acceptable toxic effects, which could serve as a novel anticancer agent for further preclinical study. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Design, Synthesis and Biological Evaluation of Oxindole-Based Chalcones as Small-Molecule Inhibitors of Melanogenic Tyrosinase.

    Science.gov (United States)

    Suthar, Sharad Kumar; Bansal, Sumit; Narkhede, Niteen; Guleria, Manju; Alex, Angel Treasa; Joseph, Alex

    2017-01-01

    The enzyme tyrosinase regulates melanogenesis and skin hyperpigmentation by converting L-3,4-dihydroxyphenylalanine (L-DOPA) into dopaquinone, a key step in the melanin biosynthesis. The present work deals with design and synthesis of various oxindole-based chalcones as monophenolase and diphenolase activity inhibitors of tyrosinase. Among the screened compounds, 4-hydroxy-3-methoxybenzylidene moiety bearing chalcone (7) prepared by one pot reaction of oxindole and vanillin displayed the highest activity against tyrosinase with IC 50 s of 63.37 and 59.71 µM in monophenolase and diphenolase activity assays, respectively. In molecular docking studies, chalcone 7 also showed the highest binding affinity towards the enzyme tyrosinase while exhibiting the lowest estimated free energy of binding, among all the ligands docked.

  5. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[18f]fluorobenzoate

    International Nuclear Information System (INIS)

    Jonson, Stephanie D.; Welch, Michael J.

    1999-01-01

    Cholesteryl-p-[ 18 F]fluorobenzoate ([ 18 F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [ 18 F]CFB. The synthesis of [ 18 F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [ 18 F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [ 18 F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [ 18 F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [ 18 F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [ 18 F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [ 18 F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders

  6. Synthesis and Biological Evaluation of New Imidazolium and Piperazinium Salts of Pyropheophorbide-a for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Young Key Shim

    2008-08-01

    Full Text Available We have designed imidazolium and piperazinium salts of pyropheophorbide-a in order to develop effective photosensitizers which have good solubility in polar and non polar media and to reveal the possible influences of the piperazine and imidazole moieties on the biological activities of pyropheophorbide-a. The phototoxicity of those pyropheophorbide-a salts against A549 cells was studied in vitro and compared with that of pyropheophorbide-a. The result showed that complexing piperazine and imidazole into pyropheophorbide-a decreases its dark toxicity without greatly decreasing phototoxicity and, enhances its phototoxicity without greatly increasing dark toxicity, respectively. This work not only describes novel amphiphilic salt complexes of pyropheophobide-a which retain the biological activities of the parent compound pyropheophorbide-a and could be effective candidate for PDT, but also reveals the possibility of developing effective photosensitizers by complexing imidazole and piperazine into other hydrophobic photosensitizers.

  7. Design, synthesis, and biological evaluation of enantiomeric beta-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease.

    Science.gov (United States)

    Rountree, J S Shane; Butters, Terry D; Wormald, Mark R; Boomkamp, Stephanie D; Dwek, Raymond A; Asano, Naoki; Ikeda, Kyoko; Evinson, Emma L; Nash, Robert J; Fleet, George W J

    2009-03-01

    N-Acetylhexosaminidases are of considerable importance in mammals and are involved in various significant biological processes. In humans, deficiencies of these enzymes in the lysosome, resulting from inherited genetic defects, cause the glycolipid storage disorders Tay-Sachs and Sandhoff diseases. One promising therapy for these diseases involves the use of beta-N-acetylhexosaminidase inhibitors as chemical chaperones to enhance the enzyme activity above sub-critical levels. Herein we describe the synthesis and biological evaluation of a potent inhibitor, 2-acetamido-1,4-imino-1,2,4-trideoxy-L-arabinitol (LABNAc), in a high-yielding 11-step procedure from D-lyxonolactone. The N-benzyl and N-butyl analogues were also prepared and found to be potent inhibitors. The enantiomers DABNAc and NBn-DABNAc were synthesised from L-lyxonolactone, and were also evaluated. The L-iminosugar LABNAc and its derivatives were found to be potent noncompetitive inhibitors of some beta-N-acetylhexosaminidases, while the D-iminosugar DABNAc and its derivatives were found to be weaker competitive inhibitors. These results support previous work postulating that D-iminosugar mimics inhibit D-glycohydrolases competitively, and that their corresponding L-enantiomers show noncompetitive inhibition of these enzymes. Molecular modelling studies confirm that the spatial organisation in enantiomeric inhibitors leads to a different overlay with the monosaccharide substrate. Initial cell-based studies suggest that NBn-LABNAc can act as a chemical chaperone to enhance the deficient enzyme's activity to levels that may cause a positive pharmacological effect. LABNAc, NBn-LABNAc, and NBu-LABNAc are potent and selective inhibitors of beta-N-acetylhexosaminidase and may be useful as therapeutic agents for treating adult Tay-Sachs and Sandhoff diseases.

  8. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger's base skeleton

    Czech Academy of Sciences Publication Activity Database

    Kaplánek, R.; Havlík, M.; Dolenský, B.; Rak, J.; Džubák, P.; Konečný, P.; Hajdúch, M.; Králová, Jarmila; Král, V.

    2015-01-01

    Roč. 23, č. 7 (2015), s. 1651-1659 ISSN 0968-0896 R&D Projects: GA ČR(CZ) GAP303/11/1291 Grant - others:GA MŠk(CZ) EE2.3.30.0060; GA MŠk(CZ) LO1304 Program:EE; LD Institutional support: RVO:68378050 Keywords : Anticancer agents * Cancer treatment * Complexation studies * Hydrazone * Troger's base Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.923, year: 2015

  9. Synthesis and in vitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases

    Czech Academy of Sciences Publication Activity Database

    Zatloukal, M.; Jorda, Radek; Gucký, T.; Řezníčková, Eva; Voller, Jiří; Pospíšil, T.; Malínková, V.; Adamcová, H.; Kryštof, Vladimír; Strnad, Miroslav

    2013-01-01

    Roč. 61, SI (2013), s. 61-72 ISSN 0223-5234 R&D Projects: GA ČR GAP305/12/0783; GA ČR GA301/08/1649 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Cyclin-dependent kinase * Inhibitor * Roscovitine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.432, year: 2013

  10. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents.

    Science.gov (United States)

    Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif

    2017-11-08

    An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

  11. Design, synthesis, and biological evaluation of scaffold-based tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4)

    DEFF Research Database (Denmark)

    Zachariassen, Zack G; Thiele, Stefanie; Berg, Erik A

    2014-01-01

    Structure-activity relationship studies of the cyclopentapeptide CXCR4 antagonists (cyclo(-l-/d-Arg(1)-Arg(2)-2-Nal(3)-Gly(4)-d-Tyr(5)-)) suggest that the l-/d-Arg(1)-Arg(2)-2-Nal(3) tripeptide sequence contained within these cyclopentapeptides serves as a recognition motif for peptidic CXCR4...... antagonists. Starting by dissecting the cyclopentapeptide structure and reintroducing cyclic constraints in a stepwise manner, we here report a novel class of scaffold-based tripeptidomimetic CXCR4 antagonists based on the d-Arg-Arg-2-Nal motif. Biological testing of the prototype compounds showed...

  12. Discovery of a new class of liver receptor homolog-1 (LRH-1) antagonists: virtual screening, synthesis and biological evaluation.

    Science.gov (United States)

    Rey, Jullien; Hu, Haipeng; Kyle, Fiona; Lai, Chun-Fui; Buluwela, Laki; Coombes, R Charles; Ortlund, Eric A; Ali, Simak; Snyder, James P; Barrett, Anthony G M

    2012-11-01

    Targeting LRH-1: Virtual screening and molecular modeling were used to identify novel antagonists of liver receptor homolog-1 (LRH-1), an emerging therapeutic target for breast cancer. Hit compounds were synthesized and biologically assayed, and the preliminary results suggest that raloxifene-based analogues, substituted at the position C-7 of the benzothiophene ring, might generate an inactive protein conformation through binding and thus antagonize this nuclear receptor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bacterial Peptide Deformylase Inhibition of Tetrazole-Substituted Biaryl Acid Analogs: Synthesis, Biological Evaluations, and Molecular Docking Study.

    Science.gov (United States)

    Khan, Firoz A Kalam; Patil, Rajendra H; Patil, Manjiri; Arote, Rohidas; Shinde, Devanand B; Sangshetti, Jaiprakash N

    2016-12-01

    The synthesis and screening of tetrazole-substituted biaryl acid analogs 7a-l as bacterial peptide deformylase (PDF) enzyme inhibitors is reported. The compounds 7e (IC 50 value = 5.50 μM) and 7g (IC 50 value = 7.25 μM) showed good PDF inhibition activity. The compounds 7e (MIC range = 10.75-11.66 μg/mL) and 7g (MIC range = 8.91-12.83 μg/mL) also showed potent antibacterial activity when compared with the standard ciprofloxacin (MIC range = 25-50 μg/mL). Thus, the active derivatives were not only potent PDF enzyme inhibitors but also efficient antibacterial agents. In order to gain more insight into the binding mode of the compounds with the PDF enzyme, the most active compounds 7e and 7g, the moderately active compound 7k, and the least active compound 7h were docked against the PDF enzyme of Escherichia coli. The docking study of the most active compounds 7e and 7g against the PDF enzyme exhibited good binding properties. Hence, we believe our synthesized compounds 7a-l could serve as reservoir for bacterial PDF inhibitor development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation.

    Science.gov (United States)

    Bhowmick, Sirsendu; Koul, Veena

    2016-02-01

    A novel, elastic, non-adhesive and antimicrobial hydrogel PVA scaffold (loaded with AgNPs) synthesized using freeze-thaw method has been characterized in this study. The direct visualization of the as synthesized (one-pot green synthesis methodology) AgNPs using TEM shows particle size in the range of 7±3nm. The minimum inhibitory concentration (MIC) of AgNPs for Staphylococcus aureus and Escherichia coli was estimated to be 7.81μg/mL, whereas for Pseudomonas aeruginosa (gram negative) it was around 3.90μg/mL. The antimicrobial efficacy of AgNPs was further studied by protein leakage, ROS and LDH activity assay. The quantitative elemental analysis of silver was calculated before and after release in phosphate buffer (pH-7.4) by atomic absorption spectroscopy. The antimicrobial efficacy of the scaffold was retained even after 96h of release of AgNPs which suggests that the scaffold can be used as a reservoir for AgNPs to maintain a moist and sterile environment for a long period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Efficient synthesis of 16 aromatic Morita-Baylis-Hillman adducts: Biological evaluation on Leishmania amazonensis and Leishmania chagasi.

    Science.gov (United States)

    Junior, Cláudio G L; de Assis, Priscila A C; Silva, Fábio P L; Sousa, Suervy C O; de Andrade, Natália G; Barbosa, Ticiano P; Nerís, Patrícia L N; Segundo, Luiz V G; Anjos, Italo C; Carvalho, Gabriel A U; Rocha, Gerd B; Oliveira, Márcia R; Vasconcellos, Mário L A A

    2010-12-01

    Sixteen aromatic Morita-Baylis-Hillman adducts (MBHA) 1-16 were efficiently synthesized in a one step Morita-Baylis-Hillman reaction (MBHR) involving commercial aldehydes with methyl acrylate or acrylonitrile (81-100% yields) without the formation of side products on DABCO catalysis and at low temperature (0°C). The toxicities of these compounds were assessed against promastigote form of Leishmania amazonensis and Leishmania chagasi. The low synthetic cost of these MBHA, green synthetic protocols, easy one-step synthesis from commercially available and cheap reagents as well as the very good antileishmanial activity obtained for 14 and 16 (IC₅₀ values of 6.88μgmL⁻¹ and 11.06μgmL⁻¹ respectively on L. amazonensis; 9.58μgmL⁻¹ and 14.34μgmL⁻¹ respectively on L. chagasi) indicates that these MBHA can be a novel and promising class of anti-parasitic compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Synthesis and biological evaluation of novel 3-O-tethered triazoles of diosgenin as potent antiproliferative agents.

    Science.gov (United States)

    Masood-Ur-Rahman; Mohammad, Younis; Fazili, Khalid Majid; Bhat, Khursheed Ahmad; Ara, Tabassum

    2017-02-01

    Diosgenin, a promising anticancer steroidal sapogenin, was isolated from Dioscorea deltoidea. Keeping its stereochemistry rich architecture intact, a scheme for the synthesis of novel diosgenin analogues was designed using Cu (I)-catalysed alkyne-azide cycloaddition in order to study their structure-activity relationship. Both diosgenin and its analogues exhibited interesting anti-proliferative effect against four human cancer cell lines viz. HBL-100 (breast), A549 (lung), HT-29 (colon) and HCT-116 (colon) using [3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide] (MTT) assay. Among the synthesized analogues, Dgn-1 bearing a simple phenyl R moiety attached via triazole to the parent molecule was identified as the most potent analogue against A549 cancer cell line having IC 50 of 5.54μM, better than the positive control (BEZ-235). Dgn-2 and Dgn-5 bearing o-nitrophenyl and o-cyanophenyl R moieties respectively, displayed impressive anti-proliferative activity against all the tested human cancer cell lines with IC 50 values ranging from 5.77 to 9.44μM. The structure-activity relationship (SAR) revealed that the analogues with simple phenyl R moiety or electron withdrawing ortho substituted R moieties seem to have beneficial impact on the anti-proliferative activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lu [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Yang, Ning, E-mail: summer_ningzi@163.com [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Hao [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Chen, Li, E-mail: chenlis@tjpu.edu.cn [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Tao, Lei; Wei, Yen [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Liu, Hui; Luo, Ying [Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170 (China)

    2015-03-01

    A novel multifunctional poly(γ-glutamic acid)/silk sericin (γ-PGA/SS) hydrogel has been developed and used as wound dressing. The physical and chemical properties of the γ-PGA/SS gels were systemically investigated. Furthermore, these γ-PGA/SS gels have been found to promote the L929 fibroblast cells proliferate, and in the in vivo study, significant stimulatory effects were also observed on granulation and capillary formation on day 9 in H-2-treated wounds, indicating that this new complex hydrogel could maintain a moist healing environment, protect the wound from bacterial infection, absorb excess exudates, and promote cell proliferation to reconstruct damaged tissue. Considering the simple preparation process and excellent biological property, this γ-PGA/SS hydrogel might have a wide range of applications in biomedical and clinical areas. - Highlights: • Novel biodegradable hydrogels from γ-PGA and SS were successfully fabricated. • The preparation of hydrogel for wound dressing is simple. • The addition of SS in hydrogel improved the mechanical and biological properties. • The hydrogel has the feasibility to use in clinical application.

  18. New Human Monoamine Oxidase A Inhibitors with Potential Anti- Depressant Activity: Design, Synthesis, Biological Screening and Evaluation of Pharmacological Activity.

    Science.gov (United States)

    Evranos-Aksoz, Begum; Ucar, Gulberk; Tas, Sadik Taskin; Aksoz, Erkan; Yelekci, Kemal; Erikci, Acelya; Sara, Yildirim; Iskit, Alper Bektas

    2017-01-01

    Depression is a momentous disease that can greatly reduce the quality of life and cause death. In depression, neurotransmitter levels such as serotonine, dopamine and noradrenaline are impaired. Monoamine oxidases (MAO) are responsible for oxidative catalysis of these monoamine neurotransmitters. Because of this relation, MAO-A inhibitors show antidepressant activity by regulating neurotransmitter levels. This study was carried out to investigate the design, synthesis and activity of new antidepressant compounds in pyrazoline and hydrazone structure. Chalcones and hydrazides were heated under reflux to give new pyrazoline and hydrazone derivatives. Docking simulations were performed using AutoDock4.2. hMAO activities were determined by a fluorimetric method. To determine cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Behavioral activities of the three compounds were determined by using Forced Swim Test, Step-Through Passive Avoidance Test, Elevated Plus Maze and Open Field Arena Tests. According to in vitro tests, all of the synthesized compounds were found more potent than moclobemide and six of the synthesized compounds were found more selective than moclobemide. Three of the synthesized compounds were investigated for their behavioral activities comparing with moclobemide after 7 days of i.p. treatment at 30 mg/kg. One of the three compounds elicited significant antidepressant properties. All of the synthesized compounds were found potent hMAO-A inhibitors in in vitro screening tests. Only one of the in vivo tested three compounds, (3-(2-hydroxy-5-methylphenyl)-5- p-tolyl-4,5-dihydropyrazol-1-yl)(pyridin-4-yl) methanone indicated significant antidepressant activity. This article opens a window for further development of new pyrazoline and hydrazone derivatives as antidepressant agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Design, Synthesis, and Biological Evaluation of an Allosteric Inhibitor of HSET that Targets Cancer Cells with Supernumerary Centrosomes

    Science.gov (United States)

    Watts, Ciorsdaidh A.; Richards, Frances M.; Bender, Andreas; Bond, Peter J.; Korb, Oliver; Kern, Oliver; Riddick, Michelle; Owen, Paul; Myers, Rebecca M.; Raff, Jordan; Gergely, Fanni; Jodrell, Duncan I.; Ley, Steven V.

    2013-01-01

    Summary Centrosomes associate with spindle poles; thus, the presence of two centrosomes promotes bipolar spindle assembly in normal cells. Cancer cells often contain supernumerary centrosomes, and to avoid multipolar mitosis and cell death, these are clustered into two poles by the microtubule motor protein HSET. We report the discovery of an allosteric inhibitor of HSET, CW069, which we designed using a methodology on an interface of chemistry and biology. Using this approach, we explored millions of compounds in silico and utilized convergent syntheses. Only compound CW069 showed marked activity against HSET in vitro. The inhibitor induced multipolar mitoses only in cells containing supernumerary centrosomes. CW069 therefore constitutes a valuable tool for probing HSET function and, by reducing the growth of cells containing supernumerary centrosomes, paves the way for new cancer therapeutics. PMID:24210220

  20. Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H.

    Science.gov (United States)

    Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang

    2017-12-01

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50  = 0.04 μM) with decent antiviral potency (EC 50  = 7.4 μM) and no cytotoxicity (CC 50  > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50  = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Structure-based design of potent HIV-1 protease inhibitors with modified P1-biphenyl ligands: synthesis, biological evaluation, and enzyme-inhibitor X-ray structural studies.

    Science.gov (United States)

    Ghosh, Arun K; Yu, Xufen; Osswald, Heather L; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2015-07-09

    We report the design, synthesis, X-ray structural studies, and biological evaluation of a novel series of HIV-1 protease inhibitors. We designed a variety of functionalized biphenyl derivatives to make enhanced van der Waals interactions in the S1 subsite of HIV-1 protease. These biphenyl derivatives were conveniently synthesized using a Suzuki-Miyaura cross-coupling reaction as the key step. We examined the potential of these functionalized biphenyl-derived P1 ligands in combination with 3-(S)-tetrahydrofuranyl urethane and bis-tetrahydrofuranyl urethane as the P2 ligands. Inhibitor 21e, with a 2-methoxy-1,1'-biphenyl derivative as P1 ligand and bis-THF as the P2 ligand, displayed the most potent enzyme inhibitory and antiviral activity. This inhibitor also exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray crystal structure of related Boc-derivative 17a-bound HIV-1 protease provided important molecular insight into the ligand-binding site interactions of the biphenyl core in the S1 subsite of HIV-1 protease.

  2. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D. (Purdue); (UC); (UIC)

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  3. The new biology: beyond the Modern Synthesis

    Science.gov (United States)

    Rose, Michael R; Oakley, Todd H

    2007-01-01

    Background The last third of the 20th Century featured an accumulation of research findings that severely challenged the assumptions of the "Modern Synthesis" which provided the foundations for most biological research during that century. The foundations of that "Modernist" biology had thus largely crumbled by the start of the 21st Century. This in turn raises the question of foundations for biology in the 21st Century. Conclusion Like the physical sciences in the first half of the 20th Century, biology at the start of the 21st Century is achieving a substantive maturity of theory, experimental tools, and fundamental findings thanks to relatively secure foundations in genomics. Genomics has also forced biologists to connect evolutionary and molecular biology, because these formerly Balkanized disciplines have been brought together as actors on the genomic stage. Biologists are now addressing the evolution of genetic systems using more than the concepts of population biology alone, and the problems of cell biology using more than the tools of biochemistry and molecular biology alone. It is becoming increasingly clear that solutions to such basic problems as aging, sex, development, and genome size potentially involve elements of biological science at every level of organization, from molecule to population. The new biology knits together genomics, bioinformatics, evolutionary genetics, and other such general-purpose tools to supply novel explanations for the paradoxes that undermined Modernist biology. Open Peer Reviewers This article was reviewed by W.F. Doolittle, E.V. Koonin, and J.M. Logsdon. For the full reviews, please go to the Reviewers' Comments section. PMID:18036242

  4. Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents.

    Science.gov (United States)

    Rogers, Steven A; Lindsey, Erick A; Whitehead, Daniel C; Mullikin, Trey; Melander, Christian

    2011-02-15

    The successful marriage of structural features from our 2-aminoimidazole and menthyl carbamate classes of anti-biofilm agents has resulted in the development of a novel hybrid scaffold of biofilm modulators. The compounds were evaluated against a panel of four bacterial strains for anti-biofilm and anti-microbial activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators

    DEFF Research Database (Denmark)

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.

    2013-01-01

    . These compounds were evaluated for their ability to activate or inhibit two QS receptors from two prevalent pathogens – LasR from Pseudomonas aeruginosa and AbaR from Acinetobacter baumannii – using bacterial reporter strains. Several triazole derivatives were identified that were capable of strongly modulating...

  6. Design, synthesis, molecular docking and biological evaluation of new dithiocarbamates substituted benzimidazole and chalcones as possible chemotherapeutic agents.

    Science.gov (United States)

    Bacharaju, Keerthana; Jambula, Swathi Reddy; Sivan, Sreekanth; Jyostnatangeda, Saritha; Manga, Vijjulatha

    2012-05-01

    A series of novel dithiocarbamates with benzimidazole and chalcone scaffold have been designed synthesised and evaluated for their antimitotic activity. Compounds 4c and 9d display the most promising antimitotic activity with IC(50) of 1.66 μM and 1.52 μM respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Synthesis and biological evaluation of 99mTc-DMP-NGA as a novel hepatic asialoglycoprotein receptor imaging agent

    International Nuclear Information System (INIS)

    Yang Wenjiang; Mou Tiantian; Zhang Xianzhong; Wang Xuebin

    2010-01-01

    A novel bifunctional coupling agents-biomolecular compound DMP-NGA was prepared by coupling the SATP with galactosyl-neoglycoalbumin (NGA). The DMP-NGA was labeled with technetium-99 m, and the radiochemical purity in excess of 98% after purified with HPLC. In vivo biodistribution showed that 99m Tc-DMP-NGA had very high initial liver uptake with good retention. The liver accumulated 99.35±9.77%, 74.25±3.03%, 52.47±7.58% of the injected dose per gram at 5, 30 and 120 min after injection, respectively. It had relative higher initial liver uptake and much lower blood uptake than that of 99m Tc-GSA. The liver/blood ratio reached 83.4 at 30 min post-injection, while the ratio of liver/kidney was 14.4. The uptakes in other organs in the abdomen were also slightly low. In addition, the hepatic uptake of 99m Tc-DMP-NGA was blocked by preinjecting free GSA as blocking agent. The result indicates that 99m Tc-DMP-NGA has specific binding to ASGP receptor. Images acquired with Kodak In-Vivo Imaging System FX Pro showed significant difference before and after inhibition. The promising biological properties of 99m Tc-DMP-NGA afford potential applications in liver receptor imaging for assessment of hepatocyte function.

  8. Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex.

    Science.gov (United States)

    Das, Rabindra Nath; Chevret, Edith; Desplat, Vanessa; Rubio, Sandra; Mergny, Jean-Louis; Guillon, Jean

    2017-12-30

    G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 μM concentration for the most potent ligand 1c . The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.

  9. Synthesis and biological evaluation of {sup 125}I-erythropoietin as a potential radiopharmaceutical agent for tumours

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Goncalo dos Santos, E-mail: goncaloclemente@uc.pt [University of Coimbra (Portugal). Inst. of Nuclear Sciences Applied to Health; Duarte, Vera Lucia Serra [Polytechnical Institute of Lisbon (Portugal). Higher School of Health Technology

    2011-01-15

    Erythropoietin (EPO) is a glycoprotein hormone responsible for regulating erythropoiesis. Expression of EPO and EPO receptors (EPOr) has recently been demonstrated in some neoplastic cell lines and tumours, suggesting a potential new target for therapy. In this work, EPO was labeled with iodine-125 using the lactoperoxidase method, known to prevent damage to protein during radioiodination, and labeling conditions were optimized. In vitro stability studies have shown that {sup 125}I-EPO is radiochemically stable for 20 days after radiolabeling. In vitro cell binding studies have demonstrated very low binding (<2%) of EPO to normal and neoplastic cell lines tested. As expected, the biodistribution in healthy mice exhibited comparatively high rates of fixation in the organs of the excretory system. Thyroid also proved to be a critical organ which may indicate in vivo dissociation of {sup 125}I-EPO. In mice with induced melanoma, only a residual fixation in the tumour was evident. Further studies are warranted on other tumoral cell lines to better understand the binding process and internalization into cells. Studies on EPO labeled with carbon-11 could be valuable, since there is a greater chance of preserving the biological activity of the protein using this method. (author)

  10. Synthesis, biological evaluation and molecular modeling of novel thienopyrimidinone and triazolothienopyrimidinone derivatives as dual anti-inflammatory antimicrobial agents.

    Science.gov (United States)

    Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona M A; Bekhit, Alaa El-Din A; Guemei, Aida A; El-Shoukrofy, Mai S; Ibrahim, Tamer M

    2018-04-01

    New thienopyrimidinone and triazolothienopyrimidinone derivatives have been synthesized. These compounds were subjected to anti-inflammatory and antimicrobial activity screening aiming to identify new candidates that have dual anti-inflammatory and antimicrobial activities. Compounds 5, 7 and 10a showed minimal ulcerogenic effect and high selectivity towards human recombinant COX-2 over COX-1 enzyme. Their docking outcome correlated with their biological activity and assured the high selectivity binding towards COX-2. In addition, they could act safely up to 80 mg/kg orally or 40 mg/kg parentrally. The antimicrobial screening showed that compound 10a displayed distinctive inhibitory effect on the growth of Escherichia coli comparable to that of ampicillin. Moreover, compounds 5, 7, 9 and 12a possessed 50% of the inhibitory activity of ampicillin against E. coli. Thus, compounds 5, 7 and 10a represent promising dual acting anti-inflammatory and antimicrobial agents. This work provides rewarding template enriching the chemical space for dual anti-inflammatory anti-microbial activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Synthesis and biological evaluation of a novel series of chalcones incorporated pyrazole moiety as anticancer and antimicrobial agents.

    Science.gov (United States)

    Mohamed, Magda F; Mohamed, Mervat S; Shouman, Samia A; Fathi, Mohamed M; Abdelhamid, Ismail Abdelshafy

    2012-11-01

    A newly synthesized series of chalcone derivatives containing pyrazole rings were synthesized and evaluated for their cytotoxic activities in vitro against several human cancer cell lines. Most of the prepared compounds showed potential cytotoxicity against human breast cancer cell lines MCF-7, HEPG-2, and HCT-116. Also the compounds were evaluated as antimicrobial agents. The three compounds 3, 4, and 5 were proved to be better anticancer agents than the positive standard doxorubicin with IC50 values (4.7, 4.4, and 3.9 μg/ml) against the same human cancer cell lines, whereas compounds 5 and 6 showed the most active antimicrobial compounds in comparison to the other chalcones.

  12. Design, synthesis, and biological evaluation of 16-substituted 4-azasteroids as tissue-selective androgen receptor modulators (SARMs).

    Science.gov (United States)

    Mitchell, Helen J; Dankulich, William P; Hartman, George D; Prueksaritanont, Thomayant; Schmidt, Azriel; Vogel, Robert L; Bai, Chang; McElwee-Witmer, Sheila; Zhang, Hai Z; Chen, Fang; Leu, Chih-Tai; Kimmel, Donald B; Ray, William J; Nantermet, Pascale; Gentile, Michael A; Duggan, Mark E; Meissner, Robert S

    2009-08-13

    A novel series of 16-substituted-4-azasteroids has been identified as potential tissue-selective androgen receptor modulators. These ligands display potent hAR binding and agonist activity, low virilizing potential, and good pharmacokinetic profiles in dogs. On the basis of its in vitro profile, 21 was evaluated in the OVX and ORX rat models and exhibited an osteoanabolic, tissue-selective profile.

  13. Synthesis and biological evaluation of 3,4-diaryloxazolones: A new class of orally active cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Puig, C; Crespo, M I; Godessart, N; Feixas, J; Ibarzo, J; Jiménez, J M; Soca, L; Cardelús, I; Heredia, A; Miralpeix, M; Puig, J; Beleta, J; Huerta, J M; López, M; Segarra, V; Ryder, H; Palacios, J M

    2000-01-27

    A series of 3,4-diaryloxazolones were prepared and evaluated for their ability to inhibit cyclooxygenase-2 (COX-2). Extensive structure-activity relationship work was carried out within this series, and a number of potent and selective COX-2 inhibitors were identified. The replacement of the methyl sulfone group on the 4-phenyl ring by a sulfonamide moiety resulted in compounds with superior in vivo antiinflammatory properties. In the sulfonamide series, the introduction of a methyl group at the 5-position of the oxazolone ring gave rise to very COX-2-selective compounds but with decreased in vivo activity. Selected 3,4-diaryloxazolones exhibited excellent activities in experimental models of arthritis and hyperalgesia. The in vivo activity of these compounds was confirmed with the evaluation of their antipyretic effectiveness and their ability to inhibit migration of proinflammatory cells. As expected from their COX-2 selectivity, most of the active compounds lacked gastrointestinal toxicity in vivo in rats after a 4-day treatment of 100 mg/kg/day. Within this novel series, sulfonamides 9-11 have been selected for further preclinical evaluation.

  14. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youssef Dgachi

    2016-05-01

    Full Text Available We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM, good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.

  15. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract

    Science.gov (United States)

    Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

    2015-01-01

    Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

  16. Synthesis of a novel tripeptidomimetic scaffold and biological evaluation for CXC chemokine receptor 4 (CXCR4) antagonism

    DEFF Research Database (Denmark)

    Baumann, Markus; Nome, Lina Marie; Zachariassen, Zack G.

    2017-01-01

    We here report the preparation of a new 2,6,8-trisubstituted bicyclic tripeptidomimetic scaffold through TFA-mediated cyclization of a linear precursor containing three side chains. The introduction of a triphenylmethyl-protected thiol into carboxylic acid containing building blocks through sulfa...... the stereochemical outcome of the cyclization differently when the R1 side chain is positioned on C2 in the bicycles (present work) instead of C3 (previous work). Tripeptidomimetic compounds based on the new scaffold were synthesized and evaluated for antagonistic potency toward CXCR4, and one compound (45a...

  17. Synthesis and Biological Evaluation of Novel Aryl-2H-pyrazole Derivatives as Potent Non-purine Xanthine Oxidase Inhibitors.

    Science.gov (United States)

    Sun, Zhi-Gang; Zhou, Xiao-Jing; Zhu, Ming-Li; Ding, Wen-Ze; Li, Zhen; Zhu, Hai-Liang

    2015-01-01

    A series of aryl-2H-pyrazole derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro as potent xanthine oxidase inhibitors. Among them, 2 aryl-2H-pyrazole derivatives showed significant inhibitory activities against xanthine oxidase. Compound 19 emerged as the most potent xanthine oxidase inhibitor (IC50=9.8 µM) in comparison with allopurinol (IC50=9.5 µM). The docking study revealed that compound 19 might have strong interactions with the active site of xanthine oxidase. This compound is thus a new candidate for further development for the treatment of gout.

  18. Synthesis and biological evaluation of quinones derived from natural product komaroviquinone as anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Suto, Yutaka; Nakajima-Shimada, Junko; Yamagiwa, Noriyuki; Onizuka, Yoko; Iwasaki, Genji

    2015-08-01

    Current chemotherapy drugs for Chagas' disease are insufficient due to their limited efficacy; however, anti-trypanosomal agents have recently shown promise. As such, synthetic intermediates of komaroviquinone were evaluated for anti-trypanosomal activity. Based on the results, a series of novel quinone derivatives were screened for anti-trypanosomal activity and mammalian cytotoxicity. Several quinone derivatives displayed higher antiprotozoal activity against Trypanosoma cruzi trypomastigotes than the reference drug benznidazole, without concomitant toxicity toward the host cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Opportunities for Merging Chemical and Biological Synthesis

    Science.gov (United States)

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284

  20. SYNTHESIS AND BIOLOGICAL ACTIVITIES OF 3,6 ...

    African Journals Online (AJOL)

    SYNTHESIS AND BIOLOGICAL ACTIVITIES OF 3,6-DISUBSTITUTED-1,2,4-. TRIAZOLO-1,3 ... Thus, many chemists reported synthesis and antimicrobial activity of some 1,2,4-triazolothiadiazole derivatives in ..... N.H. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors.

  1. A fluorine scan of a tubulin polymerization inhibitor isocombretastatin A-4: Design, synthesis, molecular modelling, and biological evaluation.

    Science.gov (United States)

    Naret, Timothée; Bignon, Jérôme; Bernadat, Guillaume; Benchekroun, Mohamed; Levaique, Helene; Lenoir, Christine; Dubois, Joelle; Pruvost, Alain; Saller, François; Borgel, Delphine; Manoury, Boris; Leblais, Veronique; Darrigrand, Romain; Apcher, Sébastien; Brion, Jean-Daniel; Schmitt, Etienne; Leroux, Frédéric R; Alami, Mouad; Hamze, Abdallah

    2018-01-01

    A novel series of tubulin polymerization inhibitors, based on fluorinated derivatives of isocombretastatin A-4 was synthesized with the goal of evaluating the effect of these compounds on the proliferative activity. The introduction of fluorine atom was performed on the phenyl ring or at the linker between the two aromatic rings. The modification of isoCA-4 by introduction of difluoromethoxy group at the para-position (3i) and substitution of the two protons of the linker by two fluorine atoms (3m), produced the most active compounds in the series, with IC 50 values of 0.15-2.2 nM (3i) and 0.1-2 nM (3m) respectively, against a panel of six cancer cell lines. Compounds 3i and 3m had greater antiproliferative activity in comparison with references CA-4 or isoCA-4, the presence of fluorine group leads to a significant enhancement of the antiproliferative activity. Molecular docking studies indicated that compounds 3i and 3m occupy the colchicine binding site of tubulin. Evaluation of cytotoxicity in Human noncancer cells indicated that the compounds 3i and 3m were practically ineffective in quiescent peripheral blood lymphocytes, and may have a selective antiproliferative activity against cancer cells. Analyses of cell cycle distribution, and morphological microtubules organization showed that compound 3m induced G 2 /M phase arrest and, dramatically disrupted the microtubule network. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Structure-activity relationships in lipopolysaccharide neutralizers: design, synthesis, and biological evaluation of a 540-membered amphipathic bisamide library.

    Science.gov (United States)

    Burns, Mark R; Jenkins, Scott A; Wood, Stewart J; Miller, Kelly; David, Sunil A

    2006-01-01

    Lipopolysaccharides (LPS), also called "endotoxins", are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. We had earlier shown that small molecules bind and neutralize LPS if they contain (i) two protonatable cationic groups separated by a distance of approximately 14 A to facilitate interactions with the phosphate moieties on the lipid Angstrom component of LPS and (ii) a long-chain aliphatic hydrocarbon to promote hydrophobic interactions. In an effort to identify optimal scaffolds possessing the above structural requirements, we now present an evaluation of a rationally designed combinatorial library in which the elements of the scaffold are systematically varied to maximize sampling of chemical space. Leads obtained via molecular analyses of the screening results were resynthesized and evaluated in greater detail with regard to the affinity of the interaction with LPS, as well as neutralization of endotoxicity in in vitro assays. The examination of a moderately sized 6 x 6 x 15 (540-membered) focused library allowed the assessment of the structural contributions to binding by the long-chain aliphatic tails, distance between charged amino groups, and potential aromatic CH-pi or OH-pi interactions. These findings are of value in further iterations of design and development of specific and potent endotoxin sequestrants.

  3. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors.

    Science.gov (United States)

    Shobeiri, Nikta; Rashedi, Maryam; Mosaffa, Fatemeh; Zarghi, Afshin; Ghandadi, Morteza; Ghasemi, Ali; Ghodsi, Razieh

    2016-05-23

    A new series of 2-aryl-trimethoxyquinoline analogues was designed and synthesized as tubulin inhibitors using methoxylated flavones as the lead compounds. The cytotoxic activity of the synthesized compounds was evaluated against four human cancer cell lines including MCF-7, MCF-7/MX, A-2780, and A-2780/RCIS. All the alcoholic derivatives (6a-6e) showed significant cytotoxic activity with IC50 in the range of 7.98-60 μM. The flow cytometry analysis of the four human cancer cell lines treated with 6e and 5b showed that 6e induced cell cycle arrest at G2/M phase and apoptosis as well. The effect of quinolines on tubulin polymerization was also evaluated. Compound 6e that demonstrated the best antiproliferative activity in the series was identified as the most potent inhibitor of tubulin polymerization as well. Molecular docking studies of 6e into the colchicine-binding site of tubulin displayed possible mode of interaction between this compound and tubulin. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001

    Directory of Open Access Journals (Sweden)

    Dian Xiao

    2016-04-01

    Full Text Available Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of “lock-in” can be used to solve these problems. A series of thiamine disulfide prodrugs 7a–7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.

  5. Selective inhibition of human carbonic anhydrases by novel amide derivatives of probenecid: synthesis, biological evaluation and molecular modelling studies.

    Science.gov (United States)

    D'Ascenzio, Melissa; Carradori, Simone; Secci, Daniela; Vullo, Daniela; Ceruso, Mariangela; Akdemir, Atilla; Supuran, Claudiu T

    2014-08-01

    Novel amide derivatives of probenecid, a well-known uricosuric agent, were synthesized and evaluated as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1). The transmembrane isoforms (hCA IX and XII) were potently and selectively inhibited by some of them. The proposed chemical modification led to a complete loss of hCA II inhibition (K(i)s>10,000 nM) and enhanced the inhibitory activity against the tumour-associated hCA XII (compound 4 showed a K(i) value of 15.3 nM). The enzyme inhibitory data have also been validated by docking studies of the compounds within the active site of hCA XII. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Design, Synthesis, and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone Reductase 2

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, P.V. Narasimha; Jensen, Katherine C.; Mesecar, Andrew D.; Fanwick, Phillip E.; Cushman, Mark (Purdue)

    2012-06-19

    A variety of ammosamide B analogues have been synthesized and evaluated as inhibitors of quinone reductase 2 (QR2). The potencies of the resulting series of QR2 inhibitors range from 4.1 to 25,200 nM. The data provide insight into the structural parameters necessary for QR2 inhibitory activity. The natural product ammosamide B proved to be a potent QR2 inhibitor, and the potencies of the analogues generally decreased as their structures became more distinct from that of ammosamide B. Methylation of the 8-amino group of ammosamide B was an exception, resulting in an increase in quinone reductase 2 inhibitory activity from an IC{sub 50} of 61 nM to IC{sub 50} 4.1 nM.

  7. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Chen, Shang-Ying; Chen, Yuan; Li, Yan-Ping; Chen, Shu-Han; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu

    2011-09-15

    A series of novel curcumin analogues were designed, synthesized, and evaluated as potential multifunctional agents for the treatment of AD. The in vitro studies showed that these compounds had better inhibitory properties against Aβ aggregation than curcumin. Superior anti-oxidant properties (better than the reference compound Trolox) of these compounds were observed by the oxygen radical absorbance capacity (ORAC) method and a cell-based assay using DCFH-DA as a probe. In addition they were able to chelate metals such as iron and copper and decrease metal-induced Aβ aggregation. The structure-activity relationships were discussed. The results suggested that our curcumin analogues could be selected as multifunctional agents for further investigation of AD treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent β-glucuronidase inhibitors.

    Science.gov (United States)

    Taha, Muhammad; Sultan, Sadia; Nuzar, Herizal Ali; Rahim, Fazal; Imran, Syahrul; Ismail, Nor Hadiani; Naz, Humera; Ullah, Hayat

    2016-08-15

    Thirty N-arylidenequinoline-3-carbohydrazides (1-30) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11±0.05 and 46.14±0.95 than standard d-saccharic acid 1,4 lactone (IC50=48.4±1.25μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38±0.90 and 80.10±1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Solid‐Phase Synthesis and Biological Evaluation of N‐Dipeptido L‐Homoserine Lactones as Quorum Sensing Activators

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert; Le Quement, Sebastian Thordal; Jakobsen, Tim Holm

    2014-01-01

    ‐homoserine lactones. With the goal of identifying non‐native compounds capable of modulating bacterial QS, a virtual library of N‐dipeptido L‐homoserine lactones was screened in silico with two different crystal structures of LasR. The 30 most promising hits were synthesized on HMBA‐functionalized PEGA resin...... and released through an efficient acid‐mediated cyclative release mechanism. Subsequent screening for modulation of QS in Pseudomonas aeruginosa and E. coli identified six moderately strong activators. A follow‐up library designed from the preliminary derived structure–activity relationships was synthesized...... and evaluated for their ability to activate the QS system in this bacterium. This resulted in the identification of another six QS activators (two with low micromolar activity) thus illuminating structural features required for QS modulation....

  10. Design, synthesis and biological evaluation of N-(4-alkoxy-3-cyanophenyl)isonicotinamide/nicotinamide derivatives as novel xanthine oxidase inhibitors.

    Science.gov (United States)

    Zhang, Ting-Jian; Li, Song-Ye; Wang, Lin; Sun, Qi; Wu, Qing-Xia; Zhang, Yi; Meng, Fan-Hao

    2017-12-01

    A series of N-(4-alkoxy-3-cyanophenyl)isonicotinamide/nicotinamide derivatives was designed, synthesized and evaluated for inhibitory potency in vitro against xanthine oxidase. The isonicotinamide series was considerably more effective than the nicotinamide series. SARs analysis revealed that the isonicotinoyl moiety played a significant role on the inhibition and that a benzyl ether tail (e.g., ortho-cyanobenzoxy) linked to the benzonitrile moiety benefits the inhibitory potency. Among these compounds, 10q (IC 50  = 0.3 μM) was identified to be the most potent in this work and was observed to be 28.3-fold more potent than allopurinol but 20-fold less potent than topiroxostat. The Lineweaver-Burk plot showed that 10q acted as a mixed-type inhibitor on xanthine oxidase. Molecular modeling provided a reasonable explanation for the SARs observed in this study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Synthesis, modeling and biological evaluation of hybrids from pyrazolo[1,5c]pyrimidine as antileishmanial agents.

    Science.gov (United States)

    Atta, Kamal Fahmy Mohamed; Ibrahim, Tamer Mohamed; Farahat, Omaima Osman Mahmoud; Al-Shargabi, Tareq Qasem; Marei, Mohamed Gaber; Bekhit, Adnan Ahmed; El Ashry, El Sayed Helmy

    2017-10-01

    A new series of pyrazolo[1,5-c]pyrimidines were synthesized by different hybridization strategies. All structures were confirmed by IR, 1 H, 13 C, 1 H- 13 C heteronuclear multiple-quantum correlation (HMQC) spectra and microanalysis. They were evaluated for their in vitro antileishmanial activity against miltefosine and amphotericin B deoxycholate as reference drugs. The most active compounds 2a and 9a demonstrated superior potencies to miltefosine by ten- and six-fold, respectively, for the promastigote form, and by 5.5-fold for the amastigote form. Their binding scenario to Leishmania major pteridine reductase was rationalized by docking experiments. In addition, all compounds were safe for the experimental animals orally up to 150 mg/kg and parenterally up to 75 mg/kg. This study provides novel chemotype class for antileishmanial activity. [Formula: see text].

  12. Efficient Synthesis and Biological Evaluation of a Novel Series of 1,5-Benzodiazepine Derivatives as Potential Antimicrobial Agents.

    Science.gov (United States)

    An, Ying-Shuang; Hao, Zhen-Fang; Zhang, Xiu-Jun; Wang, Lan-Zhi

    2016-07-01

    A series of novel 1,5-benzodiazepine derivatives were rationally designed and synthesized following the principle of the superposition of bioactive substructures by the combination of 1,5-benzodiazepine, pyridine (phenyl), and an ester group. The structures of the target compounds were determined by (1) H NMR, (13) C NMR, MS, IR, and elemental analysis. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi C. neoformans, C. neoformans clinical isolates (ATCC 32264), C. albicans (ATCC 10231), Gram-negative bacterium E. coli (ATCC 44752), and Gram-positive bacterium S. aureus (ATCC 25923). The results of the bioactive assay demonstrated that most of the tested compounds exhibited variable inhibitory effects on the growth of the tested microorganisms. All the active compounds showed better antifungal activity than antibacterial activity. Notably, compound 2b displayed the highest activity (MIC = 30 μg/mL) against C. neoformans and (MIC = 31 μg/mL) against C. neoformans clinical isolates. In addition, compound 2a also showed excellent activity against C. neoformans and C. neoformans clinical isolates with minimum inhibitory concentration of 35 and 36 μg/mL, respectively. Compounds 2a and 2b were further studied by evaluating their cytotoxicities, and the results showed that they have relatively low level cytotoxicity for BV2 and 293T cell. Preliminary structure-activity relationship study on three diverse sets (C-2, C-3, and C-8 positions) of 1,5-benzodiazepines was performed. The results revealed that the presence of a -CH3 group at the C-8 position had a positive effect on the inhibitory activity of these compounds. Additionally, the 2-pyridyl group at the C-2 position may be a pharmacophore and -COOC2 H5 at C-3 position is the best substituent for the maintenance of antimicrobial activities. © 2016 John Wiley & Sons A/S.

  13. Biological synthesis of nanoparticles in biofilms.

    Science.gov (United States)

    Tanzil, Abid H; Sultana, Sujala T; Saunders, Steven R; Shi, Liang; Marsili, Enrico; Beyenal, Haluk

    2016-12-01

    The biological synthesis of nanoparticles (NPs) by bacteria and biofilms via extracellular redox reactions has received attention because of the minimization of harmful chemicals, low cost, and ease of culturing and downstream processing. Bioreduction mechanisms vary across bacteria and growth conditions, which leads to various sizes and shapes of biosynthesized NPs. NP synthesis in biofilms offers additional advantages, such as higher biomass concentrations and larger surface areas, which can lead to more efficient and scalable biosynthesis. Although biofilms have been used to produce NPs, the mechanistic details of NP formation are not well understood. In this review, we identify three critical areas of research and development needed to advance our understanding of NP production by biofilms: 1) synthesis, 2) mechanism and 3) stabilization. Advancement in these areas could result in the biosynthesis of NPs that are suitable for practical applications, especially in drug delivery and biocatalysis. Specifically, the current status of methods and mechanisms of nanoparticle synthesis and surface stabilization using planktonic bacteria and biofilms is discussed. We conclude that the use of biofilms to synthesize and stabilize NPs is underappreciated and could provide a new direction in biofilm-based NP production. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An extended synthesis for evolutionary biology.

    Science.gov (United States)

    Pigliucci, Massimo

    2009-06-01

    Evolutionary theory is undergoing an intense period of discussion and reevaluation. This, contrary to the misleading claims of creationists and other pseudoscientists, is no harbinger of a crisis but rather the opposite: the field is expanding dramatically in terms of both empirical discoveries and new ideas. In this essay I briefly trace the conceptual history of evolutionary theory from Darwinism to neo-Darwinism, and from the Modern Synthesis to what I refer to as the Extended Synthesis, a more inclusive conceptual framework containing among others evo-devo, an expanded theory of heredity, elements of complexity theory, ideas about evolvability, and a reevaluation of levels of selection. I argue that evolutionary biology has never seen a paradigm shift, in the philosophical sense of the term, except when it moved from natural theology to empirical science in the middle of the 19th century. The Extended Synthesis, accordingly, is an expansion of the Modern Synthesis of the 1930s and 1940s, and one that--like its predecessor--will probably take decades to complete.

  15. Synthesis, biological evaluation and biodistribution of the 99mTc-Garenoxacin complex in artificially infected rats

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Aakif Ullah Khan; Muhammad Rafiullah Khan

    2011-01-01

    The labeling of garenoxacin (GXN) with technetium-99m ( 99m Tc) using different concentrations of GXN, sodium pertechnetate (Na 99m TcO 4 ), stannous chloride dihydrate (SnCl 2 · 2H 2 O) at different pH was investigated and evaluated in terms of in-vitro stability in saline, serum, binding with multi-resistant Staphylococcus aureus (MDRSA) and penicillin-resistant Streptococci (PRSC) and its biodistribution in artificially MDRSA and PRSC infected rats. 99m Tc-GXN complex with 97.45 ± 0.18% radiochemical stability was prepared by mixing 3 mg of GXN with 3 mCi of Na 99m TcO 4 in the presence of 150 μL of SnCl 2 · 2H 2 O (1 μg/μL in 0.01 N HCl) at a pH 5.6. The radiochemical stability of the complex was evaluated in normal saline up to 240 min of reconstitution. It was observed that the complex showed maximum RCP values after 30 min of the reconstitution and remained more than 90% up to 240 min. The complex showed radiochemical stability in normal saline at 37 deg C up to 16 h with a 17.80% de-tagging. The complex showed saturated in-vitro binding with living MDRSA and PRSC as compared to the insignificant binding with heat killed MDRSA and PRSC. Biodistribution behavior of the complex was assessed in artificially infected with living and heat killed MDRSA and PRSC rats. It was observed that the accumulation of the complex in the infected (live MDRSA and PRSC) tissue of the rats was almost five fold than in the inflamed and normal tissue. The high radiochemical stability in normal saline at room temperature, promising in-vitro stability in serum at 37 deg C, saturated in-vitro binding with living MDRSA and PRSC, specific biodistribution behavior and high infected (target) to normal (non-target) tissue and low inflamed (non-target) to normal (non-target) tissue ratios we recommend 99m Tc-GXN complex for in-vivo localization of infection caused by MDRSA and PRSC effective stains. (author)

  16. Synthesis and biological evaluation of 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives as potential c-met inhibitors.

    Science.gov (United States)

    Zhao, Sijia; Zhang, Yu; Zhou, Hongyang; Xi, Shuancheng; Zou, Bin; Bao, Guanglong; Wang, Limei; Wang, Jiao; Zeng, Tianfang; Gong, Ping; Zhai, Xin

    2016-09-14

    Six series of novel 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives conjugated with aza-aryl formamide/amine scaffords were designed and synthesized through a structure-based molecular hybridization approach. The target compounds were evaluated for c-Met kinase inhibitory activities and cytotoxicity against four cancer cell lines (HT-29, A549, MKN-45 and MDA-MB-231) in vitro. Most compounds exhibited moderate to excellent potency, and the most promising candidate 26c (c-Met kinase IC50 = 8.2 nM) showed a 4.7-fold increase in cytotoxicity against c-Met-addicted MKN-45 cell line in vitro (IC50 = 3 nM), superior to that of Foretinib (IC50 = 23 nM). The preliminary structure-activity relationship indicated that a 1H-benzo [e] [1,3,4]thiadiazine-3-carboxamide-4,4-dioxide moiety as linker contributed to the antitumor potency. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M.; Mesecar, Andrew D.; Cushman, Mark (Hawaii); (Purdue); (UIC)

    2012-07-11

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC{sub 50} 0.59 {mu}M) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC{sub 50} 70 nM) and 84 (IC{sub 50} 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC{sub 50} of 80 {mu}M. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC{sub 50} 1.7 {mu}M and 0.27 {mu}M, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  18. One-pot synthesis and biological evaluation of N-(aminosulfonyl)-4-podophyllotoxin carbamates as potential anticancer agents.

    Science.gov (United States)

    Xu, Xiao-Hui; Guan, Xiao-Wen; Feng, Shi-Liang; Ma, You-Zhen; Chen, Shi-Wu; Hui, Ling

    2017-07-01

    A series of N-(aminosulfonyl)-4-podophyllotoxin carbamates were synthesized via the Burgess-type intermediate, and their antiproliferative activities were evaluated. Most of them possessed more potent cytotoxic effects against four human tumor cell lines (HeLa, A-549, HCT-8 and HepG2) and less toxic to normal human fetal lung fibroblast WI-38 cells than etoposide. In particular, N-(morpholinosulfonyl)-4-podophyllotoxin carbamate (9) exhibited the most potent activity towards these four tumor cells with IC 50 values in the range of 0.5-16.5μM. Furthermore, immunofluorescence analysis revealed that 9 induced cell apoptosis by up-regulating the expression of p53 and ROS. Meanwhile, 9 effectively inhibited tubulin polymerization and microtubule assembly at cellular levels in HeLa cells. In addition, 9 could induce cell cycle arrest in the G2/M phase in HeLa cells by up-regulating levels of cyclinB1 and cdc2 and decreasing the expression of p-cdc2. These results indicated that 9 had potential for further development as anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis and biological evaluation of novel N,N'-bis-methylenedioxybenzyl-alkylenediamines as bivalent anti-Alzheimer disease ligands.

    Science.gov (United States)

    Luo, Wen; Li, Yan-Ping; Tan, Jia-Heng; Gu, Lian-Quan; Huang, Zhi-Shu

    2011-10-01

    A novel series of N,N'-bis-methylenedioxybenzyl-alkylenediamines 5a-5g have been designed, synthesized and evaluated as bivalent anti-Alzheimer's disease ligands. The enzyme inhibition assay results indicated that compounds 5e-5g inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the micromolar range (IC(50), 2.76-4.24 µM for AChE and 3.02-5.14 µM for BuChE), which was in the same potential as the reference compound rivastigmine (IC(50), 5.50 µM for AChE and 1.60 µM for BuChE). It was found that compounds could bind simultaneously to the peripheral and catalytic sites of AChE. β-Amyloid (Aβ) aggregation inhibition assay results showed that compound 5e exhibited highest self-mediated Aβ fibril aggregation inhibition activity (40.3%) with a similar potential as curcumin (41.6%). It was also found that 5e-5g did not affect neuroblastoma cell viability at the concentration of 50 μM.

  20. Synthesis and biological evaluation of 4,6-diaryl-2-pyrimidinamine derivatives as anti-breast cancer agents.

    Science.gov (United States)

    Liu, Linyi; Tang, Zhichao; Wu, Chengze; Li, Xinyu; Huang, Ali; Lu, Xiang; You, Qidong; Xiang, Hua

    2017-12-30

    Breast cancer is the most frequently diagnosed cancers and the leading causes of cancer death among females worldwide. Estrogen receptor positive has been identified as the predominant internal reasons, involving in more than 70% breast cancer patients and SERMs which competes with estradiol for the binding to ERα in breast tissue are widely used in the treatment of ER+ breast cancer, such as tamoxifen, raloxifene. However, many SERMs may cause negative side effects due to their estrogenic activity in other tissues and approximate 50% of patients with ER-positive tumors either initially do not respond or become resistant to these drugs. Here, a series of designed 4,6-diaryl-2-pyrimidinamine derivatives had been synthesized to treat estrogen receptor positive breast cancer by simultaneously antagonizing ER and inhibiting VEGFR-2. Bioactivity evaluation showed that these compounds could significantly inhibit the proliferation of MCF-7, HUVEC and Ishikawa cells. Further studies identified compound III-3A could antagonize against estrogen action and inhibit the phosphorylation of VEGFR-2 as well as inhibit angiogenesis in vivo. The results indicated designed 4,6-diaryl-2-pyrimidinamine derivatives can be used to further study as anti-breast cancer drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synthesis and Biological Evaluation of New 1,3-Thiazolidine-4-one Derivatives of 2-(4-Isobutylphenylpropionic Acid

    Directory of Open Access Journals (Sweden)

    Ioana Mirela Vasincu

    2014-09-01

    Full Text Available New thiazolidine-4-one derivatives of 2-(4-isobutylphenylpropionic acid (ibuprofen have been synthesized as potential anti-inflammatory drugs. The structure of the new compounds was proved using spectral methods (FR-IR, 1H-NMR, 13C-NMR, MS. The in vitro antioxidant potential of the synthesized compounds was evaluated according to the total antioxidant activity, the DPPH and ABTS radical scavenging assays. Reactive oxygen species (ROS and free radicals are considered to be involved in many pathological events like diabetes mellitus, neurodegenerative diseases, cancer, infections and more recently, in inflammation. It is known that overproduction of free radicals may initiate and amplify the inflammatory process via upregulation of genes involved in the production of proinflammatory cytokines and adhesion molecules. The chemical modulation of acyl hydrazones of ibuprofen 3a–l through cyclization to the corresponding thiazolidine-4-ones 4a–n led to increased antioxidant potential, as all thiazolidine-4-ones were more active than their parent acyl hydrazones and also ibuprofen. The most active compounds are the thiazolidine-4-ones 4e, m, which showed the highest DPPH radical scavenging ability, their activity being comparable with vitamin E.

  2. Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors.

    Science.gov (United States)

    Xie, Wenlin; Zhang, Jingai; Ma, Xiaojing; Yang, Wenqian; Zhou, Ying; Tang, Xufu; Zou, Yan; Li, Hui; He, Jingjing; Xie, Shimin; Zhao, Yunhui; Liu, Fengping

    2015-11-01

    A series of 5-substituted-3-[5-hydroxy-4-pyrone-2-yl-methymercapto]-4-amino-1,2,4-triazole derivatives were synthesized by nucleophilic substitution reaction of 5-hydroxy-2-chloromethyl -4H-pyran-4-one with 5-substituted-3-mercapto-4-amino-1,2,4-triazole, and their inhibitory effects on mushroom tyrosinase were evaluated. The results indicated that most of the synthesized compounds exhibited significant inhibitory activity. Specifically, 5-(4-chlorophenyl)-3-[5-hydroxy-4-pyrone-2-yl-methymercapto]-4-amino-1,2,4-triazole (6j) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 4.50 ± 0.34 μm. The kinetic studies of the compound (6j) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was also discussed. © 2015 John Wiley & Sons A/S.

  3. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents.

    Science.gov (United States)

    Baig, Mirza Feroz; Nayak, V Lakshma; Budaganaboyina, Prasad; Mullagiri, Kishore; Sunkari, Satish; Gour, Jitendra; Kamal, Ahmed

    2018-02-12

    A series of imidazo[2,1-b]thiazole-benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity against four human cancer cell lines i.e.; HeLa (cervical), A549 (lung), MCF-7 (breast) and DU-145 (prostate) along with normal HEK-293 cell line. Amongst them, conjugate 6d displayed significant cytotoxicity against human lung cancer cell line, A549 with IC 50 value 1.08 µM. Further, cell cycle analysis revealed that this compound arrested the cell cycle at G2/M phase in A549 cells. Furthermore, the tubulin polymerization assay results suggest that this conjugate (6d) exhibits significant inhibitory effect on the tubulin assembly with an IC50 value of 1.68 µM. Moreover, the apoptotic inducing properties of compound 6d was confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and annexin V-FITC assay. Further, molecular docking studies revealed that compound 6d occupied the colchicine binding site. Copyright © 2018. Published by Elsevier Inc.

  4. Design, synthesis and biological evaluation of novel peptide MC2 analogues from Momordica charantia as potential anti-diabetic agents.

    Science.gov (United States)

    Yang, Baowei; Li, Xue; Zhang, Chenyu; Yan, Sijia; Wei, Wei; Wang, Xuekun; Deng, Xin; Qian, Hai; Lin, Haiyan; Huang, Wenlong

    2015-04-21

    Three series of Momordica charantia (MC)2 analogues were designed, synthesized and evaluated for their anti-hyperglycaemic effects. Alanine scanning focusing on the peptide MC2 indicated the importance of the residues proline (Pro)(3), serine (Ser)(6), isoleucine (Ile)(7) and Ser(10) for anti-hyperglycaemic effects. Among the first series of MC2 analogues, peptide I-4 exhibited a better anti-hyperglycaemic effect and was chosen for further modification. A further two series of conformationally constrained analogues were designed by scanning the residues Pro(3), Ser(6), Ile(7), and Ser(10) with an i - (i + 2) lactam bridge consisting of a glutamic acid-Xaa-lysine (Glu-Xaa-Lys) scaffold and a diproline fragment. By screening in normal mice and mice with diabetes mellitus, peptides II-1, II-2 and III-3 showed a significant improvement in anti-hyperglycaemic and anti-oxidative activities compared with I-4. These data suggest that II-1, II-2 and III-3 could be candidates for future treatment of diabetes mellitus.

  5. Synthesis, X-Ray Crystal Structures, Biological Evaluation, and Molecular Docking Studies of a Series of Barbiturate Derivatives

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-01-01

    Full Text Available A series of barbiturates derivatives synthesized and screened for different set of bioassays are described. The molecular structures of compounds 5a, 5d, and 5f were solved by single-crystal X-ray diffraction techniques. The results of bioassay show that compounds 4a, 4b, 4c, 4d, 4e, 4f, and 4g are potent antioxidants in comparison to the tested standards, butylated hydroxytoluene (BHT, and N-acetylcysteine. Compounds 4a–4e (IC50=101.8±0.8–124.4±4.4 μM and 4g (IC50=104.1±1.9 μM were more potent antioxidants than the standard (BHT, IC50=128.8±2.1 μM. The enzyme inhibition potential of these compounds was also evaluated, in vitro, against thymidine phosphorylase, α-glucosidase, and β-glucuronidase enzymes. Compounds 4c, 4h, 4o, 4p, 4q, 5f, and 5m were found to be potent α-glucosidase inhibitors and showed more activity than the standard drug acarbose, whereas compounds 4v, and 5h were found to be potent thymidine phosphorylase inhibitors, more active than the standard drug, 7-deazaxanthine. All barbiturates derivatives (4a–4x, 4z, and 5a–5m were found to be noncytotoxic against human prostate (PC-3, Henrietta Lacks cervical (HeLa and Michigan Cancer Foundation-7 breast (MCF-7 cancer cell lines, and 3T3 normal fibroblast cell line, except 4y which was cytotoxic against all the cell lines.

  6. Synthesis and Biological Evaluation of Novel 8-Morpholinoimidazo[1,2-a]pyrazine Derivatives Bearing Phenylpyridine/Phenylpyrimidine-Carboxamides

    Directory of Open Access Journals (Sweden)

    Shan Xu

    2017-02-01

    Full Text Available Herein we designed and synthesized three series of novel 8-morpholinoimidazo[1,2-a]pyrazine derivatives bearing phenylpyridine/phenylpyrimidine-carboxamides (compounds 12a–g, 13a–g and 14a–g. All the compounds were evaluated for their IC50 values against three cancer cell lines (A549, PC-3 and MCF-7. Most of the target compounds exhibited moderate cytotoxicity against the three cancer cell lines. Two selected compounds 14b, 14c were further tested for their activity against PI3Kα kinase, and the results indicated that compound 14c showed inhibitory activity against PI3Kα kinase with an IC50 value of 1.25 μM. Structure-activity relationships (SARs and pharmacological results indicated that the replacement of the thiopyranopyrimidine with an imidazopyrazine was beneficial for the activity and the position of aryl group has a significant influence to the activity of these compounds. The compounds 13a–g in which an aryl group substituted at the C-4 position of the pyridine ring were more active than 12a–g substituted at the C-5 position. Moreover, the cytotoxicity of compounds 14a–g bearing phenylpyrimidine-carboxamides was better than that of the compounds 12a–g, 13a–g bearing phenylpyridine-carboxamides. Furthermore, the substituents on the benzene ring also had a significant impact on the cytotoxicity and the pharmacological results showed that electron donating groups were beneficial to the cytotoxicity.

  7. Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs.

    Science.gov (United States)

    Martínez, Ma Ángeles; Carranza, M Pilar; Massaguer, Anna; Santos, Lucia; Organero, Juan A; Aliende, Cristina; de Llorens, Rafael; Ng-Choi, Iteng; Feliu, Lidia; Planas, Marta; Rodríguez, Ana M; Manzano, Blanca R; Espino, Gustavo; Jalón, Félix A

    2017-11-20

    The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in

  8. Design, synthesis, and biological evaluation of a series of resorcinol-based N-benzyl benzamide derivatives as potent Hsp90 inhibitors.

    Science.gov (United States)

    Park, Sun You; Oh, Yong Jin; Lho, Yunmee; Jeong, Ju Hui; Liu, Kwang-Hyeon; Song, Jaeyoung; Kim, Soong-Hyun; Ha, Eunyoung; Seo, Young Ho

    2018-01-01

    Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. Therefore, Hsp90 has emerged as an attractive target in the field of cancer chemotherapy. In this study, we report the design, synthesis, and biological evaluation of a series of Hsp90 inhibitors. In particular, compound 30f shows a significant Hsp90α inhibitory activity with IC 50 value of 5.3 nM and an excellent growth inhibition with GI 50 value of 0.42 μM against non-small cell lung cancer cells, H1975. Compound 30f effectively reduces the expression levels of Hsp90 client proteins including Her2, EGFR, Met, Akt, and c-Raf. Consequently, compound 30f promotes substantial cleavages of PARP, Caspase 3, and Caspase 8, indicating that 30f induces cancer cell death via apoptotic pathway. Moreover, cytochrome P450 assay indicates that compound 30f has weak inhibitory effect on the activities of five major P450 isoforms (IC 50  > 5 μM for 1A2, 2C9, 2C19, 2D6, and 3A), suggesting that clinical interactions between 30f and the substrate drugs of the five major P450 isoforms are not expected. Compound 30f also inhibits the tumor growth in a mouse xenograft model bearing subcutaneous H1975 without noticeable abnormal behavior and body weight changes. The immunostaining and western immunoblot analysis of EGFR, Met, Akt in xenograft tissue sections of tumor further demonstrate a good agreement with the in vitro results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Microwave-assisted synthesis of chromenes: biological and chemical importance.

    Science.gov (United States)

    Patil, Shivaputra A; Patil, Siddappa A; Patil, Renukadevi

    2015-01-01

    Chromenes constitute chemically important class of heterocyclic compounds having diverse biological and chemical importance. Development of environmentally benign, efficient and economical methods for the synthesis of chromenes remains a significant challenge in synthetic chemistry. The synthesis of chromenes, therefore, has attracted enormous attention from medicinal and organic chemists. Researchers have embraced the concepts of microwave (high speed) synthesis to produce biologically and chemically important chromenes in a time sensitive manner. This review will summarize the recent biological applications such as anticancer, antimicrobial, neurodegenerative and insecticidal activity of new chromenes prepared via microwave irradiation. The development of new methodologies for the synthesis of chromenes including green chemistry processes has also been discussed.

  10. Biological evaluation of RVNRL

    International Nuclear Information System (INIS)

    Geertsma, R.E.; Orzechowski, T.J.H.; Jonker, M.; Dorpema, J.W.; Van Asten, J.A.A.M.

    1996-01-01

    Cytotoxicity testing (cell growth inhibition, LDH-assay) has shown that RVNRL materials are considerably less cytotoxic than sulphur-vulcanised materials. Also the effect of applying different leaching times during the production process was investigated and gave interesting results. Protein testing (BCA - comparable to a Lowry assay ) has shown that some, but not all proteins are destroyed during irradiation. For the total protein content of the materials as determined in this way, the effect of leaching proved to be very important. This was also checked by; SDS-PAGE assays: After irradiation a smear is observed with SDS-PAGE; when the irradiated material has been leached, most of the smear has disappeared. An important protein (14 kD) is still present and seems hardly to be affected. The materials have also been evaluated clinically, using well characterised patient sera (Western blotting) in order to determine whether the remaining proteins are allergenic

  11. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines

    Science.gov (United States)

    Syed, Asad; Saraswati, Supriya; Kundu, Gopal C.; Ahmad, Absar

    2013-10-01

    Nanoscience is a new born science of the modern era and taps into the potential of particles at nanoscale. Bulk materials reduced to nanoscale dimensions thus obtain unique properties such as electronic, optical, magnetic and chemical. As far as synthesis of nanoparticles is concerned, biological synthesis has recently sparked a great interest as compared to other available chemical and physical methods on account of its eco-friendliness and cost-effectiveness. Here we report, for the first time, the biosynthesis of silver nanoparticles by the thermophilic fungus Humicola sp. The fungus when reacted with Ag+ ions reduces the precursor solution and leads to the formation of extracellular nanoparticles as monitored by ultra violet visible spectroscopy (UV-Vis). The morphology of nanoparticles is found to be spherical with good dispersity as revealed by transmission electron microscopy (TEM). Cell viability assays were carried out to assess the cytotoxicity of silver nanoparticles on NIH3T3 mouse embryonic fibroblast cell line and MDA-MB-231 human breast carcinoma cell line.

  12. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    Science.gov (United States)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective

  13. Synthesis and biological evaluation of Schiff’s bases and 2-azetidinones of isonocotinyl hydrazone as potential antidepressant and nootropic agents

    Directory of Open Access Journals (Sweden)

    Asha B. Thomas

    2016-09-01

    Full Text Available The synthesis and pharmacological activity of N′-[(1Z-(substituted aromatic methylidene] pyridine-4-carbohydrazides (3a–k and N-[3-chloro-2-(substituted aromatic-4-oxoazetidin-1-yl]pyridine-4-carboxamides (5a–k are described. Synthesis of 2-azetidinones was performed by novel methods of stirring and sonication involving the cyclocondensation of the appropriate Schiff’s bases (3a–k with chloroacetyl chloride, followed by the addition of triethyl amine in the presence of molecular sieves. The compounds were investigated for their antidepressant activity, compounds N′-[(1Z-(2,5-dimethoxyphenylmethylidene]pyridine-4-carbohydrazide (3k and N-[3-chloro-2-(2,5-dimethoxyphenyl-4-oxoazetidin-1-yl]pyridine-4-carboxamide (5k with 2,5-dimethoxy substitution on the aryl ring exhibited the highest antidepressant activity. In the elevated plus maze test and passive avoidance test in mice for the evaluation of nootropic activity N′-[(1Z-(4-nitrophenylmethylidene]pyridine-4-carbohydrazide (3d and N-[3-chloro-2-(4-nitrophenyl-4-oxoazetidin-1-yl]pyridine-4-carboxamide (5d with para nitro substitution on the aryl ring exhibited the highest activity. All synthesised Schiff’s bases and azetidinone analogues exhibited antidepressant and nootropic activities in a dose dependant manner. The results confirmed the fact that the 2-azetidinone skeleton has potential as a CNS active agent and can be explored for the development of more potent and safe CNS active agents for therapeutic use.

  14. The Synthesis and Biological Evaluation of N-Substituted 1H-Benzimidazol-2-yl-1H-pyrazole-3,5-diamines

    Czech Academy of Sciences Publication Activity Database

    Jedinák, L.; Kryštof, Vladimír; Cankař, P.

    2016-01-01

    Roč. 53, č. 2 (2016), s. 499-507 ISSN 0022-152X Institutional support: RVO:61389030 Keywords : ONE-POT SYNTHESIS * BENZIMIDAZOLE DERIVATIVES * EFFICIENT SYNTHESIS Subject RIV: CE - Biochemistry Impact factor: 0.893, year: 2016

  15. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase.

    Science.gov (United States)

    Tang, Jing; Vernekar, Sanjeev Kumar V; Chen, Yue-Lei; Miller, Lena; Huber, Andrew D; Myshakina, Nataliya; Sarafianos, Stefan G; Parniak, Michael A; Wang, Zhengqiang

    2017-06-16

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors. Our data indicate that while some of these subtypes inhibited both the RNase H and polymerase (pol) functions of RT, potent and selective RNase H inhibition was achieved with subtypes 8-9 as exemplified with compounds 8c and 9c. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-11-01

    Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.

  17. Synthesis of technetium-99m labeled clinafloxacin (99mTc-CNN) complex and biological evaluation as a potential Staphylococcus aureus infection imaging agent

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Muhammad Rafiullah Khan

    2011-01-01

    In the present study synthesis of the 99m Tc-CNN complex and its efficacy as a prospective Staphylococcus aureus (S. aureus) infection imaging agent was assessed. The 99m Tc-CNN complex was characterized in terms of stability in saline, serum, in vitro binding with S. aureus and in vivo percent absorption in male Wister rats (MWR) infected with live and heat killed S. aureus. Radiochemically the 99m Tc-CNN complex showed stable behavior in saline and serum at different intervals. At 30 min after reconstitution the complex showed maximum radiochemical purity (RCP) yield of 97.55 ± 0.22%. The RCP yield decreased to 90.50 ± 0.18% within 240 min. In serum, 18.15% unwanted side product was appeared within 16 h of the incubation. In vitro saturated binding with S. aureus was observed at different intervals with a 62.00% maximum at 90 min. Normal percent in vivo uptake was observed in MWR artificially infected with live S. aureus with a five times higher in the infected muscle as compared to the inflamed and normal muscles. No difference in the percent uptake of the complex in MWR infected with heat killed S. aureus in the infected, inflamed and normal muscles were observed. Based on the promising in vitro and in vivo radiochemical and biological characteristics, we recommend the 99m Tc-CNN complex for in vivo localization of the S. aureus infectious foci. (author)

  18. Synthesis and Biological Evaluation of a New Acyclic Pyrimidine Derivative as a Probe for Imaging Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression

    Directory of Open Access Journals (Sweden)

    Simon M. Ametamey

    2013-07-01

    Full Text Available With the idea of finding a more selective radiotracer for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk gene expression by means of positron emission tomography (PET, a novel [18F]fluorine radiolabeled pyrimidine with 4-hydroxy-3-(hydroxymethylbutyl side chain at N-1 (HHB-5-[18F]FEP was prepared and evaluated as a potential PET probe. Unlabeled reference compound, HHB-5-FEP, was synthesized via a five-step reaction sequence starting from 5-(2-acetoxyethyl-4-methoxypyrimidin-2-one. The radiosynthesis of HHB-[18F]-FEP was accomplished by nucleophilic radiofluorination of a tosylate precursor using [18F]fluoride-cryptate complex in 45% ± 4 (n = 4 radiochemical yields and high purity (>99%. The biological evaluation indicated the feasibility of using HHB-5-[18F]FEP as a PET radiotracer for monitoring HSV1-tk expression in vivo.

  19. Enzymatic synthesis of {sup 125/131}I labeled 8-hydroxyquinoline glucuronide and in vitro/in vivo evaluation of biological influence

    Energy Technology Data Exchange (ETDEWEB)

    Yesilagac, Reyhan [Ege University, Institute of Nuclear Science, 35100 Bornova, Izmir (Turkey); Unak, Perihan, E-mail: perihan.unak@ege.edu.t [Ege University, Institute of Nuclear Science, 35100 Bornova, Izmir (Turkey); Medine, E. Ilker; Ichedef, Cigdem A. [Ege University, Institute of Nuclear Science, 35100 Bornova, Izmir (Turkey); Ertay, Turkan [Dokuz Eyluel University, Medical School, Department of Nuclear Medicine, Inciralti, Izmir (Turkey); Mueftueler, F.Z. Biber [Ege University, Institute of Nuclear Science, 35100 Bornova, Izmir (Turkey)

    2011-02-15

    8-Hydroxyquinoline (8-OHQ) is a long-known molecule which due to its metal-complexation ability is frequently used for analysis. It is also called oxine. Oxine and derivatives have been investigated to process antitumor and antimicrobial activities. 8-Hydroxyquinolyl-glucuronide (8-OHQ-Glu) was enzymatically synthesized using microsome preparates separated from Hutu-80 cells, labeled with {sup 125}I to perform a radionuclide labeled prodrug and investigated of its biological affinities on Hutu-80 (human duodenum intestinal adenocarcinoma), Caco-2 (human colorectal adenocarcinoma), Detroit 562 (human pharynx adenocarcinoma) cells and ACBRI 519 (primary human small intestine epithelial cells) in this work. UDP-glucuronyl transferase (UDPGT) rich microsome preparates, which are used for glucuronidation in enzymatic synthesis, were extracted from Hutu-80 cells. 8-OHQ-Glu components were labeled using iodogen method with {sup 125}I and {sup 131}I. Structural analyses were performed with LC/MS/MS, {sup 1}H NMR and {sup 13}C-MMR for identify and measure chemical constituents. Results confirmed expected molecular structure. 8-OHQ-Glu could successfully radioiodinated with {sup 125/131}I according to iodogen method. {sup 125}I-8-OHQ-glucuronide incorporated with human gastrointestinal cancer cells such as Detroit-562 (human pharynx adenocarcinoma) (12.6%), Caco-2 (human colorectal adenocarcinoma) (7.8%), Hutu- 80 (human duodenum intestinal adenocarcinoma) (9.5%) and ACBRI 519 (primary human small intestine epithelial cells) (6.40%). {sup 131}I-8-OHQ-Glu was tested in mice bearing subcutaneously implanted Caco-2 colorectal adenocarcinoma cells. The results demonstrated that radioiodinated 8-OHQ-Glu may be promising anticancer prodrug.

  20. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    OpenAIRE

    El Mokhtar Essassi; R. Bouhfid; Y. Kandri Rodi; S. Ferfra; H. Benzeid; Y. Ramli

    2010-01-01

    Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  1. Synthesis and biological activities of substituted N ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... The present study describes the synthesis, antioxidant and antibacterial activities of substituted N'- benzoylhydrazone derivatives, to ... addition, the dramatically rising prevalence of multidrug- resistant microbial infections has ...... extract of Chinese green tea (Camellia sinensis) on Listeria monocytogenes.

  2. Design, synthesis, and biological evaluation of 3-vinyl-quinoxalin-2(1H-one derivatives as novel antitumor inhibitors of FGFR1

    Directory of Open Access Journals (Sweden)

    Liu Z

    2016-05-01

    Full Text Available Zhiguo Liu,1,* Shufang Yu,1,* Di Chen,1 Guoliang Shen,1 Yu Wang,1 Leping Hou,2 Dan Lin,1 Jinsan Zhang,1 Faqing Ye1 1School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 2Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: FGFR1 is well known as a molecular target in anticancer drug design. TKI258 plays an important role in RTK inhibitors. Utilizing TKI258 as a lead compound that contains a quinazolinone nucleus, we synthesized four series of 3-vinyl-quinoxalin-2(1H-one derivatives, a total of 27 compounds. We further evaluated these compounds for FGFR1 inhibition ability as well as cytotoxicity against four cancer cell lines (H460, B16-F10, Hela229, and Hct116 in vitro. Some compounds displayed good-to-excellent potency against the four tested cancer cell lines compared with TKI258. Structure–activity relationship analyses indicated that small substituents at the side chain of the 3-vinyl-quinoxalin-2(1H-one were more effective than large substituents. Lastly, we used molecular docking to obtain further insight into the interactions between the compounds and FGFR1. Keywords: FGFR1, synthesis, quinoxaline, antitumor activity, kinase inhibitor

  3. Synthesis and Biological Evaluation of Novel 6-Hydroxy-benzo[d][1,3]oxathiol-2-one Schiff Bases as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Eliza de Lucas Chazin

    2015-01-01

    Full Text Available With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1 leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a–r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116 by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 μM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer.

  4. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity.

    Science.gov (United States)

    Trabbic, Christopher J; George, Sage M; Alexander, Evan M; Du, Shengnan; Offenbacher, Jennifer M; Crissman, Emily J; Overmeyer, Jean H; Maltese, William A; Erhardt, Paul W

    2016-10-21

    Certain indolyl-pyridinyl-propenone analogues kill glioblastoma cells that have become resistant to conventional therapeutic drugs. Some of these analogues induce a novel form of non-apoptotic cell death called methuosis, while others primarily cause microtubule disruption. Ready access to 5-indole substitution has allowed characterization of this position to be important for both types of mechanisms when a simple methoxy group is present. We now report the syntheses and biological effects of isomeric methoxy substitutions on the indole ring. Additionally, analogues containing a trimethoxyphenyl group in place of the pyridinyl moiety were evaluated for anticancer activity. The results demonstrate that the location of the methoxy group can alter both the potency and the mechanism of cell death. Remarkably, changing the methoxy from the 5-position to the 6-position switched the biological activity from induction of methuosis to disruption of microtubules. The latter may represent a prototype for a new class of mitotic inhibitors with potential therapeutic utility. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Novel 2,3-Dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones: Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Malose J. Mphahlele

    2016-12-01

    Full Text Available Herein we describe the synthesis and evaluation of a series of novel 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones for in vitro cytotoxicity against three human cancer cell lines as well as for potential antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The title compounds were prepared via PdCl2-mediated endo-dig cyclization of 2-aryl-8-(arylethynyl-6-bromo-2,3-dihydroquinazolin-4(1H-ones. The latter were prepared, in turn, via initial Sonogashira cross-coupling of 2-amino-5-bromo-3-iodobenzamide with aryl acetylenes followed by boric acid-mediated cyclocondensation of the intermediate 2-amino-3-(arylethynyl-5-bromobenzamides with benzaldehyde derivatives. The 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 4a–k were evaluated for potential in vitro cytotoxicity against the breast (MCF-7, melanoma (B16 and endothelioma (sEnd.2 cell lines. All of the compounds except 4h and 4i were found to be inactive against the three cancer cell lines. Compound 4h substituted with a 4-methoxyphenyl and 4-fluorophenyl groups at the 3- and 5-positions was found to exhibit significant cytotoxicity against the three cancer cell lines. The presence of phenyl and 3-chlorophenyl groups at the 3- and 5-posiitons of the pyrroloquinazolinone 4i, on the other hand, resulted in significant cytotoxicity against vascular tumour endothelial cells (sEnd.2, but reduced activity against the melanoma (B16 and breast cancer (MCF-7 cells except at higher concentrations. The 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 4a–l were found to be inactive against the chloroquine sensitive 3D7 strain of Plasmodium falciparum.

  6. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4.

    Science.gov (United States)

    Madadi, Nikhil R; Penthala, Narsimha R; Howk, Kevin; Ketkar, Amit; Eoff, Robert L; Borrelli, Michael J; Crooks, Peter A

    2015-10-20

    A series of combretastatin A-4 (CA-4) analogues have been prepared from (Z)-substituted diarylacrylonitriles (1a-1p) obtained in a two-step synthesis from appropriate arylaldehydes and acrylonitriles. The resulting 4,5-disubstituted 2H-1,2,3-triazoles were evaluated for their anti-cancer activities against a panel of 60 human cancer cell lines. The diarylacrylonitrile analogue 2l exhibited the most potent anti-cancer activity in the screening studies, with GI₅₀ values of <10 nM against almost all the cell lines in the human cancer cell panel and TGI values of <10 nM against cancer cell lines SF-539, MDA-MB-435, OVCAR-3 and A498. Furthermore, in silico docking studies of compounds 2l, 2e and 2h within the active site of tubulin were carried out in order to rationalize the mechanism of the anti-cancer properties of these compounds. From the in silico studies, compound 2e was predicted to have better affinity for the colchicine binding site on tubulin compared to compounds 2l and 2h. Analogue 2e was also evaluated for its anti-cancer activity by colony formation assay against 9LSF rat gliosarcoma cells and afforded an LD₅₀ of 7.5 nM. A cell cycle redistribution assay using analogue 2e was conducted to further understand the mechanism of action of these CA-4 analogues. From this study, analogues 2e and 2l were the most potent anti-cancer agents in this structural class, and were considered lead compounds for further development as anti-cancer drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Arylazolyl(azinyl)thioacetanilides. Part 16: Structure-based bioisosterism design, synthesis and biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors.

    Science.gov (United States)

    Li, Xiao; Lu, Xueyi; Chen, Wenmin; Liu, Huiqing; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; De Clercq, Erik; Liu, Xinyong

    2014-10-01

    A series of novel pyrimidinylthioacetanilides were designed, synthesized, and evaluated for their biological activity as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Most of the tested compounds were proved to be effective in inhibiting HIV-1 (IIIB) replication with EC50 ranging from 0.15 μM to 24.2 μM, thereinto compound 15 was the most active lead with favorable inhibitory activity against HIV-1 (IIIB) (EC50=0.15 μM, SI=684). Besides, compound 6 displayed moderate inhibition against the double-mutated HIV-1 strain (K103N/Y181C) (EC50=3.9 μM). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships (SCRs) data, and molecular modeling studies were discussed as well, which may provide valuable insights for further optimizations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Synthesis, biological evaluation and docking study of a new series of di-substituted benzoxazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents.

    Science.gov (United States)

    Kaur, Avneet; Pathak, Dharam P; Sharma, Vidushi; Wakode, Sharad

    2018-02-15

    A new series of substituted-N-(3,4-dimethoxyphenyl)-benzoxazole derivatives 13a-13p was synthesized and evaluated in vitro for their COX (I and II) inhibitory activity, in vivo anti-inflammatory and ulcerogenic potential. Compounds 13d, 13h, 13k, 13l and 13n exhibited significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. These selected compounds were screened for their in vivo anti-inflammatory activity by carrageenan induced rat paw edema method. Among these compounds, 13d was the most promising analogs of the series with percent inhibition of 84.09 and IC 50 value of 0.04 µM and 1.02 µM (COX-2 and COX-1) respectively. Furthermore, ulcerogenic study was performed and tested compounds (13d, 13h, 13k, 13l) demonstrated a significant gastric tolerance than ibuprofen. Molecular docking study was also performed with resolved crystal structure of COX-2 to understand the binding mechanisms of newly synthesized inhibitors in the active site of COX-2 enzyme and the results were found to be concordant with the biological evaluation studies of the compounds. These newly synthesized inhibitors also showed acceptable pharmacokinetic profile in the in silico ADME/T analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Design, Synthesis, and Biological Evaluation of a New Series of Biphenyl/Bibenzyl Derivatives Functioning as Dual Inhibitors of Acetylcholinesterase and Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Dong-mei Wang

    2017-01-01

    Full Text Available Alzheimer’s disease (AD, the most common form of dementia in adults, is a progressive neurodegenerative disorder of the brain characterized by loss of memory and steady deterioration of cognition. Here, a series of symmetrical molecules containing biphenyl/bibenzyl scaffolds (12–36 were designed, synthesized, and evaluated for their ability to inhibit both acetylcholinesterase (AChE and butyrylcholinesterase (BuChE. A biological evaluation showed that most of these biphenyl derivatives were potent AChE and BuChE inhibitors. Among them, compound 15 displayed the greatest ability to inhibit BuChE (IC50 = 0.74 µM and was also a good AChE inhibitor (IC50 = 1.18 µM. Compound 19 was not only a potent AChE inhibitor (IC50 = 0.096 µM, but also a mild BuChE inhibitor (IC50 =1.25 µM. Overall, these results suggested that compound 19 may be a promising agent in the treatment of AD.

  10. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    ... nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent ...

  11. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Nanotechnology is emerging as one of the most important and revolutionizing area in research field. Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological methods of reduction of metal ions using plants or microorganisms are often preferred because they are clean, ...

  12. Synthesis and Biological Activities of Some Benzimidazoles ...

    African Journals Online (AJOL)

    The chemical structures of these compounds were elucidated using NMR and elemental analysis. The biological activity of these compounds as fungicides was tested against three commercially known fungicides (C. albicans, patient isolate C. glabrata and C. krusei).The biological activity of two compounds was found to be ...

  13. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Abstract. Nanotechnology is emerging as one of the most important and revolutionizing area in research field. Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological me- thods of reduction of metal ions using plants or microorganisms are often preferred because they ...

  14. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    Science.gov (United States)

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.

  15. Aspirin analogues as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, nitric oxide release, molecular modeling, and biological evaluation as anti-inflammatory agents.

    Science.gov (United States)

    Kaur, Jatinder; Bhardwaj, Atul; Huang, Zhangjian; Knaus, Edward E

    2012-01-02

    Analogues of aspirin were synthesized through an efficient one-step reaction in which the carboxyl group was replaced by an ethyl ester, and/or the acetoxy group was replaced by an N-substituted sulfonamide (SO(2)NHOR(2):R(2) =H, Me, CH(2)Ph) pharmacophore. These analogues were designed for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. In vitro COX-1/COX-2 isozyme inhibition studies identified compounds 11 (CO(2) H, SO(2)NHOH), 12 (CO(2)H, SO(2)NHOCH(2)Ph), and 16 (CO(2)Et, SO(2)NHOH) as highly potent and selective COX-2 inhibitors (IC(50) range: 0.07-0.7 μM), which exhibited appreciable in vivo anti-inflammatory activity (ED(50) range: 23.1-31.4 mg kg(-1)). Moreover, compounds 11 (IC(50) =0.2 μM) and 16 (IC(50) =0.3 μM), with a sulfohydroxamic acid (SO(2)NHOH) moiety showed potent 5-LOX inhibitory activity. Furthermore, the SO(2)NHOH moiety present in compounds 11 and 16 was found to be a good nitric oxide (NO) donor upon incubation in phosphate buffer at pH 7.4. Molecular docking studies in the active binding site of COX-2 and 5-LOX provided complementary theoretical support for the experimental biological structure-activity data acquired. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Green synthesis, characterisation and biological evaluation of AgNPs using Agave americana, Mentha spicata and Mangifera indica aqueous leaves extract.

    Science.gov (United States)

    Ahmad, Bashir; Shireen, Farah; Bashir, Shumaila; Khan, Ibrar; Azam, Sadiq

    2016-10-01

    The current study was performed to synthesize stable, eco-friendly and bio-compatible silver nano-particles (AgNPs) of Agave americana , Mentha spicata and Mangifera indica leaves and to screen them for biological activities. The ultraviolet-visible spectroscopic analysis revealed that λ-max for AgNPs range from 350-500 nm. All AgNPs possessed polycrystalline structure as notified as intense graphical peaks in complete spectrum of 20 values ranging from 10-80° in X-ray diffraction measurements and supported by scanning electron microscopy data. The size of the nano-particles was confirmed by transmission electron microscopy (30-150 nm). Mass loss at variable temperatures was evaluated by simultaneous thermogravimetric and differential thermal analysis revealed reduction in mass and activity of compounds was notified by temperature increase from 200 to 800 °C, thus concluding it as thermally sensitive compounds. A. americana AgNPs showed significant (96%) activity against Methicillin resistant Staphylococcus aureus , Escherichia coli (95%) and Fusarium oxysporum (89%). Good antioxidant activity was shown by M. spicata AgNPs at 300 µl (79%). M. indica AgNPs showed significant phytotoxic activity (88%) at highest concentration. No haemagglutination reaction was observed for the test samples. The above results revealed that AgNPs synthesized from selected plant species possesses significant antimicrobial and phytotoxic effect.

  17. Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Yousef; Feizi, Shahzad [Nuclear Science and Technology Research Institute, Karaj (Iran, Islamic Republic of). Radiation Application Research School; Rahighi, Reza [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Physics; Tayyebi, Ahmad [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Engineering

    2017-03-01

    Graphene oxide (GO) nanosheets were hybridized with Fe{sub 3}O{sub 4} nanoparticles (NPs) to form magnetic GO (MGO) and were further labeled by [{sup 68}Ga]GaCl{sub 3} as a potential drug delivery system. Paper chromatography, Fourier transform infra red (FTIR) spectroscopy, low-angle X-ray diffraction (XRD), CHN and atomic force microscopy (AFM) were utilized to characterize the trinary composite ([{sup 68}Ga] rate at MGO). Biological evaluations of the prepared nanocomposite were performed in normal Sprague Dawley rats and it was found to be a possible host for theranostic radiopharmaceuticals. The results showed that the grafting of Fe{sub 3}O{sub 4} NPs on nanocomposite reduced the unwanted liver and spleen uptakes and increased the ratio of kidney/liver uptake from 0.037 to 1.07, leading to the fast removal of radioactive agent and less imposed radiation to patients. The high level of hydrogen bonding caused by the presence of functional groups is responsible for this effect. Considering the accumulation of the tracer in vital organs of rat (especially brain), efficient iron oxide grafting, fast wash-out, the short half-life gallium-68 and less imposed radiation doses to patients, this nanocomposite could be a suitable candidate for positron emission tomography (PET) studies and imaging applications.

  18. Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study.

    Science.gov (United States)

    Wang, Li; Bao, Bo-Bo; Song, Guo-Qing; Chen, Cheng; Zhang, Xu-Meng; Lu, Wei; Wang, Zefang; Cai, Yan; Li, Shuang; Fu, Sheng; Song, Fu-Hang; Yang, Haitao; Wang, Jian-Guo

    2017-09-08

    The worldwide outbreak of severe acute respiratory syndrome (SARS) in 2003 had caused a high rate of mortality. Main protease (M pro ) of SARS-associated coronavirus (SARS-CoV) is an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. During the course of screening new anti-SARS agents, we have identified that a series of unsymmetrical aromatic disulfides inhibited SARS-CoV M pro significantly for the first time. Herein, 40 novel unsymmetrical aromatic disulfides were synthesized chemically and their biological activities were evaluated in vitro against SARS-CoV M pro . These novel compounds displayed excellent IC 50 data in the range of 0.516-5.954 μM. Preliminary studies indicated that these disulfides are reversible and mpetitive inhibitors. A possible binding mode was generated via molecular docking simulation and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationships. The present research therefore has provided some meaningful guidance to design and identify anti-SARS drugs with totally new chemical structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Synthesis and biological evaluation of carbon-11- and fluorine-18-labeled 2-oxoquinoline derivatives for type 2 cannabinoid receptor positron emission tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Evens, Nele [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium); Muccioli, Giulio G. [Unite de Chimie Pharmaceutique et de Radiopharmacie, U.C. Louvain, 1200 Bruxelles (Belgium); Houbrechts, Nele [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium); Lambert, Didier M. [Unite de Chimie Pharmaceutique et de Radiopharmacie, U.C. Louvain, 1200 Bruxelles (Belgium); Verbruggen, Alfons M. [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium); Van Laere, Koen [Division of Nuclear Medicine, K.U. Leuven, 3000 Leuven (Belgium); Bormans, Guy M. [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium)], E-mail: guy.bormans@pharm.kuleuven.be

    2009-05-15

    Introduction: The type 2 cannabinoid (CB{sub 2}) receptor is part of the endocannabinoid system and has been suggested as a mediator of several central and peripheral inflammatory processes. Imaging of the CB{sub 2} receptor has been unsuccessful so far. We synthesized and evaluated a carbon-11- and a fluorine-18-labeled 2-oxoquinoline derivative as new PET tracers with high specificity and affinity for the CB{sub 2} receptor. Methods: Two 2-oxoquinoline derivatives were synthesized and radiolabeled with either carbon-11 or fluorine-18. Their affinity and selectivity for the human CB{sub 2} receptor were determined. Biological evaluation was done by biodistribution, radiometabolite and autoradiography studies in mice. Results: In vitro studies showed that both compounds are high affinity CB{sub 2}-specific inverse agonists. Biodistribution study of the tracers in mice showed a high in vivo initial brain uptake and fast brain washout, in accordance with the low CB{sub 2} receptor expression levels in normal brain. A persistently high in vivo binding to the spleen was observed, which was inhibited by pretreatment with two structurally unrelated CB{sub 2} selective inverse agonists. In vitro autoradiography studies with the radioligands confirmed CB{sub 2}-specific binding to the mouse spleen. Conclusion: We synthesized two novel CB{sub 2} receptor PET tracers that show high affinity/selectivity for CB{sub 2} receptors. Both tracers show favourable characteristics as radioligands for central and peripheral in vivo visualization of the CB{sub 2} receptor and are promising candidates for primate and human CB{sub 2} PET imaging.

  20. PET imaging of fatty acid amide hydrolase in the brain: synthesis and biological evaluation of an {sup 11}C-labelled URB597 analogue

    Energy Technology Data Exchange (ETDEWEB)

    Wyffels, Leonie [Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Muccioli, Giulio G. [Bioanalysis and Pharmacology of Bioactive Lipids Laboratory, Louvain Drug Research Institute, Universite catholique de Louvain, CHAM7230, B-1200, Brussels (Belgium); Kapanda, Coco N.; Labar, Geoffray [Unite de Chimie Pharmaceutique et de Radiopharmacie, Louvain Drug Research Institute, Universite catholique de Louvain, UCL-CMFA 73-40, B-1200 Brussels (Belgium); De Bruyne, Sylvie; De Vos, Filip [Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Lambert, Didier M., E-mail: didier.lambert@uclouvain.b [Unite de Chimie Pharmaceutique et de Radiopharmacie, Louvain Drug Research Institute, Universite catholique de Louvain, UCL-CMFA 73-40, B-1200 Brussels (Belgium)

    2010-07-15

    Introduction: Fatty acid amide hydrolase (FAAH) is part of the endocannabinoid system (ECS) and has been linked to the aetiology of several neurological and neuropsychiatric disorders. So far no useful PET or SPECT tracer for in vivo visualisation of FAAH has been reported. We synthesized and evaluated a carbon-11-labeled URB597 analogue, biphenyl-3-yl [{sup 11}C]-4-methoxyphenylcarbamate or [{sup 11}C]-1, as potential FAAH imaging agent. Methods: The inhibitory activity of 1 was determined in vitro using recombinant FAAH. Radiosynthesis of [{sup 11}C]-1 was performed by methylation using [{sup 11}C]-CH{sub 3}I, followed by HPLC purification. Biological evaluation was done by biodistribution studies in wild-type and FAAH knock-out mice, and by ex vivo and in vivo metabolite analysis. The influence of URB597 pretreatment on the metabolisation profile was assessed. Results: [{sup 11}C]-1 was obtained in good yields and high radiochemical purity. Biodistribution studies revealed high brain uptake in wild-type and FAAH knock-out mice, but no retention of radioactivity could be demonstrated. Metabolite analysis and URB597 pretreatment confirmed the non-FAAH-mediated metabolisation of [{sup 11}C]-1. The inhibition mechanism was determined to be reversible. In addition, the inhibition of URB597 appeared slowly reversible. Conclusions: Although [{sup 11}C]-1 inhibits FAAH in vitro and displays high brain uptake, the inhibition mechanism seems to deviate from the proposed carbamylation mechanism. Consequently, it does not covalently bind to FAAH and will not be useful for mapping the enzyme in vivo. However, it represents a potential starting point for the development of in vivo FAAH imaging tools.

  1. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors.

    Science.gov (United States)

    Wang, Han; Xu, Renyang; Shi, Yongying; Si, Longlong; Jiao, Pingxuan; Fan, Zibo; Han, Xu; Wu, Xingyu; Zhou, Xiaoshu; Yu, Fei; Zhang, Yongmin; Zhang, Liangren; Zhang, Lihe; Zhou, Demin; Xiao, Sulong

    2016-03-03

    Since the influenza viruses can rapidly evolve, it is urgently required to develop novel anti-influenza agents possessing a novel mechanism of action. In our previous study, two pentacyclic triterpene derivatives (Q8 and Y3) have been found to have anti-influenza virus entry activities. Keeping the potential synergy of biological activity of pentacyclic triterpenes and l-ascorbic acid in mind, we synthesized a series of novel l-ascorbic acid-conjugated pentacyclic triterpene derivatives (18-26, 29-31, 35-40 and 42-43). Moreover, we evaluated these novel compounds for their anti-influenza activities against A/WSN/33 virus in MDCK cells. Among all evaluated compounds, the 2,3-O,O-dibenzyl-6-deoxy-l-ascorbic acid-betulinic acid conjugate (30) showed the most significant anti-influenza activity with an EC50 of 8.7 μM, and no cytotoxic effects on MDCK cells were observed. Time-of-addition assay indicated that compound 30 acted at an early stage of the influenza life cycle. Further analyses revealed that influenza virus-induced hemagglutination of chicken red blood cells was inhibited by treatment of compound 30, and the interaction between the influenza hemagglutinin (HA) and compound 30 was determined by surface plasmon resonance (SPR) with a dissociation constant of KD = 3.76 μM. Finally, silico docking studies indicated that compound 30 and its derivative 31 were able to occupy the binding pocket of HA for sialic acid receptor. Collectively, these results suggested that l-ascorbic acid-conjugated pentacyclic triterpenes were promising anti-influenza entry inhibitors, and HA protein associated with viral entry was a promising drug target. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  3. Synthesis and biological evaluation of branched and conformationally restricted analogs of the anticancer compounds 3'-C-ethynyluridine (EUrd) and 3'-C-ethynylcytidine (ECyd)

    DEFF Research Database (Denmark)

    Hrdlicka, Patrick J; Andersen, Nicolai K; Jepsen, Jan S

    2005-01-01

    The synthesis of branched and conformationally restricted analogs of the anticancer nucleosides 3'-C-ethynyluridine (EUrd) and 3'-C-ethynylcytidine (ECyd) is presented. Molecular modeling and (1)H NMR coupling constant analysis revealed that the furanose rings of all analogs except the LNA analog...

  4. Solid phase synthesis and biological evaluation of enantiomerically pure wasp toxin analogues PhTX-343 and PhTX-12

    DEFF Research Database (Denmark)

    Strømgaard, K; Bjørnsdottir, I; Andersen, K

    2000-01-01

    PhTX-343 and PhTX-12, analogues of the natural polyamine wasp toxin PhTX-433, were synthesised in 40-60% yields as pure enantiomers using solid phase synthesis techniques. Capillary electrophoresis procedures were developed for chiral separation and determination of enantiomeric purity (ee) of th...

  5. Synthesis, molecular docking and biological evaluation as HDAC inhibitors of cyclopeptide mimetics by a tandem three-component reaction and intramolecular [3+2] cycloaddition.

    Science.gov (United States)

    Pirali, Tracey; Faccio, Valeria; Mossetti, Riccardo; Grolla, Ambra A; Di Micco, Simone; Bifulco, Giuseppe; Genazzani, Armando A; Tron, Gian Cesare

    2010-02-01

    Novel macrocyclic peptide mimetics have been synthesized by exploiting a three-component reaction and an azide-alkyne [3 + 2] cycloaddition. The prepared compounds were screened as HDAC inhibitors allowing us to identify a new compound with promising biological activity. In order to rationalize the biological results, computational studies have also been performed.

  6. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    El Mokhtar Essassi

    2010-04-01

    Full Text Available Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  7. Constrained saccharides: a review of structure, biology, and synthesis.

    Science.gov (United States)

    Rodriguez, Jacob; O'Neill, Sloane; Walczak, Maciej A

    2018-03-01

    Review primarily covers from 1995-2018Carbohydrate function, recognized in a multitude of biological processes, provides a precedent for developing carbohydrate surrogates that mimic the structure and function of bioactive compounds. In order to constrain highly flexible oligosaccharides, synthetic tethering techniques like those exemplified by stapled peptides are utilized to varying degrees of success. Naturally occurring constrained carbohydrates, however, exist with noteworthy cytotoxic and chemosensitizing properties. This review highlights the structure, biology, and synthesis of this intriguing class of molecules.

  8. Synthesis of 99mTcV ≡ N-Pazufloxacin dithiocarbamate complex and biological evaluation in Wister rats artificially infected with Escherichia coli

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Muhammad Rafiullah Khan

    2011-01-01

    99m Tc ≡ N-Pazufloxacin dithiocarbamate ( 99m Tc ≡ N-PZN) complex was synthesized through the [ 99m Tc ≡ N] 2+ core and its aptness was radiochemically and biologically evaluated in terms of radiochemical purity (RCP) in saline, in vitro stability in serum, in vitro bacterial uptake and percent in vivo uptake in male Wister rats (MWR) artificially infected with alive and heat killed Escherichia coli (E. coli). The 99m Tc ≡ N-PZN complex showed more than 90% RCP up to 4 h after reconstitution in normal saline at room temperature with a maximum RCP value of 98.40 ± 0.28% (at 30 min). At 37 deg C in serum the complex showed stable behaviour up to 4 h with the appearance of 15.95% undesirable by products within 16 h of the incubation. The complex showed saturated in vitro binding with E. coli with a maximum uptake of 74.25 ± 0.50% (at 90 min). Normal biodistribution behaviour was noted with a sixfold higher accumulation in the muscle of the MWR, artificially infected with live E. coli as compared to the MWR infected with heat killed E. coli, inflamed and normal muscle. The high RCP in saline, elevated in vitro stability in serum, saturated in vitro binding with E. coli and the sixfold higher accumulation in the infected (live) muscle of the MWR as compared to the inflamed and normal muscle, recognized the aptness of the 99m Tc ≡ N-PZND complex as a prospective E. coli in vivo infection radiotracer. (author)

  9. Design, Synthesis and Biological Evaluation of 4-Amino-N-(4-aminophenyl)benzamide Analogues of Quinoline-Based SGI-1027 as Inhibitors of DNA Methylation

    Science.gov (United States)

    Rilova, Elodie; Erdmann, Alexandre; Gros, Christina; Masson, Véronique; Aussagues, Yannick; Poughon-Cassabois, Valérie; Rajavelu, Arumugam; Jeltsch, Albert; Menon, Yoann; Novosad, Natacha; Gregoire, Jean-Marc; Vispé, Stéphane; Schambel, Philippe; Ausseil, Fréderic; Sautel, François; Arimondo, Paola B; Cantagrel, Frédéric

    2014-01-01

    Quinoline derivative SGI-1027 (N-(4-(2-amino-6-methylpyrimidin-4-ylamino)phenyl)-4-(quinolin-4-ylamino)benzamide) was first described in 2009 as a potent inhibitor of DNA methyltransferase (DNMT) 1, 3A and 3B. Based on molecular modeling studies, performed using the crystal structure of Haemophilus haemolyticus cytosine-5 DNA methyltransferase (MHhaI C5 DNMT), which suggested that the quinoline and the aminopyridimine moieties of SGI-1027 are important for interaction with the substrates and protein, we designed and synthesized 25 derivatives. Among them, four compounds—namely the derivatives 12, 16, 31 and 32—exhibited activities comparable to that of the parent compound. Further evaluation revealed that these compounds were more potent against human DNMT3A than against human DNMT1 and induced the re-expression of a reporter gene, controlled by a methylated cytomegalovirus (CMV) promoter, in leukemia KG-1 cells. These compounds possessed cytotoxicity against leukemia KG-1 cells in the micromolar range, comparable with the cytotoxicity of the reference compound, SGI-1027. Structure–activity relationships were elucidated from the results. First, the presence of a methylene or carbonyl group to conjugate the quinoline moiety decreased the activity. Second, the size and nature of the aromatic or heterocycle subsitutents effects inhibition activity: tricyclic moieties, such as acridine, were found to decrease activity, while bicyclic substituents, such as quinoline, were well tolerated. The best combination was found to be a bicyclic substituent on one side of the compound, and a one-ring moiety on the other side. Finally, the orientation of the central amide bond was found to have little effect on the biological activity. This study provides new insights in to the structure–activity relationships of SGI-1027 and its derivative. PMID:24678024

  10. Synthesis, structure characterization, in vitro and in silico biological evaluation of a new series of thiazole nucleus integrated with pyrazoline scaffolds

    Science.gov (United States)

    Sadashiva, Rajitha; Naral, Damodara; Kudva, Jyothi; Madan Kumar, S.; Byrappa, K.; Mohammed Shafeeulla, R.; Kumsi, Manjunatha

    2017-10-01

    In the current study, a series of 2,4-disubstituted-1,3-thiazoles linked with pyrazoline scaffolds 3a-o were rationally designed and synthesized. The structures of the title compounds were elucidated by spectroscopic data (UV-Vis, IR, NMR and Mass spectra) and elemental analysis. Single crystal X-Ray diffraction studies revealed that, the compounds 3i and 3k crystallized in monoclinic crystal system with P21/n space group and Z = 4. The molecules 3i and 3k were connected with intermolecular hydrogen bonds N2-H2 … O1, N3sbnd H3 … Cl1 and short contacts (Csbnd H … π and Csbnd Cl … π). Intramolecular hydrogen bonds, N3sbnd H3 … N5 and C5sbnd H5 ….N1 were also existed. The compounds were evaluated for their anticancer activity against A549 and MCF-7 human cancer cell lines and in vitro antimicrobial activity against pathogenic microbial strains. The compounds bearing chloro atom at the para position of phenyl ring A like 3f, 3j and 3k with the IC50: 7.5, 5.0 and 5.0 μM respectively, exhibited better activity than standard drug Cisplatin (IC50: 10.0 μM). In addition, the compounds 3a, 3f, 3j and 3l have exhibited the similar antimicrobial activity as that of standard drug Ciprofloxacin and Fluconazole. Furthermore, to support the biological potency of the compounds, in silico molecular docking studies were carried out against the E. coli MurB (PDB code: pdb:2MBR)

  11. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology. Renee M Borges. General Article Volume 10 Issue 7 July 2005 pp 21-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis.

    Science.gov (United States)

    Robertson, Jeremy; Stevens, Kiri

    2017-01-04

    Covering: 2013 up to the end of 2015This review covers the isolation and structure of new pyrrolizidines; pyrrolizidine biosynthesis; biological activity, including the occurrence of pyrrolizidines as toxic components or contaminants in foods and beverages; and formal and total syntheses of naturally-occurring pyrrolizidine alkaloids and closely related non-natural analogues.

  13. Natural product synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reframing developmental biology and building evolutionary theory's new synthesis.

    Science.gov (United States)

    Tauber, Alfred I

    2010-01-01

    Gilbert and Epel present a new approach to developmental biology: embryogenesis must be understood within the full context of the organism's environment. Instead of an insular embryo following a genetic blueprint, this revised program maintains that embryogenesis is subject to inputs from the environment that generate novel genetic variation with dynamic consequences for development. Beyond allelic variation of structural genes and of regulatory loci, plasticity-derived epigenetic variation completes the triad of the major types of variation required for evolution. Developmental biology and ecology, disciplines that have previously been regarded as distinct, are presented here as fully integrated under the rubric of "eco-devo," and from this perspective, which highlights how the environment not only selects variation, it helps construct it, another synthesis with evolutionary biology must also be made, "eco-evo-devo." This second integration has enormous implications for expanding evolution theory, inasmuch as the Modern Synthesis (Provine 1971), which combined classical genetics and Darwinism in the mid-20th century, did not account for the role of development in evolution. The eco-evo-devo synthesis thus portends a major theoretical inflection in evolutionary biology. Following a description of these scientific developments, comment is offered as to how this new integrated approach might be understood within the larger shifts in contemporary biology.

  15. Biological synthesis of silver nanoparticles by using Viola serpens extract

    Directory of Open Access Journals (Sweden)

    Anu Kumar

    2016-03-01

    Full Text Available Objective: To formulate a biological approach for the biological synthesis of silver nanoparticles using aqueous extracts of leaves of Viola serpens which is considered as a ecofriendly method as it does not include any harmful chemicals. Methods: The synthesized silver nanoparticles were characterized by using UV-vis spectroscopy analysis, scanning electron microscopy analysis and X-ray diffraction analysis. Results: Scanning electron microscopy analysis study revealed that synthesized silver nanoparticles were of an average size of 80–90 nm. Crystalline nature of synthesized silver nanoparticles was confirmed by X-ray diffraction analysis. Conclusions: The leaves of Viola serpens can be a potent source for the biological synthesis of silver nanoparticles. The outcome of the study can lead to the development of a novel drug for biomedical field.

  16. Synthesis and biological evaluation of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as adenosine kinase inhibitors.

    Science.gov (United States)

    Perner, Richard J; Lee, Chih-Hung; Jiang, Meiqun; Gu, Yu-Gui; Didomenico, Stanley; Bayburt, Erol K; Alexander, Karen M; Kohlhaas, Kathy L; Jarvis, Michael F; Kowaluk, Elizabeth L; Bhagwat, Shripad S

    2005-06-02

    The synthesis and structure-activity relationship of a series of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as novel non-nucleoside adenosine kinase inhibitors is described. A variety of substituents, primarily aryl, at the C6 and C7 positions of the pyridopyrimidine core were found to yield analogues that are potent inhibitors of adenosine kinase. In contrast to the 5,7-disubstituted and 5,6,7-trisubstituted pyridopyrimidine series, these analogues exhibited only modest potency to inhibit AK in intact cells.

  17. Evolutionary biology today and the call for an extended synthesis.

    Science.gov (United States)

    Futuyma, Douglas J

    2017-10-06

    Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation

  18. Eco-sustainable synthesis and biological evaluation of 2-phenyl 1,3-benzodioxole derivatives as anticancer, DNA binding and antibacterial agents

    Directory of Open Access Journals (Sweden)

    Sayan Dutta Gupta

    2016-11-01

    Full Text Available The current research and development scenario in medicinal chemistry demands small molecules synthesized in a simple, fast and effective way with enhanced activity and fewer side effects than the existing ones. Therefore, one-pot, microwave assisted green and efficient synthesis of a series of derivatives belonging to 2-phenyl 1,3-benzodioxole (1a–14a and 2-phenyl 1,3-benzodioxole-4-ol (1b–14b class were carried out and subsequently investigated for their anticancer, antibacterial and DNA binding potential. Compound 3c proved to be the most active one among the screened derivatives possessing anticancer and antibacterial potency greater than the standard reference compound (cisplatin and cinoxacin for anticancer and antibacterial activity, respectively. The most active compound in terms of DNA binding capacity was found to be 5b. A rewarding feature of the work is a facile, convenient, eco friendly one step synthesis of compounds demonstrating attenuated activity against cancer and bacterial cell with an inherent potential of binding to DNA. Subsequently, a hit molecule for further anticancer, antibacterial (compound 3c and DNA binding studies (compound 5b was also identified.

  19. Chemical synthesis and biological evaluation of cis- and trans-12,13-cyclopropyl and 12,13-cyclobutyl epothilones and related pyridine side chain analogues

    DEFF Research Database (Denmark)

    Nicolaou, K C; Namoto, K; Ritzén, A

    2001-01-01

    -activity relationships, including the conclusion that neither the epoxide nor the stereochemistry at C12 are essential, while the stereochemistry at both C13 and C15 are crucial for biological activity. These studies also confirmed the importance of both the cyclopropyl and 5-methylpyridine moieties in conferring potent...

  20. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors

    Czech Academy of Sciences Publication Activity Database

    Baltus, C.B.; Jorda, Radek; Marot, Ch.; Berka, K.; Bazgier, Václav; Kryštof, Vladimír; Prie, G.; Viaud-Massuard, M.C.

    2016-01-01

    Roč. 108, JAN 27 (2016), s. 701-719 ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cyclin-dependent kinase 2 * Kinase inhibitors * Anti-tumor agent Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.519, year: 2016

  1. Synthesis and Evaluation of the Biological Profile of Novel Analogues of Nucleosides and of Potential Mimetics of Sugar Phosphates and Nucleotides

    Czech Academy of Sciences Publication Activity Database

    Xavier, N.M.; Lucas, S.D.; Jorda, Radek; Schwarz, S.; Loesche, A.; Csuk, R.; Oliveira, M.C.

    2015-01-01

    Roč. 26, č. 19 (2015), s. 2663-2672 ISSN 0936-5214 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : nucleosides * nucleotides * carbohydrates Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.323, year: 2015

  2. Biological inspiration used for robots motion synthesis.

    Science.gov (United States)

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  3. Synthesis, characterization and biological evaluation of novel neutral fac-M(CO){sub 3}(SNO) complexes (M=Re, {sup 99m}Tc) bearing the o-methoxyphenylpiperazine moiety

    Energy Technology Data Exchange (ETDEWEB)

    Chiotellis, A. [Institute of Radioisotopes, Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi, Athens (Greece); Tsoukalas, C., E-mail: ctsoukal@rrp.demokritos.gr [Institute of Radioisotopes, Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi, Athens (Greece); Pelecanou, M. [Institute of Biology, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi, Athens (Greece); Pirmettis, I.; Papadopoulos, M. [Institute of Radioisotopes, Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi, Athens (Greece)

    2012-06-15

    The synthesis, characterization and biological evaluation of two new neutral tricarbonyl fac-M(CO){sub 3}(SNO) (M=Re, {sup 99m}Tc) bearing o-methoxyphenylpiperazine as pharmacophore and S-functionalized cysteine or penicillamine as chelators are reported. Competition binding tests showed good affinity for the 5-HT{sub 1A} receptor (8 and 54 nM for 4a and 4b, respectively). Biodistribution studies in healthy animals showed high initial blood and liver uptake, fast blood and tissue depuration and negligible brain uptake. - Graphical abstract: Two new neutral tricarbonyl fac-M(CO){sub 3}(SNO) (M=Re, {sup 99m}Tc) bearing o-methoxyphenylpiperazine as pharmacophore and S-functionalized cysteine or penicillamine as chelator were synthesized, characterized and evaluated as possible 5-HT{sub 1A} receptor imaging agents. Highlights: Black-Right-Pointing-Pointer S-functionalized cysteine or penicillamine for the 5-HT{sub 1A} receptors are reported. Black-Right-Pointing-Pointer Novel rhenium and technetium-99m tricarbonyl complexes were synthesized and characterized. Black-Right-Pointing-Pointer Competition binding tests showed good affinity for the 5-HT{sub 1A} receptors. Black-Right-Pointing-Pointer The {sup 99m}Tc complexes showed adequate features but negligible brain uptake in mice.

  4. Synthesis and biological evaluation of the natural product komaroviquinone and related compounds aiming at a potential therapeutic lead compound for high-risk multiple myeloma.

    Science.gov (United States)

    Suto, Yutaka; Sato, Mariko; Fujimori, Kota; Kitabatake, Shotaro; Okayama, Mikio; Ichikawa, Daiju; Matsushita, Maiko; Yamagiwa, Noriyuki; Iwasaki, Genji; Kiuchi, Fumiyuki; Hattori, Yutaka

    2017-10-01

    Alternatives of treatments for multiple myeloma (MM) have become increasingly available with the advent of new drugs such as proteasome inhibitors, thalidomide derivatives, histone deacetylase inhibitors, and antibody drugs. However, high-risk MM cases that are refractory to novel drugs remain, and further optimization of chemotherapeutics is urgently needed. We had achieved asymmetric total synthesis of komaroviquinone, which is a natural product from the plant Dracocephalum komarovi. Similar to several leading antitumor agents that have been developed from natural compounds, we describe the antitumor activity and cytotoxicity of komaroviquinone and related compounds in bone marrow cells. Our data suggested that komaroviquinone-related agents have potential as starting compounds for anticancer drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[{sup 18}f]fluorobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Jonson, Stephanie D.; Welch, Michael J. E-mail: welch@mirlink.wustl.edu

    1999-01-01

    Cholesteryl-p-[{sup 18}F]fluorobenzoate ([{sup 18}F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [{sup 18}F]CFB. The synthesis of [{sup 18}F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [{sup 18}F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [{sup 18}F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [{sup 18}F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [{sup 18}F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [{sup 18}F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [{sup 18}F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders.

  6. Synthesis and Biological Evaluation of Isomeric Methoxy Substitutions on Anti-Cancer Indolyl-Pyridinyl-Propenones: Effects on Potency and Mode of Activity

    OpenAIRE

    Trabbic, Christopher J.; George, Sage M.; Alexander, Evan M.; Du, Shengnan; Offenbacher, Jennifer M.; Crissman, Emily J.; Overmeyer, Jean H.; Maltese, William A.; Erhardt, Paul W.

    2016-01-01

    Certain indolyl-pyridinyl-propenone analogues kill glioblastoma cells that have become resistant to conventional therapeutic drugs. Some of these analogues induce a novel form of non-apoptotic cell death called methuosis, while others primarily cause microtubule disruption. Ready access to 5-indole substitution has allowed characterization of this position to be important for both types of mechanisms when a simple methoxy group is present. We now report the syntheses and biological effects of...

  7. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    Science.gov (United States)

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.

  8. Chemical synthesis and biological evaluation of cis- and trans-12,13-cyclopropyl and 12,13-cyclobutyl epothilones and related pyridine side chain analogues

    DEFF Research Database (Denmark)

    Nicolaou, K C; Namoto, K; Ritzén, A

    2001-01-01

    and cytotoxic agents with (12R,13S,15S)-cyclopropyl 5-methylpyridine epothilone A (11) as the most powerful compound whose potencies (e.g. IC(50) = 0.6 nM against the 1A9 ovarian carcinoma cell line) approach those of epothilone B. These investigations led to a number of important structure......-activity relationships, including the conclusion that neither the epoxide nor the stereochemistry at C12 are essential, while the stereochemistry at both C13 and C15 are crucial for biological activity. These studies also confirmed the importance of both the cyclopropyl and 5-methylpyridine moieties in conferring potent...

  9. Synthesis and biological activity of radiolabeled phytosterols

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, A.

    1984-01-01

    /sup 3/H and /sup 14/C-labeled phytosterols were synthesized for the purpose of elucidating insect sterol side-chain dealkylating mechanisms. Sitosterol, stigmasterol, and the 29-fluoro derivatives of these compounds, which are highly toxic, were labeled with /sup 3/H at C-29 in order to study the fate of the two-carbon dealkylation product in vivo and in vitro. The first rapid, reliable in vitro dealkylation bioassay was developed using doubly-labeled (29-/sup 3/H)-(24-/sup 14/C) fucosterol epoxides as the substrates, incubated with midgut preparations from Manduca sexta, the tobacco hornworm. Since C-28 and C-29 are lost in the dealkylation process, the extent of dealkylation is expressed as the change in the isotopic ratio when the system is partitioned between an organic solvent and water after incubation. As predicted, the /sup 3/H//sup 14/C ratio decreases in the organic layer as a function of time, due to loss of /sup 3/H into the aqueous phase as acetate or a biological equivalent. This ratio likewise increases in the aqueous phase for the same reason. The (29-/sup 3/H) phytosterols alone are reliable substrates for the first rapid in vivo bioassay of phytosterol dealkylation.

  10. Synthesis and biological activity of radiolabeled phytosterols

    International Nuclear Information System (INIS)

    De Palma, A.

    1984-01-01

    3 H and 14 C-labeled phytosterols were synthesized for the purpose of elucidating insect sterol side-chain dealkylating mechanisms. Sitosterol, stigmasterol, and the 29-fluoro derivatives of these compounds, which are highly toxic, were labeled with 3 H at C-29 in order to study the fate of the two-carbon dealkylation product in vivo and in vitro. The first rapid, reliable in vitro dealkylation bioassay was developed using doubly-labeled [29- 3 H]-[24- 14 C] fucosterol epoxides as the substrates, incubated with midgut preparations from Manduca sexta, the tobacco hornworm. Since C-28 and C-29 are lost in the dealkylation process, the extent of dealkylation is expressed as the change in the isotopic ratio when the system is partitioned between an organic solvent and water after incubation. As predicted, the 3 H/ 14 C ratio decreases in the organic layer as a function of time, due to loss of 3 H into the aqueous phase as acetate or a biological equivalent. This ratio likewise increases in the aqueous phase for the same reason. The [29- 3 H] phytosterols alone are reliable substrates for the first rapid in vivo bioassay of phytosterol dealkylation

  11. Synthesis and biological evaluation of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives as inhibitors of colon cancer cell growth

    Directory of Open Access Journals (Sweden)

    Tie-Ling Li

    2015-08-01

    Full Text Available A convenient synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives was reported using 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with different aromatic amines using silica sulfuric acid. The compounds were tested for their anticancer activity against colon (HCT-116 and S1-MI-80, prostate (PC3 and DU-145, breast (MCF-7 and MDAMB-231 cancer cells. These com-pounds showed more selectivity and potent cytotoxic activity against colon cancer cells. 3c was tested against five other colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo, which had similar cytotoxicity and selectivity. 3c did not induce PXR-regulated ABCB1 or ABCG2 transporters. In fact, 3c induced cytotoxicity in HEK293 cells over expressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. It was cytotoxic approximately 3- and 5-fold to resistant colon carcinoma S1-MI-80 cells. 3c also produced concentration-dependent changes in HCT-116 colon cancer cells, in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation.

  12. Synthesis and biological evaluation of bis-CNB-GABA, a photoactivatable neurotransmitter with low receptor interference and chemical two-photon uncaging properties.

    Science.gov (United States)

    Shi, Diana D; Trigo, Federico F; Semmelhack, Martin F; Wang, Samuel S-H

    2014-02-05

    Photoactivatable "caged" neurotransmitters allow optical control of neural tissue with high spatial and temporal precision. However, the development of caged versions of the chief vertebrate inhibitory neurotransmitter, γ-amino butyric acid (GABA), has been limited by the propensity of caged GABAs to interact with GABA receptors. We describe herein the synthesis and application of a practically useful doubly caged GABA analog, termed bis-α-carboxy-2-nitrobenzyl-GABA (bis-CNB-GABA). Uncaging of bis-CNB-GABA evokes inward GABAergic currents in cerebellar molecular layer interneurons with rise times of 2 ms, comparable to flash duration. Response amplitudes depend on the square of flash intensity, as expected for a chemical two-photon uncaging effect. Importantly, prior to uncaging, bis-CNB-GABA is inactive at the GABAA receptor, evoking no changes in holding current in voltage-clamped neurons and showing an IC50 of at least 2.5 mM as measured using spontaneous GABAergic synaptic currents. Bis-CNB-GABA is stable in solution, with an estimated half-life of 98 days in the light. We expect that bis-CNB-GABA will prove to be an effective tool for high-resolution chemical control of brain circuits.

  13. Bacterial Peptide deformylase inhibition of cyano substituted biaryl analogs: Synthesis, in vitro biological evaluation, molecular docking study and in silico ADME prediction.

    Science.gov (United States)

    Khan, Firoz A Kalam; Patil, Rajendra H; Shinde, Devanand B; Sangshetti, Jaiprakash N

    2016-08-15

    Herein, we report the synthesis and screening of cyano substituted biaryl analogs 5(a-m) as Peptide deformylase (PDF) enzyme inhibitors. The compounds 5a (IC50 value=13.16μM), 5d (IC50 value=15.66μM) and 5j (IC50 value=19.16μM) had shown good PDF inhibition activity. The compounds 5a (MIC range=11.00-15.83μg/mL), 5b (MIC range=23.75-28.50μg/mL) and 5j (MIC range=7.66-16.91μg/mL) had also shown potent antibacterial activity when compared with ciprofloxacin (MIC range=25-50μg/mL). Thus, the active derivatives were not only potent PDF inhibitors but also efficient antibacterial agents. In order to gain more insight on the binding mode of the compounds with PDF, the synthesized compounds 5(a-m) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. In silico ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. D-seco-Vitamin D analogs having reversed configurations at C-13 and C-14: Synthesis, docking studies and biological evaluation.

    Science.gov (United States)

    Szybinski, Marcin; Sokolowska, Katarzyna; Sicinski, Rafal R; Plum, Lori A; DeLuca, Hector F

    2017-10-01

    Prompted by results of molecular modeling performed on the seco-d-ring-vitamins D, we turned our attention to such analogs, having reversed configurations at C-13 and C-14, as the next goals of our studies on the structure-activity relationship for vitamin D compounds. First, we developed an efficient total synthesis of the "upper" C/seco-d-ring fragment with a 7-carbon side chain. Then, we coupled it with A-ring fragments using Sonogashira or Wittig-Horner protocol, providing the targeted D-seco analogs of 1α,25-dihydroxyvitamin D 3 and 1α,25-dihydroxy-19-norvitamin D 3 possessing a vinyl substituent at C-14 and a double bond between C-17 and C-20. The affinities of the synthesized vitamin D analogs to the full-length recombinant rat VDR were examined, as well as their differentiating and transcriptional activities. In these in vitro tests, they were significantly less active compared to 1α,25-(OH) 2 D 3 . Moreover, it was established that the analogs tested in vivo in rats showed no calcemic potency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Unsymmetrical urea and thiourea derivatives: An efficient nano BF 3-SiO 2 catalyzed PEG-400 mediated sonochemical synthesis and biological evaluation

    Directory of Open Access Journals (Sweden)

    D. B. Janakiramudu

    2017-08-01

    Full Text Available An efficient and green approach has been developed for the synthesis of (substituted phenyl-3-(4-(4-nitrophenylthiophenylurea/thiourea derivatives 6(a-j using non-hazardous green solvent, PEG-400 under ultrasound irradiation conditions in the presence of a reusable silica-supported Lewis acid catalyst, nano-BF 3-SiO 2via simple addition reaction of 4-(4-nitrophenylthioaniline (4 with substituted phenyl isocyanates/isothiocyanates 5 (a-j. The advantages of developed method are convenient, offered higher yield of products with purity, less reaction time, easy work-up and reusability of the catalyst. Structures of the title products were established by IR, NMR ( 1H, 13C, mass spectral data and elemental analysis. Antimicrobial activity of the newly synthesized compounds was tested and the bio-screening data disclosed that urea derivatives, 6a and 6d, and thiourea derivatives, 6f, 6i and 6j showed potential antimicrobial activity against the growth of selected microorganisms.

  16. Synthesis, biological evaluation, and molecular docking studies of novel 3-aryl-5-(alkyl-thio)-1H-1,2,4-triazoles derivatives targeting Mycobacterium tuberculosis.

    Science.gov (United States)

    Rode, Navnath D; Sonawane, Amol D; Nawale, Laxman; Khedkar, Vijay M; Joshi, Ramesh A; Likhite, Anjali P; Sarkar, Dhiman; Joshi, Rohini R

    2017-12-01

    A small library of new 3-aryl-5-(alkyl-thio)-1H-1,2,4-triazoles was synthesized and screened for the antimycobacterial potency against Mycobacterium tuberculosis H 37 Ra strain and Mycobacterium bovis BCG both in active and dormant stage. Among the synthesized library, 25 compounds exhibited promising anti-TB activity in the range of IC 50 0.03-5.88 μg/ml for dormant stage and 20 compounds in the range of 0.03-6.96 μg/ml for active stage. Their lower toxicity (>100 μg/ml) and higher selectivity (SI = >10) against all cancer cell lines screened make them interesting compounds with potential antimycobacterial effects. Furthermore, to rationalize the observed biological activity data and to establish a structural basis for inhibition of M. tuberculosis, the molecular docking study was carried out against a potential target MTB CYP121 which revealed a significant correlation between the binding score and biological activity for these compounds. Cytotoxicity and in vivo pharmacokinetic studies suggested that 1,2,4-triazole analogues have an acceptable safety index, in vivo stability and bio-availability. © 2017 John Wiley & Sons A/S.

  17. Template Synthesis of Tubular Nanostructures for Loading Biologically Active Molecules.

    Science.gov (United States)

    Karatas, Aysegul; Algan, Aslıhan Hilal

    2017-01-01

    The template synthesis is a low cost, simple and versatile nanofabrication method to produce cylindrical/tubular nanostructures with controllable dimensions such as length, diameter and aspect ratio. This method utilizes nanoporous membranes such as anodized aluminum oxide (AAO) or polycarbonate (PC) as templates which have nanosized specific, cylindrical and uniform inner pores to be coated with the desired material. Template synthesized nanotubular structures have been produced from variety of materials including ceramics, polymers and proteins for loading biologically active molecules. Available procedures of material deposition into the template nanopores consist of several techniques like wetting (melt or solution wetting), layer-by-layer (LbL) assembly and sol-gel chemistry. Template synthesis enables not only control of the geometry of the resulting nanostructures but also provides nanovehicles having separated inner and outer surfaces which can be variously functionalized. Tubular nanostructures fabricated by this method have numerous potential applications including delivery of biologically active molecules such as drugs, gene, enzymes and proteins. In this review we aimed to present up-to-date works on the template based synthesis which has greatly facilitated the fabrication of polymer and protein tubular nanostructures, principally. The strategies regarding the synthesis and designing of these promising tubular nanostructures together with recent approaches relevant of drug delivery was also presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone ...

    Indian Academy of Sciences (India)

    Vol. 124, No. 2, March 2012, pp. 469–481. c Indian Academy of Sciences. Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone, azetidinone encompassing indolylthienopyrimidines. ANAND RAGHUNATH SAUNDANE. ∗. , MANJUNATHA YARLAKATTI,. PRABHAKER WALMIK and VIJAYKUMAR KATKAR.

  19. A new C-nucleoside analogue of tiazofurin: synthesis and biological evaluation of 2-beta-D-ribofuranosylimidazole-4-carboxamide (imidazofurin).

    Science.gov (United States)

    Franchetti, P; Marchetti, S; Cappellacci, L; Yalowitz, J A; Jayaram, H N; Goldstein, B M; Grifantini, M

    2001-01-08

    2-Beta-D-ribofuranosylimidazole-4-carboxamide, an imidazole analogue of the antitumor agent tiazofurin, was synthesized and evaluated for the growth inhibitory activity of human myelogenous leukemia K562 cells.

  20. C-5’-Triazolyl-2’-oxa-3’-aza-4’a-carbanucleosides: Synthesis and biological evaluation

    Directory of Open Access Journals (Sweden)

    Roberto Romeo

    2015-03-01

    Full Text Available A novel series of 2’-oxa-3’-aza-4’a-carbanucleosides, featured with a triazole linker at the 5’-position, has been developed by exploiting a click chemistry reaction of 5’-azido-2’-oxa-3’-aza-4’a-carbanucleosides with substituted alkynes. Biological tests indicate an antitumor activity for the synthesized compounds: most of them inhibit cell proliferation of Vero, BS-C-1, HEp-2, MDCK, and HFF cells with a CC50 in the range of 5.0–40 μM. The synthesized compounds do not show any antiviral activity.

  1. Design, synthesis and biological evaluation of (E)-3,4-dihydroxystyryl 4-acylaminophenethyl sulfone, sulfoxide derivatives as dual inhibitors of HIV-1 CCR5 and integrase.

    Science.gov (United States)

    Sun, Yixing; Xu, Weisi; Fan, Ningning; Sun, Xuefeng; Ning, Xianling; Ma, Liying; Liu, Junyi; Wang, Xiaowei

    2017-02-01

    Aiming at the limited effectiveness of current clinical therapeutic effect of AIDS, novel series of compounds bearing (E)-3,4-dihydroxystyryl sulfone (or sulfoxide) and anilide fragments were designed and synthesized as dual inhibitors of HIV-1 CCR5/IN. The biological results indicated that several target compounds showed inhibitory activity against HIV-1 Bal (R5) infection in TZM-bl cells. Besides targeting the chemokine receptor on the host cell surface, they also displayed binding affinities with HIV-1 integrase using the surface plasmon resonance (SPR) binding assays. Molecular docking studies have inferred the possible binding mode of target compounds against integrase. These data demonstrate that the structure of (E)-3,4-dihydroxystyryl sulfone and sulfoxide derivatives have the potential to derive potent dual inhibitors of HIV-1 Integrase and CCR5. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modeling, Synthesis and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Novel Analogs of 4-[1-(3,5,5,8,8- Pentamethyl-5,6,7,8-tetrahydro-2- naphthyl)ethynyl]benzoic Acid (Bexarotene)

    Science.gov (United States)

    Wagner, Carl E.; Jurutka, Peter W.; Marshall, Pamela A.; Groy, Thomas L.; van der Vaart, Arjan; Ziller, Joseph W.; Furmick, Julie K.; Graeber, Mark E.; Matro, Erik; Miguel, Belinda V.; Tran, Ivy T.; Kwon, Jeng Eun S.; Tedeschi, Jamie N.; Moosavi, Shahram; Danishyar, Amina; Philp, Joshua S.; Khamees, Reina O.; Jackson, Jevon N.; Grupe, Darci K.; Badshah, Syed L.; Hart, Justin W.

    2009-01-01

    This report describes the synthesis of analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), commonly known as bexarotene, and their analysis in acting as retinoid-X-receptor (RXR)-specific agonists. Compound 1 has FDA approval to treat cutaneous T-cell lymphoma (CTCL); however, its use can cause side effects such as hypothyroidism and increased triglyceride concentrations, presumably by disruption of RXR heterodimerization with other nuclear receptors. The novel analogs in the present study have been evaluated for RXR activation in an RXR mammalian-2-hybrid assay as well as an RXRE-mediated transcriptional assay, and for their ability to induce apoptosis, as well as for their mutagenicity and cytotoxicity. Analysis of 11 novel compounds revealed the discovery of 3 analogs that best induce RXR-mediated transcriptional activity, stimulate apoptosis, have comparable Ki and EC50 values to 1, and are selective RXR agonists. Our experimental approach suggests that rational drug design can develop new rexinoids with improved biological properties. PMID:19791803

  3. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene).

    Science.gov (United States)

    Wagner, Carl E; Jurutka, Peter W; Marshall, Pamela A; Groy, Thomas L; van der Vaart, Arjan; Ziller, Joseph W; Furmick, Julie K; Graeber, Mark E; Matro, Erik; Miguel, Belinda V; Tran, Ivy T; Kwon, Jungeun; Tedeschi, Jamie N; Moosavi, Shahram; Danishyar, Amina; Philp, Joshua S; Khamees, Reina O; Jackson, Jevon N; Grupe, Darci K; Badshah, Syed L; Hart, Justin W

    2009-10-08

    This report describes the synthesis of analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), commonly known as bexarotene, and their analysis in acting as retinoid X receptor (RXR)-specific agonists. Compound 1 has FDA approval to treat cutaneous T-cell lymphoma (CTCL); however, its use can cause side effects such as hypothyroidism and increased triglyceride concentrations, presumably by disruption of RXR heterodimerization with other nuclear receptors. The novel analogues in the present study have been evaluated for RXR activation in an RXR mammalian-2-hybrid assay as well as an RXRE-mediated transcriptional assay and for their ability to induce apoptosis as well as for their mutagenicity and cytotoxicity. Analysis of 11 novel compounds revealed the discovery of three analogues that best induce RXR-mediated transcriptional activity, stimulate apoptosis, have comparable K(i) and EC(50) values to 1, and are selective RXR agonists. Our experimental approach suggests that rational drug design can develop new rexinoids with improved biological properties.

  4. Synthesis and biological evaluation of conformationally restricted σ(1) receptor ligands with 7,9-diazabicyclo[4.2.2]decane scaffold.

    Science.gov (United States)

    Sunnam, Sunil K; Schepmann, Dirk; Rack, Elisabeth; Fröhlich, Roland; Korpis, Katharina; Bednarski, Patrick J; Wünsch, Bernhard

    2010-12-21

    The key step in the synthesis of the 7,9-diazabicyclo[4.2.2]decane system was a modified Dieckmann condensation of piperazinebutyrate 11, which makes use of trapping the first cyclized intermediate with TMS-Cl. Reduction of the bicyclic ketone 14 with LiBH(4) at -90 °C provided diastereoselectively (>99 : 1) the syn-configured alcohol 15a, which was converted into the final alcohol and ethers 16a-g. The configuration at the 2-position was established by X-ray structure analysis of methyl and ethyl ethers 15b and 15c. In contrast to bicyclic systems with a three-carbon bridge, inversion of the configuration at the 2-position of the alcohol 15a failed to give the inverted alcohol 19a. However, an unselective reduction of the ketone 24 with L-Selectride led to the diastereomeric alcohols 16a and 25a in the ratio 36 : 64. LiAlH(4) reduction of the tosylate 20 and the alkene 18 yielded the diazabicyclo-decane 26 and -decene 27 without further substituents at the four-carbon bridge. The σ(1) and σ(2) receptor affinities were investigated in receptor binding studies with radioligands. All test compounds showed a lower σ(1) affinity than the corresponding bicyclic derivatives with a three-membered bridge. The reduced σ(1) receptor affinity is attributed to the larger four-membered bridge. This hypothesis is supported by the alkene 27, which represents the most potent σ(1) ligand of this series (K(i) = 7.5 nM). In the alkene 27 the size and flexibility of the bridge is considerably reduced by the double bond. The methyl ether 25b and the unsubstituted derivatives 26 and 27 revealed moderate inhibition of the growth of the human tumor cell lines A-427, 5637 and MCF-7. Again, these compounds are less potent than the analogues with a three-membered bridge. The IC(50)-value of the most potent σ(1) ligand 27 against the small cell lung cancer cell line A-427 (IC(50) = 10 μM) should be emphasized, since this cell line is particularly sensitive to homologues with a

  5. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases

    Science.gov (United States)

    Abdel Aziz, Ayman A.; Badr, Ibrahim H. A.; El-Sayed, Ibrahim S. A.

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)2·2H2O and anhydrous AlCl3 with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L1) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L2). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, 1H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.

  6. Synthesis, characterization, computational studies and biological evaluation of S-benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate

    Science.gov (United States)

    Bhat, Rayees A.; Kumar, D.; Malla, Manzoor A.; Bhat, Sami U.; Khan, Md Shahzad; Manzoor, Ovais; Srivastava, Anurag; Naikoo, Rawoof A.; Mohsin, Mohd; Mir, Muzzaffar A.

    2018-03-01

    S-Benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate (HL1), Schiff base of S-benzyl dithiocarbazate, was synthesized by 1:1 condensation between S-benzyl dithiocarbazate and 4-hydroxy-3-methoxy cinnamaldehyde. The nitrogen-sulfur Schiff base (HL1) was characterized by Mass, FT-IR, H1-NMR, Raman, and UV-VIS spectroscopic techniques. Theoretical quantum chemical calculations were performed using DFT in combination with B3LYP exchange correlation functional and 6-311++ G (d, p) basis sets level. The calculated values of chemical potential (μ), HOMO-LUMO energy gap, chemical hardness, softness (S), ionization energy (IE), electron affinity (EA), dipole moment (D) and relative stabilization energy of the compound were 0.14881 eV, 0.12542 eV, 0.06271 eV, 3.37299 eV, -0.21152 eV, -0.08610 eV, 4.4090 Debye and -1753.350 eV respectively. Theoretically calculated parameters like H1-NMR, FT-IR, UV-VIS, Raman, electrostatic potential and HOMO-LUMO energy gap are in good agreement with experimental results. Also, in-vitro cytotoxicity studies were done against two habitually infection causing bacteria strains including gram-positive (S. aureus) and gram-negative (E. coli) for antibacterial activity. The results showed appreciable biological activity and the activity increased with increase in dose.

  7. Design, synthesis and biological evaluation of sugar-derived esters, [alpha]-ketoesters and [alpha]-ketoamides as inhibitors for Mycobacterium tuberculosis antigen 85C

    Energy Technology Data Exchange (ETDEWEB)

    Sanki, Aditya K.; Boucau, Julie; Umesiri, Francis E.; Ronning, Donald R.; Sucheck, Steven J.

    2010-08-16

    Peptide-based 1,2-dicarbonyl compounds have emerged as potent inhibitors for serine proteases. Herein, we have designed and synthesized D-arabinose and D-trehalose-based esters, {alpha}-ketoesters and {alpha}-ketoamides, and evaluated their inhibitory activity against Mycobacterium tuberculosis (Mtb) antigen 85C (ag85C), an acyltransferase in the serine hydrolase superfamily. In addition the compounds were evaluated for the ability to inhibit the growth of Mycobacterium smegmatis ATCC 14468, a non-pathogenic surrogate for Mtb. Among the synthetic analogs evaluated only the methyl ester1 derived from D-arabinose was found to inhibit the acyltransferase activity of ag85C (IC{sub 50} = 25 mM). Based on this weak inhibitory activity it was not surprising that none of the compounds inhibits the growth of M. smegmatis. In spite of the weak inhibitory activity of 1, X-ray crystallography on crystals of ag85C soaked with 1 suggested the formation of a covalent ester adduct between 1 and the Ser124 side chain hydroxyl moiety found within the catalytic site of ag85C; however, some of the active site electron density appears to result from bound glycerol. The lack of activity associated with the {alpha}-ketoester and {alpha}-ketoamide derivatives of D-trehalose may be the result of intramolecular cyclization of the {alpha}-keto moiety with the nearby C-4/4' hydroxyls leading to the formation of stable bicyclo-ester and amide derivatives.

  8. Synthesis, spectroscopic characterization, DFT calculations and biological evaluation of benzothiazole derivative bearing Mn(II) and Ni(II) metal ions

    Science.gov (United States)

    El-Gamel, Nadia E. A.; Ali, Korany A.

    2017-11-01

    N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide ligand and its Nickel and Manganese complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance, mass and UV-Vis spectra, molar conductance and magnetic moment measurements. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method. N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide is a neutral bidentate ligand coordinating metal ions via thiazole ring nitrogen and amide carbonyl O forming high spin octahedral complexes with Mn(II) (2) and distorted square planar in case of Ni(II) (1). Natural bond orbital analysis and geometry optimization were carried out at DFT/B3LYP/6-31G(d) level of theory for the ligand and the mentioned complexes. Ab inito computations at the HF/6-31G(d) level of the theory is conducted in order to detect any probability of a hydrogen bond formation in the ligand. The dipole moment of the Ni(II) and Mn(II) complexes is recorded to be 9.69 and 7.39 Debye, respectively, indicating that the complexes are more polarized than the ligand 2.39 Debye. The in vitro biological activity of the metal chelates is screened against the Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), fungus (Aspergillus flavus, Candida albicans). Ni(II) complexes displayed the highest activity against Candida albicans and Staphylococcus aureus with MIC values of 13, 30 μg/cm3, respectively.

  9. Novel C-9, 9'-O-acyl esters of (-)-carinol as free-radical scavengers and xanthine oxidase enzyme inhibitors: synthesis and biological evaluation.

    Science.gov (United States)

    Suryadevara, Praveen Kumar; Tatipaka, Hari Babu; Vidadala, Rama Subba Rao; Tiwari, Ashok K; Rao, Janaswamy Madhusudana; Babu, Katragadda Suresh

    2013-02-01

    New compounds with hydrophyllic esters of (-)-carinol were synthesized and evaluated as xanthine oxidase enzyme inhibitors and antioxidants. Aliphatic esterfication of C-9,9'-OH groups of (-)-carinol resulted in lowering antioxidant and xanthine oxidase inhibitory activities. However certain aromatic acyl esters considerably improved the xathine oxidase inhibition. Aromatic esterification with electron withdrawing substitutions would preferred for improvement in XOD inhibition while retaining radical scavenging activity, electron withdrawing substitution led to the loss of free radical scavenging property and neutral substituents decrease the enzyme inhibitory potential.

  10. Synthesis, antibacterial activity, and biological evaluation of formyl hydroxyamino derivatives as novel potent peptide deformylase inhibitors against drug-resistant bacteria.

    Science.gov (United States)

    Yang, Shouning; Shi, Wei; Xing, Dong; Zhao, Zheng; Lv, Fengping; Yang, Liping; Yang, Yushe; Hu, Wenhao

    2014-10-30

    Peptide deformylase (PDF) has been identified as a promising target for novel antibacterial agents. In this study, a series of novel formyl hydroxyamino derivatives were designed and synthesized as PDF inhibitors and their antibacterial activities were evaluated. Among the potent PDF inhibitors (1o, 1q, 1o', 1q', and 1x), in vivo studies showed that compound 1q possesses mild toxicity, a good pharmacokinetic profile and protective effects. The good in vivo efficacy and low toxicity suggest that this class of compounds has potential for development and use in future antibacterial drugs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. One Pot Single Step Synthesis and Biological Evaluation of Some Novel Bis(1,3,4-thiadiazole Derivatives as Potential Cytotoxic Agents

    Directory of Open Access Journals (Sweden)

    Sobhi M. Gomha

    2016-11-01

    Full Text Available A novel series of bis(1,3,4-thiadiazole derivatives were synthesized in one step methodology with good yields by condensation reaction between bis-hydrazonoyl chloride 1 and various reagents. The structures of the prepared compounds were confirmed by spectral data (IR, NMR, and MS, and elemental analysis. The anticancer activity against human breast carcinoma (MCF-7 cancer cell lines was evaluated in MTT assay. The results revealed that the bis-thiadiazole derivatives 5c,d, 7b,c and 9c had higher antitumor activity than the standard drug Imatinib.

  12. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold.

    Science.gov (United States)

    Avilés, Edward; Prudhomme, Jacques; Le Roch, Karine G; Franzblau, Scott G; Chandrasena, Kevin; Mayer, Alejandro M S; Rodríguez, Abimael D

    2015-11-15

    A mixture-based combinatorial library of five Ugi adducts (4-8) incorporating known antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions (U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4-8 displayed potent in vitro antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2(-)) generation from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant low short-term toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synthesis, Characterization, and Biological Evaluations of 1,3,5-Triazine Derivatives of Metformin Cyclization with Berberine and Magnolol in the Presence of Sodium Methylate

    Directory of Open Access Journals (Sweden)

    Han Cao

    2017-10-01

    Full Text Available The novel target products were synthesized in the formation of a triazine ring from berberine, magnolol, and metformin catalyzed by sodium methylate. The structures of products 1–3 were firstly confirmed by extensive spectroscopic analyses and single-crystal X-ray diffraction. The crystal structures of the target product 2 and the intermediate product 7b were reported for the first time. All target products were evaluated for their anti-inflammatory and antidiabetic activities against INS-1 and RAW264.1 cells in vitro and all products showed excellent anti-inflammatory effects and anti-insulin resistance effects. Our studies indicated that new compounds 1–3 were found to be active against inflammation and insulin resistance.

  14. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Ferreira, Rafaela S; Dessoy, Marco A; Pauli, Ivani; Souza, Mariana L; Krogh, Renata; Sales, Ana I L; Oliva, Glaucius; Dias, Luiz C; Andricopulo, Adriano D

    2014-03-27

    The development of cruzain inhibitors has been driven by the urgent need to develop novel and more effective drugs for the treatment of Chagas' disease. Herein, we report the lead optimization of a class of noncovalent cruzain inhibitors, starting from an inhibitor previously cocrystallized with the enzyme (K(i) = 0.8 μM). With the goal of achieving a better understanding of the structure-activity relationships, we have synthesized and evaluated a series of over 40 analogues, leading to the development of a very promising competitive inhibitor (8r, IC50 = 200 nM, K(i) = 82 nM). Investigation of the in vitro trypanocidal activity and preliminary cytotoxicity revealed the potential of the most potent cruzain inhibitors in guiding further medicinal chemistry efforts to develop drug candidates for Chagas' disease.

  15. Synthesis and biological evaluation of 2-methyl-1H-benzimidazole-5-carbohydrazides derivatives as modifiers of redox homeostasis of Trypanosoma cruzi.

    Science.gov (United States)

    Melchor-Doncel de la Torre, Silvia; Vázquez, Citlali; González-Chávez, Zabdi; Yépez-Mulia, Lilián; Nieto-Meneses, Rocío; Jasso-Chávez, Ricardo; Saavedra, Emma; Hernández-Luis, Francisco

    2017-08-01

    Twelve novel benzimidazole derivatives were synthesized and their in vitro activities against epimastigotes of Trypanosoma cruzi were evaluated. Two derivatives (6 and 7), which have 4-hydroxy-3-methoxyphenyl moiety in their structures, proved to be the most active in inhibiting the parasite growth. Compound 6 showed a trypanocidal activity higher than benznidazole (IC 50 =5µM and 7.5µM, respectively) and less than nifurtimox (IC 50 =3.6µM). In addition, the ability of 6 and 7 to modify the redox homeostasis in T cruzi epimastigote was studied; cysteine and glutathione increased in parasites exposed to both compounds, whereas trypanothione only increased with 7 treatment. These results suggest that the decrease in viability of T. cruzi may be attributed to the change in cellular redox balance caused by compound 6 or 7. Furthermore, compounds 6 and 7 showed CC 50 values of 160.64 and 160.66µM when tested in mouse macrophage cell line J774 and selectivity indexes (macrophage/parasite) of 32 and 20.1, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis and biological evaluation of nucleoside analogues than contain silatrane on the basis of the structure of acyclovir (ACV) as novel inhibitors of hepatitis B virus (HBV).

    Science.gov (United States)

    Han, Anyue; Li, Lingna; Qing, Kuiyou; Qi, Xiaolu; Hou, Leping; Luo, Xintong; Shi, Shaohua; Ye, Faqing

    2013-03-01

    Hepatitis B virus (HBV) infection causes major public health problems worldwide. Acyclovir (ACV) is mainly used to inhibit herpes simplex virus (HSV) rather than HBV. In this study, we used the combination principle to design and synthesize nucleoside analogues that contain silatrane on the basis of the structure of ACV. We found that the compounds were effective inhibitors of HBV, both in vitro and in vivo. All of the compounds showed suppressive activity on the expression of HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) in the HepG2.2.15 cell line with low cytotoxicity. One of compounds was studied in HBV transgenic mice model, and the test results showed its ability to reduce the levels of HBsAg, HBeAg and HBV DNA by ELASE and qPCR. Furthermore, significant improvement of T lymphocyte was observed after treatment, as evaluated by flow cytometry (FCM). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. New pyrrole inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity.

    Science.gov (United States)

    La Regina, Giuseppe; Silvestri, Romano; Artico, Marino; Lavecchia, Antonio; Novellino, Ettore; Befani, Olivia; Turini, Paola; Agostinelli, Enzo

    2007-03-08

    A series of new pyrrole derivatives have been synthesized and evaluated for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. N-Methyl,N-(benzyl),N-(pyrrol-2-ylmethyl)amine (7) and N-(2-benzyl),N-(1-methylpyrrol-2-ylmethyl)amine (18) were the most selective MAO-B (7, SI = 0.0057) and MAO-A (18, SI = 12500) inhibitors, respectively. Docking and molecular dynamics simulations gave structural insights into the MAO-A and MAO-B selectivity. Compound 18 forms an H-bond with Gln215 through its protonated amino group into the MAO-A binding site. This H-bond is absent in the 7/MAO-A complex. In contrast, compound 7 places its phenyl ring into an aromatic cage of the MAO-B binding pocket, where it forms charge-transfer interactions. The slightly different binding pose of 18 into the MAO-B active site seems to be forced by a bulkier Tyr residue, which replaces a smaller Ile residue present in MAO-A.

  18. Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid.

    Science.gov (United States)

    Vasincu, Ioana Mirela; Apotrosoaei, Maria; Panzariu, Andreea-Teodora; Buron, Frédéric; Routier, Sylvain; Profire, Lenuta

    2014-09-18

    New thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid (ibuprofen) have been synthesized as potential anti-inflammatory drugs. The structure of the new compounds was proved using spectral methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the total antioxidant activity, the DPPH and ABTS radical scavenging assays. Reactive oxygen species (ROS) and free radicals are considered to be involved in many pathological events like diabetes mellitus, neurodegenerative diseases, cancer, infections and more recently, in inflammation. It is known that overproduction of free radicals may initiate and amplify the inflammatory process via upregulation of genes involved in the production of proinflammatory cytokines and adhesion molecules. The chemical modulation of acyl hydrazones of ibuprofen 3a-l through cyclization to the corresponding thiazolidine-4-ones 4a-n led to increased antioxidant potential, as all thiazolidine-4-ones were more active than their parent acyl hydrazones and also ibuprofen. The most active compounds are the thiazolidine-4-ones 4e, m, which showed the highest DPPH radical scavenging ability, their activity being comparable with vitamin E.

  19. Exomethylene pyranonucleosides: efficient synthesis and biological evaluation of 1-(2,3,4-trideoxy-2-methylene-beta-d-glycero-hex-3-enopyranosyl)thymine.

    Science.gov (United States)

    Agelis, George; Tzioumaki, Niki; Botić, Tanja; Cencic, Avrelija; Komiotis, Dimitri

    2007-08-15

    A new series of unsaturated pyranonucleosides with an exocyclic methylene group and thymine as heterocyclic base have been designed and synthesized. d-Galactose (1) was readily transformed in three steps into the corresponding 1-(beta-d-galactopyranosyl)thymine (2). Selective protection of the primary hydroxyl group of 2 with a t-butyldimethylsilyl (TBDMS) group, followed by specific acetalation, and oxidation gave 1-(6-O-t-butyldimethylsilyl-3,4-O-isopropylidene-beta-d-lyxo-hexopyranosyl-2-ulose)thymine (5). Wittig reaction of the ketonucleoside 5, deprotection and tritylation of the 6'-hydroxyl group gave 1-(2-deoxy-2-methylene-6-O-trityl-beta-d-lyxo-hexopyranosyl)thymine (9). Exomethylene pyranonucleoside 9 was converted to the olefinic derivative 10, which after detritylation afforded the title compound 1-(2,3,4-trideoxy-2-methylene-beta-d-glycero-hex-3-enopyranosyl)thymine (11). These novel synthesized compounds were evaluated for antiviral activity against rotaviral infection and cytotoxicity in colon cancer. As compared to AZT, compounds 1-(2-deoxy-2-methylene-beta-d-lyxo-hexopyranosyl)thymine (7) and 1-(beta-d-lyxo-hexopyranosyl-2-ulose)thymine (8) showed to be more efficient, in rotavirus infections and in treatment of colon cancer.

  20. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Massarico Serafim, Ricardo Augusto; Gonçalves, José Eduardo; de Souza, Felipe Pereira; de Melo Loureiro, Ana Paula; Storpirtis, Silvia; Krogh, Renata; Andricopulo, Adriano Defini; Dias, Luiz Carlos; Ferreira, Elizabeth Igne

    2014-07-23

    Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Synthesis and biological evaluation of 12N-substituted tricyclic matrinic derivatives as a novel family of anti-influenza agents.

    Science.gov (United States)

    Tang, Sheng; Li, Yu-Huan; Cheng, Xin-Yue; Yin, Jin-Qiu; Li, Ying-Hong; Song, Dan-Qing; Wang, Yan-Xiang; Liu, Zhan-Dong

    2018-02-21

    Influenza is still a serious threat to human health with significant morbidity and mortality, so it is desirable to develop novel anti-flu drug agents with novel structures. The main purpose of this research was to explore broad-spectrum anti-flu agents and provide antiviral stockpiles in response to potential future influenza pandemics. Fifteen novel 12N-substituted tricyclic matrinic derivatives were synthesized and evaluated for their anti-influenza activities against H1N1 subtype taking 12N-p-cyanobenzenesulfonyl matrinane (1) as the lead. All prepared compounds were characterized by 1H NMR, 13C NMR and ESI-HRMS. The pharmacokinetics (PK) profile of the key compound was also examined in this study. The structure-activity relationship study indicated that a suitable benzyl groups on 12N atom might be beneficial for the activity. Among them, 12N-p-carboxybenzyl matrinic butane (17g) exhibited the most promising activity with an IC50 value of 16.2 μM and a selective index (SI) value of over 33.4. In addition, compound 17g displayed a good in vivo pharmacokinetic profile with area under the curve (AUC0-∞) value of 9.89 μM•h. We consider tricyclic matrinic butane derivatives to be a new class of anti-influenza agents and this study provided useful information on further optimization. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Design, synthesis, and biological evaluation of novel highly selective polo-like kinase 2 inhibitors based on the tetrahydropteridin chemical scaffold.

    Science.gov (United States)

    Zhan, Mei-Miao; Yang, Yang; Luo, Jinfeng; Zhang, Xing-Xing; Xiao, Xuan; Li, Shiyu; Cheng, Kai; Xie, Zhouling; Tu, Zhengchao; Liao, Chenzhong

    2018-01-01

    Polo-like kinase 2 (Plk2) is a potential target for the treatment of cancer, which displays an important role in tumor cell proliferation and survival. In this report, according to the analysis of critical amino acid residue differences among Plk1, Plk2 and Plk3, and structure-based drug design strategies, two novel series of selective Plk2 inhibitors based on tetrahydropteridin chemical scaffold were designed and synthesized to target two specific residues, Lys86 and Tyr161 of Plk2. All compounds were evaluated for their inhibitory activity against Plk1-Plk3 and the cellular inhibition activity on six different human cancer cell lines. All efforts led to the identification of the most potent compounds C2 (3.40 nM against Plk2) and C21 (4.88 nM against Plk2) from the first and second series of selective Plk2 inhibitors respectively. Additionally, the selectivity of C21 over Plk1/3 was significantly increased with the selectivity indexes of 12.57 and 910.06. Moreover, most of our compounds exhibited antitumor activity in the nanomolar range in the MTT assay, indicating that our compounds, especially C2 and C21 could be promising Plk2 inhibitors for further anticancer research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Design, Synthesis, and Biological Evaluation of 1-(thiophen-2-yl)-9H-pyrido[3,4-b]indole Derivatives as Anti-HIV-1 Agents.

    Science.gov (United States)

    Ashok, Penta; Lu, Cui-Lin; Chander, Subhash; Zheng, Yong-Tang; Murugesan, Sankarnarayanan

    2015-06-01

    A novel series of 1-(thiophen-2-yl)-9H-pyrido [3,4-b]indole derivatives were synthesized using DL-tryptophan as starting material. All the compounds were characterized by spectral analysis such as (1) H NMR, Mass, IR, elemental analysis and evaluated for inhibitory potency against HIV-1 replication. Among the reported analogues, compound 7g exhibited significant anti-HIV activity with EC(50) 0.53 μm and selectivity index 483; compounds 7e, 7i, and 7o displayed moderate activity with EC(50) 3.8, 3.8, and 2.8 μm and selectivity index >105, >105, and 3.85, respectively. Interestingly, compound 7g inhibited p24 antigen expression in acute HIV-1(IIIB) infected cell line C8166 with EC50 1.1 μm. In this study, we also reported the Lipinski rule of 5 parameters, predicted toxicity profile, drug-likeness, and drug score of the synthesized analogues. © 2014 John Wiley & Sons A/S.

  4. Design, synthesis, and biological evaluation of novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues.

    Science.gov (United States)

    Li, Yan-Hong; Zhang, Bei; Yang, Hai-Kui; Li, Qiu; Diao, Peng-Cheng; You, Wen-Wei; Zhao, Pei-Liang

    2017-01-05

    Thirty-two novel 3-alkylsulfanyl-1,2,4-triazole derivatives, designed as cis-restricted combretastatin A-4 analogues, were synthesized and evaluated for their antiproliferative activities. The results indicated that analogue 20 showed more potent antiproliferative activities against PC-3 cell lines than positive control CA-4. Particularly, the most promising compound 25 displayed 5-fold improvement compared to CA-4 in inhibiting HCT116 cell proliferation with IC 50 values of 1.15 μM. Further flow-activated cell sorting analysis revealed that compound 20 displayed a significant effect on G 2 /M cell-cycle arrest in a dose-dependent manner in PC-3 cells. From this study, analogues 20 and 25 were the most potent anti-cancer agents in this structural class, and were considered lead compounds for further development as anti-cancer drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Synthesis and biological evaluation of a series of multi-target N-substituted cyclic imide derivatives with potential antipsychotic effect.

    Science.gov (United States)

    Xu, Mingshuo; Wang, Yu; Yang, Feipu; Wu, Chunhui; Wang, Zhen; Ye, Bin; Jiang, Xiangrui; Zhao, Qingjie; Li, Jianfeng; Liu, Yongjian; Zhang, Junchi; Tian, Guanghui; He, Yang; Shen, Jingshan; Jiang, Hualiang

    2018-02-10

    In the present study, a series of multi-target N-substituted cyclic imide derivatives which possessed potent dopamine D 2 , serotonin 5-HT 1A and 5-HT 2A receptors properties were synthesized and evaluated as potential antipsychotics. Among these compounds, (3aR,4R,7S,7aS)-2-(4-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)butyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione hydrochloride (3d) held a promising pharmacological profile. 3d not only showed potent and balanced in vitro activities on D 2 /5-HT 1A /5-HT 2A receptors, but also endowed with low to moderate activities on 5-HT 2C , H 1 , α 1A , M 3 receptors and hERG channel, suggesting a low liability to induce side effects such as weight gain, orthostatic hypotension and QT prolongation. In animal behavioral studies, 3d reduced phencyclidine-induced hyperlocomotion with a high threshold for catalepsy induction. Compound 3d was selected as a potential antipsychotic candidate for further development. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. [Synthesis and its application to the synthesis of biologically active natural products of new and versatile chiral building blocks].

    Science.gov (United States)

    Toyooka, N

    2001-07-01

    This article describes a design and synthesis of new and versatile chiral building blocks and its application to the biologically active natural product synthesis. The chiral building blocks were prepared using a biocatalysis in an enantiomerically pure state. As an application of the above chiral building blocks to the synthesis of biologically active natural product, we demonstrated the diastereodivergent synthesis of the 3-piperidinol alkaloids cassine, spectaline, prosafrinine, iso-6-cassine, prosophylline, prosopinine, and also established the flexible route to the 5,8-disubstituted indolizidine or 1,4-disubstituted quinolizidine type of Dendrobates alkaloids. As another application to the synthesis of biologically active alkaloids, we accomplished the first enantioselective total synthesis of marine alkaloids clavepictines A, B, and pictamine using a highly stereoselective Michael type quinolizidine ring closure reaction as the crucial step, and the first total synthesis of a marine alkaloid lepadin B was also achieved using aldol cyclization controlled by a A strain.

  7. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity.

    Science.gov (United States)

    Abdelrahman, Mostafa H; Youssif, Bahaa G M; Abdelgawad, Mohamed A; Abdelazeem, Ahmed H; Ibrahim, Hussein M; Moustafa, Abd El Ghany A; Treamblu, Laurent; Bukhari, Syed Nasir Abbas

    2017-02-15

    A series of novel quinoline-2-carboxamides 15-28 was synthesized and evaluated in vitro as dual COXs/LOX inhibitors. Compounds 19 and 27 exhibited the highest potency and selectivity for COX-2 inhibitory activity (IC 50  = 1.21 and 1.13 μM, respectively; selectivity index (COX-1/COX-2) = 6.52 and 7.61, respectively) in comparison to the reference drug celecoxib (COX-2 IC 50  = 0.88 μM; selectivity index (COX-1/COX-2) = 8.31). The anti-inflammatory activity of the newly synthesized compounds was further assessed in vivo using carrageenan induced paw edema assay. Interestingly, the in vitro results of COXs inhibitory assay were consistent with that of the in vivo assay where compounds 19 and 27 showed the highest anti-inflammatory activity with edema inhibition percentages of 59.38% and 65.03%, respectively compared to celecoxib (71.21%) after 5 h. Moreover, it was found that compounds 19 and 27 have a superior gastric safety profile comparable to indomethacin. The molecular docking study of compounds 19 and 27 into COX-2 active site suggested that these hits assumed binding pattern and interactions similar to that of bromocelecoxib (S-58) as a cocrystallized ligand explaining their remarkable COX-2 inhibitory activity and selectivity. Taken together, these results indicated that these derivatives are good leads for subsequent development into potential anti-inflammatory agents with least gastric damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Design, synthesis and biological evaluation of 1-hydroxy-2-phenyl-4-pyridyl-1H-imidazole derivatives as xanthine oxidase inhibitors.

    Science.gov (United States)

    Zhang, Tingjian; Lv, Yunying; Lei, Yu; Liu, Dan; Feng, Yao; Zhao, Jiaxing; Chen, Shaolei; Meng, Fanhao; Wang, Shaojie

    2018-02-25

    In our previous study, we reported a series of 1-hydroxy-2-phenyl-1H-imidazole-5-carboxylic acid derivatives that presented excellent in vitro xanthine oxidase inhibitory potency. As a continuation study, a series of 1-hydroxy-2-phenyl-1H-imidazole derivatives containing a pyridine moiety (4a-g and 5a-g) at the 4-position was designed and synthesized. Evaluation of in vitro xanthine oxidase inhibition demonstrated that the 4a-g series was more potent than the 5a-g series. Compound 4f was the most promising derivative in the series with an IC 50 value of 0.64 μM. A Lineweaver-Burk plot revealed that compound 4f acted as a mixed-type xanthine oxidase inhibitor. An iso-pentyloxy group at the 4'-position improved the inhibitory potency. More interestingly, structure-activity relationship analysis indicated that the pyridine para-N atom played a crucial role in the inhibition. Molecular modeling provided a reasonable explanation for the structure-activity relationships observed in this study. In addition, a three dimensional quantitative structure-activity relationships model which possessed reasonable statistics (q 2  = 0.885 and r 2  = 0.993) was conducted to further understand the structural basis of these compounds as xanthine oxidase inhibitors. These compounds, especially compound 4f, have good potential for further investigations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    Science.gov (United States)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  10. Synthesis and biological evaluation of 6-substituted 5-alkyl-2-(phenylaminocarbonylmethylthio)pyrimidin-4(3H)-ones as potent HIV-1 NNRTIs.

    Science.gov (United States)

    Yu, Mingyan; Li, Zhenyu; Liu, Shuai; Fan, Erkang; Pannecouque, Christophe; De Clercq, Erik; Liu, Xinyong

    2011-05-02

    A series of new 5-alkyl-2-phenylaminocarbonylmethylthiopyrimidin-4(3H)-ones bearing variously substituted arylmethyl moieties at the C6 position of the pyrimidine ring were synthesized and evaluated for anti-HIV activity in MT-4 cells. Most of these new congeners exhibited moderate to good activities against the wild-type virus, with EC(50) values in the range of 1.40-0.19 μM. Among them, 2-[(4-cyanophenylamino)carbonylmethylthio]-6-(2-chloro-6-fluorobenzyl)-5-ethylpyrimidin-4(3H)-one 4 b6 is one of the compounds endowed with the highest broad-spectrum HIV-1 inhibitory activity, with EC(50) values of 0.19±0.005 μM against the wild-type virus, 1.05±0.24 μM (twofold resistance) against the E138K strain, and 2.38±0.13 μM (4.5-fold resistance) against the Y181C strain. Furthermore, reverse transcriptase (RT) inhibition assays against wild-type HIV-1 RT were performed with selected derivatives, confirming that the main target of these compounds is HIV-1 RT and that these new S-DABO analogues act as non-nucleoside RT inhibitors (NNRTIs). Structure-activity relationship and molecular modeling analyses of these new congeners are also discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis, structure and biological properties of active spirohydantoin derivatives

    Directory of Open Access Journals (Sweden)

    Lazić Anita M.

    2016-01-01

    Full Text Available Spirohidantoins represent an pharmacologically important class of heterocycles since many derivatives have been recognized that display interesting activities against a wide range of biological targets. First synthesis of cycloalkanespiro-5-hydantoins was performed by Bucherer and Lieb 1934 by the reaction of cycloalkanone, potassium cyanide and ammonium-carbonate at reflux in a mixture of ethanol and water. QSAR (Quantitative Structure-Activity Relationship studies showed that a wide range of biological activities of spirohydantoin derivatives strongly depend upon their structure. This paper describes different methods of synthesis of spirohydantoin derivatives, their physico-chemical properties and biological activity. It emphasizes the importance of cycloalkanespiro-5-hydantoins with anticonvulsant, antiproliferative, antipsychotic, antimicrobial and antiinflammatory properties as well as their importance in the treatment of diabetes. Numerous spirohydantoin compounds exhibit physiological activity such as serotonin and fibrinogen antagonist, inhibitors of the glycine binding site of the NMDA receptor also, antagonist of leukocyte cell adhesion, acting as allosteric inhibitors of the protein-protein interactions. Some spirohydantoin derivatives have been identified as antitumor agents. Their activity depends on the substituent presented at position N-3 of the hydantoin ring and increases in order alkene > ester > ether. Besides that, compounds that contain two electron withdrawing groups (e.g. fluorine or chlorine on the third and fourth position of the phenyl ring are better antitumor agents than compounds with a single electron withdrawing group. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  12. Synthesis, radiolabeling and biological evaluation of [{sup 125}I]-1-[2-(benzylthio)ethyl]-4-(5-iodo-2-methoxyphenyl)piperazine as a new 5-HT{sub 1A} receptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Narimani, Ali [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Islamic Azad Univ., Karaj (Iran, Islamic Republic of). Dept. of Chemistry; Sadeghzadeh, Masoud [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Kurdtabar, Mehran [Islamic Azad Univ., Karaj (Iran, Islamic Republic of). Dept. of Chemistry

    2017-07-01

    5-HT{sub 1A} receptors have been implicated in the pathogenesis of a wide variety of disorders related to the serotonin receptors. WAY100635 is a well-known high affinity 5-HT{sub 1A} receptor antagonist. Many {sup 11}C and {sup 18}F radiolabeled derivatives and its radioiodinated analogues have been reported as imaging agents for 5-HT{sub 1A} receptors. In this regard, the synthesis, radiolabeling and biological evaluation of a new 5-HT{sub 1A} receptor radioligand, [{sup 125}I]-1-(2-(benzylthio)ethyl)-4-(5-iodo-2-methoxyphenyl)piperazine ([{sup 125}I]-BTE-IMPP), are described. Radioiodination of this newly synthesized compound was done by the direct aromatic electrophilic substitution via Iodo-Gen method. Radiochemical yield and radiochemical purity determined by TLC and RTLC were >70% and >95%, respectively. Biodistribution studies of [{sup 125}I]-BTE-IMPP in rats displayed relatively high uptake in hippocampus (Hip) and low uptake in cerebellum (Cer). The level of the radiotracer uptake was over threefold higher in hippocampus than in cerebellum at 30 min post-injection. Moreover, the brain to blood uptake ratio and the blocking studies results indicated prolonged retention of the radiotracer and relatively good specific binding to 5-HT{sub 1A} receptor. These findings strongly suggest that [{sup 125}I]-BTE-IMPP could be a good candidate as an in vivo marker for pharmacological study of 5-HT{sub 1A} receptors in animal models.

  13. Green Synthesis of Metallic Nanoparticles via Biological Entities

    Science.gov (United States)

    Shah, Monaliben; Fawcett, Derek; Sharma, Shashi; Tripathy, Suraj Kumar; Poinern, Gérrard Eddy Jai

    2015-01-01

    Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm). At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications. PMID:28793638

  14. Green Synthesis of Metallic Nanoparticles via Biological Entities

    Directory of Open Access Journals (Sweden)

    Monaliben Shah

    2015-10-01

    Full Text Available Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm. At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications.

  15. Biologically Active Chorionic Gonadotropin: Synthesis by the Human Fetus

    Science.gov (United States)

    McGregor, W. G.; Kuhn, R. W.; Jaffe, R. B.

    1983-04-01

    The kidney, and to a slight extent the liver, of human fetuses were found to synthesize and secrete the α subunit common to glycoprotein hormones. Fetal lung and muscle did not synthesize this protein. Since fetal kidney and liver were previously found to synthesize β chorionic gonadotropin, their ability to synthesize bioactive chorionic gonadotropin was also determined. The newly synthesized hormone bound to mouse Leydig cells and elicited a biological response: namely, the synthesis of testosterone. These results suggest that the human fetus may participate in metabolic homeostasis during its development.

  16. Synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Wu, Xu; Schultz, Peter G

    2009-09-09

    As the focus of synthesis increasingly shifts from its historical emphasis on molecular structure to function, improved strategies are clearly required for the generation of molecules with defined physical, chemical, and biological properties. In contrast, living organisms are remarkably adept at producing molecules and molecular assemblies with an impressive array of functions - from enzymes and antibodies to the photosynthetic center. Thus, the marriage of Nature's synthetic strategies, molecules, and biosynthetic machinery with more traditional synthetic approaches might enable the generation of molecules with properties difficult to achieve by chemical strategies alone. Here we illustrate the potential of this approach and overview some opportunities and challenges in the coming years.

  17. Synthesis, characterization and biological evaluation of ...

    Indian Academy of Sciences (India)

    . Since the two heterocyclic moieties thiazole and pyrimidine constitute two active pharmacophores that are highly active against inflam- mation and pain, combining the two is expected to have a synergistic effect on their analgesic properties.

  18. Synthesis and biological evaluation of furanoallocolchicinoids.

    Science.gov (United States)

    Voitovich, Yuliya V; Shegravina, Ekaterina S; Sitnikov, Nikolay S; Faerman, Vladimir I; Fokin, Valery V; Schmalz, Hans-Gunther; Combes, Sebastien; Allegro, Diane; Barbier, Pascal; Beletskaya, Irina P; Svirshchevskaya, Elena V; Fedorov, Alexey Yu

    2015-01-22

    A series of conformationally flexible furan-derived allocolchicinoids was prepared from commercially available colchicine in good to excellent yields using a three-step reaction sequence. Cytotoxicity studies indicated the potent activity of two compounds against human epithelial and lymphoid cell lines (AsPC-1, HEK293, and Jurkat) as well as against Wnt-1 related murine epithelial cell line W1308. The results of in vitro experiments demonstrated that the major effect of these compounds was the induction of cell cycle arrest in the G2/M phase as a direct consequence of effective tubulin binding. In vivo testing of the most potent furanoallocolchicinoid 10c using C57BL/6 mice inoculated with Wnt-1 tumor cells indicated significant inhibition of the tumor growth.

  19. Substituted Pyrazinecarboxamides: Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2006-03-01

    Full Text Available Condensation of the corresponding chlorides of some substituted pyrazine-2-carboxylic acids (pyrazine-2-carboxylic acid, 6-chloropyrazine-2-carboxylic acid, 5-tert-butylpyrazine-2-carboxylic acid or 5-tert-butyl-6-chloropyrazine-2-carboxylic acid withvarious ring-substituted aminothiazoles or anilines yielded a series of amides. Thesyntheses, analytical and spectroscopic data of thirty newly prepared compounds arepresented. Structure-activity relationships between the chemical structures and the anti-mycobacterial, antifungal and photosynthesis-inhibiting activity of the evaluatedcompounds are discussed. 3,5-Bromo-4-hydroxyphenyl derivatives of substitutedpyrazinecarboxylic acid, 16-18, have shown the highest activity against Mycobacteriumtuberculosis H37Rv (54-72% inhibition. The highest antifungal effect againstTrichophyton mentagrophytes, the most susceptible fungal strain tested, was found for5-tert-butyl-6-chloro-N-(4-methyl-1,3-thiazol-2-ylpyrazine-2-carboxamide (8, MIC =31.25 μmol·mL-1. The most active inhibitors of oxygen evolution rate in spinachMolecules 2006, 11 243 chloroplasts were the compounds 5-tert-butyl-6-chloro-N-(5-bromo-2-hydroxyphenyl- pyrazine-2-carboxamide (27, IC50 = 41.9 μmol·L-1 and 5-tert-butyl-6-chloro-N-(1,3- thiazol-2-yl-pyrazine-2-carboxamide (4, IC50 = 49.5 μmol·L-1.

  20. Synthesis, characterization and biological evaluation of ...

    Indian Academy of Sciences (India)

    treatment of AIDS.11 This is due to the fact that their particular structure has been found in the natural marine ... of AIDS therapy.11 Moreover, thiazole derivatives have acquired a conspicuous significance due to their use ...... The investigation of antimicrobial screen- ing reveals that the compounds 3a, 3c, 3e and 3g.

  1. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking

    Science.gov (United States)

    Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2018-02-01

    [Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.

  2. Automated synthesis, characterization and biological evaluation of [{sup 68}Ga]Ga-AMBA, and the synthesis and characterization of {sup nat}Ga-AMBA and [{sup 67}Ga]Ga-AMBA

    Energy Technology Data Exchange (ETDEWEB)

    Cagnolini, Aldo; Chen Jianqing; Ramos, Kimberly; Marie Skedzielewski, Tina; Lantry, Laura E.; Nunn, Adrian D.; Swenson, Rolf E. [Ernst Felder Laboratories, Bracco Research USA Inc., 305 College Road East, Princeton, NJ 08540 (United States); Linder, Karen E., E-mail: karen.e.linder@gmail.co [Ernst Felder Laboratories, Bracco Research USA Inc., 305 College Road East, Princeton, NJ 08540 (United States)

    2010-12-15

    Ga-AMBA (Ga-DO3A-CH{sub 2}CO-G-[4-aminobenzoyl]-QWAVGHLM-NH{sub 2}) is a bombesin-like agonist with high affinity for gastrin releasing peptide receptors (GRP-R). Syntheses for {sup nat}Ga-AMBA, [{sup 67}Ga]Ga-AMBA and [{sup 68}Ga]Ga-AMBA were developed. The preparation of HPLC-purified and Sep-Pak purified [{sup 68}Ga]Ga-AMBA were fully automated, using the built-in radiodetector of the Tracerlab FX F-N synthesizer to monitor fractionated {sup 68}Ge/{sup 68}Ga generator elution and purification. The total synthesis time, including the fractional elution of the generator, was 20 min for Sep-Pak purified material and 40 min for HPLC-purified [{sup 68}Ga]Ga-AMBA. Both [{sup 67}Ga]Ga-AMBA and [{sup 177}Lu]Lu-AMBA showed comparable high affinity for GRP-R in the human prostate cancer cell line PC-3 in vitro (k{sub D}=0.46{+-}0.07; 0.44{+-}0.08 nM), high internalization (78; 77%) and low efflux from cells at 2 h (2.4{+-}0.7; 2.9{+-}1.8%). Biodistribution results in PC-3 tumor-bearing male nude mice showed comparable uptake for [{sup 177}Lu]Lu-, [{sup 111}In]In-, [{sup 67}Ga]Ga- and [{sup 68}Ga]Ga-AMBA.

  3. Synthesis, characterization and antibacterial evaluation of ...

    African Journals Online (AJOL)

    The synthesis, characterization and anti-bacterial evaluation of two palmitoyl amino acids is reported in this work. The reported antimicrobial activity of some fatty acid derivatives encouraged the investigation of the possible influence of an aromatic group substituent on a saturated fatty acid residue. The compounds were ...

  4. Synthesis, Characterization and Antibacterial Evaluations of the ...

    African Journals Online (AJOL)

    MBI

    2014-06-05

    Jun 5, 2014 ... 39. Synthesis, Characterization and Antibacterial Evaluations of the Schiff. Base 2-(1-(2-(Piperazin-1-yl)ethylimino)ethyl)Phenol and its Complexes of. Mn(II), Ni(II) and Zn(II). Salga, M. S., Sada, I. and Abdullahi, A. Department of Pure and Industrial Chemistry, Umaru Musa 'Yar Adua University, Katsina.

  5. Biological upgrading of coal-derived synthesis gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  6. Synthesis and Biological Activity of Reversed Pyrimidine Nucleosides

    Directory of Open Access Journals (Sweden)

    Nataša Župančić

    2015-03-01

    Full Text Available An efficient approach to reversed nucleosides which enables their synthesis in gram quantities is described. N-1′-Pyrimidine reversed nucleosides were prepared by treating of the sodium salt of pyrimidine bases with protected 5-tosyl ribose. Additionally, N-1′,N-3′-disubstituted reversed nucleosides were isolated in the condensation reactions with the 5-halogen pyrimidines. Using the Sonogashira coupling of 5′-iodouracil reversed nucleoside with ethynyltrimethyl silane gave 5′-ethynyl derivative which was further transformed into 5′-acetyl reversed nucleoside. Biological activity of deprotected reversed nucleosides was validated on the panel of six human carcinoma cell lines (HeLa, MIAPaCa2, Hep2, NCI-H358, CaCo-2, and HT-29. 5′-Iodouracil derivative displayed moderate growth inhibition activity against human colon carcinoma (CaCo-2 cells.

  7. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    Science.gov (United States)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  8. Acridones as antiviral agents: synthesis, chemical and biological properties.

    Science.gov (United States)

    Sepúlveda, C S; Fascio, M L; García, C C; D'Accorso, N B; Damonte, E B

    2013-01-01

    Acridones are a class of compounds that have attracted attention in recent years for their wide range of biological properties, including selective inhibition of diverse human pathogenic viruses. The wide spectrum of antiviral activity includes DNA and RNA viruses, such as herpes simplex virus, cytomegalovirus, adenovirus, hepatitis C virus, dengue virus, and Junin virus, among others, indicative of the involvement of cellular factors as potential targets of acridone derivatives. At the present, their precise mode of action is not clearly determined, although the predominant action seems to be centered on the synthesis of nucleic acids. Regarding this point, inhibitory activity against cellular and viral enzymes and the ability to intercalate into nucleic acid molecules was demonstrated for some acridone compounds. Then, the possibility of a multiple effect on different targets renewed interest in these agents for virus chemotherapy allowing a potent inhibitory effectiveness associated to less feasibility of generating antiviral resistance. This review summarizes the current knowledge regarding the methods of synthesis, the antiviral properties of acridone derivatives, their mechanism of action, and structural characteristics related to antiviral activity as well as the perspectives of this class of compounds for clinical application against human viral infections.

  9. Synthesis and standardization of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Roy, Swarup; Das, Tapan Kumar

    2013-06-01

    The biological silver nanoparticle was synthesized extracellularly by using a fungi Aspergillus foetidus. The live cell filtrate of fungi has been used as reducing agent in the process of nanoparticles synthesis. In 50 ml cell filtrate a volume of AgNO3 stock solution was added to make finally the concentration as 1 mM of AgNO3 and allowed to shake in an incubator for several hrs in dark. The changed color was considered as the primary indication of nanoparticles formation and studies of UV-VIS, DLS, FTIR, AFM, TEM, EDS, Zeta pot. and nitrate reductase assay confirmed the same. It was indicated that stable & 20-40 nm roughly spherical shaped silver nanoparticles was formed. To standardize the nanoparticles biosynthesis different physical parameters like Substrate cone. (0-8 mM), PH-(5-12), Temp.-(5-50°C), incubation time (0-120) hrs and salinity (0.1-1.0 %) were investigated and it was observed that 4 mM AgNO3 conc., PH-9, Temp. -30°C, incubation time 72h and 0.2 % salinity were found to be optimum for the synthesis & stability of the silver nanoparticles.

  10. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  11. SYNTHESIS OF BIOLOGICALLY-ACTIVE 2-BENZOYL PACLITAXEL ANALOGS

    DEFF Research Database (Denmark)

    GEORG, GI; ALI, SM; BOGE, TC

    1995-01-01

    The influence of aromatic substitution at the 2-benzoyl moiety of paclitaxel on biological activity was investigated, following the Topliss Operational Scheme. Twelve paclitaxel derivatives were synthesized and evaluated in a microtubule assembly assay and for cytotoxicity against B16 melanoma ce...

  12. Synthesis and biological activities of turkesterone 11?-acyl derivatives

    Directory of Open Access Journals (Sweden)

    Laurence Dinan

    2003-02-01

    Full Text Available Turkesterone is a phytoecdysteroid possessing an 11alpha-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand-binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11alpha-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry. Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially expressed D. melanogaster EcR/USP receptor proteins. The 11alpha-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4, it then increases (C6 to C10, before decreasing again (C14 and C20. The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed.

  13. Cerium oxide nanoparticles: green synthesis and biological applications

    Science.gov (United States)

    Charbgoo, Fahimeh; Ahmad, Mansor Bin; Darroudi, Majid

    2017-01-01

    CeO2 nanoparticles (NPs) have shown promising approaches as therapeutic agents in biology and medical sciences. The physicochemical properties of CeO2-NPs, such as size, agglomeration status in liquid, and surface charge, play important roles in the ultimate interactions of the NP with target cells. Recently, CeO2-NPs have been synthesized through several bio-directed methods applying natural and organic matrices as stabilizing agents in order to prepare biocompatible CeO2-NPs, thereby solving the challenges regarding safety, and providing the appropriate situation for their effective use in biomedicine. This review discusses the different green strategies for CeO2-NPs synthesis, their advantages and challenges that are to be overcome. In addition, this review focuses on recent progress in the potential application of CeO2-NPs in biological and medical fields. Exploiting biocompatible CeO2-NPs may improve outcomes profoundly with the promise of effective neurodegenerative therapy and multiple applications in nanobiotechnology. PMID:28260887

  14. Green Synthesis of Chalcones and Microbiological Evaluation

    OpenAIRE

    Ritter, Marina; Martins, Rosiane M.; Rosa, Silvana A.; Malavolta, Juliana L.; Lund, Rafael G.; Flores, Alex F. C.; Pereira, Claudio M. P.

    2015-01-01

    A green method was developed for the synthesis of chalcones using glycerin as solvent. Subsequently, the potential microbiology activity of these molecules was evaluated by testing them against the Gram-positive bacteria Staphylococcus aureus (S. aureus) ATCC 19095 and Enterococcus faecalis (E. faecalis) ATCC 4083, the Gram-negative bacteria Escherichia coli (E. coli) ATCC 29214 and Pseudomonas aeruginosa (P. aeruginosa) ATCC 9027, and the fungus Candida albicans (C. albicans), whic...

  15. New hydrazones of ferulic acid: synthesis, characterization and biological activity.

    Science.gov (United States)

    Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa

    2014-01-01

    The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.

  16. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Tufail, Saba; Sherwani, Asif; Sajid, Mohammad; Raman, Suri C; Azam, Amir; Owais, Mohammad

    2011-01-01

    Background Nanomaterials are considered to be the pre-eminent component of the rapidly advancing field of nanotechnology. However, developments in the biologically inspired synthesis of nanoparticles are still in their infancy and consequently attracting the attention of material scientists throughout the world. Keeping in mind the fact that microorganism-assisted synthesis of nanoparticles is a safe and economically viable prospect, in the current study we report Candida albicans-mediated biological synthesis of gold nanoparticles. Methods and results Transmission electron microscopy, atomic force microscopy, and various spectrophotometric analyses were performed to characterize the gold nanoparticles. The morphology of the synthesized gold particles depended on the abundance of C. albicans cytosolic extract. Transmission electron microscopy, nanophox particle analysis, and atomic force microscopy revealed the size of spherical gold nanoparticles to be in the range of 20–40 nm and nonspherical gold particles were found to be 60–80 nm. We also evaluated the potential of biogenic gold nanoparticles to probe liver cancer cells by conjugating them with liver cancer cell surface-specific antibodies. The antibody-conjugated gold particles were found to bind specifically to the surface antigens of the cancer cells. Conclusion The antibody-conjugated gold particles synthesized in this study could successfully differentiate normal cell populations from cancerous cells. PMID:22072868

  17. Multiprocessor architecture: Synthesis and evaluation

    Science.gov (United States)

    Standley, Hilda M.

    1990-01-01

    Multiprocessor computed architecture evaluation for structural computations is the focus of the research effort described. Results obtained are expected to lead to more efficient use of existing architectures and to suggest designs for new, application specific, architectures. The brief descriptions given outline a number of related efforts directed toward this purpose. The difficulty is analyzing an existing architecture or in designing a new computer architecture lies in the fact that the performance of a particular architecture, within the context of a given application, is determined by a number of factors. These include, but are not limited to, the efficiency of the computation algorithm, the programming language and support environment, the quality of the program written in the programming language, the multiplicity of the processing elements, the characteristics of the individual processing elements, the interconnection network connecting processors and non-local memories, and the shared memory organization covering the spectrum from no shared memory (all local memory) to one global access memory. These performance determiners may be loosely classified as being software or hardware related. This distinction is not clear or even appropriate in many cases. The effect of the choice of algorithm is ignored by assuming that the algorithm is specified as given. Effort directed toward the removal of the effect of the programming language and program resulted in the design of a high-level parallel programming language. Two characteristics of the fundamental structure of the architecture (memory organization and interconnection network) are examined.

  18. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    Cappa, F.

    2014-01-01

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13 C- and 15 N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13 C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [ 13 C]-acetic acid, [ 13 C]-formaldehyde, [ 13 C]-allyl alcohol and [ 13 C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this

  19. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Synthesis of Combretastatin A-4 Analogs and their Biological Activities.

    Science.gov (United States)

    Siebert, Agnieszka; Gensicka, Monika; Cholewinski, Grzegorz; Dzierzbicka, Krystyna

    2016-01-01

    Combretastatin A-4 (CA-4) is a natural product, which consists of two phenyl rings, linked by an ethylene bridge. CA-4, inhibitor of polymerization of tubulin to microtubules, possesses a strong antitumor and anti-vascular properties both in vitro and in vivo. Previous studies showed that disodium phosphate salt of CA-4, a water-soluble prodrug is well tolerated at therapeutically useful doses. However, it should be noted that the cis-configuration of the double bond and the 3,4,5-trimethoxy group on ring A is necessary for the biological activity of CA-4. Structure of CA-4 renders the compound readily susceptible to isomerization, which reduces the potency and bioavailability. To circumvent this problem, a lot of scientists in the world synthesized a series of cis-restricted CA-4 analogs, where the double bond has been replaced by introduction of non-heterocyclic groups or heterocyclic groups like β -lactam and oxadiazole. This paper reviews the most important approaches in analogs of combretastatin synthesis and presents structure-reactivity relationships for these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Evaluation of Potential Biological Threats in Ukraine

    International Nuclear Information System (INIS)

    Pozdnyakova, L.; Slavina, N.; Pozdnyakov, S.

    2007-01-01

    Dilating of biological threats spectrum, EDI diffusion opportunities and routes, unpredictability of outbreaks connected with connatural, technogenic, terrorist factors determines constant monitoring and readiness for operative BPA indication and identification. Scientific analytical approach of existing and probable regional bio-threats evaluation is necessary for adequate readiness system creation and maintenance of medical counteraction tactics to probable biological threats. Basing on the international experience, we carry out analysis of a situation present in Ukraine and routes for the decisions. The basic directions are: - Evaluation of a reality for EDI penetration from abroad and presence of conditions for their further diffusion inside the country. - Revealing of presence and definition of connatural EDI foci biocenoses features and BPAs. - Appropriate level of biological safety and physical protection of bio-laboratories and pathogens collections maintenance. - Gene/molecular and phenotypical definition of EDI circulating strains. - Creation of the circulating EDI gene/ phenotypic characteristics regional data bank. - Ranging of EDI actual for area. - Introduction of GPT, mathematical modeling and forecasting for tactics development in case of technogenic accidents and connatural outbreaks. - Methodical basis and equipment improvement for BPA system indication for well-timed identification of natural, or modified agent. - Education and training The international cooperation in maintenance of biosafety and bioprotection within the framework of scientific programs, grants, exchange of experience, introduction of international standards and rules are among basic factors in the decision for creating system national biosafety for countries not included in EU and the NATO. (author)

  2. Design, synthesis and biological study of new antiparasitic spiroarsoranes.

    Science.gov (United States)

    Loiseau, P M; Rekik, L; Madaule, Y; Gayral, P; Wolf, J G

    1993-09-01

    Thirty-eight new spiroarsoranes were synthesized after structure-activity relationship studies from the first series. These compounds were predicted to cross more easily the membrane of protozoae or the cuticle of Nematodes and to reach their biological target with efficiency. The spiroarsoranes were evaluated for their antiparasitic properties, on helminths and protozoa models in regard of their parent arsonic acids. The following parasite models were used: Entamoeba histolytica and Trichomonas vaginalis in vitro; Molinema dessetae infective larvae in vitro, adults and microfilariae in vivo; Nippostrongylus brasiliensis infective larvae in vitro. The results obtained on these models indicated that the "spiranization" of arsonic acids produced new compounds with a biological activity 10-fold superior to those of arsonic acids. Nevertheless, each parasite had its own sensitivity to spiroarsoranes. Moreover, in vivo results showed that the lipophilicity of the molecules should be optimal to avoid high toxicity in host such as arsenical encephalopathy.

  3. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  4. Design, synthesis, and biological evaluation of 1,2,3,7-tetrahydro-6h-purin-6-one and 3,7-dihydro-1h-purine-2,6-dione derivatives as corticotropin-releasing factor(1) receptor antagonists.

    Science.gov (United States)

    Hartz, Richard A; Nanda, Kausik K; Ingalls, Charles L; Ahuja, Vijay T; Molski, Thaddeus F; Zhang, Ge; Wong, Harvey; Peng, Yong; Kelley, Michelle; Lodge, Nicholas J; Zaczek, Robert; Gilligan, Paul J; Trainor, George L

    2004-09-09

    A growing body of evidence suggests that CRF(1) receptor antagonism offers considerable therapeutic potential in the treatment of diseases resulting from elevated levels of CRF, such as anxiety and depression. A series of novel 1,2,3,7-tetrahydro-6H-purin-6-one and 3,7-dihydro-1H-purine-2,6-dione derivatives was synthesized and evaluated as corticotropin releasing factor-1 (CRF(1)) receptor antagonists. Compounds within this series, represented by compound 12d (IC(50) = 5.4 nM), were found to be highly potent CRF(1) receptor antagonists. In addition, compounds 12d and 12j were determined to be selective CRF(1) antagonists. The synthesis, structure-activity relationships and pharmacokinetic properties of compounds within this series is presented.

  5. The biology of milk synthesis from a proteomics perspective

    OpenAIRE

    Lu, J.

    2013-01-01

    Large variation in bovine milk composition of Dutch Holstein cows has been observed. The factors influencing the milk synthesis and secretion process in the mammary gland and the variations in this process lead to variation in milk composition. The understanding of milk synthesis was improved during the last decades, however, much is still unknown, especially with regard to lipid synthesis and secretion. In this research, a proteomics technique (FASP-Dimethyl labeling-NanoLC-Orbitrap-MS/MS) w...

  6. Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis.

    Science.gov (United States)

    Honary, Soheyla; Gharaei-Fathabad, Eshrat; Barabadi, Hamed; Naghibi, Farzaneh

    2013-02-01

    The biological effects of nanoparticles and their uses as molecular probes are research areas of growing interest. The present study demonstrates an eco-friendly biosynthesis of gold nanoparticles. The pure colonies of penicillium aurantiogriseum, penicillium citrinum, and penicillium waksmanii were cultured in fluid czapek dox broth. Then, their supernatants were examined for the ability to produce gold nanoparticles. In this step, 1 mM solution of AuCl added to the reaction matrixes separately. The reactions were performed in a dark environment at 28 degrees C. After 24 hours, it was observed that the color of the solutions turned to dark purple from light yellow. Synthesized gold nanoparticles were characterized by using UV-Visible Spectroscopy, Nano Zeta Sizer, Scanning Electron Microscopy and Fourier transformed infrared spectroscopy. The results showed that the gold nanoparticles were formed fairly uniform with spherical shape with the Z-average diameter of 153.3 nm, 172 nm and 160.1 nm for penicillium aurantiogriseum, penicillium citrinum, and penicillium waksmanii, respectively. The Fourier transformed infrared spectra revealed the presence of different functional groups to gold nanoparticles which were present in the fungal extract. The current approach suggests that the rapid synthesis of nanoparticles would be proper for developing a biological process for mass scale production.

  7. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    This thesis describes two different projects. The first project deals with the design, synthesis and biological activity of novel reversible peptidyl FVIIa inhibitors (Chapter 1–3). FVIIa was launced as NovoSeven R over a decade ago by Novo Nordisk for the treatment of hemophilia A and B complica......This thesis describes two different projects. The first project deals with the design, synthesis and biological activity of novel reversible peptidyl FVIIa inhibitors (Chapter 1–3). FVIIa was launced as NovoSeven R over a decade ago by Novo Nordisk for the treatment of hemophilia A and B...

  8. Synthesis of Mono-PEGylated Growth Hormone Releasing Peptide-2 and Investigation of its Biological Activity.

    Science.gov (United States)

    Hu, Xiaoyu; Xu, Beihua; Zhou, Ziniu

    2015-10-01

    The purpose of this study was to investigate an efficient synthetic route to the mono-PEGylated growth hormone releasing peptide-2 (GHRP-2) and its biological activity in vivo. The commercially available key PEGylating reagent, mPEG-NHS ester, was successfully utilized to the synthesis of mono-PEGylated GHRP-2, during which the PEGylation profiles of GHRP-2 were monitored by high-performance liquid chromatography (HPLC). The product was purified by cation exchange chromatography, and its biological activity was conducted in rats. The desired mono-PEGylated GHRP-2 as the major product was readily obtained in anhydrous aprotic solvent, such as dimethyl formamide (DMF) and dimethylsulfoxide (DMSO), when the molar ratio of mPEG-NHS ester to GHRP-2 was fixed to be 0.8:1. The products were characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The evaluation of the biological activity for the products showed that the mono-PEGylated GHRP-2 gave a more stable activity than GHRP-2, suggesting that PEGylation led to the increase in the half-life of GHRP-2 in plasma without greatly impairing the biological activity. PEGylation of the GHRP-2 is a good choice for the development of the GHRP-2 applications.

  9. Synthesis, Characterization and Biological Activity Studies of Mixed ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is due to the coordination of the metal to the ligand by some complexes through this site. Cobalt and. Nickel complexes of the 3 mmol synthesis with. Nickel complex of the 5mmol synthesis still retain the band as seen in Paracetamol showing that they do not coordinate through this site. Another important band was observed ...

  10. The biology of milk synthesis from a proteomics perspective

    NARCIS (Netherlands)

    Lu, J.

    2013-01-01

    Large variation in bovine milk composition of Dutch Holstein cows has been observed. The factors influencing the milk synthesis and secretion process in the mammary gland and the variations in this process lead to variation in milk composition. The understanding of milk synthesis was improved during

  11. Synthesis of prodrugs of anthracyclines and evaluation of their use in selective chemotherapy

    NARCIS (Netherlands)

    Leenders, R.G.G.

    1998-01-01

    This thesis is devoted to the synthesis and biological evaluation of prodrugs of anthracycline anti-tumor antibiotics designed for use in selective chemotherapy. The severe side effects caused by conventional cancer chemotherapeutic agents arises from the lack of distinction between tumor and normal

  12. SYNTHESIS AND IN VITRO ANTIMICROBIAL EVALUATION OF 5 ...

    African Journals Online (AJOL)

    Preferred Customer

    creation of molecular diversity and complexity [1-3]. One of the main challenges in medicinal chemistry is the design and synthesis of biologically active molecules. 4H-pyran play an essential role as biologically active compounds and represent an interesting template for medicinal chemistry. Many of these compounds are.

  13. Synthesis and evaluation of some bioactive compounds having ...

    Indian Academy of Sciences (India)

    has wide applications in natural product synthesis, car- bohydrate chemistry and biological research where as. Hiyama cross-coupling reactions are important and selective method for producing carbon–carbon bonds.10. Schiff bases are widely used for industrial purposes11 and also exhibit a broad range of biological ...

  14. Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins.

    Science.gov (United States)

    Peters, Carsten; Wagner, Melanie; Völkert, Martin; Waldmann, Herbert

    2002-09-01

    We have developed a basic concept for studying cell biological phenomena using an interdisciplinary approach starting from organic chemistry. Based on structural information available for a given biological phenomenon, unsolved chemical problems are identified. For their solution, new synthetic pathways and methods are developed, which reflect the state of the art in synthesising lipidated peptide conjugates. These compounds are used as molecular probes for the investigation of biological phenomena that involve both the determination of biophysical properties and cell biological studies. The interplay between organic synthesis, biophysics and cell biology in the study of protein lipidation may open up new and alternative opportunities to gain knowledge about the biological phenomenon that could not be obtained by employing biological techniques alone. This fruitful combination is highlighted using the Ras protein as an outstanding example. Included herein is: the development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of the biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and proteins in cell biological experiments.

  15. Synthesis and anticancer evaluation of spermatinamine analogues

    KAUST Repository

    Moosa, Basem

    2016-02-04

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcystiene carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5 - 10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines.

  16. High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment.

    Science.gov (United States)

    Wan, Wen; Lu, Min; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2017-07-21

    Engineering and evaluation of synthetic routes for generating valuable compounds require accurate and cost-effective de novo synthesis of genetic pathways. Here, we present an economical and streamlined de novo DNA synthesis approach for engineering a synthetic pathway with microchip-synthesized oligonucleotides (oligo). The process integrates entire oligo pool amplification, error-removal, and assembly of long DNA molecules. We utilized this method to construct a functional lycopene biosynthetic pathway (11.9 kb encoding 10 genes) in Escherichia coli using a highly error-prone microchip-synthesized oligo pool (479 oligos) without pre-purification, and the error-frequency was reduced from 14.25/kb to 0.53/kb. This low-equipment-dependent and cost-effective method can be widely applied for rapid synthesis of biosynthetic pathways in general molecular biology laboratories.

  17. Synthesis and biological evaluation of 1-(4-[{sup 18}f]fluorobenzyl)-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine for in vivo studies of acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Leea, Sang-Yoon; Choe, Yearn Seong E-mail: yschoe@samsung.co.kr; Sugimoto, Hachiro; Kim, Sang Eun; Hwang, Sae Hwan; Lee, Kyung-Han; Choi, Yong; Lee, Jeewoo; Kim, Byung-Tae

    2000-11-01

    We synthesized and evaluated 1-(4-fluorobenzyl)-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine (4-FDP), which is an analog of donepezil. The 4-[{sup 18}F]FDP was prepared by reductive alkylation of debenzylated donepezil with 4-[{sup 18}F]fluorobenzaldehyde in high radiochemical yield (decay-corrected, 40-52%) and with high effective specific activity (30-38 GBq/{mu}mol). Tissue distribution studies in mice demonstrated nonspecific distribution of the 4-[{sup 18}F]FDP in brain regions, suggesting that this radioligand may not be a suitable agent for in vivo studies of acetylcholinesterase (AChE), despite its potent in vitro biological activity.

  18. Solid-Phase Synthesis for the Construction of Biologically Interesting Molecules and the Total Synthesis of Trioxacarcin DC-45-A2

    DEFF Research Database (Denmark)

    Mikkelsen, Remi Jacob Thomsen

    . Furthermore a route to another key building block was developed featuring a Stille cross-coupling.Synthesis of Poly-fused Heterocycles. In the search for new biologically active compounds a methodology for the synthesis of polyfused heterocycles was investigated. This led to the development and optimization...... of a key aldol condensation/conjugate addition sequence for the synthesis of poly-fused heterocycles....

  19. Novel Triazole Hybrids of Betulin: Synthesis and Biological Activity Profile.

    Science.gov (United States)

    Bębenek, Ewa; Jastrzębska, Maria; Kadela-Tomanek, Monika; Chrobak, Elwira; Orzechowska, Beata; Zwolińska, Katarzyna; Latocha, Małgorzata; Mertas, Anna; Czuba, Zenon; Boryczka, Stanisław

    2017-11-01

    Betulin derivatives containing a 1,2,3-triazole ring possess a wide spectrum of biological activities, including antiviral, anticancer, and antibacterial activity. A series of novel triazoles were prepared by the 1,3-dipolar cycloaddition reaction between the alkyne derivatives of betulin and organic azides. The chemical structures of the obtained compounds were defined by ¹H and 13 C NMR, IR, and high-resolution mass spectrometry (HR-MS) analysis. The target triazoles were screened for their antiviral activity against DNA and RNA viruses. The cytotoxic activity of the obtained compounds 5a - k and 6a - h was determined using five human cancer cell lines (T47D, MCF-7, SNB-19, Colo-829, and C-32) by a WST-1 assay. The bistriazole 6b displayed a promising IC 50 value (0.05 μM) against the human ductal carcinoma T47D (500-fold higher potency than cisplatin). The microdilution method was applied for an evaluation of the antimicrobial activity of all of the compounds. The triazole 5e containing a 3'-deoxythymidine-5'-yl moiety exhibited antibacterial activity against two gram-negative bacteria vz. Klebsiella pneumoniae and Escherichia coli (minimal inhibitory concentration (MIC) range of 0.95-1.95 μM).

  20. Novel Triazole Hybrids of Betulin: Synthesis and Biological Activity Profile

    Directory of Open Access Journals (Sweden)

    Ewa Bębenek

    2017-11-01

    Full Text Available Betulin derivatives containing a 1,2,3-triazole ring possess a wide spectrum of biological activities, including antiviral, anticancer, and antibacterial activity. A series of novel triazoles were prepared by the 1,3-dipolar cycloaddition reaction between the alkyne derivatives of betulin and organic azides. The chemical structures of the obtained compounds were defined by 1H and 13C NMR, IR, and high-resolution mass spectrometry (HR-MS analysis. The target triazoles were screened for their antiviral activity against DNA and RNA viruses. The cytotoxic activity of the obtained compounds 5a–k and 6a–h was determined using five human cancer cell lines (T47D, MCF-7, SNB-19, Colo-829, and C-32 by a WST-1 assay. The bistriazole 6b displayed a promising IC50 value (0.05 μM against the human ductal carcinoma T47D (500-fold higher potency than cisplatin. The microdilution method was applied for an evaluation of the antimicrobial activity of all of the compounds. The triazole 5e containing a 3′-deoxythymidine-5′-yl moiety exhibited antibacterial activity against two gram-negative bacteria vz. Klebsiella pneumoniae and Escherichia coli (minimal inhibitory concentration (MIC range of 0.95–1.95 μM.

  1. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway

    Directory of Open Access Journals (Sweden)

    Sabine Fletcher

    2016-11-01

    Full Text Available Abstract Background In the fight against malaria, the discovery of chemical compounds with a novel mode of action and/or chemistry distinct from currently used drugs is vital to counteract the parasite’s known ability to develop drug resistance. Another desirable aspect is efficacy against gametocytes, the sexual developmental stage of the parasite which enables the transmission through Anopheles vectors. Using a chemical rescue approach, we previously identified compounds targeting Plasmodium falciparum coenzyme A (CoA synthesis or utilization, a promising target that has not yet been exploited in anti-malarial drug development. Results We report on the outcomes of a series of biological tests that help to define the species- and stage-specificity, as well as the potential targets of these chemically diverse compounds. Compound activity against P. falciparum gametocytes was determined to assess stage-specificity and transmission-reducing potential. Against early stage gametocytes IC50 values ranging between 60 nM and 7.5 μM were obtained. With the exception of two compounds with sub-micromolar potencies across all intra-erythrocytic stages, activity against late stage gametocytes was lower. None of the compounds were specific pantothenate kinase inhibitors. Chemical rescue profiling with CoA pathway intermediates demonstrated that most compounds acted on either of the two final P. falciparum CoA synthesis enzymes, phosphopantetheine adenylyltransferase (PPAT or dephospho CoA kinase (DPCK. The most active compound targeted either phosphopantothenoylcysteine synthetase (PPCS or phosphopantothenoylcysteine decarboxylase (PPCDC. Species-specificity was evaluated against Trypanosoma cruzi and Trypanosoma brucei brucei. No specific activity against T. cruzi amastigotes was observed; however three compounds inhibited the viability of trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis. Conclusions

  2. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2015-01-01

    Full Text Available The present study explores biological synthesis of silver nanoparticles (AgNPs using the cell-free extract of Spirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract of S. platensis showed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is, Escherichia coli, MTCC-9721; Proteus vulgaris, MTCC-7299; Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is, Staphylococcus aureus, MTCC-9542; S. epidermidis, MTCC-2639; Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI that is 31.3±1.11 in P. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.

  3. Design, Synthesis, and Some Aspects of the Biological Activity of Mitochondria-Targeted Antioxidants.

    Science.gov (United States)

    Korshunova, G A; Shishkina, A V; Skulachev, M V

    2017-07-01

    This review summarizes for the first time data on the design and synthesis of biologically active compounds of a new generation - mitochondria-targeted antioxidants, which are natural (or synthetic) p-benzoquinones conjugated via a lipophilic linker with (triphenyl)phosphonium or ammonium cations with delocalized charge. It also describes the synthesis of mitochondria-targeted antioxidants - uncouplers of oxidative phosphorylation - based on fluorescent dyes.

  4. Synthesis, structural characterization and biological activity of a ...

    Indian Academy of Sciences (India)

    3.1 Synthesis and formulation. Schiff base ligand H2L was synthesized by 1:1 conden- sation of O-aminophenol and O-vanillin in dehydrated alcohol. 1 was prepared using reaction among Zn(II) salt and the ligand in methanol. Coordination geo- metry of 1 was determined by different spectroscopic characterization.

  5. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    intellectual legitimacy". Statements such as "all biology is molecular" made by the Nobel laureate and biochemist George. Wald, seemed to reinforce the view that organismal biology was being perceived as not keeping up with the Watsons. Mayr,. Dobzhansky and Simpson began a counterattack on molecular. Mayrplayed.

  6. A preliminary synthesis of pollination biology in the Cape flora

    CSIR Research Space (South Africa)

    Rebelo, AG

    1987-01-01

    Full Text Available biology are covered. Chapters reviewing plant breeding systems, insect, bird, mammal and wind pollination, and gene flow are introduced by a perspective on the role of the fossil record in pollination biology. A speculative chapter on the constraints...

  7. Preliminary synthesis of pollination biology in the Cape flora

    CSIR Research Space (South Africa)

    Rebelo, AG

    1987-01-01

    Full Text Available biology are covered. Chapters reviewing plant breeding systems, insect, bird, mammal and wind pollination, and gene flow are introduced by a perspective on the role of the fossil record in pollination biology. A speculative chapter on the constraints...

  8. Synthesis of C-di-saccharidic compounds by radical cyclisation. Study of biological, structural and dynamic properties

    International Nuclear Information System (INIS)

    Rubinstenn, Gilles

    1996-01-01

    The synthesis of carbohydrate mimics and particularly of C-disaccharides, molecules in which the inter-glycosidic oxygen atom has been replaced by a methylene group, has become, this past two decades, an important challenge in organic chemistry. In the first chapter we present the synthesis of C-disaccharides from the neutral series by a silaketal tethering. The key step of this C-glycosylation is a radical macro-cyclisation. This strategy is applied to the synthesis of two analogues of natural, biologically active, products, the lactose and the Lewis x tri-saccharide. The biological activity of this mimetics is then evaluated. A new tethering strategy, based on the use of phosphorus III compounds, is applied, in the second chapter, to the building of C-disaccharides of the 2'-amino 2'- deoxy series. The third chapter deals with the structural and dynamics study of the C-glycosides prepared in chapter 1 by Nuclear Magnetic Resonance. A new methodology, studying the dipolar relaxation along an effective field, generated through an off-resonance RF field, allowed the precise measurement of longitudinal and transverse cross-relaxation rates. Structural and dynamics parameter thus derived are used as restraints for molecular modeling. The results of this study are then compared to those of the biological tests. (author) [fr

  9. Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent anticancer agents.

    Science.gov (United States)

    Karki, Subhas S; Panjamurthy, Kuppusamy; Kumar, Sujeet; Nambiar, Mridula; Ramareddy, Sureshbabu A; Chiruvella, Kishore K; Raghavan, Sathees C

    2011-06-01

    Levamisole, the imidazo[2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 μM) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Synthesis and biological evaluation of the four isomers of technetium-99m labeled ethylenecysteamine cysteine ({sup 99m}Tc-ECC), the mono-acid derivative of {sup 99m}tc-L,L-ethylenedicysteine

    Energy Technology Data Exchange (ETDEWEB)

    Vanbilloen, Hubert P.; Cleynhens, Bernard J.; Verbruggen, Alfons M. E-mail: alfons.verbruggen@uz.kuleuven.ac.be

    2000-02-01

    A few years ago {sup 99m}Tc-ethylenedicysteine ({sup 99m}Tc-L,L-EC) had been proposed as an interesting substitute for technetium-99m labeled mercaptoacetyltriglycine (MAG3) as renal function tracer agent. It possesses in its structure two carboxylate functions and is in this respect different from other renal tracers such as {sup 99m}Tc-N,N'-bis-(mercaptoacetyl)-2,3-diaminopropionate ({sup 99m}Tc-CO{sub 2}DADS), {sup 99m}Tc-MAG3, and Hippuran, which have only one carboxylic group. To study whether both carboxylic acid groups of {sup 99m}Tc-L,L-EC contribute to the efficient renal handling of this compound we synthesized and biologically evaluated the technetium-99m labeled isomers of L- and D-ethylenecysteamine cysteine (ECC), the mono-acid derivative of {sup 99m}Tc-L,L-EC. Labeling of L-ECC or D-ECC with {sup 99m}Tc using a direct or exchange labeling method yields for each of them two diastereomeric {sup 99m}Tc complexes (A and B, in the order of elution during reversed phase high performance liquid chromatography) in relative amounts depending on the pH during labeling. In mice, all four isomers of {sup 99m}Tc-ECC (LA, LB, DA, and DB) are cleared rapidly from the blood, mainly by the renal system. The isomers LB and DB show the most efficient renal handling, but none of the mono-acid derivatives has a urinary excretion rate as high as that of {sup 99m}Tc-L,L-EC. The renal handling of the isomers of {sup 99m}Tc-ECC is partly due to tubular secretion because the urinary excretion of these compounds is significantly lower in mice pretreated with probenecid. In the baboon, isomers DA and DB show a plasma clearance comparable to that of {sup 99m}Tc-L,L-EC. The plasma clearance of isomers LA and LB is lower but still comparable to or higher than that of {sup 99m}Tc-MAG3. In a human volunteer, isomer DB shows a plasma clearance rate only slightly lower than that of {sup 99m}Tc-L,L-EC. Thus, it appears that the presence of one carboxylate in {sup 99m

  11. The discovery of new potent non-peptide Angiotensin II AT1 receptor blockers: A concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives

    Czech Academy of Sciences Publication Activity Database

    Agelis, G.; Resvani, A.; Durdagi, S.; Spyridaki, K.; Tůmová, Tereza; Slaninová, Jiřina; Giannopoulos, P.; Vlahakos, D.; Liapakis, G.; Mavromoustakos, T.; Matsoukas, J.

    2012-01-01

    Roč. 55, Sep (2012), s. 358-374 ISSN 0223-5234 Institutional research plan: CEZ:AV0Z40550506 Keywords : synthesis * angiotensin II receptor blockers * N-substituted 5-butylimidazole derivatives * antihypertensive activity * molecular docking Subject RIV: CC - Organic Chemistry Impact factor: 3.499, year: 2012

  12. Center for Biologics Evaluation and Research (CBER)

    Data.gov (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  13. Synthesis and Biological Evaluation of Cyclic [99mTc]-HYNIC-CGPRPPC as a Fibrin-Binding Peptide for Molecular Imaging of Thrombosis and Its Comparison with [99mTc]-HYNIC-GPRPP.

    Science.gov (United States)

    Rezaeianpour, Sedigheh; Bozorgi, Atefeh Hajiagha; Moghimi, Abolghasem; Almasi, Ameneh; Balalaie, Saeed; Ramezanpour, Sorour; Nasoohi, Sanaz; Mazidi, Seyed Mohammad; Geramifar, Parham; Bitarafan-Rajabi, Ahmad; Shahhosseini, Soraya

    2017-04-01

    Many patients worldwide suffer from cardiovascular diseases for which an underlying factor is thrombosis. Devising a molecular imaging technique for early detection of thrombosis in a clinical setting is highly recommended. Because fibrin is a major constituent of clots and is present in all types of thrombi but absent in circulation, it is a highly specific and sensitive target for molecular imaging of thrombi. It is assumed that cyclization of peptides will improve the receptor binding affinity and stability of the peptide. In the present study, we have developed linear and cyclic fibrin-binding peptides for thrombus imaging and compared their biological properties. Linear HYNIC-GPRPP and cyclic HYNIC-CGPRPPC peptides were synthesized using a standard Fmoc strategy and radiolabeled with Tc-99m. The stability of the radiolabeled peptides in human plasma and their affinity for fibrin and blood clots were determined. Blood clearance and biodistribution were evaluated in rats and mice, respectively. The peptide with the highest affinity was injected to a live rabbit femoral thrombosis model, and scintigraphic images were obtained. In vitro studies show that peptides are stable in human plasma and have a high affinity for human fibrin. They also demonstrated fast blood clearance in rats and high thrombus uptake in the Balb/c mice femoral thrombosis model. Femoral thrombosis was visualized 30 min postinjection of cyclic peptide in a live rabbit model using single photon emission computed tomography (SPECT)/X-ray computed tomography. The results indicate that the cyclic peptide is a promising agent for molecular imaging of fibrin using SPECT.

  14. Design, synthesis and biological evaluation of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives as dual 5α-reductase inhibitors and androgen receptor antagonists.

    Science.gov (United States)

    Lao, Kejing; Sun, Jie; Wang, Chong; Wang, Ying; You, Qidong; Xiao, Hong; Xiang, Hua

    2017-09-01

    Prostate cancer (PCa) is the second leading cause of death in men. Recently, some researches have showed that 5α-reductase inhibitors were beneficial in PCa treatment as well. In this study, a series of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives have been designed and synthesized in a more simple and convenient method. Most of the synthesized compounds displayed good 5α-reductase inhibitory activities and androgen receptor binding affinities. Their anti-proliferation activities in PC-3 and LNCaP cell lines were also evaluated and the results indicated that most of the synthesized compounds exhibited potent anti-proliferative activities. It is obvious that the androgen-dependent cell line LNCaP was much more sensitive than the androgen-independent cell line PC-3. Among all the synthesized compounds, 11d and 11k displayed the best inhibition activity with 4-fold more sensitive toward LNCaP than PC-3, which was consistent with their high affinities observed in AR binding assay. Molecular modeling studies suggested that 11k could bind to AR in a manner similar to the binding of dihydrotestosterone to AR. Compared to the finasteride, 11k showed a longer plasma half-life (4h) and a better bioavailability. Overall, based on biological activities data, compound 11d and 11k can be identified as potential dual 5α-reductase inhibitors and AR antagonists which might be of therapeutic importance for prostate cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design and synthesis of a new steroid-macrocyclic derivative with biological activity.

    Science.gov (United States)

    López-Ramos, Maria; Figueroa-Valverde, Lauro; Herrera-Meza, Socorro; Rosas-Nexticapa, Marcela; Díaz-Cedillo, Francisco; García-Cervera, Elodia; Pool-Gómez, Eduardo; Cahuich-Carrillo, Regina

    2017-04-01

    The aims of this study were to evaluate the positive inotropic effect of a new macrocyclic derivative (compound 11 ) and characterize the molecular mechanism involved in its biological activity. The first step was achieved by synthesis of a macrocyclic derivative involving a series of reactions for the preparation of several steroid derivatives such as (a) steroid-pyrimidinone ( 3 and 4 ), (b) steroid-amino ( 5 ), (c) steroid-imino ( 6 ), (d) ester-steroid ( 7 and 8 ), and (e) amido-steroid ( 9 and 10 ). Finally, 11 was prepared by removing the tert -butyldimethylsilane fragment of 10 . The biological activity of compounds on perfusion pressure and vascular resistance was evaluated on isolated rat heart using the Langendorff model. The inotropic activity of 11 was evaluated in presence of prazosin, metoprolol, indomethacin, nifedipine, and flutamide to characterize its molecular mechanism. Theoretical experiments were carried out with a Docking model, to assess potential interactions of androgen receptor with 11 . The results showed that only this macrocyclic derivative exerts changes on perfusion pressure and vascular resistance translated as the positive inotropic effect, and this effect was blocked with flutamide; these data indicate that the positive inotropic activity induced by this macrocyclic derivative was via androgen receptor activation. The theoretical results indicated that the interaction of the macrocyclic derivative with the androgen receptor involves several amino acid residues such as Leu 704 , Asn 705 , Met 780 , Cys 784 , Met 749 , Leu 762 , Phe 764 , Ser 778 , and Met 787 . In conclusion, all these data suggest that the positive inotropic activity of the macrocyclic derivative may depend on its chemical structure.

  16. Synthesis and Biological Investigation of Antioxidant Pyrrolomorpholine Spiroketal Natural Products

    Science.gov (United States)

    Verano, Alyssa Leigh

    The pyrrolomorpholine spiroketal natural product family is comprised of epimeric furanose and pyranose isomers. These compounds were isolated from diverse plant species, all of which are used as traditional Chinese medicines for the treatment of a variety of diseases. Notably, the spiroketal natural products acortatarins A and B exhibit antioxidant activity in a diabetic renal cell model, significantly attenuating hyperglycemia-induced production of reactive oxygen species (ROS), a hallmark of diabetic nephropathy. The xylapyrrosides, additional members of the family, also inhibit t-butyl hydroperoxide-induced cytotoxicity in rat vascular smooth muscle cells. Accordingly, these natural products have therapeutic potential for the treatment of oxidative stress-related pathologies, and synthetic access would provide an exciting opportunity to investigate bioactivity and mechanism of action. Herein, we report the stereoselective synthesis of acortatarins A and B, furanose members of the pyrrolomorpholine spiroketal family. Our synthetic route was expanded to synthesize the pyranose congeners, thus completing entire D-enantiomeric family of natural products. Efficient access towards these scaffolds enabled systematic analogue synthesis, investigation of mechanism-of-action, and the discovery of novel antioxidants.

  17. [Update on the biology of heme synthesis in erythroid cells].

    Science.gov (United States)

    Fujiwara, Tohru; Harigae, Hideo

    2015-02-01

    Heme is a prosthetic group of hemoproteins playing important roles in oxygen transport, detoxification, circadian rhythm, microRNA processing, regulation of transcription, and translation. The majority of heme (-85%) is synthesized in red blood cells mainly for hemoglobin production, whereas hepatocytes account for most of the rest, functioning primarily in the synthesis of cytochrome P450 enzymes and mitochondrial respiratory enzymes. Thus, failure of heme biosynthesis causes severe inherited or acquired disorders in humans, including porphyria and sideroblastic anemia. The heme biosynthetic pathway is composed of eight enzymes that work in either mitochondria or the cytoplasm, which have been extensively researched and frequently reviewed. On the other hand, the mechanisms governing transport and intracellular trafficking of heme intermediates, as well as their potential links to human diseases, are poorly understood. Herein, we focus on recent understanding of the heme biosynthetic pathway and on human disorders due to defective heme synthesis in erythroid cells, such as X-linked sideroblastic anemia and erythropoietic protoporphyria.

  18. The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology.

    Science.gov (United States)

    O'Malley, Maureen A

    2017-10-04

    Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.

  19. Synthesis, antibacterial and cytotoxic activity evaluation of hydroxyurea derivatives.

    Science.gov (United States)

    Kos, Ivan; Jadrijević-Mladar, Milena; Butula, Ivan; Biruš, Mladen; Maravić-Vlahoviček, Gordana; Dabelić, Sanja

    2013-06-01

    5 Synthesis and biological evaluation of a series (N = 16) of cyclic and acyclic hydroxyurea derivatives, including benzotriazole-, isocyanuric acid- and biuret-containing compounds, are disclosed. 1-N-(benzyloxycarbamoyl)benzotriazole was used as a benzyloxyisocyanate donor, a useful intermediate in the preparation of substituted hydroxyurea. Antibacterial activities of synthesized hydroxyurea derivatives were tested on three E. coli strains, i.e., a strain susceptible to antibiotics, a strain resistant to macrolide antibiotics and a strain resistant to aminoglycoside antibiotics. Six compounds (three acyclic and three cyclic hydroxyureas) showed growth inhibition of the tested E. coli strains, with different specificity toward each strain. Results of the cytotoxic activity evaluation revealed that twelve out of sixteen test compounds were cytotoxic to human acute monocytic leukemia THP-1 and/or human acute T cell leukemia Jurkat cell line. 1-(N-hydroxycarbamoyl) benzotriazole () increased the metabolic activity of both cell lines. Two compounds, 1-(N-hydroxycarbamoyl) benzotriazole (5) and N,N',N''-trihydroxybiuret (15), were identified as potential NO donors.

  20. BASIC SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME PHOSPHORCONTATNING ORGANIC COMPOUNDS CONTAINING FRAGMENTS OF UREA AND TRYHLORETILAMID

    Directory of Open Access Journals (Sweden)

    Gushylyk B.

    2013-10-01

    Full Text Available Data about directions of synthesis and use of the phosphororganic compounds in technics, biology and medicine is presented in the paper. Antimicrobial activity of 51 phosphororganic salts and ilides containing urine and threechlor ethylenamide has been studied. Perspective of the development of effective antimicrobial substances has been determined

  1. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    Directory of Open Access Journals (Sweden)

    Helena M. C. Ferraz

    2008-01-01

    Full Text Available The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  2. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  3. Synthesis and biological activity of new homolupanes and homolupane saponins

    Czech Academy of Sciences Publication Activity Database

    Sidoryk, K.; Korda, A.; Rárová, Lucie; Oklešťková, Jana; Strnad, Miroslav; Cmoch, P.; Pakulski, Z.; Gwardiak, K.; Karczewski, R.; Luboradzki, R.

    2015-01-01

    Roč. 71, č. 13 (2015), s. 2004-2012 ISSN 0040-4020 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Homobetulin * Homobetulinic acid * Glycosylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.645, year: 2015

  4. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  5. An Efficient Synthesis of 3,4-Dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine Derivatives Catalyzed by Zirconyl(IV) Chloride and Evaluation of its Biological Activities

    Energy Technology Data Exchange (ETDEWEB)

    Kategaonkar, Amol H.; Sonar, Swapnil S.; Pokalwar, Rajkumar U.; Shingate, Bapurao B.; Shingare, Murlidhar S. [Babasaheb Ambedkar Marathwada University, Maharashtra (India); Kategaonkar, Atul H. [Maharashtra Institute of Pharmacy, Maharashtra (India)

    2010-06-15

    An efficient and novel one-pot synthesis of new 3,4-dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine derivatives from 1-naphthol, various anilines and formalin at room temperature grinding is presented. The six-membered N,O-heterocyclic skeleton was constructed via zirconyl(IV) chloride promoted Mannich type reaction. In vitro antimicrobial activities of synthesized compounds have been investigated against Gram-positive Bacillus subtilis, Gram negative Escherichia coli and two fungi Candida albicans and Aspergillus niger in comparison with standard drugs. The results of preliminary bioassay indicate that some of title compounds possess significant antibacterial and antifungal activity.

  6. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    Science.gov (United States)

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  7. Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological properties.

    Science.gov (United States)

    Fascio, Mirta L; Errea, María Inés; D'Accorso, Norma Beatriz

    2015-01-27

    Fused heterobicyclic systems have gained much importance in the field of medicinal chemistry because of their broad spectrum of physiological activities. Among the heterocyclic rings containing bridgehead nitrogen atom, imidazothiazoles derivatives are especially attractive because of their different biological activities. Since many imidazothiazoles derivatives are effective for treating several diseases, is interesting to analyze the behavior of some isosteric related heterocycles, such as pirrolothiazoles, imidazothiadiazoles and imidazotriazoles. In this context, this review summarizes the current knowledge about the syntheses and biological behavior of these families of heterocycles. Traditional synthetic methodologies as well as alternative synthetic procedures are described. Among these last methodologies, the use of multicomponent reaction, novel and efficient coupling reagents, and environmental friendly strategies, like microwave assistance and solvent-free condition in ionic liquids are also summarized. This review includes the biological assessments, docking research and studies of mechanism of action performed in order to obtain the compounds leading to the development of new drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. SYNTHESIS AND ANTIBACTERIAL EVALUATION OF SOME ...

    African Journals Online (AJOL)

    General procedure for the synthesis of Mannich Bases (III-V). Benzimidazolylthioacetic acid. (II) (0.002 mol) dissolved in ethanol and 3-4 drops of conc. HCl was added and reaction mixture was kept for stirring. To the stirring reaction mixture, formaldehyde (0.002 mol) was added drop wise and stirring was continued for 10 ...

  9. Design, synthesis, and biological evaluation of novel 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives as cytotoxic agents and COX-2/LOX inhibitors

    Czech Academy of Sciences Publication Activity Database

    Lamie, P.F.; Philoppes, J.N.; Rárová, Lucie

    2018-01-01

    Roč. 351, 3-4 (2018), č. článku e1700311. ISSN 0365-6233 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : anti-inflammatory * cytotoxicity * diaryl imidazolone derivatives * molecular docking study Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 1.994, year: 2016

  10. Synthesis, characterization and biological applications of mycosynthesized silver nanoparticles.

    Science.gov (United States)

    Anbazhagan, Sathiyaseelan; Azeez, Shajahan; Morukattu, Girilal; Rajan, Ramachandran; Venkatesan, Kaviyarasan; Thangavelu, Kalaichelvan Puthupalayam

    2017-10-01

    Silver nanoparticles (AgNPs) have been known for their inhibitory and bactericidal effects. In the present study, less toxic AgNPs using Cunninghamella echinulata is reported for the first time. The obtained AgNPs were characterized using UV-Visible spectrophotometer, XRD, FT-IR, FE-SEM with EDAX and HR-TEM. AgNPs showed the maximum absorbance at 420-430 nm. The transmission electron micrograph revealed the formation of considerably uniform-sized AgNPs with an average size of 20-50 nm. The reducing and capping agents responsible for AgNP synthesis were identified by FT-IR. AgNP-incorporated cotton fabrics exhibited promising antibacterial activity against pathogenic bacteria. In addition, the in vitro cell viability of Vero cells (African green monkey kidney cells) was analyzed and the IC 50 value of AgNPs was found to be 62.8 µg/mL. Taken together, these results clearly reveal less toxic AgNPs which could be exploited for various biomedical applications.

  11. Synthesis and in vitro evaluation of a selective antagonist and the corresponding radioligand for the prostaglandin D2 receptor CRTH2

    DEFF Research Database (Denmark)

    Ulven, Trond; Gallen, Michael J; Nielsen, Mads C

    2007-01-01

    Synthesis and preliminary in vitro biological evaluation of a selective high-affinity CRTH2 antagonist is described. The stability of an N-benzyl group facilitated synthesis of the corresponding radioligand by tritiation of a brominated precursor. The compound [(3)H]TRQ11238 represents the first ...

  12. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Use of biological indicators to evaluate environmental stress

    International Nuclear Information System (INIS)

    Letourneau, C.; Castonguay, J.

    1987-09-01

    This report examines the usefulness of biological analyses for evaluating environmental stress. All forms of stress are addressed; particular attention, however, is paid to the use of biological analyses to evaluate the impact on the environment from radioactive releases of the nuclear industry. First, we will review different biological analyses which are grouped into two approaches: the holistic approach (biotic and diversity indices) and the reductionist approach ('biological indicators' per se). Secondly, we will compare the usefulness of plants and animals as indicators based on the established criteria. This report ends with a compilation of letters received from different organizations which outline the present usage in Canada of biological indicators for evaluating environmental stress

  14. Use of biological indicators for evaluating environmental stress

    International Nuclear Information System (INIS)

    Letourneau, C.; Castonguay, J.

    1988-09-01

    This report examines the usefulness of biological analyses for evaluating environmental stress. All forms of stress are addressed; particular attention, however, is paid to the use of biological analyses to evaluate the impact on the environment from radioactive releases of the nuclear industry. First, we will review different biological analyses which are grouped into two approaches: the holistic approach (biotic and diversity indices) and the reductionist approach ('biological indicators' per se). Secondly, we will compare the usefulness of plants and animals as indicators based on the established criteria. This report ends with a compilation of letters received from different organizations which outline the present use in Canada of biological indicators for evaluating environmental stress

  15. Drawing melodies: evaluation of chironomic singing synthesis.

    Science.gov (United States)

    d'Alessandro, Christophe; Feugère, Lionel; Le Beux, Sylvain; Perrotin, Olivier; Rilliard, Albert

    2014-06-01

    Cantor Digitalis, a real-time formant synthesizer controlled by a graphic tablet and a stylus, is used for assessment of melodic precision and accuracy in singing synthesis. Melodic accuracy and precision are measured in three experiments for groups of 20 and 28 subjects. The task of the subjects is to sing musical intervals and short melodies, at various tempi, using chironomy (hand-controlled singing), mute chironomy (without audio feedback), and their own voices. The results show the high accuracy and precision obtained by all the subjects for chironomic control of singing synthesis. Some subjects performed significantly better in chironomic singing compared to natural singing, although other subjects showed comparable proficiency. For the chironomic condition, mean note accuracy is less than 12 cents and mean interval accuracy is less than 25 cents for all the subjects. Comparing chironomy and mute chironomy shows that the skills used for writing and drawing are used for chironomic singing, but that the audio feedback helps in interval accuracy. Analysis of blind chironomy (without visual reference) indicates that a visual feedback helps greatly in both note and interval accuracy and precision. This study demonstrates the capabilities of chironomy as a precise and accurate mean for controlling singing synthesis.

  16. Adolescent Substance Abuse Treatment: A Synthesis of Controlled Evaluations

    Science.gov (United States)

    Vaughn, Michael G.; Howard, Matthew O.

    2004-01-01

    Objective: A synthesis was conducted to assess outcome findings and methodological characteristics of controlled evaluations of adolescent substance abuse treatments. Method: Extensive computerized and manual bibliographic searches were employed to identify controlled evaluations of adolescent substance abuse treatment. Meta-analytic techniques…

  17. Synthesis, evaluation and molecular modelling studies of some ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 2. Synthesis, evaluation and molecular modelling studies of some novel 3-(3 ... The compounds have been characterized on the basis of elemental analysis and spectral data. All the compounds were evaluated for their HIV-1 RT inhibitory activity. Among ...

  18. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  19. Students' Evaluation of Classroom Interactions of Their Biology ...

    African Journals Online (AJOL)

    Nekky Umera

    Abstract. This correlational study investigated students' evaluation of their biology teachers' classroom interaction and their feelings towards biology lessons. Three research questions guided the study. Copies of a questionnaire containing 48 items were distributed to 1,216 senior secondary two students from nine ...

  20. Design, synthesis, and biological testing of thiosalicylamides as a novel class of calcium channel blockers.

    Science.gov (United States)

    Mehanna, Ahmed S; Kim, Jin Yung

    2005-07-01

    The current research aimed to investigate the importance of the heterocyclic ring system in the structure of the cardiovascular drug diltiazem for its calcium channel blocking activity. The manuscript describes the design, synthesis, and biological testing of a total of 10 S-(p-methoxybenzyl), N-substituted thiosalicylamides as a series of non-cyclic compounds derived from diltiazem's structure. The new compounds maintained all diltiazem pharmacophores except the thiazepine ring system. In vitro evaluation of the new series for calcium channel blocking effects revealed moderate activities with IC50 values in the range of 4.8-56.0 microM. The data suggest that the ring system is not essential for activity; however, its absence leads to a considerable drop of activity relative to that of diltiazem (IC50=0.3 microM). Compounds of the current series showed optimum activity when the aliphatic alkyl chain on the salicylamide nitrogen is part of a piperidine or piperazine ring system substituted at the terminal nitrogen with a benzyl group.

  1. Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties.

    Science.gov (United States)

    Baldisserotto, Anna; Vertuani, Silvia; Bino, Alessia; De Lucia, Daniela; Lampronti, Ilaria; Milani, Roberta; Gambari, Roberto; Manfredini, Stefano

    2015-01-01

    Recent interest in flavonoids has increased greatly due to their biological and pharmacological activities. Flavonoids, consist of a large group of low molecular weight polyphenolic substances, naturally occurring in fruits, vegetables, tea, and wine, and are an integral part of the human diet. Rutin is a common dietary flavonoid that is widely consumed worldwide from plant-derived beverages and foods as traditional and folk medicine remedy as well. Rutin exhibit important pharmacological activities, including anti-oxidation, anti-inflammation, anti-diabetic, anti-adipogenic, neuroprotective and hormone therapy. Here, we present the synthesis, antimicrobial, antiproliferative and pro-apoptotic effect on human leukemic K562 cells of compound R2, a new semi-synthetic derivative of Rutin as compared to Rutin itself. The new derivative was also included in finished topical formulations to evaluate a potential application to the dermatology field in view of the antioxidant/antimicrobial/antiinflammatory properties. Stability studies were performed by HPLC; PCL assay and ORAC tests were used to determine the antioxidant activity. R2 presented an antioxidant activity very close to that of the parent Rutin while bearing much better lipophilic character. Regarding antiproliferative effects on the human K562 cell line, R2 was found to be more effective than parent Rutin. Preliminary experiments demonstrated that R2 inhibits NF-kB activity and promotes cellular apoptosis. Copyright © 2014. Published by Elsevier Ltd.

  2. Synthesis, characterization and biological behavior of some Schiff's and Mannich base derivatives of Lamotrigine

    Directory of Open Access Journals (Sweden)

    A.A. Kulkarni

    2017-02-01

    Full Text Available A series of various Schiff's and Mannich base derivatives (N1–2 & ND1–6 of Lamotrigine with isatin and substituted isatin were synthesized to get more potent anticonvulsant agents. The starting material for the synthesis of various new Schiff's and Mannich base derivatives was isatin (1H-indole- 2, 3-dione which in turn was prepared from substituted isonitrosoacetanilide using aniline. Lamotrigine reacts with isatin & substituted isatin gave Schiff's bases (N1–2 which on reaction with various secondary amines (dimethylamine, diethylamine, morpholine produced Mannich bases (ND1–6. The structures of newly synthesized compounds were characterized by using TLC, UV, FT-IR, 1HNMR and studied for their anticonvulsant activity. Anticonvulsant activity of all the derivatives was evaluated by MES method using phenobarbitone sodium & Lamotrigine as standard drugs and % reduction of time spent by animals in extension, flexion, clonus, and stupor phase were noted. Compounds ND-4 and ND-6 showed significant anticonvulsant activity when compared with that of standard drugs. The remaining all compounds show moderate activity. Biological activity data of the synthesized derivatives revealed that, the synthesized derivatives are good anticonvulsant agents as compared to Lamotrigine.

  3. Dideoxy fluoro-ketopyranosyl nucleosides as potent antiviral agents: synthesis and biological evaluation of 2,3- and 3,4-dideoxy-3-fluoro-4- and -2-keto-beta-d-glucopyranosyl derivatives of N(4)-benzoyl cytosine.

    Science.gov (United States)

    Manta, Stella; Tsoukala, Evangelia; Tzioumaki, Niki; Goropevsek, Ales; Pamulapati, Ravi Teja; Cencic, Avrelija; Balzarini, Jan; Komiotis, Dimitri

    2009-06-01

    The synthesis of the dideoxy fluoro ketopyranonucleoside analogues, 1-(2,3-dideoxy-3-fluoro-6-O-trityl-beta-d-glycero-hexopyranosyl-4-ulose)-N(4)-benzoyl cytosine (7a), 1-(3,4-dideoxy-3-fluoro-6-O-trityl-beta-d-glycero-hexopyranosyl-2-ulose)-N(4)-benzoyl cytosine (13a) and their detritylated analogues 8a and 14a, respectively, is described. Condensation of peracetylated 3-deoxy-3-fluoro-D-glucopyranose (1) with silylated N(4)-benzoyl cytosine, followed by selective deprotection and isopropylidenation afforded compound 2. Routine deoxygenation at position 2', followed by a deprotection-selective reprotection sequence afforded the partially tritylated dideoxy nucleoside of cytosine 6, which upon oxidation of the free hydroxyl group at the 4'-position, furnished the desired tritylated 2,3-dideoxy-3-fluoro ketonucleoside 7a in equilibrium with its hydrated form 7b. Compound 2 was the starting material for the synthesis of the dideoxy fluoro ketopyranonucleoside 13a. Similarly, several subsequent protection and deprotection steps as well as routine deoxygenation at position 4', followed by oxidation of the free hydroxyl group at the 2'-position of the partially tritylated dideoxy nucleoside 12, yielded the desired carbonyl compound 13a in equilibrium with its hydrated form 13b. Finally, trityl removal from 7a/b and 13a/b provided the unprotected 2,3-dideoxy-3-fluoro-4-keto and 3,4-dideoxy-3-fluoro-2-ketopyranonucleoside analogues 8a and 14a, in equilibrium with their gem-diol forms 8b and 14b. None of the compounds showed inhibitory activity against a wide variety of DNA and RNA viruses at subtoxic concentrations, except 7a/b that was highly efficient against rotavirus infection. Nucleoside 7a/b also exhibited cytostatic activity against cells of various cancers. BrdU-cell cycle analysis revealed that the mechanism of cytostatic activity may be related to a delay in G1/S phase and initiation of programmed cell death.

  4. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies.

    Science.gov (United States)

    Rostom, Sherif A F; Badr, Mona H; Abd El Razik, Heba A; Ashour, Hayam M A

    2017-10-20

    Synthesis of twenty nine new 1,2,4-triazoles and some derived thiazolothiadiazoles (structurally-relevant to some reported triazoles with anticancer and/or Cdc25A/B inhibitory activities) is described in this study. The obtained NCI's in vitro antitumor data revealed that five analogs (12, 15, 18, 19 and 22) displayed considerable tumor percentage growth inhibitory activity (GI%), among which the analog 18 possessed a special antitumor potential and spectrum. Additionally, the same five analogs showed a marginal GI effect on the normal breast epithelial cell line MCF-10A indicating higher selectivity towards cancer cells. The same active analogs 12, 15, 18, 19 and 22 were further assessed for their in vitro Cdc25A/B phosphatase inhibitory activity (a possible antitumor target), where 18 and 22 displayed a distinctive inhibitory affinity towards the Cdc25B isozyme (6.7 and 8.4 μM, respectively). Docking of 12, 15, 18, 19 and 22 with the active site of human Cdc25B phosphatase enzyme demonstrated superior binding profile by the top-scoring analog 18 relative to a reported Cdc25 phosphatase ligand. In silico calculations of molecular properties revealed that all of the active compounds comply with Lipinski's RO5 and Veber's criteria for good bioavailability suggesting good drug-likeness upon oral administration with a predicted high safety profile. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Glucuronidated Flavonoids in Neurological Protection: Structural Analysis and Approaches for Chemical and Biological Synthesis.

    Science.gov (United States)

    Docampo, Maite; Olubu, Adiji; Wang, Xiaoqiang; Pasinetti, Giulio; Dixon, Richard A

    2017-09-06

    Both plant and mammalian cells express glucuronosyltransferases that catalyze glucuronidation of polyphenols such as flavonoids and other small molecules. Oral administration of select polyphenolic compounds leads to the accumulation of the corresponding glucuronidated metabolites at μM and sub-μM concentrations in the brain, associated with amelioration of a range of neurological symptoms. Determining the mechanisms whereby botanical extracts impact cognitive wellbeing and psychological resiliency will require investigation of the modes of action of the brain-targeted metabolites. Unfortunately, many of these compounds are not commercially available. This article describes the latest approaches for the analysis and synthesis of glucuronidated flavonoids. Synthetic schemes include both standard organic synthesis, semisynthesis, enzymatic synthesis and use of synthetic biology utilizing heterologous enzymes in microbial platform organisms.

  6. Synthesis and characterization of some metal complexes derived from azo compound of 4,4‧-methylenedianiline and antipyrine: Evaluation of their biological activity on some land snail species

    Science.gov (United States)

    AbouEl-Enein, Saeyda A.; Emam, Sanaa M.; Polis, Magdy W.; Emara, Esam M.

    2015-11-01

    A novel series of metal complexes of the azo dye; bis-(1,5-dimethyl-4-[(E)-(3-methylphenyl)diazenyl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one) derived from 4,4‧-methylenedianiline and antipyrine was synthesized and characterized by different spectral, thermal and analytical methods. The tetradentate ligand reacts with the metal ions as a half unit. All complexes display an octahedral geometry, except Pd(II) complex (7) which has a square planar one. The thermal studies reveal that the complexes have higher thermal stability comparable with that of the free ligand. The activation thermodynamic parameters, such as activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*) have been calculated using DTG curves. The ESR spectra of the solid Cu(II) complexes showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The biological activities of the ligand, as well as its metal complexes have been tested in vitro against two land snail species; Eobania vermiculata and Monacha obstructa. The results show that all the tested compounds have significant biological activities against the two tested land snail species with different sensitivity levels.

  7. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  8. Antroquinonol A: Scalable Synthesis and Preclinical Biology of a Phase 2 Drug Candidate.

    Science.gov (United States)

    Villaume, Matthew T; Sella, Eran; Saul, Garrett; Borzilleri, Robert M; Fargnoli, Joseph; Johnston, Kathy A; Zhang, Haiying; Fereshteh, Mark P; Dhar, T G Murali; Baran, Phil S

    2016-01-27

    The fungal-derived Taiwanese natural product antroquinonol A has attracted both academic and commercial interest due to its reported exciting biological properties. This reduced quinone is currently in phase II trials (USA and Taiwan) for the treatment of non-small-cell lung carcinoma (NSCLC) and was recently granted orphan drug status by the FDA for the treatment of pancreatic cancer and acute myeloid leukemia. Pending successful completion of human clinical trials, antroquinonol is expected to be commercialized under the trade name Hocena. A synthesis-enabled biological re-examination of this promising natural product, however, reveals minimal in vitro and in vivo antitumor activity in preclinical models.

  9. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology

    Science.gov (United States)

    Burke, Helen M.; McSweeney, Lauren; Scanlan, Eoin M.

    2017-05-01

    S-to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S-to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology.

  10. Quaternary Alkylammonium Conjugates of Steroids: Synthesis, Molecular Structure, and Biological Studies

    Directory of Open Access Journals (Sweden)

    Bogumił Brycki

    2015-11-01

    Full Text Available The methods of synthesis as well as physical, spectroscopic (1H-NMR, 13C-NMR, and FT-IR, ESI-MS, and biological properties of quaternary and dimeric quaternary alkylammonium conjugates of steroids are presented. The results were contrasted with theoretical calculations (PM5 methods and potential pharmacological properties (PASS. Alkylammonium sterols exhibit a broad spectrum of antimicrobial activity comparable to squalamine.

  11. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    International Nuclear Information System (INIS)

    Babkov, D A; Geisman, A N; Novikov, M S; Khandazhinskaya, A L

    2016-01-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references

  12. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    Science.gov (United States)

    Babkov, D. A.; Geisman, A. N.; Khandazhinskaya, A. L.; Novikov, M. S.

    2016-03-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references.

  13. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides.

    Science.gov (United States)

    Bai, Hong-Juan; Zhang, Zhao-Ming; Gong, Jun

    2006-07-01

    A novel, clean biological transformation reaction by immobilized Rhodobacter sphaeroides has been developed for the synthesis of zinc sulfide (ZnS) nanoparticles with an average diameter of 8 nm. The nanoparticles were examined by X-ray diffraction, transmission electron microscopy, energy dispersive analyses of X-rays, UV-vis optical absorption and photoluminescence spectra. The average diameter of ZnS nanoparticles varied according to the culture time.

  14. Synthesis, Biological Evaluation, and Molecular Docking of (R)-2-((8-(3-aminopiperidin-1-yl)-3-methyl-7-(3-methylbut-2-en-1-yl)-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)methyl)benzonitrile as Dipeptidyl Peptidase IV Inhibitors.

    Science.gov (United States)

    Ran, Yan; Pei, Heying; Shao, Mingfeng; Chen, Lijuan

    2016-02-01

    Type 2 diabetes (T2D) is classified as a major metabolic disorder, which has affected approximately 194 million people worldwide. DPP-IV inhibitors as a new therapy have shown several advantages over traditional antidiabetic drugs. Based on the similar binding modes of Alogliptin and Linagliptin, molecular operation was conducted via combining pharmacophore hybridization with structural optimization between the two market drugs and racemic compounds 40 and 43 were reported as DPP-IV inhibitors in our previous studies. But the majority of DPP-IV inhibitors have developed into a small molecule with certain conformation; in this study, we described the synthesis, biological evaluation, and molecular docking of corresponding enantiomers of compounds 40 and 43. The most potent inhibitor is (R)-40 (IC50  = 23.5 nm, F = 74.67%, T1/2  = 4 h), which exhibited moderate antihyperglycemic activity as compared to the standard antidiabetic drug Linagliptin in OGTT. In addition, compound (R)-40 effectively improved the pathological state of DIO mice. Molecular docking studies clarified the favorable binding affinity between compound (R)-40 and DPP-IV active site. Thus, compound (R)-40 would be entitled to further development as a drug candidate on the basis of the suitable pharmacokinetic (PK) and desirable pharmacodynamic (PD) profiles. © 2015 John Wiley & Sons A/S.

  15. The "contemporary synthesis": when politically inclusive genomic science relies on biological notions of race.

    Science.gov (United States)

    Fullwiley, Duana

    2014-12-01

    This essay outlines the emergence of a contemporary synthesis regarding racial thinking in genetic science and in society more broadly. A departure from what Julian Huxley in 1942 termed the "modern synthesis," the contemporary version does not purport to leave race thinking behind in favor of evolution, population genetics, and population-based accounts of natural selection and human diversity. Specifically, the contemporary synthesis blends old concepts (such as that of pure human "types," located within continental land masses) with new attitudes (democratic inclusion, multicultural diversity, and anti-racism). Through various examples, the essay shows how this new synthesis combines ideas about human biological difference that draw on measures of physical characteristics and human genetic material that are both race and population based, yet conflated. This specific amalgam allows old notions of racial types to thrive through conceptual framings that comprise ideas that were once imagined to have the potential to liberate society from racial thinking--and that today remain attached to ideas of progress. As an emergent dynamic, the contemporary synthesis holds the possibility of reinvigorating racism, while simultaneously possessing the potential to promote antiracist science education, disease awareness, and social justice efforts.

  16. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    Science.gov (United States)

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  17. Design, synthesis, and biological evaluation of polo-like kinase 1/eukaryotic elongation factor 2 kinase (PLK1/EEF2K) dual inhibitors for regulating breast cancer cells apoptosis and autophagy.

    Science.gov (United States)

    Pan, Zhaoping; Chen, Yujuan; Liu, Jingyan; Jiang, Qinglin; Yang, Shengyong; Guo, Li; He, Gu

    2018-01-20

    Both PLK1 and EEF2K are serine⁄threonine kinases that play important roles in the proliferation and programmed cell death of various types of cancer. They are highly expressed in breast cancer tissues. Based on the multiple-complexes generated pharmacophore models of PLK1 and homology models of EEF2K, the integrated virtual screening is performed to discover novel PLK1/EEF2K dual inhibitors. The top ten hit compounds are selected and tested in vitro, and five of them display PLK1 and EEF2K inhibition in vitro. Based on the docking modes of the most potent hit compound, a series of derivatives are synthesized, characterized and biological assayed on the PLK1, EEF2K as well as breast cancer cell proliferation models. Compound 18i with satisfied inhibitory potency are shifted to molecular mechanism studies contained molecular dynamics simulations, cell cycles, apoptosis and autophagy assays. Our results suggested that these novel PLK1/EEF2K dual inhibitors can be used as lead compounds for further development breast cancer chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Discovery of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamide derivatives as novel protein kinase and angiogenesis inhibitors for the treatment of cancer: Synthesis and biological evaluation. Part III.

    Science.gov (United States)

    Xu, Fuming; Xu, Hao; Wang, Xuejian; Zhang, Lei; Wen, Qingli; Zhang, Yingjie; Xu, Wenfang

    2014-02-15

    A novel series of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamides were designed and synthesized. Biological characterization revealed that several compounds exerted enhanced anti-proliferative activity against human umbilical vein endothelial cells (HUVECs) and several cancer cell lines and high specific protein kinase and angiogenesis inhibitory activities. Compared with our previously synthesized compounds, the substitution of sulfonamide structure for amide fragment played an essential role for the advance of inhibitory activities. In addition, the replacement of 1H-1,2,4-triazole ring by 7H-purine did not result in obvious decrease of inhibition efficacy, indicating that the sulfonamide structure contributes even more to the inhibition efficacy than the 1H-1,2,4-triazole ring. Among these compounds, compound 9n demonstrated comparable in vitro antiangiogenic activities to pazopanib in both HUVEC tube formation assay and the rat thoracic aorta rings (TARs) test. Meanwhile, compound 9n was identified to inhibit Akt1 (IC₅₀=1.73 μM) and Abl tyrosine kinase (IC₅₀=1.53 μM) effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthesis and anti-microbial activity evaluation of some new 1-benzoyl-isothiosemicarbazides.

    Science.gov (United States)

    Plumitallo, A; Cardia, M C; Distinto, S; DeLogu, A; Maccioni, E

    2004-12-01

    The synthesis of some aroylisothiosemicarbazides was accomplished and their biological activity against bacteria, fungi, and mycobacteria was investigated. Different synthetic pathways were followed according to the kind of substituents that were introduced on both the aroyl ring and the sulfur atom. Anti-bacterial activity was measured against Staphylococcus aureus, S. epidermidis, Streptococcus agalactiae and S. faecalis, Escherichia coli, and Salmonella typhi, while antifungal activity was evaluated against C. albicans. Two species, Mycobacterium tuberculosis H37RV and Mycobacterium avium ATCC19421, were employed to evaluate antimycobacterial activity.

  20. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF SOL–GEL DERIVED NANOMATERIAL IN THE TERNARY SYSTEM 64 % SiO2 - 31 % CaO - 5 % P2O5 AS A BIOACTIVE GLASS: IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Bizari D.

    2013-09-01

    Full Text Available In this study, we performed a new bioactive glass formulation with the molar composition 64 % SiO2 - 31 % CaO - 5 % P2O5 by the sol-gel method. Sol-gel derived bioglass material was produced in nanopowder using planetary milling machine, followed by sintering at 700°C, for applications as bioactive material in bioactive scaffolds or in orthopaedic. The obtained material was evaluated by X-ray powder diffraction (XRD, thermal gravimetric analysis (TGA, differential scanning calorimetry (DSC analyses, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and nitrogen adsorption pore size. The biocompatibility evaluation of the formed glass was assessed through in vitro cell culture by evaluation of alkaline phosphatase activity of osteoblasts and immersion studies in simulated body fluid (SBF for different time intervals while monitoring the pH changes and the concentration of calcium, phosphorus and silicon in the SBF medium as key factors in the rapid bonding of this bioactive glass to bone tissue as a high bioactive glass. The present investigation revealed that the sol-gel derived ternary bioglass system has the ability to support the growth of human fetal osteoblastic cells (hFOB 1.19. Finally, this material proved to be non-toxic and compatible for the proposed work in segmental defects in the goat model in vivo.

  1. Biological and biochemical evaluation of some prepared high ...

    African Journals Online (AJOL)

    Biological and biochemical evaluation of some prepared high antioxidant fruit beverages as functional foods. W A El-Malky ... The beverage which contain mango, red grape, carrot and tomato was the best prepared beverages according to the sensory evaluation, chemical composition and antioxidant activity. The high ...

  2. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  3. Flexible synthesis of isomeric pyranoindolones and evaluation of ...

    Indian Academy of Sciences (India)

    A hybrid pharmacophore approach for the synthesis of isomeric pyranoindolones was achievedby employing gold(III) chloride-catalyzed cycloisomerization of alkyne-tethered indole carboxylic acids ingood to excellent yield. All the synthesized compounds were evaluated for their tumor cell growth inhibitoryactivity against ...

  4. Synthesis and in vitro evaluation of novel isatin- incorporated ...

    African Journals Online (AJOL)

    Synthesis and in vitro evaluation of novel isatin- incorporated thiadiazole hybrids as potential anti-breast cancer agents. Neeraj Kumar1*, Chandra Shekhar Sharma2, Hemendra Pratap Singh2, Lalit ... form of invasive cancer in women throughout the world and remains the ... pharmacophores may have synergistic effect.

  5. Synthesis and evaluation of some bioactive compounds having ...

    Indian Academy of Sciences (India)

    Synthesis and evaluation of some bioactive compounds having oxygen and nitrogen heteroatom. Poonam Yadav Nalini V ... by dehydration. The chemical structures of all the compounds were determined by analytical and spectral method. The lead compounds were screened for antimicrobial and analgesic activities.

  6. Synthesis and evaluation of some novel precursors of oxazolidinone ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5. Synthesis and evaluation of some novel precursors of oxazolidinone analogues of chloroquinoline for their antimicrobial and cytotoxic potential. Kavita Devi Yumna Asmat Meenakshi Agrawal Swapnil Sharma Jaya Dwivedi. Volume 125 Issue 5 ...

  7. Preparation and biological evaluation of novel acylhydrazide derivatives of 2,3-dichloronaphthoquinone

    Directory of Open Access Journals (Sweden)

    Jomana Elaridi

    2017-04-01

    Full Text Available Naphthoquinones have been reported to possess a variety of pharmacological properties including antibacterial, antifungal, antiviral, anti-inflammatory, anti-artherosclerotic and anticancer effects. We have successfully synthesized a series of novel naphthoquinone acylhydrazides. The straightforward synthesis of these molecules involves a coupling reaction between 2,3-dichloro-1,4-naphthoquinone and several alkyl and aromatic hydrazides and the hydrazides of the pyrimidine nucleobases, uracil and thymine. The product hydrazides were isolated in good yields and completely characterized by spectroscopic analysis. Biological evaluation against human colon cancer HCT116 cells and human breast cancer MCF-7 cells indicated that the novel hydrazides possessed significant anticancer activity.

  8. Synthesis and Evaluation of in Vitro Biological Activity of 4-Substituted Arylpiperazine Derivatives of 1,7,8,9-Tetrachloro-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione

    Directory of Open Access Journals (Sweden)

    David Collu

    2009-12-01

    Full Text Available A series of twenty arylpiperazine derivatives of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione have been prepared. These derivatives were tested in vitro with the aim of identifying novel lead compounds active against emergent and re-emergent human and cattle infectious diseases (AIDS, hepatitis B and C, tuberculosis, bovine viral diarrhea. In particular, these compounds were evaluated in vitro against representatives of different virus classes, such as a HIV-1 (Retrovirus, a HBV (Hepadnavirus and the single-stranded RNA+ viruses Yellow fever virus (YFV and Bovine viral diarrhea virus (BVDV, both belonging to the Flaviridae. Compounds 2c, 2g and 3d showed a modest activity against CVB-2. The molecular structures of the starting imide 1 and one of propyl-piperazine derivatives, 3b, have been determined by an X-ray crystallography study.

  9. Synthesis of hydroxyapatite with the use of calcium carbonate as of the biological precursor

    International Nuclear Information System (INIS)

    Aguilar, M.S.; Di Lello, B.C.; Queiroz, F.; Campos, N.C.; Campos, J.B.

    2014-01-01

    This work describes the synthesis of hydroxyapatite from calcium from biological materials such as shells carbonate. In the syntheses performed, the calcium carbonate of biological origin was used as the precursor and through a precipitation reaction with phosphoric acid, was converted into calcium hydroxide. Sequentially, the precipitate was aged, filtered, washed, dried and calcined, and then transformed into hydroxyapatite. The characterization of the powders was performed by X-DR (X-ray diffraction) and SEM (scanning electron microscopy). DR-X as determined hydroxyapatite calcium phosphate phase calcium. SEM revealed a morphology of finely divided particles. The method B.E.T. showed values of specific area and volume of micropores consistent with the literature. The results of the characterizations proved feasible to use for obtaining biological hydroxyapatite materials used in the reaction conditions.(author)

  10. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  11. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds.

    Science.gov (United States)

    Passalacqua, Thais Gaban; Dutra, Luiz Antonio; de Almeida, Letícia; Velásquez, Angela Maria Arenas; Torres, Fabio Aurelio Esteves; Yamasaki, Paulo Renato; dos Santos, Mariana Bastos; Regasini, Luis Octavio; Michels, Paul A M; Bolzani, Vanderlan da Silva; Graminha, Marcia A S

    2015-08-15

    Chalcones form a class of compounds that belong to the flavonoid family and are widely distributed in plants. Their simple structure and the ease of preparation make chalcones attractive scaffolds for the synthesis of a large number of derivatives enabling the evaluation of the effects of different functional groups on biological activities. In this Letter, we report the successful synthesis of a series of novel prenylated chalcones via Claisen-Schmidt condensation and the evaluation of their effect on the viability of the Trypanosomatidae parasites Leishmania amazonensis, Leishmania infantum and Trypanosoma cruzi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors.

    Science.gov (United States)

    Samala, Ganesh; Devi, Parthiban Brindha; Saxena, Shalini; Meda, Nikhila; Yogeeswari, Perumal; Sriram, Dharmarajan

    2016-03-15

    In the present study, we have designed imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives from earlier reported imidazo[1,2-a]pyridine based Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibitors. We synthesized thirty compounds and they were evaluated for MTB PS inhibition study, in vitro anti-TB activities against replicative and non-replicative MTB, in vivo activity using Mycobacterium marinum infected Zebra fish and cytotoxicity against RAW 264.7 cell line. Among them compound 2-methyl-N'-(4-phenoxybenzoyl)benzo[d]imidazo[2,1-b]thiazole-3-carbohydrazide (5bc) emerged as potent compound active against MTB PS with IC50 of 0.53±0.13 μM, MIC of 3.53 μM, 2.1 log reduction against nutrient starved MTB, with 33% cytotoxicity at 50 μM. It also showed 1.5 log reduction of M. marinum load in Zebra fish at 10mg/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Design, Synthesis and the Biological Evaluation of New 1,3-Thiazolidine-4-ones Based on the 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one Scaffold

    Directory of Open Access Journals (Sweden)

    Maria Apotrosoaei

    2014-09-01

    Full Text Available New thiazolidine-4-one derivatives based on the 4-aminophenazone (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one scaffold have been synthesized as potential anti-inflammatory drugs. The pyrazoline derivatives are known especially for their antipyretic, analgesic and anti-inflammatory effects, but recently there were synthesized new compounds with important antioxidant, antiproliferative, anticancer and antidiabetic activities. The beneficial effects of these compounds are explained by nonselective inhibition of cyclooxygenase izoenzymes, but also by their potential scavenging ability for reactive oxygen and nitrogen species. The structure of the new compounds was proved using spectroscopic methods (FR-IR, 1H-NMR, 13C-NMR, MS. The in vitro antioxidant potential of the synthesized compounds was evaluated according to the ferric reducing antioxidant power, phosphomolydenum reducing antioxidant power, DPPH and ABTS radical scavenging assays. The chemical modulation of 4-aminophenazone (6 through linkage to thiazolidine-propanoic acid derivatives 5a–l led to improved antioxidant potential, all derivatives 7a–l being more active than phenazone. The most active compounds are the derivatives 7e, and 7k, which showed the higher antioxidant effect depending on the antioxidant assay considered.

  14. Unsaturated fluoro-ketopyranosyl nucleosides: synthesis and biological evaluation of 3-fluoro-4-keto-beta-d-glucopyranosyl derivatives of N(4)-benzoyl cytosine and N(6)-benzoyl adenine.

    Science.gov (United States)

    Manta, Stella; Agelis, George; Botić, Tanja; Cencic, Avrelija; Komiotis, Dimitri

    2008-02-01

    The protected beta-nucleosides 1-(2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-beta-d-glucopyranosyl)-N(4)-benzoyl cytosine (2a) and 9-(2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-beta-d-glucopyranosyl)-N(6)-benzoyl adenine (2b), were synthesized by the coupling of peracetylated 3-deoxy-3-fluoro-d-glucopyranose (1) with silylated N(4)-benzoyl cytosine and N(6)-benzoyl adenine, respectively. The nucleosides were deacetylated and several subsequent protection and deprotection steps afforded the partially acetylated nucleosides of cytosine 7a and adenine 7b, respectively. Finally, direct oxidation of the free hydroxyl group at 4'-position of 7a and 7b, and simultaneous elimination reaction of the beta-acetoxyl group, afforded the desired unsaturated 3-fluoro-4-keto-beta-d-glucopyranosyl derivatives. These newly synthesized compounds were evaluated for their potential antitumor and antiviral activities. Compared to 5FU, the newly synthesized derivatives showed to be more efficient as antitumor growth inhibitors and they exhibited direct antiviral effect toward rotavirus.

  15. A new chalcone structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one: Synthesis, structural characterizations, quantum chemical investigations and biological evaluations.

    Science.gov (United States)

    Thanigaimani, Kaliyaperumal; Arshad, Suhana; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Arunagiri, C; Subashini, A; Sulaiman, Shaida Fariza; Hashim, Nurul Shafiqah; Ooi, Kheng Leong

    2015-01-01

    The structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one (C19H13BrO) crystallized in the triclinic system of P-1 space group. The unit cell dimensions are: a=5.8944 (9)Å, b=7.8190 (12)Å, c=16.320 (2)Å, α=102.4364 (19)°, β=95.943 (2)°, γ=96.274 (2)° and Z=2. The physical properties of this compound was determined by the spectroscopic methods (FTIR and (1)H and (13)C NMR). Quantum chemical investigations have been employed to investigate the structural and spectral properties. The molecular structure, vibrational assignments, (1)H and (13)C NMR chemical shift values, non-linear optical (NLO) effect, HOMO-LUMO analysis and natural bonding orbital (NBO) analysis were calculated using HF and DFT/B3LYP methods with 6-311++G(d,p) basis set in the ground state. The results show that the theoretical calculation of the geometrical parameters, vibrational frequencies and chemical shifts are comparable with the experimental data. The crystal structure is influenced and stabilized by weak C-H⋯π interactions connecting the molecules into infinite supramolecular one dimensional ladder-like arrangement. Additionally, this compound is evaluated for their antibacterial activities against gram positive and gram negative strains using a micro dilution procedure and shows activities against a panel of microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthesis and evaluation of carbocyanine dyes as PRMT inhibitors and imaging agents.

    Science.gov (United States)

    Sinha, Sarmistha Halder; Owens, Eric A; Feng, You; Yang, Yutao; Xie, Yan; Tu, Yaping; Henary, Maged; Zheng, Yujun George

    2012-08-01

    Protein arginine methylation regulates multiple biological processes. Deregulation of protein arginine methyltransferase (PRMT) activities has been observed in many disease phenotypes. Small molecule probes that target PRMTs with strong affinity and selectivity can be used as valuable tools to dissect biological mechanisms of arginine methylation and establish the role of PRMT proteins in a disease process. In this work, we report synthesis and evaluation of a class of carbocyanine compounds containing indolium, benz[e]indolium or benz[c,d]indolium heterocyclic moieties that bind to the predominant arginine methyltransferase PRMT1 and inhibit its methyltransferase activity at low micromolar potencies. In particular, the developed molecules have long wavelength colorimetric and fluorometric photoactivities, which can be used for optical and near-infrared fluorescence imaging in cells or biological tissues. Together, these new chemical probes have potential application in PRMT studies both as enzyme inhibitors and as fluorescent dyes for microscope imaging. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Synthesis of Effective Food Constituents toward the Development of Chemical Biology Investigations.

    Science.gov (United States)

    Asakawa, Tomohiro

    2016-01-01

    This article describes the development of various probes and immunogens for chemical-biological investigations of food flavonoids. We accomplished a large (gram)-scale asymmetric synthesis of a key intermediate, 5-aminopentyl deoxy epigallocatechin-3-gallate (APDOEGCg; 3), an analogue of green tea polyphenol EGCg, in which the key step was cationic cyclization utilizing neighboring group participation of the gallate carbonyl group. The synthetic APDOEGCg (3) was efficiently converted to a fluorescent probe 18 and an immunogen 19 by utilizing the high reactivity of the amine functional group. We confirmed the usefulness of these probes for imaging studies and the generation of antibodies, respectively. We also describe the efficient synthesis of a positron emission tomography (PET) probe [ 11 C]20 by incorporation of 11 C into EGCg (1), for which synthetic 4″-Me-EGCg (20) was utilized as an authentic sample. Our synthetic strategy was also applied for the practical synthesis of nobiletin (21), a polymethoxylated flavone from citrus. Synthetic nobiletin was readily converted to various probes by selective demethylation and incorporation of fluorescein, biotin or 11 C. These probes should be useful for a range of biological applications. Detailed examination of the mechanisms and further applications are in progress.

  18. Design, synthesis, and biological evaluation of novel 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives as cytotoxic agents and COX-2/LOX inhibitors.

    Science.gov (United States)

    Lamie, Phoebe F; Philoppes, John N; Rárová, Lucie

    2018-04-01

    A new series of 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives 4a-l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1 H NMR, DEPT-Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)-1, COX-2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX-2 rather than COX-1, and the IC 50 values (0.25-1.7 µM) were lower than that of indomethacin (IC 50  = 9.47 µM) and somewhat higher than that of celecoxib (IC 50  = 0.071 µM). The selectivity index for COX-2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC 50 values of 0.02-74.03 µM, while the IC 50 of the reference zileuton was 0.83 µM. The most active compound 4c (4-chlorobenzoxazole derivative) was found to have dual COX-2/LOX activity. All the synthesized compounds were docked inside the active site of the COX-2 and LOX enzymes. They linked to COX-2 through the N atom of the azole scaffold, while CO of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site. © 2018 Deutsche Pharmazeutische Gesellschaft.

  19. Synthesis, Characterization and Biological Evaluation of Mononuclear Dichloro-bis[2-(2-chloro-6,7-substituted Quinolin-3-yl-1H-benzo[d]imidazole]Co(II Complexes

    Directory of Open Access Journals (Sweden)

    Minaxi Samatbhai Maru

    2015-06-01

    Full Text Available A series of Co(II complexes 3¢a-g of 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g were prepared and characterized by various spectroscopic and physico-chemical methods viz. FT-IR, ESI mass, 1H NMR, 13C NMR and UV-Visible spectroscopy, Thermogravimetric analysis, Magnetic susceptibility, Molar conductance and Elemental analysis. The 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g have been synthesized by cyclocondensation of benzene-1,2-diamine with 2-chloroquinoline-3-carbaldehydes by using ceric ammonium nitrate as a catalyst in presence of hydrogen peroxide as an oxidant. The structures of all ligands were confirmed by IR, Mass, UV-Visible, 1H NMR and 13C NMR spectroscopy. All ligands 3a-g and their Co(II complexes 3¢a-g were screened for their in vitro antimicrobial activity using twofold serial dilution technique against standard MTCC strains of two Gram-positive Staphylococcus aureus and Streptococcus pyogenes, two Gram-negative Escherichia coli and Pseudomonas aeruginosa bacteria and three Candida albicans, Aspergillus niger and Aspergillus clavatus fungus in comparison with standard drugs. All ligands 3a-g and complexes 3¢a-g also evaluated for antimycobacterial activity against standard Mycobacterium tuberculosis H37Rv strain. DOI: http://dx.doi.org/10.17807/orbital.v7i2.530

  20. Discovery of C-3 Tethered 2-oxo-benzo[1,4]oxazines as Potent Antioxidants: Bio-Inspired Based Design, Synthesis, Biological Evaluation, Cytotoxic, and in Silico Molecular Docking Studies

    Directory of Open Access Journals (Sweden)

    Vashundhra Sharma

    2018-03-01

    Full Text Available The discovery of C-3 tethered 2-oxo-benzo[1,4]oxazines as potent antioxidants is disclosed. All the analogs 20a-20ab have been synthesized via “on water” ultrasound-assisted irradiation conditions in excellent yields (upto 98%. All the compounds have been evaluated for their in vitro antioxidant activities using DPPH free radical scavenging assay as well as FRAP assay. The result showed promising antioxidant activities having IC50 values in the range of 4.74 ± 0.08 to 92.20 ± 1.54 μg/mL taking ascorbic acid (IC50 = 4.57 μg/mL as standard reference. In this study, compounds 20b and 20t, the most active compound of the series, showed IC50 values of 6.89 ± 0.07 μg/mL and 4.74 ± 0.08 μg/mL, respectively in comparison with ascorbic acid. In addition, the detailed SAR study shows that electron-withdrawing group increases antioxidant activity and vice versa. Furthermore, in the FRAP assay, eight compounds (20c, 20j, 20m, 20n, 20r, 20u, 20z, and 20aa were found more potent than standard reference BHT (C0.5FRAP = 546.0 ± 13.6 μM. The preliminary cytotoxic study reveals the non-toxic nature of active compounds 20b and 20t in non-cancerous 3T3 fibroblast cell lines in MTT assay up to 250 μg/mL concentration. The results were validated via carrying out in silico molecular docking studies of promising compounds 20a, 20b, and 20t in comparison with standard reference. To the best of our knowledge, this is the first detailed study of C-3 tethered 2-oxo-benzo[1,4]oxazines as potential antioxidant agents.

  1. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    Science.gov (United States)

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. Copyright © 2014. Published by Elsevier Masson SAS.

  2. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    International Nuclear Information System (INIS)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan; Cui, Fengling

    2013-01-01

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Förster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: ► 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. ► DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. ► Hydrophobic interactions were the predominant intermolecular forces. ► The competitive experiment was carried out to identify the DHAQTS binding site on HSA. ► Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  3. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wongnate, T.; Sliwa, D.; Ginovska, B.; Smith, D.; Wolf, M. W.; Lehnert, N.; Raugei, S.; Ragsdale, S. W.

    2016-05-19

    Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that the activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.

  4. synthesis and characterization of some poly functionalized heterocyclic derivatives of expected biological activity

    International Nuclear Information System (INIS)

    El-sayed, M.S.

    2001-01-01

    The present work was aimed and designed to fulfil The following objectives : 1- Continuation of the effort done by our research group in the field of chemistry of pyridinethione derivatives and their biological activities. 2- Synthesis of several new heterocyclic derivatives containing N and/or S using the laboratory available reagents. 3- Establishment of the structures of the newly synthesized heterocyclic compounds by the data of IR, 1 H-NMR, mass spectra in addition to the elemental analysis. 4- Synthesis of some of these heterocyclic derivatives via alternative routs and this used as a tool to confirm the structures of the newly synthesized heterocyclic derivatives. 5- study of the most probable mechanisms leading to the formation of the new heterocyclic derivatives. 6- The antimicrobial activity of some of the newly synthesized heterocyclic derivatives was tested against several types of organisms

  5. Synthesis and cytotoxic evaluation of isoxazoles an

    Indian Academy of Sciences (India)

    tetrazolium bromide] cell proliferation assay was used to evaluate the cytotoxic activity of the synthesized compounds against COLO320 adenocarcinoma col- orectal cancer cell lines.6 COLO320 cancer cell line was maintained in complete tissue culture medium. RPMI with 10% Fetal Bovine Serum and 2 mM L-. Glutamine ...

  6. Biological-based and physical-based optimization for biological evaluation of prostate patient's plans

    Science.gov (United States)

    Sukhikh, E.; Sheino, I.; Vertinsky, A.

    2017-09-01

    Modern modalities of radiation treatment therapy allow irradiation of the tumor to high dose values and irradiation of organs at risk (OARs) to low dose values at the same time. In this paper we study optimal radiation treatment plans made in Monaco system. The first aim of this study was to evaluate dosimetric features of Monaco treatment planning system using biological versus dose-based cost functions for the OARs and irradiation targets (namely tumors) when the full potential of built-in biological cost functions is utilized. The second aim was to develop criteria for the evaluation of radiation dosimetry plans for patients based on the macroscopic radiobiological criteria - TCP/NTCP. In the framework of the study four dosimetric plans were created utilizing the full extent of biological and physical cost functions using dose calculation-based treatment planning for IMRT Step-and-Shoot delivery of stereotactic body radiation therapy (SBRT) in prostate case (5 fractions per 7 Gy).

  7. Trilobolide-porphyrin conjugates: On synthesis and biological effects evaluation

    Czech Academy of Sciences Publication Activity Database

    Tomanová, P.; Rimpelová, S.; Jurášek, M.; Buděšínský, Miloš; Vejvodová, L.; Ruml, T.; Kmoníčková, E.; Drašar, P. B.

    2015-01-01

    Roč. 97, SI (2015), s. 8-12 ISSN 0039-128X Grant - others:GA ČR(CZ) GA14-04329S; GA MŠk(CZ) ED2.1.00/03.0076 Institutional support: RVO:61388963 Keywords : trilobolide * porphyrin * nitric oxide * fluorescence microscopy Subject RIV: CE - Biochemistry Impact factor: 2.513, year: 2015

  8. Synthesis and Biological Evaluation of some Anthranilic Acid and 2 ...

    African Journals Online (AJOL)

    In the present investigation a novel series of N-(phenyl) chalconyl anthranilic acids containing pyrazolines (4a–j), tetrahydropyrimidines (4k–o), tetrahydrothiopyrimidines (4p–t) and 2-phenylquinazolin-4(3H)-ones containing pyrazolines (8a–f), isoxazolines (8g–l), tetrahydropyrimidines (8m–r) and tetrahydrothiopyrimidines ...

  9. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Urease is a virulent factor for H. pylori and contributes to mucosal damage in the stomach, gastro-duodenal infection, peptic ulcers and gastric cancer [10]. Thus, the inhibition of urease has attracted much attention as potential strategy for designing novel drugs against ulcer. More effective and more potent compounds with ...

  10. First total synthesis and biological evaluation of halolitoralin A

    Directory of Open Access Journals (Sweden)

    RAJIV DAHIYA

    2007-02-01

    Full Text Available A new potent bioactive alanine-rich cyclic hexapeptide halolitoralin A(8, which was previously isolated from the marine sediment-derived bacterial strain Halobacillus litoralis YS3016, has been synthesized by the solution phase technique. All the coupling reactions were performed at room temperature utilizing dicyclohexylcarbodiimide (DCC as the coupling reagent and N-methylmorpholine (NMM as the base. The structure of the peptide was characterized by IR, 1H-NMR, 13C-NMR, FAB MS spectral data, as well as elemental analysis and DSC. The synthesized cyclopeptide was also screened for its antimicrobial and anthelmintic activities and found to exhibit potent antifungal activity against the pathogenic fungi Candida albicans and Trichophyton mentagrophytes along with potent antibacterial activity against the gram negative bacteria Pseudomonas aeruginosa and Escherichia coli. Gram negative bacteria were found to be more sensitive than gram positive bacteria towards the newly synthesized peptide. In addition, the peptide was also found to exhibit moderate anthelmintic activity against the earthworms Megascoplex konkanensis and Eudrilus sp.

  11. Synthesis, biological evaluation and molecular docking studies of ...

    Indian Academy of Sciences (India)

    ... College of Engineering Anantapur, Andhra Pradesh, 500 085, India; Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India; Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), Andhra Pradesh, 522 502, ...

  12. Synthesis and Biological Evaluation of some Anthranilic Acid and 2 ...

    African Journals Online (AJOL)

    NJD

    In the present investigation a novel series of N-(phenyl) chalconyl anthranilic acids containing pyrazolines (4a–j), tetra- hydropyrimidines (4k–o), tetrahydrothiopyrimidines (4p–t) and 2-phenylquinazolin-4(3H)-ones containing pyrazolines (8a–f), isoxazolines (8g–l), tetrahydropyrimidines (8m–r) and ...

  13. Substituted N-Benzylpyrazine-2-carboxamides: Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Katarína Kráľová

    2012-11-01

    Full Text Available A series of twelve amides was synthesized via aminolysis of substituted pyrazinecarboxylic acid chlorides with substituted benzylamines. Compounds were characterized with analytical data and assayed in vitro for their antimycobacterial, antifungal, antibacterial and photosynthesis-inhibiting activity. 5-tert-Butyl-6-chloro-N-(4-methoxybenzylpyrazine-2-carboxamide (12 has shown the highest antimycobacterial activity against Mycobacterium tuberculosis (MIC = 6.25 µg/mL, as well as against other mycobacterial strains. The highest antifungal activity against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 5-chloro-N-(3-trifluoromethylbenzyl-pyrazine-2-carboxamide (2, MIC = 15.62 µmol/L. None of the studied compounds exhibited any activity against the tested bacterial strains. Except for 5-tert-butyl-6-chloro-N-benzylpyrazine-2-carboxamide (9, IC50 = 7.4 µmol/L and 5-tert-butyl-6-chloro-N-(4-chlorobenzylpyrazine-2-carboxamide (11, IC50 = 13.4 µmol/L, only moderate or weak photosynthesis-inhibiting activity in spinach chloroplasts (Spinacia oleracea L. was detected.

  14. Synthesis and Biological Evaluation of Quinazoline-4-thiones

    Directory of Open Access Journals (Sweden)

    Jarmila Kaustová

    2003-11-01

    Full Text Available Several 2,2-dimethyl-3-phenyl-1,2-dihydroquinazoline-4(3H-thiones and 2-methyl-3-phenylquinazoline-4(3H-thiones were synthesized and tested for their antimycobacterial, photosynthesis-inhibiting, and antialgal activity. Antimycobacterially active compounds were found among the 6-chloro substituted compounds. 6-Chloro-3-(4-isopropylphenyl-2-methylquinazoline-4(3H-thione exhibited higher activity than the isoniazid standard against Mycobacterium avium and M. kansasii. Most of the compounds possessed photosynthesis-inhibiting activity. 6-Chloro-2,2-dimethyl-3-phenyl-1,2-dihydroquinazoline-4(3H-thione and its 3´-chloro- and 3´,4´-dichloro analogs were most effective in the inhibition of oxygen evolution rate in spinach chloroplasts. Of compounds selected for toxicological screening, 6-chloro-3-(4-isopropylphenyl-2-methyl-quinazoline-4(3H-thione was the only one active in the brine shrimp bioassay.

  15. Synthesis and biological evaluation of guanidino analogues of roscovitine

    Czech Academy of Sciences Publication Activity Database

    Dolečková, Iva; Česnek, Michal; Dračínský, Martin; Brynda, Jiří; Voller, J.; Janeba, Zlatko; Kryštof, Vladimír

    2013-01-01

    Roč. 62, April 2013 (2013), s. 443-452 ISSN 0223-5234 R&D Projects: GA MŠk 1M0508; GA ČR GAP305/12/0783 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : 6-Guanidinopurine * Olomoucine * Roscovitine Subject RIV: CE - Biochemistry Impact factor: 3.432, year: 2013

  16. Synthesis and Biological Evaluation of some Novel 2 ...

    African Journals Online (AJOL)

    NICO

    2-(1,3-benzothiazol-2-ylsulfanyl)-N-[5-(aryloxymethyl)-1,3,4- thiadiazol-2-yl] acetamides (9a–m). The structures of the newly synthesized compounds were confirmed by the analytical and spectral data. The infrared (IR) spectrum of compounds 6a–m showed. C-O-C vibrations of the oxadiazole ring12,22 in the region 1311–.

  17. Design, synthesis and biological evaluation of Arylpiperazine-based ...

    Indian Academy of Sciences (India)

    Understanding of apoptosis or programmed cell death has provided the basis for novel therapeutics that has resulted in rationally designed anticancer strategies. Recently, inducers of apoptosis have been used in cancer therapy. In this work, we describe the role of chiral phthalimides functionalized with piperazines ...

  18. Synthesis and Biological Evaluation of Some Novel Dithiocarbamate Derivatives

    Directory of Open Access Journals (Sweden)

    Begüm Nurpelin Sağlık

    2014-01-01

    Full Text Available 18 novel dithiocarbamate derivatives were synthesized in order to investigate their inhibitory potency on acetylcholinesterase enzyme and antimicrobial activity. Structures of the synthesized compounds were elucidated by spectral data and elemental analyses. The synthesized compounds showed low enzyme inhibitory activity. However, they displayed good antimicrobial activity profile. Antibacterial activity of compounds 4a, 4e, and 4p (MIC = 25 μg/mL was equal to that of chloramphenicol against Klebsiella pneumoniae (ATCC 700603 and Escherichia coli (ATCC 35218. Most of the compounds exhibited notable antifungal activity against Candida albicans (ATCC 10231, Candida glabrata (ATCC 90030, Candida krusei (ATCC 6258, and Candida parapsilosis (ATCC 7330. Moreover, compound 4a, which carries piperidin-1-yl substituent and dimethylthiocarbamoyl side chain as variable group, showed twofold better anticandidal effect against all Candida species than reference drug ketoconazole.

  19. Synthesis, characterization and evaluation of biological activities of ...

    African Journals Online (AJOL)

    Purpose: To synthesize, characterize and investigate the antimicrobial properties of pure and manganese-doped zinc oxide nanoparticles. Method: Un-doped and manganese-doped zinc oxide (Mn-doped ZnO) nanoparticles were prepared using co-precipitation method. The synthesized Mn-doped ZnO nanoparticles were ...

  20. Simple synthesis and biological evaluation of flocoumafen and its ...

    Indian Academy of Sciences (India)

    Administrator

    hydroxycoumarin and its derivatives have been effectively used as anticoagulants such as warfarin, brodifacoum, difethialone, bromadiolone, coumatetralone, and flocoumafen for the treatment of disorders in which there is excessive or undesir- able clotting ...