WorldWideScience

Sample records for synthases genomic structures

  1. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses

    Directory of Open Access Journals (Sweden)

    Dibari Bianca

    2012-06-01

    Full Text Available Abstract Background Carotenoids are isoprenoid pigments, essential for photosynthesis and photoprotection in plants. The enzyme phytoene synthase (PSY plays an essential role in mediating condensation of two geranylgeranyl diphosphate molecules, the first committed step in carotenogenesis. PSY are nuclear enzymes encoded by a small gene family consisting of three paralogous genes (PSY1-3 that have been widely characterized in rice, maize and sorghum. Results In wheat, for which yellow pigment content is extremely important for flour colour, only PSY1 has been extensively studied because of its association with QTLs reported for yellow pigment whereas PSY2 has been partially characterized. Here, we report the isolation of bread wheat PSY3 genes from a Renan BAC library using Brachypodium as a model genome for the Triticeae to develop Conserved Orthologous Set markers prior to gene cloning and sequencing. Wheat PSY3 homoeologous genes were sequenced and annotated, unravelling their novel structure associated with intron-loss events and consequent exonic fusions. A wheat PSY3 promoter region was also investigated for the presence of cis-acting elements involved in the response to abscisic acid (ABA, since carotenoids also play an important role as precursors of signalling molecules devoted to plant development and biotic/abiotic stress responses. Expression of wheat PSYs in leaves and roots was investigated during ABA treatment to confirm the up-regulation of PSY3 during abiotic stress. Conclusions We investigated the structural and functional determinisms of PSY genes in wheat. More generally, among eudicots and monocots, the PSY gene family was found to be associated with differences in gene copy numbers, allowing us to propose an evolutionary model for the entire PSY gene family in Grasses.

  2. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  3. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  4. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  5. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J. (UWASH); (Emerald)

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  6. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  7. From bacterial to human dihydrouridine synthase: automated structure determination

    International Nuclear Information System (INIS)

    Whelan, Fiona; Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-01-01

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer

  8. Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize

    OpenAIRE

    Zhou, Xiaojin; Li, Suzhen; Zhao, Qianqian; Liu, Xiaoqing; Zhang, Shaojun; Sun, Cheng; Fan, Yunliu; Zhang, Chunyi; Chen, Rumei

    2013-01-01

    Background Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome sequencing of maize was completed, and many gene families ...

  9. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  10. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  11. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7

    Directory of Open Access Journals (Sweden)

    Midori Murakami

    2016-01-01

    Full Text Available Thermoacidophilic archaeon Sulfolobus tokodaii strain 7 has two citrate synthase genes (ST1805-CS and ST0587-CS in the genome with 45% sequence identity. Because they exhibit similar optimal temperatures of catalytic activity and thermal inactivation profiles, we performed structural comparisons between these isozymes to elucidate adaptation mechanisms to high temperatures in thermophilic CSs. The crystal structures of ST1805-CS and ST0587-CS were determined at 2.0 Å and 2.7 Å resolutions, respectively. Structural comparison reveals that both of them are dimeric enzymes composed of two identical subunits, and these dimeric structures are quite similar to those of citrate synthases from archaea and eubacteria. ST0587-CS has, however, 55 ion pairs within whole dimer structure, while having only 36 in ST1805-CS. Although the number and distributions of ion pairs are distinct from each other, intersubunit ion pairs between two domains of each isozyme are identical especially in interterminal region. Because the location and number of ion pairs are in a trend with other CSs from thermophilic microorganisms, the factors responsible for thermal adaptation of ST-CS isozymes are characterized by ion pairs in interterminal region.

  12. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  14. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  15. Structural genomics in endocrinology

    NARCIS (Netherlands)

    Smit, J. W.; Romijn, J. A.

    2001-01-01

    Traditionally, endocrine research evolved from the phenotypical characterisation of endocrine disorders to the identification of underlying molecular pathophysiology. This approach has been, and still is, extremely successful. The introduction of genomics and proteomics has resulted in a reversal of

  16. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  17. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe B; von Wettstein-Knowles, Penny

    2007-01-01

    Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual...... activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high...... degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic...

  18. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-06-18

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.

  19. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution.

    Science.gov (United States)

    Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian

    2016-01-12

    Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.

  20. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    OpenAIRE

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas

    2011-01-01

    An oligonucleotide representing a regulatory element of human thymidylate synthase mRNA has been crystallized as a dimer. The structure of the asymmetric dimer has been determined at 1.97 Å resolution.

  1. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer...... completely dominates the oligomeric state of the enzyme. Furthermore, phosphorylation has been shown to regulate the oligomeric states of the enzymes from yeast and human. The crystal structure of a dimeric form of CTP synthase from Sulfolobus solfataricus has been determined at 2.5 Å resolution...

  2. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco.

    Science.gov (United States)

    Shimizu, Masanori; Goto, Maki; Hanai, Moeko; Shimizu, Tsutomu; Izawa, Norihiko; Kanamoto, Hirosuke; Tomizawa, Ken-Ichi; Yokota, Akiho; Kobayashi, Hirokazu

    2008-08-01

    Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.

  3. Functional Insights from Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  4. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  5. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  6. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    International Nuclear Information System (INIS)

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-01-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS SA ), Vibrio cholerae (AcpS VC ) and Bacillus anthracis (AcpS BA ) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS BA is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS BA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP

  7. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

    Directory of Open Access Journals (Sweden)

    Mariela V Catone

    Full Text Available Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB, a short chain length polyhydroxyalkanoate (sclPHA infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA. All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC in comparison with the mclPHA core genome genes (phaC1 and phaC2 indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.

  8. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  9. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A. [Instituto Leloir, Buenos Aires (Argentina); Braden, B.C. [Bowie State Univ., Maryland (United States)

    2004-07-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  10. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    International Nuclear Information System (INIS)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A.; Braden, B.C.

    2004-01-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  11. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.

    Science.gov (United States)

    Demissie, Zerihun A; Cella, Monica A; Sarker, Lukman S; Thompson, Travis J; Rheault, Mark R; Mahmoud, Soheil S

    2012-07-01

    Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

  12. Structure of Salmonella typhimurium OMP Synthase in a Complete Substrate Complex

    DEFF Research Database (Denmark)

    Grubmeyer, Charles; Hansen, Michael Riis; Fedorov, Alexander A.

    2012-01-01

    Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, EC 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been cocrystallized in a complete substrate E·MgPRPP·orotate complex and the structure determined to 2.2 Å resolution. This structure resem...

  13. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  14. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  15. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species.

    Science.gov (United States)

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Takahashi-Nakaguchi, Azusa; Matsuzawa, Tetsuhiro; Suzuki, Ken-ichiro; Fujita, Nobuyuki; Gonoi, Tohru

    2014-04-30

    Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology. Draft genome sequences of Nocardia asteroides NBRC 15531(T), Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402(T), and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4-11, 7-13, and 1-6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text. We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied

  16. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.

    Science.gov (United States)

    Gasanov, Sardar E; Kim, Aleksandr A; Yaguzhinsky, Lev S; Dagda, Ruben K

    2018-02-01

    Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1 H NMR and 31 P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F 0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F 0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F 0 sector, and thereby increase ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Genomics technologies to study structural variations in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Cardone Maria Francesca

    2016-01-01

    Full Text Available Grapevine is one of the most important crop plants in the world. Recently there was great expansion of genomics resources about grapevine genome, thus providing increasing efforts for molecular breeding. Current cultivars display a great level of inter-specific differentiation that needs to be investigated to reach a comprehensive understanding of the genetic basis of phenotypic differences, and to find responsible genes selected by cross breeding programs. While there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs on plant genomes, few data are available on copy number variation (CNV. Furthermore association between structural variations and phenotypes has been described in only a few cases. We combined high throughput biotechnologies and bioinformatics tools, to reveal the first inter-varietal atlas of structural variation (SV for the grapevine genome. We sequenced and compared four table grape cultivars with the Pinot noir inbred line PN40024 genome as the reference. We detected roughly 8% of the grapevine genome affected by genomic variations. Taken into account phenotypic differences existing among the studied varieties we performed comparison of SVs among them and the reference and next we performed an in-depth analysis of gene content of polymorphic regions. This allowed us to identify genes showing differences in copy number as putative functional candidates for important traits in grapevine cultivation.

  19. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    Science.gov (United States)

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  20. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2013-01-01

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2013-05-29

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  3. Directed Evolution and Structural Characterization of a Simvastatin Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xue; Xie, Xinkai; Pashkov, Inna; Sawaya, Michael R.; Laidman, Janel; Zhang, Wenjun; Cacho, Ralph; Yeates, Todd O.; Tang, Yi; UCLA

    2010-02-02

    Enzymes from natural product biosynthetic pathways are attractive candidates for creating tailored biocatalysts to produce semisynthetic pharmaceutical compounds. LovD is an acyltransferase that converts the inactive monacolin J acid (MJA) into the cholesterol-lowering lovastatin. LovD can also synthesize the blockbuster drug simvastatin using MJA and a synthetic {alpha}-dimethylbutyryl thioester, albeit with suboptimal properties as a biocatalyst. Here we used directed evolution to improve the properties of LovD toward semisynthesis of simvastatin. Mutants with improved catalytic efficiency, solubility, and thermal stability were obtained, with the best mutant displaying an {approx}11-fold increase in an Escherichia coli-based biocatalytic platform. To understand the structural basis of LovD enzymology, seven X-ray crystal structures were determined, including the parent LovD, an improved mutant G5, and G5 cocrystallized with ligands. Comparisons between the structures reveal that beneficial mutations stabilize the structure of G5 in a more compact conformation that is favorable for catalysis.

  4. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  5. Assembly factors of F1FO-ATP synthase across genomes

    Czech Academy of Sciences Publication Activity Database

    Pícková, Andrea; Potocký, Martin; Houštěk, Josef

    2005-01-01

    Roč. 59, č. 3 (2005), s. 393-402 ISSN 0887-3585 R&D Projects: GA MŠk(CZ) 1M0520; GA MZd(CZ) NR7790 Grant - others:GA UK(CZ) 12/2002; GA UK(CZ) 11/2004; EC Framework Programme(XE) LSHM-CT-2004-503116 Institutional research plan: CEZ:AV0Z50110509 Keywords : assembly * ATP synthase * phylogenetic and sequence analysis Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.684, year: 2005

  6. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  7. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Vannozzi Alessandro

    2012-08-01

    Full Text Available Abstract Background Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS, a type III polyketide synthase (PKS. Stilbene synthases are closely related to chalcone synthases (CHS, the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species. Results In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection and abiotic (wounding and UV-C exposure stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be

  8. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    Directory of Open Access Journals (Sweden)

    Ritland Carol

    2009-08-01

    Full Text Available Abstract Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs and full-length (FLcDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR and a cytochrome P450 (CYP720B4 from a non-arrayed genomic BAC library of white spruce (Picea glauca. Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR and 94 kbp (CYP720B4 long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs, high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene

  9. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    Science.gov (United States)

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The

  10. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

    Directory of Open Access Journals (Sweden)

    Hiroaki Iwasaka

    2018-04-01

    Full Text Available Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB, phytoene desaturase (crtI and lycopene cyclase (crtY were fused into single gene (crtIBY with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.

  11. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  12. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater.

    Science.gov (United States)

    Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami

    2014-12-24

    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.

  13. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...... is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two...... in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4....

  14. Structure of the Y94F mutant of Escherichia coli thymidylate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Sue A.; Hyatt, David C. [Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 (United States); Honts, Jerry E. [Department of Biology, Drake University, Des Moines, IA 50311 (United States); Changchien, Liming; Maley, Gladys F.; Maley, Frank [Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509 (United States); Montfort, William R., E-mail: montfort@email.arizona.edu [Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 (United States)

    2006-09-01

    Mutation of Tyr94 of E. coli thymidylate synthase to phenylalanine leads to a protein with k{sub cat} reduced by a factor of 400. The Y94F structure is essentially identical to the wild-type structure, which is consistent with a catalytic role for the phenolic OH. Tyr94 of Escherichia coli thymidylate synthase is thought to be involved, either directly or by activation of a water molecule, in the abstraction of a proton from C5 of the 2′-deoxyuridine 5′-monophosphate (dUMP) substrate. Mutation of Tyr94 leads to a 400-fold loss in catalytic activity. The structure of the Y94F mutant has been determined in the native state and as a ternary complex with thymidine 5′-monophosphate (dTMP) and 10-propargyl 5,8-dideazafolate (PDDF). There are no structural changes ascribable to the mutation other than loss of a water molecule hydrogen bonded to the tyrosine OH, which is consistent with a catalytic role for the phenolic OH.

  15. Structure of the Y94F mutant of Escherichia coli thymidylate synthase

    International Nuclear Information System (INIS)

    Roberts, Sue A.; Hyatt, David C.; Honts, Jerry E.; Changchien, Liming; Maley, Gladys F.; Maley, Frank; Montfort, William R.

    2006-01-01

    Mutation of Tyr94 of E. coli thymidylate synthase to phenylalanine leads to a protein with k cat reduced by a factor of 400. The Y94F structure is essentially identical to the wild-type structure, which is consistent with a catalytic role for the phenolic OH. Tyr94 of Escherichia coli thymidylate synthase is thought to be involved, either directly or by activation of a water molecule, in the abstraction of a proton from C5 of the 2′-deoxyuridine 5′-monophosphate (dUMP) substrate. Mutation of Tyr94 leads to a 400-fold loss in catalytic activity. The structure of the Y94F mutant has been determined in the native state and as a ternary complex with thymidine 5′-monophosphate (dTMP) and 10-propargyl 5,8-dideazafolate (PDDF). There are no structural changes ascribable to the mutation other than loss of a water molecule hydrogen bonded to the tyrosine OH, which is consistent with a catalytic role for the phenolic OH

  16. HOMOLOGY MODELING AND FUNCTIONAL CHARACTERIZATION OF THREE-DIMENSIONAL STRUCTURE OF DAHP SYNTHASE FROM BRACHYPODIUM DISTACHYON

    Directory of Open Access Journals (Sweden)

    Aditya Dev

    2013-06-01

    Full Text Available The Shikimate pathway is an attractive target for herbicides and antimicrobial agents because it is essential in microbes and plants but absent in animals. The 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS is the first enzyme of this pathway, which is involved in the condensation of phosphoenolpyruvate (PEP and D-erythrose 4-phosphate (E4P to produce 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP. DAHPS enzymes have been divided into two types, class I and class II, based on their primary amino acid sequence and three dimensional structures. The plant DAHPS belongs to class II and is regulated differently than DAHPS from microorganisms. To understand the structural basis of such differences in DAHPS from plants and its catalytic mechanism, we have used sequence analysis, homology modeling and docking approach to generate the three dimensional models of DAHP synthase from Brachypodium distachyon (Bd-DAHPS complexed with substrate PEP for the first time. The three dimensional models of Bd-DAHPS provides a detailed knowledge of the active site and the important secondary structural regions that play significant roles in the regulatory mechanism and further may be helpful for design of specific inhibitors towards herbicide development.

  17. Structural genomic variation in ischemic stroke

    Science.gov (United States)

    Matarin, Mar; Simon-Sanchez, Javier; Fung, Hon-Chung; Scholz, Sonja; Gibbs, J. Raphael; Hernandez, Dena G.; Crews, Cynthia; Britton, Angela; Wavrant De Vrieze, Fabienne; Brott, Thomas G.; Brown, Robert D.; Worrall, Bradford B.; Silliman, Scott; Case, L. Douglas; Hardy, John A.; Rich, Stephen S.; Meschia, James F.; Singleton, Andrew B.

    2008-01-01

    Technological advances in molecular genetics allow rapid and sensitive identification of genomic copy number variants (CNVs). This, in turn, has sparked interest in the function such variation may play in disease. While a role for copy number mutations as a cause of Mendelian disorders is well established, it is unclear whether CNVs may affect risk for common complex disorders. We sought to investigate whether CNVs may modulate risk for ischemic stroke (IS) and to provide a catalog of CNVs in patients with this disorder by analyzing copy number metrics produced as a part of our previous genome-wide single-nucleotide polymorphism (SNP)-based association study of ischemic stroke in a North American white population. We examined CNVs in 263 patients with ischemic stroke (IS). Each identified CNV was compared with changes identified in 275 neurologically normal controls. Our analysis identified 247 CNVs, corresponding to 187 insertions (76%; 135 heterozygous; 25 homozygous duplications or triplications; 2 heterosomic) and 60 deletions (24%; 40 heterozygous deletions;3 homozygous deletions; 14 heterosomic deletions). Most alterations (81%) were the same as, or overlapped with, previously reported CNVs. We report here the first genome-wide analysis of CNVs in IS patients. In summary, our study did not detect any common genomic structural variation unequivocally linked to IS, although we cannot exclude that smaller CNVs or CNVs in genomic regions poorly covered by this methodology may confer risk for IS. The application of genome-wide SNP arrays now facilitates the evaluation of structural changes through the entire genome as part of a genome-wide genetic association study. PMID:18288507

  18. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    Science.gov (United States)

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  19. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  20. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  1. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  2. Applications of new biophysical techniques to supramolecular structure of ATP synthase

    International Nuclear Information System (INIS)

    Zhu Jie; Wang Guodong

    2007-01-01

    The developing modern physical techniques offer a series of abundant and effective methods to study ATP synthase in structure and function. Firstly we stressed on the dialectic relationship between physical techniques and the improvement of science in history, and introduced a lot of physical techniques in common use in protein researches such as mass spectroscopy, nuclear magnetic resonance, synchronization X-ray diffraction, infrared spectroscopy and ultraviolet spectroscopy, and then reviewed their application status in quo to ATP synthase. Secondly we paid out attention to the burgeoning unconventionally instruments, i.e., the atomic force microscope and the fluorescence resonance energy transform (FRET) which have attracted the professional attention, and introduced latest application and researches' achievements. Compared the development of the techniques in recent years, we have set forth the shortcoming and excellence of all kinds of equipments introduced. And it was ended with the conclusion that it is necessary to manage the possible instruments effectively and sufficient for the personalities, and given out the optimum research routes which emphasized on the new techniques and novel methods, i.e., the atomic force microscope and FRET. (authors)

  3. Using Genomics for Natural Product Structure Elucidation.

    Science.gov (United States)

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques.

  4. Interrogating the druggable genome with structural informatics.

    Science.gov (United States)

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  5. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.

    Science.gov (United States)

    Garcia, Mario Daniel; Wang, Jian-Guo; Lonhienne, Thierry; Guddat, Luke William

    2017-07-01

    Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 Å resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts. The coordinates and structure factors for uninhibited AtAHAS have been deposited in the Protein Data Bank (www.pdb.org) with the PDB ID code 5K6Q. © 2017 Federation of European Biochemical Societies.

  6. Structural and functional annotation of citrate synthase from Aspergillus niger ANJ-120.

    Science.gov (United States)

    Mustafa, Ghulam; Arif, Rawaba; Bukhari, Shazia Anwer; Ali, Muhammad; Sharif, Sumaira; Atta, Asia

    2018-03-01

    Citrate synthase (CS) is involved in citric acid biosynthesis which is a well-established metabolic pathway. The condensation of acetyl-CoA with oxaloacetate is catalyzed by CS. Citric acid (CA) has a number of applications in pharmaceutical industry. CA in combination with bicarbonates is used as an effervescent in the preparations of tablets and powders. It has also been used as an anticoagulant and acidulant to form mild astringent. In current study, detailed structural and functional analyses of CS protein were carried out using various bioinformatics tools. Structural modeling was also done by building 3D model of CS from Aspergillus niger ANJ-120 using Modeller 9.16 software. The 3D Model was then evaluated using different online approaches. Furthermore, superimposition of query and template structures, Root Mean Squared Deviation and visualization of generated model were done through UCSF Chimera 1.5.3. Even though various roles of CS protein were already known and verified experimentally, here we presented a structural analysis of CS protein. The structural investigation of CS protein will be helpful for protein engineering strategies and understanding the interactions among proteins. Due to large number of applications, the production of citric acid by A. niger and its bioinformatics studies will offer substantial improvement in commercial scale intensification of this useful product.

  7. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  8. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.

    Science.gov (United States)

    Filiz, Ertugrul; Ozyigit, Ibrahim Ilker; Vatansever, Recep

    2015-10-01

    GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gene Composer in a structural genomics environment

    International Nuclear Information System (INIS)

    Lorimer, Don; Raymond, Amy; Mixon, Mark; Burgin, Alex; Staker, Bart; Stewart, Lance

    2011-01-01

    For structural biology applications, protein-construct engineering is guided by comparative sequence analysis and structural information, which allow the researcher to better define domain boundaries for terminal deletions and nonconserved regions for surface mutants. A database software application called Gene Composer has been developed to facilitate construct design. The structural genomics effort at the Seattle Structural Genomics Center for Infectious Disease (SSGCID) requires the manipulation of large numbers of amino-acid sequences and the underlying DNA sequences which are to be cloned into expression vectors. To improve efficiency in high-throughput protein structure determination, a database software package, Gene Composer, has been developed which facilitates the information-rich design of protein constructs and their underlying gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bioinformatics steps used in modern structure-guided protein engineering and synthetic gene engineering. An example of the structure determination of H1N1 RNA-dependent RNA polymerase PB2 subunit is given

  10. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

    Science.gov (United States)

    Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  11. Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

    Science.gov (United States)

    Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-01-01

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866

  12. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne E.; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, B G

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  13. Structural genomic variations and Parkinson's disease.

    Science.gov (United States)

    Bandrés-Ciga, Sara; Ruz, Clara; Barrero, Francisco J; Escamilla-Sevilla, Francisco; Pelegrina, Javier; Vives, Francisco; Duran, Raquel

    2017-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, whose prevalence is projected to be between 8.7 and 9.3 million by 2030. Until about 20 years ago, PD was considered to be the textbook example of a "non-genetic" disorder. Nowadays, PD is generally considered a multifactorial disorder that arises from the combination and complex interaction of genes and environmental factors. To date, a total of 7 genes including SNCA, LRRK2, PARK2, DJ-1, PINK 1, VPS35 and ATP13A2 have been seen to cause unequivocally Mendelian PD. Also, variants with incomplete penetrance in the genes LRRK2 and GBA are considered to be strong risk factors for PD worldwide. Although genetic studies have provided valuable insights into the pathogenic mechanisms underlying PD, the role of structural variation in PD has been understudied in comparison with other genomic variations. Structural genomic variations might substantially account for such genetic substrates yet to be discovered. The present review aims to provide an overview of the structural genomic variants implicated in the pathogenesis of PD.

  14. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    Science.gov (United States)

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco

    Directory of Open Access Journals (Sweden)

    Yonghai Fan

    2017-12-01

    Full Text Available Galactinol synthase (GolS is a key enzyme in raffinose family oligosaccharide (RFO biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus and tobacco (Nicotiana tabacum remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.

  16. Enzyme That Makes You Cry-Crystal Structure of Lachrymatory Factor Synthase from Allium cepa.

    Science.gov (United States)

    Silvaroli, Josie A; Pleshinger, Matthew J; Banerjee, Surajit; Kiser, Philip D; Golczak, Marcin

    2017-09-15

    The biochemical pathway that gives onions their savor is part of the chemical warfare against microbes and animals. This defense mechanism involves formation of a volatile lachrymatory factor (LF) ((Z)-propanethial S-oxide) that causes familiar eye irritation associated with onion chopping. LF is produced in a reaction catalyzed by lachrymatory factor synthase (LFS). The principles by which LFS facilitates conversion of a sulfenic acid substrate into LF have been difficult to experimentally examine owing to the inherent substrate reactivity and lability of LF. To shed light on the mechanism of LF production in the onion, we solved crystal structures of LFS in an apo-form and in complex with a substrate analogue, crotyl alcohol. The enzyme closely resembles the helix-grip fold characteristic for plant representatives of the START (star-related lipid transfer) domain-containing protein superfamily. By comparing the structures of LFS to that of the abscisic acid receptor, PYL10, a representative of the START protein superfamily, we elucidated structural adaptations underlying the catalytic activity of LFS. We also delineated the architecture of the active site, and based on the orientation of the ligand, we propose a mechanism of catalysis that involves sequential proton transfer accompanied by formation of a carbanion intermediate. These findings reconcile chemical and biochemical information regarding thioaldehyde S-oxide formation and close a long-lasting gap in understanding of the mechanism responsible for LF production in the onion.

  17. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    International Nuclear Information System (INIS)

    Różycki, Bartosz; Cieplak, Marek

    2014-01-01

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme

  18. 7.5-Å cryo-em structure of the mycobacterial fatty acid synthase.

    Science.gov (United States)

    Boehringer, Daniel; Ban, Nenad; Leibundgut, Marc

    2013-03-11

    The mycobacterial fatty acid synthase (FAS) complex is a giant 2.0-MDa α(6) homohexameric multifunctional enzyme that catalyzes synthesis of fatty acid precursors of mycolic acids, which are major components of the cell wall in Mycobacteria and play an important role in pathogenicity. Here, we present a three-dimensional reconstruction of the Mycobacterium smegmatis FAS complex at 7.5Å, highly homologous to the Mycobacterium tuberculosis multienzyme, by cryo-electron microscopy. Based on the obtained structural data, which allowed us to identify secondary-structure elements, and sequence homology with the fungal FAS, we generated an accurate architectural model of the complex. The FAS system from Mycobacteria resembles a minimized version of the fungal FAS with much larger openings in the reaction chambers. These architectural features of the mycobacterial FAS may be important for the interaction with mycolic acid processing and condensing enzymes that further modify the precursors produced by FAS and for autoactivation of the FAS complex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Structure of Quinolinate Synthase from Pyrococcus horikoshii in the Presence of Its Product, Quinolinic Acid.

    Science.gov (United States)

    Esakova, Olga A; Silakov, Alexey; Grove, Tyler L; Saunders, Allison H; McLaughlin, Martin I; Yennawar, Neela H; Booker, Squire J

    2016-06-15

    Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity.

  20. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    Science.gov (United States)

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  1. Taxadiene Synthase Structure and Evolution of Modular Architecture in Terpene Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    M Köksal; Y Jin; R Coates; R Croteau; D Christianson

    2011-12-31

    With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 {angstrom} resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 {angstrom} resolution). The TXS structure reveals a modular assembly of three {alpha}-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.

  2. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial......beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  3. Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Kaur, Simerjeet; Dhugga, Kanwarpal S; Beech, Robin; Singh, Jaswinder

    2017-11-03

    Hemicelluloses are a diverse group of complex, non-cellulosic polysaccharides, which constitute approximately one-third of the plant cell wall and find use as dietary fibres, food additives and raw materials for biofuels. Genes involved in hemicellulose synthesis have not been extensively studied in small grain cereals. In efforts to isolate the sequences for the cellulose synthase-like (Csl) gene family from wheat, we identified 108 genes (hereafter referred to as TaCsl). Each gene was represented by two to three homeoalleles, which are named as TaCslXY_ZA, TaCslXY_ZB, or TaCslXY_ZD, where X denotes the Csl subfamily, Y the gene number and Z the wheat chromosome where it is located. A quarter of these genes were predicted to have 2 to 3 splice variants, resulting in a total of 137 putative translated products. Approximately 45% of TaCsl genes were located on chromosomes 2 and 3. Sequences from the subfamilies C and D were interspersed between the dicots and grasses but those from subfamily A clustered within each group of plants. Proximity of the dicot-specific subfamilies B and G, to the grass-specific subfamilies H and J, respectively, points to their common origin. In silico expression analysis in different tissues revealed that most of the genes were expressed ubiquitously and some were tissue-specific. More than half of the genes had introns in phase 0, one-third in phase 2, and a few in phase 1. Detailed characterization of the wheat Csl genes has enhanced the understanding of their structural, functional, and evolutionary features. This information will be helpful in designing experiments for genetic manipulation of hemicellulose synthesis with the goal of developing improved cultivars for biofuel production and increased tolerance against various stresses.

  4. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  5. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type

  6. NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions.

    Science.gov (United States)

    Harris, Kimberly A; Bobay, Benjamin G; Sarachan, Kathryn L; Sims, Alexis F; Bilbille, Yann; Deutsch, Christopher; Iwata-Reuyl, Dirk; Agris, Paul F

    2015-08-14

    The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

    Science.gov (United States)

    Brown, Nathan M; Mueller, Ryan S; Shepardson, Jonathan W; Landry, Zachary C; Morré, Jeffrey T; Maier, Claudia S; Hardy, F Joan; Dreher, Theo W

    2016-06-13

    Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.

  8. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase.

    Directory of Open Access Journals (Sweden)

    C F Reboul

    Full Text Available Dihydrodipicolinate synthase (DHDPS is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA. These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.

  9. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP...

  10. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  11. Structural and functional analysis of validoxylamine A 7'-phosphate synthase ValL involved in validamycin A biosynthesis.

    Directory of Open Access Journals (Sweden)

    Lina Zheng

    Full Text Available Validamycin A (Val-A is an effective antifungal agent widely used in Asian countries as crop protectant. Validoxylamine A, the core structure and intermediate of Val-A, consists of two C(7-cyclitol units connected by a rare C-N bond. In the Val-A biosynthetic gene cluster in Streptomyces hygroscopicus 5008, the ORF valL was initially annotated as a validoxylamine A 7'-phosphate(V7P synthase, whose encoded 497-aa protein shows high similarity with trehalose 6-phosphate(T6P synthase. Gene inactivation of valL abolished both validoxylamine A and validamycin A productivity, and complementation with a cloned valL recovered 10% production of the wild-type in the mutant, indicating the involvement of ValL in validoxylamine A biosynthesis. Also we determined the structures of ValL and ValL/trehalose complex. The structural data indicates that ValL adopts the typical fold of GT-B protein family, featuring two Rossmann-fold domains and an active site at domain junction. The residues in the active site are arranged in a manner homologous to that of Escherichia coli (E.coli T6P synthase OtsA. However, a significant discrepancy is found in the active-site loop region. Also noticeable structural variance is found around the active site entrance in the apo ValL structure while the region takes an ordered configuration upon binding of product analog trehalose. Furthermore, the modeling of V7P in the active site of ValL suggests that ValL might have a similar SNi-like mechanism as OtsA.

  12. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  13. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus.

    Science.gov (United States)

    Harada, Taro; Murakoshi, Yuino; Torii, Yuka; Tanase, Koji; Onozaki, Takashi; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2011-04-01

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of 'Light Pink Barbara', we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3'-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

  14. The Dictyostelium discoideum cellulose synthase: Structure/function analysis and identification of interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Blanton

    2004-02-19

    OAK-B135 The major accomplishments of this project were: (1) the initial characterization of dcsA, the gene for the putative catalytic subunit of cellulose synthase in the cellular slime mold Dictyostelium discoideum; (2) the detection of a developmentally regulated event (unidentified, but perhaps a protein modification or association with a protein partner) that is required for cellulose synthase activity (i.e., the dcsA product is necessary, but not sufficient for cellulose synthesis); (3) the continued exploration of the developmental context of cellulose synthesis and DcsA; (4) the isolation of a GFP-DcsA-expressing strain (work in progress); and (5) the identification of Dictyostelium homologues for plant genes whose products play roles in cellulose biosynthesis. Although our progress was slow and many of our results negative, we did develop a number of promising avenues of investigation that can serve as the foundation for future projects.

  15. Cyclic GMP-AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria.

    Science.gov (United States)

    Gallego-Marin, Carolina; Schrum, Jacob E; Andrade, Warrison A; Shaffer, Scott A; Giraldo, Lina F; Lasso, Alvaro M; Kurt-Jones, Evelyn A; Fitzgerald, Katherine A; Golenbock, Douglas T

    2018-01-15

    Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-β induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Science.gov (United States)

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  17. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  18. Structural biology at York Structural Biology Laboratory; laboratory information management systems for structural genomics

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2005-01-01

    Roč. 12, č. 1 (2005), s. 3 ISSN 1211-5894. [Meeting of Structural Biologists /4./. 10.03.2005-12.03.2005, Nové Hrady] R&D Projects: GA MŠk(CZ) 1K05008 Keywords : structural biology * LIMS * structural genomics Subject RIV: CD - Macromolecular Chemistry

  19. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Aripirala, Srinivas [Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States); Gonzalez-Pacanowska, Dolores [López-Neyra Institute of Parasitology and Biomedicine, 18001 Granada (Spain); Oldfield, Eric [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kaiser, Marcel [University of Basel, Petersplatz 1, CH-4003 Basel (Switzerland); Amzel, L. Mario, E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Gabelli, Sandra B., E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States)

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  20. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  1. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine.

    Science.gov (United States)

    Joon, Shin; Ragunathan, Priya; Sundararaman, Lavanya; Nartey, Wilson; Kundu, Subhashri; Manimekalai, Malathy S S; Bogdanović, Nebojša; Dick, Thomas; Grüber, Gerhard

    2018-03-01

    Mycobacterium tuberculosis (Mt) F 1 F 0 ATP synthase (α 3 :β 3 :γ:δ:ε:a:b:b':c 9 ) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N-terminal β-barrel domain (NTD) and a C-terminal domain (CTD) composed of a helix-loop-helix with helix 1 and -2 being shorter compared to their counterparts in other bacteria. The C-terminal amino acids are oriented toward the NTD, forming a domain-domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c-ring- and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α 3 β 3 -headpiece. To test our model, genome site-directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline. Structural data are available in the PDB under the accession number 5YIO. © 2018 Federation of European Biochemical Societies.

  3. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph, E-mail: kappock@purdue.edu [Purdue University, 175 South University Street, West Lafayette, IN 47907-2063 (United States)

    2015-09-23

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.

  4. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    International Nuclear Information System (INIS)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph

    2015-01-01

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS

  5. Pathgroups, a dynamic data structure for genome reconstruction problems.

    Science.gov (United States)

    Zheng, Chunfang

    2010-07-01

    Ancestral gene order reconstruction problems, including the median problem, quartet construction, small phylogeny, guided genome halving and genome aliquoting, are NP hard. Available heuristics dedicated to each of these problems are computationally costly for even small instances. We present a data structure enabling rapid heuristic solution to all these ancestral genome reconstruction problems. A generic greedy algorithm with look-ahead based on an automatically generated priority system suffices for all the problems using this data structure. The efficiency of the algorithm is due to fast updating of the structure during run time and to the simplicity of the priority scheme. We illustrate with the first rapid algorithm for quartet construction and apply this to a set of yeast genomes to corroborate a recent gene sequence-based phylogeny. http://albuquerque.bioinformatics.uottawa.ca/pathgroup/Quartet.html chunfang313@gmail.com Supplementary data are available at Bioinformatics online.

  6. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis

    DEFF Research Database (Denmark)

    Prats, Clara; Cadefau, Joan A; Cussó, Roser

    2005-01-01

    Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively....... Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed...... that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ...

  7. Crystallization, preliminary X-ray diffraction and structure solution of MosA, a dihydrodipicolinate synthase from Sinorhizobium meliloti L5-30

    International Nuclear Information System (INIS)

    Leduc, Yvonne A.; Phenix, Christopher P.; Puttick, Jennifer; Nienaber, Kurt; Palmer, David R. J.; Delbaere, Louis T. J.

    2005-01-01

    MosA from S. meliloti L5-30 has been crystallized in solution with pyruvate and the 2.3 Å resolution structure has been solved by molecular replacement using E. coli dihydrodipicolinate synthase as the model. The structure of MosA, a dihydrodipicolinate synthase and reported methyltransferase from Sinorhizobium meliloti, has been solved using molecular replacement with Escherichia coli dihydrodipicolinate synthase as the model. A crystal grown in the presence of pyruvate diffracted X-rays to 2.3 Å resolution using synchrotron radiation and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 69.14, b = 138.87, c = 124.13 Å

  8. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  9. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress.

    Science.gov (United States)

    Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang

    2017-12-01

    Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.

  10. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins.

    Science.gov (United States)

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim

    2006-04-01

    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.

  11. Structural dynamics of retroviral genome and the packaging.

    Science.gov (United States)

    Miyazaki, Yasuyuki; Miyake, Ariko; Nomaguchi, Masako; Adachi, Akio

    2011-01-01

    Retroviruses can cause diseases such as AIDS, leukemia, and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve the efficacy of retroviral vectors. Retroviral genomes have to be specifically recognized by the cognate nucleocapsid domain of the Gag polyprotein from among an excess of cellular and spliced viral mRNA. Extensive virological and structural studies have revealed how retroviral genomic RNA is selectively packaged into the viral particles. The genomic area responsible for the packaging is generally located in the 5' untranslated region (5' UTR), and contains dimerization site(s). Recent studies have shown that retroviral genome packaging is modulated by structural changes of RNA at the 5' UTR accompanied by the dimerization. In this review, we focus on three representative retroviruses, Moloney murine leukemia virus, human immunodeficiency virus type 1 and 2, and describe the molecular mechanism of retroviral genome packaging.

  12. Structural dynamics of retroviral genome and the packaging

    Directory of Open Access Journals (Sweden)

    Yasuyuki eMiyazaki

    2011-12-01

    Full Text Available Retroviruses can cause diseases such as AIDS, leukemia and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve the efficacy of retroviral vectors. Retroviral genomes have to be specifically recognized by the cognate nucleocapsid (NC domain of the Gag polyprotein from among an excess of cellular and spliced viral mRNA. Extensive virological and structural studies have revealed how retroviral genomic RNA is selectively packaged into the viral particles. The genomic area responsible for the packaging is generally located in the 5’ untranslated region (5’ UTR, and contains dimerization site(s. Recent studies have shown that retroviral genome packaging is modulated by structural changes of RNA at the 5’ UTR accompanied by the dimerization. In this review, we focus on three representative retroviruses, Moloney murine leukemia virus (MoMLV, human immunodeficiency virus type 1 (HIV-1 and 2 (HIV-2, and describe the molecular mechanism of retroviral genome packaging.

  13. Functional RNA structures throughout the Hepatitis C Virus genome.

    Science.gov (United States)

    Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie

    2017-06-01

    The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    Science.gov (United States)

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb.

  15. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lobzin, V.V.

    2004-01-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions

  16. Structural genomics of infectious disease drug targets: the SSGCID

    International Nuclear Information System (INIS)

    Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.

    2011-01-01

    An introduction and overview of the focus, goals and overall mission of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) is given. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a consortium of researchers at Seattle BioMed, Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory that was established to apply structural genomics approaches to drug targets from infectious disease organisms. The SSGCID is currently funded over a five-year period by the National Institute of Allergy and Infectious Diseases (NIAID) to determine the three-dimensional structures of 400 proteins from a variety of Category A, B and C pathogens. Target selection engages the infectious disease research and drug-therapy communities to identify drug targets, essential enzymes, virulence factors and vaccine candidates of biomedical relevance to combat infectious diseases. The protein-expression systems, purified proteins, ligand screens and three-dimensional structures produced by SSGCID constitute a valuable resource for drug-discovery research, all of which is made freely available to the greater scientific community. This issue of Acta Crystallographica Section F, entirely devoted to the work of the SSGCID, covers the details of the high-throughput pipeline and presents a series of structures from a broad array of pathogenic organisms. Here, a background is provided on the structural genomics of infectious disease, the essential components of the SSGCID pipeline are discussed and a survey of progress to date is presented

  17. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    Science.gov (United States)

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  18. Structural Genomics and Drug Discovery for Infectious Diseases

    International Nuclear Information System (INIS)

    Anderson, W.F.

    2009-01-01

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  19. Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Hirano, Seiichi; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-05

    Cyclic dinucleotides (CDNs) play key roles as second messengers and signaling molecules in bacteria and metazoans. The newly identified dinucleotide cyclase in Vibrio cholerae (DncV) produces three different CDNs containing two 3'-5' phosphodiester bonds, and its predominant product is cyclic GMP-AMP, whereas mammalian cyclic GMP-AMP synthase (cGAS) produces only cyclic GMP-AMP containing mixed 2'-5' phosphodiester bonds. We report the crystal structures of V. cholerae and Escherichia coli DncV in complex with various nucleotides in the pre-reaction states. The high-resolution structures revealed that DncV preferably recognizes ATP and GTP as acceptor and donor nucleotides, respectively, in the first nucleotidyl transfer reaction. Considering the recently reported intermediate structures, our pre-reaction state structures provide the precise mechanism of 3'-5' linked cyclic AMP-GMP production in bacteria. A comparison with cGAS in the pre-reaction states suggests that the orientation of the acceptor nucleotide primarily determines the distinct linkage specificities between DncV and cGAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design

    International Nuclear Information System (INIS)

    Sprenger, Janina; Svensson, Bo; Hålander, Jenny; Carey, Jannette; Persson, Lo; Al-Karadaghi, Salam

    2015-01-01

    In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5′-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS

  1. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, Janina [Lund University, SE-221 00 Lund (Sweden); Lund University, SE-221 84 Lund (Sweden); Svensson, Bo [Lund University, SE-221 00 Lund (Sweden); SARomics Biostructures AB, Box 724, SE-220 07 Lund (Sweden); Hålander, Jenny [Lund University, SE-221 00 Lund (Sweden); Carey, Jannette [Princeton University, Princeton, New Jersey (United States); Persson, Lo [Lund University, SE-221 84 Lund (Sweden); Al-Karadaghi, Salam, E-mail: salam.al-karadaghi@biochemistry.lu.se [Lund University, SE-221 00 Lund (Sweden)

    2015-03-01

    In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5′-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.

  2. Structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate and two molecules of inorganic phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeok [McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 (Canada); Lin, Yih-Shyan [McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A 0B8 (Canada); Tsantrizos, Youla S. [McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 (Canada); McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A 0B8 (Canada); McGill University, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 (Canada); Berghuis, Albert M., E-mail: albert.berghuis@mcgill.ca [McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 (Canada); McGill University, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 (Canada); McGill University, 3775 Rue University, Montreal, QC H3A 2B4 (Canada)

    2014-02-19

    A co-crystal structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate, YS0470, and two molecules of inorganic phosphate has been determined. The identity of the phosphate ligands was confirmed by anomalous diffraction data. Human farnesyl pyrophosphate synthase (hFPPS) produces farnesyl pyrophos@@phate, an isoprenoid essential for a variety of cellular processes. The enzyme has been well established as the molecular target of the nitrogen-containing bisphosphonates (N-BPs), which are best known for their antiresorptive effects in bone but are also known for their anticancer properties. Crystal structures of hFPPS in ternary complexes with a novel bisphosphonate, YS0470, and the secondary ligands inorganic phosphate (P{sub i}), inorganic pyrophosphate (PP{sub i}) and isopentenyl pyrophosphate (IPP) have recently been reported. Only the co-binding of the bisphosphonate with either PP{sub i} or IPP resulted in the full closure of the C-@@terminal tail of the enzyme, a conformational change that is required for catalysis and that is also responsible for the potent in vivo efficacy of N-BPs. In the present communication, a co-crystal structure of hFPPS in complex with YS0470 and two molecules of P{sub i} is reported. The unusually close proximity between these ligands, which was confirmed by anomalous diffraction data, suggests that they interact with one another, with their anionic charges neutralized in their bound state. The structure also showed the tail of the enzyme to be fully disordered, indicating that simultaneous binding of two P{sub i} molecules with a bisphosphonate cannot induce the tail-closing conformational change in hFPPS. Examination of homologous FPPSs suggested that this ligand-dependent tail closure is only conserved in the mammalian proteins. The prevalence of P{sub i}-bound hFPPS structures in the PDB raises a question regarding the in vivo relevance of P{sub i} binding to the function of the enzyme.

  3. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.; (UPENN); (Cardiff); (UC)

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  4. Structural determinants and mechanism of HIV-1 genome packaging.

    Science.gov (United States)

    Lu, Kun; Heng, Xiao; Summers, Michael F

    2011-07-22

    Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  6. The Impact of Structural Genomics: Expectations and Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-12-21

    Structural Genomics (SG) projects aim to expand our structural knowledge of biological macromolecules, while lowering the average costs of structure determination. We quantitatively analyzed the novelty, cost, and impact of structures solved by SG centers, and contrast these results with traditional structural biology. The first structure from a protein family is particularly important to reveal the fold and ancient relationships to other proteins. In the last year, approximately half of such structures were solved at a SG center rather than in a traditional laboratory. Furthermore, the cost of solving a structure at the most efficient U.S. center has now dropped to one-quarter the estimated cost of solving a structure by traditional methods. However, top structural biology laboratories are much more efficient than the average, and comparable to SG centers despite working on very challenging structures. Moreover, traditional structural biology papers are cited significantly more often, suggesting greater current impact.

  7. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    Science.gov (United States)

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  9. Enzyme That Makes You Cry–Crystal Structure of Lachrymatory Factor Synthase from Allium cepa

    Energy Technology Data Exchange (ETDEWEB)

    Silvaroli, Josie A. [Department; Pleshinger, Matthew J. [Department; College of Wooster, Wooster, Ohio, United States; Banerjee, Surajit [Department; Northeastern; Kiser, Philip D. [Department; Research; Cleveland; Golczak, Marcin [Department; Cleveland

    2017-07-26

    The biochemical pathway that gives onions their savor is part of the chemical warfare against microbes and animals. This defense mechanism involves formation of a volatile lachrymatory factor (LF) ((Z)-propanethial S-oxide) that causes familiar eye irritation associated with onion chopping. LF is produced in a reaction catalyzed by lachrymatory factor synthase (LFS). The principles by which LFS facilitates conversion of a sulfenic acid substrate into LF have been difficult to experimentally examine owing to the inherent substrate reactivity and lability of LF. To shed light on the mechanism of LF production in the onion, we solved crystal structures of LFS in an apo-form and in complex with a substrate analogue, crotyl alcohol. The enzyme closely resembles the helix-grip fold characteristic for plant representatives of the START (star-related lipid transfer) domain-containing protein superfamily. By comparing the structures of LFS to that of the abscisic acid receptor, PYL10, a representative of the START protein superfamily, we elucidated structural adaptations underlying the catalytic activity of LFS. We also delineated the architecture of the active site, and based on the orientation of the ligand, we propose a mechanism of catalysis that involves sequential proton transfer accompanied by formation of a carbanion intermediate. These findings reconcile chemical and biochemical information regarding thioaldehyde S-oxide formation and close a long-lasting gap in understanding of the mechanism responsible for LF production in the onion.

  10. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  11. Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses

    Directory of Open Access Journals (Sweden)

    Khalil Zaynali

    2010-06-01

    Full Text Available Abstract Background Sucrose phosphate synthase (SPS is an important component of the plant sucrose biosynthesis pathway. In the monocotyledonous Poaceae, five SPS genes have been identified. Here we present a detailed analysis of the wheat SPSII family in wheat. A set of homoeologue-specific primers was developed in order to permit both the detection of sequence variation, and the dissection of the individual contribution of each homoeologue to the global expression of SPSII. Results The expression in bread wheat over the course of development of various sucrose biosynthesis genes monitored on an Affymetrix array showed that the SPS genes were regulated over time and space. SPSII homoeologue-specific assays were used to show that the three homoeologues contributed differentially to the global expression of SPSII. Genetic mapping placed the set of homoeoloci on the short arms of the homoeologous group 3 chromosomes. A resequencing of the A and B genome copies allowed the detection of four haplotypes at each locus. The 3B copy includes an unspliced intron. A comparison of the sequences of the wheat SPSII orthologues present in the diploid progenitors einkorn, goatgrass and Triticum speltoides, as well as in the more distantly related species barley, rice, sorghum and purple false brome demonstrated that intronic sequence was less well conserved than exonic. Comparative sequence and phylogenetic analysis of SPSII gene showed that false purple brome was more similar to Triticeae than to rice. Wheat - rice synteny was found to be perturbed at the SPS region. Conclusion The homoeologue-specific assays will be suitable to derive associations between SPS functionality and key phenotypic traits. The amplicon sequences derived from the homoeologue-specific primers are informative regarding the evolution of SPSII in a polyploid context.

  12. Evolutionary genomics and population structure of Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Koushik Das

    2014-11-01

    Full Text Available Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba.

  13. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise...

  14. Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-09-01

    Full Text Available Product-releasing enzyme (PRE domains in fungal non-reducing polyketide synthases (NR-PKSs play a crucial role in catalysis and editing during polyketide biosynthesis, especially accelerating final biosynthetic reactions accompanied with product offloading. However, up to date, the systematic knowledge about PRE domains is deficient. In the present study, the relationships between sequences, structures, and functions of PRE domains were analyzed with 574 NR-PKSs of eight groups (I–VIII. It was found that the PRE domains in NR-PKSs could be mainly classified into three types, thioesterase (TE, reductase (R, and metallo-β-lactamase-type TE (MβL-TE. The widely distributed TE or TE-like domains were involved in NR-PKSs of groups I–IV, VI, and VIII. The R domains appeared in NR-PKSs of groups IV and VII, while the physically discrete MβL-TE domains were employed by most NR-PKSs of group V. The changes of catalytic sites and structural characteristics resulted in PRE functional differentiations. The phylogeny revealed that the evolution of TE domains was accompanied by complex functional divergence. The diverse sequence lengths of TE lid-loops affected substrate specificity with different chain lengths. The volume diversification of TE catalytic pockets contributed to catalytic mechanisms with functional differentiations. The above findings may help to understand the crucial catalysis of fungal aromatic polyketide biosyntheses and govern recombination of NR-PKSs to obtain unnatural target products.

  15. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M. (WU); (Danforth)

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  16. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob H

    2014-01-01

    BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However......, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure...... lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome...

  17. cDNA structure, genomic organization and expression patterns of ...

    African Journals Online (AJOL)

    Visfatin was a newly identified adipocytokine, which was involved in various physiologic and pathologic processes of organisms. The cDNA structure, genomic organization and expression patterns of silver Prussian carp visfatin were described in this report. The silver Prussian carp visfatin cDNA cloned from the liver was ...

  18. 6-Pyruvoyltetrahydropterin synthase orthologs of either a single or dual domain structure are responsible for tetrahydrobiopterin synthesis in bacteria.

    Science.gov (United States)

    Kong, Jin Sun; Kang, Ji-Youn; Kim, Hye Lim; Kwon, O-Seob; Lee, Kon Ho; Park, Young Shik

    2006-09-04

    6-Pyruvoyltetrahydropterin synthase (PTPS) catalyzes the second step of tetrahydrobiopterin (BH4) synthesis. We previously identified PTPS orthologs (bPTPS-Is) in bacteria which do not produce BH4. In this study we disrupted the gene encoding bPTPS-I in Synechococcus sp. PCC 7942, which produces BH4-glucoside. The mutant was normal in BH4-glucoside production, demonstrating that bPTPS-I does not participate in BH4 synthesis in vivo and bringing us a new PTPS ortholog (bPTPS-II) of a bimodular polypeptide. The recombinant Synechococcus bPTPS-II was assayed in vitro to show PTPS activity higher than human enzyme. Further computational analysis revealed the presence of mono and bimodular bPTPS-II orthologs mostly in green sulfur bacteria and cyanobacteria, respectively, which are well known for BH4-glycoside production. In summary we found new bacterial PTPS orthologs, having either a single or dual domain structure and being responsible for BH4 synthesis in vivo, thereby disclosing all the bacterial PTPS homologs.

  19. Yeast beta-alanine synthase shares a structural scaffold and origin with dizinc-dependent exopeptidases

    DEFF Research Database (Denmark)

    Lundgren, S.; Gojkovic, Zoran; Piskur, Jure

    2003-01-01

    of the intersubunit contacts. Both domains exhibit a mixed alpha/beta-topology. Surprisingly, the observed high structural homology to a family of dizinc-dependent exopeptidases suggests that these two enzyme groups have a common origin. Alterations in the ligand composition of the metal-binding site can be explained...

  20. Structures of Mycobacterium Tuberculosis Folylpolyglutamate Synthase Complexed With ADP And AMPPCD

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.; Smith, C.A.; Metcalf, P.; Baker, E.N.

    2009-05-28

    Folate derivatives are essential vitamins for cell growth and replication, primarily because of their central role in reactions of one-carbon metabolism. Folates require polyglutamation to be efficiently retained within the cell and folate-dependent enzymes have a higher affinity for the polyglutamylated forms of this cofactor. Polyglutamylation is dependent on the enzyme folylpolyglutamate synthetase (FPGS), which catalyzes the sequential addition of several glutamates to folate. FPGS is essential for the growth and survival of important bacterial species, including Mycobacterium tuberculosis, and is a potential drug target. Here, the crystal structures of M. tuberculosis FPGS in complex with ADP and AMPPCP are reported at 2.0 and 2.3 angstroms resolution, respectively. The structures reveal a deeply buried nucleotide-binding site, as in the Escherichia coli and Lactobacillus casei FPGS structures, and a long extended groove for the binding of folate substrates. Differences from the E. coli and L. casei FPGS structures are seen in the binding of a key divalent cation, the carbamylation state of an essential lysine side chain and the adoption of an 'open' position by the active-site beta5-alpha6 loop. These changes point to coordinated events that are associated with dihydropteroate/folate binding and the catalysis of the new amide bond with an incoming glutamate residue.

  1. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Amy C., E-mail: aca@dartmouth.edu [Dartmouth College, Department of Chemistry, Burke Laboratories, Hanover, NH 03755 (United States)

    2005-03-01

    An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.

  2. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Praveen Balabaskaran Nina

    2010-07-01

    Full Text Available The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1 sector catalyzes ATP synthesis, whereas the F(o sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1 and F(o sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a

  3. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  4. Crystal Structure of Methylornithine Synthase (PylB): Insights into the Pyrrolysine Biosynthesis

    KAUST Repository

    Quitterer, Felix

    2011-11-16

    Made by the barrel load: The biosynthetic pathway of the recently discovered 22nd amino acid, pyrrolysine, starts with an isomerization of lysine to methylornithine, catalyzed by PylB. The X-ray crystal structure of PylB is determined (see picture) and shows it has a TIM barrel fold. The sealed central cavity contains a [4Fe-4S] cluster, S-adenosylmethionine (SAM), and methylornithine, whose 2R,3R configuration could be confirmed. The data suggest a fragmentation-recombination mechanism via a glycyl radical intermediate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Elucidation of Operon Structures across Closely Related Bacterial Genomes

    Science.gov (United States)

    Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components. PMID:24959722

  6. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  7. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants

    DEFF Research Database (Denmark)

    Liepman, Aaron H; Nairn, C Joseph; Willats, William G T

    2007-01-01

    from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants......, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced...... they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall...

  8. Novel Structural and Functional Motifs in cellulose synthase (CesA Genes of Bread Wheat (Triticum aestivum, L..

    Directory of Open Access Journals (Sweden)

    Simerjeet Kaur

    Full Text Available Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean revealed motifs unique to monocots (Poales or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.

  9. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    Science.gov (United States)

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  10. Structured Matrix Completion with Applications to Genomic Data Integration.

    Science.gov (United States)

    Cai, Tianxi; Cai, T Tony; Zhang, Anru

    2016-01-01

    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  11. SINEs, evolution and genome structure in the opossum.

    Science.gov (United States)

    Gu, Wanjun; Ray, David A; Walker, Jerilyn A; Barnes, Erin W; Gentles, Andrew J; Samollow, Paul B; Jurka, Jerzy; Batzer, Mark A; Pollock, David D

    2007-07-01

    Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, usually between 100 and 500 base pairs (bp) in length, which are ubiquitous components of eukaryotic genomes. Their activity, distribution, and evolution can be highly informative on genomic structure and evolutionary processes. To determine recent activity, we amplified more than one hundred SINE1 loci in a panel of 43 M. domestica individuals derived from five diverse geographic locations. The SINE1 family has expanded recently enough that many loci were polymorphic, and the SINE1 insertion-based genetic distances among populations reflected geographic distance. Genome-wide comparisons of SINE1 densities and GC content revealed that high SINE1 density is associated with high GC content in a few long and many short spans. Young SINE1s, whether fixed or polymorphic, showed an unbiased GC content preference for insertion, indicating that the GC preference accumulates over long time periods, possibly in periodic bursts. SINE1 evolution is thus broadly similar to human Alu evolution, although it has an independent origin. High GC content adjacent to SINE1s is strongly correlated with bias towards higher AT to GC substitutions and lower GC to AT substitutions. This is consistent with biased gene conversion, and also indicates that like chickens, but unlike eutherian mammals, GC content heterogeneity (isochore structure) is reinforced by substitution processes in the M. domestica genome. Nevertheless, both high and low GC content regions are apparently headed towards lower GC content equilibria, possibly due to a relative shift to lower recombination rates in the recent Monodelphis ancestral lineage. Like eutherians, metatherian (marsupial) mammals have evolved high CpG substitution rates, but this is apparently a convergence in process rather than a shared ancestral state.

  12. Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B.

    Science.gov (United States)

    Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

    2014-12-09

    Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene.

  13. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  14. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz; Vá zquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  15. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  16. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam

    2011-01-01

    a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...

  17. Refining the structure and content of clinical genomic reports.

    Science.gov (United States)

    Dorschner, Michael O; Amendola, Laura M; Shirts, Brian H; Kiedrowski, Lesli; Salama, Joseph; Gordon, Adam S; Fullerton, Stephanie M; Tarczy-Hornoch, Peter; Byers, Peter H; Jarvik, Gail P

    2014-03-01

    To effectively articulate the results of exome and genome sequencing we refined the structure and content of molecular test reports. To communicate results of a randomized control trial aimed at the evaluation of exome sequencing for clinical medicine, we developed a structured narrative report. With feedback from genetics and non-genetics professionals, we developed separate indication-specific and incidental findings reports. Standard test report elements were supplemented with research study-specific language, which highlighted the limitations of exome sequencing and provided detailed, structured results, and interpretations. The report format we developed to communicate research results can easily be transformed for clinical use by removal of research-specific statements and disclaimers. The development of clinical reports for exome sequencing has shown that accurate and open communication between the clinician and laboratory is ideally an ongoing process to address the increasing complexity of molecular genetic testing. © 2014 Wiley Periodicals, Inc.

  18. Macromolecular structure determination in the post-genome era

    CERN Document Server

    Kuhn, P

    2001-01-01

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system...

  19. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection.

    Directory of Open Access Journals (Sweden)

    Leila do Nascimento Vieira

    Full Text Available BACKGROUND: Podocarpus lambertii (Podocarpaceae is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. METHODOLOGY/PRINCIPAL FINDINGS: The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR. It contains 118 unique genes and one duplicated tRNA (trnN-GUU, which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi and Araucariaceae (Agathis dammara. Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. CONCLUSION: The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of

  20. Recognizing genes and other components of genomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Burks, C. (Los Alamos National Lab., NM (USA)); Myers, E. (Arizona Univ., Tucson, AZ (USA). Dept. of Computer Science); Stormo, G.D. (Colorado Univ., Boulder, CO (USA). Dept. of Molecular, Cellular and Developmental Biology)

    1991-01-01

    The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

  1. Structural constraints in the packaging of bluetongue virus genomic segments.

    Science.gov (United States)

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C; Roy, Polly

    2014-10-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5' and 3' ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. © 2014 The Authors.

  2. Identification of genomic indels and structural variations using split reads

    Directory of Open Access Journals (Sweden)

    Urban Alexander E

    2011-07-01

    Full Text Available Abstract Background Recent studies have demonstrated the genetic significance of insertions, deletions, and other more complex structural variants (SVs in the human population. With the development of the next-generation sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here we present split-read identification, calibrated (SRiC, a sequence-based method for SV detection. Results We start by mapping each read to the reference genome in standard fashion using gapped alignment. Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a read. All current SV calling methods have multilevel biases in their identifications due to both experimental and computational limitations (e.g. calling more deletions than insertions. A key aspect of our approach is that we calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with realistic error models. This allows us to calculate sensitivity and the positive predictive value under different parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions. We run our calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on chromosome 1 with the calibrations gleaned from the simulations (for different length events allows us to construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs. Conclusions Compared with the existing read-depth and read-pair approaches for SV identification, our method can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the whole

  3. Secure web book to store structural genomics research data.

    Science.gov (United States)

    Manjasetty, Babu A; Höppner, Klaus; Mueller, Uwe; Heinemann, Udo

    2003-01-01

    Recently established collaborative structural genomics programs aim at significantly accelerating the crystal structure analysis of proteins. These large-scale projects require efficient data management systems to ensure seamless collaboration between different groups of scientists working towards the same goal. Within the Berlin-based Protein Structure Factory, the synchrotron X-ray data collection and the subsequent crystal structure analysis tasks are located at BESSY, a third-generation synchrotron source. To organize file-based communication and data transfer at the BESSY site of the Protein Structure Factory, we have developed the web-based BCLIMS, the BESSY Crystallography Laboratory Information Management System. BCLIMS is a relational data management system which is powered by MySQL as the database engine and Apache HTTP as the web server. The database interface routines are written in Python programing language. The software is freely available to academic users. Here we describe the storage, retrieval and manipulation of laboratory information, mainly pertaining to the synchrotron X-ray diffraction experiments and the subsequent protein structure analysis, using BCLIMS.

  4. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  5. Simultaneous Structural Variation Discovery in Multiple Paired-End Sequenced Genomes

    Science.gov (United States)

    Hormozdiari, Fereydoun; Hajirasouliha, Iman; McPherson, Andrew; Eichler, Evan E.; Sahinalp, S. Cenk

    Next generation sequencing technologies have been decreasing the costs and increasing the world-wide capacity for sequence production at an unprecedented rate, making the initiation of large scale projects aiming to sequence almost 2000 genomes [1]. Structural variation detection promises to be one of the key diagnostic tools for cancer and other diseases with genomic origin. In this paper, we study the problem of detecting structural variation events in two or more sequenced genomes through high throughput sequencing . We propose to move from the current model of (1) detecting genomic variations in single next generation sequenced (NGS) donor genomes independently, and (2) checking whether two or more donor genomes indeed agree or disagree on the variations (in this paper we name this framework Independent Structural Variation Discovery and Merging - ISV&M), to a new model in which we detect structural variation events among multiple genomes simultaneously.

  6. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and...

  7. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  8. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  9. RNA structural constraints in the evolution of the influenza A virus genome NP segment

    NARCIS (Netherlands)

    A.P. Gultyaev (Alexander); A. Tsyganov-Bodounov (Anton); M.I. Spronken (Monique); S. Van Der Kooij (Sander); R.A.M. Fouchier (Ron); R.C.L. Olsthoorn (René)

    2014-01-01

    textabstractConserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length,

  10. Macromolecular structure determination in the post-genome era

    International Nuclear Information System (INIS)

    Kuhn, P.; Soltis, S.M.

    2001-01-01

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system for the structure determination steps of this process, starting with the initial characterization of the frozen sample, followed by data collection, data reduction, phase determination, and model building. This paper focuses on the data collection elements of this high-throughput system

  11. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  12. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  13. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    Science.gov (United States)

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  14. Insular Celtic population structure and genomic footprints of migration.

    Directory of Open Access Journals (Sweden)

    Ross P Byrne

    2018-01-01

    Full Text Available Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits.

  15. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  16. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  17. Producing genome structure populations with the dynamic and automated PGS software.

    Science.gov (United States)

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  18. The Structure of Rauvolfia serpentina Strictosidine Synthase Is a Novel Six-Bladed β-Propeller Fold in Plant Proteins[W

    Science.gov (United States)

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim

    2006-01-01

    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of ∼2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler–type reaction and represents a novel six-bladed β-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed β-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family. PMID:16531499

  19. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  20. The eukaryotic genome is structurally and functionally more like a social insect colony than a book.

    Science.gov (United States)

    Qiu, Guo-Hua; Yang, Xiaoyan; Zheng, Xintian; Huang, Cuiqin

    2017-11-01

    Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.

  1. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2017-07-01

    Full Text Available The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1 catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes.

  2. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  3. From structure prediction to genomic screens for novel non-coding RNAs

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.

    2011-01-01

    Abstract: Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction....... This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early...... upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other....

  4. The Leishmania donovani UMP Synthase Is Essential for Promastigote Viability and Has an Unusual Tetrameric Structure That Exhibits Substrate-controlled Oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Yates, Phillip A.; Soysa, D.Radika; Boitz, Jan M.; Carter, Nicola S.; Chang, Bailey; Ullman, Buddy; Ealick, Steven E. (Oregon HSU); (Cornell)

    2011-08-09

    The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.

  5. Analysis of polymorphisms and haplotype structure of the human thymidylate synthase genetic region: a tool for pharmacogenetic studies.

    Directory of Open Access Journals (Sweden)

    Soma Ghosh

    Full Text Available 5-Fluorouracil (5FU, a widely used chemotherapeutic drug, inhibits the DNA replicative enzyme, thymidylate synthase (Tyms. Prior studies implicated a VNTR (variable numbers of tandem repeats polymorphism in the 5'-untranslated region (5'-UTR of the TYMS gene as a determinant of Tyms expression in tumors and normal tissues and proposed that these VNTR genotypes could help decide fluoropyrimidine dosing. Clinical associations between 5FU-related toxicity and the TYMS VNTR were reported, however, results were inconsistent, suggesting that additional genetic variation in the TYMS gene might influence Tyms expression. We thus conducted a detailed genetic analysis of this region, defining new polymorphisms in this gene including mononucleotide (poly A:T repeats and novel single nucleotide polymorphisms (SNPs flanking the VNTR in the TYMS genetic region. Our haplotype analysis of this region used data from both established and novel genetic variants and found nine SNP haplotypes accounting for more than 90% of the studied population. We observed non-exclusive relationships between the VNTR and adjacent SNP haplotypes, such that each type of VNTR commonly occurred on several haplotype backgrounds. Our results confirmed the expectation that the VNTR alleles exhibit homoplasy and lack the common ancestry required for a reliable marker of a linked adjacent locus that might govern toxicity. We propose that it may be necessary in a clinical trial to assay multiple types of genetic polymorphisms in the TYMS region to meaningfully model linkage of genetic markers to 5FU-related toxicity. The presence of multiple long (up to 26 nt, polymorphic monothymidine repeats in the promoter region of the sole human thymidylate synthetic enzyme is intriguing.

  6. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  7. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Science.gov (United States)

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  8. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    Science.gov (United States)

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  9. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  10. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    Science.gov (United States)

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  11. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    Science.gov (United States)

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  12. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  13. Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism

    Directory of Open Access Journals (Sweden)

    Ahmad Khairudin Nurul

    2006-11-01

    Full Text Available Abstract Background Polyhydroxyalkanoates (PHA, are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D model of the Type II Pseudomonas sp. USM 4–55 PHA synthase 1 (PhaC1P.sp USM 4–55. Results Sequence analysis demonstrated that PhaC1P.sp USM 4–55 lacked similarity with all known structures in databases. PSI-BLAST and HMM Superfamily analyses demonstrated that this enzyme belongs to the alpha/beta hydrolase fold family. Threading approach revealed that the most suitable template to use was the human gastric lipase (PDB ID: 1HLG. The superimposition of the predicted PhaC1P.sp USM 4–55 model with 1HLG covering 86.2% of the backbone atoms showed an RMSD of 1.15 Å. The catalytic residues comprising of Cys296, Asp451 and His479 were found to be conserved and located adjacent to each other. In addition to this, an extension to the catalytic mechanism was also proposed whereby two tetrahedral intermediates were believed to form during the PHA biosynthesis. These transition state intermediates were further postulated to be stabilized by the formation of oxyanion holes. Based on the sequence analysis and the deduced model, Ser297 was postulated to contribute to the formation of the oxyanion hole. Conclusion The 3D model of the core region of PhaC1P.sp USM 4–55 from residue 267 to residue 484 was developed using computational techniques and the locations of the catalytic residues were identified. Results from this study for the first time highlighted Ser297 potentially

  14. Large-scale trends in the evolution of gene structures within 11 animal genomes.

    Directory of Open Access Journals (Sweden)

    Mark Yandell

    2006-03-01

    Full Text Available We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library". Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.

  15. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome

    NARCIS (Netherlands)

    Collins, Ryan L; Brand, Harrison; Redin, Claire E.; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T.; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A.; Lucente, Diane; Levy, Brynn; Sanders, Jan-Stephan; Wapner, Ronald J.; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E.

    2017-01-01

    Background: Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. Results: We sequenced 689 participants with autism spectrum disorder (ASD) and other

  16. From structure prediction to genomic screens for novel non-coding RNAs.

    Science.gov (United States)

    Gorodkin, Jan; Hofacker, Ivo L

    2011-08-01

    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  17. Structural constraints in the packaging of bluetongue virus genomic segments

    OpenAIRE

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.; Roy, Polly

    2014-01-01

    : The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by bioche...

  18. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus.

    Science.gov (United States)

    Coughlan, Simone; Taylor, Ali Shirley; Feane, Eoghan; Sanders, Mandy; Schonian, Gabriele; Cotton, James A; Downing, Tim

    2018-04-01

    The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. ( Viannia ) braziliensis and L. ( V. ) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. ( V. ) naiffi and L. ( V. ) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia : aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia , there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni , L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3' end of chromosome 34 . This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance.

  19. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain

    Energy Technology Data Exchange (ETDEWEB)

    Light, Samuel H.; Halavaty, Andrei S.; Minasov, George; Shuvalova, Ludmilla; Anderson, Wayne F. (NWU)

    2012-06-27

    3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase - an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis - and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn{sup 2+} and Mn{sup 2+} + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.

  20. Structural genomic variation as risk factor for idiopathic recurrent miscarriage

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Palta, Priit; Kasak, Laura

    2014-01-01

    Recurrent miscarriage (RM) is a multifactorial disorder with acknowledged genetic heritability that affects ∼3% of couples aiming at childbirth. As copy number variants (CNVs) have been shown to contribute to reproductive disease susceptibility, we aimed to describe genome-wide profile of CNVs an...

  1. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution.

    Science.gov (United States)

    Yap, Jia-Yee S; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y H; Wilton, Alan; Wilkins, Marc R; Rossetto, Maurizio; Delaney, Sven K

    2015-01-01

    The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.

  2. A genomic overview of the population structure of Salmonella.

    Directory of Open Access Journals (Sweden)

    Nabil-Fareed Alikhan

    2018-04-01

    Full Text Available For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST] corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST, core genome MLST (cgMLST, and whole genome MLST (wgMLST and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs. eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.

  3. A genomic overview of the population structure of Salmonella.

    Science.gov (United States)

    Alikhan, Nabil-Fareed; Zhou, Zhemin; Sergeant, Martin J; Achtman, Mark

    2018-04-01

    For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.

  4. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation.

    Science.gov (United States)

    Sasaki, Daisuke; Fujihashi, Masahiro; Okuyama, Naomi; Kobayashi, Yukiko; Noike, Motoyoshi; Koyama, Tanetoshi; Miki, Kunio

    2011-02-04

    Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.

  5. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Senkovich, Olga; Schormann, Norbert; Chattopadhyay, Debasish; (UAB)

    2010-11-22

    The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50 000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of

  6. The genomic structure of the DMBT1 gene

    DEFF Research Database (Denmark)

    Mollenhauer, J; Holmskov, U; Wiemann, S

    1999-01-01

    Increasing evidence has accumulated for an involvement of the inactivation of tumour suppressor genes at chromosome 10q in the carcinogenesis of brain tumours, melanomas, and carcinomas of the lung, the prostate, the pancreas, and the endometrium. The gene DMBT1 (Deleted in Malignant Brain Tumours...... 1) is located at chromosome 10q25.3-q26.1, within one of the putative intervals for tumour suppressor genes. DMBT1 is a member of the scavenger-receptor cysteine-rich (SRCR) superfamily and displays homozygous deletions or lack of expression in glioblastoma multiforme, medulloblastoma......, and in gastrointestinal and lung cancers. Based on these properties, DMBT1 has been proposed to be a candidate tumour suppressor gene. We have determined the genomic sequence of DMBT1 to allow analyses of mutations. The gene has at least 54 exons that span a genomic region of about 80 kb. We have identified a putative...

  7. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  8. A structure-based approach to ligand discovery for 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase: a target for antimicrobial therapy.

    Science.gov (United States)

    Ramsden, Nicola L; Buetow, Lori; Dawson, Alice; Kemp, Lauris A; Ulaganathan, Venkatsubramanian; Brenk, Ruth; Klebe, Gerhard; Hunter, William N

    2009-04-23

    The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Escherichia coli IspF (EcIspF) was performed by combining a hierarchical filtering methodology with molecular docking. Docked compounds were inspected and 10 selected for experimental validation. A surface plasmon resonance assay was developed and two weak ligands identified. Crystal structures of EcIspF complexes were determined to support rational ligand development. Cytosine analogues and Zn(2+)-binding moieties were characterized. One of the putative Zn(2+)-binding compounds gave the lowest measured K(D) to date (1.92 +/- 0.18 muM). These data provide a framework for the development of IspF inhibitors to generate lead compounds of therapeutic potential against microbial pathogens.

  9. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  10. RNA 3D modules in genome-wide predictions of RNA 2D structure

    DEFF Research Database (Denmark)

    Theis, Corinna; Zirbel, Craig L; Zu Siederdissen, Christian Höner

    2015-01-01

    . These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D......Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational...... approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution...

  11. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus.

    Science.gov (United States)

    Stieglitz, Kimberly A; Yang, Hongying; Roberts, Mary F; Stec, Boguslaw

    2005-01-11

    myo-Inositol-1-phosphate synthase (mIPS) catalyzes the first step in the synthesis of l-myo-inositol-1-phosphate. We have solved and refined the structure of the mIPS from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution. The enzyme crystallized from poly(ethylene glycol) in the P1 space group with one tetramer in the asymmetric unit and provided a view of the entire biologically active oligomer. Despite significant changes in sequence length and amino acid composition, the general architecture of the archaeal enzyme is similar to that of the eukaryotic mIPS from Saccharomyces cerevisiae and bacterial mIPS from Mycobacterium tuberculosis. The enhanced thermostability of the archaeal enzyme as compared to that from yeast is consistent with deletion of a number of surface loops that results in a significantly smaller protein. In the structure of the A. fulgidus mIPS, the active sites of all four subunits were fully ordered and contained NAD(+) and inorganic phosphate. The structure also contained a single metal ion (identified as K(+)) in two of the four subunits. The analysis of the electrostatic potential maps of the protein suggested the presence of a second metal-ion-binding site in close proximity to the first metal ion and NAD(+). The modeling of the substrate and known inhibitors suggests a critical role for the second metal ion in catalysis and provides insights into the common elements of the catalytic cycle in enzymes from different life kingdoms.

  12. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.

    Science.gov (United States)

    Bradley, Anthony R; Echalier, Aude; Fairhead, Michael; Strain-Damerell, Claire; Brennan, Paul; Bullock, Alex N; Burgess-Brown, Nicola A; Carpenter, Elisabeth P; Gileadi, Opher; Marsden, Brian D; Lee, Wen Hwa; Yue, Wyatt; Bountra, Chas; von Delft, Frank

    2017-11-08

    The ongoing explosion in genomics data has long since outpaced the capacity of conventional biochemical methodology to verify the large number of hypotheses that emerge from the analysis of such data. In contrast, it is still a gold-standard for early phenotypic validation towards small-molecule drug discovery to use probe molecules (or tool compounds), notwithstanding the difficulty and cost of generating them. Rational structure-based approaches to ligand discovery have long promised the efficiencies needed to close this divergence; in practice, however, this promise remains largely unfulfilled, for a host of well-rehearsed reasons and despite the huge technical advances spearheaded by the structural genomics initiatives of the noughties. Therefore the current, fourth funding phase of the Structural Genomics Consortium (SGC), building on its extensive experience in structural biology of novel targets and design of protein inhibitors, seeks to redefine what it means to do structural biology for drug discovery. We developed the concept of a Target Enabling Package (TEP) that provides, through reagents, assays and data, the missing link between genetic disease linkage and the development of usefully potent compounds. There are multiple prongs to the ambition: rigorously assessing targets' genetic disease linkages through crowdsourcing to a network of collaborating experts; establishing a systematic approach to generate the protocols and data that comprise each target's TEP; developing new, X-ray-based fragment technologies for generating high quality chemical matter quickly and cheaply; and exploiting a stringently open access model to build multidisciplinary partnerships throughout academia and industry. By learning how to scale these approaches, the SGC aims to make structures finally serve genomics, as originally intended, and demonstrate how 3D structures systematically allow new modes of druggability to be discovered for whole classes of targets. © 2017 The

  13. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  14. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'.

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-11-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The approximately 108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  15. G2S: A web-service for annotating genomic variants on 3D protein structures.

    Science.gov (United States)

    Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong

    2018-01-27

    Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that support programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design conception and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Three-dimensional Structure of a Viral Genome-delivery Portal Vertex

    Energy Technology Data Exchange (ETDEWEB)

    A Olia; P Prevelige Jr.; J Johnson; G Cingolani

    2011-12-31

    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-{angstrom}-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a {approx}1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a {approx}200-{angstrom}-long {alpha}-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.

  17. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    Science.gov (United States)

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  18. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    International Nuclear Information System (INIS)

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-01-01

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus

  19. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  20. Structured RNAs in the ENCODE selected regions of the human genome

    DEFF Research Database (Denmark)

    Washietl, Stefan; Pedersen, Jakob Skou; Korbel, Jan O

    2007-01-01

    Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack...... with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz...

  1. IDENTIFICATION AND CHARACTERIZATION OF THE SUCROSE SYNTHASE 2 GENE (Sus2 IN DURUM WHEAT

    Directory of Open Access Journals (Sweden)

    Mariateresa eVolpicella

    2016-03-01

    Full Text Available Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for sucrose synthase in durum wheat (cultivars Ciccio and Svevo is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur and 5-BIL42. The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modelling approaches. The combined results of SUS2 expression and activity levels were then considered in the light of their possible involvement in starch yield.

  2. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Kruse, Rikke; Harvald, Eva Bang

    2013-01-01

    Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2...... that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR......, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24), while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22). Here we show that functional loss of HYL-2 decreases lifespan, while loss...

  3. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    International Nuclear Information System (INIS)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno; Costa, Milton S. da; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra

    2008-01-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6 5 22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to be involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6 5 22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative

  4. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    International Nuclear Information System (INIS)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-01-01

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5 binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis

  5. Structural Injury after Lithium Treatment in Human and Rat Kidney involves Glycogen Synthase Kinase-3β Positive Epithelium

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2011-01-01

    Lithium is reabsorbed by distal nephron segments in sodium depleted states. It was hypothesized that lithium causes permanent injury to the developing kidney particularly in the sodium-retaining phase around weaning through entry into epithelial cells of the distal nephron and inhibition of glyco....... Lithium causes proliferation, structural injury and increases inactive pGSK-3β abundance in these segments. The data are compatible with epithelial entry of lithium and a causal role for GSK-3β in postnatal developing cortical collecting duct epithelium....

  6. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  7. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  8. Nitric oxide synthase (NOS) in the trigeminal vascular system and other brain structures related to pain in rats

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Ploug, Kenneth Beri; Hay-Schmidt, Anders

    2010-01-01

    to measure the respective levels of mRNA and protein for nNOS and eNOS in peripheral and central tissues involved in migraine pain: dura mater, pial arteries, trigeminal ganglion (TG) trigeminal nucleus caudalis (TNC), periaqueductal grey (PAG), thalamus, hypothalamus, cortex, pituitary gland, hippocampus...... and cerebellum. iNOS was excluded from the present study because it was not induced. In the trigeminal vascular system we found the highest expression of nNOS mRNA in pial arteries. However, protein expression of nNOS was maximum in TNC. Among other brain structures, nNOS mRNA and protein expression...... was remarkably higher in the cerebellum than in any other tissues. Regarding eNOS in the trigeminovascular system, the highest mRNA expression was found in pial arteries. In the other brain structures, eNOS mRNA expression was similar but with lowest mRNA concentration in the pituitary gland and the highest...

  9. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  10. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  11. From structure prediction to genomic screens for novel non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Jan Gorodkin

    2011-08-01

    Full Text Available Non-coding RNAs (ncRNAs are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs. A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  12. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Long-Range Order and Fractality in the Structure and Organization of Eukaryotic Genomes

    Science.gov (United States)

    Polychronopoulos, Dimitris; Tsiagkas, Giannis; Athanasopoulou, Labrini; Sellis, Diamantis; Almirantis, Yannis

    2014-12-01

    The late Professor J.S. Nicolis always emphasized, both in his writings and in presentations and discussions with students and friends, the relevance of a dynamical systems approach to biology. In particular, viewing the genome as a "biological text" captures the dynamical character of both the evolution and function of the organisms in the form of correlations indicating the presence of a long-range order. This genomic structure can be expressed in forms reminiscent of natural languages and several temporal and spatial traces l by the functioning of dynamical systems: Zipf laws, self-similarity and fractality. Here we review several works of our group and recent unpublished results, focusing on the chromosomal distribution of biologically active genomic components: Genes and protein-coding segments, CpG islands, transposable elements belonging to all major classes and several types of conserved non-coding genomic elements. We report the systematic appearance of power-laws in the size distribution of the distances between elements belonging to each of these types of functional genomic elements. Moreover, fractality is also found in several cases, using box-counting and entropic scaling.We present here, for the first time in a unified way, an aggregative model of the genomic dynamics which can explain the observed patterns on the grounds of known phenomena accompanying genome evolution. Our results comply with recent findings about a "fractal globule" geometry of chromatin in the eukaryotic nucleus.

  14. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration

    Science.gov (United States)

    Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.

    2018-03-01

    Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.

  15. Insights into the genome structure and copy-number variation of Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Lim Lik-Sin

    2012-08-01

    method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.

  16. GeneViTo: Visualizing gene-product functional and structural features in genomic datasets

    Directory of Open Access Journals (Sweden)

    Promponas Vasilis J

    2003-10-01

    Full Text Available Abstract Background The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies. Results GeneViTo is a JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of "poor" annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. A compilation of properly formatted GeneViTo input data for demonstration is available to interested readers for two completely sequenced prokaryotes, Chlamydia trachomatis and Methanococcus jannaschii. Conclusions GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application is compatible with Linux or Windows ME-2000-XP operating

  17. GenRGenS: Software for Generating Random Genomic Sequences and Structures

    OpenAIRE

    Ponty , Yann; Termier , Michel; Denise , Alain

    2006-01-01

    International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...

  18. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  19. Gene order data from a model amphibian (Ambystoma: new perspectives on vertebrate genome structure and evolution

    Directory of Open Access Journals (Sweden)

    Voss S Randal

    2006-08-01

    Full Text Available Abstract Background Because amphibians arise from a branch of the vertebrate evolutionary tree that is juxtaposed between fishes and amniotes, they provide important comparative perspective for reconstructing character changes that have occurred during vertebrate evolution. Here, we report the first comparative study of vertebrate genome structure that includes a representative amphibian. We used 491 transcribed sequences from a salamander (Ambystoma genetic map and whole genome assemblies for human, mouse, rat, dog, chicken, zebrafish, and the freshwater pufferfish Tetraodon nigroviridis to compare gene orders and rearrangement rates. Results Ambystoma has experienced a rate of genome rearrangement that is substantially lower than mammalian species but similar to that of chicken and fish. Overall, we found greater conservation of genome structure between Ambystoma and tetrapod vertebrates, nevertheless, 57% of Ambystoma-fish orthologs are found in conserved syntenies of four or more genes. Comparisons between Ambystoma and amniotes reveal extensive conservation of segmental homology for 57% of the presumptive Ambystoma-amniote orthologs. Conclusion Our analyses suggest relatively constant interchromosomal rearrangement rates from the euteleost ancestor to the origin of mammals and illustrate the utility of amphibian mapping data in establishing ancestral amniote and tetrapod gene orders. Comparisons between Ambystoma and amniotes reveal some of the key events that have structured the human genome since diversification of the ancestral amniote lineage.

  20. The genomic structure of the human UFO receptor.

    Science.gov (United States)

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  1. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics

    NARCIS (Netherlands)

    Dekker, Frank J; Koch, Marcus A; Waldmann, Herbert; Dekker, Frans

    Finding small molecules that modulate protein function is of primary importance in drug development and in the emerging field of chemical genomics. To facilitate the identification of such molecules, we developed a novel strategy making use of structural conservatism found in protein domain

  2. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    Science.gov (United States)

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  3. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    Directory of Open Access Journals (Sweden)

    Vladyslav S Bondarenko

    Full Text Available A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively, but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp. In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short

  4. Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Song Jun

    2008-06-01

    Full Text Available Abstract Background Genomes possess different levels of non-randomness, in particular, an inhomogeneity in their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to be thoroughly elucidated is the role that RNA secondary structure (SS plays in gene expression. Results We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000 nt not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns and 3'-UTRs were considered separately, since they differ in overall nucleotide composition, sequence motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS ( Conclusion We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little explored phenomenon of genomic mid-range inhomogeneity (MRI. MRI is an interdependence between nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a public computational resource to support further study of genomic MRI.

  5. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  6. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

    Science.gov (United States)

    Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan

    2016-07-01

    This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.

  7. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    Science.gov (United States)

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  8. Structural genomic variation in childhood epilepsies with complex phenotypes

    DEFF Research Database (Denmark)

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien

    2014-01-01

    of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened.......9%). Segregation of all identified variants could be assessed in 42 patients, 11 of which were de novo. The frequency of all structural variants and de novo variants was not statistically different between patients with or without MRI abnormalities or MRI subcategories. Patients with dysmorphic features were more...

  9. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob Hull

    2014-01-01

    annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo...

  10. Genomes in Turmoil: Frugality Drives Microbial Community Structure in Extremely Acidic Environments

    Science.gov (United States)

    Holmes, D. S.

    2016-12-01

    Extremely acidic environments (To gain insight into these issues, we have conducted deep bioinformatic analyses, including metabolic reconstruction of key assimilatory pathways, phylogenomics and network scrutiny of >160 genomes of acidophiles, including representatives from Archaea, Bacteria and Eukarya and at least ten metagenomes of acidic environments [Cardenas JP, et al. pp 179-197 in Acidophiles, eds R. Quatrini and D. B. Johnson, Caister Academic Press, UK (2016)]. Results yielded valuable insights into cellular processes, including carbon and nitrogen management and energy production, linking biogeochemical processes to organismal physiology. They also provided insight into the evolutionary forces that shape the genomic structure of members of acidophile communities. Niche partitioning can explain diversity patterns in rapidly changing acidic environments such as bioleaching heaps. However, in spatially and temporally homogeneous acidic environments genome flux appears to provide deeper insight into the composition and evolution of acidic consortia. Acidophiles have undergone genome streamlining by gene loss promoting mutual coexistence of species that exploit complementarity use of scarce resources consistent with the Black Queen hypothesis [Morris JJ et al. mBio 3: e00036-12 (2012)]. Acidophiles also have a large pool of accessory genes (the microbial super-genome) that can be accessed by horizontal gene transfer. This further promotes dependency relationships as drivers of community structure and the evolution of keystone species. Acknowledgements: Fondecyt 1130683; Basal CCTE PFB16

  11. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Marschall, T.; Kloosterman, W.P.; Francioli, L.C.; Baaijens, J.A.; Dijkstra, L.J.; Abdellaoui, A.; Koval, V.; Thung, D.T.; Wardenaar, R.; Renkens, I.; Coe, B.P.; Deelen, P.; de Ligt, J.; Lameijer, E.W.; Dijk, F.; Hormozdiari, F.; Uitterlinden, A.G.; van Duijn, C.M.; Eichler, E.E.; Bakker, P.I.W.; Swertz, M.A.; Wijmenga, C.; van Ommen, G.J.B; Slagboom, P.E.; Boomsma, D.I.; Schönhuth, A.; Ye, K.; Guryev, V.

    2016-01-01

    Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic

  12. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    Science.gov (United States)

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  13. Population Structure Analysis of Bull Genomes of European and Western Ancestry

    DEFF Research Database (Denmark)

    Chung, Neo Christopher; Szyda, Joanna; Frąszczak, Magdalena

    2017-01-01

    Since domestication, population bottlenecks, breed formation, and selective breeding have radically shaped the genealogy and genetics of Bos taurus. In turn, characterization of population structure among diverse bull (males of Bos taurus) genomes enables detailed assessment of genetic resources...... and origins. By analyzing 432 unrelated bull genomes from 13 breeds and 16 countries, we demonstrate genetic diversity and structural complexity among the European/Western cattle population. Importantly, we relaxed a strong assumption of discrete or admixed population, by adapting latent variable models...... harboring largest genetic differentiation suggest positive selection underlying population structure. We carried out gene set analysis using SNP annotations to identify enriched functional categories such as energy-related processes and multiple development stages. Our population structure analysis of bull...

  14. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  15. Effects of Supervised Structured Aerobic Exercise Training Program on Interleukin-6, Nitric Oxide Synthase-1, and Cyclooxygenase-2 in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Karimi, Hossein; Rehman, Syed Shakil Ur; Gillani, Syed Amir

    2017-06-01

    To determine the effects of supervised structured aerobic exercise training (SSAET) program on interleukin-6 (IL-6), nitric oxide synthase 1 (NOS-1), and cyclooxygenase-2 (COX-2) in type 2 diabetes mellitus (T2DM). Randomized controlled trial. Riphah Rehabilitation and Research Centre, Railways General Hospital, Rawalpindi, from January 2015 to June 2016. Patients of either gender of minimum one year history of T2DM ranging from 40-70 years of age were included. Those with chronic systemic diseases, history of regular exercise, smoking, and those on dietary plan were excluded. Atotal of 195 patients were screened; 120 were selected and 102 agreed to participate in the study. They were randomly placed into experimental and control groups. SSAETprogram, routine medication, and dietary plan were applied in experimental group; whereas, control group was managed with routine medication and dietary plan for 25 weeks. IL-6, NOS-1, and COX-2 were assessed at baseline and 25 weeks. SSAET program, routine medication and dietary plan showed significantly improved IL-6 (pre-mean=0.25 ±0.11ng/ml, post-mean=0.19 ±0.04 ng/ml), NOS-1 (pre-median=4.65 ng/ml, IQ range=1.04 ng/ml), (post-median=2.72 ng/ml, IQ range=1.60 ng/ml), and COX-2 (pre-mean=18.72 ±4.42 ng/ml, post-mean=15.18 ±2.63 ng/ml) in experimental group, as compared with control group managed by routine medication and dietary plan, where deterioration was noted in IL-6 (pre-mean=0.23 ±0.08 ng/ml, post-mean=0.27 ±0.08 ng/ml) and COX-2 (pre-mean=18.49 ±4.56 ng/ml, postmean=19.10 ±4.76 ng/ml), while NOS-1 slight improvement (pre-mean=4.99 ng/ml, IQ range=2.67 ng/ml), (postmean=4.56 ng/ml, IQ range=3.85 ng/ml). Statistically at the baseline the p-values were not significant (p>0.05) in both experimental and control groups for IL-6, COX-2 and NOS-1; while after 25 weeks of intervention, the experimental group showed significant improvement (p<0.05) in comparison with the control group. SSAET program, routine

  16. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  17. Susceptibilities to DNA Structural Transitions within Eukaryotic Genomes

    Science.gov (United States)

    Zhabinskaya, Dina; Benham, Craig; Madden, Sally

    2012-02-01

    We analyze the competitive transitions to alternate secondary DNA structures in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. We use statistical mechanics to calculate the competition among all regions within the sequence that are susceptible to transitions to alternate structures. We use an approximate numerical method since the calculation of an exact partition function is numerically cumbersome for DNA molecules of lengths longer than hundreds of base pairs. This method yields accurate results in reasonable computational times. We implement algorithms that calculate the competition between transitions to denatured states and to Z-form DNA. We analyze these transitions near the transcription start sites (TSS) of a set of eukaryotic genes. We find an enhancement of Z-forming regions upstream of the TSS and a depletion of denatured regions around the start sites. We confirm that these finding are statistically significant by comparing our results to a set of randomized genes with preserved base composition at each position relative to the gene start sites. When we study the correlation of these transitions in orthologous mouse and human genes we find a clear evolutionary conservation of both types of transitions around the TSS.

  18. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3  ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA

  19. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  20. The complete mitochondrial genome structure of the jaguar (Panthera onca).

    Science.gov (United States)

    Caragiulo, Anthony; Dougherty, Eric; Soto, Sofia; Rabinowitz, Salisa; Amato, George

    2016-01-01

    The jaguar (Panthera onca) is the largest felid in the Western hemisphere, and the only member of the Panthera genus in the New World. The jaguar inhabits most countries within Central and South America, and is considered near threatened by the International Union for the Conservation of Nature. This study represents the first sequence of the entire jaguar mitogenome, which was the only Panthera mitogenome that had not been sequenced. The jaguar mitogenome is 17,049 bases and possesses the same molecular structure as other felid mitogenomes. Bayesian inference (BI) and maximum likelihood (ML) were used to determine the phylogenetic placement of the jaguar within the Panthera genus. Both BI and ML analyses revealed the jaguar to be sister to the tiger/leopard/snow leopard clade.

  1. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Jianguo Zhou

    2018-02-01

    Full Text Available Papaver rhoeas L. and P. orientale L., which belong to the family Papaveraceae, are used as ornamental and medicinal plants. The chloroplast genome has been used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of P. rhoeas and P. orientale are reported. Results show that the complete chloroplast genomes of P. rhoeas and P. orientale have typical quadripartite structures, which are comprised of circular 152,905 and 152,799-bp-long molecules, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence divergence analysis of four species from Papaveraceae indicated that the most divergent regions are found in the non-coding spacers with minimal differences among three Papaver species. These differences include the ycf1 gene and intergenic regions, such as rpoB-trnC, trnD-trnT, petA-psbJ, psbE-petL, and ccsA-ndhD. These regions are hypervariable regions, which can be used as specific DNA barcodes. This finding suggested that the chloroplast genome could be used as a powerful tool to resolve the phylogenetic positions and relationships of Papaveraceae. These results offer valuable information for future research in the identification of Papaver species and will benefit further investigations of these species.

  2. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Directory of Open Access Journals (Sweden)

    Grewe Felix

    2013-01-01

    Full Text Available Abstract Background Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales, Ophioglossum californicum (Ophioglossales, and Psilotum nudum (Psilotales. A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic

  3. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  4. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    Science.gov (United States)

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  5. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  6. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.

    Science.gov (United States)

    Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M

    2005-09-01

    The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.

  7. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  8. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis

    DEFF Research Database (Denmark)

    Labrie, Simon J.; Josephsen, Jytte; Neve, Horst

    2008-01-01

    for a shorter tail and a different collar/whisker structure. Its 33,613-bp double-stranded DNA genome had 50 open reading frames. Putative functions were assigned to 29 of them. Unlike other sequenced genomes from lactococcal phages belonging to this species, P335 did not have a lysogeny module. However, it did...... genome. The genetic diversity of the P335 species indicates that they are exceptional models for studying the modular theory of phage evolution....

  9. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    Science.gov (United States)

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  10. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  11. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure

    OpenAIRE

    Zuccolo, Andrea; Bowers, John E; Estill, James C; Xiong, Zhiyong; Luo, Meizhong; Sebastian, Aswathy; Goicoechea, Jos? Luis; Collura, Kristi; Yu, Yeisoo; Jiao, Yuannian; Duarte, Jill; Tang, Haibao; Ayyampalayam, Saravanaraj; Rounsley, Steve; Kudrna, Dave

    2011-01-01

    Background Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome....

  12. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    Science.gov (United States)

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  13. Improvisation in evolution of genes and genomes: whose structure is it anyway?

    Science.gov (United States)

    Shakhnovich, Boris E; Shakhnovich, Eugene I

    2008-06-01

    Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.

  14. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  15. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  16. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  17. Universal Internucleotide Statistics in Full Genomes: A Footprint of the DNA Structure and Packaging?

    OpenAIRE

    Bogachev, Mikhail I.; Kayumov, Airat R.; Bunde, Armin

    2014-01-01

    Uncovering the fundamental laws that govern the complex DNA structural organization remains challenging and is largely based upon reconstructions from the primary nucleotide sequences. Here we investigate the distributions of the internucleotide intervals and their persistence properties in complete genomes of various organisms from Archaea and Bacteria to H. Sapiens aiming to reveal the manifestation of the universal DNA architecture. We find that in all considered organisms the internucleot...

  18. Effect of supervised structured aerobic exercise training program of interleukin-6, nitric oxide synthase-1, and cyclooxygenase-2 in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Karimi, H.; Gillani, S.A.; Rehman, S.S.U.

    2017-01-01

    To determine the effects of supervised structured aerobic exercise training (SSAET) program on interleukin-6 (IL-6), nitric oxide synthase 1 (NOS-1), and cyclooxygenase-2 (COX-2) in type 2 diabetes mellitus (T2DM). Study Design: Randomized controlled trial. Place and Duration of Study: Riphah Rehabilitation and Research Centre, Railways General Hospital, Rawalpindi, from January 2015 to June 2016. Methodology: Patients of either gender of minimum one year history of T2DM ranging from 40-70 years of age were included. Those with chronic systemic diseases, history of regular exercise, smoking, and those on dietary plan were excluded. A total of 195 patients were screened; 120 were selected and 102 agreed to participate in the study. They were randomly placed into experimental and control groups. SSAET program, routine medication, and dietary plan were applied in experimental group; whereas, control group was managed with routine medication and dietary plan for 25 weeks. IL-6, NOS-1, and COX-2 were assessed at baseline and 25 weeks. Results: SSAET program, routine medication and dietary plan showed significantly improved IL-6 (pre-mean=0.25 +-0.11ng/ml, post-mean=0.19 +-0.04 ng/ml), NOS-1 (pre-median=4.65 ng/ml, IQ range=1.04 ng/ml), (post-median=2.72 ng/ml, IQ range=1.60 ng/ml), and COX-2 (pre-mean=18.72 +-4.42 ng/ml, post-mean=15.18 +-2.63 ng/ml) in experimental group, as compared with control group managed by routine medication and dietary plan, where deterioration was noted in IL-6 (pre-mean=0.23 +-0.08 ng/ml, post-mean=0.27 +-0.08 ng/ml) and COX-2 (pre-mean=18.49 +-4.56 ng/ml, post-mean=19.10 +-4.76 ng/ml), while NOS-1 slight improvement (pre-mean=4.99 ng/ml, IQ range=2.67 ng/ml), (post-mean=4.56 ng/ml, IQ range=3.85 ng/ml). Statistically at the baseline the p-values were not significant (p>0.05) in both experimental and control groups for IL-6, COX-2 and NOS-1; while after 25 weeks of intervention, the experimental group showed significant improvement (p<0

  19. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    Science.gov (United States)

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.

  20. Global MLST of Salmonella Typhi Revisited in Post-Genomic Era: Genetic conservation, Population Structure and Comparative genomics of rare sequence types

    Directory of Open Access Journals (Sweden)

    Kien-Pong eYap

    2016-03-01

    Full Text Available Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus Sequence Typing (MLST is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2 co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC and tviD that may explain the variations that differentiate between seemingly successful (widespread and unsuccessful (poor dissemination S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  1. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Directory of Open Access Journals (Sweden)

    Chuan Hong

    2014-12-01

    Full Text Available Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  2. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Science.gov (United States)

    Hong, Chuan; Oksanen, Hanna M; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H; Chiu, Wah

    2014-12-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  3. Considerations in the identification of functional RNA structural elements in genomic alignments

    Directory of Open Access Journals (Sweden)

    Blencowe Benjamin J

    2007-01-01

    Full Text Available Abstract Background Accurate identification of novel, functional noncoding (nc RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. Results We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component was

  4. Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David; Staker, Bart L.; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W.; Stacy, Robin; Myler, Peter J.; Stewart, Lance J.; Manoil, Colin; Van Voorhis, Wesley C.

    2013-01-01

    Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data

  5. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Directory of Open Access Journals (Sweden)

    Loren Baugh

    Full Text Available The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq. We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against

  6. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A; Patrapuvich, Rapatbhorn; Clifton, Matthew C; Gardberg, Anna S; Edwards, Thomas E; Armour, Brianna; Begley, Darren W; Dieterich, Shellie H; Dranow, David M; Abendroth, Jan; Fairman, James W; Fox, David; Staker, Bart L; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W; Stacy, Robin; Myler, Peter J; Stewart, Lance J; Manoil, Colin; Van Voorhis, Wesley C

    2013-01-01

    The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases

  7. Structural genomics: keeping up with expanding knowledge of the protein universe

    Science.gov (United States)

    Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek

    2010-01-01

    Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space — a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a reassessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006. PMID:17587562

  8. Structural genomics: keeping up with expanding knowledge of the protein universe.

    Science.gov (United States)

    Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek

    2007-06-01

    Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space--a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a re-assessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006.

  9. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    Science.gov (United States)

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  10. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  11. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  12. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.

    Science.gov (United States)

    Antaki, Danny; Brandler, William M; Sebat, Jonathan

    2018-05-15

    Structural variation (SV) detection from short-read whole genome sequencing is error prone, presenting significant challenges for population or family-based studies of disease. Here, we describe SV2, a machine-learning algorithm for genotyping deletions and duplications from paired-end sequencing data. SV2 can rapidly integrate variant calls from multiple structural variant discovery algorithms into a unified call set with high genotyping accuracy and capability to detect de novo mutations. SV2 is freely available on GitHub (https://github.com/dantaki/SV2). jsebat@ucsd.edu. Supplementary data are available at Bioinformatics online.

  13. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  14. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data.

    Science.gov (United States)

    Mdladla, K; Dzomba, E F; Huson, H J; Muchadeyi, F C

    2016-08-01

    The sustainability of goat farming in marginal areas of southern Africa depends on local breeds that are adapted to specific agro-ecological conditions. Unimproved non-descript goats are the main genetic resources used for the development of commercial meat-type breeds of South Africa. Little is known about genetic diversity and the genetics of adaptation of these indigenous goat populations. This study investigated the genetic diversity, population structure and breed relations, linkage disequilibrium, effective population size and persistence of gametic phase in goat populations of South Africa. Three locally developed meat-type breeds of the Boer (n = 33), Savanna (n = 31), Kalahari Red (n = 40), a feral breed of Tankwa (n = 25) and unimproved non-descript village ecotypes (n = 110) from four goat-producing provinces of the Eastern Cape, KwaZulu-Natal, Limpopo and North West were assessed using the Illumina Goat 50K SNP Bead Chip assay. The proportion of SNPs with minor allele frequencies >0.05 ranged from 84.22% in the Tankwa to 97.58% in the Xhosa ecotype, with a mean of 0.32 ± 0.13 across populations. Principal components analysis, admixture and pairwise FST identified Tankwa as a genetically distinct population and supported clustering of the populations according to their historical origins. Genome-wide FST identified 101 markers potentially under positive selection in the Tankwa. Average linkage disequilibrium was highest in the Tankwa (r(2)  = 0.25 ± 0.26) and lowest in the village ecotypes (r(2) range = 0.09 ± 0.12 to 0.11 ± 0.14). We observed an effective population size of 100 kb with the exception of those in Savanna and Tswana populations. This study highlights the high level of genetic diversity in South African indigenous goats as well as the utility of the genome-wide SNP marker panels in genetic studies of these populations. © 2016 Stichting International Foundation for Animal Genetics.

  15. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody; Coll, Francesc; McNerney, Ruth; Ascher, David; Pires, Douglas; Furnham, Nick; Coeck, Nele; Hill-Cawthorne, Grant; Nair, Mridul; Mallard, Kim; Ramsay, Andrew; Campino, Susana; Hibberd, Martin; Pain, Arnab; Rigouts, Leen; Clark, Taane

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure

  16. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  17. De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences

    DEFF Research Database (Denmark)

    Ruzzo, Walter L; Gorodkin, Jan

    2014-01-01

    De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphas...... on an approach based on the CMfinder CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.......De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis...

  18. Structure and mechanism of the ATPase that powers viral genome packaging.

    Science.gov (United States)

    Hilbert, Brendan J; Hayes, Janelle A; Stone, Nicholas P; Duffy, Caroline M; Sankaran, Banumathi; Kelch, Brian A

    2015-07-21

    Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model's predictive power by identifying the motor's DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.

  19. Whole genome PCR scanning reveals the syntenic genome structure of toxigenic Vibrio cholerae strains in the O1/O139 population.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+ strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.

  20. Population Structure and Genomic Breed Composition in an Angus-Brahman Crossbred Cattle Population.

    Science.gov (United States)

    Gobena, Mesfin; Elzo, Mauricio A; Mateescu, Raluca G

    2018-01-01

    Crossbreeding is a common strategy used in tropical and subtropical regions to enhance beef production, and having accurate knowledge of breed composition is essential for the success of a crossbreeding program. Although pedigree records have been traditionally used to obtain the breed composition of crossbred cattle, the accuracy of pedigree-based breed composition can be reduced by inaccurate and/or incomplete records and Mendelian sampling. Breed composition estimation from genomic data has multiple advantages including higher accuracy without being affected by missing, incomplete, or inaccurate records and the ability to be used as independent authentication of breed in breed-labeled beef products. The present study was conducted with 676 Angus-Brahman crossbred cattle with genotype and pedigree information to evaluate the feasibility and accuracy of using genomic data to determine breed composition. We used genomic data in parametric and non-parametric methods to detect population structure due to differences in breed composition while accounting for the confounding effect of close familial relationships. By applying principal component analysis (PCA) and the maximum likelihood method of ADMIXTURE to genomic data, it was possible to successfully characterize population structure resulting from heterogeneous breed ancestry, while accounting for close familial relationships. PCA results offered additional insight into the different hierarchies of genetic variation structuring. The first principal component was strongly correlated with Angus-Brahman proportions, and the second represented variation within animals that have a relatively more extended Brangus lineage-indicating the presence of a distinct pattern of genetic variation in these cattle. Although there was strong agreement between breed proportions estimated from pedigree and genetic information, there were significant discrepancies between these two methods for certain animals. This was most likely due

  1. Population Structure and Genomic Breed Composition in an Angus–Brahman Crossbred Cattle Population

    Directory of Open Access Journals (Sweden)

    Mesfin Gobena

    2018-03-01

    Full Text Available Crossbreeding is a common strategy used in tropical and subtropical regions to enhance beef production, and having accurate knowledge of breed composition is essential for the success of a crossbreeding program. Although pedigree records have been traditionally used to obtain the breed composition of crossbred cattle, the accuracy of pedigree-based breed composition can be reduced by inaccurate and/or incomplete records and Mendelian sampling. Breed composition estimation from genomic data has multiple advantages including higher accuracy without being affected by missing, incomplete, or inaccurate records and the ability to be used as independent authentication of breed in breed-labeled beef products. The present study was conducted with 676 Angus–Brahman crossbred cattle with genotype and pedigree information to evaluate the feasibility and accuracy of using genomic data to determine breed composition. We used genomic data in parametric and non-parametric methods to detect population structure due to differences in breed composition while accounting for the confounding effect of close familial relationships. By applying principal component analysis (PCA and the maximum likelihood method of ADMIXTURE to genomic data, it was possible to successfully characterize population structure resulting from heterogeneous breed ancestry, while accounting for close familial relationships. PCA results offered additional insight into the different hierarchies of genetic variation structuring. The first principal component was strongly correlated with Angus–Brahman proportions, and the second represented variation within animals that have a relatively more extended Brangus lineage—indicating the presence of a distinct pattern of genetic variation in these cattle. Although there was strong agreement between breed proportions estimated from pedigree and genetic information, there were significant discrepancies between these two methods for certain animals

  2. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  3. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex.

    Science.gov (United States)

    Marcella, Aaron M; Culbertson, Sannie J; Shogren-Knaak, Michael A; Barb, Adam W

    2017-11-24

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05and 4.10Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a K D =62±13nM, followed by the binding of two more equivalents of holo-ACPP with K D =1.2±0.2μM. Cooperativity was not observed for apo-ACPP which bound with K D =2.4±0.1μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer.

    Science.gov (United States)

    Friedlander, Terence W; Roy, Ritu; Tomlins, Scott A; Ngo, Vy T; Kobayashi, Yasuko; Azameera, Aruna; Rubin, Mark A; Pienta, Kenneth J; Chinnaiyan, Arul; Ittmann, Michael M; Ryan, Charles J; Paris, Pamela L

    2012-02-01

    Progression of primary prostate cancer to castration-resistant prostate cancer (CRPC) is associated with numerous genetic and epigenetic alterations that are thought to promote survival at metastatic sites. In this study, we investigated gene copy number and CpG methylation status in CRPC to gain insight into specific pathophysiologic pathways that are active in this advanced form of prostate cancer. Our analysis defined and validated 495 genes exhibiting significant differences in CRPC in gene copy number, including gains in androgen receptor (AR) and losses of PTEN and retinoblastoma 1 (RB1). Significant copy number differences existed between tumors with or without AR gene amplification, including a common loss of AR repressors in AR-unamplified tumors. Simultaneous gene methylation and allelic deletion occurred frequently in RB1 and HSD17B2, the latter of which is involved in testosterone metabolism. Lastly, genomic DNA from most CRPC was hypermethylated compared with benign prostate tissue. Our findings establish a comprehensive methylation signature that couples epigenomic and structural analyses, thereby offering insights into the genomic alterations in CRPC that are associated with a circumvention of hormonal therapy. Genes identified in this integrated genomic study point to new drug targets in CRPC, an incurable disease state which remains the chief therapeutic challenge. ©2012 AACR.

  5. Primary structure of the human follistatin precursor and its genomic organization

    International Nuclear Information System (INIS)

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.

    1988-01-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution

  6. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

    Science.gov (United States)

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi

    2017-01-01

    Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.

  7. The Tomato Terpene Synthase Gene Family1[W][OA

    Science.gov (United States)

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  8. Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jacob Kruger [Michigan State Univ., East Lansing, MI (United States). Dept. of Plant Biology; Michigan State Univ., East Lansing, MI (United States). DOE Great Lakes Bioenergy Research Center; Busse-Wicher, Marta [Univ. of Cambridge (United Kingdom). Dept. of Biochemistry; Poulsen, Christian Peter [Carlsberg Research Lab., Copenhagen (Denmark); Fangel, Jonatan Ulrik [Carlsberg Research Lab., Copenhagen (Denmark); Smith, Peter James [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC); Yang, Jeong-Yeh [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Peña, Maria-Jesus [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC); Dinesen, Malene Hessellund [Carlsberg Research Lab., Copenhagen (Denmark); Martens, Helle Juel [Univ. of Copenhagen (Denmark). Dept. of Plant and Environmental Sciences; Melkonian, Michael [Univ. zu Koln (Germany). Botanical Inst., Dept. of Biological Sciences; Wong, Gane Ka-Shu [BGI-Shenzhen, Shenzhen, Guangdong (China); Moremen, Kelley W. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Wilkerson, Curtis Gene [Michigan State Univ., East Lansing, MI (United States). Dept. of Plant Biology; Michigan State Univ., East Lansing, MI (United States). DOE Great Lakes Bioenergy Research Center; Michigan State Univ., East Lansing, MI (United States). Dept. of Biochemistry and Molecular Biology; Scheller, Henrik Vibe [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Genomics and Systems Biology Division; Dupree, Paul [Univ. of Cambridge (United Kingdom). Dept. of Biochemistry; Ulvskov, Peter [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Urbanowicz, Breeanna Rae [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC); Harholt, Jesper [Carlsberg Research Lab., Copenhagen (Denmark)

    2018-02-20

    Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.

  9. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  10. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.

    Science.gov (United States)

    Qian, Lifu; Wang, Hui; Yan, Jie; Pan, Tao; Jiang, Shanqun; Rao, Dingqi; Zhang, Baowei

    2018-05-10

    Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the O L was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNA Leu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.

  11. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  12. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  13. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage

    DEFF Research Database (Denmark)

    Andersen, Jannik N; Jansen, Peter G; Echwald, Søren M

    2004-01-01

    sequence databases, we discovered one novel human PTP gene and defined chromosomal loci and exon structure of the additional 37 genes encoding known PTP transcripts. Direct orthologs were present in the mouse genome for all 38 human PTP genes. In addition, we identified 12 PTP pseudogenes unique to humans...... that have probably contaminated previous bioinformatics analysis of this gene family. PCR amplification and transcript sequencing indicate that some PTP pseudogenes are expressed, but their function (if any) is unknown. Furthermore, we analyzed the enhanced diversity generated by alternative splicing...

  14. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus

    Science.gov (United States)

    Dodda, Subba Reddy; Aich, Aparajita; Sarkar, Nibedita; Jain, Piyush; Jain, Sneha; Mondal, Sudipa; Aikat, Kaustav; Mukhopadhyay, Sudit S.

    2018-03-01

    Thermostable glucose tolerant β-glucosidase from Aspergillus species has attracted worldwide interest for their potentiality in industrial applications and bioethanol production. A strain of Aspergillus fumigatus (AfNITDGPKA3) identified by our laboratory from straw retting ground showed higher cellulase activity, specifically the β-glucosidase activity, compared to other contemporary strains. Though A. fumigatus has been known for high cellulase activity, detailed identification and characterization of the cellulase genes from their genome is yet to be done. In this work we have been analyzed the cellulase genes from the genome sequence database of Aspergillus fumigatus (Af293). Genome analysis suggests two cellobiohydrolase, eleven endoglucanase and seventeen β-glucosidase genes present. β-Glucosidase genes belong to either Glycohydro1 (GH1 or Bgl1) or Glycohydro3 (GH3 or Bgl3) family. The sequence similarity suggests that Bgl1 and Bgl3 of A. fumagatus are phylogenetically close to those of A. fisheri and A. oryzae. The modelled structure of the Bgl1 predicts the (β/α)8 barrel type structure with deep and narrow active site, whereas, Bgl3 shows the (α/β)8 barrel and (α/β)6 sandwich structure with shallow and open active site. Docking results suggest that amino acids Glu544, Glu466, Trp408,Trp567,Tyr44,Tyr222,Tyr770,Asp844,Asp537,Asn212,Asn217 of Bgl3 and Asp224,Asn242,Glu440, Glu445, Tyr367, Tyr365,Thr994,Trp435,Trp446 of Bgl1 are involved in the hydrolysis. Binding affinity analyses suggest that Bgl3 and Bgl1 enzymes are more active on the substrates like 4-methylumbelliferyl glycoside (MUG) and p-nitrophenyl-β-D-1, 4-glucopyranoside (pNPG) than on cellobiose. Further docking with glucose suggests that Bgl1 is more glucose tolerant than Bgl3. Analysis of the Aspergillus fumigatus genome may help to identify a β-glucosidase enzyme with better property and the structural information may help to develop an engineered recombinant enzyme.

  15. Identification and phylogenetic analysis of a novel starch synthase in maize

    Directory of Open Access Journals (Sweden)

    Hanmei eLiu

    2015-11-01

    Full Text Available Starch is an important reserve of carbon and energy in plants, providing the majority of calories in the human diet and animal feed. Its synthesis is orchestrated by several key enzymes, and the amount and structure of starch, affecting crop yield and quality, are determined mainly by starch synthase (SS activity. To date, five SS isoforms, including SSI-IV and Granule Bound Starch Synthase (GBSS have been identified and their physiological functions have been well characterized. Here, we report the identification of a new SS isoform in maize, designated SSV. By searching sequenced genomes, SSV has been found in all green plants with conserved sequences and gene structures. Our phylogenetic analysis based on 780 base pairs has suggested that SSIV and SSV resulted from a gene duplication event, which may have occurred before the algae formation. An expression profile analysis of SSV in maize has indicated that ZmSSV is mainly transcribed in the kernel and ear leaf during the grain filling stage, which is partly similar to other SS isoforms. Therefore, it is likely that SSV may play an important role in starch biosynthesis. Subsequent analysis of SSV function may facilitate understanding the mechanism of starch granules formation, number and structure.

  16. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution.

    Science.gov (United States)

    Caporale, Lynn Helena

    2012-09-01

    This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics. © 2012 New York Academy of Sciences.

  17. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yi; Tenor, Jennifer L.; Toffaletti, Dena L.; Maskarinec, Stacey A.; Liu, Jiuyu; Lee, Richard E.; Perfect, John R.; Brennan, Richard G.; Hendrickson, Wayne A.

    2017-07-25

    ABSTRACT

    The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 fromCandida albicansandAspergillus fumigatusare essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes.

    IMPORTANCEInvasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in

  18. The structures of bovine herpesvirus 1 virion and concatemeric DNA: implications for cleavage and packaging of herpesvirus genomes

    International Nuclear Information System (INIS)

    Schynts, Frederic; McVoy, Michael A.; Meurens, Francois; Detry, Bruno; Epstein, Alberto L.; Thiry, Etienne

    2003-01-01

    Herpesvirus genomes are often characterized by the presence of direct and inverted repeats that delineate their grouping into six structural classes. Class D genomes consist of a long (L) segment and a short (S) segment. The latter is flanked by large inverted repeats. DNA replication produces concatemers of head-to-tail linked genomes that are cleaved into unit genomes during the process of packaging DNA into capsids. Packaged class D genomes are an equimolar mixture of two isomers in which S is in either of two orientations, presumably a consequence of homologous recombination between the inverted repeats. The L segment remains predominantly fixed in a prototype (P) orientation; however, low levels of genomes having inverted L (I L ) segments have been reported for some class D herpesviruses. Inefficient formation of class D I L genomes has been attributed to infrequent L segment inversion, but recent detection of frequent inverted L segments in equine herpesvirus 1 concatemers [Virology 229 (1997) 415-420] suggests that the defect may be at the level of cleavage and packaging rather than inversion. In this study, the structures of virion and concatemeric DNA of another class D herpesvirus, bovine herpesvirus 1, were determined. Virion DNA contained low levels of I L genomes, whereas concatemeric DNA contained significant amounts of L segments in both P and I L orientations. However, concatemeric termini exhibited a preponderance of L termini derived from P isomers which was comparable to the preponderance of P genomes found in virion DNA. Thus, the defect in formation of I L genomes appears to lie at the level of concatemer cleavage. These results have important implications for the mechanisms by which herpesvirus DNA cleavage and packaging occur

  19. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  20. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-01-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The ∼108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  1. Discovery of new enzymes and metabolic pathways using structure and genome context

    Science.gov (United States)

    Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W.; Wood, B. McKay; Brown, Shoshana; Bonanno, Jeffery B.; Hillerich, Brandan S.; Seidel, Ronald D.; Babbitt, Patricia C.; Almo, Steven C.; Sweedler, Jonathan V.; Gerlt, John A.; Cronan, John E.; Jacobson, Matthew P.

    2014-01-01

    Assigning valid functions to proteins identified in genome projects is challenging, with over-prediction and database annotation errors major concerns1. We, and others2, are developing computation-guided strategies for functional discovery using “metabolite docking” to experimentally derived3 or homology-based4 three-dimensional structures. Bacterial metabolic pathways often are encoded by “genome neighborhoods” (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by “predicting” the intermediates in the glycolytic pathway in E. coli5. Metabolite docking to multiple binding proteins/enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. We report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed i) the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and ii) the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guide functional predictions to enable the discovery of new metabolic pathways. PMID:24056934

  2. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  3. Modeling structure of G protein-coupled receptors in huan genome

    KAUST Repository

    Zhang, Yang

    2016-01-26

    G protein-coupled receptors (or GPCRs) are integral transmembrane proteins responsible to various cellular signal transductions. Human GPCR proteins are encoded by 5% of human genes but account for the targets of 40% of the FDA approved drugs. Due to difficulties in crystallization, experimental structure determination remains extremely difficult for human GPCRs, which have been a major barrier in modern structure-based drug discovery. We proposed a new hybrid protocol, GPCR-I-TASSER, to construct GPCR structure models by integrating experimental mutagenesis data with ab initio transmembrane-helix assembly simulations, assisted by the predicted transmembrane-helix interaction networks. The method was tested in recent community-wide GPCRDock experiments and constructed models with a root mean square deviation 1.26 Å for Dopamine-3 and 2.08 Å for Chemokine-4 receptors in the transmembrane domain regions, which were significantly closer to the native than the best templates available in the PDB. GPCR-I-TASSER has been applied to model all 1,026 putative GPCRs in the human genome, where 923 are found to have correct folds based on the confidence score analysis and mutagenesis data comparison. The successfully modeled GPCRs contain many pharmaceutically important families that do not have previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin and Neuropeptide Y receptors. All the human GPCR models have been made publicly available through the GPCR-HGmod database at http://zhanglab.ccmb.med.umich.edu/GPCR-HGmod/ The results demonstrate new progress on genome-wide structure modeling of transmembrane proteins which should bring useful impact on the effort of GPCR-targeted drug discovery.

  4. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    Science.gov (United States)

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  5. Genome Scan for Selection in Structured Layer Chicken Populations Exploiting Linkage Disequilibrium Information.

    Directory of Open Access Journals (Sweden)

    Mahmood Gholami

    Full Text Available An increasing interest is being placed in the detection of genes, or genomic regions, that have been targeted by selection because identifying signatures of selection can lead to a better understanding of genotype-phenotype relationships. A common strategy for the detection of selection signatures is to compare samples from distinct populations and to search for genomic regions with outstanding genetic differentiation. The aim of this study was to detect selective signatures in layer chicken populations using a recently proposed approach, hapFLK, which exploits linkage disequilibrium information while accounting appropriately for the hierarchical structure of populations. We performed the analysis on 70 individuals from three commercial layer breeds (White Leghorn, White Rock and Rhode Island Red, genotyped for approximately 1 million SNPs. We found a total of 41 and 107 regions with outstanding differentiation or similarity using hapFLK and its single SNP counterpart FLK respectively. Annotation of selection signature regions revealed various genes and QTL corresponding to productions traits, for which layer breeds were selected. A number of the detected genes were associated with growth and carcass traits, including IGF-1R, AGRP and STAT5B. We also annotated an interesting gene associated with the dark brown feather color mutational phenotype in chickens (SOX10. We compared FST, FLK and hapFLK and demonstrated that exploiting linkage disequilibrium information and accounting for hierarchical population structure decreased the false detection rate.

  6. Universal internucleotide statistics in full genomes: a footprint of the DNA structure and packaging?

    Directory of Open Access Journals (Sweden)

    Mikhail I Bogachev

    Full Text Available Uncovering the fundamental laws that govern the complex DNA structural organization remains challenging and is largely based upon reconstructions from the primary nucleotide sequences. Here we investigate the distributions of the internucleotide intervals and their persistence properties in complete genomes of various organisms from Archaea and Bacteria to H. Sapiens aiming to reveal the manifestation of the universal DNA architecture. We find that in all considered organisms the internucleotide interval distributions exhibit the same [Formula: see text]-exponential form. While in prokaryotes a single [Formula: see text]-exponential function makes the best fit, in eukaryotes the PDF contains additionally a second [Formula: see text]-exponential, which in the human genome makes a perfect approximation over nearly 10 decades. We suggest that this functional form is a footprint of the heterogeneous DNA structure, where the first [Formula: see text]-exponential reflects the universal helical pitch that appears both in pro- and eukaryotic DNA, while the second [Formula: see text]-exponential is a specific marker of the large-scale eukaryotic DNA organization.

  7. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita.

    Science.gov (United States)

    Yamazaki, Tomokazu; Ichihara, Kensuke; Suzuki, Ryogo; Oshima, Kenshiro; Miyamura, Shinichi; Kuwano, Kazuyoshi; Toyoda, Atsushi; Suzuki, Yutaka; Sugano, Sumio; Hattori, Masahira; Kawano, Shigeyuki

    2017-09-15

    The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt - and mt + strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt - MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.

  8. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    Science.gov (United States)

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU

    Science.gov (United States)

    Berger, Michael; Farcas, Anca; Geertz, Marcel; Zhelyazkova, Petya; Brix, Klaudia; Travers, Andrew; Muskhelishvili, Georgi

    2010-01-01

    The histone-like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild-type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci—spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid. PMID:20010798

  10. Population structure and genomic inbreeding in nine Swiss dairy cattle populations.

    Science.gov (United States)

    Signer-Hasler, Heidi; Burren, Alexander; Neuditschko, Markus; Frischknecht, Mirjam; Garrick, Dorian; Stricker, Christian; Gredler, Birgit; Bapst, Beat; Flury, Christine

    2017-11-07

    Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH ) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH : 0.027), OB (F ROH : 0.029), and SI (F ROH : 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH : 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service

  11. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases

    Directory of Open Access Journals (Sweden)

    Dashuang Shi

    2015-08-01

    Full Text Available Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase and ornithine transcarbamylase (OTCase, are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase, N-succinyl-l-ornithine transcarbamylase (SOTCase, ygeW encoded transcarbamylase (YTCase and putrescine transcarbamylase (PTCase have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase, l-2,4-diaminobutyrate transcarbamylase (DBTCase and ureidoglycine transcarbamylase (UGTCase, demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.

  12. Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase – inhibitor complex in leishmaniasis: Insight into the structure based drug design [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Vineetha Mandlik

    2016-09-01

    Full Text Available Inositol phosphorylceramide synthase (IPCS has emerged as an important, interesting and attractive target in the sphingolipid metabolism of Leishmania. IPCS catalyzes the conversion of ceramide to IPC which forms the most predominant sphingolipid in Leishmania. IPCS has no mammalian equivalent and also plays an important role in maintaining the infectivity and viability of the parasite. The present study explores the possibility of targeting IPCS; development of suitable inhibitors for the same would serve as a treatment strategy for the infectious disease leishmaniasis. Five coumarin derivatives were developed as inhibitors of IPCS protein. Molecular dynamics simulations of the complexes of IPCS with these inhibitors were performed which provided insights into the binding modes of the inhibitors. In vitro screening of the top three compounds has resulted in the identification of one of the compounds (compound 3 which shows little cytotoxic effects. This compound therefore represents a good starting point for further in vivo experimentation and could possibly serve as an important drug candidate for the treatment of leishmaniasis.

  13. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses

    DEFF Research Database (Denmark)

    Vestergaard, Gisle Alberg; Aramayo, Ricardo; Basta, Tamara

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae....... The structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases...... structural proteins; (iii) multiple overlapping open reading frames, which may be indicative of gene recoding; (iv) putative 12-bp genetic elements; and (v) partial gene sequences corresponding closely to spacer sequences of chromosomal repeat clusters....

  14. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  15. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  16. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast.

    Science.gov (United States)

    Liu, Yun-Hua; Zhang, Meiping; Wu, Chengcang; Huang, James J; Zhang, Hong-Bin

    2014-01-01

    Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.

  17. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    Science.gov (United States)

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was

  18. The Eucalyptus terpene synthase gene family.

    Science.gov (United States)

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  19. Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C.

    Science.gov (United States)

    Lamontagne Boulet, Maxime; Isabelle, Charles; Guay, Isabelle; Brouillette, Eric; Langlois, Jean-Philippe; Jacques, Pierre-Étienne; Rodrigue, Sébastien; Brzezinski, Ryszard; Beauregard, Pascale B; Bouarab, Kamal; Boyapelly, Kumaraswamy; Boudreault, Pierre-Luc; Marsault, Éric; Malouin, François

    2018-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti- Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro -generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >10 5 -fold for FC04-100. Copyright © 2018 American Society for Microbiology.

  20. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  1. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  2. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Directory of Open Access Journals (Sweden)

    Richards Vincent P

    2012-12-01

    Full Text Available Abstract Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection. A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs [plasmid, phage, integrative conjugative element (ICE] and comparison to other species provided convincing evidence for lateral gene transfer (LGT between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae, with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST of a subset of the isolates (n = 45 detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types], suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human

  3. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis.

    Science.gov (United States)

    Richards, Vincent P; Zadoks, Ruth N; Pavinski Bitar, Paulina D; Lefébure, Tristan; Lang, Ping; Werner, Brenda; Tikofsky, Linda; Moroni, Paolo; Stanhope, Michael J

    2012-12-18

    Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern

  4. Variation in the OC locus of Acinetobacter baumannii genomes predicts extensive structural diversity in the lipooligosaccharide.

    Directory of Open Access Journals (Sweden)

    Johanna J Kenyon

    Full Text Available Lipooligosaccharide (LOS is a complex surface structure that is linked to many pathogenic properties of Acinetobacter baumannii. In A. baumannii, the genes responsible for the synthesis of the outer core (OC component of the LOS are located between ilvE and aspS. The content of the OC locus is usually variable within a species, and examination of 6 complete and 227 draft A. baumannii genome sequences available in GenBank non-redundant and Whole Genome Shotgun databases revealed nine distinct new types, OCL4-OCL12, in addition to the three known ones. The twelve gene clusters fell into two distinct groups, designated Group A and Group B, based on similarities in the genes present. OCL6 (Group B was unique in that it included genes for the synthesis of L-Rhamnosep. Genetic exchange of the different configurations between strains has occurred as some OC forms were found in several different sequence types (STs. OCL1 (Group A was the most widely distributed being present in 18 STs, and OCL6 was found in 16 STs. Variation within clones was also observed, with more than one OC locus type found in the two globally disseminated clones, GC1 and GC2, that include the majority of multiply antibiotic resistant isolates. OCL1 was the most abundant gene cluster in both GC1 and GC2 genomes but GC1 isolates also carried OCL2, OCL3 or OCL5, and OCL3 was also present in GC2. As replacement of the OC locus in the major global clones indicates the presence of sub-lineages, a PCR typing scheme was developed to rapidly distinguish Group A and Group B types, and to distinguish the specific forms found in GC1 and GC2 isolates.

  5. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    KAUST Repository

    Assefa, Samuel

    2015-10-06

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima\\'s D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima\\'s D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  6. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Directory of Open Access Journals (Sweden)

    Weerachai Jaratlerdsiri

    Full Text Available The major histocompatibility complex (MHC is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  7. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    KAUST Repository

    Assefa, Samuel; Lim, Caeul; Preston, Mark D.; Duffy, Craig W.; Nair, Mridul; Adroub, Sabir; Kadir, Khamisah A.; Goldberg, Jonathan M.; Neafsey, Daniel E.; Divis, Paul; Clark, Taane G.; Duraisingh, Manoj T.; Conway, David J.; Pain, Arnab; Singh, Balbir

    2015-01-01

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  8. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Science.gov (United States)

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  9. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Science.gov (United States)

    Zhang, Yang; Devries, Mark E; Skolnick, Jeffrey

    2006-02-01

    G protein-coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha) root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness

  10. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2006-02-01

    Full Text Available G protein-coupled receptors (GPCRs, encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness

  11. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe.

    Directory of Open Access Journals (Sweden)

    Martin Sikora

    2014-05-01

    Full Text Available Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.

  12. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  13. The population genomics of begomoviruses: global scale population structure and gene flow

    Directory of Open Access Journals (Sweden)

    Prasanna HC

    2010-09-01

    Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could

  14. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  15. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    Science.gov (United States)

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  16. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2015-08-01

    Full Text Available Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV, was described. It comprises 11 dsRNA segments (S1–S11 covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV and freshwater fish grass carp reovirus strain 109 (GCReV-109. MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  17. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    Science.gov (United States)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  18. Processive and nonprocessive cellulases for biofuel production. Lessons from bacterial genomes and structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David B. [Cornell Univ. Ithaca, New York, NY (United States). Dept. of Molecular Biology and Genetics

    2012-01-15

    Cellulases are key enzymes used in many processes for producing liquid fuels from biomass. Currently there many efforts to reduce the cost of cellulases using both structural approaches to improve the properties of individual cellulases and genomic approaches to identify new cellulases as well as other proteins that increase the activity of cellulases in degrading pretreated biomass materials. Fungal GH-61 proteins are important new enzymes that increase the activity of current commercial cellulases leading to lower total protein loading and thus lower cost. Recent work has greatly increased our knowledge of these novel enzymes that appear to be oxido-reductases that target crystalline cellulose and increase its accessibility to cellulases. They appear to carry out the C1 activity originally proposed by Dr Reese. Cellobiose dehydrogenase appears to interact with GH-61 proteins in this function, providing a role for this puzzling enzyme. Cellulase research is making considerable progress and appears to be poised for even greater advances. (orig.)

  19. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    Francioli, Laurent C.; Menelaou, Andronild; Pulit, Sara L.; Van Dijk, Freerk; Palamara, Pier Francesco; Elbers, Clara C.; Neerincx, Pieter B. T.; Ye, Kai; Guryev, Victor; Kloosterman, Wigard P.; Deelen, Patrick; Abdellaoui, Abdel; Van Leeuwen, Elisabeth M.; Van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F. J.; Karssen, Lennart C.; Kanterakis, Alexandros; Amin, Najaf; Hottenga, Jouke Jan; Lameijer, Eric-Wubbo; Kattenberg, Mathijs; Dijkstra, Martijn; Byelas, Heorhiy; Van Settenl, Jessica; Van Schaik, Barbera D. C.; Bot, Jan; Nijman, Isaac J.; Renkens, Ivo; Marscha, Tobias; Schonhuth, Alexander; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Polak, Paz; Sohail, Mashaal; Vuzman, Dana; Hormozdiari, Fereydoun; Van Enckevort, David; Mei, Hailiang; Koval, Vyacheslav; Moed, Ma-Tthijs H.; Van der Velde, K. Joeri; Rivadeneira, Fernando; Estrada, Karol; Medina-Gomez, Carolina; Isaacs, Aaron; Platteel, Mathieu; Swertz, Morris A.; Wijmenga, Cisca

    Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring

  20. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    The Genome of the Netherlands Consortium; T. Marschall (Tobias); A. Schönhuth (Alexander)

    2014-01-01

    htmlabstractWhole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch

  1. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    Science.gov (United States)

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural

  2. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    Science.gov (United States)

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  3. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The first insight into the salvia (lamiaceae) genome via bac library construction and high-throughput sequencing of target bac clones

    International Nuclear Information System (INIS)

    Hao, D.C.; Vautrin, S.; Berges, H.; Chen, S.L.

    2015-01-01

    Salvia is a representative genus of Lamiaceae, a eudicot family with significant species diversity and population adaptibility. One of the key goals of Salvia genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of medicinal plants to increase their health and productivity. Large-insert genomic libraries are a fundamental tool for achieving this purpose. We report herein the construction, characterization and screening of a gridded BAC library for Salvia officinalis (sage). The S. officinalis BAC library consists of 17,764 clones and the average insert size is 107 Kb, corresponding to 3 haploid genome equivalents. Seventeen positive clones (average insert size 115 Kb) containing five terpene synthase (TPS) genes were screened out by PCR and 12 of them were subject to Illumina HiSeq 2000 sequencing, which yielded 28,097,480 90-bp raw reads (2.53 Gb). Scaffolds containing sabinene synthase (Sab), a Sab homolog, TPS3 (kaurene synthase-like 2), copalyl diphosphate synthase 2 and one cytochrome P450 gene were retrieved via de novo assembly and annotation, which also have flanking noncoding sequences, including predicted promoters and repeat sequences. Among 2,638 repeat sequences, there are 330 amplifiable microsatellites. This BAC library provides a new resource for Lamiaceae genomic studies, including microsatellite marker development, physical mapping, comparative genomics and genome sequencing. Characterization of positive clones provided insights into the structure of the Salvia genome. These sequences will be used in the assembly of a future genome sequence for S. officinalis. (author)

  5. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues.

    Science.gov (United States)

    Opazo, María Cecilia; Lizana, Rodrigo; Stappung, Yazmina; Davis, Thomas M; Herrera, Raúl; Moya-León, María Alejandra

    2017-11-07

    Fragaria vesca or 'woodland strawberry' has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit. The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an

  6. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  7. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  8. Structural genomic abnormalities in autism and schizophrenia. With a focus on the 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Vorstman, J.A.S.

    2008-01-01

    The research presented in this thesis is centered around one question: What can we learn from the study of psychiatric phenotypes related to structural genomic abnormalities? In this thesis this subject is examined, with most studies focused on the clinical and genetic aspects of the 22q11.2

  9. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile

    DEFF Research Database (Denmark)

    Amlacher, Stefan; Sarges, Phillip; Flemming, Dirk

    2011-01-01

    is composed of two large Nups, Nup192 and Nup170, which are flexibly bridged by short linear motifs made up of linker Nups, Nic96 and Nup53. This assembly illustrates how Nup interactions can generate structural plasticity within the NPC scaffold. Our findings therefore demonstrate the utility of the genome...

  10. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    NARCIS (Netherlands)

    Zhang, Z.; Mao, L.; Chen, Junshi; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; Pan, J.; Cai, R.; Luo, R.; Peer, Van de Y.; Jacobsen, E.; Fei, Z.; Huang, S.

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep

  11. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  12. Detection of G-Quadruplex Structures Formed by G-Rich Sequences from Rice Genome and Transcriptome Using Combined Probes.

    Science.gov (United States)

    Chang, Tianjun; Li, Weiguo; Ding, Zhan; Cheng, Shaofei; Liang, Kun; Liu, Xiangjun; Bing, Tao; Shangguan, Dihua

    2017-08-01

    Putative G-quadruplex (G4) forming sequences (PQS) are highly prevalent in the genome and transcriptome of various organisms and are considered as potential regulation elements in many biological processes by forming G4 structures. The formation of G4 structures highly depends on the sequences and the environment. In most cases, it is difficult to predict G4 formation by PQS, especially PQS containing G2 tracts. Therefore, the experimental identification of G4 formation is essential in the study of G4-related biological functions. Herein, we report a rapid and simple method for the detection of G4 structures by using a pair of complementary reporters, hemin and BMSP. This method was applied to detect G4 structures formed by PQS (DNA and RNA) searched in the genome and transcriptome of Oryza sativa. Unlike most of the reported G4 probes that only recognize part of G4 structures, the proposed method based on combined probes positively responded to almost all G4 conformations, including parallel, antiparallel, and mixed/hybrid G4, but did not respond to non-G4 sequences. This method shows potential for high-throughput identification of G4 structures in genome and transcriptome. Furthermore, BMSP was observed to drive some PQS to form more stable G4 structures or induce the G4 formation of some PQS that cannot form G4 in normal physiological conditions, which may provide a powerful molecular tool for gene regulation.

  13. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    Science.gov (United States)

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  14. Genomic structure, expression and association study of the porcine FSD2.

    Science.gov (United States)

    Lim, Kyu-Sang; Lee, Kyung-Tai; Lee, Si-Woo; Chai, Han-Ha; Jang, Gulwon; Hong, Ki-Chang; Kim, Tae-Hun

    2016-09-01

    The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality.

  15. The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structural features and phylogenetic implications.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2018-05-01

    The complete mitochondrial genomes (mitogenomes) of Taeniopteryx ugola and Doddsia occidentalis (Plecoptera: Taeniopterygidae) were firstly sequenced from the family Taeniopterygidae. The 15,353-bp long mitogenome of T. ugola and the 16,020-bp long mitogenome of D. occidentalis each contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (CR). The mitochondrial gene arrangement of the two taeniopterygids and other stoneflies was identical with the putative ancestral mitogenome of Drosophila yakuba. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome could fold into the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced or absent. Stem-loop (SL) structures, poly-T stretch, poly-[AT] n stretch and tandem repeats were found in the CRs of the two mitogenomes. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results, both supporting the monophyly of all stonefly families and the two infraorders, Systellognatha and Euholognatha. Taeniopterygidae was grouped with another two families from Euholognatha. The relationships within Plecoptera were recovered as (((Perlidae+Peltoperlidae)+((Pteronarcyidae+Chloroperlidae)+Styloperlidae))+((Capniidae+Taeniopterygidae)+Nemouridae))+Gripopterygidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  17. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  18. Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes.

    Directory of Open Access Journals (Sweden)

    Vassiliki Lila Koumandou

    2014-09-01

    Full Text Available Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We

  19. Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis

    DEFF Research Database (Denmark)

    Sarusi Portuguez, Avital; Schwartz, Michal; Siersbaek, Rasmus

    2017-01-01

    The three dimensional folding of mammalian genomes is cell type specific and difficult to alter suggesting that it is an important component of gene regulation. However, given the multitude of chromatin-associating factors, the mechanisms driving the colocalization of active chromosomal domains...... by PPARγ and Lpin1, undergoes orchestrated reorganization during adipogenesis. Coupling the dynamics of genome architecture with multiple chromatin datasets indicated that among all the transcription factors (TFs) tested, RXR is central to genome reorganization at the beginning of adipogenesis...

  20. Structural Basis of Glyphosate Resistance Resulting from the Double Mutation Thr97 → Ile and Pro101 → Ser in 5-Enolpyruvylshikimate-3-phosphate Synthase from Escherichia coli*S⃞

    Science.gov (United States)

    Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst

    2009-01-01

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556

  1. Polyketide synthase from Fusarium

    DEFF Research Database (Denmark)

    Kvesel, Kasper; Wimmer, Reinhard; Sørensen, Jens Laurids

    described, even fewer from fungi and none from Fusarium species. Multidomain proteins can be quite challenging to work with, which is why the project intends to solve the 3D-structures of single domains of PKS’s. In this project, the plan is to clone, express and purify the Acyl-carrier protein (ACP) domain...... from PKS6 in Fusarium graminearum for structural analysis....

  2. Predicting the catalytic sites of isopenicillin N synthase (IPNS ...

    African Journals Online (AJOL)

    Isopenicillin N synthase (IPNS) related Non-haem iron-dependent oxygenases and oxidases (NHIDOX) demonstrated a striking structural conservativeness, even with low protein sequence homology. It is evident that these enzymes have an architecturally similar catalytic centre with active ligands lining the reactive pocket.

  3. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as

  4. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae: structural comparative analysis, gene content and microsatellite detection

    Directory of Open Access Journals (Sweden)

    Andrew W. Gichira

    2017-01-01

    Full Text Available Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp, with a pair of Inverted Repeats (IR 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp and a small single copy (SSC, 18,696. H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  5. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection.

    Science.gov (United States)

    Gichira, Andrew W; Li, Zhizhong; Saina, Josphat K; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W; Wang, Qingfeng; Chen, Jinming

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica 's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene ( infA ) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica . A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  6. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

    Science.gov (United States)

    Collins, Ryan L; Brand, Harrison; Redin, Claire E; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon-Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A; Lucente, Diane; Levy, Brynn; Sanders, Stephan J; Wapner, Ronald J; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E

    2017-03-06

    Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease.

  7. Willingness to participate in genomics research and desire for personal results among underrepresented minority patients: a structured interview study.

    Science.gov (United States)

    Sanderson, Saskia C; Diefenbach, Michael A; Zinberg, Randi; Horowitz, Carol R; Smirnoff, Margaret; Zweig, Micol; Streicher, Samantha; Jabs, Ethylin Wang; Richardson, Lynne D

    2013-10-01

    Patients from traditionally underrepresented communities need to be involved in discussions around genomics research including attitudes towards participation and receiving personal results. Structured interviews, including open-ended and closed-ended questions, were conducted with 205 patients in an inner-city hospital outpatient clinic: 48 % of participants self-identified as Black or African American, 29 % Hispanic, 10 % White; 49 % had an annual household income of personal results to be returned was not mentioned, 82 % of participants were willing to participate in genomics research. Reasons for willingness fell into four themes: altruism; benefit to family members; personal health benefit; personal curiosity and improving understanding. Reasons for being unwilling fell into five themes: negative perception of research; not personally relevant; negative feelings about procedures (e.g., blood draws); practical barriers; and fear of results. Participants were more likely to report that they would participate in genomics research if personal results were offered than if they were not offered (89 vs. 62 % respectively, p personal genomic risk results for cancer, heart disease and type 2 diabetes than obesity (89, 89, 91, 80 % respectively, all p personal results was disease-specific worry. There was considerable willingness to participate in and desire for personal results from genomics research in this sample of predominantly low-income, Hispanic and African American patients. When returning results is not practical, or even when it is, alternatively or additionally providing generic information about genomics and health may also be a valuable commodity to underrepresented minority and other populations considering participating in genomics research.

  8. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  9. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    Science.gov (United States)

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  10. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure.

    Science.gov (United States)

    Gordon, Sean P; Contreras-Moreira, Bruno; Woods, Daniel P; Des Marais, David L; Burgess, Diane; Shu, Shengqiang; Stritt, Christoph; Roulin, Anne C; Schackwitz, Wendy; Tyler, Ludmila; Martin, Joel; Lipzen, Anna; Dochy, Niklas; Phillips, Jeremy; Barry, Kerrie; Geuten, Koen; Budak, Hikmet; Juenger, Thomas E; Amasino, Richard; Caicedo, Ana L; Goodstein, David; Davidson, Patrick; Mur, Luis A J; Figueroa, Melania; Freeling, Michael; Catalan, Pilar; Vogel, John P

    2017-12-19

    While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.

  11. Identification and classification of conserved RNA secondary structures in the human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Bejerano, Gill; Siepel, Adam

    2006-01-01

    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars...... for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set......, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization....

  12. Visualizing information across multidimensional post-genomic structured and textual databases.

    Science.gov (United States)

    Tao, Ying; Friedman, Carol; Lussier, Yves A

    2005-04-15

    Visualizing relationships among biological information to facilitate understanding is crucial to biological research during the post-genomic era. Although different systems have been developed to view gene-phenotype relationships for specific databases, very few have been designed specifically as a general flexible tool for visualizing multidimensional genotypic and phenotypic information together. Our goal is to develop a method for visualizing multidimensional genotypic and phenotypic information and a model that unifies different biological databases in order to present the integrated knowledge using a uniform interface. We developed a novel, flexible and generalizable visualization tool, called PhenoGenesviewer (PGviewer), which in this paper was used to display gene-phenotype relationships from a human-curated database (OMIM) and from an automatic method using a Natural Language Processing tool called BioMedLEE. Data obtained from multiple databases were first integrated into a uniform structure and then organized by PGviewer. PGviewer provides a flexible query interface that allows dynamic selection and ordering of any desired dimension in the databases. Based on users' queries, results can be visualized using hierarchical expandable trees that present views specified by users according to their research interests. We believe that this method, which allows users to dynamically organize and visualize multiple dimensions, is a potentially powerful and promising tool that should substantially facilitate biological research. PhenogenesViewer as well as its support and tutorial are available at http://www.dbmi.columbia.edu/pgviewer/ Lussier@dbmi.columbia.edu.

  13. Rare genomic structural variants in complex disease: lessons from the replication of associations with obesity.

    Directory of Open Access Journals (Sweden)

    Robin G Walters

    Full Text Available The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25, we had sufficient statistical power to detect the large majority (80% of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4 (95% confidence interval [9.6×10(-5-3.1×10(-4]; accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10; odds ratio = 25.0 [9.9-60.6]; and results in a mean body mass index (BMI increase of 5.8 kg.m(-2 [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially

  14. Congruence as a measurement of extended haplotype structure across the genome

    Science.gov (United States)

    2012-01-01

    Background Historically, extended haplotypes have been defined using only a few data points, such as alleles for several HLA genes in the MHC. High-density SNP data, and the increasing affordability of whole genome SNP typing, creates the opportunity to define higher resolution extended haplotypes. This drives the need for new tools that support quantification and visualization of extended haplotypes as defined by as many as 2000 SNPs. Confronted with high-density SNP data across the major histocompatibility complex (MHC) for 2,300 complete families, compiled by the Type 1 Diabetes Genetics Consortium (T1DGC), we developed software for studying extended haplotypes. Methods The software, called ExHap (Extended Haplotype), uses a similarity measurement we term congruence to identify and quantify long-range allele identity. Using ExHap, we analyzed congruence in both the T1DGC data and family-phased data from the International HapMap Project. Results Congruent chromosomes from the T1DGC data have between 96.5% and 99.9% allele identity over 1,818 SNPs spanning 2.64 megabases of the MHC (HLA-DRB1 to HLA-A). Thirty-three of 132 DQ-DR-B-A defined haplotype groups have > 50% congruent chromosomes in this region. For example, 92% of chromosomes within the DR3-B8-A1 haplotype are congruent from HLA-DRB1 to HLA-A (99.8% allele identity). We also applied ExHap to all 22 autosomes for both CEU and YRI cohorts from the International HapMap Project, identifying multiple candidate extended haplotypes. Conclusions Long-range congruence is not unique to the MHC region. Patterns of allele identity on phased chromosomes provide a simple, straightforward approach to visually and quantitatively inspect complex long-range structural patterns in the genome. Such patterns aid the biologist in appreciating genetic similarities and differences across cohorts, and can lead to hypothesis generation for subsequent studies. PMID:22369243

  15. Salmonella strains isolated from Galápagos iguanas show spatial structuring of serovar and genomic diversity.

    Directory of Open Access Journals (Sweden)

    Emily W Lankau

    Full Text Available It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome.

  16. Salmonella strains isolated from Galápagos iguanas show spatial structuring of serovar and genomic diversity.

    Science.gov (United States)

    Lankau, Emily W; Cruz Bedon, Lenin; Mackie, Roderick I

    2012-01-01

    It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome.

  17. Salmonella Strains Isolated from Galápagos Iguanas Show Spatial Structuring of Serovar and Genomic Diversity

    Science.gov (United States)

    Lankau, Emily W.; Cruz Bedon, Lenin; Mackie, Roderick I.

    2012-01-01

    It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome. PMID:22615968

  18. Integration of Structural Dynamics and Molecular Evolution via Protein Interaction Networks: A New Era in Genomic Medicine

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu

    2016-01-01

    Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487

  19. Integration of structural dynamics and molecular evolution via protein interaction networks: a new era in genomic medicine.

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu

    2015-12-01

    Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2010-01-01

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations

  1. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  2. Ultra high-resolution gene centric genomic structural analysis of a non-syndromic congenital heart defect, Tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Douglas C Bittel

    Full Text Available Tetralogy of Fallot (TOF is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months. Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1 for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001. We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.

  3. The role of parasite-driven selection in shaping landscape genomic structure in red grouse (Lagopus lagopus scotica).

    Science.gov (United States)

    Wenzel, Marius A; Douglas, Alex; James, Marianne C; Redpath, Steve M; Piertney, Stuart B

    2016-01-01

    Landscape genomics promises to provide novel insights into how neutral and adaptive processes shape genome-wide variation within and among populations. However, there has been little emphasis on examining whether individual-based phenotype-genotype relationships derived from approaches such as genome-wide association (GWAS) manifest themselves as a population-level signature of selection in a landscape context. The two may prove irreconcilable as individual-level patterns become diluted by high levels of gene flow and complex phenotypic or environmental heterogeneity. We illustrate this issue with a case study that examines the role of the highly prevalent gastrointestinal nematode Trichostrongylus tenuis in shaping genomic signatures of selection in red grouse (Lagopus lagopus scotica). Individual-level GWAS involving 384 SNPs has previously identified five SNPs that explain variation in T. tenuis burden. Here, we examine whether these same SNPs display population-level relationships between T. tenuis burden and genetic structure across a small-scale landscape of 21 sites with heterogeneous parasite pressure. Moreover, we identify adaptive SNPs showing signatures of directional selection using F(ST) outlier analysis and relate population- and individual-level patterns of multilocus neutral and adaptive genetic structure to T. tenuis burden. The five candidate SNPs for parasite-driven selection were neither associated with T. tenuis burden on a population level, nor under directional selection. Similarly, there was no evidence of parasite-driven selection in SNPs identified as candidates for directional selection. We discuss these results in the context of red grouse ecology and highlight the broader consequences for the utility of landscape genomics approaches for identifying signatures of selection. © 2015 John Wiley & Sons Ltd.

  4. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.

    Science.gov (United States)

    Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo

    2013-02-04

    Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.

  5. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  6. Discriminating the reaction types of plant type III polyketide synthases.

    Science.gov (United States)

    Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu

    2017-07-01

    Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/. goto@kuicr.kyoto-u.ac.jp. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  7. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation.

    Science.gov (United States)

    Ye, Yanfang; Fujii, Makoto; Hirata, Aiko; Kawamukai, Makoto; Shimoda, Chikashi; Nakamura, Taro

    2007-09-01

    Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.

  8. Northern Bobwhite (Colinus virginianus Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA. Median joining (MJ haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05, thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT, frequency distribution tests (D, FS and phylogenetic analyses (RAxML provide no evidence for positive selection or hybridization with the sympatric scaled quail

  9. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms.

    Science.gov (United States)

    Chavda, Kalyan D; Chen, Liang; Fouts, Derrick E; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G; Bonomo, Robert A; Adams, Mark D; Kreiswirth, Barry N

    2016-12-13

    Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed bla KPC-2 , 40 had bla KPC-3 , 2 had bla KPC-4 , and 2 had bla NDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups-18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of bla KPC -harboring plasmids between different phylogenomic groups, and repeated transposition of the bla KPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique bla KPC -harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this

  10. The complete mitochondrial genome and its remarkable secondary structure for a stonefly Acroneuria hainana Wu (Insecta: Plecoptera, Perlidae).

    Science.gov (United States)

    Huang, Mingchao; Wang, Yuyu; Liu, Xingyue; Li, Weihai; Kang, Zehui; Wang, Kai; Li, Xuankun; Yang, Ding

    2015-02-15

    The Plecoptera (stoneflies) is a hemimetabolous order of insects, whose larvae are usually used as indicators for fresh water biomonitoring. Herein, we describe the complete mitochondrial (mt) genome of a stonefly species, namely Acroneuria hainana Wu belonging to the family Perlidae. This mt genome contains 13 PCGs, 22 tRNA-coding genes and 2 rRNA-coding genes that are conserved in most insect mt genomes, and it also has the identical gene order with the insect ancestral gene order. However, there are three special initiation codons of ND1, ND5 and COI in PCGs: TTG, GTG and CGA, coding for L, V and R, respectively. Additionally, the 899-bp control region, with 73.30% A+T content, has two long repeated sequences which are found at the 3'-end closing to the tRNA(Ile) gene. Both of them can be folded into a stem-loop structure, whose adjacent upstream and downstream sequences can be also folded into stem-loop structures. It is presumed that the four special structures in series could be associated with the D-loop replication. It might be able to adjust the replication speed of two replicate directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    Science.gov (United States)

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  12. Spatial variation in the parasite communities and genomic structure of urban rats in New York City.

    Science.gov (United States)

    Angley, L P; Combs, M; Firth, C; Frye, M J; Lipkin, I; Richardson, J L; Munshi-South, J

    2018-02-01

    Brown rats (Rattus norvegicus) are a globally distributed pest. Urban habitats can support large infestations of rats, posing a potential risk to public health from the parasites and pathogens they carry. Despite the potential influence of rodent-borne zoonotic diseases on human health, it is unclear how urban habitats affect the structure and transmission dynamics of ectoparasite and microbial communities (all referred to as "parasites" hereafter) among rat colonies. In this study, we use ecological data on parasites and genomic sequencing of their rat hosts to examine associations between spatial proximity, genetic relatedness and the parasite communities associated with 133 rats at five sites in sections of New York City with persistent rat infestations. We build on previous work showing that rats in New York carry a wide variety of parasites and report that these communities differ significantly among sites, even across small geographical distances. Ectoparasite community similarity was positively associated with geographical proximity; however, there was no general association between distance and microbial communities of rats. Sites with greater overall parasite diversity also had rats with greater infection levels and parasite species richness. Parasite community similarity among sites was not linked to genetic relatedness of rats, suggesting that these communities are not associated with genetic similarity among host individuals or host dispersal among sites. Discriminant analysis identified site-specific associations of several parasite species, suggesting that the presence of some species within parasite communities may allow researchers to determine the sites of origin for newly sampled rats. The results of our study help clarify the roles that colony structure and geographical proximity play in determining the ecology of R. norvegicus as a significant urban reservoir of zoonotic diseases. Our study also highlights the spatial variation present in urban

  13. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    Science.gov (United States)

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    Science.gov (United States)

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  15. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  16. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  17. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin J

    2017-01-01

    Recent studies suggest that head and neck squamous cell carcinomas are very heterogeneous between patients; however the subclonal structure remains unexplored mainly due to studies using only a single biopsy per patient. To deconvolutethe clonal structure and describe the genomic cancer evolution......, we applied whole-exome sequencing combined with ultra-deep targeted sequencing on oral squamous cell carcinomas (OSCC). From each patient, a set of biopsies was sampled from distinct geographical sites in primary tumor and lymph node metastasis.We demonstrate that the included OSCCs show a high...

  18. Heterologous Gene Expression of N-Terminally Truncated Variants of LipPks1 Suggests a Functionally Critical Structural Motif in the N-terminus of Modular Polyketide Synthase

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Bailey, Constance B.; Fujii, Tatsu A.

    2017-01-01

    Streptomyces-derived, Well-characterized modular, polyketide synthase (PKS). Using this enzyme as a model, we experimentally investigated the effects of alternative TSSs using a heterologous host, Streptomyces venezuelae. One of the TSSs employed boosted the protein level by 59-fold and the product yield by 23...

  19. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health

    Science.gov (United States)

    Holt, Kathryn E.; Wertheim, Heiman; Zadoks, Ruth N.; Baker, Stephen; Whitehouse, Chris A.; Dance, David; Jenney, Adam; Connor, Thomas R.; Hsu, Li Yang; Severin, Juliëtte; Brisse, Sylvain; Cao, Hanwei; Wilksch, Jonathan; Gorrie, Claire; Schultz, Mark B.; Edwards, David J.; Nguyen, Kinh Van; Nguyen, Trung Vu; Dao, Trinh Tuyet; Mensink, Martijn; Minh, Vien Le; Nhu, Nguyen Thi Khanh; Schultsz, Constance; Kuntaman, Kuntaman; Newton, Paul N.; Moore, Catrin E.; Strugnell, Richard A.; Thomson, Nicholas R.

    2015-01-01

    Klebsiella pneumoniae is now recognized as an urgent threat to human health because of the emergence of multidrug-resistant strains associated with hospital outbreaks and hypervirulent strains associated with severe community-acquired infections. K. pneumoniae is ubiquitous in the environment and can colonize and infect both plants and animals. However, little is known about the population structure of K. pneumoniae, so it is difficult to recognize or understand the emergence of clinically important clones within this highly genetically diverse species. Here we present a detailed genomic framework for K. pneumoniae based on whole-genome sequencing of more than 300 human and animal isolates spanning four continents. Our data provide genome-wide support for the splitting of K. pneumoniae into three distinct species, KpI (K. pneumoniae), KpII (K. quasipneumoniae), and KpIII (K. variicola). Further, for K. pneumoniae (KpI), the entity most frequently associated with human infection, we show the existence of >150 deeply branching lineages including numerous multidrug-resistant or hypervirulent clones. We show K. pneumoniae has a large accessory genome approaching 30,000 protein-coding genes, including a number of virulence functions that are significantly associated with invasive community-acquired disease in humans. In our dataset, antimicrobial resistance genes were common among human carriage isolates and hospital-acquired infections, which generally lacked the genes associated with invasive disease. The convergence of virulence and resistance genes potentially could lead to the emergence of untreatable invasive K. pneumoniae infections; our data provide the whole-genome framework against which to track the emergence of such threats. PMID:26100894

  20. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.

    Science.gov (United States)

    Swarts, Daan C; Jinek, Martin

    2018-05-22

    Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  1. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis.

    Science.gov (United States)

    Schwarzer, David; Buettner, Falk F R; Browning, Christopher; Nazarov, Sergey; Rabsch, Wolfgang; Bethe, Andrea; Oberbeck, Astrid; Bowman, Valorie D; Stummeyer, Katharina; Mühlenhoff, Martina; Leiman, Petr G; Gerardy-Schahn, Rita

    2012-10-01

    Bacteriophage phi92 is a large, lytic myovirus isolated in 1983 from pathogenic Escherichia coli strains that carry a polysialic acid capsule. Here we report the genome organization of phi92, the cryoelectron microscopy reconstruction of its virion, and the reinvestigation of its host specificity. The genome consists of a linear, double-stranded 148,612-bp DNA sequence containing 248 potential open reading frames and 11 putative tRNA genes. Orthologs were found for 130 of the predicted proteins. Most of the virion proteins showed significant sequence similarities to proteins of myoviruses rv5 and PVP-SE1, indicating that phi92 is a new member of the novel genus of rv5-like phages. Reinvestigation of phi92 host specificity showed that the host range is not limited to polysialic acid-encapsulated Escherichia coli but includes most laboratory strains of Escherichia coli and many Salmonella strains. Structure analysis of the phi92 virion demonstrated the presence of four different types of tail fibers and/or tailspikes, which enable the phage to use attachment sites on encapsulated and nonencapsulated bacteria. With this report, we provide the first detailed description of a multivalent, multispecies phage armed with a host cell adsorption apparatus resembling a nanosized Swiss army knife. The genome, structure, and, in particular, the organization of the baseplate of phi92 demonstrate how a bacteriophage can evolve into a multi-pathogen-killing agent.

  2. Towards prediction of metabolic products of polyketide synthases: an in silico analysis.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    2009-04-01

    Full Text Available Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of

  3. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.

    Science.gov (United States)

    Seoane-Zonjic, Pedro; Cañas, Rafael A; Bautista, Rocío; Gómez-Maldonado, Josefa; Arrillaga, Isabel; Fernández-Pozo, Noé; Claros, M Gonzalo; Cánovas, Francisco M; Ávila, Concepción

    2016-02-27

    In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a

  4. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha; Dassanayake, Maheshi; Haas, Jeffrey S.; Kropornika, Anna; Wright, Chris L.; D'Urzo, Matilde Paino; Hong, Hyewon; Ali, Shahjahan; Herná ndez, Á lvaro Gonzalez; Lambert, Georgina M.; Inan, Gü nsu; Galbraith, David; Bressan, Ray Anthony; Yun, Daejin; Zhu, Jian-Kang; Cheeseman, John McP; Bohnert, Hans Jü rgen

    2010-01-01

    and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously

  5. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale

    DEFF Research Database (Denmark)

    Liu, Siyang; Huang, Shujia; Rao, Junhua

    2015-01-01

    present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome......) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We...... assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction...

  6. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans

    DEFF Research Database (Denmark)

    Klasson, Lisa; Westberg, Joakim; Sapountzis, Panagiotis

    2009-01-01

    genome of W. pipientis strain wRi that induces very strong cytoplasmic incompatibility in its natural host Drosophila simulans. A comparison with the previously sequenced genome of W. pipientis strain wMel from Drosophila melanogaster identified 35 breakpoints associated with mobile elements and repeated...... sequences that are stable in Drosophila lines transinfected with wRi. Additionally, 450 genes with orthologs in wRi and wMel were sequenced from the W. pipientis strain wUni, responsible for the induction of parthenogenesis in the parasitoid wasp Muscidifurax uniraptor. The comparison of these A...

  7. An Emerging Tick-Borne Disease of Humans Is Caused by a Subset of Strains with Conserved Genome Structure

    Science.gov (United States)

    Barbet, Anthony F.; Al-Khedery, Basima; Stuen, Snorre; Granquist, Erik G.; Felsheim, Roderick F.; Munderloh, Ulrike G.

    2013-01-01

    The prevalence of tick-borne diseases is increasing worldwide. One such emerging disease is human anaplasmosis. The causative organism, Anaplasma phagocytophilum, is known to infect multiple animal species and cause human fatalities in the U.S., Europe and Asia. Although long known to infect ruminants, it is unclear why there are increasing numbers of human infections. We analyzed the genome sequences of strains infecting humans, animals and ticks from diverse geographic locations. Despite extensive variability amongst these strains, those infecting humans had conserved genome structure including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen. These data provide potential targets to identify human-infective strains and have significance for understanding the selective pressures that lead to emergence of disease in new species. PMID:25437207

  8. Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms1[W][OA

    Science.gov (United States)

    Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg

    2010-01-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448

  9. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  11. Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

    DEFF Research Database (Denmark)

    Deng, Xiangyu; Desai, Prerak T.; den Bakker, Henk C.

    2014-01-01

    serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains...

  12. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    -specific evolutionary models based on a phylogenetic tree. All parameters can be estimated by maximum likelihood, including the phylogenetic tree. It can handle any number of aligned genomes, using their phylogenetic tree to model the evolutionary correlations. The time complexity of all algorithms used for handling...

  13. Genomic structure in Europeans dating back at least 36,200 years

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine; Korneliussen, Thorfinn Sand; Sikora, Martin

    2014-01-01

    The origin of contemporary Europeans remains contentious. We obtained a genome sequence from Kostenki 14 in European Russia dating from 38,700 to 36,200 years ago, one of the oldest fossils of anatomically modern humans from Europe. We find that Kostenki 14 shares a close ancestry with the 24,000...

  14. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...

  15. Mitochondrial genome diversity and population structure of the giant squid Architeuthis

    DEFF Research Database (Denmark)

    Winkelmann, Inger Eleanor Hall; Campos, Paula; Strugnell, Jan

    2013-01-01

    techniques, considerable controversy exists with regard to topics as varied as their taxonomy, biology and even behaviour. In this study, we have characterized the mitochondrial genome (mitogenome) diversity of 43 Architeuthis samples collected from across the range of the species, in order to use genetic...... a recent population expansion or selective sweep, which may explain the low level of genetic diversity....

  16. Impact of nuclear organization and chromatin structure on DNA repair and genome stability

    International Nuclear Information System (INIS)

    Batte, Amandine

    2016-01-01

    The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end. My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at sub-telomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that hetero-chromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair. (author) [fr

  17. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures.

    Science.gov (United States)

    Bastiaansen, John W M; Coster, Albart; Calus, Mario P L; van Arendonk, Johan A M; Bovenhuis, Henk

    2012-01-24

    Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects. Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations. Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure. The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was

  18. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  19. Intraspecies genomic diversity and natural population structure of the meat-borne lactic acid bacterium Lactobacillus sakei.

    Science.gov (United States)

    Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique

    2009-02-01

    Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products.

  20. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  1. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mai-Britt Mosbech

    Full Text Available Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24, while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22. Here we show that functional loss of HYL-2 decreases lifespan, while loss of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also required for the observed lifespan extension, as well as the increased number of autophagosomes in hyl-1;lagr-1 animals. Both autophagic events and the transcription factors PHA-4/FOXA, DAF-16, and SKN-1 have previously been associated with dietary restriction-induced longevity. Accordingly, we find that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR-1 result in dietary restriction-induced autophagy and consequently prolonged longevity.

  2. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank.

    Science.gov (United States)

    Prlic, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K; Rose, Peter W

    2016-12-15

    The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. andreas.prlic@rcsb.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. 3D modeling of genome macroorganization on the basis of its structural changes after action of radiation

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Zaikin, N.S.; Koren'kov, V.V.; Pervushova, O.V.; Stepanenko, V.A.

    2006-01-01

    At present, after 120 years of the theoretical and experimental works, the issue of the genome macroarchitecture as the highest level of interphase chromosome organization in somatic cell nuclei remains still unresolved. The problem of the spatial arrangement of interphase chromosomes in haploid germ cells has never even been studied. A 3D simulation of packaging of the entire second chromosome in Drosophila mature sperms has been performed by using mathematical approaches and visualization methods to present macromolecular structure data. As genetic markers for simulation, frequency and location of the second inversion breakpoints for 72 structural υg mutants induced by ionizing radiation were used supposing that both ends of each inversion are topologically brought together forming loop of appropriate size. For the account of a degree of spatial affinity and visualization of chromosomal loops modern 3D-modeling methods with application of splines, libraries OpenGL, language Delphi, program Gmax were used. According to the model proposed, the entire second chromosome within mature sperm nuclei seems to be packaged in the form of a megarosette-loop structure which may be a basic principle of organization of the genome macro-architecture in animal haploid germ cells

  4. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization.

    Science.gov (United States)

    Kenyon, Julia C; Tanner, Sian J; Legiewicz, Michal; Phillip, Pretty S; Rizvi, Tahir A; Le Grice, Stuart F J; Lever, Andrew M L

    2011-08-01

    Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.

  5. The genome structure of Arachis hypogaea (Linnaeus, 1753 and an induced Arachis allotetraploid revealed by molecular cytogenetics

    Directory of Open Access Journals (Sweden)

    Eliza F. de M. B. do Nascimento

    2018-03-01

    Full Text Available Peanut, Arachis hypogaea (Linnaeus, 1753 is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, A. duranensis (Krapovickas & W. C. Gregory, 1994 and A. ipaensis (Krapovickas & W. C. Gregory, 1994, followed by spontaneous chromosomal duplication. To understand genome changes following polyploidy, the chromosomes of A. hypogaea, IpaDur1, an induced allotetraploid (A. ipaensis × A. duranensis4x and the diploid progenitor species were cytogenetically compared. The karyotypes of the allotetraploids share the number and general morphology of chromosomes; DAPI+ bands pattern and number of 5S rDNA loci. However, one 5S rDNA locus presents a heteromorphic FISH signal in both allotetraploids, relative to corresponding progenitor. Whilst for A. hypogaea the number of 45S rDNA loci was equivalent to the sum of those present in the diploid species, in IpaDur1, two loci have not been detected. Overall distribution of repetitive DNA sequences was similar in both allotetraploids, although A. hypogaea had additional CMA3+ bands and few slight differences in the LTR-retrotransposons distribution compared to IpaDur1. GISH showed that the chromosomes of both allotetraploids had preferential hybridization to their corresponding diploid genomes. Nevertheless, at least one pair of IpaDur1 chromosomes had a clear mosaic hybridization pattern indicating recombination between the subgenomes, clear evidence that the genome of IpaDur1 shows some instability comparing to the genome of A. hypogaea that shows no mosaic of subgenomes, although both allotetraploids derive from the same progenitor species. For some reasons, the chromosome structure of A. hypogaea is inherently more stable, or, it has been at least, partially stabilized through genetic changes and selection.

  6. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  7. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  8. The complete genome structure and phylogenetic relationship of infectious hematopoietic necrosis virus

    Science.gov (United States)

    Morzunov , Sergey P.; Winton, James R.; Nichol, Stuart T.

    1995-01-01

    Infectious hematopoietic necrosis virus (IHNV), a member of the family Rhabdoviridae, causes a severe disease with high mortality in salmonid fish. The nucleotide sequence (11, 131 bases) of the entire genome was determined for the pathogenic WRAC strain of IHNV from southern Idaho. This allowed detailed analysis of all 6 genes, the deduced amino acid sequences of their encoded proteins, and important control motifs including leader, trailer and gene junction regions. Sequence analysis revealed that the 6 virus genes are located along the genome in the 3′ to 5′ order: nucleocapsid (N), polymerase-associated phosphoprotein (P or M1), matrix protein (M or M2), surface glycoprotein (G), a unique non-virion protein (NV) and virus polymerase (L). The IHNV genome RNA was found to have highly complementary termini (15 of 16 nucleotides). The gene junction regions display the highly conserved sequence UCURUC(U)7RCCGUG(N)4CACR (in the vRNA sense),