WorldWideScience

Sample records for synthase sensitizes multidrug-resistant

  1. A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis.

    Directory of Open Access Journals (Sweden)

    Gauri A Patwardhan

    2009-09-01

    Full Text Available Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C(18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.

  2. ANTIMICROBIAL SENSITIVITY OF MULTIDRUG-RESISTANT ACINETOBACTER BAUMANNII IN A TERTIARY CARE HOSPITAL OF PATNA

    Directory of Open Access Journals (Sweden)

    Keshav Kumar Bimal

    2017-06-01

    Full Text Available BACKGROUND Acinetobacter spp. has emerged as an important nosocomial pathogen especially in ICU settings. Acinetobacter baumannii is the most commonly isolated species among different Acinetobacters and is associated with variety of human infections. A. baumannii exhibits resistance not only to beta-lactams and cephalosporins, but also to other groups of antibiotics including carbapenems and this has resulted in the emergence of multidrug-resistance A. baumannii species, which is now widespread. To know the prevalence and antimicrobial susceptibility pattern of A. baumannii is crucial for the optimal antimicrobial therapy and to resist the spread of MDR Acinetobacter spp. The aim of the study is to study the antimicrobial susceptibility pattern of A. baumannii isolated from various clinical specimens and to explore the risk factors for multidrug-resistant A. baumannii infections. MATERIALS AND METHODS The present study was conducted from August 2015 to July 2016 at Indira Gandhi Institute of Medical Sciences, Patna. Antimicrobial susceptibility testing was done by Kirby-Bauer’s disc diffusion method. The zones of inhibition were interpreted for antibiotic sensitivity as per the CLSI guidelines 2014. Data regarding patients demographic and clinical status was obtained from medical records and possible risk factors for multidrug-resistant A. baumannii infections was evaluated for their statistical significance. Statistical analysis used- Microsoft excel sheet 2007 and Epi Info software (version 7.2.0.1 was used for different statistical analysis including Pearson’s x 2 test and simple logistic regression. RESULTS A. baumannii was isolated predominantly from respiratory samples (35.3%. Majority of the isolates were from different inpatient departments (59.1%, followed by different ICUs (40.9%. The A. baumannii isolates showed most sensitivity to colistin (100% followed by polymyxin B (90.20% and least sensitive to ampicillin (5.19%. Most of the

  3. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    Science.gov (United States)

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  4. Treatment outcomes of rifabutin-containing regimens for rifabutin-sensitive multidrug-resistant pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Hyun Lee

    2017-12-01

    Full Text Available Objectives: The aim of this study was to evaluate whether rifabutin can improve treatment outcomes in patients with rifabutin-sensitive MDR-TB. Methods: A retrospective cohort study was performed on 76 patients with rifabutin-sensitive MDR-TB who were treated with or without rifabutin between 2006 and 2011. Results: Overall, 75% (57/76 of patients achieved favorable outcomes, including cure (53/76, 70% and treatment completion (4/76, 5%. In contrast, 25% (19/76 had unfavorable treatment outcomes, which included treatment failure (6/76, 8%, death (2/76, 3%, loss to follow-up (4/76. 5%, and no evaluation due to transfer to other institutions (7/76, 9%. Rifabutin was given to 52 (68% of the 76 patients with rifabutin-sensitive MDR-TB. Although favorable treatment outcomes were more frequent in patients who received rifabutin [81% (42/52] than in those who did not receive rifabutin [63% (15/24], this difference was not statistically significant (P = 0.154. However, in multivariable regression logistic analysis, use of rifabutin was significantly associated with favorable treatment outcomes in patients with rifabutin-sensitive MDR-TB (adjusted odds ratio = 9.80, 95% confidence interval = 1.65–58.37, P = 0.012. Conclusions: These results suggest that the use of rifabutin can improve treatment outcomes in patients with rifabutin-sensitive MDR-TB. Keywords: Multidrug-resistant tuberculosis, Extensively drug-resistant tuberculosis, Rifabutin, Treatment outcome

  5. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance

    Directory of Open Access Journals (Sweden)

    Li J

    2017-11-01

    Full Text Available Jun Li,1,* Ruitong Xu,2,* Xiao Lu,3 Jing He,1 Shidai Jin1 1Department of Medical Oncology, 2Department of General Practice, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 3Department of Medical Oncology, Changshu No 1 People’s Hospital, Changshu, People’s Republic of China *These authors contributed equally to this work Abstract: Multidrug resistance (MDR is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX and dasatinib (DAS for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. Keywords: redox responsive, overcoming multidrug resistant, co-delivery, paclitaxel, dasatinib 

  6. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase.

    Science.gov (United States)

    Zeino, Maen; Brenk, Ruth; Gruber, Lisa; Zehl, Martin; Urban, Ernst; Kopp, Brigitte; Efferth, Thomas

    2015-06-01

    Cardiotonic steroids have long been in clinical use for treatment of heart failure and are now emerging as promising agents in various diseases, especially cancer. Their main target is Na(+)/K(+)-ATPase, a membrane protein involved in cellular ion homeostasis. Na(+)/K(+)-ATPase has been implicated in cancer biology by affecting several cellular events and signaling pathways in both sensitive and drug-resistant cancer cells. Hence, we investigated the cytotoxic activities of 66 cardiotonic steroids and cardiotonic steroid derivatives in sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Data were then subjected to quantitative structure-activity relationship analysis (QSAR) and molecular docking into Na(+)/K(+)-ATPase, which both indicated a possible differential expression of the pump in the mentioned cell lines. This finding was confirmed by western blotting, intracellular potassium labeling and next generation sequencing which showed that Na(+)/K(+)-ATPase was less expressed in multidrug-resistant than in sensitive cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Alharbe, Roaa; Almansour, Ayidh; Kwon, Dong H

    2017-10-01

    A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were allcarbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A. baumannii regardless

  8. Sensitivity Pattern of Second Line Anti-Tuberculosis Drugs against Clinical Isolates of Multidrug Resistant Mycobacterium Tuberculosis

    International Nuclear Information System (INIS)

    Ghafoor, T.; Ikram, A.; Abbasi, S. A.; Zaman, G.; Ayyub, M.; Palomino, J. C.; Vandamme, P.; Martin, A.

    2015-01-01

    Objective:To determine the current sensitivity pattern of second line anti-tuberculosis drugs against clinical isolates of Multidrug Resistant Mycobacterium tuberculosis (MDR-TB). Study Design: A cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from November 2011 to April 2013. Methodology: Samples received during the study period were processed on BACTEC MGIT 960 system for Mycobacterium tuberculosis (MTB) culture followed by first line drugs susceptibility testing of culture proven MTB isolates. On the basis of resistance to rifampicin and isoniazid, 100 clinical isolates of MDR-TB were further subjected to susceptibility testing against amikacin (AMK), capreomycin (CAP), ofloxacin (OFL) and ethionamide (ETH) as per standard BACTEC MGIT 960 instructions. Results: Out of 100 MDR-TB isolates, 62% were from male patients and 38% from female patients. 97% were sensitive to AMK, 53% to OFL, 87% to CAP; and 87% were sensitive to ETH. Conclusion: The majority of the MDR-TB isolates showed excellent sensitivity against AMK, CAP and ETH. However, sensitivity of MDR-TB isolates against fluoroquinolones like OFL was not encouraging. (author)

  9. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi.

    Science.gov (United States)

    Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir

    2013-07-01

    Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.

  10. Pulsed-field gel electrophoresis of multidrug-resistant and -sensitive strains of Pseudomonas aeruginosa from a Malaysian hospital.

    Science.gov (United States)

    Thong, Kwai Lin; Lai, Kin Seng; Ganeswrie, R; Puthucheary, S D

    2004-10-01

    Over a period of 6 months from January to June 2002, an unusual increase in the isolation of highly resistant Pseudomonas aeruginosa strains was observed in the various wards and intensive care units of a large general hospital in Johor Bahru, Malaysia. An equal number of multidrug resistant (MDR) and drug-susceptible strains were collected randomly from swabs, respiratory specimens, urine, blood, cerebral spinal fluid, and central venous catheters to determine the clonality and genetic variation of the strains. Macrorestriction analysis by pulsed-field gel electrophoresis showed that the 19 MDR strains were genetically very homogenous; the majority showed the dominant profile S1 (n = 10), the rest very closely related profiles S1a (n = 1), S2 (n = 4), and S2a (n = 3), indicating the endemicity of these strains. In contrast, the 19 drug-sensitive strains isolated during the same time period were genetically more diverse, showing 17 pulsed-field profiles (F = 0.50-1.00), and probably derived from the patients themselves. The presence of the MDR clone poses serious therapeutic problems as it may become endemic in the hospital and give rise to future clonal outbreaks. There is also the potential for wider geographical spread.

  11. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  12. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis

    Directory of Open Access Journals (Sweden)

    I. Fernández-Natal

    2016-11-01

    Full Text Available Human infections associated with Corynebacterium kroppenstedtii are rarely reported, and this organism is usually described as antibiotic sensitive. Almost all published cases of C. kroppenstedtii infections have been associated with breast pathology in women and have been described in New Zealand, France, Canada, India and Japan. Here we describe the microbiologic characteristics of two strains isolated from two women diagnosed of granulomatous mastitis in Spain. One C. kroppenstedtii isolate was antibiotic sensitive while the other was multidrug resistant. Biochemical identification was possible using a wide battery of methods including API Coryne V2.0, API Strep, API NH, API NE, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene amplification and sequencing. Antimicrobial susceptibility to 28 antibiotics as determined by Etest showed one isolate being sensitive to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, vancomycin, clindamycin, tetracycline, linezolid and rifampin. The second isolate showed resistance to ciprofloxacin, moxifloxacin, clindamycin, tetracycline and rifampin. The multidrug-resistant isolate contained the erm(X, tet(W, cmx, aphA1-IAB, strAB and sul1 resistance genes known from the R plasmid pJA144188 of Corynebacterium resistens. These genes were absent in the genome of the antibiotic-sensitive isolate. This report confirms the tropism of this microorganism for women's breasts and presents the first description of a multidrug-resistant C. kroppenstedtii strain.

  13. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    Science.gov (United States)

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  14. Effects of a novel porphyrin-based photosensitizer on sensitive and multidrug-resistant human gastric cancer cell lines.

    Science.gov (United States)

    Chen, Jingjing; Mao, Lina; Liu, Shuping; Liang, Yanling; Wang, Sicheng; Wang, Yeyu; Zhao, Qiang; Zhang, Xiaojing; Che, Yanjun; Gao, Lijing; Liu, Tianjun

    2015-10-01

    Photodynamic therapy (PDT) has been considered to be a possible candidate approach in combating multidrug resistance (MDR) phenomenon during the treatment of cancer. To investigate the photocytotoxicity of a novel porphyrin-based photosensitizer, meso-5-[ρ-DTPA-aminophenyl]-10, 15, 20-triphenyl-porhyrin (DTP) (Fig. 1A), on MDR cells, the intracellular DTP uptake, phototoxicity and subcellular DTP localization were studied by using a human gastric cancer MGC803 cell line and its paclitaxel selected subline MGC803/PA expressing MDR phenotype. No significant difference was observed in intracellular DTP accumulation between sensitive and resistant cell lines after exposure to 1.56 μM concentration for 6h. DTP-PDT induced significant photocytotoxicity on both MGC803 and MGC803/PA cell lines and the photokilling was greater in MGC803 cell line in comparison to MGC803/PA. The fluence that caused 50% cell death was 4.42 and 6.29 J/cm(2) in MGC803 and MGC803/PA cell lines, respectively. The presence of Pgp inhibitors verapamil and cyclosporin A could not modify the intracellular DTP level in MGC803/PA cell line and the phototoxic effects. DTP was localized at lysosomes of MGC803 cell line but at lysosomes and mitochondria of MGC803/PA. Our results indicated that DTP-mediated PDT could eradicate gastric cancer cells whether or not they express MDR although the efficacy is slightly reduced in the MDR cells. The photokilling in MDR cells could not be altered by MDR inhibitor verapamil. The slightly different photocytotoxicity between sensitive and resistant cell lines could not explained by classical Pgp MDR and might be attributed to the differential intracellular DTP localization sites. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Lee, Spencer; Razqan, Ghaida Saleh Al; Kwon, Dong H

    2017-01-15

    Infections caused by Acinetobacter baumannii were responsive to conventional antibiotic therapy. However, recently, carbapenem-associated multidrug resistant isolates have been reported worldwide and present a major therapeutic challenge. Epigallocatechin-3-Gallate (EGCG) extracted from green tea exhibits antibacterial activity. We evaluated the antibacterial activity of EGCG and possible synergism with antibiotics in carbapenem-associated multidrug resistant A. baumannii. A potential mechanism for synergism was also explored. Seventy clinical isolates of A. baumannii collected from geographically different areas were analyzed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG. Checkerboard and time-killing assays were performed to exam the synergism between EGCG and antibiotics. The effects of EGCG on a multidrug efflux pump inhibitor (1-[1-naphthylmethyl] piperazine; NMP) and β-lactamase production were also examined in A. baumannii. Sixty-three of 70 clinical isolates of A. baumannii carried carbapenemase-encoding genes with carbapenem-associated multidrug resistance. Levels of MIC and MBC of EGCG ranged from 64 to 512µg/ml and from 128 to ≥1024µg/ml, respectively among the clinical isolates. MIC 90 and MBC 86 levels were 256µg/ml and 512µg/ml of EGCG, respectively. Subinhibitory concentration of EGCG in combination with all antibiotics tested, including carbapenem, sensitized (MICs fall≤1.0µg/ml) all carbapenem-associated multidrug resistant isolates. Checkerboard and time-killing assays showed synergism between EGCG and meropenem (or carbenicillin) counted as fractional inhibitory concentration of 2log10 within 12h, respectively. EGCG significantly increased the effect of NMP but was unrelated to β-lactamase production in A. baumannii, suggesting EGCG may be associated with inhibition of efflux pumps. Overall we suggest that EGCG-antibiotic combinations might provide an alternative approach to treat

  16. Primary multidrug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Sarkar Supriya

    2007-01-01

    Full Text Available A 37-year old man presented at our institution with back pain, low-grade fever and weight-loss. X-ray of chest (postero-anterior view showed multiple opacities with erosion of right 2nd and left 6th ribs. CT-scan of thorax and CT-guided FNAC con-firmed the diagnosis of tuberculosis of ribs. Even after 5-months of treatment with four first line drugs, the patient developed a cold abscess at the back. Mycobacterial culture and drug sensitivity of material aspirated by Radiometric method from the cold abscess showed growth of Mycobacterium tuberculosis, and those bacilli were resistant to both isoniazide and rifampicin. The patient did not have anti-tubercu-lar medication in the past, and that established the diagnosis of primary multidrug resistant tuberculosis of ribs. Patient was treated successfully with 2nd line drugs at the cost of moderate degree of hearing loss. After one and half years of treatment X-ray of chest (PA view showed complete healing of rib erosions with new bone formation.

  17. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2008-10-28

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.  Created: 10/28/2008 by Emerging Infectious Diseases.   Date Released: 10/28/2008.

  18. Cytotoxicity of Endoperoxides from the Caribbean Sponge Plakortis halichondrioides towards Sensitive and Multidrug-Resistant Leukemia Cells: Acids vs. Esters Activity Evaluation

    Directory of Open Access Journals (Sweden)

    Tanja Schirmeister

    2017-03-01

    Full Text Available The 6-epimer of the plakortide H acid (1, along with the endoperoxides plakortide E (2, plakortin (3, and dihydroplakortin (4 have been isolated from a sample of the Caribbean sponge Plakortis halichondrioides. To perform a comparative study on the cytotoxicity towards the drug-sensitive leukemia CCRF-CEM cell line and its multi-drug resistant subline CEM/ADR5000, the acid of plakortin, namely plakortic acid (5, as well as the esters plakortide E methyl ester (6 and 6-epi-plakortide H (7 were synthesized by hydrolysis and Steglich esterification, respectively. The data obtained showed that the acids (1, 2, 5 exhibited potent cytotoxicity towards both cell lines, whereas the esters showed no activity (6, 7 or weaker activity (3, 4 compared to their corresponding acids. Plakortic acid (5 was the most promising derivative with half maximal inhibitory concentration (IC50 values of ca. 0.20 µM for both cell lines.

  19. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  20. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  1. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  2. Surveillance of multidrug resistant bacteria pathogens from female ...

    African Journals Online (AJOL)

    Highest sensitivity was observed with gatifloxacin, imipenam and piperacillin and tazobactum. Thus, according to this study, these antibiotics can be recommended against multi drug resistant bacteria pathogens. Keywords: Multidrug resistance, female infertility, bacteria pathogens. African Journal of Biotechnology Vol.

  3. NOTE: Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells

    Science.gov (United States)

    Duncan, L.; Shelmerdine, H.; Hughes, M. P.; Coley, H. M.; Hübner, Y.; Labeed, F. H.

    2008-01-01

    Dielectrophoresis (DEP)—the motion of particles in non-uniform AC fields—has been used in the investigation of cell electrophysiology. The technique offers the advantages of rapid determination of the conductance and capacitance of membrane and cytoplasm. However, it is unable to directly determine the ionic strengths of individual cytoplasmic ions, which has potentially limited its application in assessing cell composition. In this paper, we demonstrate how dielectrophoresis can be used to investigate the cytoplasmic ion composition by using ion channel blocking agents. By blocking key ion transporters individually, it is possible to determine their overall contribution to the free ions in the cytoplasm. We use this technique to evaluate the relative contributions of chloride, potassium and calcium ions to the cytoplasmic conductivities of drug sensitive and resistant myelogenous leukaemic (K562) cells in order to determine the contributions of individual ion channel activity in mediating multi-drug resistance in cancer. Results indicate that whilst K+ and Ca2+ levels were extremely similar between sensitive and resistant lines, levels of Cl- were elevated by three times to that in the resistant line, implying increased chloride channel activity. This result is in line with current theories of MDR, and validates the use of ion channel blockers with DEP to investigate ion channel function.

  4. Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells

    International Nuclear Information System (INIS)

    Duncan, L; Shelmerdine, H; Hughes, M P; Coley, H M; Huebner, Y; Labeed, F H

    2008-01-01

    Dielectrophoresis (DEP)-the motion of particles in non-uniform AC fields-has been used in the investigation of cell electrophysiology. The technique offers the advantages of rapid determination of the conductance and capacitance of membrane and cytoplasm. However, it is unable to directly determine the ionic strengths of individual cytoplasmic ions, which has potentially limited its application in assessing cell composition. In this paper, we demonstrate how dielectrophoresis can be used to investigate the cytoplasmic ion composition by using ion channel blocking agents. By blocking key ion transporters individually, it is possible to determine their overall contribution to the free ions in the cytoplasm. We use this technique to evaluate the relative contributions of chloride, potassium and calcium ions to the cytoplasmic conductivities of drug sensitive and resistant myelogenous leukaemic (K562) cells in order to determine the contributions of individual ion channel activity in mediating multi-drug resistance in cancer. Results indicate that whilst K + and Ca 2+ levels were extremely similar between sensitive and resistant lines, levels of Cl - were elevated by three times to that in the resistant line, implying increased chloride channel activity. This result is in line with current theories of MDR, and validates the use of ion channel blockers with DEP to investigate ion channel function. (note)

  5. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Gao W

    2017-02-01

    Full Text Available Wei Gao,1 Guihua Ye,1 Xiaochuan Duan,1 Xiaoying Yang,1 Victor C Yang1,2 1Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics, School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA Abstract: The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR. To overcome multidrug resistance (MDR and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep. First, the polymers poly(l-histidine-coupled polyethylene glycol-2000 (PHIS-PEG2000 and 7pep-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (7pep-DSPE-PEG2000 were synthesized, and the mixed micelles were prepared by blending of PHIS-PEG2000 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2000 or 7pep-DSPE-PEG2000 (7-pep HD micelles. The micelles exhibited good size uniformity, high encapsulation efficiency, and a low critical micelle concentration. By changing the polymer ratio in the micellar formulation, the pH response range was specially tailored to pH ~6.0. When loaded with antitumor drug doxorubicin (DOX, the micelle showed an acid pH-triggering drug release profile. The cellular uptake and cytotoxicity study demonstrated that 7-pep HD micelles could significantly enhance the intracellular level and antitumor efficacy of DOX in multidrug-resistant cells (MCF-7/Adr, which attributed to the synergistic effect of poly(l-histidine-triggered endolysosom escape and TfR-mediated endocytosis. Most importantly, the in vivo imaging study confirmed the targetability of 7-pep HD micelles to MDR tumor. These findings indicated that 7-pep HD micelles would be a promising drug delivery system in the treatment of drug

  6. Drug-sensitive tuberculosis, multidrug-resistant tuberculosis, and nontuberculous mycobacterial pulmonary disease in nonAIDS adults: comparisons of thin-section CT findings

    International Nuclear Information System (INIS)

    Chung, Myung Jin; Lee, Kyung Soo; Kim, Tae Sung; Kim, Sung Mok; Koh, Won-Jung; Kwon, O Jung; Kang, Eun Young; Kim, Seonwoo

    2006-01-01

    The aim of this work was to compare thin-section CT (TSCT) findings of drug-sensitive (DS) tuberculosis (TB), multidrug-resistant (MDR) TB, and nontuberculous mycobacterial (NTM) pulmonary disease in nonAIDS adults. During 2003, 216 (113 DS TB, 35 MDR TB, and 68 NTM) patients with smear-positive sputum for acid-fast bacilli (AFB), and who were subsequently confirmed to have mycobacterial pulmonary disease, underwent thoracic TSCT. The frequency of lung lesion patterns on TSCT and patients' demographic data were compared. The commonest TSCT findings were tree-in-bud opacities and nodules. On a per-person basis, significant differences were found in the frequency of multiple cavities and bronchiectasis (P<0.001, chi-square test and multiple logistic regression analysis). Multiple cavities were more frequent in MDR TB than in the other two groups and extensive bronchiectasis in NTM disease (multiple logistic regression analysis). Patients with MDR TB were younger than those with DS TB or NTM disease (P<0.001, multiple logistic regression analysis). Previous tuberculosis treatment history was significantly more frequent in patients with MDR TB or NTM disease (P<0.001, chi-square test and multiple logistic regression analysis). In patients with positive sputum AFB, multiple cavities, young age, and previous tuberculosis treatment history imply MDR TB, whereas extensive bronchiectasis, old age, and previous tuberculosis treatment history NTM disease. (orig.)

  7. Cytotoxicity of medicinal plants of the West-Canadian Gwich׳in Native Americans towards sensitive and multidrug-resistant cancer cells.

    Science.gov (United States)

    Karadeniz, Asuman; Alexie, Gladys; Greten, Henry Johannes; Andersch, Kai; Efferth, Thomas

    2015-06-20

    Traditional medicine of the Native Americans has a long tradition of medicinal plants, which also influenced modern oncology. For instance, podophyllotoxin the active ingredient of Podophyllum peltatum L. (Berberidaceae) used by Native Americans to treat warts led to the development of etoposide and teniposide. In the present investigation, we studied 10 medicinal plants used by the Gwich׳in First Nation of West-Canada, which have been used against diverse diseases including cancer. Sensitive and multidrug-resistant (MDR) tumor cell lines expressing various ATP-binding cassette (ABC) transporters (P-glycoprotein/ABCB1/MDR1, MRP1/ABCC1, or BCRP/ABCG2) have been used. Cytotoxicity was determined by the resazurin assay. Arctium minus Bernh. (Asteraceae). Lysichiton americanus Hultén & St. John (Araceae), and Maianthemum dilatatum (Alph.Wood) A.Nelson & J.F.Macbr.(Asparagaceae) were cytotoxic with IC50 values ranging from 2.40 to 86.35 µg/mL. The MDR cell lines did not exert cross-resistance to these extracts. As these medicinal plants of the West-Canadian Gwich׳in First Nation were not involved in classical drug resistance mechanisms and might therefore be valuable to bypass anticancer drug resistance in refractory tumors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells.

    Science.gov (United States)

    Li, Sen; Lei, Yu; Jia, Yingjie; Li, Na; Wink, Michael; Ma, Yonggang

    2011-12-15

    Over-expression of P-gp, MRP1 and BCRP in tumor cells is one of the important mechanisms leading to multidrug resistance (MDR), which impairs the efficacy of chemotherapy. P-gp, MRP1 and BCRP are ABC (ATP-Binding Cassette) transporters, which can expel a variety of lipophilic anti-cancer drugs and protect tumor cells. During a screening of MDR reversal agents among alkaloids of various structural types, a piperidine alkaloid, piperine (a main piperidine alkaloid in Piper nigurm) was identified as an inhibitor. Piperine can potentiate the cytotoxicity of anti-cancer drugs in resistant sublines, such as MCF-7/DOX and A-549/DDP, which were derived from MCF-7 and A-549 cell lines. At a concentration of 50 μM piperine could reverse the resistance to doxorubicin 32.16 and 14.14 folds, respectively. It also re-sensitized cells to mitoxantrone 6.98 folds. In addition, long-term treatment of cells by piperine inhibits transcription of the corresponding ABC transporter genes. These results suggest that piperine can reverse MDR by multiple mechanisms and it may be a promising lead compound for future studies. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Drug-sensitive tuberculosis, multidrug-resistant tuberculosis, and nontuberculous mycobacterial pulmonary disease in nonAIDS adults: comparisons of thin-section CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Jin; Lee, Kyung Soo; Kim, Tae Sung; Kim, Sung Mok [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea); Koh, Won-Jung; Kwon, O Jung [Sungkyunkwan University School of Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Seoul (Korea); Kang, Eun Young [Korea University Guro Hospital, Department of Diagnostic Radiology, Korea University College of Medicine, Seoul (Korea); Kim, Seonwoo [Sungkyunkwan University School of Medicine, Biostatistics Unit of the Samsung Biomedical Research Institute, Samsung Medical Center, Seoul (Korea)

    2006-09-15

    The aim of this work was to compare thin-section CT (TSCT) findings of drug-sensitive (DS) tuberculosis (TB), multidrug-resistant (MDR) TB, and nontuberculous mycobacterial (NTM) pulmonary disease in nonAIDS adults. During 2003, 216 (113 DS TB, 35 MDR TB, and 68 NTM) patients with smear-positive sputum for acid-fast bacilli (AFB), and who were subsequently confirmed to have mycobacterial pulmonary disease, underwent thoracic TSCT. The frequency of lung lesion patterns on TSCT and patients' demographic data were compared. The commonest TSCT findings were tree-in-bud opacities and nodules. On a per-person basis, significant differences were found in the frequency of multiple cavities and bronchiectasis (P<0.001, chi-square test and multiple logistic regression analysis). Multiple cavities were more frequent in MDR TB than in the other two groups and extensive bronchiectasis in NTM disease (multiple logistic regression analysis). Patients with MDR TB were younger than those with DS TB or NTM disease (P<0.001, multiple logistic regression analysis). Previous tuberculosis treatment history was significantly more frequent in patients with MDR TB or NTM disease (P<0.001, chi-square test and multiple logistic regression analysis). In patients with positive sputum AFB, multiple cavities, young age, and previous tuberculosis treatment history imply MDR TB, whereas extensive bronchiectasis, old age, and previous tuberculosis treatment history NTM disease. (orig.)

  10. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin P.; de Los Rios, Jorge M.; Gotuzzo, Eduardo; Vasilyeva, Irina; Leimane, Vaira; Andries, Koen; Bakare, Nyasha; de Marez, Tine; Haxaire-Theeuwes, Myriam; Lounis, Nacer; Meyvisch, Paul; de Paepe, Els; van Heeswijk, Rolf P. G.; Dannemann, Brian; Rolla, Valeria; Dalcomo, Margreth; Gripp, Karla; Escada, Rodrigo; Tavares, Isabel; Borga, Liamar; Thomas, Aleyamma; Rekha, Banu; Nair, Dina; Chandrasekar, Chockalingam; Parthasarathy, Ramavaran Thiruvengadaraj; Sekhar, Gomathi; Ganesh, Krishnamoorthy; Rajagopalan, Krishnakumar; Rajapandian, Gangadevi; Dorairajalu, Rajendran; Sharma, Surendra Kumar; Banavaliker, Jayant; Kadhiravan, Tamilarasu; Gulati, Vinay; Mahmud, Hanif; Gupta, Arvind; Bhatnagar, Anuj; Jain, Vipin; Hari, Smriti; Gupta, Yogesh Kumar; Vaid, Ashok; Cirule, Andra; Dravniece, Gunta; Skripconoka, Vija; Kuksa, Liga; Kreigere, Edite; Ramos, Carlos Rafael Seas; Amat y Leon, Ivan Arapovic; Huaman, Jorge Antonio Centeno; Carbajal, Roy German Duenas; Sasaki, Christian Andres Yoshiyama; Yllanes, Maria Angelica Garcia; Izzara, Mario Vilcahauman; Campos, Porfirio Fortunato Changa; Oviedo, Luis Enrique Bustinza; Zavala, Leslie Levano; Esquen, Cinthia Salome Hurtado; Fuertes, Carlos Eduardo Zamudio; Carrefio, Gabriela Carriquiry; Castañeda, Isaias Manuel Rolando; Ayala, Jesus Renato; Chavez, Eduardo Romulo Ticona; Onofre, Wilfredo Vargas; Paucar, Juan Genaro Sosa; Herrera, Elias Rodrigo Aliaga; Medina, Jamie Ismael Soria; Barraza, José Carlos Masciotti; Mateo, Domingo Elias Gómez-Sanchez; Reyna, Ruben Marino Azañero; Senmache, Jorge de los Rios; Vasquez, Christian Juan Galvez; Vargas, Zully Haydee Ruiz; Galvan, Blanca Luz Parra; Aparcana, Karin Marlene Reyes; Diaz, Dina Vera; Gonong, Joven Roque; Raymond, Lawrence; Llacer, Roxas Lee; Alvarez-Tiu, Aileen; Erokhin, Vladislav; Demikhova, Olga; Bagdasarian, Tatevik; Gorlova, Svetlana; Tikhonov, Alexey; Diacon, Andreas; Hanekom, Madeleine; Noveljic, Zoja; Patientia, Ramonde; Siwendu, Sweetness; Rustomjee, Roxana; Reddy, Carl; Osburn, Lancelot Garth; Ramjee, Aruna; Ntshanga, Sbongile Pumzile; Gabela, Lerato; Chirkut, Shivani; Fortuin-de Smidt, Melony C.; Narasimooloo, Ronelle; Quantrill, John Richard Yarr; Master, Iqbal Haroon; Gumede, Thulani Bethwell; Chotoo, Sunitha; Conradie, Francesca; Mahanyele, N. Russel; Dziewiecki, Alicja; Menezes, Collin N.; Sanne, Ian Mathias; John, Melanie-Anne; Kayumba, Jean Michel; Page-Shipp, Liesl; Kruger, Dawid; Schroeder, Irene; Leeuwner, Louwrens L.; O'Reilly, Cathryn Louise; Joubert, Myrtle; Coetzee, Corlia; Krause, Stephanie Rene; McPherson, Reinard; Muller, Louise; Chuchottaworn, Charoen; Sangsayunh, Piamplarp; Bangpattanasiri, Kittima; Wiwatworapan, Tawatchai; Anantasetagoon, Tanakorn

    2014-01-01

    BACKGROUND Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. METHODS In this phase 2b

  11. The imaging feature of multidrug-resistant tuberculosis

    International Nuclear Information System (INIS)

    Yang Jun; Zhou Xinhua; Li Xi; Fu Yuhong; Zheng Suhua; Lv Pingxin; Ma Daqing

    2004-01-01

    Objective: To evaluate the imaging features of multidrug-resistant tuberculosis by collecting multidrug-resistant tuberculosis verified by test of drug-sensitivity, which defined as resistance to three anti-tuberculosis drugs. Methods:Fifty-one cases of multidrug-resistant tuberculosis were categorized as group of observed, and 46 cases of drug sensitive tuberculosis were categorized as control. Cultures were positive for Mycobacterium tuberculosis in all cases with no other illness such as diabetes mellitus. All patients had chest radiographs available for review, while 64 cases had tomography and 30 cases had CT during the same time. All images were analyzed by three of the radiologists, disagreement among them was discussed and a consensus was reached. Results: There was no difference in the distribution of lesions between the multidrug-resistant tuberculosis group and control group. However, the radiological findings in the multidrug-resistant tuberculosis group were significantly more common than in control group, such as multiple nodules (10 cases), disseminated foci (23 cases), cavity (9 cases), and complications (10 cases). Comparing the dynamic cases, deteriorating cases were more commonly seen in observed group than in control group, while improved cases were less in observed group than in control group. Conclusion: Multidrug-resistant tuberculosis is the most serious tuberculosis, which is characterized with significant activity, more disseminated foci, cavity, and complications. The lesion deteriorated while correct anti-tuberculosis treatment is applied. (authors)

  12. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  13. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    Science.gov (United States)

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antònia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 μM) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 μM, respectively. Importantly, OLA (80 μM) or MLA (30 μM) enhanced the antitumoral effect of DXR (0.5-10 μM) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C

  15. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  16. Multidrug resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Bolhuis, Hendrik

    1996-01-01

    Multidrug resistance (MDR) was initially recongnized as the major cause of the failure of the drug-based treatment of human cancers. It has become increasingly clear that MDR occurs in mammalian cells but also in lower eukaryotes and bacteria. The appearance of multiple antibiotic resistant

  17. Radiological Findings of Extensively Drug-Resistant Pulmonary Tuberculosis in Non-AIDS Adults: Comparisons with Findings of Multidrug-Resistant and Drug-Sensitive Tuberculosis

    International Nuclear Information System (INIS)

    Cha, Ji Hoon; Lee, Ho Yun; Lee, Kyung Soo; Koh, Won Jung; Kwon, O Jung; Yi, Chin A; Kim, Tae Sung; Chung, Myung Jin

    2009-01-01

    This study was designed to describe the radiological findings of extensively drug-resistant (XDR) pulmonary tuberculosis (TB) and to compare the observed findings with findings of drug-sensitive (DS) and non-XDR multidrug- resistant (MDR) TB in non-AIDS patients. From September 1994 to December 2007, 53 MDR TB patients (M:F = 32:21; mean age, 38 years) and 15 XDR TB non-AIDS patients (M:F = 8:7; mean age, 36 years) were enrolled in the study. All of the MDR TB patients had received no treatment or less than one month of anti-TB treatment. In addition, all XDR TB patients received either no anti-TB treatment or only first-line anti-TB drugs. In addition, 141 consecutive DS TB patients (M:F = 79:62; mean age, 51 years) were also enrolled in the study for comparison. Chest radiograph, CT and demographic findings were reviewed and were compared among the three patient groups. For patients with XDR TB, the most frequent radiographic abnormalities were nodules (15 of 15 patients, 100%), reticulo-nodular densities (11 of 15, 73%), consolidation (9 of 15, 60%) and cavities (7 of 15, 47%) that were located mainly in the upper and middle lung zones. As seen on radiographs, significant differences were found for the frequency of nodules and ground-glass opacity lesions (all p < 0.001) (more frequent in DS TB patients than in MDR and XDR TB patients). For the use of CT, significant differences (more frequent in MDR and XDR TB patients) were found for the frequency of multiple cavities, nodules and bronchial dilatation (p = 0.001 or p < 0.001). Patients with MDR TB and XDR TB were younger as compared to patients with DS TB (p < 0.001). Imaging findings were not different between patients with MDR TB and XDR TB. By observation of multiple cavities, nodules and bronchial dilatation as depicted on CT in young patients with acid-fast bacilli (AFB) positive sputum, the presence of MDR TB or XDR TB rather than DS TB can be suggested. There is no significant difference in imaging

  18. Synergy between verapamil and other multidrug -resistance ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Synergy between verapamil and other multidrug-resistance modulators in model membranes. 737. J. Biosci. 32(4), June 2007. 1. Introduction. A major problem in the treatment of cancer is that of multidrug resistance, which remains imperfectly understood, though in some instances it certainly involves altered membrane ...

  19. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the ... lactam resistance in multidrug resistant E. coli in ESBL and non-ESBL isolates. .... and decreased susceptibility to carbapenems, particularly ertapenem (Perez et al.,.

  20. The radiological spectrum of pulmonary multidrug-resistant tuberculosis: in HIV-Negative patients

    International Nuclear Information System (INIS)

    Zahirifard, S.; Amiri, M.V.; Bakhshayesh Karam, M.; Mirsaeidi, S.M.; Ehsanpour, A.; Masjedi, M.R.

    2003-01-01

    Background: Multidrug-resistant tuberculosis is a major worldwide health problem. In countries where tuberculosis is of moderate to high prevalence, the issue of Multidrug-resistant tuberculosis carries significant importance. Multidrug-resistant tuberculosis, similar to drug-sensitive tuberculosis, is contagious. Meanwhile its treatment is not only more difficult but also more expensive with lower success rates. Regarding clinical findings, there is no significant difference between Multidrug-resistant tuberculosis and drug-sensitive tuberculosis. Therefore determination of characteristic radiological findings in cases of Multidrug-resistant tuberculosis might be of help in early detection, and hence appropriate management of this disease condition. Objective: To explain the radiological spectrum of pulmonary Multidrug-resistant tuberculosis. Patients and methods: We retrospectively evaluated the radiographic images of 35 patients with clinically-and microbiologically- proven Multidrug-resistant tuberculosis admitted to our tertiary-care tuberculosis unit over a period of 13 months. The latest chest x-ray of all patients and the conventional chest CT scan without contrast of 15 patients were reviewed by three expert radiologists who rendered consensus opinion. Results: Of the 35 patients with imaging studies, 23 (66%) were male and 12 (34%) were female. The mean±SD age of participants was 38.2±17.3 (range: 16-20) years. 33 patients were known as secondary and only 2 had primary Multidrug-resistant tuberculosis. Chest radiography revealed cavitary lesion in 80% pulmonary infiltration in 89% and nodules in 80% of the cases. Pleurisy was the rarest finding observed in only 5 (14%) patients. All of 15 chest CT scans revealed cavitation, 93% of which were bilateral and multiple. Pleural involvement was seen in 93% of patients. Conclusion: Presence of multiple cavities, especially in both lungs, nodular and infiltrative lesions, and pleural effusion are main features

  1. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs.

    Science.gov (United States)

    Fouquet, Grégory; Debuysscher, Véronique; Ouled-Haddou, Hakim; Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Al Bagami, Mohammed; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael; Marcq, Ingrid; Bouhlal, Hicham

    2016-05-31

    Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.

  2. Increases in doxorubicin sensitivity and radioiodide uptake by transfecting shMDR and sodium/iodide symporter gene in cancer cells expressing multidrug resistance

    International Nuclear Information System (INIS)

    Ahn, Sohn Joo; Lee, Yong Jin; Lee, You La; Choi, Chang Ik; Lee, Sang Woo; Yoo, Jeong Soo; Ahn, Byeong Cheol; Lee, In Kyu; Lee, Jae Tae

    2007-01-01

    Multidrug resistance (MDR) of the cancer cells related to mdr1 gene expression can be effectively treated by selective short hairpin RNA for mdr1 gene (shMDR). Sodium/iodide symporter (NIS) gene is well known to have both reporter and therapeutic gene characteristics. We have co-transfected both shMDR and NIS gene into colon cancer cells (HCT15 cell) expressing MDR and Tc-99m sestamibi and I-125 uptake were measured. In addition, cytotoxic effects of doxorubicin and I-131 therapy were also assessed after transfection. At first, shMDR was transfected with liposome reagent into human embryonic kidney cells (HEK293) and HCT cells. shMDR transfection was confirmed by RT-PCR and western blot analysis. Adenovirus expressing NIS (Ad-NIS) gene and shMDR (Ad-shMDR) were co-transfected with Ad-NIS into HCT15 cells. Forty-eight hours after infection, inhibition of P-gycoprotein (Pgp) function by shMDR was analyzed by a change of Tc-99m sestamibi uptake and doxorubicin cytotoxicity, and functional activity of induced NIS gene expression was assessed with I-125 uptake assay. In HEK293 cells transfected with shMDR, mdr1 mRNA and Pgp protein expressions were down regulated. HCT15 cells infected with 20 MOI of Ad-NIS was higher NIS protein expression than control cells. After transfection of 300 MOI of Ad-shMDR either with or without 10 MOI of Ad-NIS, uptake of Tc-99m sestamibi increased up to 1.5-fold than control cells. HCT15 cells infected with 10 MOI of Ad-NIS showed approximately 25-fold higher I-125 uptake than control cells. Cotransfection of Ad-shMDR and Ad-NIS resulted in enhanced cytotoxic by doxorubicin in HCT15 cells. I-131 treatment on HCT15 cells infected with 20 MOI of Ad-NIS revealed increased cytotoxic effect. Suppression of mdr1 gene expression, retention of Tc-99m sestamibi, enhanced doxorubicin cytotoxicity and increases in I-125 uptake were achieved in MDR expressing cancer cell by co-transfection of shMDR and NIS gene. Dual therapy with doxorubicin and

  3. Comparative study of isolates from community-acquired and catheter-associated urinary tract infections with reference to biofilm-producing property, antibiotic sensitivity and multi-drug resistance.

    Science.gov (United States)

    Bardoloi, Vishwajeet; Yogeesha Babu, K V

    2017-07-01

    Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.

  4. Multidrug Resistant Acinetobacter Infection and Their Antimicrobial ...

    African Journals Online (AJOL)

    Conclusion: The high rate of antibiotic resistance shown by Acintobacter isolates in this study demonstrates the need for antibiotic stewardship protocols to be set up in health facilities to prevent outbreaks of multi-resistant bacterial infections. Key words: Acinotebacter infection, Multidrug resistant, Intensive care unit.

  5. Multidrug resistance: Physiological principles and nanomedical solutions

    NARCIS (Netherlands)

    Kunjachan, S.; Rychlik, B.; Storm, Gerrit; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which

  6. Multidrug resistance: Physiological principles and nanomedical solutions.

    Science.gov (United States)

    Kunjachan, Sijumon; Rychlik, Błażej; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2013-11-01

    Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies. © 2013.

  7. Multidrug Resistant Acinetobacter Infection and Their Antimicrobial ...

    African Journals Online (AJOL)

    Background: Acinetobacter baumannii, a non-glucose fermenting Gram negative bacillus, has emerged in the last three decades as a major etiological agent of hospital-associated infections giving rise to significant morbidity and mortality particularly in immunocompromised patients. Multidrug resistant A. baumannii ...

  8. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    The study was conducted with the objective of examining the outer membrane proteins and their involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the response of gram negative bacterial biomembrane alteration was studied using extended ...

  9. Multidrug-resistant Tuberculosis in Military Recruits

    OpenAIRE

    Freier, Grace; Wright, Allen; Nelson, Gregory; Brenner, Eric; Mase, Sundari; Tasker, Sybil; Matthews, Karen L.; Bohnker, Bruce K.

    2006-01-01

    We conducted a tuberculosis contact investigation for a female military recruit with an unreported history of multidrug-resistant tuberculosis (MDRTB) and subsequent recurrence. Pertinent issues included identification of likely contacts from separate training phases, uncertainty on latent MDRTB infection treatment regimens and side effects, and subsequent dispersal of the contacts after exposure.

  10. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Results: Among these isolates, 51 (38 %) showed antimicrobial activity against one or more test organisms and six exhibited promising broad-spectrum activity against all the tested organisms.

  11. Multidrug Resistance in Infants and Children

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2018-02-01

    Full Text Available Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is named multidrug-resistance. Gram-negative bacilli, especially Escherichia coli, Klebsiella, Enterobacter, Salmonella, Shigella, Pseudomonas, Streptococcus, and Haemophilus influenzae type b, may become resistant. Amikacin ampicillin, amoxicillin, amoxiclav, cefuroxime, cefotaxime, ceftazidime, cefoperazone tetracycline, chloramphenicol, ciprofloxacin, and gentamicin may cause bacterial-resistance. Resistance to bacteria for several pathogens makes complications in the treatment of infections caused by them. Salmonella strains may become resistant to ampicillin, cephalotin, ceftriaxone, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Shigella strains may become resistant to ampicillin, cotrimoxazole, chloramphenicol, and streptomycin. Multidrug-resistance of Streptococcus pneumoniae may be due to β-lactams, macrolides, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Multidrug-resistance of Pseudomonas aeruginosa may become resistant to β-lactams, chloramphenicol, trimethoprim-sulfamethoxazole, and tetracycline. The antibacterial activity against Haemophilus strains may occur with ampicillin, sulbactam-ampicillin, trimethoprim-sulfamethoxazole, gentamicin, chloramphenicol, and ciprofloxacin. Multidrug-resistance of the Klebsiella species may be due with ampicillin, cefotaxime, cefuroxime, co-amxilav, mezlocillin, chloramphenicol, gentamicin, and ceftazidime. Multidrug-resistance of Escherichia coli may be caused by ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime. Vibrio

  12. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-12-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  13. Re-sensitizing Multidrug Resistant Bacteria to Antibiotics by Targeting Bacterial Response Regulators: Characterization and Comparison of Interactions between 2-Aminoimidazoles and the Response Regulators BfmR from Acinetobacter baumannii and QseB from Francisella spp.

    Science.gov (United States)

    Milton, Morgan E.; Minrovic, Bradley M.; Harris, Danni L.; Kang, Brian; Jung, David; Lewis, Caleb P.; Thompson, Richele J.; Melander, Roberta J.; Zeng, Daina; Melander, Christian; Cavanagh, John

    2018-01-01

    2-aminoimidazole (2-AI) compounds inhibit the formation of bacterial biofilms, disperse preformed biofilms, and re-sensitize multidrug resistant bacteria to antibiotics. 2-AIs have previously been shown to interact with bacterial response regulators, but the mechanism of interaction is still unknown. Response regulators are one part of two-component systems (TCS). TCSs allow cells to respond to changes in their environment, and are used to trigger quorum sensing, virulence factors, and antibiotic resistance. Drugs that target the TCS signaling process can inhibit pathogenic behavior, making this a potent new therapeutic approach that has not yet been fully exploited. We previously laid the groundwork for the interaction of the Acinetobacter baumannii response regulator BfmR with an early 2-AI derivative. Here, we further investigate the response regulator/2-AI interaction and look at a wider library of 2-AI compounds. By combining molecular modeling with biochemical and cellular studies, we expand on a potential mechanism for interaction between response regulators and 2-AIs. We also establish that Francisella tularensis/novicida, encoding for only three known response regulators, can be a model system to study the interaction between 2-AIs and response regulators. We show that knowledge gained from studying Francisella can be applied to the more complex A. baumannii system, which contains over 50 response regulators. Understanding the impact of 2-AIs on response regulators and their mechanism of interaction will lead to the development of more potent compounds that will serve as adjuvant therapies to broad-range antibiotics. PMID:29487854

  14. Re-sensitizing Multidrug Resistant Bacteria to Antibiotics by Targeting Bacterial Response Regulators: Characterization and Comparison of Interactions between 2-Aminoimidazoles and the Response Regulators BfmR from Acinetobacter baumannii and QseB from Francisella spp.

    Directory of Open Access Journals (Sweden)

    Morgan E. Milton

    2018-02-01

    Full Text Available 2-aminoimidazole (2-AI compounds inhibit the formation of bacterial biofilms, disperse preformed biofilms, and re-sensitize multidrug resistant bacteria to antibiotics. 2-AIs have previously been shown to interact with bacterial response regulators, but the mechanism of interaction is still unknown. Response regulators are one part of two-component systems (TCS. TCSs allow cells to respond to changes in their environment, and are used to trigger quorum sensing, virulence factors, and antibiotic resistance. Drugs that target the TCS signaling process can inhibit pathogenic behavior, making this a potent new therapeutic approach that has not yet been fully exploited. We previously laid the groundwork for the interaction of the Acinetobacter baumannii response regulator BfmR with an early 2-AI derivative. Here, we further investigate the response regulator/2-AI interaction and look at a wider library of 2-AI compounds. By combining molecular modeling with biochemical and cellular studies, we expand on a potential mechanism for interaction between response regulators and 2-AIs. We also establish that Francisella tularensis/novicida, encoding for only three known response regulators, can be a model system to study the interaction between 2-AIs and response regulators. We show that knowledge gained from studying Francisella can be applied to the more complex A. baumannii system, which contains over 50 response regulators. Understanding the impact of 2-AIs on response regulators and their mechanism of interaction will lead to the development of more potent compounds that will serve as adjuvant therapies to broad-range antibiotics.

  15. [Study on active constituents of traditional Chinese medicine reversing multidrug resistance of tumor cells in vitro].

    Science.gov (United States)

    Zhang, H; Yang, L; Liu, S; Ren, L

    2001-09-01

    To screen drugs reversing multidrug resistance of tumor cells from active constituents of traditional Chinese medicine and to study the reversal action. The kill effects of the drugs on tumor cell lines in vitro were determined with MTT method. The Jin's formula was used to analyse the effect of drug combination. 5 micrograms/ml rhynchophylline, 2 micrograms/ml jatrorrhizine and 1.25 micrograms/ml indirulin could reverse multidrug resistance for vincristine on KBv200 cell line by 16.8, 5.1 and 4 fold respectively. 1.56-12.5 micrograms/ml curcumine combining with vincristine could sensitize antitumor effect both on KB and KBv200 cell lines. All rhynchophylline, jatrorrhizine and indirulin could reverse multidrug resistance for vincristine on KBv200 cell line. Curcumine combinating vincristine could sensitize antitumor effect both on kB and kBv200 cell lines.

  16. Human hepatocellular carcinoma cell lines exhibit multidrug resistance unrelated to MRD1 gene expression.

    Science.gov (United States)

    Shen, D W; Lu, Y G; Chin, K V; Pastan, I; Gottesman, M M

    1991-03-01

    Multidrug resistance of human cancer cells may result from expression of P-glycoprotein, the product of the MRD1 gene, acting as an energy-dependent drug efflux pump. However, direct evidence that expression of the MDR1 gene contributes to the multidrug resistance of human liver carcinomas has not been established. In this study, we tested five cell lines derived from human hepatocellular carcinomas for sensitivity to a variety of drugs used widely as anticancer agents; these included vinblastine, doxorubicin, actinomycin D, mitomycin C, 5-fluorouracil, 6-mercaptopurine, melphalan, methotrexate, cis-platinum and etoposide (VP-16). All five hepatoma cell lines were resistant at different levels to these chemicals compared to human KB cells. Although it has been demonstrated that resistance to vinblastine, colchicine, doxorubicin and actinomycin D in human multidrug-resistant cells is associated with overexpression of P-glycoprotein, very little expression of P-glycoprotein was found in these human hepatoma cells. Neither verapamil nor quinidine, inhibitors of the drug efflux pump, were able to overcome multidrug resistance in hepatoma cells. These results indicate that the multidrug resistance phenotype in human hepatocellular carcinoma cells cannot be attributed to expression of the MDR1 gene, but that novel mechanisms may account for the resistance of these cancer cells.

  17. Primary disseminated extrapulmonary multidrug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    S K Das

    2012-01-01

    Full Text Available Disseminated tuberculosis is a common mode of presentation of tuberculosis in patients both with and without HIV/AIDS in India. However, primary multidrug resistance in disseminated tuberculosis involving only the extrapulmonary sites in an immunocompetent adult is rare. Here, we report a case of a 19-year-old man who had disseminated tuberculosis involving left pleura, pericardium, peritoneum and intraabdominal lymph nodes. He was initially taking WHO category I antituberculous drugs, but was not responding in spite of 5 months of chemotherapy. Culture of the pleural biopsy specimen grew Mycobacterium tuberculosis which was resistant to isoniazid and rifampicin. He was put on therapy for multidrug resistant tuberculosis,following 24 months of chemotherapyhe had an uneventful recovery.

  18. The effect of Cnidoscolus aconitifolius on multi-drug resistant micro ...

    African Journals Online (AJOL)

    Escherichia coli, Klebsiella species, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica Gallinarum and Candida albicans. The results from this study show that none of the multi-drug resistant micro-organisms was sensitive to the leaf extract of C. aconitifolius. Key words: Cnidoscolus aconitifolius, ...

  19. Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines

    NARCIS (Netherlands)

    Prabowo, Satria A.; Groeschel, Matthias I.; Schmidt, Ed D. L.; Skrahina, Alena; Mihaescu, Traian; Hasturk, Serap; Mitrofanov, Rotislav; Pimkina, Edita; Visontai, Ildik; de Jong, Bouke; Stanford, John L.; Cardona, Pere-Joan; Kaufmann, Stefan H. E.; van der Werf, Tjipke

    Tuberculosis (TB) has scourged humankind for millennia, and latent infection affects nearly one-third of today's world population. The emergence of multidrug-resistant (MDR)-TB is a major global threat and reflects treatment failure of drug-sensitive disease. MDR-TB management is a burden for

  20. In vivo uptake of carbon-14-colchicine for identification of tumor multidrug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, B.M.; Rosa, E.; Biedler, J.L. [Nuclear Medicine Research Lab., New York, NY (United States)] [and others

    1994-07-01

    A major limitation in the treatment of cancer with natural product chemotherapeutic agents is the development of multidrug resistance (MDR). Multidrug resistance is attributed to enhanced expression of the multidrug resistance gene MDR1. Colchicine (CHC) is known to be one of the MDR drugs. The authors have previously demonstrated that it is possible to distinguish multidrug resistant tumors from the multidrug-sensitive tumors in vivo on the basis of tritium ({sup 3}H) uptake following injection of {sup 3}H-CHC. The present studies were carried out in xenografted animals using {sup 14}C-CHC which may be more indicative of {sup 11}C-labeled CHC distribution with regard to circulating metabolites, since metabolic processes following injection of (ring C, methoxy-{sup 11}C)-CHC may produce significant amounts of circulating 1l-carbon fragments (i.e., methanol and/or formaldehyde). Experiments were carried out at a dose of 2 mg/kg. Activity concentration per injected dose was approximately twice as great in sensitive as in resistant tumors (p < 0.05) at 60 min following intravenous injection of {sup 14}C-CHC. About 75% of total activity was CHC in the sensitive tumors. The findings are further confirmed by the quantitative autoradiographic evaluation of resistant and sensitive tumors. These studies confirm our previous observations that it is possible to noninvasively distinguish multidrug-resistant tumors from sensitive tumors in vivo based on uptake of an injected MDR drug using a{sup 14}C-labeled CHC at the same position and of comparable specific activity to a {sup 11}C-CHC tracer used for PET imaging. 16 refs., 5 figs., 2 tabs.

  1. [Innovative treatments for multidrug-resistant bacteria].

    Science.gov (United States)

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria.

  2. Reversal of multidrug resistance by surfactants.

    Science.gov (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  3. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  4. Chinese hamster pleiotropic multidrug-resistant cells are not radioresistant

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Gamson, J.; Russo, A.; Friedman, N.; DeGraff, W.; Carmichael, J.; Glatstein, E.

    1988-01-01

    The inherent cellular radiosensitivity of a Chinese hamster ovary pleiotropic cell line that is multidrug resistant (CHRC5) was compared to that of its parental cell line (AuxB1). Radiation survival curve parameters n and D0 were 4.5 and 1.1 Gy, respectively, for the CHRC5 line and 5.0 and 1.2 Gy, respectively, for the parental line. Thus, the inherent radiosensitivity of the two lines was similar even though key intracellular free radical scavenging and detoxifying systems employing glutathione, glutathione transferase, and catalase produced enzyme levels that were 2.0-, 1.9-, and 1.9-fold higher, respectively, in the drug-resistant cell line. Glutathione depletion by buthionine sulfoximine resulted in the same extent of aerobic radiosensitization in both lines (approximately 10%). Incorporation of iododeoxyuridine into cellular DNA sensitized both cell lines to radiation. These studies indicate that pleiotropic drug resistance does not necessarily confer radiation resistance

  5. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  6. Prevalence of multidrug resistant pathogens in children with urinary tract infection: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Srinivasan S, Madhusudhan NS

    2014-11-01

    Full Text Available Urinary tract infection (UTI is one of the commonest medical problems in children. It can distress the child and may cause kidney damage. Prompt diagnosis and effective treatment can prevent complications in the child. But treatment of UTI in children has now become a challenge due to the emergence of multidrug resistant bacteria. Aims & Objectives: To know the bacteriological profile and susceptibility pattern of urinary tract infections in children and to know the prevalence of multidrug resistant uropathogens. Materials & Methods: A retrospective analysis was done on all paediatric urine samples for a period of one year. A total of 1581 samples were included in the study. Antimicrobial susceptibility testing was done on samples showing significant growth by Kirby-Bauer disc diffusion method. Statistical analysis: Prevalence and pattern were analyzed using proportions and percentages. Results: E.coli was the most predominant organism (56% causing UTI in children followed by Klebsiella sp (17%. Fifty three percent of gram negative organisms isolated from children were found to be multidrug resistant. Majority of E. coli isolates were found to be highly resistant to Ampicillin (91% and Cotrimoxazole (82% and highly sensitive to Imipenem (99% and Amikacin (93%. Conclusion: Paediatric UTI was common in children less than 5 years of age. Gram negative bacteria (E. coli and Klebsiella sp were more common than gram positive bacteria. Our study revealed that multidrug resistance was higher in E.coli.

  7. Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells

    NARCIS (Netherlands)

    Courtois, A; Payen, L; Vernhet, L; de Vries, EGE; Guillouzo, A; Fardel, O

    1999-01-01

    The multidrug resistance-associated protein (MRP) is a drug efflux membrane pump conferring multidrug resistance on tumor cells. In order to look for compounds that can lead to reversal of such a resistance, the antituberculosis compound rifampicin, belonging to the chemical class of rifamycins, was

  8. Study of multidrug resistance and radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance.

  9. Yeast ABC proteins involved in multidrug resistance.

    Science.gov (United States)

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.

  10. Pesticide degrading natural multidrug resistance bacterial flora.

    Science.gov (United States)

    Rangasamy, Kirubakaran; Athiappan, Murugan; Devarajan, Natarajan; Samykannu, Gopinath; Parray, Javid A; Aruljothi, K N; Shameem, Nowsheen; Alqarawi, Abdulaziz A; Hashem, Abeer; Abd Allah, Elsayed Fathi

    2018-01-01

    Multidrug-resistant (MDR) bacteria are a growing threat to humans across the world. Antibiotic resistance is a global problem that has developed through continuous antibiotic use, combinatorial antibiotic use, pesticide-antibiotic cross-resistance, and horizontal gene transfer, as well as various other modes. Pesticide-antibiotic cross-resistance and the subsequent expansion of drug-resistant bacteria are critically documented in this review, the primary focus of which is to assess the impact of indiscriminate pesticide use on the development of microbial communities with parallel pesticide and multidrug resistance. The consumption of pesticide-contaminated food products and the use of broad-spectrum antibiotics by humans and in livestock animals have favored the development of both antibiotic and pesticide-resistant bacterial flora via natural selection. Pesticide resistance mainly develops through defensive bacterial adaptations such as biofilm formation, induced mutations, and horizontal/vertical gene transfer through plasmids or transposons, as well as through the increased expression of certain hydrolytic enzymes. Pesticide resistance genes are always transferred as gene clusters, and they may also carry genes essential for antibiotic resistance. Moreover, for some induced mutations, the mutated active site of the affected enzyme may allow degradation of both pesticides and antibiotics, resulting in cross-resistance. A few studies have shown that the sub-lethal exposure of wild-type strains to herbicides induces antibiotic resistance. This review concludes that xenobiotic exposure leads to cross-resistance in wild microbial flora, which requires further study to develop therapeutic approaches to overcome the threats of MDR bacteria and superbugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Visualization of multidrug resistance in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikse, N.H. [PET Center, University Hospital, Groningen (Netherlands)]|[Department of Internal Medicine, Division of Medical Oncology, University Hospital, Groningen (Netherlands); Franssen, E.J.F. [PET Center, University Hospital, Groningen (Netherlands)]|[Department of Nuclear Medicine, University Hospital, Groningen (Netherlands); Graaf, W.T.A. van der; Vries, E.G.E. de [Department of Internal Medicine, Division of Medical Oncology, University Hospital, Groningen (Netherlands); Vaalburg, W. [PET Center, University Hospital, Groningen (Netherlands)

    1999-03-01

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other {sup 99m}Tc radiopharmaceuticals, such as {sup 99m}Tc-tetrofosmin and several {sup 99}Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [{sup 11}C]colchicine, [{sup 11}C]verapamil and [{sup 11}C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [{sup 11}C]colchicine and [{sup 11}C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[{sup 11}C]acetyl-leukotriene E

  12. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  13. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery

    Directory of Open Access Journals (Sweden)

    H. Solís-Téllez

    2017-04-01

    Conclusions: The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit.

  14. Carriage of multidrug-resistant bacteria among pediatric patients ...

    African Journals Online (AJOL)

    Carriage of multidrug-resistant bacteria among pediatric patients before and during their hospitalization in a tertiary pediatric unit in Tunisia. ... carbapenemase-producing Enterobacteriaceae (CPE), multiresistant Pseudomonas aeruginosa and multiresistant Acinetobacter baumannii) pose a threat to healthcare Worldwide.

  15. ABC transporters and multidrug resistance in Aspergillus nidulans

    NARCIS (Netherlands)

    Andrade, A.C.

    2000-01-01

    The term multidrug resistance (MDR) stands for simultaneous cellular resistance to chemically unrelated toxicants and is often associated with overproduction of multidrug-efflux proteins of the A TP- b inding-

  16. Susceptibility of Selected Multi-Drug Resistant Clinical Isolates to ...

    African Journals Online (AJOL)

    2018-03-01

    . ... multi-drug resistance. INTRODUCTION. Antimicrobials are great resorts in the treatment of bacterial infectious diseases (1). However, over the past few decades, these ..... of carbapenem-resistant Enterobacteriaceae from.

  17. Unusual Complication of Multidrug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2017-01-01

    Full Text Available Introduction. Capreomycin is a second-line drug often used for multidrug-resistant tuberculosis which can result in nephrotoxic effects similar to other aminoglycosides. We describe a case of capreomycin induced Bartter-like syndrome with hypocalcemic tetany. Case Report. 23-year-old female patient presented with carpopedal spasms and tingling sensations in hands. Patient was being treated with capreomycin for two months for tuberculosis. On further investigation, hypocalcemia, hyponatremia, hypomagnesemia, hypokalemia, and hypochloremic metabolic alkalosis were noted. Vitamin D and serum PTH levels were within normal limits. Hypercalciuria was confirmed by urine calcium/creatinine ratio. Calcium, potassium, and magnesium supplementation was given and capreomycin was discontinued. Electrolytes normalized in two days after cessation of capreomycin with no further abnormalities on repeat investigations. Discussion. Aminoglycosides can result in renal tubular dysfunction leading to Fanconi syndrome, Bartter syndrome, and distal tubular acidosis. Impaired mitochondrial function in the tubular cells has been hypothesized as the possible cause of these tubulopathies. Acquired Bartter-like syndrome phenotypically resembles autosomal dominant type 5 Bartter syndrome. Treatment consists of correction of electrolyte abnormalities, indomethacin, and potassium-sparing diuretics. Prompt diagnosis and treatment of severe dyselectrolytemia are warranted in patients on aminoglycoside therapy.

  18. Multidrug-resistant typhoid fever: a review.

    Science.gov (United States)

    Zaki, Syed Ahmed; Karande, Sunil

    2011-05-28

    Multidrug-resistant typhoid fever (MDRTF) is defined as typhoid fever caused by Salmonella enterica serovar Typhi strains (S. Typhi), which are resistant to the first-line recommended drugs for treatment such as chloramphenicol, ampicillin and trimethoprim-sulfamethoxazole. Since the mid-1980s, MDRTF has caused outbreaks in several countries in the developing world, resulting in increased morbidity and mortality, especially in affected children below five years of age and those who are malnourished. Two methods were used to gather the information presented in this article. First PubMed was searched for English language references to published relevant articles. Secondly, chapters on typhoid fever in standard textbooks of paediatric infectious diseases and preventive and social medicine were reviewed. Although there are no pathognomonic clinical features of MDRTF at the onset of the illness, high fever ( > 104°F), toxaemia, abdominal distension, abdominal tenderness, hepatomegaly and splenomegaly are often reported. The gold standard for the diagnosis of MDRTF is bacterial isolation of the organism in blood cultures. Ciprofloxacin and ceftriaxone are the drugs most commonly used for treatment of MDRTF and produce good clinical results. MDRTF remains a major public health problem, particularly in developing countries. Mass immunization in endemic areas with either the oral live attenuated Typhi 21a or the injectable unconjugated Vi typhoid vaccine, rational use of antibiotics, improvement in public sanitation facilities, availability of clean drinking water, promotion of safe food handling practices and public health education are vital in the prevention of MDRTF.

  19. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  20. Selective conditions for a multidrug resistance plasmid depend on the sociality of antibiotic resistance"

    OpenAIRE

    Bottery, Michael; Wood, A. Jamie; Brockhurst, Michael

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug ...

  1. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  2. Relationship Between Substance Abuse and Multidrug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Sadya Afroz

    2012-07-01

    Full Text Available This case control study was conducted between January to June 2010 to determine the relationship between substance abuse and multidrug- resistant tuberculosis. A total of 73 cases were selected purposively, from culture- positive multidrug- resistant tuberculosis patients admitted in the National Institute of Diseases of the Chest and Hospital, Dhaka and compared with 81 un-matched controls, recruited from the cured patients of pulmonary tuberculosis who attended several DOTS centers of ‘Nagar Shastho Kendra’ under Urban Primary Health Care Project in Dhaka city. Data were collected by face to face interview and documents’ review, using a pre- tested structured questionnaire and a checklist. Multidrug- resistance was found to be associated with smoking status (χ2 = 11.76; p = 0.01 and panmasala use (χ2 = 8.28; p = 0.004. The study also revealed that alcohol consumption and other substance abuse such as jarda, sadapata, gul, snuff, heroine, cannabis, injectable drugs was not associated with the development of multidrug- resistant tuberculosis. Relationship between substance abuse and multidrug- resistant tuberculosis are more or less similar in the developing countries. Bangladesh is not out of this trend. The present study revealed the same fact, which warrants actions targeting specific factors. Further study is recommended to assess the magnitude and these factors related to the development of multidrug- resistant tuberculosis in different settings in our country. Ibrahim Med. Coll. J. 2012; 6(2: 50-54

  3. Management of multidrug resistant bacterial endemic.

    Science.gov (United States)

    Zahar, J-R; Lesprit, P

    2014-09-01

    The fight against multi-drug resistant Gram-negative bacilli (MDRGNB), especially extended-spectrum β-lactamase producing Enterobacteriaceae, is about to be lost in our country. The emergence of new resistance mechanisms to carbapenems in these Enterobacteriaceae exposes patients to a risk of treatment failure without any other therapeutic options. This dramatic situation is paradoxical because we are well aware of the 2 major factors responsible for this situation: 1) MDRO cross-transmission, associated with a low compliance to standard precautions, especially hand hygiene, and 2) overexposure of patients to antibiotics. The implementation of a "search and isolate" policy, which was justified to control the spread of some MDRO that remained rare in the country, was not associated with a better adherence to standard precautions. The antibiotic policy and the measures implemented to control antibiotic consumptions have rarely been enforced and have shown inconsistent results. Notably, no significant decrease of antibiotic consumption has been observed. There is no excuse for these poor results, because some authors evaluating the effectiveness of programs for the control of MDRO have reported their positive effects on antimicrobial resistance without any detrimental effects. It is now urgent to deal with the 2 major factors by establishing an educational and persuasive program with quantified and opposable objectives. Firstly, we have to improve the observance of hand hygiene above 70%. Secondly, we have to define and reach a target for the reduction of antibiotic consumption both in community and in hospital settings. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    Directory of Open Access Journals (Sweden)

    Silpi Basak

    2016-01-01

    Full Text Available Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR, extensively drug-resistant (XDR, and pandrug-resistant (PDR bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1% bacterial strains were MDR, 146 (13.8% strains were XDR, and no PDR was isolated. All (100% Gram negative bacterial strains were sensitive to colistin whereas all (100% Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance.

  5. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2001-01-01

    activity was neither stimulated by vinblastine nor VER. CONCLUSION: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was characterized by increased expression of Mrp1 mRNA, Mrp1, and PGP but decreased expression of mdr1a + b mRNA. The influence of irradiation...

  6. Increasing Incidence of Multidrug Resistance Among Cystic Fibrosis Respiratory Bacterial Isolates.

    Science.gov (United States)

    Rutter, W Cliff; Burgess, Donna R; Burgess, David S

    2017-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are common pathogens in cystic fibrosis (CF) patients with increasing multidrug resistance (MDR). This study characterized antimicrobial susceptibility trends among organisms isolated from the respiratory tract of CF patients. Microbiological culture and sensitivity results for all CF patients were collected from January 2010 through December 2014. Minimum inhibitory concentrations were obtained using Phoenix ® and Etest ® methods. Clinical and Laboratory Standards Institute guidelines were used to remove duplicate isolates and develop antimicrobial susceptibility reports. MDR was defined as resistance to one agent in three or more antibiotic classes or oxacillin resistance in S. aureus. Overall, 542 bacterial isolates from 376 cultures were analyzed for trends. P. aeruginosa (41%), S. aureus (40%), and Stenotrophomonas maltophilia (8%) were the most commonly isolated organisms. Multidrug-resistant organism isolation increased from 39% to 49% (r = 0.76, p = 0.13), while representing 47.6% of all isolates. Multidrug-resistant P. aeruginosa incidence increased each year from 26% to 43% (r = 0.89, p = 0.046), while P. aeruginosa isolation decreased from 47% to 38% over the study period (r = -0.93, p = 0.02). MRSA accounted for 62.6% of all S. aureus isolated, while overall multidrug-resistant S. aureus incidence was 73.1% in all cultures. MDR among common pathogens in CF continues to increase. Empiric therapy for CF exacerbations should be targeted to previous antimicrobial susceptibility, and P. aeruginosa and S. aureus should be empirically covered.

  7. Multidrug resistance among new tuberculosis cases: detecting local variation through lot quality-assurance sampling.

    Science.gov (United States)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-03-01

    Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored 3 classification systems- two-way static, three-way static, and three-way truncated sequential sampling-at 2 sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired.

  8. Multi-drug resistant uropathogenic Escherichia coli and its treatment by Chinese medicine.

    Science.gov (United States)

    Liu, Shi-Wei; Xu, Xiao-Yang; Xu, Jie; Yuan, Jiu-Yun; Wu, Wei-Kang; Zhang, Ning; Chen, Ze-Liang

    2017-10-01

    To investigate the resistance and virulence profiles of uropathogenic Escherichia coli (UPEC) and its treatment by Chinese medicine (CM) Fuzheng Qingre Lishi Formula (, FQLF). UPEC strains were isolated from recurrent urinary tract infections (UTIs) patients. Patient sensitivities to 17 antibiotics were tested by the disk diffusion method. Virulence genes were screened by plolymerase chain reaction. A mouse model was constructed using a multi-drug resistant and virulent UPEC strain and treated with FQLF or the antibiotic imipenem. The treatment efficacy was evaluated by bacterial clearance from urine and the urinary organs. A total of 90 UPEC strains were collected, and 94.4% of the isolates were resistant to at least 1 antibiotic. Approximately 66.7% of the UPEC strains were multi-drug resistant. More than one virulence gene was found in 85.6% of the isolates. The extended-spectrum β-lactamases (ESBL)-positive strains were more resistant than the negative ones. The virulence gene number was positively correlated with the resistance number (PUPEC10. Treatment with either FQLF or antibiotics significantly cleared bacteria from the mouse urine after 14 days. In the untreated control, the bacteria lasted for 28 days. FQLF treatment of the UTI mouse model greatly reduced the bacterial number in the kidney and bladder, but could not completely clear the bacteria. Multi-drug resistance is common among UPEC isolates, and the resistance is positively related with virulence. FQLF could treat UPEC UTIs, but could not completely clear the bacteria from the host.

  9. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  10. Multidrug Resistant Salmonella typhi in Asymptomatic Typhoid Carriers among Food Handlers in Namakkal District, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Senthilkumar B

    2005-01-01

    Full Text Available Purpose: to screen Salmonella typhi in asymptomatic typhoid carriers and to find out drug resistance and ability of the strains to transmit drug resistance to other bacteria. Methods: Cultural characters, biochemical tests, antibiotic sensitivity test (disc diffusion, agarose gel electrophoresis, and conjugation protocols were done. Thirty five stool samples were collected from the suspected food handlers for the study. Results: Among 35 samples, (17.14% yielded a positive result. Out of these 4 (20.0% were women and 2 (13.33% were men. The isolates were tested with a number of conventional antibiotics viz, amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, co-trimaxazole, rifampicin, gentamicin, nalidixic acid, ofloxacin and tetracycline. Five isolates were having the multidrug resistant character. Four (66.66% multidrug resistant isolates were found to have plasmids, while one (16.66% multidrug resistant isolate had no plasmid and the chromosome encoded the resistance. Only one strain (16.66% showed single antibiotic resistance in the study and had no plasmid DNA. The molecular weights of the plasmids were determined and found to be 120 kb.The mechanism of spreading of drug resistance through conjugation process was analyzed. In the conjugation studies, the isolates having R+ factor showed the transfer of drug resistance through conjugation, which was determined by the development of antibiotic resistance in the recipients. Conclusion: This study shows that drug resistant strains are able to transfer genes encoding drug resistance.

  11. Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Klebson Silva Santos

    2016-09-01

    Full Text Available Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10−3 mol·L−1 into a fermentative medium of Xanthomonas spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS. The antibacterial activity of the nanomaterial against Escherichia coli (ATCC 22652, Enterococcus faecalis (ATCC 29282, Pseudomonas aeruginosa (ATCC 27853 and Staphylococcus aureus (ATCC 25923 was carried out using 500 mg of silver nanocomposite. Pseudomonas aeruginosa and Acinetobacter baumannii multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii, and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10–12.9 mm of inhibition zone. The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.

  12. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  13. The secondary resistome of multidrug-resistant Klebsiella pneumoniae

    DEFF Research Database (Denmark)

    Jana, Bimal; Cain, Amy K.; Doerrler, William T.

    2017-01-01

    for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5......Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential...

  14. Molecular Analysis of Multi-Drug Resistance (MDR) in ...

    African Journals Online (AJOL)

    The recent emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis has become an area of great concern. This occurs as a result of inadequate treatment management of tuberculosis which provides a selective pressure that favours the emergence of resistant mutants with enhanced infectiousness.

  15. Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients

    NARCIS (Netherlands)

    Bolhuis, Mathieu S.; van Altena, Richard; van Soolingen, Dick; de Lange, Wiel C. M.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2013-01-01

    The use of linezolid for the treatment of multidrug-resistant tuberculosis is limited by dose-and time-dependent toxicity. Recently, we reported a case of pharmacokinetic drug drug interaction between linezolid and clarithromycin that resulted in increased linezolid exposure. The aim of this

  16. Risk factors for multidrug resistant tuberculosis patients in Amhara ...

    African Journals Online (AJOL)

    Background: Multidrug resistant tuberculosis(MDR-TB) is becoming a major threat to tuberculosis control programs in Ethiopia. Objectives: To determine risk factors of MDR-TB patients in Amhara National Regional State, Ethiopia. Methods: Case-control study was conducted from May 2013 to January 2014. Resistance to ...

  17. Multidrug-resistant tuberculosis and migration to Europe

    DEFF Research Database (Denmark)

    Hargreaves, S.; Lönnroth, K.; Nellums, L. B.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB) in low-incidence countries in Europe is more prevalent among migrants than the native population. The impact of the recent increase in migration to EU and EEA countries with a low incidence of TB (

  18. Risk factors associated with multidrug resistant tuberculosis among ...

    African Journals Online (AJOL)

    Background: Multidrug resistant tuberculosis (MDR-TB) remains is an important public health problem in developing world. We conducted this study to determine risk factors associated with MDR-TB and drug susceptibility pattern to second line drug among MDR TB patients in Tanzania. Methods: Unmatched case control ...

  19. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...

  20. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis (MDR-TB) treated with second generation ...

  1. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis. (MDR-TB) treated with second ...

  2. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  3. Infection by multidrug-resistant Elizabethkingia meningoseptica: case reports

    Directory of Open Access Journals (Sweden)

    Jailton Lobo da Costa Lima

    2014-12-01

    Full Text Available We report two cases of sepsis in critically ill patients in two tertiary care hospitals in Recife-PE, Brazil. The first case is an 87-year-old patient with chronic myeloid leukemia and sepsis; and the second case is a 93-year-old patient with prostate cancer and septic shock caused by multidrug-resistant (MDR Elizabethkingia meningoseptica.

  4. Multi-Drug Resistance 1 Genetic Polymorphisms Gene Expression ...

    African Journals Online (AJOL)

    Although anthracycline-based chemotherapy is a crucial treatment for breast cancer, its outcome is limited by the multidrug resistance MDR. Overexpression of P-glycoprotein (Pgp), a transmembrane active efflux transporter of various drugs and carcinogenic substrate, may result in MDR. The impact of MDR1 ...

  5. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  6. Carriage and transmission dynamics of multidrug-resistant Enterobacteriaceae

    NARCIS (Netherlands)

    Haverkate, M.R.

    2015-01-01

    Antimicrobial-resistant bacteria cause big problems in health care. Infections with these bacteria are hard to treat and lead to high morbidity, mortality, and costs. In this PhD thesis, carriage and transmission dynamics of multidrug-resistant Enterobacteriaceae have been investigated in various

  7. Multidrug-resistant hepatocellular carcinoma cells are enriched for ...

    African Journals Online (AJOL)

    Chemotherapy is a main treatment for cancer, while multidrug-resistance is the main reason for chemotherapy failure, and tumor relapse and metastasis. Cancer stem cells or cancer stem-like cells (CSCs) are a small subset of cancer cells, which may be inherently resistant to the cytotoxic effect of chemotherapy.

  8. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    -lactamase-producing Escherichia coli was assessed by testing an array comprising different types of cationic peptidomimetics obtained by a general monomer-based solid-phase synthesis protocol. Most of the peptidomimetics possessed high to moderate activity toward multidrug-resistant E. coli as opposed to the corresponding...

  9. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  10. The screening of multi-drug resistance (MDR) susceptibilities of ...

    African Journals Online (AJOL)

    The screening of multi-drug resistance (MDR) susceptibilities of Staphylococcus aureus and Staphylococcus epidermidis to methicillin and vancomycin in teaching hospitals in Nigeria. ... The antibiotics susceptibility patterns were determined both by overnight broth-micro-dilution and agar disk diffusion methods. Results: ...

  11. Carriage of multidrug-resistant bacteria among pediatric patients ...

    African Journals Online (AJOL)

    Miniar Tfifha

    2017-12-25

    Dec 25, 2017 ... To cite this article: Miniar Tfifha, Asma Ferjani, Manel Mallouli, Nesrine Mlika, Saoussen Abroug &. Jalel Boukadida (2018) Carriage of multidrug-resistant bacteria among pediatric patients before and during their hospitalization in a tertiary pediatric unit in Tunisia, Libyan Journal of Medicine, 13:1,. 1419047 ...

  12. Detection of Multidrug Resistant Tuberculosis (MDR-TB) among ...

    African Journals Online (AJOL)

    A.I. Aminu, A.D. Tukur. Abstract. The Emergence of drug-resistant Mycobacterium tuberculosis strains especially multidrug resistant-TB (MDR-TB) and indeed extensively drug resistant TB (XDR-TB) is considered a real threat to achieving TB control. Thus, the WHO identified the need for accelerated access to rapid testing ...

  13. High incidence of multidrug-resistant strains of methicill inresistant ...

    African Journals Online (AJOL)

    Infections of methicillin-resistant Staphylococcus aureus (MRSA) are becoming an increasingly concerning clinical problem. The aim of this study was to assess the development of multidrug resistant strains of MRSA from clinical samples andpossibilities for reducing resistance. This study included a total of seventy-five (75) ...

  14. Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry.

    Science.gov (United States)

    Waters, Andrew E; Contente-Cuomo, Tania; Buchhagen, Jordan; Liu, Cindy M; Watson, Lindsey; Pearce, Kimberly; Foster, Jeffrey T; Bowers, Jolene; Driebe, Elizabeth M; Engelthaler, David M; Keim, Paul S; Price, Lance B

    2011-05-01

    We characterized the prevalence, antibiotic susceptibility profiles, and genotypes of Staphylococcus aureus among US meat and poultry samples (n = 136). S. aureus contaminated 47% of samples, and multidrug resistance was common among isolates (52%). S. aureus genotypes and resistance profiles differed significantly among sample types, suggesting food animal-specific contamination.

  15. Adverse effects profile of multidrug-resistant tuberculosis treatment ...

    African Journals Online (AJOL)

    In this study population, 72.6% of patients were HIV positive, and 85% were concomitantly on HAART and multidrug-resistant tuberculosis treatment. Adverse events were significantly more common in patients who were HIV positive than in patients who were HIV negative with regard to peripheral neuropathy (p-value ...

  16. Multidrug resistant to extensively drug resistant tuberculosis: What is ...

    Indian Academy of Sciences (India)

    Prakash

    reported figure, because the annual risk of tuberculosis and prevalence of acquired multi-drug resistant tuberculosis and tuberculosis with HIV is increasing in India (Narain and Lo 2004). One case of XDR- TB is recently reported from Tuberculosis Research Center, Chennai (Thomas et al. 2007). 7. XDR-TB with HIV/AIDS.

  17. Effect of biocides on biofilms of some multidrug resistant clinical ...

    African Journals Online (AJOL)

    The ability of Escherichia coli and Klebsiella aerogenes to form biofilms was most affected. There was little inhibition of biofilm formation by the biocides on Staphylococcus aureus. This study has shown a relationship between biocide and multidrug resistance. Keywords: Biocides, Multi drug resistance, sodium hypochlorite, ...

  18. Overcoming cellular multidrug resistance using classical nanomedicine formulations

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Blauz, A.; Möckel, D.; Theek, B.; Kiessling, F.; Etrych, Tomáš; Ulbrich, K.; van Bloois, L.; Storm, G.; Bartosz, G.; Rychlik, B.; Lammers, T.

    2012-01-01

    Roč. 45, č. 4 (2012), s. 421-428 ISSN 0928-0987 R&D Projects: GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : cancer * nanomedicine * multidrug resistance Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.987, year: 2012

  19. Prevalensi dan Pola Sensitivitas Antimikroba Multidrug Resistant Pseudomonas aeruginosa di RSUD Arifin Achmad

    Directory of Open Access Journals (Sweden)

    Dewi Anggraini

    2018-03-01

    Prevalence and Antimicrobial Susceptibility Profile of Multidrug Resistant Pseudomonas aeruginosa in Arifin Achmad General Hospital Antimicrobial resistance is one of major public health problems since the era of antimicrobial discovery, inclusing multidrug resistant (MDR P. aeruginosa. The prevalence of this resistance  is increasing in different parts of the world, leading to the difficulties in dealing with this bacteria. The aim of this descriptive retrospective study was to determine the prevalence of MDR P. aeruginosa and its susceptibility profile. Data were collected from the bacteria cultures and antibiotic susceptibility test results from various clinical specimens in Arifin Achmad General Hospital throughout 2015. The test was performed in VITEK 2 Compact. MDR P. aeruginosa is defined as P. aeruginosa which is not sensitive to three or more following antibiotics: meropenem or imipenem, ciprofloxacin, gentamicin or amikacin, ceftazidime or cefepime, and piperacilin/tazobactam. The prevalence of MDR P. aeruginosa was 45.5%. The isolates of MDR P. aeruginosa was mostly derived from pus and sputum specimens from the surgical ward and intensive care unit. .  The most sensitive antibiotics was amikacin (76.9% followed by piperacilin/tazobactam (57.2%, meropenem (57.0%, gentamicin (54.5%, cefepime (53.7%, ceftazidime (49.6%, ciprofloxacin (48.8%, and aztreonam (35.5%. Antibiotic sensitivity in MDR P. aeruginosa was much lower than in P. aeruginosa. This study shows a high prevalence of MDR P. aeruginosa, especially in Pekanbaru. This susceptibility profile can serve as a guideline for the selection of appropriate antibiotics for infections caused by P. aeruginosa. Key words: Antibiotic susceptibility, multidrug resistant, Pekanbaru, pseudomonas aeruginosa

  20. In Vitro activity of novel glycopolymer against clinical isolates of multidrug-resistant Staphylococcus aureus.

    Science.gov (United States)

    Narayanaswamy, Vidya P; Giatpaiboon, Scott A; Uhrig, John; Orwin, Paul; Wiesmann, William; Baker, Shenda M; Townsend, Stacy M

    2018-01-01

    The incidence of multidrug-resistant (MDR) organisms, including methicillin-resistant Staphylococcus aureus (MRSA), is a serious threat to public health. Progress in developing new therapeutics is being outpaced by antibiotic resistance development, and alternative agents that rapidly permeabilize bacteria hold tremendous potential for treating MDR infections. A new class of glycopolymers includes polycationic poly-N (acetyl, arginyl) glucosamine (PAAG) is under development as an alternative to traditional antibiotic strategies to treat MRSA infections. This study demonstrates the antibacterial activity of PAAG against clinical isolates of methicillin and mupirocin-resistant Staphylococcus aureus. Multidrug-resistant S. aureus was rapidly killed by PAAG, which completely eradicated 88% (15/17) of all tested strains (6-log reduction in CFU) in ≤ 12-hours at doses that are non-toxic to mammalian cells. PAAG also sensitized all the clinical MRSA strains (17/17) to oxacillin as demonstrated by the observed reduction in the oxacillin MIC to below the antibiotic resistance breakpoint. The effect of PAAG and standard antibiotics including vancomycin, oxacillin, mupirocin and bacitracin on MRSA permeability was studied by measuring propidium iodide (PI) uptake by bacterial cells. Antimicrobial resistance studies showed that S. aureus developed resistance to PAAG at a rate slower than to mupirocin but similar to bacitracin. PAAG was observed to resensitize drug-resistant S. aureus strains sampled from passage 13 and 20 of the multi-passage resistance study, reducing MICs of mupirocin and bacitracin below their clinical sensitivity breakpoints. This class of bacterial permeabilizing glycopolymers may provide a new tool in the battle against multidrug-resistant bacteria.

  1. The diarylquinoline TMC207 for multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin; Patientia, Ramonde; Rustomjee, Roxana; Page-Shipp, Liesl; Pistorius, Christoffel; Krause, Rene; Bogoshi, Mampedi; Churchyard, Gavin; Venter, Amour; Allen, Jenny; Palomino, Juan Carlos; de Marez, Tine; van Heeswijk, Rolf P. G.; Lounis, Nacer; Meyvisch, Paul; Verbeeck, Johan; Parys, Wim; de Beule, Karel; Andries, Koen; Mc Neeley, David F.

    2009-01-01

    BACKGROUND: The diarylquinoline TMC207 offers a new mechanism of antituberculosis action by inhibiting mycobacterial ATP synthase. TMC207 potently inhibits drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro and shows bactericidal activity in patients who have drug-susceptible

  2. [Multi-drug resistant tuberculosis and the red queen - diagnosis speed is crucial].

    Science.gov (United States)

    Costeira, João; Pina, Jaime

    2007-01-01

    The multi-drug resistant Tuberculosis (MDRTB) is a huge menace to Tuberculosis control. The early detection of MDRTB is essential to best appropriate measures. The detection methods for drug resistance based in evaluation of the genetic determinants (genotypic methods), instead of phenotypic methods, allows for faster results, the possibility of direct application in clinical samples and simultaneous identification of Mycobacterium tuberculosis complex. The inpatients data analysis in the "Serviço de Pneumologia 2 do Hospital Pulido Valente", showed a high prevalence of MDRTB (10.3%). In 34.1% of the MDRTB patients the multi-drug resistance was not been identified, with a mortality ratio in this cases of 31% versus 18.4% in the subset of patients with resistance previously identified. Moreover the mortality ratio was worst in MDRTB/AIDS patients with 50% versus 15%, respectively. Targeting for rapid drug resistance detection, in hospitalized patients at "Serviço de Pneumologia 2 do Hospital Pulido Valente", the test INNO-LIPA Rif.TB, to identify the rifampicin resistance as a marker of multi-drug resistance, was evaluated. The test was performed in 113 samples and had a high ratio of sensitivity (91.6%), specificity (98%), positive predictive value (84, 6%) and negative predictive value (99%). Time to obtain the results was 7.6 days for the genotypic test versus 23.4 days to the phenotypic test (BACTEC MGIT 960). The INNO-LIPA Rif.TB test is, now, performed in every patient with smear-positive Tuberculosis with no previous knows resistance profile, with good outcome. Rev

  3. Multidrug resistance in cancer: its mechanism and its modulation.

    Science.gov (United States)

    Pauwels, Ernest K J; Erba, Paula; Mariani, Giuliano; Gomes, Célia M F

    2007-01-01

    One of the major problems related with the curative treatment of cancer patients is resistance against anticancer drugs. This resistance, which may occur from the beginning or is evident only later as an acquired phenomenon, is due to the action of drug transporters. These transmembrane proteins belong to the ATP-binding cassette (ABC) transporters which reduce bioavailability of drugs, but also determine the elimination of xenobiotics into bile, urine and feces. The present review summarizes recent knowledge in this area, highlighting the mechanism of action of these transporters, its clinical significance and its possible modulation. Novel approaches to overcome multidrug resistance include agents which inhibit or circumvent this efflux mechanism. For the latter category developments in nanomedicine may be of consequence. However, in spite of considerable progress in research regarding multidrug resistance, the phase of efficacious clinical use of this knowledge has not been reached yet. (c) 2007 Prous Science. All rights reserved.

  4. Multidrug-resistant Fusarium keratitis: diagnosis and treatment considerations.

    Science.gov (United States)

    Sara, Sergio; Sharpe, Kendall; Morris, Sharon

    2016-08-03

    Mycotic keratitis is an ocular infective process derived from any fungal species capable of corneal invasion. Despite its rarity in developed countries, its challenging and elusive diagnosis may result in keratoplasty or enucleation following failed medical management. Filamentous fungi such as Fusarium are often implicated in mycotic keratitis. Bearing greater morbidity than its bacterial counterpart, mycotic keratitis requires early clinical suspicion and initiation of antifungal therapy to prevent devastating consequences. We describe a case of multidrug-resistant mycotic keratitis in a 46-year-old man who continued to decline despite maximal therapy and therapeutic keratoplasty. Finally, enucleation was performed as a means of source control preventing dissemination of a likely untreatable fungal infection into the orbit. Multidrug-resistant Fusarium is rare, and may progress to endophthalmitis. We discuss potential management options which may enhance diagnosis and outcome in this condition. 2016 BMJ Publishing Group Ltd.

  5. Multidrug resistant shigella flexneri infection simulating intestinal intussusception

    OpenAIRE

    Srirangaraj Sreenivasan; Arunava Kali; Jothimani Pradeep

    2016-01-01

    Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, w...

  6. Heteroresistance to Colistin in Multidrug-Resistant Acinetobacter baumannii

    OpenAIRE

    Li, Jian; Rayner, Craig R.; Nation, Roger L.; Owen, Roxanne J.; Spelman, Denis; Tan, Kar Eng; Liolios, Lisa

    2006-01-01

    Multidrug-resistant Acinetobacter baumannii has emerged as a significant clinical problem worldwide and colistin is being used increasingly as “salvage” therapy. MICs of colistin against A. baumannii indicate its significant activity. However, resistance to colistin in A. baumannii has been reported recently. Clonotypes of 16 clinical A. baumannii isolates and ATCC 19606 were determined by pulsed-field gel electrophoresis (PFGE), and colistin MICs were measured. The time-kill kinetics of coli...

  7. Candida auris: An emerging multidrug-resistant pathogen

    Directory of Open Access Journals (Sweden)

    David Sears

    2017-10-01

    Full Text Available Candida aurisis an emerging multidrug-resistant pathogen that can be difficult to identify using traditional biochemical methods. C. auris is capable of causing invasive fungal infections, particularly among hospitalized patients with significant medical comorbidities. Echinocandins are the empiric drugs of choice for C. auris, although not all isolates are susceptible and resistance may develop on therapy. Nosocomial C. auris outbreaks have been reported in a number of countries and aggressive infection control measures are paramount to stopping transmission.

  8. Multidrug-Resistant Tuberculosis: Treatment and Outcomes of 93 Patients

    Directory of Open Access Journals (Sweden)

    Sarah K Brode

    2015-01-01

    Full Text Available BACKGROUND: Tuberculosis (TB remains a leading cause of death worldwide and the emergence of multidrug-resistant TB (MDR TB poses a threat to its control. There is scanty evidence regarding optimal management of MDR TB. The majority of Canadian cases of MDR TB are diagnosed in Ontario; most are managed by the Tuberculosis Service at West Park Healthcare Centre in Toronto. The authors reviewed 93 cases of MDR TB admitted from January 1, 2000 to December 31, 2011.

  9. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  10. Multidrug resistant shigella flexneri infection simulating intestinal intussusception

    Directory of Open Access Journals (Sweden)

    Srirangaraj Sreenivasan

    2016-01-01

    Full Text Available Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone.

  11. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  12. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment.

    Science.gov (United States)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-08-15

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Directory of Open Access Journals (Sweden)

    Deep Pokharel

    2014-08-01

    Full Text Available Cancer multidrug resistance (MDR occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp, transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS, in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM; and cytoskeleton motor proteins within the MP cargo.

  14. Cutaneous tuberculosis due to multidrug-resistant tubercle bacilli and difficulties in clinical diagnosis

    Directory of Open Access Journals (Sweden)

    V Ramesh

    2015-01-01

    Full Text Available This report describes 6 HIV-negative patients including 5 children with scrofuloderma and an adult with lupus vulgaris, out of a total of 303 cases of cutaneous tuberculosis seen during a 4½-year period, who showed a positive tuberculin test and granulomatous histopathology, but failed to respond to first-line antitubercular therapy. They were suspected to have multidrug-resistant infection as no other cause could be ascertained. Tissue aspirate or biopsy was sent for histopathology and culture. Mycobacterium tuberculosis was isolated from the aspirate in three patients and sputum in one with associated pulmonary tuberculosis. Drug susceptibility tests showed that all isolates were resistant to rifampicin and isoniazid, and one each additionally to streptomycin and ethambutol, respectively. In two, culture was unsuccessful. All were administered second-line antitubercular drugs. Clinical improvement was appreciable within 2 months as weight gain, and regression of ulcers, swellings and plaques. Two completed the recommended 24 months of therapy. Multidrug-resistant cutaneous tuberculosis should be suspected in patients with no response to first-line drugs, with clinical deterioration, and where other causes of treatment failure are not forthcoming. Owing to poor isolation rates on culture and low sensitivity of molecular tests, in such cases, a trial of second-line anti-tubercular drugs may be justified for a reasonable period of 2 months. Where facilities permit, culture and drug sensitivity tests should be done before starting treatment. Culture positivity is better from aspirated material.

  15. Chaperonin GroEL/GroES over-expression promotes multi-drug resistance in E. coli following exposure to aminoglycoside antibiotics

    Directory of Open Access Journals (Sweden)

    Lise eGoltermann

    2016-01-01

    Full Text Available Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antiobiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and overexpression sensitize and promote short-term tolerance, respectively, to this drug class. Here we show that chaperonin GroEL/GroES over-expression accelerates acquisition of aminoglycoside resistance and multi-drug resistance following sub-lethal aminoglycoside antibiotic exposure. Chaperonin buffering could provide a novel mechanism for antibiotic resistance and multi-drug resistance development.

  16. Medicarpin and millepurpan, two flavonoids isolated from Medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia P388 cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; El btaouri, Hassan; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2015-12-01

    High consumption of flavonoids has been associated with a decrease risk of cancer. Alfalfa (Medicago sativa) leaves have been widely used in traditional medicine and is currently used as a dietary supplement because of their high nutrient content. We previously reported the cytotoxic activity of alfalfa leaf extracts against several sensitive and multidrug resistant tumor cell lines. We aimed to determine whether medicarpin and millepurpan, two isoflavonoids isolated from alfalfa leaves, may have pro-apoptotic effects against drug-sensitive (P388) and multidrug resistant P388 leukemia cells (P388/DOX). Cells were incubated with medicarpin or millepurpan for the appropriate time. Cell viability was assessed by the MTT assay. DNA fragmentation was analyzed by agarose gel electrophoresis. Cell cycle analysis was realized by flow cytometry technics. Caspases 3 and 9 activities were measured using Promega caspACE assay kits. Proteins and genes expression were visualized respectively by western-blot using specific antibodies and RT-PCR assay. P-glycoprotein-expressing P388/DOX cells did not show resistance to medicarpin (IC50 ≈ 90 µM for P388 and P388/DOX cells) and millepurpan (IC50 = 54 µM and 69 µM for P388 and P388/DOX cells, respectively). Treatment with medicarpin or millepurpan triggered apoptosis in sensitive as well as multidrug resistant P388 cells. These effects were mediated through the mitochondrial pathway by modifying the balance pro/anti-apoptotic proteins. While 3 µM doxorubicin alone could not induce cell death in P388/DOX cells, concomitant treatment with doxorubicin and subtoxic concentration of medicarpin or millepurpan restored the pro-apoptotic cascade. Each compound increased sensitivity of P388/DOX cells to doxorubicin whereas they had no effect in sensitive P388 cells. Vinblastine cytotoxicity was also enhanced in P388/DOX cells (IC50 = 210 nM to 23 and 25 nM with medicarpin and millepurpan, respectively). This improved

  17. The value of microscopic-observation drug susceptibility assay in the diagnosis of tuberculosis and detection of multidrug resistance.

    Science.gov (United States)

    Sertel Şelale, Denİz; Uzun, Meltem

    2018-01-01

    Inexpensive, rapid, and reliable tests for detecting the presence and drug susceptibility of Mycobacterium tuberculosis complex (MTBC) are urgently needed to control the transmission of tuberculosis. In this study, we aimed to assess the accuracy and speed of the microscopic-observation drug susceptibility (MODS) assay in the identification of MTBC and detection of multidrug resistance. Sputum samples from patients suspected to have tuberculosis were simultaneously tested with MODS and conventional culture [Löwenstein-Jensen (LJ) culture, BACTEC MGIT™ 960 (MGIT) system], and drug susceptibility testing (MGIT system) methods. A total of 331 sputum samples were analyzed. Sensitivity and specificity of MODS assay for detection of MTBC strains were 96% and 98.8%, respectively. MODS assay detected multidrug resistant MTBC isolates with 92.3% sensitivity and 96.6% specificity. Median time to culture positivity was similar for MGIT (8 days) and MODS culture (8 days), but was significantly longer with LJ culture (20 days) (p tuberculosis and detection of multidrug resistance. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  18. Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.

    Science.gov (United States)

    Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J

    2007-11-01

    Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.

  19. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study

    NARCIS (Netherlands)

    Boehme, Catharina C.; Nicol, Mark P.; Nabeta, Pamela; Michael, Joy S.; Gotuzzo, Eduardo; Tahirli, Rasim; Gler, Ma Tarcela; Blakemore, Robert; Worodria, William; Gray, Christen; Huang, Laurence; Caceres, Tatiana; Mehdiyev, Rafail; Raymond, Lawrence; Whitelaw, Andrew; Sagadevan, Kalaiselvan; Alexander, Heather; Albert, Heidi; Cobelens, Frank; Cox, Helen; Alland, David; Perkins, Mark D.

    2011-01-01

    The Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA) can detect tuberculosis and its multidrug-resistant form with very high sensitivity and specificity in controlled studies, but no performance data exist from district and subdistrict health facilities in tuberculosis-endemic countries. We aimed to

  20. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery.

    Science.gov (United States)

    Solís-Téllez, H; Mondragón-Pinzón, E E; Ramírez-Marino, M; Espinoza-López, F R; Domínguez-Sosa, F; Rubio-Suarez, J F; Romero-Morelos, R D

    Surgical site infection is defined as an infection related to the surgical procedure in the area of manipulation occurring within the first 30 postoperative days. The diagnostic criteria include: purulent drainage, isolation of microorganisms, and signs of infection. To describe the epidemiologic characteristics and differences among the types of prophylactic regimens associated with hospital-acquired infections at the general surgery service of a tertiary care hospital. The electronic case records of patients that underwent general surgery at a tertiary care hospital within the time frame of January 1, 2013 and December 31, 2014 were reviewed. A convenience sample of 728 patients was established and divided into the following groups: Group 1: n=728 for the epidemiologic study; Group 2: n=638 for the evaluation of antimicrobial prophylaxis; and Group 3: n=50 for the evaluation of multidrug-resistant bacterial strains in the intensive care unit. The statistical analysis was carried out with the SPSS 19 program, using the Mann-Whitney U test and the chi-square test. A total of 728 procedures were performed (65.9% were elective surgeries). Three hundred twelve of the patients were males and 416 were females. Only 3.98% of the patients complied with the recommended antimicrobial prophylaxis, and multidrug-resistant bacterial strains were found in the intensive care unit. A single prophylactic dose is effective, but adherence to this recommendation was not adequate. The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  1. Multidrug resistant tuberculosis diagnosed by synovial fluid analysis

    Directory of Open Access Journals (Sweden)

    M. van Zeller

    2012-09-01

    Full Text Available Tuberculosis remains a major public health problem worldwide. HIV co-infection is contributing to an increased incidence of the disease, particularly that caused by multidrug resistant strains of Mycobacterium tuberculosis (MT. We describe an HIV-infected patient with pleural and lymph node tuberculosis diagnosed by pleural effusion characteristics and biopsy specimens, without MT identification, that further presented with knee-joint involvement. Arthrocentesis allowed MT isolation and drug susceptibility testing, resulting in a diagnosis of multidrug-resistant tuberculosis and an appropriate treatment regimen.MT identification and drug susceptibility tests are very important, especially for HIV co-infected patients. Resumo: A tuberculose constitui um importante problema de saúde pública mundial. A co-infecção pelo HIV contribui para o aumento da incidência da doença e em particular a causada por estirpes de Mycobacterium tuberculosis (MT multirresistentes. Os autores descrevem um doente HIV-positivo com tuberculose pleural e ganglionar diagnosticada pelas características bioquímicas do líquido pleural e resultados anatomo-patológicos de biopsias mas sem identificação do agente, que posteriormente apresentou envolvimento do joelho. A artrocentese do joelho permitiu o isolamento do MT e a realização de teste de sensibilidade possibilitando o diagnóstico de tuberculose multirresistente e a instituição de um esquema terapêutico adequado.A identificação do MT e a realização de testes de sensibilidade são muito importantes, especialmente em doentes com co-infecção por HIV. Keywords: Multidrug resistant tuberculosis, Drug susceptibility test, HIV, Palavras-chave: Tuberculose multirresistente, Teste de sensibilidade aos antimicrobiana, Infecção VIH

  2. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  3. A Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes

    Directory of Open Access Journals (Sweden)

    Kuan-Hsun Wu

    2012-01-01

    Full Text Available Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed that the expression of the fimbrial subunit gene fimA, and fimZ, a regulatory gene of fimA, were both increased in the stbC mutant when grown on LB agar; fimW, a repressor gene of fimA, exhibited lower expression. Flagella were observed in the stbC mutant and this phenotype was correlated with the motile phenotype. Microarray data and RT-PCR indicated that the expression of three genes, motA, motB, and cheM, was enhanced in the stbC mutant. The stbC mutant was resistant to several antibiotics, consistent with the finding that expression of yhcQ and ramA was enhanced. A complementation test revealed that transforming a recombinant plasmid possessing the stbC restored the mannose-sensitive agglutination phenotype to the stbC mutant much as that in the parental Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, indicating the possibility of an interplay of different fimbrial systems in coordinating their expression.

  4. Multidrug-resistant tuberculosis in Europe, 2010-2011

    DEFF Research Database (Denmark)

    Günther, Gunar; van Leth, Frank; Alexandru, Sofia

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients...... with non-MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010-2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were...

  5. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    Directory of Open Access Journals (Sweden)

    Tomohiro Nabekura

    2010-05-01

    Full Text Available Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (--epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized.

  6. Functional imaging of the multidrug resistance in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    2001-07-01

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. {sup 99m}Tc-sestaMIBI and other {sup 99m}Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with {sup 11}C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-{sup (11}C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo.

  7. Antibiotic dosing for multidrug-resistant pathogen pneumonia.

    Science.gov (United States)

    Abdul-Aziz, Mohd H; Lipman, Jeffrey; Roberts, Jason A

    2017-04-01

    Nosocomial pneumonia caused by multidrug-resistant pathogens is increasing in the ICU, and these infections are negatively associated with patient outcomes. Optimization of antibiotic dosing has been suggested as a key intervention to improve clinical outcomes in patients with nosocomial pneumonia. This review describes the recent pharmacokinetic/pharmacodynamic data relevant to antibiotic dosing for nosocomial pneumonia caused by multidrug-resistant pathogens. Optimal antibiotic treatment is challenging in critically ill patients with nosocomial pneumonia; most dosing guidelines do not consider the altered physiology and illness severity associated with severe lung infections. Antibiotic dosing can be guided by plasma drug concentrations, which do not reflect the concentrations at the site of infection. The application of aggressive dosing regimens, in accordance to the antibiotic's pharmacokinetic/pharmacodynamic characteristics, may be required to ensure rapid and effective drug exposure in infected lung tissues. Conventional antibiotic dosing increases the likelihood of therapeutic failure in critically ill patients with nosocomial pneumonia. Alternative dosing strategies, which exploit the pharmacokinetic/pharmacodynamic properties of an antibiotic, should be strongly considered to ensure optimal antibiotic exposure and better therapeutic outcomes in these patients.

  8. Pediatric multidrug-resistant tuberculosis clinical trials: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    S.E. McAnaw

    2017-03-01

    Full Text Available On June 17, 2016, RESIST-TB, IMPAACT, Vital Strategies, and New Ventures jointly hosted the Pediatric Multidrug Resistant Tuberculosis Clinical Trials Landscape Meeting in Arlington, Virginia, USA. The meeting provided updates on current multidrug-resistant tuberculosis (MDR-TB trials targeting pediatric populations and adult trials that have included pediatric patients. A series of presentations were given that discussed site capacity needs, community engagement, and additional interventions necessary for clinical trials to improve the treatment of pediatric MDR-TB. This article presents a summary of topics discussed, including the following: current trials ongoing and planned; the global burden of MDR-TB in children; current regimens for MDR-TB treatment in children; pharmacokinetics of second-line anti-tuberculosis medications in children; design, sample size, and statistical considerations for MDR-TB trials in children; selection of study population, design, and treatment arms for a trial of novel pediatric MDR-TB regimens; practical aspects of pediatric MDR-TB treatment trials; and strategies for integrating children into adult tuberculosis trials. These discussions elucidated barriers to pediatric MDR-TB clinical trials and provided insight into necessary next steps for progress in this field. Investigators and funding agencies need to respond to these recommendations so that important studies can be implemented, leading to improved treatment for children with MDR-TB.

  9. Previous treatment, sputum-smear nonconversion, and suburban living: The risk factors of multidrug-resistant tuberculosis among Malaysians.

    Science.gov (United States)

    Mohd Shariff, Noorsuzana; Shah, Shamsul Azhar; Kamaludin, Fadzilah

    2016-03-01

    The number of multidrug-resistant tuberculosis patients is increasing each year in many countries all around the globe. Malaysia has no exception in facing this burdensome health problem. We aimed to investigate the factors that contribute to the occurrence of multidrug-resistant tuberculosis among Malaysian tuberculosis patients. An unmatched case-control study was conducted among tuberculosis patients who received antituberculosis treatments from April 2013 until April 2014. Cases are those diagnosed as pulmonary tuberculosis patients clinically, radiologically, and/or bacteriologically, and who were confirmed to be resistant to both isoniazid and rifampicin through drug-sensitivity testing. On the other hand, pulmonary tuberculosis patients who were sensitive to all first-line antituberculosis drugs and were treated during the same time period served as controls. A total of 150 tuberculosis patients were studied, of which the susceptible cases were 120. Factors found to be significantly associated with the occurrence of multidrug-resistant tuberculosis are being Indian or Chinese (odds ratio 3.17, 95% confidence interval 1.04-9.68; and odds ratio 6.23, 95% confidence interval 2.24-17.35, respectively), unmarried (odds ratio 2.58, 95% confidence interval 1.09-6.09), living in suburban areas (odds ratio 2.58, 95% confidence interval 1.08-6.19), are noncompliant (odds ratio 4.50, 95% confidence interval 1.71-11.82), were treated previously (odds ratio 8.91, 95% confidence interval 3.66-21.67), and showed positive sputum smears at the 2nd (odds ratio 7.00, 95% confidence interval 2.46-19.89) and 6th months of treatment (odds ratio 17.96, 95% confidence interval 3.51-91.99). Living in suburban areas, positive sputum smears in the 2nd month of treatment, and was treated previously are factors that independently contribute to the occurrence of multidrug-resistant tuberculosis. Those with positive smears in the second month of treatment, have a history of previous

  10. Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014-2015.

    Science.gov (United States)

    Poramathikul, Kamonporn; Bodhidatta, Ladaporn; Chiek, Sivhour; Oransathid, Wilawan; Ruekit, Sirigade; Nobthai, Panida; Lurchachaiwong, Woradee; Serichantalergs, Oralak; Lon, Chanthap; Swierczewski, Brett

    2016-09-01

    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options.

  11. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania

    DEFF Research Database (Denmark)

    Kavishe, Reginald A; Paulo, Petro; Kaaya, Robert D

    2014-01-01

    ) is the recommended first-line drug in treatment of uncomplicated malaria. This study surveyed the distribution of the Plasmodium falciparum multidrug resistance protein-1 single nucleotide polymorphisms (SNPs) associated with increased parasite tolerance to ALu, in Tanzania. METHODS: A total of 687 Plasmodium...... in all regions, ranging from 17% - 26%. CONCLUSION: This is the first country-wide survey on Pfmdr1 mutations associated with ACT resistance. Distribution of individual Pfmdr1 mutations at codons 86, 184 and 1246 varies throughout Tanzanian regions. There is a general homogeneity in distribution......BACKGROUND: Resistance to anti-malarials is a major public health problem worldwide. After deployment of artemisinin-based combination therapy (ACT) there have been reports of reduced sensitivity to ACT by malarial parasites in South-East Asia. In Tanzania, artemether-lumefantrine (ALu...

  12. Application of the resazurin microtitre assay for detection of multidrug resistance in Mycobacterium tuberculosis in Algiers.

    Science.gov (United States)

    Nateche, Farida; Martin, Anandi; Baraka, Saliha; Palomino, Juan Carlos; Khaled, Safia; Portaels, Françoise

    2006-07-01

    This study assessed the performance of a rapid, low-cost, colorimetric method, the resazurin microtitre assay (REMA) plate method, for the detection of resistance to isoniazid and rifampicin in 136 clinical isolates of Mycobacterium tuberculosis from two hospitals in Algiers. MICs were determined and the results were compared with those obtained with the conventional proportion method on Löwenstein-Jensen medium. Excellent results were obtained for the REMA plate method, with a sensitivity of 100 % for both isoniazid and rifampicin and a specificity of 98.3 and 99.2 %, respectively. The REMA plate method appears to be a reliable method for the rapid determination of multidrug-resistant tuberculosis and is a good alternative for use in resource-limited countries such as Algeria.

  13. Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdullah Al Faruq

    2016-10-01

    Full Text Available Aim: Salmonellosis is one of the most common zoonotic diseases, and the presence of antimicrobial resistant Salmonella in wild birds is global public health threat. Throughout the last decades, multidrug resistance of Salmonella spp. has increased, particularly in developing countries. Therefore, a cross-sectional study was conducted to investigate the prevalence of Salmonella spp. and antimicrobial resistance pattern against Salmonella spp. from two species of resident wild birds namely house crow (Corvus splendens and Asian pied starling (Gracupica contra. Materials and Methods: Samples were collected from cloacal swabs of house crows and Asian pied starling for isolating Salmonella spp. (bacteriological culture methods followed by antimicrobial susceptibility testing (disk diffusion method against Salmonella spp. isolates during March to December 2014. Results: The prevalence of Salmonella in Asian pied starling and house crows were 67% and 65%, respectively. Within the category of samples from different species, the variation in prevalence was not varied significantly (p>0.05. Isolated Salmonella spp. was tested for resistance to six different antimicrobial agents. Among six antimicrobial tested, 100% resistance were found to penicillin, oxacillin, and clindamycin followed by erythromycin (50-93%, kanamycin (7-20%, and cephalothin (30-67% from both species of birds. Kanamycin remained sensitive in (70-73%, cephalothin (26-70%, and erythromycin appeared to be (0-30% sensitive against Salmonella spp. isolates. Isolated Salmonella spp. was multidrug resistant up to three of the six antimicrobials tested. Conclusion: It can be said that the rational use of antimicrobials needs to be adopted in the treatment of disease for livestock, poultry, and human of Bangladesh to limit the emergence of drug resistance to Salmonella spp.

  14. The role of half-transporters in multidrug resistance

    DEFF Research Database (Denmark)

    Bates, S E; Robey, R; Miyake, K

    2001-01-01

    in the role of drug transporters in clinical drug resistance. These newly identified transporters include additional members of the MRP family, ABC2, and a new half-transporter, MXR/BCRP/ABCP1. This half-transporter confers high levels of resistance to mitoxantrone, anthracyclines, and the camptothecins SN-38......ATP-binding cassette proteins comprise a superfamily of transporter proteins, a subset of which have been implicated in multidrug resistance. Although P-glycoprotein was described over 15 years ago, the recent expansion in the number of transporters identified has prompted renewed interest...... and topotecan. At 72 kDa, MXR localizes to the plasma membrane in cells which highly overexpress the protein either through gene amplification or though gene rearrangement. Future studies will be aimed at identifying an inhibitor, and attempting to translate recognition of this new transporter into a target...

  15. Breaking the spell: Combating Multidrug resistant ‘Superbugs’

    Directory of Open Access Journals (Sweden)

    Shahper N Khan

    2016-02-01

    Full Text Available Multidrug-resistant (MDR bacteria have become a severe threat to community health. Conventional antibiotics are getting increasingly ineffective as a consequence of resistance, and so it is imperative to realize new antimicrobial strategies. In this review we emphasized the microorganisms primarily reported in the resistance process, the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and enterobacteriaceae accentuating their capacity to escape from common antibacterial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at early stages of the drug development enables more informed decisions on candidate drug selection and moreover to maximize or predict efficacy before clinical development.

  16. Photodynamic therapy of cancer — Challenges of multidrug resistance

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-01-01

    Full Text Available Photodynamic therapy (PDT of cancer is a two-step drug-device combination modality, which involves the topical or systemic administration of a photosensitizer followed by light illumination of cancer site. In the presence of oxygen molecules, the light illumination of photosensitizer (PS can lead to the generation of cytotoxic reactive oxygen species (ROS and consequently destroy cancer. Similar to many other anticancer therapies, PDT is also subject to intrinsic cancer resistance mediated by multidrug resistance (MDR mechanisms. This paper will review the recent progress in understanding the interaction between MDR transporters and PS uptake. The strategies that can be used in a clinical setting to overcome or bypass MDR will also be discussed.

  17. Multidrug Resistant Tuberculosis involving the Clavicle, Spine and Ribs

    Directory of Open Access Journals (Sweden)

    H Krishnan

    2011-03-01

    Full Text Available This report describes an unusual case of multidrug resistant tuberculosis (MDR-TB, involving the right clavicle and multicentric aytpical spine involvement without any neurological deficit. The female patient presented with acute onset of right clavicular pain associated with a one-month history of lower backache with constitutional symptoms. The clavicular lesion and MRI spine findings were highly suggestive of TB. Anti TB drugs (ATD were started empirically as Sabah, Malaysia the patient’s home, is an endemic area for TB. Despite, 2 months of ATD administration, the patient did not respond well clinically and developed left sided chest wall abscesses arising from the left 3rd and 6th ribs. She was then treated for MDR-TB infection and has responded well to this treatment.

  18. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Jessica M. A. Blair

    2016-07-01

    Full Text Available Bacterial multidrug resistance (MDR efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i those that directly measure efflux and (ii those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity.

  19. Detection of multidrug resistance using molecular nuclear technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae; Ahn, Byeong Cheol [School of Medicine, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. {sup 99}m-Tc-MIBI and other {sup 99}m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with {sup 11}C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-({sup 11}C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo.

  20. Nanodrug Delivery in Reversing Multidrug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sonali eKapse-Mistry

    2014-07-01

    Full Text Available Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance(MDR which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp, multidrug resistance-associated proteins(MRP1, MRP2 and breast cancer resistance protein(BCRP. Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1 gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-B. Theragnostics combining a cytotoxic agent, targeting moiety, chemosensitizing agent and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  1. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines.

    Science.gov (United States)

    Izquierdo, M A; Shoemaker, R H; Flens, M J; Scheffer, G L; Wu, L; Prather, T R; Scheper, R J

    1996-01-17

    In addition to P-glycoprotein (Pgp), 2 proteins related to multidrug resistance (MDR) have recently been described. The Multidrug-Resistance-associated protein (MRP) is one of the ATP-binding-cassette (ABC) transporters. The Lung-Resistance Protein (LRP) is the major component of human vaults, which are newly described cellular organelles and thought to mediate intracellular transport processes. Using immunocytochemical methods, we have examined the expression of MRP and LRP among panels of human cancer-cell lines not selected for drug resistance which have been previously characterized for expression of Pgp, and in vitro response to a variety of anti-cancer drugs. Expression of MRP and LRP was observed in 47/55 (87%) and 46/59 (78%) cell lines, respectively. Statistically significant correlations were observed between expression of each of these 3 proteins and in vitro sensitivity to at least one drug classically associated with MDR. LRP showed the greatest individual predictive value, which also applied to several non-classical MDR drugs. Co-expression of 2-3 MDR-related proteins was observed in 64% of the lines and was, in general, associated with high relative levels of drug resistance. Previously identified "classic" MDR lines as well as "pan-resistant" lines concurrently expressed all 3 MDR-related proteins. Some highly drug-resistant cell lines without detectable MDRI/Pgp were found to express relatively high levels of MRP and LRP. The high prevalence of MRP and LRP expression observed in this large set of cell lines, which have not been subjected to laboratory drug selection, suggests that MDR mechanisms associated with these proteins may be widespread in human malignancies. Moreover, the overlapping of these more recently recognized MDR phenotypes with Pgp-type MDR results in a complex phenotype, the understanding of which may be of importance in the development of new drugs and design of clinical treatment protocols, particularly those seeking to employ

  2. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Although multidrug-resistance-associated protein-1 (MRP1 is a major contributor to multi-drug resistance (MDR, the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs--ARE1 and ARE2--were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC. As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.

  3. Photodynamic responsiveness of human leukemia Jurkat/A4 cells with multidrug resistant phenotype.

    Science.gov (United States)

    Philchenkov, A A; Shishko, E D; Zavelevich, M P; Kuiava, L M; Miura, K; Blokhin, D Y; Shton, I O; Gamaleia, N F

    2014-12-01

    Photodynamic therapy (PDT) is considered as a possible alternative approach to overcoming multidrug resistance (MDR). Analysis of cross-resistance to PDT in cells with different MDR pathways and resistance levels seems to be advantageous for elucidating the general mechanisms of cancer cell resistance to various treatment modalities. The aim of the study was to clarify whether the Jurkat/A4 leukemia cells with MDR phenotype are cross-resistant to PDT. Human T-cell acute lymphoblastic leukemia line Jurkat and Jurkat/A4 subline with MDR phenotype were used. 5-Aminolevulinic acid (ALA) and Photolon (a complex of chlorine-e6 and polyvinylpyrrolidone; PL) or gold nanocomposite of PL were applied as photosensitizers. The cells were pretreated with photosensitizers and exposed to laser radiation at corresponding wavelengths. The phototoxicity was assessed in trypan blue exclusion test. The hypodiploid cell fraction was analyzed by flow cytometry of propidium iodide-stained cells. Expression of genes related to PDT resistance was analyzed by microarray technique with Affymetrix U133A chips. ALA-mediated PDT resulted in dose-dependent cell death in both lines, the relative photodynamic efficacy in Jurkat/A4 cells being inferior to that in the parental Jurkat cells. There was no correlation between phototoxicity and apoptosis induction both in Jurkat and Jurkat/A4 cells. PL-mediated general phototoxicity in Jurkat cells amounted up to 75% at the maximal photosensitizer dose with about 40% of apoptotic death fraction. PL-phototoxicity in Jurkat/A4 cells was considerably lower. In contrast to Jurkat cells, PL-gold composite did not increase the efficacy of photosensitization as compared to free PL in Jurkat/A4 cells. Multidrug-resistant Jurkat/A4 cells exhibit reduced sensitivity to phototoxic effect in comparison with parental Jurkat cells independently of nature of the photosensitizer being assayed.

  4. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan

    Directory of Open Access Journals (Sweden)

    Ayman A. Elshayeb

    2017-11-01

    Full Text Available Abstract Background Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. Objectives The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Methods Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. Results A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax − b. Minimum bactericidal concentration’s predication of resistance was given the exponential trend (y = n ex and the predictive coefficient R2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. Conclusion This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current

  5. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    Science.gov (United States)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  6. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    International Nuclear Information System (INIS)

    Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang

    2004-01-01

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

  7. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

    Science.gov (United States)

    Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    2017-03-01

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. Study of tea polyphenol as a reversal agent for carcinoma cell lines' multidrug resistance (study of TP as a MDR reversal agent)

    International Nuclear Information System (INIS)

    Zhu Aizhi; Wang Xiangyun; Guo Zhenquan

    2001-01-01

    The aim of this study was to examine MDR1 expression product P-glycoprotein (Pgp) and study the effect and mechanism of tea polyphenol (TP) in reversion of multidrug resistance (MDR) in carcinoma cell lines. Immunocytochemical method was used for qualitative detection of Pgp. A comparative study of cytotoxicity and multidrug resistance reversion effect was made by MTT assay for tea polyphenol and quinidine in MCF-7 and MCF-7/Adr cell lines. The multidrug resistance reversion effect and mechanism were studied by measuring the uptake of 99m Tc-tetrofosmin in the carcinoma cell lines. (1) The Pgp overexpression in MCF-7/Adr cells was found to be strong positive, while the Pgp expression of MCF-7 was negative. (2) Although both tea polyphenol and quinidine could not remarkably change the toxicity of adriamycin to MCF-7, they could improve the sensitivity of MCF-7/Adr to adriamycin. The reversion index of tea polyphenol and quinidine was 3 and 10 respectively. (3) The cellular uptake of 99m Tc-tetrofosmin was remarkably lower in MCF-7/Adr than in MCF-7. The uptake of 99m Tc-tetrofosmin in MCF-7/Adr exhibited a 4, 13, 16 fold increase in the presence of 200, 400 and 500 μg/ml of tea polyphenol respectively. The uptake of 99m Tc-tetrofosmin in MCF-7/Adr exhibited only a 4-fold increase in the presence of 200 μM of quinidine. Immunocytochemistry can detect P-glycoprotein expression level qualitatively. Tea polyphenol is not only an anti-tumor agent, but also a multidrug resistant modulator similar to quinidine. The multidrug resistance reversion mechanism of tea polyphenol seems to be its inhibition of the activity of P-glycoprotein. Tea polyphenol has the advantage of very low toxicity in tumor treatment

  9. Safety and effectiveness of home intravenous antibiotic therapy for multidrug-resistant bacterial infections.

    Science.gov (United States)

    Mujal, A; Sola, J; Hernandez, M; Villarino, M-A; Machado, M-L; Baylina, M; Tajan, J; Oristrell, J

    2015-06-01

    Home intravenous antibiotic therapy is an alternative to hospital admission for moderately severe infections. However, few studies have analyzed its safety and effectiveness in the treatment of infections caused by multidrug-resistant bacteria. The purpose of this study is to analyze the safety and effectiveness of home intravenous antibiotic therapy in multidrug-resistant bacterial infections. We analyzed prospectively all patients admitted to our service who underwent home intravenous antibiotic therapy during the period 2008-2012. All the treatments were administered by caretakers or self-administered by patients, through elastomeric infusion devices. Effectiveness was evaluated by analyzing the readmission rate for poor infection control. Safety was evaluated by analyzing adverse events, catheter-related complications, and readmissions not related to poor infection control. There were 433 admissions (in 355 patients) for home intravenous antibiotic therapy during the study period. There were 226 (52.2 %) admissions due to multidrug-resistant bacterial infections and 207 (47.8 %) due to non-multidrug-resistant infections. Hospital readmissions in patients with multidrug-resistant infections were uncommon. Multidrug-resistant enterococcal infections, healthcare-associated infections, and carbapenem therapy were independent variables associated with increased readmissions due to poor infection control. Readmissions not related to poor infection control, adverse events, and catheter-related complications were similar in multidrug-resistant compared to non-multidrug-resistant bacterial infections. Home intravenous therapy, administered by patients or their caretakers using elastomeric infusion pumps, was safe and effective for the treatment of most multidrug-resistant bacterial infections.

  10. Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines: mRNA analysis and functional radiotracer studies

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Celia Maria Freitas [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal)]. E-mail: cgomes@ibili.uc.pt; van Paassen, Heidi [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Romeo, Salvatore [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Welling, Mick M. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Feitsma, R.I.J. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Abrunhosa, Antero J. [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Botelho, M. Filomena [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Hogendoorn, Pancras C.W. [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Pauwels, Ernest [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Cleton-Jansen, Anne Marie [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands)

    2006-10-15

    Drug resistance remains a significant impediment to successful chemotherapy and constitutes a major prognostic factor in osteosarcoma (OS) patients. This study was designed to identify the role and prognostic significance of multidrug-resistance (MDR)-related transporters, such as multidrug resistance protein 1 (MDR1), multidrug-resistance-associated protein (MRP1) and breast-cancer-related protein (BCRP), in OS using cationic lipophilic radiotracers. We evaluated the chemosensitivity of four OS cell lines (Saos-2, 143B, MNNG/HOS and U-2OS) to doxorubicin (DOX), cisplatin (CIS) and methotrexate. The expression of MDR-related transporters was analyzed at mRNA level by quantitative polymerase chain reaction and at functional level by {sup 99m}Tc sestamibi and {sup 99m}Tc tetrofosmin. The effectiveness of MDR modulators [cyclosporin A (CsA) and imatinib] on transporter inhibition and on the reversal of resistance was also assessed. MNNG/HOS and U-2OS cells expressing high levels of MDR1 were highly resistant to DOX and showed reduced accumulation and higher efflux for radiotracers. Although MRP1 was uniformly expressed in all cells, only U-2OS was resistant to CIS. CsA restored sensitivity to DOX and CIS, and enhanced the accumulation and efflux half-life of radiotracers in MDR1-expressing cell lines. The chemosensitivity of OS cells to DOX was strongly dependent on mRNA MDR1 expression and could be circumvented by adding CsA. The kinetic parameters of radiotracers correlated with MDR1 expression levels, hence predicting DOX resistance. We concluded that sensitivity to chemotherapy is strongly dependent on the expression of MDR1 transporter and that radiotracer studies could prove clinically useful in predicting chemotherapy response and in evaluating the efficacy of MDR-reversing agents.

  11. Perfil de sensibilidade e fatores de risco associados à resistência do Mycobacterium tuberculosis, em centro de referência de doenças infecto-contagiosas de Minas Gerais Multidrug-resistant Mycobacterium tuberculosis at a referral center for infectious diseases in the state of Minas Gerais, Brazil: sensitivity profile and related risk factors

    Directory of Open Access Journals (Sweden)

    Márcia Beatriz de Souza

    2006-10-01

    Full Text Available OBJETIVO: Estudar os fatores determinantes da multirresistência do Mycobacterium tuberculosis às drogas tuberculostáticas em centro de referência de doenças infecto-contagiosas do Estado de Minas Gerais, Hospital Eduardo de Menezes. MÉTODOS: Estudo tipo caso-controle, retrospectivo, realizado de setembro de 2000 a janeiro de 2004. Nesse período, 473 culturas com crescimento de M. tuberculosis relativas a 313 pacientes foram analisadas quanto ao perfil de sensibilidade, no Laboratório Central de Minas Gerais. Foram selecionados os casos multirresistentes definidos como resistência a pelo menos rifampicina e isoniazida, depois de pareados com o grupo controle de pacientes com tuberculose sensível a todas as drogas na razão de 1:3. A associação dos dados demográficos e clínicos foi feita por análise estatística uni e multivariada. RESULTADOS: Durante o período de estudo, doze casos de tuberculose multirresistente foram identificados (3,83%. Na análise univariada, a tuberculose multirresistente foi mais comum no sexo masculino, em pacientes com baciloscopia de escarro positiva, pacientes com cavitações maiores que 4 cm de diâmetro e pacientes com um ou mais tratamentos prévios para tuberculose (p = 0,10. Após a análise multivariada somente o tratamento anterior para tuberculose permaneceu estatisticamente significativo (p = 0,0374, com odds ratio de 14,36 (1,96 - 176,46. CONCLUSÃO: O fator de risco que se mostrou independentemente associado ao desenvolvimento de tuberculose multirresistente neste estudo foi a presença de um ou mais tratamentos prévios para tuberculose.OBJECTIVE: To assess the determining factors for Mycobacterium tuberculosis multidrug resistance at a referral center for infectious diseases in the state of Minas Gerais, Brazil. METHODS: A retrospective case-control study was conducted using data collected from September of 2000 to January of 2004. During this period, 473 cultures presenting growth of M

  12. The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam

    NARCIS (Netherlands)

    Buu, T. N.; Huyen, M. N.; Lan, N. T. N.; Quy, H. T.; Hen, N. V.; Zignol, M.; Borgdorff, M. W.; Cobelens, F. G. J.; van Soolingen, D.

    2009-01-01

    BACKGROUND: Associations between multidrug resistance and the Mycobacterium tuberculosis Beijing genotype have been described mainly in populations with poor tuberculosis (TB) control such as prisons and inner cities, and may reflect shared risk factors rather than a biological association.

  13. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium

    DEFF Research Database (Denmark)

    Bryant, Josephine M; Grogono, Dorothy M; Rodriguez-Rincon, Daniela

    2016-01-01

    Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality....

  14. Evaluation of co-trimoxazole in the treatment of multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Alsaad, Noor; van Altena, Richard; Pranger, Arianna D.; van Soolingen, Dick; de Lange, Wiel C. M.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    Co-trimoxazole (SXT), a combination of sulfamethoxazole and trimethoprim, has shown in vitro activity against Mycobacterium tuberculosis. However, the pharmacokinetic and pharmacodynamic parameters of SXT in multidrug-resistant (MDR) tuberculosis (TB) are, thus far, lacking. Therefore, we evaluated

  15. Evaluation of co-trimoxazole in the treatment of multidrug-resistant tuberculosis.

    NARCIS (Netherlands)

    Alsaad, N.; Altena, R. van; Pranger, A.D.; Soolingen, D. van; Lange, W.C.M. de; Werf, T.S. van der; Kosterink, J.G.W.; Alffenaar, J.W.C.

    2013-01-01

    Co-trimoxazole (SXT), a combination of sulfamethoxazole and trimethoprim, has shown in vitro activity against Mycobacterium tuberculosis. However, the pharmacokinetic and pharmacodynamic parameters of SXT in multidrug-resistant (MDR) tuberculosis (TB) are, thus far, lacking. Therefore, we evaluated

  16. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance

    Directory of Open Access Journals (Sweden)

    Ebrahim Babapour

    2016-06-01

    Conclusions: Since most of the multidrug resistant strains produce biofilm, it seems necessary to provide continuous monitoring and determination of antibiotic susceptibility of clinical A. baumannii. This would help to select the most appropriate antibiotic for treatment.

  17. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; van de Kamer, Tim; Brouwer, Ellen C.; Leavis, Helen L.; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA)

  18. Molecular characterization, spread and evolution of multidrug resistance in Salmonella enterica Typhimurium DT104

    OpenAIRE

    Cloeckaert, Axel; Schwarz, Stefan

    2001-01-01

    International audience; Multidrug-resistant Salmonella enterica serovar Typhimurium phage type DT104 has emerged during the last decade as a global health problem because of its involvement in diseases in animals and humans. Multidrug-resistant DT104 strains are mostly resistant to ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracyclines (ACSSuT resistance type). The genes coding for such resistances are clustered on the chromosome. This paper reviews new developments in the ...

  19. The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria

    OpenAIRE

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater ...

  20. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    Science.gov (United States)

    2013-08-01

    cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii . 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hwang...with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii Yoon Y. Hwang,a Karthikeyan Ramalingam,b Diane R. Bienek,a Valerie Lee,b...San Antonio, Texas, USAb; and Army Institute of Surgical Research, Fort Sam Houston, Texas, USAc Acinetobacter baumannii has emerged as a serious

  1. Genetic Drivers of Multidrug Resistance inCandida glabrata.

    Science.gov (United States)

    Healey, Kelley R; Jimenez Ortigosa, Cristina; Shor, Erika; Perlin, David S

    2016-01-01

    Both the incidence of invasive fungal infections and rates of multidrug resistance associated with fungal pathogen Candida glabrata have increased in recent years. In this perspective, we will discuss the mechanisms underlying the capacity of C. glabrata to rapidly develop resistance to multiple drug classes, including triazoles and echinocandins. We will focus on the extensive genetic diversity among clinical isolates of C. glabrata , which likely enables this yeast to survive multiple stressors, such as immune pressure and antifungal exposure. In particular, over half of C. glabrata clinical strains collected from U.S. and non-U.S. sites have mutations in the DNA mismatch repair gene MSH2 , leading to a mutator phenotype and increased frequencies of drug-resistant mutants in vitro . Furthermore, recent studies and data presented here document extensive chromosomal rearrangements among C. glabrata strains, resulting in a large number of distinct karyotypes within a single species. By analyzing clonal, serial isolates derived from individual patients treated with antifungal drugs, we were able to document chromosomal changes occurring in C. glabrata in vivo during the course of antifungal treatment. Interestingly, we also show that both MSH2 genotypes and chromosomal patterns cluster consistently into specific strain types, indicating that C. glabrata has a complex population structure where genomic variants arise, perhaps during the process of adaptation to environmental changes, and persist over time.

  2. Imaging multidrug resistance with 4-[18F]fluoropaclitaxel

    International Nuclear Information System (INIS)

    Kurdziel, Karen A.; Kalen, Joseph D.; Hirsch, Jerry I.; Wilson, John D.; Agarwal, Rakesh; Barrett, Daniel; Bear, Harry D.; McCumiskey, James F.

    2007-01-01

    Multidrug resistance (MDR) is a cause of treatment failure in many cancer patients. MDR refers to a phenotype whereby a tumor is resistant to a large number of natural chemotherapeutic drugs. Having prior knowledge of the presence of such resistance would decrease morbidity from unsuccessful therapy and allow for the selection of individuals who may benefit from the coadministration of MDR-inhibiting drugs. The Tc-99m-labeled single-photon-emitting radiotracers sestamibi and tetrofosmin have shown some predictive value. However, positron-emitting radiotracers, which allow for dynamic quantitative imaging, hold promise for a more accurate and specific identification of MDRtumors.MDR-expressing tumors are resistant to paclitaxel, which is commonly used as a chemotherapeutic agent. 4-[ 18 F]Fluoropaclitaxel (FPAC) is a PET-radiolabeled analogue of paclitaxel. Preclinical studies have shown the uptake of FPAC to be inversely proportional to tumor MDR expression. FPAC PET imaging in normal volunteers shows biodistribution to be similar to that in nonhuman primates. Imaging in a breast cancer patient showed FPAC localization in a primary tumor that responded to chemotherapy, while failure to localize in mediastinal disease corresponded with only partial response.FPAC PET imaging shows promise for the noninvasive pretreatment identification of MDR-expressing tumors. While much additional work is needed, this work represents a step toward image-guided personalized medicine

  3. [Multidrug-resistant tuberculosis: epidemiology and risk factors].

    Science.gov (United States)

    Smaoui Fourati, S; Mzid, H; Marouane, C; Kammoun, S; Messadi-Akrout, F

    2015-08-01

    Despite the availability of potent drugs and the availability of vaccine, tuberculosis remains until today one of the most worrying infectious diseases because of both its morbidity and mortality. This serious health problem is further complicated by the emergence of multidrug-resistant (MDR) or extensively drug-resistant strains (XDR). The number of MDR and XDR strains has continued to increase in recent years. Therefore, it is necessary to determine the risk factors leading to the emergence of MDR-TB strains to improve its overall management. Most studies indicate that the irregular previous treatment of tuberculosis with poor adherence is the main risk factor found. Other risk factors such as digestive issues, age, sex, and immunosuppression have been reported by several studies. In Tunisia, MDR-TB prevalence remains low with 0.8% among new cases and 12% among the restatements but control of this disease is necessary and remains essentially preventive. It is based on real preventive strategies planned according to local and updated regional data. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Multidrug-Resistant Tuberculosis in Europe, 2010–2011

    Science.gov (United States)

    Günther, Gunar; van Leth, Frank; Alexandru, Sofia; Altet, Neus; Avsar, Korkut; Bang, Didi; Barbuta, Raisa; Bothamley, Graham; Ciobanu, Ana; Crudu, Valeriu; Davilovits, Manfred; Dedicoat, Martin; Duarte, Raquel; Gualano, Gina; Kunst, Heinke; de Lange, Wiel; Leimane, Vaira; Magis-Escurra, Cecile; McLaughlin, Anne-Marie; Muylle, Inge; Polcová, Veronika; Pontali, Emanuele; Popa, Christina; Rumetshofer, Rudolf; Skrahina, Alena; Solodovnikova, Varvara; Spinu, Victor; Tiberi, Simon; Viiklepp, Piret

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients with non–MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010–2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were resistant to pyrazinamide, 51.1% were resistant to ≥1 second-line drug, 26.6% were resistant to second-line injectable drugs, 17.6% were resistant to fluoroquinolones, and 6.8% were extensively drug resistant. Previous treatment for TB was the strongest risk factor for MDR TB. High levels of primary transmission and advanced resistance to second-line drugs characterize MDR TB cases in Europe. PMID:25693485

  5. Effects of mefloquine use on Plasmodium vivax multidrug resistance.

    Science.gov (United States)

    Khim, Nimol; Andrianaranjaka, Voahangy; Popovici, Jean; Kim, Saorin; Ratsimbasoa, Arsene; Benedet, Christophe; Barnadas, Celine; Durand, Remy; Thellier, Marc; Legrand, Eric; Musset, Lise; Menegon, Michela; Severini, Carlo; Nour, Bakri Y M; Tichit, Magali; Bouchier, Christiane; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-10-01

    Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non-P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites.

  6. Nanodrugs: optimism for emerging trend of multidrug resistance

    Directory of Open Access Journals (Sweden)

    Khan AU

    2012-08-01

    Full Text Available Asad U KhanMedical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, IndiaThis is with reference to an article published recently in your journal regarding the antibiotic activity of chitosan-coated silver nanoparticles.1 This is an inspiring move towards control of infection caused by multidrug-resistant bacteria which has become a serious problem for clinicians and physicians worldwide.2 At the moment, carbapenems are being used as the drugs of choice to combat infections. However, the emergence of carbapenem resistance has changed current remedial approaches in the management of serious infections. One of the latest enzymes, NDM-1 (New Delhi metallo-β-lactamase-1, first identified in a Swedish patient of Indian origin in 2008,3 has been key in the development of resistance to almost all antibiotics. Infection caused by NDM-1 producers is widespread on the Indian subcontinent,4 and is now emerging in the US and other countries throughout the world.5View original paper by Jena and colleagues.

  7. Hearing loss in children treated for multidrug-resistant tuberculosis.

    Science.gov (United States)

    Seddon, James A; Thee, Stephanie; Jacobs, Kayleen; Ebrahim, Adam; Hesseling, Anneke C; Schaaf, H Simon

    2013-04-01

    The aminoglycosides and polypeptides are vital drugs for the management of multidrug-resistant (MDR) tuberculosis (TB). Both classes of drug cause hearing loss. We aimed to determine the extent of hearing loss in children treated for MDR-TB. In this retrospective study, children (Hearing was assessed and classified using audiometry and otoacoustic emissions. Ninety-four children were included (median age: 43 months). Of 93 tested, 28 (30%) were HIV-infected. Twenty-three (24%) children had hearing loss. Culture-confirmed, as opposed to presumed, diagnosis of TB was a risk factor for hearing loss (OR: 4.12; 95% CI: 1.13-15.0; p = 0.02). Seven of 11 (64%) children classified as having hearing loss using audiometry had progression of hearing loss after finishing the injectable drug. Hearing loss is common in children treated for MDR-TB. Alternative drugs are required for the treatment of paediatric MDR-TB. Copyright © 2012 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  8. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  9. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Science.gov (United States)

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    Science.gov (United States)

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.

  11. Barbigerone reverses multidrug resistance in breast MCF-7/ADR cells.

    Science.gov (United States)

    Li, Xiuxia; Wan, Li; Wang, Fang; Pei, Heying; Zheng, Li; Wu, Wenshuang; Ye, Haoyu; Wang, Yanping; Chen, Lijuan

    2018-01-24

    Development of agents to overcome multidrug resistance (MDR) is one of the important strategies in cancer chemotherapy, and P-glycoprotein (P-gp) correlates with the degree of resistance. As a naturally occurring isoflavone, whether barbigerone (BA) could reverse MDR, is unknown. In this paper, we evaluated effects of BA on reversing P-gp mediated MDR of adriamycin (ADR)-resistant human breast carcinoma (MCF-7/ADR) cells. BA (0.5 μM) treatment showed strong potency to increase ADR cytotoxicity toward MCF-7/ADR cells. It was also demonstrated that BA time- and dose-dependently increased accumulations of ADR and reduced the efflux in MCF-7/ADR cells, pretreatment of these cells with BA might relocalized ADR to the nuclei. Furthermore, the results also revealed that BA did not affect P-gp, but alter P-gp ATPase activity. Intravenous administration of BA significantly increased anticancer efficacy of ADR to MCF-7/ADR xenograft model in nude mice. These results revealed that BA might reverse P-gp mediated MDR through inhibition of ATPase activity, which indicated a novel use of BA as a potent candidate for cancer chemotherapy. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Genotyping of clinical and environmental multidrug resistantEnterococcus faeciumstrains.

    Science.gov (United States)

    Shokoohizadeh, Leili; Mobarez, Ashraf Mohabati; Alebouyeh, Masoud; Zali, Mohammad Reza; Ranjbar, Reza

    2017-01-01

    Multidrug resistant (MDR) Enterococcus faecium is a nosocomial pathogen and clonal complex 17 (CC17) is the main genetic subpopulation of E. faecium in hospitals worldwide. There has thus far been no report of major E. faecium clones in Iranian hospitals. The present study analyzed strains of MDR E. faecium obtained from patients and the Intensive Care Unit environments using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine the antibiotic resistance patterns and genetic features of the dominant. clones of E. faecium. PFGE and MLST analysis revealed the presence of 17and 15 different subtypes, respectively. Of these, 18 (86%) isolates belonged toCC17. Most strains in this clonal complex harbored the esp gene and exhibited resistance to vancomycin, teicoplanin, ampicillin, ciprofloxacin, gentamicin, and erythromycin. The MLST results revealed 12 new sequence types (ST) for the first time. Approximately 50% of the STs were associated with ST203. Detection of E. faecium strains belonging to CC17 on medical equipment and in clinical specimens verified the circulation of high-risk MDR clones among the patients and in hospital environments in Iran.

  13. Genetic drivers of multidrug resistance in Candida glabrata

    Directory of Open Access Journals (Sweden)

    Kelley R Healey

    2016-12-01

    Full Text Available Both the incidence of invasive fungal infections and rates of multidrug resistance associated with fungal pathogen Candida glabrata have increased in recent years. In this perspective, we will discuss the mechanisms underlying the capacity of C. glabrata to rapidly develop resistance to multiple drug classes, including triazoles and echinocandins. We will focus on the extensive genetic diversity among clinical isolates of C. glabrata, which likely enables this yeast to survive multiple stressors, such as immune pressure and antifungal exposure. In particular, over half of C. glabrata clinical strains collected from U.S. and non-U.S. sites have mutations in the DNA mismatch repair gene MSH2, leading to a partial mutator phenotype and increased frequencies of drug-resistant mutants in vitro. Furthermore, recent studies and data presented here document extensive chromosomal rearrangements among C. glabrata strains, resulting in a large number of distinct karyotypes within a single species. By analyzing clonal, serial isolates derived from individual patients treated with antifungal drugs, we were able to document chromosomal changes occurring in C. glabrata in vivo during the course of antifungal treatment. Interestingly, we also show that both MSH2 genotypes and chromosomal patterns cluster consistently into specific strain types, indicating that C. glabrata has a complex population structure where genomic variants arise, perhaps during the process of adaptation to environmental changes, and persist over time.

  14. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Katsuhiko eHayashi

    2014-04-01

    Full Text Available Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies with floral source, climate, and harvesting conditions. Methylglyoxal was identified as the dominant antibacterial component of manuka honey. Although it has been known that methylglyoxal has antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there is not much information describing its activity against gram-negative bacteria. In this study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas aeruginosa (MDRP using 53 clinically isolated strains. We also assessed the effect of deleting the five multidrug efflux systems in P. aeruginosa, as well as the efflux systems in Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal. Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of 128–512 µg/ml (1.7–7.1 mM and is not recognized by drug efflux systems.

  15. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  16. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites.

    Science.gov (United States)

    Dodge, Matthew A; Waller, Ross F; Chow, Larry M C; Zaman, Muhammad M; Cotton, Leanne M; McConville, Malcolm J; Wirth, Dyann F

    2004-03-01

    Upregulation of the multidrug resistance protein 1 (LeMDR1) in the protozoan parasite, Leishmania enriettii, confers resistance to hydrophobic drugs such as vinblastine, but increases the sensitivity of these parasites to the mitochondrial drug, rhodamine 123. In order to investigate the mechanism of action of LeMDR1, the subcellular localization of green fluorescent protein (GFP)-tagged versions of LeMDR1 and the fate of the traceable-fluorescent LeMDR1 substrate calcein AM were examined in both Leishmania mexicana and L. enriettii LeMDR1 -/- and overexpressing cell lines. The LeMDR1-GFP chimera was localized by fluorescence microscopy to a number of secretory and endocytic compartments, including the Golgi apparatus, endoplasmic reticulum (ER) and a multivesicular tubule (MVT)-lysosome. Pulse-chase labelling experiments with calcein AM suggested that the Golgi and ER pools, but not the MVT-lysosome pool, of LeMDR1 were active in pumping calcein AM out of the cell. Cells labelled with calcein AM under conditions that slow vesicular transport (low temperature and stationary growth) inhibited export and resulted in the accumulation of fluorescent calcein in both the Golgi and the mitochondria. We propose that LeMDR1 substrates are pumped into secretory compartments and exported from the parasite by exocytosis. Accumulation of MDR substrates in the ER can result in alternative transport to the mitochondrion, explaining the reciprocal sensitivity of drug-resistant Leishmania to vinblastine and rhodamine 123.

  17. Use of Genotype MTBDRplus Assay for Diagnosis of Multidrug-Resistant Tuberculosis in Nepal

    Directory of Open Access Journals (Sweden)

    Elina Maharjan

    2017-01-01

    Full Text Available The main aims of this study were to study the patterns of mutations in rpoB, katG, and inhA genes in Mycobacterium tuberculosis strains isolated from patients from Nepal and to evaluate the performance of genotype MTBDRplus assay, taking conventional drug susceptibility testing as gold standard for diagnosis of MDR-TB. A total of 69 Mycobacterium tuberculosis strains isolated from 73 smear positive sputum samples from patients suspected of suffering from multidrug-resistant tuberculosis were used in our study. The drug susceptibility pattern of Mycobacterium tuberculosis isolated from these sputum specimens was determined by using genotype MTBDRplus assay taking conventional drug susceptibility testing as reference. The sensitivity and specificity of the genotype MTBDRplus assay for the detection of MDR-TB were found to be 88.7% and 100%, respectively. 88.7% of the rifampicin resistant isolates had mutations in rpoB gene. Similarly, 79.7% and 9.4% of isoniazid resistant isolates had mutations in katG and inhA genes, respectively. Genotype MTBDRplus assay was found to be very rapid and highly sensitive and specific method for diagnosis of MDR-TB and will be very helpful for early diagnosis of MDR-TB in high tuberculosis burden countries.

  18. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis

    Science.gov (United States)

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard

    2003-01-01

    The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522

  19. Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China.

    Science.gov (United States)

    Zhao, Li-Li; Liu, Hai-Can; Sun, Qing; Xiao, Tong-Yang; Zhao, Xiu-Qin; Li, Gui-Lian; Zeng, Chun-Yan; Wan, Kang-Lin

    2015-10-01

    We investigated the spectrum and frequency of mutations in rpsL, rrs, and gidB among 140 multidrug-resistant tuberculosis (MDR-TB) clinical isolates from China. The association between mutations and different genotypes was also analyzed. Our data revealed that 65.7% of MDR-TB were resistant to streptomycin (STR), and 90.2% of STR-resistant isolates were Beijing strains. STR resistance was correlated with Beijing family (P=0.00). Compared with phenotypic data, detection of mutations for the combination of these 3 genes exhibited 94.6% sensitivity, 91.7% specificity, and 93.6% accuracy. The most common mutations in STR-resistant isolates were rpsL128, 262, and rrs514, of which rpsL128 showed association with Beijing lineage (P=0.00). A combination of these 3 mutations can serve as the reliable predictors for STR resistance, showing the sensitivity, specificity, and accuracy of 85.9%, 97.9%, and 90.0%, respectively. Furthermore, gidBA276C, not A615G, was Beijing lineage specific. These findings are useful to develop rapid molecular diagnostic methods for STR resistance in China. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1.

    Science.gov (United States)

    Liang, Zhongxing; Wu, Hui; Xia, James; Li, Yuhua; Zhang, Yawei; Huang, Ke; Wagar, Nicholas; Yoon, Younghyoun; Cho, Heidi T; Scala, Stefania; Shim, Hyunsuk

    2010-03-15

    Multidrug resistance-associated protein (MRP-1/ABCC1) transports a wide range of therapeutic agents and may play a critical role in the development of multidrug resistance (MDR) in tumor cells. However, the regulation of MRP-1 remains controversial. To explore whether miRNAs are involved in the regulation of MRP-1 expression and modulate the sensitivity of tumor cells to chemotherapeutic agents, we analyzed miRNA expression levels in VP-16-resistant MDR cell line, MCF-7/VP, in comparison with its parent cell line, MCF-7, using a miRNA microarray. MCF-7/VP overexpressed MRP-1 mRNA and protein not MDR-1 and BCRP. miR-326 was downregulated in MCF-7/VP compared to MCF-7. Additionally, miR-326 was downregulated in a panel of advanced breast cancer tissues and consistent reversely with expression levels of MRP-1. Furthermore, the elevated levels of miR-326 in the mimics-transfected VP-16-resistant cell line, MCF-7/VP, downregulated MRP-1 expression and sensitized these cells to VP-16 and doxorubicin. These findings demonstrate for the first time the involvement of miRNAs in multidrug resistance mediated by MRP-1 and suggest that miR-326 may be an efficient agent for preventing and reversing MDR in tumor cells. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Exposure of Salmonella enterica serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step.

    Directory of Open Access Journals (Sweden)

    Rebekah N Whitehead

    Full Text Available Biocides are crucial to the prevention of infection by bacteria, particularly with the global emergence of multiply antibiotic resistant strains of many species. Concern has been raised regarding the potential for biocide exposure to select for antibiotic resistance due to common mechanisms of resistance, notably efflux.Salmonella enterica serovar Typhimurium was challenged with 4 biocides of differing modes of action at both low and recommended-use concentration. Flow cytometry was used to investigate the physiological state of the cells after biocide challenge. After 5 hours exposure to biocide, live cells were sorted by FACS and recovered. Cells recovered after an exposure to low concentrations of biocide had antibiotic resistance profiles similar to wild-type cells. Live cells were recovered after exposure to two of the biocides at in-use concentration for 5 hours. These cells were multi-drug resistant and accumulation assays demonstrated an efflux phenotype of these mutants. Gene expression analysis showed that the AcrEF multidrug efflux pump was de-repressed in mutants isolated from high-levels of biocide.These data show that a single exposure to the working concentration of certain biocides can select for mutant Salmonella with efflux mediated multidrug resistance and that flow cytometry is a sensitive tool for identifying biocide tolerant mutants. The propensity for biocides to select for MDR mutants varies and this should be a consideration when designing new biocidal formulations.

  2. The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans.

    Science.gov (United States)

    VanDuyn, Natalia; Nass, Richard

    2014-03-01

    Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here, we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans modulates whole animal and DA neuron sensitivity to MeHg. In this study, we demonstrate that genetic knockdown of MRP-7 results in a twofold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. © 2013 International Society for Neurochemistry.

  3. Multidrug resistance in fungi: regulation of transporter-encoding gene expression.

    Science.gov (United States)

    Paul, Sanjoy; Moye-Rowley, W Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.

  4. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  5. Alpha-Mangostin Reverses Multidrug Resistance by Attenuating the Function of the Multidrug Resistance-Linked ABCG2 Transporter.

    Science.gov (United States)

    Wu, Chung-Pu; Hsiao, Sung-Han; Murakami, Megumi; Lu, Yu-Jen; Li, Yan-Qing; Huang, Yang-Hui; Hung, Tai-Ho; Ambudkar, Suresh V; Wu, Yu-Shan

    2017-08-07

    The ATP-binding cassette (ABC) drug transporter ABCG2 can actively efflux a wide variety of chemotherapeutic agents out of cancer cells and subsequently reduce the intracellular accumulation of these drugs. Therefore, the overexpression of ABCG2 often contributes to the development of multidrug resistance (MDR) in cancer cells, which is one of the major obstacles to successful cancer chemotherapy. Moreover, ABCG2 is highly expressed in various tissues including the intestine and blood-brain barrier (BBB), limiting the absorption and bioavailability of many therapeutic agents. For decades, the task of developing a highly effective synthetic inhibitor of ABCG2 has been hindered mostly by the intrinsic toxicity, the lack of specificity, and complex pharmacokinetics. Alternatively, considering the wide range of diversity and relatively nontoxic nature of natural products, developing potential modulators of ABCG2 from natural sources is particularly valuable. α-Mangostin is a natural xanthone derived from the pericarps of mangosteen (Garcinia mangostana L.) with various pharmacological purposes, including suppressing angiogenesis and inducing cancer cell growth arrest. In this study, we demonstrated that at nontoxic concentrations, α-mangostin effectively and selectively inhibits ABCG2-mediated drug transport and reverses MDR in ABCG2-overexpressing MDR cancer cells. Direct interactions between α-mangostin and the ABCG2 drug-binding site(s) were confirmed by stimulation of ATPase activity and by inhibition of photolabeling of the substrate-binding site(s) of ABCG2 with [ 125 I]iodoarylazidoprazosin. In summary, our findings show that α-mangostin has great potential to be further developed into a promising modulator of ABCG2 for reversing MDR and for its use in combination therapy for patients with MDR tumors.

  6. Multidrug resistance 1 gene polymorphisms may determine Crohn's disease behavior in patients from Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Ana Teresa P. Carvalho

    2014-01-01

    Full Text Available OBJECTIVES: Conflicting data from studies on the potential role of multidrug resistance 1 gene polymorphisms in inflammatory bowel disease may result from the analysis of genetically and geographically distinct populations. Here, we investigated whether multidrug resistance 1 gene polymorphisms are associated with inflammatory bowel diseases in patients from Rio de Janeiro. METHODS: We analyzed 123 Crohn's disease patients and 83 ulcerative colitis patients to determine the presence of the multidrug resistance 1 gene polymorphisms C1236T, G2677T and C3435T. In particular, the genotype frequencies of Crohn's disease and ulcerative colitis patients were analyzed. Genotype-phenotype associations with major clinical characteristics were established, and estimated risks were calculated for the mutations. RESULTS: No significant difference was observed in the genotype frequencies of the multidrug resistance 1 G2677T/A and C3435T polymorphisms between Crohn's disease and ulcerative colitis patients. In contrast, the C1236T polymorphism was significantly more common in Crohn's disease than in ulcerative colitis (p = 0.047. A significant association was also found between the multidrug resistance 1 C3435T polymorphism and the stricturing form of Crohn's disease (OR: 4.13; p = 0.009, whereas no association was found with penetrating behavior (OR: 0.33; p = 0.094. In Crohn's disease, a positive association was also found between the C3435T polymorphism and corticosteroid resistance/refractoriness (OR: 4.14; p = 0.010. However, no significant association was found between multidrug resistance 1 gene polymorphisms and UC subphenotypic categories. CONCLUSION: The multidrug resistance 1 gene polymorphism C3435T is associated with the stricturing phenotype and an inappropriate response to therapy in Crohn's disease. This association with Crohn's disease may support additional pathogenic roles for the multidrug resistance 1 gene in regulating gut

  7. Reversal effects of traditional Chinese herbs on multidrug resistance in cancer cells.

    Science.gov (United States)

    Yang, Lei; Wei, Dan-Dan; Chen, Zhong; Wang, Jun-Song; Kong, Ling-Yi

    2011-11-01

    Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. In this work, fractions from 17 clinically used antitumour traditional Chinese medicinal herbs were tested for their potential to restore the sensitivity of MCF-7/ADR and A549/Taxol cells to a known antineoplastic agent. The effects of these fractions were evaluated by MTT method and an assay of the cellular accumulation of doxorubicin. Fractions from the PB group (herbs with the ability to promote blood circulation and remove blood stasis) showed more significant effects than fractions from the CH group (herbs with the ability to clear away heat and toxic materials). Fractions from CH₂Cl₂ extracts were more effective than fractions from EtOAc extracts. Five herbs (Curcuma wenyujin, Chrysanthemum indicum, Salvia chinensis, Ligusticum chuanxiong Hort. and Cassia tora L.) could sensitise these resistant cancer cells at a non-toxic concentration (10 µg mL⁻¹), and markedly increased doxorubicin accumulation in MCF-7/ADR cells, which necessitates further investigations on the active ingredients of these herbs and their underlying mechanisms.

  8. Identifying multidrug resistant tuberculosis transmission hotspots using routinely collected data12

    Science.gov (United States)

    Manjourides, Justin; Lin, Hsien-Ho; Shin, Sonya; Jeffery, Caroline; Contreras, Carmen; Cruz, Janeth Santa; Jave, Oswaldo; Yagui, Martin; Asencios, Luis; Pagano, Marcello; Cohen, Ted

    2012-01-01

    SUMMARY In most countries with large drug resistant tuberculosis epidemics, only those cases that are at highest risk of having MDRTB receive a drug sensitivity test (DST) at the time of diagnosis. Because of this prioritized testing, identification of MDRTB transmission hotspots in communities where TB cases do not receive DST is challenging, as any observed aggregation of MDRTB may reflect systematic differences in how testing is distributed in communities. We introduce a new disease mapping method, which estimates this missing information through probability–weighted locations, to identify geographic areas of increased risk of MDRTB transmission. We apply this method to routinely collected data from two districts in Lima, Peru over three consecutive years. This method identifies an area in the eastern part of Lima where previously untreated cases have increased risk of MDRTB. This may indicate an area of increased transmission of drug resistant disease, a finding that may otherwise have been missed by routine analysis of programmatic data. The risk of MDR among retreatment cases is also highest in these probable transmission hotspots, though a high level of MDR among retreatment cases is present throughout the study area. Identifying potential multidrug resistant tuberculosis (MDRTB) transmission hotspots may allow for targeted investigation and deployment of resources. PMID:22401962

  9. A Fatal Case of Multidrug Resistant Acinetobacter Necrotizing Fasciitis: The Changing Scary Face of Nosocomial Infection

    Directory of Open Access Journals (Sweden)

    Nupur Sinha

    2014-01-01

    Full Text Available Necrotizing fasciitis is an uncommon soft-tissue infection, associated with high morbidity and mortality. Early recognition and treatment are crucial for survival. Acinetobacter baumannii is rarely associated with necrotizing fasciitis. Wound infections due to A. baumannii have been described in association with severe trauma in soldiers. There are only sporadic reports of monomicrobial A. baumannii necrotizing fasciitis. We report a unique case of monomicrobial necrotizing fasciitis caused by multidrug resistant (MDR A. baumannii, in absence of any preceding trauma, surgery, or any obvious breech in the continuity of skin or mucosa. A 48-year-old woman with history of HIV, asthma, hypertension, and tobacco and excocaine use presented with acute respiratory failure requiring mechanical ventilation. She was treated for pneumonia for 7 days and was successfully extubated. All septic work-up was negative. Two days later, she developed rapidly spreading nonblanching edema with bleb formation at the lateral aspect of right thigh. Emergent extensive debridement and fasciotomy were performed. Operative findings and histopathology were consistent with necrotizing fasciitis. Despite extensive debridement, she succumbed to septic shock in the next few hours. Blood, wound, and tissue cultures grew A. baumannii, sensitive only to amikacin and polymyxin. Histopathology was consistent with necrotizing fasciitis.

  10. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    Energy Technology Data Exchange (ETDEWEB)

    Piwnica-Worms, D.; Vallabhaneni, V.R. [Washington Univ. Medical School, St. Louis, MO (United States); Kronauge, J.F. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  11. A combination of baseline plasma immune markers can predict therapeutic response in multidrug resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Selena Ferrian

    Full Text Available To identify plasma markers predictive of therapeutic response in patients with multidrug resistant tuberculosis (MDR-TB.Fifty HIV-negative patients with active pulmonary MDR-TB were analysed for six soluble analytes in plasma at the time of initiating treatment (baseline and over six months thereafter. Patients were identified as sputum culture positive or negative at baseline. Culture positive patients were further stratified by the median time to sputum culture conversion (SCC as fast responders (< 76 days or slow responders (≥ 76 days. Chest X-ray scores, body mass index, and sputum smear microscopy results were obtained at baseline.Unsupervised hierarchical clustering revealed that baseline plasma levels of IP-10/CXCL10, VEGF-A, SAA and CRP could distinguish sputum culture and cavitation status of patients. Among patients who were culture positive at baseline, there were significant positive correlations between plasma levels of CRP, SAA, VEGF-A, sIL-2Rα/CD40, and IP-10 and delayed SCC. Using linear discriminant analysis (LDA and Receiver Operating Curves (ROC, we showed that a combination of MCP-1/CCL2, IP-10, sIL-2Rα, SAA, CRP and AFB smear could distinguish fast from slow responders and were predictive of delayed SCC with high sensitivity and specificity.Plasma levels of specific chemokines and inflammatory markers measured before MDR-TB treatment are candidate predictive markers of delayed SCC. These findings require validation in a larger study.

  12. Characterization of Multidrug Resistant ESBL-Producing Escherichia coli Isolates from Hospitals in Malaysia

    Directory of Open Access Journals (Sweden)

    King-Ting Lim

    2009-01-01

    Full Text Available The emergence of Escherichia coli that produce extended spectrum β-lactamases (ESBLs and are multidrug resistant (MDR poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics. PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5′CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD, repetitive extragenic palindromes (REPs, and enterobacterial repetitive intergenic consensus (ERIC. These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.

  13. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Djeussi, Doriane E; Noumedem, Jaurès A K; Seukep, Jackson A; Fankam, Aimé G; Voukeng, Igor K; Tankeo, Simplice B; Nkuete, Antoine H L; Kuete, Victor

    2013-07-10

    In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes.

  14. The overexpression of MRP4 is related to multidrug resistance in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhonghui He

    2015-01-01

    Full Text Available Doxorubicin (Adriamycin, ADM is an antimitotic drug used in the treatment of a wide range of malignant tumors, including acute leukemia, lymphoma, osteosarcoma, breast cancer, and lung cancer. Multidrug resistance-associated proteins (MRPs are members of a superfamily of ATP-binding cassette (ABC transporters, which can transport various molecules across extra- and intra-cellular membranes. The aim of this study was to investigate whether there was a correlation between MRP4 and primary ADM resistance in osteosarcoma cells. In this paper, we chose the human osteosarcoma cell line MG63, ADM resistant cell line MG63/DOX, and the patient′s primary cell GSF-0686. We checked the ADM sensitivity and cytotoxicity of all the three cells by cell proliferation assay. The intracellular drug concentrations were measured by using LC-MS/MS. We also examined MRP4 gene expression by RT-PCR and Western Blot. We found that the intracellular ADM concentration of the parent osteosarcoma cell line MG63 was higher than the ADM resistant osteosarcoma MG63/DOX cell line or the GSF-0686 cell after ADM treatment (P < 0.05. In addition, MRP4 mRNA and protein levels in ADM resistant osteosarcoma cells were higher than in MG63 cell (P < 0.05. Taking together, this work suggests that overexpression of MRP4 may confer ADM resistance in osteosarcoma cells.

  15. Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent

    Science.gov (United States)

    Wen, Liang; Liang, Chao; Chen, Enjiang; Chen, Wei; Liang, Feng; Zhi, Xiao; Wei, Tao; Xue, Fei; Li, Guogang; Yang, Qi; Gong, Weihua; Feng, Xinhua; Bai, Xueli; Liang, Tingbo

    2016-01-01

    Hepatocellular carcinoma (HCC) is notoriously refractory to chemotherapy because of its tendency to develop multi-drug resistance (MDR), whose various underlying mechanisms make it difficult to target. The calcium signalling pathway is associated with many cellular biological activities, and is also a critical player in cancer. However, its role in modulating tumour MDR remains unclear. In this study, stimulation by doxorubicin, hypoxia and ionizing radiation was used to induce MDR in HCC cells. A sustained aggregation of intracellular calcium was observed upon these stimuli, while inhibition of calcium signalling enhanced the cells’ sensitivity to various drugs by attenuating epithelial-mesenchymal transition (EMT), Hif1-α signalling and DNA damage repair. The effect of calcium signalling is mediated via transient receptor potential canonical 6 (TRPC6), a subtype of calcium-permeable channel. An in vivo xenograft model of HCC further confirmed that inhibiting TRPC6 enhanced the efficacy of doxorubicin. In addition, we deduced that STAT3 activation is a downstream signalling pathway in MDR. Collectively, this study demonstrated that the various mechanisms regulating MDR in HCC cells are calcium dependent through the TRPC6/calcium/STAT3 pathway. We propose that targeting TRPC6 in HCC may be a novel antineoplastic strategy, especially combined with chemotherapy. PMID:27011063

  16. Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance.

    Science.gov (United States)

    Kieboom, J; de Bont, J

    2001-01-01

    The authors previously described srpABC, an operon involved in proton-dependent solvent efflux in the solvent-tolerant Pseudomonas putida S12. Recently, it was shown that organic solvents and not antibiotics induce this operon. In the present study, the authors characterize a new efflux pump, designated ArpABC, on the basis of two isolated chloramphenicol-sensitive transposon mutants. The arpABC operon is involved in the active efflux of multiple antibiotics, such as tetracycline, chloramphenicol, carbenicillin, streptomycin, erythromycin and novobiocin. The deduced amino acid sequences encoded by the three genes involved show a striking resemblance to proteins of the resistance/nodulation/cell division family, which are involved in both organic solvent and multiple drug efflux. These findings demonstrate that ArpABC is highly homologous to the MepABC and TtgABC efflux systems for organic solvents and multiple antibiotics. However, ArpABC does not contribute to organic solvent tolerance in P. putida S12 but is solely involved in multidrug resistance.

  17. Monoterpene isolated from the essential oil of Trachyspermum ammi is cytotoxic to multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus strains.

    Science.gov (United States)

    Hosseinkhani, Faride; Jabalameli, Fereshteh; Banar, Maryam; Abdellahi, Nafiseh; Taherikalani, Morovat; Leeuwen, Willem B van; Emaneini, Mohammad

    2016-04-01

    The aim of this study was to determine whether an herbal extract containing monoterpene exhibited activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from clinical infection samples. The essential oil of Trachyspermum ammi (L.) Sprague ex Turrill (Apiaceae) fruit was extracted by hydrodistillation. Fruit residues were treated with hydrochloric acid and re-hydrodistilled to obtain volatile compounds. Compounds in the distilled oil were identified using gas-chromatography (GC) and GC-mass spectrometry (MS). The antibiotic susceptibility of all bacterial isolates was analyzed using both the disc diffusion method and determination of the minimum inhibitory concentration (MIC). The sensitivity of antibiotic-resistant isolates to essential oil was also determined by using the disc diffusion method and MIC determination. Of 26 clinical isolates, 92% were multidrug-resistant (MDR). Aromatic monoterpenes (thymol, paracymene, and gamma-terpinene) were the major (90%) components of the oil. Growth of S. aureus strains was successfully inhibited by the oil, with an inhibitory zone diameter (IZD) between 30-60mm and MIC Trachyspermum ammi, which contains monoterpene, has good antibacterial potency. Monoterpenes could thus be incorporated into antimicrobial ointment formulas in order to treat highly drug-resistant S. aureus infections. Our findings also underscore the utility of research on natural products in order to combat bacterial multidrug resistance.

  18. Modulation of Multidrug Resistance Gene Expression by Coumarin Derivatives in Human Leukemic Cells

    Science.gov (United States)

    Kubrak, Tomasz; Bogucki, Jacek; Galkowski, Dariusz; Kaczmarczyk, Robert; Feldo, Marcin; Cioch, Maria; Kocki, Janusz

    2017-01-01

    The presence of multidrug resistance (MDR) in tumor cells is considered as the major cause of failure of cancer chemotherapy. The mechanism responsible for the phenomenon of multidrug resistance is explained, among others, as overexpression of membrane transporters primarily from the ABC family which actively remove cytostatics from the tumor cell. The effect of 20 coumarin derivatives on the cytotoxicity and expression of MDR1, MRP1, BCRP, and LRP genes (encoding proteins responsible for multidrug resistance) in cancer cells was analyzed in the study. The aim of this research included determination of IC10 and IC50 values of selected coumarin derivatives in the presence and absence of mitoxantrone in leukemia cells and analysis of changes in the expression of genes involved in multidrug resistance: MDR1, MRP, LRP, and BCRP after 24-hour exposure of the investigated cell lines to selected coumarins in the presence and absence of mitoxantrone in IC10 and IC50 concentrations. The designed research was conducted on 5 cell lines derived from the human hematopoietic system: CCRF/CEM, CEM/C1, HL-60, HL-60/MX1, and HL-60/MX2. Cell lines CEM/C1, HL-60/MX1, and HL-60/MX2 exhibit a multidrug resistance phenotype. PMID:29387293

  19. Multidrug resistant Acinetobacter baumannii in veterinary medicine--emergence of an underestimated pathogen?

    Science.gov (United States)

    Müller, Stefanie; Janssen, Traute; Wieler, Lothar H

    2014-01-01

    The proportion of multidrug resistant bacteria causing infections in animals has continuously been increasing. While the relevance of ESBL (extended spectrum beta-lactamase)-producing Enterobacteriaceae spp. and MRSA (methicillin resistant Staphylococcus aureus) is unquestionable, knowledge about multidrug resistant Acinetobacter baumannii in veterinary medicine is scarce. This is a worrisome situation, as A. baumannii are isolated from veterinary clinical specimens with rising frequency. The remarkable ability of A. baumannii to develop multidrug resistance and the high risk of transmission are known in human medicine for years. Despite this, data regarding A. baumannii isolates of animal origin are missing. Due to the changing role of companion animals with closer contact between animal and owner, veterinary intensive care medicine is steadily developing. It can be assumed that the number of "high risk" patients with an enhanced risk for hospital acquired infections will be rising simultaneously. Thus, development and spread of multidrug resistant pathogens is envisioned to rise. It is possible, that A. baumannii will evolve into a veterinary nosocomial pathogen similar to ESBL-producing Enterobacteriaceae and MRSA. The lack of attention paid to A. baumannii in veterinary medicine is even more worrying, as first reports indicate a transmission between humans and animals. Essential questions regarding the role of livestock, especially as a potential source of multidrug resistant isolates, remain unanswered. This review summarizes the current knowledge on A. baumannii in veterinary medicine for the first time. It underlines the utmost significance of further investigations of A. baumannii animal isolates, particularly concerning epidemiology and resistance mechanisms.

  20. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  1. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  2. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Xiang-hua Hou

    2015-09-01

    Full Text Available Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38 and class II integrons (10/38. All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX’ and aadA1 genes. β-lactam resistance was conferred through blaSHV (22/38, blaTEM (10/38, and blaCTX-M (7/38. The highly conserved blaKPC-2 (37/38 and blaOXA-23(1/38 alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38 and the plasmid-mediated qnrB gene (13/38 were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  3. Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Directory of Open Access Journals (Sweden)

    Beieler Alison M

    2009-02-01

    Full Text Available Abstract Introduction Multidrug-resistant Acinetobacter baumannii has become a significant cause of healthcare-associated infections, but few reports have addressed Acinetobacter baumannii infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants. Case presentation The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive Enterococcus and Acinetobacter baumannii (sensitive only to amikacin and imipenem. The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive Enterococcus and coagulase-negative Staphylococcus but no multidrug-resistant Acinetobacter baumannii. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem. Conclusion We describe the successful treatment of an acute infection from multidrug-resistant Acinetobacter baumannii with debridement and retention of the total hip arthroplasty, using

  4. Plasmid-Encoded Multidrug Resistance of Salmonella typhi and some Enteric Bacteria in and around Kolkata, India: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Nishith Kumar Pal

    2005-02-01

    Full Text Available The present study investigates the occurrence of R-plasmid in Salmonella typhi isolates from enteric fever cases in and around Kolkata (1991-2001, India following in vitro conjugation experiments, isolation of plasmid DNAs and agarose gel electrophoretic analysis. The multidrug resistant (MDR S. typhi strains contained a transferable plasmid conferring resistance to ampicillin, chloramphenicol, cotrimoxazole and tetracycline. The plasmid encoding ACCoT-resistance of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris were conjugative and co-migrated with the plasmid of MDR S. typhi isolates. The antibiotic sensitive S. typhi isolates did not contain any plasmid. Thus the findings of the present study confirmed the instability of the R-plasmid in S. typhi, and that the antibiotic sensitive S. typhi strains acquired the R-plasmid from other enteric bacteria such as E. coli, K. pneumoniae and P.vulgaris to undergo a suitable adaptation for survival in the changing antibiotic environment.

  5. Circumvention of tumor multidrug resistance by a new annonaceous acetogenin: atemoyacin-B.

    Science.gov (United States)

    Fu, L W; Pan, Q C; Liang, Y J; Huang, H B

    1999-05-01

    To explore the effect of atemoyacin-B (Ate) on overcoming multidrug resistance (MDR). Bullatacin (Bul) was used as a positive control. Cytotoxic effects of Bul and Ate were studied with cell culture of human MDR breast adenocarcinoma cells, MCF-7/Dox and human KBv200 cells, and their parental sensitive cell lines MCF-7 and KB. Cytotoxicity was determined by tetrazolium (MTT) assay. The function of P-glycoprotein (P-gp) was examined by Fura 2-AM assay. Cellular accumulation of doxorubicin (Dox) was determined by fluorescence spectrophotometry. Apoptosis was measured by flow cytometry. IC50 of Ate for MCF-7/Dox, MCF-7, KBv200, and KB cells were 122, 120, 1.34, and 1.27 nmol.L-1, respectively. IC50 of Bul for MCF-7/Dox, MCF-7, KBv200, and KB cells were 0.60, 0.59, 0.04, and 0.04 nmol.L-1, respectively. The cytotoxicities of Bul and Ate to MDR cells were similar to those to parental sensitive cells. Bul and Ate markedly increased cellular Fura-2 and Dox accumulation in MCF-7/Dox cells, but not in MCF-7 cells. The rates of apoptosis in MDR cells were similar to those in sensitive cells induced by Ate. There was no cross-resistance of P-gp positive MCF-7/Dox and KBv200 cell lines to Bul and Ate as compared with their sensitive P-gp negative MCF-7 and KB cell lines. The mechanism of the circumvention of MDR was associated with the decrease of P-gp function and the increase of cellular drug accumulation in MDR cells.

  6. Draft genome sequence of a multidrug-resistant Chryseobacterium indologenes isolate from Malaysia

    Directory of Open Access Journals (Sweden)

    Choo Yee Yu

    2016-03-01

    Full Text Available Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000. Keywords: Chryseobacterium indologenes, Genome, Multi-drug resistant, blaIND, Next generation sequencing

  7. Current Status on Marine Products with Reversal Effect on Cancer Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Huiqin Guo

    2012-10-01

    Full Text Available The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp, ABCC1/multidrug resistance protein 1 (MRP1 and ABCG2/breast cancer resistance protein (BCRP. These transporters are part of the ATP-binding cassette (ABC superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be blocked by various drugs such as verapamil (calcium channel blocker and cyclosporin A (immunosuppressive agent, etc. These compounds are called MDR modulators or reversals. This review highlights several marine natural products with reversal effect on multidrug resistance in cancer, including agosterol A, ecteinascidin 743, sipholane triterpenoids, bryostatin 1, and welwitindolinones.

  8. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA.

    Science.gov (United States)

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-09-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.

  9. The different regulatory effects of p53 status on multidrug resistance are determined by autophagy in ovarian cancer cells.

    Science.gov (United States)

    Kong, Dejuan; Ma, Shumei; Liang, Bing; Yi, Heqing; Zhao, Yinlong; Xin, Rui; Cui, Li; Jia, Lili; Liu, Xin; Liu, Xiaodong

    2012-06-01

    Multidrug resistance (MDR) has become an obstacle for chemotherapy of cancer. p53 is reported to participate in the regulation of MDR, but the association between p53 status and MDR are complicated and conditional. It has been verified that apoptosis is not the only mechanism for MDR regulation by p53, the roles of autophagy in MDR is less studied. Human ovarian carcinoma cell lines SKOV3 and multidrug resistant phenotype SKVCR cells were used and wild-type p53 (wt p53) and mutant 175H constructs were introduced into cells to establish cell models with different p53 status by gene engineering, the sensitivity to vincristine (VCR), cisplatin (DDP), pirarubicin (THP) and etoposide (VP-16) were detected by MTT assay, Western blot and quantitative real-time PCR were used to detect the expression of protein and mRNA, especially, monodansylcadaverine (MDC) staining was used for autophagy rate, Hoechst 33342/propidium iodide (PI) were used to assess apoptosis and necrosis. SKVCR cells induced by VCR shown overexpression of P-glycoprotein (P-gp) and MDR, and also displayed an enhanced autophagy compared with parental SKOV3. Wt p53 and 175H has no influence on drug sensitivity in SKOV3, while both sensitized SKVCR cells to VCR, THP and VP-16, especially 175H. The introduction of wt p53-induced apoptosis only, while 175H trigged autophagic cell death, necrosis and apoptosis so as to reverse the MDR. The enhancement of autophagy in MDR cells allows to survive during chemotherapy stress, autophagy plays important role in wt p53 and mutant p53-immediated MDR. The different influence of p53 status on drug sensitivity hint the individual treatment strategies based on p53 status in patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhou, Xianguang [National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016 (China); Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Wang, Jiandong [Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Longjiang [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Teng, Zhaogang, E-mail: tzg@fudan.edu.cn [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Lu, Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2015-03-30

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  11. Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria.

    Science.gov (United States)

    Mahfoud, Maysa; Al Najjar, Mona; Hamzeh, Abdul Rezzak

    2015-02-19

    Pseudomonas aeruginosa represents a serious clinical challenge due to its frequent involvement in nosocomial infections and its tendency towards multidrug resistance. This study uncovered antibiotic susceptibility patterns in 177 isolates from inpatients in three key hospitals in Aleppo, the largest city in Syria. Exceptionally low susceptibility to most routinely used antibiotics was uncovered; resistance to ciprofloxacin and gentamicin was 64.9% and 70.3%, respectively. Contrarily, susceptibility to colistin was the highest (89.1%). Multidrug resistance was rife, found at a rate of 53.67% among studied P. aeruginosa isolates.

  12. Health system delay in treatment of multidrug resistant tuberculosis patients in Bangladesh.

    Science.gov (United States)

    Rifat, Mahfuza; Hall, John; Oldmeadow, Christopher; Husain, Ashaque; Milton, Abul Hasnat

    2015-11-16

    Bangladesh is one of the 27 high burden countries for multidrug resistant tuberculosis listed by the World Health Organization. Delay in multidrug resistant tuberculosis treatment may allow progression of the disease and affect the attempts to curb transmission of drug resistant tuberculosis. The main objective of this study was to investigate the health system delay in multidrug resistant tuberculosis treatment in Bangladesh and to explore the factors related to the delay. Information related to the delay was collected as part of a previously conducted case-control study. The current study restricts analysis to patients with multidrug resistant tuberculosis who were diagnosed using rapid diagnostic methods (Xpert MTB/RIF or the line probe assay). Information was collected by face-to-face interviews and through record reviews from all three Government hospitals providing multidrug resistant tuberculosis services, from September 2012 to April 2013. Multivariable regression analysis was performed using Bootstrap variance estimators. Definitions were as follows: Provider delay: time between visiting a provider for first consultation on MDR-TB related symptom to visiting a designated diagnostic centre for testing; Diagnostic delay: time from date of diagnostic sample provided to date of result; Treatment initiation delay: time between the date of diagnosis and date of treatment initiation; Health system delay: time between visiting a provider to start of treatment. Health system delay was derived by adding provider delay, diagnostic delay and treatment initiation delay. The 207 multidrug resistant tuberculosis patients experienced a health system delay of median 7.1 weeks. The health system delay consists of provider delay (median 4 weeks), diagnostic delay (median 5 days) and treatment initiation delay (median 10 days). Health system delay (Coefficient: 37.7; 95 %; CI 15.0-60.4; p 0.003) was associated with the visit to private practitioners for first consultation

  13. PREVALENCE OF MULTI-DRUG RESISTANT BACTERIAL GASTROENTERITIS IN KARACHI, PAKISTAN

    Directory of Open Access Journals (Sweden)

    Sadia Zafar

    2015-06-01

    Full Text Available Multidrug resistant Escherichia coli (E. coli associated diarrheal diseases are the most prevalent health problems in Karachi, Pakistan. The main objective of the present study was to evaluate the clinical experiences of individuals suffered from gastroenteritis and also to determine the prevailing sensitivity / resistance pattern of E. coli among the population of Karachi. A cross-sectional retrospective survey was conducted by distributing questionnaires to a total of 150 individuals in December, 2014. The data collected from the questionnaire was statistically analyzed. Majority of the surveyed population was found to be infected by gastroenteritis lately or sometime in their life. On asking the questions about the possible reasons for being infected, it was revealed that the use of untreated water was the major source for the occurrence of the infection. Diagnostic tests were not carried out in most of the cases. Evaluation of questionnaire also indicated that physicians prescribed 2nd line of drug therapy due to the failure of treatment by cephalosporins, quinolones and fosfomycin. The susceptibility pattern of E. coli against selective antimicrobials agents was determined by using disc diffusion method. A total of 50 non-duplicate isolates of bacteria were collected from clinical laboratory of tertiary care hospital. The results were evaluated according to the guidelines of Clinical and Laboratory Standards Institute (CLSI. The findings of sensitivity determination supported the retrospective data indicating that cefexime and ceftriaxone failed to inhibit the growth of 80% of the bacterial sample while ciprofloxacin was also found to be less effective since 65% of the isolates showed resistance to it. A 50% resistance pattern was observed against cefoperazone and sulbactam. The most effective antibiotic against E. coli was found to be colistin (100% sensitive followed by amikacin (90%, merepenem (90% and gentamicin (70%. Hence, the in

  14. Inhibitory activity of garlic (Allium sativum extract on multidrug-resistant Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Fani M

    2007-01-01

    Full Text Available Garlic ( Allium sativum extract has been known to have inhibitory activity on various pathogenic bacteria, viruses and fungi. The objective of present investigation was to study in vitro inhibitory activity of garlic extract on multidrug-resistant (MDR strains of Streptococcus mutans isolated from human carious teeth. Filter sterilized aqueous extract of garlic was prepared and used in the present study. For isolation of S. mutans , extracted human carious teeth were cultured in Todd-Hewit broth and Mitis-Salivarius-Bacitracin agar. S. mutans was characterized by colony morphology, biochemical tests and other conventional bacteriological procedures. Disk sensitivity tests and broth dilution methods were used to determine antibiotic sensitivity profile and inhibitory activity of garlic extract on S. mutans isolated from carious teeth. Of 105 carious teeth tested, 92 (87.6% isolates of S. mutans were recovered, among which 28 (30.4% were MDR since they were resistant to four or more antibiotics. The highest rate of resistance was observed for tetracycline (30.4% and least resistance (0% to teichoplanin and vancomycin while 22.8% and 23.9% of the isolates were resistant to penicillin and amoxicillin, respectively. Chlorhexidine minimum inhibitory concentration (MIC for MDR and non-MDR S. mutans varied from 2 to 16 µg ml−1 and from 0.25 to 1 µg ml−1 , respectively ( P < 0.05. All isolates, MDR and non-MDR of S. mutans were sensitive to garlic extract with the MIC ranging from 4 to 32 mg ml−1 . Considering in vitro data obtained in the present study, mouthwashes or toothpaste containing optimum concentration of garlic extract could be used for prevention of dental caries.

  15. Induction of apoptosis and reversal of permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM by ginsenoside Rh2

    Science.gov (United States)

    Zhang, Hui; Gong, Jian; Zhang, Huilai; Kong, Di

    2015-01-01

    Multidrug resistance is a phenomenon that cancer cells develop a cross-resistant phenotype against several unrelated drugs, and permeability glycoprotein derived from the overexpression of multidrug resistance gene 1 has been taken as the most significant cause of multidrug resistance. In the present study, ginsenoside Rh2 was used to reverse permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM cell line. Effects of ginsenoside Rh2 on the apoptotic process and caspase-3 activity of MCF-7 and MCF-7/ADM cell lines were determined using flow cytometry and microplate reader. Methyl thiazolyl tetrazolium test was conducted to assess the IC50 values of ginsenoside Rh2 and adriamycin on MCF-7 and MCF-7/ADM cultures; Rhodamin 123 assay was used to assess the retention of permeability glycoprotein after ginsenoside Rh2 treatment; flow cytometry and real time polymerase chain reaction were used to determine the expression levels of permeability glycoprotein and multidrug resistance gene 1 in drug-resistant cells and their parental cells after exposure to ginsenoside Rh2. The results showed that ginsenoside Rh2, except for inducing apoptosis, had the ability to reverse multidrug resistance in MCF-7/ADM cell line without changing the expression levels of permeability glycoprotein and multidrug resistance gene 1. Our findings provided some valuable information for the application of ginsenoside Rh2 in cancer therapy, especially for multidrug resistance reversal in clinic. PMID:26191135

  16. Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery.

    Science.gov (United States)

    Cohen, B Eleazar

    2014-01-01

    All cells need to protect themselves against the osmotic challenges of their environment by maintaining low permeability to ions across their cell membranes. This is a basic principle of cellular function, which is reflected in the interactions among ion transport and drug efflux genes that have arisen during cellular evolution. Thus, upon exposure to pore-forming antibiotics such as amphotericin B (AmB) or daptomycin (Dap), sensitive cells overexpress common resistance genes to protect themselves from added osmotic challenges. These genes share pathway interactions with the various types of multidrug resistance (MDR) transporter genes, which both preserve the native lipid membrane composition and at the same time eliminate disruptive hydrophobic molecules that partition excessively within the lipid bilayer. An increased understanding of the relationships between the genes (and their products) that regulate osmotic stress responses and MDR transporters will help to identify novel strategies and targets to overcome the current stalemate in drug discovery.

  17. Photochemical internalization of therapeutic macromolecular agents: a novel strategy to kill multidrug-resistant cancer cells.

    Science.gov (United States)

    Selbo, Pål K; Weyergang, Anette; Bonsted, Anette; Bown, Stephen G; Berg, Kristian

    2006-11-01

    Drug resistance is a major problem for chemotherapy. Entrapment of anticancer drugs in endolysosomal compartments or active extrusions by plasma membrane proteins of the ATP-binding cassette (ABC) superfamily are important resistance mechanisms. This study evaluated photochemical internalization (PCI) of membrane-impermeable macromolecules that are not the target of ABC drug pumps for treating multidrug-resistant (MDR) cancer cells. We used the drug-sensitive uterine fibrosarcoma cell line MES-SA and its MDR, P-glycoprotein (P-gp)-overexpressing derivative MES-SA/Dx5 with the photosensitizer disulfonated meso-tetraphenylporphine (TPPS(2a)) and broad spectrum illumination. The PCI of doxorubicin, the ribosome-inactivating protein gelonin and adenoviral transduction were assessed in both cell lines, together with the uptake and excretion of TPPS(2a) and of two fluid phase markers easily detectable by fluorescence [lucifer yellow (LY) and fluorescein isothiocyanate (FITC)-dextran], as a model of gelonin uptake. Both cell lines were resistant to PCI of doxorubicin, but equally sensitive to PCI of gelonin, even though the endocytosis rates of LY and FITC-dextran were significantly lower in the MDR cells. In control studies, MES-SA/Dx5 cells were more resistant to photodynamic therapy (TPPS(2a) + light only). This was not mediated by P-gp, as there were no differences in the uptake and efflux of TPPS(2a) between the cell lines. After adenoviral infection, PCI enhanced gene delivery in both cell lines. In conclusion, PCI of macromolecular therapeutic agents that are not targets of P-gp is a novel therapeutic strategy to kill MDR cancer cells.

  18. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Duan

    2009-10-01

    Full Text Available Multidrug resistance (MDR is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1 but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 microM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.

  19. Effects of alpha-adrenoceptor antagonist doxazosin on MDR1-mediated multidrug resistance and transcellular transport.

    Science.gov (United States)

    Takara, Kohji; Sakaeda, Toshiyuki; Kakumoto, Mikio; Tanigawara, Yusuke; Kobayashi, Hironao; Okumura, Katsuhiko; Ohnishi, Noriaki; Yokoyama, Teruyoshi

    2009-01-01

    The purpose of this study is to examine the effects of doxazosin, an alpha-adrenoceptor antagonist, on P-glycoprotein/MDR1-mediated multidrug resistance (MDR) and the transport of anticancer drugs. The effects of doxazosin, prazosin, and terazosin on MDR1-mediated MDR were assessed in human cervical carcinoma HeLa cells and the MDR1-overexpressing derivative Hvrl00-6, established by stepwise increases of the vinblastine concentration in the culture medium. The effects of doxazosin on the transcellular transport and intracellular accumulation of [3H]vinblastine, [3H]daunorubicin, and [3H]digoxin, all MDR1 substrates, were evaluated using LLC-GA5-COL150 cell monolayers, established by transfection of human MDR1 cDNA into porcine kidney epithelial LLC-PK1 cells. The sensitivity to vinblastine and paclitaxel of Hvrl00-6 cells was increased at 3.4- and 17.5-fold, respectively, by the addition of 1 microM doxazosin, whereas prazosin and terazosin had weaker or no such effects. Prazosin at 1 microM had a reversal effect on the sensitivity to vinblastine, whereas terazosin had no effect. In transport experiments, doxazosin concentration dependently increased the apical-to-basal transport of radiolabeled drugs in LLC-GA5-COL150 cells, but did not show remarkable effects on the basal-to-apical transport. In addition, doxazosin restored the intracellular accumulation in a concentration-dependent manner in LLC-GA5-COL150 cells. Doxazosin may partly reverse MDR by inhibiting MDR1-mediated transport, making it a candidate lead compound in the development of a reversing agent for MDR.

  20. Inhibitory activity of garlic (Allium sativum) extract on multidrug-resistant Streptococcus mutans.

    Science.gov (United States)

    Fani, M M; Kohanteb, J; Dayaghi, M

    2007-01-01

    Garlic (Allium sativum) extract has been known to have inhibitory activity on various pathogenic bacteria, viruses and fungi. The objective of present investigation was to study in vitro inhibitory activity of garlic extract on multidrug-resistant (MDR) strains of Streptococcus mutans isolated from human carious teeth. Filter sterilized aqueous extract of garlic was prepared and used in the present study. For isolation of S. mutans, extracted human carious teeth were cultured in Todd-Hewit broth and Mitis-Salivarius-Bacitracin agar. S. mutans was characterized by colony morphology, biochemical tests and other conventional bacteriological procedures. Disk sensitivity tests and broth dilution methods were used to determine antibiotic sensitivity profile and inhibitory activity of garlic extract on S. mutans isolated from carious teeth. Of 105 carious teeth tested, 92 (87.6%) isolates of S. mutans were recovered, among which 28 (30.4%) were MDR since they were resistant to four or more antibiotics. The highest rate of resistance was observed for tetracycline (30.4%) and least resistance (0%) to teichoplanin and vancomycin while 22.8% and 23.9% of the isolates were resistant to penicillin and amoxicillin, respectively. Chlorhexidine minimum inhibitory concentration (MIC) for MDR and non-MDR S. mutans varied from 2 to 16 microg ml(-1) and from 0.25 to 1 microg ml(-1), respectively (Pgarlic extract with the MIC ranging from 4 to 32 microg ml(-1). Considering in vitro data obtained in the present study, mouthwashes or toothpaste containing optimum concentration of garlic extract could be used for prevention of dental caries.

  1. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-01-01

    Full Text Available Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE. Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33% produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and

  2. [Role of SPHK1 regulates multi-drug resistance of small cell lung cancer 
and its clinical significance].

    Science.gov (United States)

    Yang, Lan; Hu, Honglin; Deng, Ying; Bai, Yifeng

    2014-11-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Approximately 15% of all histological types consist of small cell lung cancer (SCLC). Chemotherapy is one of the major treatment method. Though the current first-line standard chemotherapy regimen for SCLC is active in most SCLC cases, however the disease recurs shortly after the first successful treatment with multi-drug resistance (MDR) phenotype. Our previously study showed that SPHK1 was associated with MDR in SCLC. The aim of this study is to investigate the role of sphingosine kinase 1 (SPHK1) showed in small cell lung multi-drug resistance. Firstly, the analysis of QRT-PCR and Western blot were used to study differential expression of SPHK1 from mRNA and protein levels in both the H69 and H69AR cell lines. Then, Downregulation of SPHK1 by transfection with siRNA in H69AR. Moreover, the sensitivities of cells to chemotherapy drugs such as ADM, DDP, VP-16 were detected by CCK8 assay. The change of cell cycle and apoptosis rate were detected by flow cytometry. Meanwhile, expression of SPHK1 in clinical specimens were detected by QT-PCR and immunohistochemistry. Relation of SPHK1 expression with clinicopathological features and prognosis of patients was studied. The expression of SPHK1 was significantly decreased in H69AR cells that in the H69 cells. The sensitivities of H69AR cells to chemotherapy drugs were increased when up-regulated the expression of SPHK1, enforced SPHK1 expression increased cell apoptosis and the cell cycle arrest in G0/G1 phase in H69AR cells, the expression of SPHK1 was not associated with gender, age, but significantly correlated with clinical stage, chemosensitivity and overall survival (Presistance, SPHK1 may be as potentialtarget gene to evaluate the chemosensitivity and clinical prognostic for SCLC.

  3. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  4. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2007-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  5. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport.

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2007-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  6. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2 (Mrp2-) mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2006-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  7. Multidrug resistance gene expression is controlled by steroid hormones in the secretory epithelium of the uterus

    NARCIS (Netherlands)

    Arceci, R. J.; Baas, F.; Raponi, R.; Horwitz, S. B.; Housman, D.; Croop, J. M.

    1990-01-01

    The multidrug resistance (mdr) gene family has been shown to encode a membrane glycoprotein, termed the P-glycoprotein, which functions as a drug efflux pump with broad substrate specificity. This multigene family is expressed in a tissue-specific fashion in a wide variety of normal and neoplastic

  8. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural

  9. Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge

    Directory of Open Access Journals (Sweden)

    Cristian Merchan

    2016-01-01

    Full Text Available We describe a case of Bacteroides fragilis bacteremia associated with paraspinal and psoas abscesses in the United States. Resistance to b-lactam/b-lactamase inhibitors, carbapenems, and metronidazole was encountered despite having a recent travel history to India as the only possible risk factor for multidrug resistance. Microbiological cure was achieved with linezolid, moxifloxacin, and cefoxitin.

  10. Limited Sampling Strategies for Therapeutic Drug Monitoring of Linezolid in Patients With Multidrug-Resistant Tuberculosis

    NARCIS (Netherlands)

    Alffenaar, Jan-Willem C.; Kosterink, Jos G. W.; van Altena, Richard; van der Werf, Tjip S.; Uges, Donald R. A.; Proost, Johannes H.

    Introduction: Linezolid is a potential drug for the treatment of multidrug-resistant tuberculosis but its use is limited because of severe adverse effects such as anemia, thrombocytopenia, and peripheral neuropathy. This study aimed to develop a model for the prediction of linezolid area. under the

  11. Shorter treatment for multidrug-resistant tuberculosis : the good, the bad and the ugly

    NARCIS (Netherlands)

    van Altena, Richard; Akkerman, Onno W.; Alffenaar, Jan-Willem C.; Kerstjens, Huib A. M.; Magis-Escurra, Cecile; Boeree, Martin J.; van Soolingen, Dick; de Lange, Wiel C. M.; Bolhuis, Mathieu S.; Hoefsloot, Wouter; de Vries, Gerard; van der Werf, Tjip S.

    2016-01-01

    We welcome the initiative by the Guideline Development Group (GDG) members to issue the 2016 update of World Health Organization (WHO) treatment guidelines for drug-resistant tuberculosis (TB) [1]. With one in two patients currently failing on treatment for multidrug-resistant (MDR)-TB, primarily as

  12. Challenges in detection and treatment of multidrug resistant tuberculosis patients in Vietnam

    NARCIS (Netherlands)

    Hoang, Thuy Thi Thanh; Nguyen, Nhung Viet; Dinh, Sy Ngoc; Nguyen, Hoa Binh; Cobelens, Frank; Thwaites, Guy; Nguyen, Huong Thien; Nguyen, Anh Thu; Wright, Pamela; Wertheim, Heiman F. L.

    2015-01-01

    Vietnam is ranked 14(th) among 27 countries with high burden of multidrug-resistant tuberculosis (MDR-TB). In 2009, the Vietnamese government issued a policy on MDR-TB called Programmatic Management of Drug-resistant Tuberculosis (PMDT) to enhance and scale up diagnosis and treatment services for

  13. Multidrug-resistant TB in Zambia: review of national data from 2000 to 2011

    NARCIS (Netherlands)

    Kapata, Nathan; Chanda-Kapata, Pascalina; Bates, Matthew; Mwaba, Peter; Cobelens, Frank; Grobusch, Martin P.; Zumla, Alimuddin

    2013-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is posing a great threat to global TB control. The burden in Zambia is not well defined because routine surveillance data are scarce. We reviewed national MDR-TB data for the last decade to inform future public health policy with respect to MDR-TB in Zambia.

  14. Dynamics of Endogenous Intoxication Parameters in Multidrug-Resistant Destructive Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    L.D. Todoriko

    2014-11-01

    The purpose of the study included the evaluation of endogenous intoxication indicators in patients with multi-drug resistant pulmonary tuberculosis with destructive changes depending on the profile of resistance of mycobacteria and determination of their role in the development of systemic inflammatory response.

  15. Surgery as an Adjunctive Treatment for Multidrug-Resistant Tuberculosis : An Individual Patient Data Metaanalysis

    NARCIS (Netherlands)

    Fox, Gregory J.; Mitnick, Carole D.; Benedetti, Andrea; Chan, Edward D.; Becerra, Mercedes; Chiang, Chen-Yuan; Keshavjee, Salmaan; Koh, Won-Jung; Shiraishi, Yuji; Viiklepp, Piret; Yim, Jae-Joon; Pasvol, Geoffrey; Robert, Jerome; Shim, Tae Sun; Shin, Sonya S.; Menzies, Dick; van der Werf, Tjip S.

    2016-01-01

    Background. Medical treatment for multidrug-resistant (MDR)-tuberculosis is complex, toxic, and associated with poor outcomes. Surgical lung resection may be used as an adjunct to medical therapy, with the intent of reducing bacterial burden and improving cure rates. We conducted an individual

  16. Multidrug-resistant Streptococcus pneumoniae isolates from healthy Ghanaian preschool children

    DEFF Research Database (Denmark)

    Dayie, Nicholas Tete Kwaku Dzifa; Arhin, Reuben E.; Newman, Mercy J.

    2015-01-01

    Streptococcus pneumoniae is the cause of high mortality among children worldwide. Antimicrobial treatment and vaccination are used to control pneumococcal infections. In Ghana, data on antimicrobial resistance and the prevalence of multidrug-resistant pneumococcal clones are scarce; hence, the ai...

  17. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  18. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3)

    NARCIS (Netherlands)

    Zelcer, N.; Saeki, T.; Reid, G.; Beijnen, J. H.; Borst, P.

    2001-01-01

    We have characterized the substrate specificity and mechanism of transport of the human multidrug resistance-associated protein 3 (MRP3). A murine fibroblast-like cell line generated from the kidneys of mice that lack Mdr1a/b and Mrp1 was retrovirally transduced with MRP3 cDNA. Stable clones

  19. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  20. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  1. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  2. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    ... after which his condition ameliorated. It is imperative that clinicians involved in treating multi-drug resistant tuberculosis are conversant with the side effects of category IV drugs. Acute psychosis from cycloserine toxicity requires prompt intervention by trained medical personnel using the relevant psychotropic medications.

  3. Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa.

    Science.gov (United States)

    Abdelraouf, Kamilia; Kabbara, Samer; Ledesma, Kimberly R; Poole, Keith; Tam, Vincent H

    2011-06-01

    Multidrug resistance has become a quandary in the treatment of bacterial infections. The effect of resistance mutations and the fitness cost on the pathogenicity of Pseudomonas aeruginosa is not well established. The objective of this study was to examine the impact of multidrug resistance on the fitness and virulence of P. aeruginosa. Fourteen P. aeruginosa strains with various resistance mechanisms were used. In vitro growth of these isolates was investigated in full-strength and 0.25-strength Mueller-Hinton broth (MHB). Exponential growth rates were estimated from serial bacterial burden over 24 h. In vitro growth of two multidrug-resistant strains (PAO1ΔmexRΔoprD and PA9019) was studied when each was grown in co-culture with wild-type strain PAO1. In vivo growth was compared between PAO1 and PAO1ΔmexRΔopD using a murine pneumonia model; virulence over 10 days was studied in six isolates. Significant reduction in growth rate was observed in selected mutants (P resistance mutations were associated with fitness cost in P. aeruginosa, and accumulation of such mutations was associated with a reduction in virulence. However, it was difficult to predict the impact in clinical isolates. Knowledge of multidrug resistance mechanisms and compensatory mutations would likely be helpful.

  4. What do proton motive force driven multidrug resistance transporters have in common?

    NARCIS (Netherlands)

    Mazurkiewicz, P.; Driessen, A.J.M.; Konings, W.N

    2005-01-01

    The extensive progress of genome sequencing projects in recent years has demonstrated that multidrug resistance (MDR) transporters are widely spread among all domains of life. This indicates that they play crucial roles in the survival of organisms. Moreover, antibiotic and chemotherapeutic

  5. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis.

    Science.gov (United States)

    Tutuncu, E Ediz; Kuscu, Ferit; Gurbuz, Yunus; Ozturk, Baris; Haykir, Asli; Sencan, Irfan

    2010-09-01

    The treatment of post-surgical meningitis due to multidrug-resistant (MDR) Acinetobacter baumannii is a therapeutic dilemma. The cases of two patients with MDR A. baumannii meningitis secondary to surgical site infections, successfully treated with combination regimens including tigecycline, are presented. Copyright © 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Colonization with Multidrug-Resistant Bacteria – On the Efficiency of Local Decolonization Procedures

    Science.gov (United States)

    Münch, Julia; Hagen, Ralf Matthias; Müller, Martin; Kellert, Viktor; Wiemer, Dorothea Franziska; Hinz, Rebecca; Schwarz, Norbert Georg; Frickmann, Hagen

    2017-01-01

    The effectiveness of a disinfectant-based decolonization strategy for multidrug-resistant bacteria like extended spectrum β-lactamase (ESBL)-positive Gram-negative bacteria with or without additional fluoroquinolon and carbapenem resistance as well as vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus was assessed. Between 2011 and 2015, 25 patients from Libya, Syria, and the Ukraine with war traumata were treated at the Bundeswehr hospital Hamburg. The patients were heavily colonized and infected with multidrug-resistant bacteria, altogether comprising 371 distinct combinations of pathogens and isolation sites. Local disinfection was assessed for effectiveness regarding successful decolonization of multidrug-resistant bacteria. Altogether, 170 cases of successful decolonization were observed, comprising 95 (55.8%) such events at sampling sites that were accessible to disinfecting procedures. The remaining 75 (44.2%) decolonization events had to be considered as spontaneous. In contrast, 95 out of 172 (55.2%) colonized isolation sites that were accessible to disinfection procedures were successfully decolonized. Patient compliance with the enforced hygiene procedures was associated with decolonization success. Systemic antibiotic therapy did not relevantly affect isolation time. Disinfecting washing moderately supports local decolonization of multidrug-resistant pathogens in comparison with spontaneous decolonization rates if the patients’ compliance with the applied hygiene procedures is ensured. PMID:28690877

  7. Colonization with Multidrug-Resistant Bacteria - On the Efficiency of Local Decolonization Procedures.

    Science.gov (United States)

    Münch, Julia; Hagen, Ralf Matthias; Müller, Martin; Kellert, Viktor; Wiemer, Dorothea Franziska; Hinz, Rebecca; Schwarz, Norbert Georg; Frickmann, Hagen

    2017-06-01

    The effectiveness of a disinfectant-based decolonization strategy for multidrug-resistant bacteria like extended spectrum β-lactamase (ESBL)-positive Gram-negative bacteria with or without additional fluoroquinolon and carbapenem resistance as well as vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus was assessed. Between 2011 and 2015, 25 patients from Libya, Syria, and the Ukraine with war traumata were treated at the Bundeswehr hospital Hamburg. The patients were heavily colonized and infected with multidrug-resistant bacteria, altogether comprising 371 distinct combinations of pathogens and isolation sites. Local disinfection was assessed for effectiveness regarding successful decolonization of multidrug-resistant bacteria. Altogether, 170 cases of successful decolonization were observed, comprising 95 (55.8%) such events at sampling sites that were accessible to disinfecting procedures. The remaining 75 (44.2%) decolonization events had to be considered as spontaneous. In contrast, 95 out of 172 (55.2%) colonized isolation sites that were accessible to disinfection procedures were successfully decolonized. Patient compliance with the enforced hygiene procedures was associated with decolonization success. Systemic antibiotic therapy did not relevantly affect isolation time. Disinfecting washing moderately supports local decolonization of multidrug-resistant pathogens in comparison with spontaneous decolonization rates if the patients' compliance with the applied hygiene procedures is ensured.

  8. The socioeconomic impact of multidrug resistant tuberculosis on patients: results from Ethiopia, Indonesia and Kazakhstan

    NARCIS (Netherlands)

    van den Hof, Susan; Collins, David; Hafidz, Firdaus; Beyene, Demissew; Tursynbayeva, Aigul; Tiemersma, Edine

    2016-01-01

    One of the main goals of the post-2015 global tuberculosis (TB) strategy is that no families affected by TB face catastrophic costs. We revised an existing TB patient cost measurement tool to specifically also measure multi-drug resistant (MDR) TB patients' costs and applied it in Ethiopia,

  9. Pattern of intensive phase treatment outcomes of multi-drug resistant ...

    African Journals Online (AJOL)

    Pattern of intensive phase treatment outcomes of multi-drug resistant tuberculosis in University of Port Harcourt Treatment Centre: a review of records from ... Data on patients' age, sex, HIV status, treatment outcomes were extracted from the hospital book records into a computer data sheet at the UPTH treatment centre.

  10. Expression of multidrug resistance-associated proteins predicts prognosis in childhood and adult acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Plasschaert, SLA; de Bont, ESJM; Boezen, M; vander Kolk, DM; Daenen, SMJG; Faber, KN; Kamps, WA; de Vries, EGE; Vellenga, E

    2005-01-01

    PURPOSE: Patients with acute lymphoblastic leukemia (ALL) are treated with a variety of chemotherapeutic drugs, which can be transported by six multidrug resistance-associated proteins (MRP). These MRPs have strongly overlapping functional activities. The aim of this study was to investigate the

  11. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    van der Paardt, Anne-Fleur; Wilffert, Bob; Akkerman, Onno W.; de Lange, Wiel C. M.; van Soolingen, Dick; Sinha, Bhanu; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs. Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis

  12. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Alsaad, Noor; Wilffert, Bob; van Altena, Richard; de Lange, Wiel C. M.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2014-01-01

    Treatment of multidrug-resistant (MDR) tuberculosis (TB) is challenging because of the high toxicity of second-line drugs and the longer treatment duration than for drug-susceptible TB patients. In order to speed up novel treatment for MDR-TB, we suggest considering expanding the indications of

  13. Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte-derived cells

    NARCIS (Netherlands)

    Roelofsen, H; Vos, TA; Schippers, IJ; Kuipers, F; Moshage, H; Jansen, PLM; Muller, M

    Background & Aims: The multidrug resistance protein (MRP) functions as an organic anion efflux carrier. Recent studies suggest that hepatocytes contain two mrp homologues, named mrp1 and mrp2, localized on the lateral and canalicular membrane, respectively. The aim of this study was to evaluate the

  14. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Yoko Miyasaki

    Full Text Available The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  15. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    OpenAIRE

    Macedo, Ma?ra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB.

  16. Multidrug-resistant viridans streptococcus (MDRVS) osteomyelitis of the mandible successfully treated with moxifloxacin.

    Science.gov (United States)

    Ang, Jocelyn Y; Asmar, Basim I

    2008-05-01

    Multidrug-resistant viridans group streptococcus (MDRVS) strains have emerged as important pathogens. Treatment of MDRVS infections is problematic. The use of fluoroquinolones for treatment of MDRVS osteomyelitis has not been established. We present the first case of MDRVS osteomyelitis of the mandible successfully treated with sequential intravenous then oral moxifloxacin, and review the literature on the subject.

  17. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Science.gov (United States)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  18. Multi-drug resistant tuberculosis in the Netherlands : Personalised treatment and outcome

    NARCIS (Netherlands)

    van Altena, Richard

    2016-01-01

    Tuberculosis (TB) caused by bacilli that are resistant to the two major drugs, rifampicin and isoniazid is defined as Multi-Drug Resistant TB or MDRTB. MDRTB kills around 50% of people affected around the world. In contrast, treatment results of MDR-TB in the Netherlands (1985-2013) have

  19. Multidrug-resistant tuberculosis : long-term treatment outcome in the Netherlands

    NARCIS (Netherlands)

    Geerligs, WA; van Altena, R; de Lange, WCM; van Soolingen, D; van der Werf, TS

    SETTING: Tuberculosis units (Beatrixoord, Haren; and Dekkerswald, Groesbeek) in the Netherlands. OBJECTIVE: TO study the long-term treatment outcome of patients with multidrug-resistant tuberculosis (MDR-TB). DESIGN: Descriptive analysis of all consecutively admitted patients with MDR-TB between 1

  20. Multidrug resistant pneumonia treated with aerosolized amikacin in a patient with acute renal insufficiency.

    Science.gov (United States)

    Bawany, Muhammad Z; Saeed, Bilal; Sodeman, Thomas; Mutgi, Anand; Duggan, Joan M

    2013-01-01

    Multidrug resistant pneumonia is an entity, which is difficult to treat, and in a patient with acute renal insufficiency, it leaves a physician with a handful of antibiotics to be considered. Aerosolized administration of antibiotics is one option that can be contemplated for a patient with acute renal insufficiency to avoid the nephrotoxic effect of the antibiotics.

  1. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2006-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  2. Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia

    NARCIS (Netherlands)

    Sagwa, Evans

    2017-01-01

    Introduction: Multidrug-resistant tuberculosis (MDR-TB), a growing global menace, is seriously undermining the previous successes made in the elimination of TB. MDR-TB treatment takes a long time, is complex, and is frequently associated with the occurrence of adverse drug reactions, some of which

  3. Detection of expression and modulation of multidrug-resistance (MDR) and establishment of a new bioassay

    International Nuclear Information System (INIS)

    Berger, W.

    1993-08-01

    The present thesis deals with the resistance of human malignant cells against cellular toxicity of anticancer drugs, a phenomenon representing one of the major obstacles to successful chemotherapy. One mechanism underlying a cross-resistance to different drugs called multidrug resistance (MDR) is characterized by the expression of an active transport protein (P-glycoprotein), causing decreased intracellular drug retention and cytotoxicity. The main subjects of the present work were to establish different detection methods for MDR and its modulation (by substances blocking activity of P-glycoprotein) including immunological methods (immunocytochemistry, radioimmunoassay), molecular biology (slot-blot analysis, in-situ hybridization) and functional assays (drug-accumulation analysis, drug-cytotoxicity analysis). The methods were evaluated and compared using human and mouse MDR control cell lines and human tumor cell lines established in our laboratory. In cell lines derived from human melanoma - a malignancy insensitive to chemotherapy - expression of P-glycoprotein of relatively low transporting activity was detected by different methods in 8 of 33 cases. Furthermore a new sensitive in vitro assay for the functional detection of MDR was established using the biological features of cytochalasins, a microfilament disrupting substance group. These compounds were shown to be substrates for the P-glycoprotein efflux pump and their effects on cell division (blockade of cytokinesis resulting in multinucleate cells) correlated with MDR-activity of the tested cells. With this new assay P-glycoprotein activity can be demonstrated and analysed over a wide range of resistance against different cytotoxic drugs. Therefore it may by a suitable tool for research and diagnosis in the field of drug resistance

  4. Monitoring in vitro antibacterial efficacy of 26 Indian spices against multidrug resistant urinary tract infecting bacteria.

    Science.gov (United States)

    Rath, Sibanarayan; Padhy, Rabindra N

    2014-09-01

    To screen methanolic extracts of 26 commonly used Indian spices against nine species of uropathogenic bacteria ( Enterococcus faecalis , Staphylococcus aureus , Acinetobacter baumannii , Citrobacter freundii , Enterobacter aerogenes , Escherichia coli , Klebsiella pneumoniae , Proteus mirabilis , and Pseudomonas aeruginosa ), isolated from clinical samples of a tertiary care hospital for antibacterial activity. Bacterial strains were subjected to antibiotic sensitivity testing by Kirby-Bauer's disc diffusion method. Monitoring antibacterial potentiality of spice extracts was done by the agar-well diffusion method with multidrug resistant (MDR) strains of nine uropathogens. The Gram-positive (GP) bacteria E. faecalis and S. aureus were resistant to 16 of the 21 antibiotics used. Among the Gram-negative (GN) bacteria, resistant patterns were A. baumannii and E. aerogenes to 12, C. freundii to 14, E. coli to 12, K. pneumoniae to 10, P. mirabilis to 11, and P. aeruginosa to 15 antibiotics of the 18 antibiotics used. The most effective 15 spices, having at least 25-29 mm as the size of the zone of inhibition, were Allium cepa , Brassica juncea , Cinnamomum tamala , Cinnamomum zeylanicum , Coriandrum sativum , Cuminum cyminum , Curcuma longa , Mentha spicata , Murraya koenigii , Nigella sativa , Papaver somniferum , Piper nigrum , S. aromaticum , Trachyspermum ammi , and Trigonella foenum for at least one of the GP or GN MDR bacterial strains used. Moderate control capacity was registered by nine spices, Curcuma amada , Foeniculum vulgare , Illicium verum , Mentha spicata , Papaver somniferum , Syzygium aromaticum , Trachyspermum ammi , Trigonella foenum , and Zingiber officinale . However, the best two spices for controlling all the pathogens used were C. zeylanicum and C. longa , with the highest value of 29 mm as the inhibition zone size. The most effective and unique 16 spice plants recorded for the in vitro control of MDR uropathogens could further be pursued for

  5. Emergence of multidrug-resistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar

    Directory of Open Access Journals (Sweden)

    J.-M. Rolain

    2016-05-01

    Full Text Available The objective of our study was to describe the molecular support of carbapenem resistance from randomly selected clinical isolates of multidrug-resistant (MDR Acinetobacter baumannii as a pilot study from the Hamad Medical Corporation (HMC, Qatar. Results of our report will be used to study carbapenemases using molecular techniques in all isolated MDR A. baumannii. Forty-eight MDR A. baumannii were randomly selected from isolates preserved at HMC. Identification of all isolates was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic resistance was tested phenotypically by Phoenix and confirmed by Etest. The molecular support of carbapenemases (blaOXA-23, blaOXA-24, blaOXA-58, blaNDM was investigated by real-time PCR. The epidemiologic relatedness of the isolates was verified by phylogenetic analysis based on partial sequences of CsuE and blaOXA-51 genes. All 48 isolates were identified as A. baumannii and were confirmed to be resistant to most antibiotics, especially meropenem, imipenems, ciprofloxacin, levofloxacin, amikacin, gentamicin and most of the β-lactams; they were sensitive to colistin. All the isolates were positive for blaOXA-23 and negative for the other tested carbapenemase genes. Clonality analysis demonstrated that different lineages were actually circulating in Qatar; and we suggest that an outbreak occurred in the medical intensive care unit of HMC between 2011 and 2012. Here we report the emergence of MDR A. baumannii producing the carbapenemase OXA-23 in Qatar.

  6. Glucose modulation induces reactive oxygen species and increases P-glycoprotein-mediated multidrug resistance to chemotherapeutics

    Science.gov (United States)

    Seebacher, N A; Richardson, D R; Jansson, P J

    2015-01-01

    Background and Purpose Cancer cells develop resistance to stress induced by chemotherapy. In tumours, a considerable glucose gradient exists, resulting in stress. Notably, hypoxia-inducible factor-1 (HIF-1) is a redox-sensitive transcription factor that regulates P-glycoprotein (Pgp), a crucial drug-efflux transporter involved in multidrug resistance (MDR). Here, we investigated how glucose levels regulate Pgp-mediated drug transport and resistance. Experimental Approach Human tumour cells (KB31, KBV1, A549 and DMS-53) were incubated under glucose starvation to hyperglycaemic conditions. Flow cytometry assessed reactive oxygen species (ROS) generation and Pgp activity. HIF-1α, NF-κB and Pgp expression were assessed by reverse transcriptase-PCR and Western blotting. Fluorescence microscopy examined p65 distribution and a luciferase-reporter assay assessed HIF-1 promoter-binding activity. The effect of glucose-induced stress on Pgp-mediated drug resistance was examined after incubating cells with the chemotherapeutic and Pgp substrate, doxorubicin (DOX), and performing MTT assays validated by viable cell counts. Key Results Changes in glucose levels markedly enhanced cellular ROS and conferred Pgp-mediated drug resistance. Low and high glucose levels increased (i) ROS generation via NADPH oxidase 4 and mitochondrial membrane destabilization; (ii) HIF-1 activity; (iii) nuclear translocation of the NF-κB p65 subunit; and (iv) HIF-1α mRNA and protein levels. Increased HIF-1α could also be due to decreased prolyl hydroxylase protein under these conditions. The HIF-1α target, Pgp, was up-regulated at low and high glucose levels, which led to lower cellular accumulation of Pgp substrate, rhodamine123, and greater resistance to DOX. Conclusions and Implications As tumour cells become glucose-deprived or exposed to high glucose levels, this increases stress, leading to a more aggressive MDR phenotype via up-regulation of Pgp. PMID:25586174

  7. Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance.

    Science.gov (United States)

    Roseblade, Ariane; Luk, Frederick; Ung, Alison; Bebawy, Mary

    2015-01-01

    Microparticles (MPs) are released from most eukaryotic cells after the vesiculation of the plasma membrane and serve as vectors of long and short-range signaling. MPs derived from multidrug resistant (MDR) cancer cells carry molecular components of the donor cell such as nucleic acids and proteins, and can alter the activity of drug-sensitive recipient cells through the transfer of their cargo. Given the substantial role of MPs in the acquisition and dissemination of MDR, we propose that the inhibition of MP release provides a novel therapeutic approach. This study characterises the effect of a panel of molecules known to act on MP-biosynthetic pathways. We demonstrate a differential effect by these molecules on MP inhibition that appear dependent on the release of intracellular calcium stores following activation with the calcium ionophore A23187. Calpain inhibitor, PD-150606; a selective inhibitor of Rho-associated, coiled-coil containing protein kinase (ROCK), Y-27632; and the vitamin B5 derivative pantethine, inhibited MP release only upon prior activation with A23187. Calpain inhibitor II showed significant inhibition in the absence of cell activation, whereas the vitamin B5 derivatives cystamine dihydrochloride and cysteamine hydrochloride showed no effect on MP inhibition under either condition. In contrast the classical pharmacological inhibitor of MDR, the calcium channel blocker Verapamil, showed an increase in MP formation on resting cells. These results suggest a potential role for calcium in the mechanism of action for PD-150606, Y-27632 and pantethine. These molecules, together with calpain inhibitor II have shown promise as modulators of MP release and warrant consideration as potential candidates for the development of an alternative therapeutic strategy for the prevention of MP-mediated MDR in cancer.

  8. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India

    Directory of Open Access Journals (Sweden)

    Shakti Rath

    2014-04-01

    Full Text Available Objective: To record nosocomial and community-acquired accounts of antibiotic resistance in Escherichia coli (E. coli strains, isolated from clinical samples of a teaching hospital by surveillance, over a period of 39 months (November 2009-January 2013. Methods: Clinical samples from nosocomial sources, i.e., wards and cabins, intensive care unit (ICU and neonatal intensive care unit (NICU, and community (outpatient department, OPD sources of the hospital, were used for isolating strains of E. coli, which were subjected for testing for production of ‘extended spectrum beta-lactamase’-(ESBL enzyme as well as determining antibiotic sensitivity pattern with 23 antibiotics. Results: Of the total 1642 (100% isolates, 810 (49.33% strains were from OPD and 832 (50.66% were from hospital settings. Occurrence of infectious E. coli strains increased in a mathematical progression in community sources, but in nosocomial infections, such values remained almost constant in each quarter. A total of 395 (24.05% ESBL strains were isolated from the total 810 isolates of community; of the total of 464 (28.25% isolates of wards and cabins, 199 (12.11% were ESBL strains; and among the total of 368 (22.41% isolates of ICU and NICU, ESBLs were 170 (10.35%; the total nosocomial ESBL isolates, 369 (22.47% were from the nosocomial total of 832 (50.66% isolates. Statistically, it was confirmed that ESBL strains were equally distributed in community or hospital units. Antibiogram of 23 antibiotics revealed progressive increases of drug-resistance against each antibiotic with the maximum resistance values were recorded against gentamicin: 92% and 79%, oxacillin: 94% and 69%, ceftriaxone: 85% and 58%, and norfloxacin 97% and 69% resistance, in nosocomial and community isolates, respectively. Conclusions: This study revealed the daunting state of occurrence of multidrug resistant E. coli and its infection dynamics in both community and hospital settings.

  9. OSI-930 analogues as novel reversal agents for ABCG2-mediated multidrug resistance.

    Science.gov (United States)

    Kuang, Ye-Hong; Patel, Jay P; Sodani, Kamlesh; Wu, Chung-Pu; Liao, Li-Qiu; Patel, Atish; Tiwari, Amit K; Dai, Chun-Ling; Chen, Xiang; Fu, Li-Wu; Ambudkar, Suresh V; Korlipara, Vijaya L; Chen, Zhe-Sheng

    2012-09-15

    OSI-930, a dual c-Kit and KDR tyrosine kinase inhibitor, is reported to have undergone a Phase I dose escalation study in patients with advanced solid tumors. A series of fifteen pyridyl and phenyl analogues of OSI-930 were designed and synthesized. Extensive screening of these compounds led to the discovery that nitropyridyl and ortho-nitrophenyl analogues, VKJP1 and VKJP3, were effective in reversing ABC subfamily G member 2 (ABCG2) transporter-mediated multidrug resistance (MDR). VKJP1 and VKJP3 significantly sensitized ABCG2-expressing cells to established substrates of ABCG2 including mitoxantrone, SN-38, and doxorubicin in a concentration-dependent manner, but not to the non-ABCG2 substrate cisplatin. However, they were unable to reverse ABCB1- or ABCC1-mediated MDR indicating their selectivity for ABCG2. Western blotting analysis was performed to evaluate ABCG2 expression and it was found that neither VKJP1 nor VKJP3 significantly altered ABCG2 protein expression for up to 72 h. [(3)H]-mitoxantrone accumulation study demonstrated that VKJP1 and VKJP3 increased the intracellular accumulation of [(3)H]-mitoxantrone, a substrate of ABCG2. VKJP1 and VKJP3 also remarkably inhibited the transport of [(3)H]-methotrexate by ABCG2 membrane vesicles. Importantly, both VKJP1 and VKJP3 were efficacious in stimulating the activity of ATPase of ABCG2 and inhibited the photoaffinity labeling of this transporter by its substrate [(125)I]-iodoarylazidoprazosin. The results suggested that VKJP1 and VKJP3, specifically inhibit the function of ABCG2 through direct interaction with its substrate binding site(s). Thus VKJP1 and VKJP3 represent a new class of drugs for reducing MDR in ABCG2 over-expressing tumors. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India

    Directory of Open Access Journals (Sweden)

    Kesavaram Padmavathy

    2016-01-01

    Full Text Available Extended Spectrum β-Lactamases (ESBLs confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for blaCTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs, fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2% of the ESBL producers harbored blaCTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIPRSXTRGENR was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%. However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS.

  11. A pilot study on water pollution and characterization of multidrug-resistant superbugs from Byramangala tank, Ramanagara district, Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Lokesh, Priyanka; Rao, Reshma; Kumar, Arushi Umesh; Vasist, Kiran S; Narayanappa, Rajeswari

    2013-07-01

    Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6 × 10(6) to 8.2 × 10(6) colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p > 0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant "superbugs" and will be major health concern in South Bangalore, India.

  12. Biosurfactins production by Bacillus amyloliquefaciens R3 and their antibacterial activity against multi-drug resistant pathogenic E. coli.

    Science.gov (United States)

    Chi, Zhe; Rong, Yan-Jun; Li, Yang; Tang, Mei-Juan; Chi, Zhen-Ming

    2015-05-01

    In this work, the anti-Escherichia coli activity of the bioactive substances produced by Bacillus amyloliquefaciens R3 was examined. A new and cheap medium for production of the anti-E. coli substances which contained 20.0 g L(-1) soybean powder, 20.0 g L(-1) wheat flour, pH 6.0 was developed. A crude surfactant concentration of 0.48 mg mL(-1) was obtained after 27 h of 10-L fermentation, and the diameter of the clear zone on the plate seeded with the pathogenic E. coli 2# was 23.3 mm. A preliminary characterization suggested that the anti-E. coli substances produced by B. amyloliquefaciens R3 were the biosurfactins (F1, F2, F3, F4, and F5) with amino acids (GLLVDLL) and hydroxy fatty acids (of 12-15 carbons in length). It was found that all the strains of the pathogenic E. coli showed resistance to several different antibiotics, suggesting that they were the multi-drug resistance and all the strains of the pathogenic E. coli were sensitive to the biosurfactins, indicating that the biosurfactins produced by B. amyloliquefaciens R3 had a broad spectrum of antibacterial activity against the pathogenic E. coli with multi-drug resistant profiles. After the treatment with the purified biosurfactin (F1), the cell membrane of both the whole cells and protoplasts of the E. coli 2# was damaged and the whole cells of the bacterium were broken.

  13. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    Science.gov (United States)

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Multidrug-resistant tuberculosis: Rapid molecular detection with MTBDRplus® assay in clinical samples

    Directory of Open Access Journals (Sweden)

    Rita Macedo

    2009-05-01

    Full Text Available Nowadays, the greatest concern of tuberculosis control programmes is the appearance of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Rapid determination of drug resistance in clinical samples, with Mycobacterium tuberculosis complex (MTC, is the prerequisite for initiating effective chemotherapy, ensuring successful treatment of the patient and preventing further spread of drugresistant isolates.The aim of our study was to determine the sensitivity of the new MTBDRplus® assay in comparison to culture, identification and classic DST, directly from smear-positive clinical specimens.A total of 68 smear-positive sputum specimens were processed by both the classical mycobacteriological methods and the molecular assay, MTBDRplus®.MTBDRplus® assay allowed an accurate identification of MTC species by detection of the specific band in all samples, from which we also isolated and identified MTC strains by culture methods. In the samples from which we isolated susceptible strains (63.2%, wild type patterns were found using MTBDRplus® assay. The samples from which we isolated resistant strains (36.8% showed specific mutations associated with the correspondent resistant phenotype.Our study indicated that this assay allows rapid detection of resistance, always in agreement with classic methods. Resumo: Uma das principais problematicas no controlo da tuberculose e o aparecimento de casos de tuberculose multirresistente (TB-MR e tuberculose extensivamente resistente (TB-XDR. A deteccao precoce da resistencia a farmacos, directamente a partir de amostras respiratorias, e essencial para que se assegure o tratamento atempado, adequado e eficaz da tuberculose, bem como para prevenir a disseminacao destes casos de especial gravidade.O nosso objectivo foi avaliar a sensibilidade e comparar os resultados obtidos com um metodo de genetica molecular disponivel comercialmente – MTBDRplus® – e o isolamento

  15. Monoterpene isolated from the essential oil of Trachyspermum ammi is cytotoxic to multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus strains

    Directory of Open Access Journals (Sweden)

    Faride Hosseinkhani

    2016-04-01

    Full Text Available Abstract INTRODUCTION: The aim of this study was to determine whether an herbal extract containing monoterpene exhibited activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from clinical infection samples. METHODS: The essential oil of Trachyspermum ammi (L. Sprague ex Turrill (Apiaceae fruit was extracted by hydrodistillation. Fruit residues were treated with hydrochloric acid and re-hydrodistilled to obtain volatile compounds. Compounds in the distilled oil were identified using gas-chromatography (GC and GC-mass spectrometry (MS. The antibiotic susceptibility of all bacterial isolates was analyzed using both the disc diffusion method and determination of the minimum inhibitory concentration (MIC. The sensitivity of antibiotic-resistant isolates to essential oil was also determined by using the disc diffusion method and MIC determination. RESULTS: Of 26 clinical isolates, 92% were multidrug-resistant (MDR. Aromatic monoterpenes (thymol, paracymene, and gamma-terpinene were the major (90% components of the oil. Growth of S. aureus strains was successfully inhibited by the oil, with an inhibitory zone diameter (IZD between 30-60mm and MIC <0.02μL/mL. The oil had no antimicrobial activity against clinical isolates of P. aeruginosa; rather, it prevented pigment production in these isolates. CONCLUSIONS: This study revealed that the essential oil of Trachyspermum ammi, which contains monoterpene, has good antibacterial potency. Monoterpenes could thus be incorporated into antimicrobial ointment formulas in order to treat highly drug-resistant S. aureus infections. Our findings also underscore the utility of research on natural products in order to combat bacterial multidrug resistance.

  16. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  17. Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin a and verapamil on multidrug resistance in vitro and in vivo

    International Nuclear Information System (INIS)

    Watanabe, Toru; Tsuge, Harumi; Oh-Hara, Tomoko; Naito, Mikihiko; Tsuruo, Takashi

    1995-01-01

    A non-immunosuppressive cyclosporin, SDZ PSC 833 (PSC833), shows a reversal effect on multidrug resistance (MDR) by functional modulation of MDR1 gene product, P-glycoprotein. The objective of the present study was to compare the reversal efficacy of three multidrug resistance modulators, PSC833, cyclosporin A (CsA) and verapamil (Vp). PSC833 has approximately 3-10-fold greater potency than CsA and Vp with respect to the restoring effect on reduced accumulation of doxorubicin (ADM) and vincristine (VCR) in ADM-resistant K562 myelogenous leukemia cells (K562/ADM) in vitro and also on the sensitivity of K562/ADM to ADM and VCR in in vitro growth inhibition. The in vivo efficacy of a combination of modifiers (PSC833 and CsA: 50 mg/kg, Vp 100 mg/kg administered p.o. 4 h before the administration of anticancer drugs) with anticancer drugs (ADM 2.5 mg/kg i.p., Q4D days 1, 5 and 9, VCR 0.05 mg/kg i.p., QD days 1-5) was tested in ADM-resistant P388-bearing mice. PSC833 significantly enhanced the increase in life span by more than 80%, whereas CsA and Vp enhanced by less than 50%. This reversal potency, which exceeded that of CsA and Vp, was confirmed by therapeutic experiments using colon adenocarcinoma 26-bearing mice. These results demonstrated that PSC833 has significant potency to reverse MDR in vitro and in vivo, suggesting that PSC833 is a good candidate for reversing multidrug resistance in clinical situations. (orig.)

  18. The effects of quercetin and kaempferol on multidrug resistance and ...

    African Journals Online (AJOL)

    MDR). Some compounds of flavonoid molecules were previously shown to inhibit drug transporter Pgp or induce apoptosis to sensitize MDR tumors. In this study, we attempted to investigate the possibility and mechanism of quercetin and ...

  19. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  20. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  1. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli We use experimental evolution, mathematical modelling and population...... of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities...

  2. Spread of Multidrug-resistant microrganisms: a global threat and critical healthcare problem

    Directory of Open Access Journals (Sweden)

    Paulo P. Gontijo Filho

    2016-07-01

    Full Text Available Multidrug-resistant organisms are usually associated with greater number of clinical manifestations and severe infections than those caused by susceptible pathogens. The high prevalence of antimicrobial resistance is a global concern, mainly in Latin America, where resistance levels are higher for important pathogens such as Gram-negative non-fermentative bacteria and Enterobacteriacae family, compared with those seen in US hospitals and Europe. The use of antimicrobial agents for the treatment of these infections is advantageous for the multidrug-resistant pathogens and contributes to the maintenance of the genetic determinants of resistance. Countries like Brazil, characterized by the allocation of limited financial resources for the health department, have in the infection prevention and control practices an economical necessity, because of the increased costs that nosocomial infection demand in addition to the reduction of rates morbidity and mortality.

  3. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  4. Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1

    NARCIS (Netherlands)

    van Gorkom, BAP; Timmer-Bosscha, H; de Jong, S; Kleibeuker, JH; de Vries, EGE

    2002-01-01

    Anthranoid laxatives, belonging to the anthraquinones as do anthracyclines, possibly Increase colorectal cancer risk. Anthracyclines Interfere with topoisomerase II, Intercalate DNA and are substrates for P-glycoprotein and multidrug resistance-associated protein I. P-glycoprotein and multidrug

  5. Lack of evidence to support policy development for management of contacts of multidrug-resistant tuberculosis patients: two systematic reviews

    NARCIS (Netherlands)

    van der Werf, M. J.; Langendam, M. W.; Sandgren, A.; Manissero, D.

    2012-01-01

    BACKGROUND: Existing international guidelines provide different recommendations for the management of contacts of multidrug-resistant tuberculosis (MDR-TB) patients. OBJECTIVE: To conduct two systematic reviews with the aim of identifying chemoprophylactic approaches that are effective in contacts

  6. Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti.

    Science.gov (United States)

    Elbadry, Maha A; Existe, Alexandre; Victor, Yves S; Memnon, Gladys; Fukuda, Mark; Dame, John B; Yowell, Charles A; Okech, Bernard A

    2013-11-19

    In Haiti where chloroquine (CQ) is widely used for malaria treatment, reports of resistance are scarce. However, recent identification of CQ resistance genotypes in one site is suggestive of an emerging problem. Additional studies are needed to evaluate genetic mutations associated with CQ resistance, especially in the Plasmodium falciparum multi-drug resistance-1 gene (pfmdr1) while expanding the already available information on P. falciparum CQ transporter gene (pfcrt) in Haiti. Blood samples were collected on Whatman filter cards (FTA) from eight clinics spread across Haiti. Following the confirmation of P. falciparum in the samples, PCR protocols were used to amplify regions of pfmdr1and pfcrt codons of interest, (86, 184, 1034, 1042, and 1246) and (72-76), respectively. Sequencing and site-specific restriction enzyme digestions were used to analyse these DNA fragments for the presence of single nucleotide polymorphisms (SNPs) known to confer resistance to anti-malarial drugs. P. falciparum infection was confirmed in160 samples by amplifying a segment of the P. falciparum 18S small subunit ribosomal RNA gene (pfssurrna). The sequence of pfmdr1 in 54 of these samples was determined between codons 86,184 codons 1034, 1042 and 1246. No sequence differences from that of the NF54 clone 3D7 were found among the 54 samples except at codon 184, where a non-silent mutation was found in all samples predicted to alter the amino acid sequence replacing tyrosine with phenylalanine (Y184F). This altered sequence was also confirmed by restriction enzyme digestion. The sequence of pfmdr1 at codons 86, 184, 1034 and 1042 encoded the NFSN haplotype. The sequence of pfcrt codons 72-76 from 79 samples was determined and found to encode CVMNK, consistent with a CQ sensitive genotype. The presence of the Y184F mutation in pfmdr1 of P. falciparum parasites in Haiti may have implications for resistance to antimalarial drugs. The absence of mutation in pfcrt at codon 76 among 79

  7. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    Science.gov (United States)

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post

  8. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?

    DEFF Research Database (Denmark)

    Hartmeyer, G N; Sóki, J; Nagy, E

    2012-01-01

    We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have...... been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before....

  9. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals.

    LENUS (Irish Health Repository)

    Khan, A S

    2012-10-01

    Multidrug-resistant Enterobacteriaceae (MDE) are a major public health threat due to international spread and few options for treatment. Furthermore, unlike meticillin-resistant Staphylococcus aureus (MRSA), MDE encompass several genera and multiple resistance mechanisms, including extended-spectrum beta-lactamases and carbapenemases, which complicate detection in the routine diagnostic laboratory. Current measures to contain spread in many hospitals are somewhat ad hoc as there are no formal national or international guidelines.

  10. Lethal Neonatal Meningoencephalitis Caused by Multi-Drug Resistant, Highly Virulent Escherichia coli

    OpenAIRE

    Iqbal, Junaid; Dufendach, Kevin R.; Wellons, John C.; Kuba, Maria G.; Nickols, Hilary H.; G��mez-Duarte, Oscar G.; Wynn, James L.

    2016-01-01

    Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. We report on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern, and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric...

  11. [Multidrug-Resistant Tuberculosis by Strains of Beijing Family, in Patients from Lisbon, Portugal: Preliminary Report].

    Science.gov (United States)

    Maltez, Fernando; Martins, Teresa; Póvoas, Diana; Cabo, João; Peres, Helena; Antunes, Francisco; Perdigão, João; Portugal, Isabel

    2017-03-31

    Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known. Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains. Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients). Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa. Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.

  12. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.

    Science.gov (United States)

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe(3)O(4)-MNP, and Fe(3)O(4)-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe(3)O(4)-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Fe(3)O(4)-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe(3)O(4)-MNP and Fe(3)O(4)-MNP-DNR-5-BrTet groups, especially in the Fe(3)O(4)-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.

  13. Molecular characterization of multidrug-resistant Shigella spp. of food origin.

    Science.gov (United States)

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2015-02-02

    Shigella spp. are the causative agents of food-borne shigellosis, an acute enteric infection. The emergence of multidrug-resistant clinical isolates of Shigella presents an increasing challenge for clinicians in the treatment of shigellosis. Several studies worldwide have characterized the molecular basis of antibiotic resistance in clinical Shigella isolates of human origin, however, to date, no such characterization has been reported for Shigella spp. of food origin. In this study, we characterized the genetic basis of multidrug resistance in Shigella spp. isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets, and slaughterhouses in Egypt. Twenty-four out of 27 Shigella isolates (88.9%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The multidrug-resistant Shigella spp. were as follows: Shigella flexneri (66.7%), Shigella sonnei (18.5%), and Shigella dysenteriae (3.7%). The highest resistance was to streptomycin (100.0%), then to kanamycin (95.8%), nalidixic acid (95.8%), tetracycline (95.8%), spectinomycin (93.6%), ampicillin (87.5%), and sulfamethoxazole/trimethoprim (87.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes. Our results indicated that 11.1% and 74.1% of isolates were positive for class 1 and class 2 integrons, respectively. Beta-lactamase-encoding genes were identified in 77.8% of isolates, and plasmid-mediated quinolone resistance genes were identified in 44.4% of isolates. These data provide useful information to better understand the molecular basis of antimicrobial resistance in Shigella spp. To the best of our knowledge, this is the first report of the molecular characterization of antibiotic resistance in Shigella spp. isolated from food. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Multidrug resistant tuberculosis in prisons located in former Soviet countries: A systematic review

    OpenAIRE

    Droznin, Maxwell; Johnson, Allen; Johnson, Asal Mohamadi

    2017-01-01

    Background A systematic literature review was performed to investigate the occurrence of multidrug-resistant tuberculosis (MDR TB) in prisons located in countries formerly part of the Soviet Union. Methods A systematic search of published studies reporting MDR TB occurrence in prisons located in former Soviet countries was conducted by probing PubMed and Cumulative Index Nursing and Allied Health Literature for articles that met predetermined inclusion criteria. Results Seventeen studies were...

  15. In vivo selection of a multidrug-resistant Aeromonas salmonicida during medicinal leech therapy

    Directory of Open Access Journals (Sweden)

    E. Ruppé

    2018-01-01

    Full Text Available We report the selection in a 15-year-old boy of a multidrug-resistant, extended-spectrum β-lactamase (ESBL-producing Aeromonas salmonicida after medicinal leech therapy that required an antibiotic prophylaxis based on piperacillin/tazobactam and cotrimoxazole. Whole genome sequencing of the strain indeed revealed 13 antibiotic resistance genes, including the ESBL CTX-M-3 and the unusual β-lactamase SCO-1.

  16. Relationship between the Presence of the nalC Mutation and Multidrug Resistance in Pseudomonas aeruginosa

    OpenAIRE

    Sadeghifard, Nourkhoda; Valizadeh, Azar; Zolfaghary, Mohammad Reza; Maleki, Mohammad Hossien; Maleki, Abbas; Mohebi, Reza; Ghafourian, Sobhan; Khosravi, Afra

    2012-01-01

    Objectives. The current study was conducted to determine the relationship between the presences of significant multidrug resistance in Pseudomonas aeruginosa (P. aeruginosa) having intact mexR genes (nalC) to different antibiotics. Methods. In order to identify nalC, fifty strains of P. aeruginosa were obtained. All isolates were found in urinary tract infections. They were evaluated against different antibiotics. The nalC mutant was identified by PCR. Results. The 50 clinical isolates of P. ...

  17. Bioactive Compound Rich Indian Spices Suppresses the Growth of β-lactamase Produced Multidrug Resistant Bacteria

    OpenAIRE

    Eadlapalli Siddhartha; Vemula Sarojamma; Vadde Ramakrishna

    2017-01-01

    Background: Multidrug Resistance (MDR) among bacteria become a global concern due to failure of antibiotics, is drawn attention for best antimicrobials from the spices which have been using ancient days in Indian culinary and traditional medicine. Aim and Objectives: The present study was undertaken to evaluate the bioactive compounds and their antibacterial activity in routinely used culinary Indian spices against β-lactamase produced MDR bacteria. Material and Methods: Ethanolic extracts p...

  18. A case of multidrug-resistant monoarticular joint tuberculosis in a renal transplant recipient.

    Science.gov (United States)

    Regmi, A; Singh, P; Harford, A

    2014-01-01

    Tuberculosis (TB) is a common opportunistic infection after renal transplantation. The risk of TB in renal transplant recipients is reported to be 20 to 74 times higher than in the general population. Although extrapulmonary TB occurs frequently, isolated ankle joint TB is a rare form of extrapulmonary TB infection. It is often difficult to diagnose because of its atypical presentation; management is complex, especially with multidrug-resistant TB, the need for a prolonged course of therapy, and the risks of drug interactions and drug toxicity. We report herein a case of a 60-year-old female renal allograft recipient who developed multidrug-resistant ankle joint TB 11 months after her deceased donor renal transplantation. She presented to the emergency department with escalating pain and swelling of the left ankle, difficulty in ambulation, and a low-grade fever. An x-ray of the ankle revealed an effusion and soft tissue swelling. A synovial fluid culture was performed which tested positive for acid fast bacilli which grew a multidrug-resistant form of Mycobacterium tuberculosis. She was initially treated with isoniazid, rifampin, ethambutol, and pyrazinamide; then therapy was tailored secondary to the resistant nature of the organism. She received a combination of extensive debridement of the joint and institution of second-line anti-TB therapy with pyrazinamide, ethambutol, moxifloxacin, and ethionamide. To our knowledge, no other cases of multidrug-resistant TB have been reported in the literature after renal transplantation. This case shows both an atypical presentation of TB and the difficulties in managing a transplant patient with this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    Science.gov (United States)

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  20. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  1. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella

    Directory of Open Access Journals (Sweden)

    Leena Bajracharya

    2015-01-01

    Full Text Available A healthy lady of 42 years underwent deep anterior lamellar keratoplasty for granular dystrophy. The very next day, it was complicated by development of infectious keratitis. The organism was identified as multidrug resistant Klebsiella pneumoniae. Donor corneal button may be implicated in the transmission of infection in an otherwise uneventful surgery and follow-up. Nosocomial infections are usually severe, rapidly progressive and difficult to treat. Finally, the lady had to undergo therapeutic penetrating keratoplasty for complete resolution of infection.

  2. Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa.

    OpenAIRE

    Bianco, N; Neshat, S; Poole, K

    1997-01-01

    An intragenic probe derived from the multidrug resistance gene oprM hybridized with genomic DNA from all 20 serotypes of Pseudomonas aeruginosa and from all 34 environmental and clinical isolates tested, indicating that the MexA-MexB-OprM multidrug efflux system is highly conserved in this organism. The oprM probe also hybridized with genomic DNA from Pseudomonas aureofaciens, Pseudomonas chlororaphis, Pseudomonas syringae, Burkholderia pseudomallei, and Pseudomonas putida, suggesting that ef...

  3. A novel automatic molecular test for detection of multidrug resistance tuberculosis in sputum specimen: A case control study.

    Science.gov (United States)

    Li, Qiang; Ou, Xi C; Pang, Yu; Xia, Hui; Huang, Hai R; Zhao, Bing; Wang, Sheng F; Zhao, Yan L

    2017-07-01

    MiniLab tuberculosis (ML TB) assay is a new automatic diagnostic tool for diagnosis of multidrug resistance tuberculosis (MDR-TB). This study was conducted with aims to know the performance of this assay. Sputum sample from 224 TB suspects was collected from tuberculosis suspects seeking medical care at Beijing Chest hospital. The sputum samples were directly used for smear and ML TB test. The left sputum sample was used to conduct Xpert MTB/RIF, Bactec MGIT culture and drug susceptibility test (DST). All discrepancies between the results from DST, molecular and phenotypic methods were confirmed by DNA Sequencing. The sensitivity and specificity of ML TB test for detecting MTBC from TB suspects were 95.1% and 88.9%, respectively. The sensitivity for smear negative TB suspects was 64.3%. For detection of RIF resistance, the sensitivity and specificity of ML TB test were 89.2% and 95.7%, respectively. For detection of INH resistance, the sensitivity and specificity of ML TB test were 78.3% and 98.1%, respectively. ML TB test showed similar performance to Xpert MTB/RIF for detection of MTBC and RIF resistance. In addition, ML TB also had good performance for INH resistance detection. Copyright © 2017. Published by Elsevier Ltd.

  4. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  5. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  6. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2 Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yu Zhao

    Full Text Available China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2 is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC transporter genes such as ABCB1. Moreover, ABC transporters' inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells.

  7. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients

    Science.gov (United States)

    Jamil, K. F.

    2018-03-01

    Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis(MTB). 10.4 million new TB cases will appear in 2015 worldwide. There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among people living with human immunodeficiency virus (HIV). Multidrug- resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) are major public health concerns worldwide. 480.000 new cases of MDR-TB will appear in 2015 and an additional 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment. Their association with HIV infection has contributed to the slowing down of TB incidence decline over the last two decades, therefore representing one important barrier to reach TB elimination. Patients infected with MDR-TB require more expensive treatment regimens than drug-susceptible TB, with poor treatment.Patients with multidrug- resistant tuberculosis do not receive rifampin; drug interactions risk is markedly reduced. However, overlapping toxicities may limit options for co-treatment of HIV and multidrug- resistant tuberculosis.

  8. Molecular epidemiological survey of bacteremia by multidrug resistant Pseudomonas aeruginosa: the relevance of intrinsic resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Raquel Cristina Cavalcanti Dantas

    Full Text Available The bacterial factors associated with bacteremia by multidrug-resistant and extensively drug-resistant P. aeruginosa, including overexpression of efflux pumps, AmpC overproduction, and loss/alteration of the OprD porin in isolates that are non-Metallo-β-Lactamase producing were analyzed in a retrospective study. Molecular analyses included strain typing by Pulsed Field Gel Electrophoresis and identification of key genes via qualitative and quantitative PCR-based assays. Previous use of carbapenems and tracheostomy was independently associated with the development of bacteremia by extensively drug-resistant and multidrug-resistant strains of P. aeruginosa. A high consumption of antimicrobials was observed, and 75.0% of the isolates contained amplicons with the blaSPM-1 and blaVIM genes. Of the 47 non-Metallo-β-Lactamase isolates, none had another type of carbapenemase. However, the isolates exhibited high rates of hyperproduction of AmpC, loss of the OprD porin (71.4% and the presence of MexABOprM (57.1% and MexXY (64.3%. This study suggests that in non-Metallo-β-Lactamase isolates, the association of intrinsic resistance mechanisms could contributes to the expression of multidrug-resistant/extensively drug-resistant phenotypes.

  9. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant.

    Science.gov (United States)

    Saleem, Hafiz Ghulam Murtaza; Seers, Christine Ann; Sabri, Anjum Nasim; Reynolds, Eric Charles

    2016-09-15

    Chlorhexidine (CHX) is used in oral care products to help control dental plaque. In this study dental plaque bacteria were grown on media containing 2 μg/ml chlorhexidine gluconate to screen for bacteria with reduced CHX susceptibility. The isolates were characterized by 16S rRNA gene sequencing and antibiotic resistance profiles were determined using the disc diffusion method. The isolates were variably resistant to multiple drugs including ampicillin, kanamycin, gentamicin and tetracycline. Two species, Chryseobacterium culicis and Chryseobacterium indologenes were able to grow planktonically and form biofilms in the presence of 32 μg/ml CHX. In the CHX and multidrug resistant C. indologenes we demonstrated a 19-fold up-regulation of expression of the HlyD-like periplasmic adaptor protein of a tripartite efflux pump upon exposure to 16 μg/ml CHX suggesting that multidrug resistance may be mediated by this system. Exposure of biofilms of these resistant species to undiluted commercial CHX mouthwash for intervals from 5 to 60 s indicated that the mouthwash was unlikely to eliminate them from dental plaque in vivo. The study highlights the requirement for increased vigilance of the presence of multidrug resistant bacteria in dental plaque and raises a potential risk of long-term use of oral care products containing antimicrobial agents for the control of dental plaque.

  10. Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro.

    Science.gov (United States)

    Corona-Castañeda, Berenice; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon; Aparicio-Cuevas, Manuel Alejandro; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Pereda-Miranda, Rogelio

    2016-03-01

    Recycling liquid chromatography was used for the isolation and purification of resin glycosides from the CHCl3-soluble extracts prepared using flowers of Ipomoea wolcottiana Rose var. wolcottiana. Bioassay-guided fractionation, using modulation of both antibiotic activity against multidrug-resistant strains of Gram-negative bacteria and vinblastine susceptibility in breast carcinoma cells, was used to isolate the active glycolipids as modulators of the multidrug resistance phenotype. An ester-type dimer, wolcottine I, one tetra- and three pentasaccharides, wolcottinosides I-IV, in addition to the known intrapilosin VII, were characterized by NMR spectroscopy and mass spectrometry. In vitro assays established that none of these metabolites displayed antibacterial activity (MIC>512 μg/mL) against multidrug-resistant strains of Escherichia coli, and two nosocomial pathogens: Salmonella enterica serovar Typhi and Shigella flexneri; however, when tested (25 μg/mL) in combination with tetracycline, kanamycin or chloramphenicol, they exerted a potentiation effect of the antibiotic susceptibility up to eightfold (64 μg/mL from 512 μg/mL). It was also determined that these non-cytotoxic (CI50>8.68 μM) agents modulated vinblastine susceptibility at 25 μg/mL in MFC-7/Vin(+) cells with a reversal factor (RFMCF-7/Vin(+)) of 2-130 fold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Diverse and Abundant Multi-Drug Resistant E. coli in Matang Mangrove Estuaries, Malaysia

    Directory of Open Access Journals (Sweden)

    Aziz eGhaderpour

    2015-09-01

    Full Text Available E. coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34% of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83% and beta-lactams (37%. Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%. Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1% were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry.

  12. Mechanism of multidrug resistance of human small cell lung cancer cell line H446/VP.

    Science.gov (United States)

    Wang, Yan-Ling; Yan, Yun-Li; Zhou, Na-Jing; Han, Shuo; Zhao, Jun-Xia; Cao, Cui-Li; Lü, Yu-Hong

    2010-11-01

    Small cell lung cancer (SCLC) is the most aggressive form of lung cancer. This study aimed to investigate the mechanism of human small cell lung cancer cell line resistance to etoposide (VP-16), H446/VP. The cell viability was measured by MTT assay. Immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting methods were used to detect the multidrug resistance gene (MDR1), bcl-2, bax and the topoisomerase II (Topo II) expressions in H446 and H446/VP cells after treated with or without VP-16. The 50% inhibition concentration (IC50) of VP-16 on H446 cells was 49 mg/L, and 836 mg/L was for H446/VP cells. The expressions of MDR1 and bcl-2 were up-regulated, while the amounts of bax and Topo II were reduced in H446/VP cells. After treated with 49 mg/L of VP-16, it showed that the drug could significantly inhibit bcl-2 and Topo II expressions, and increase bax expression in H446 cells compared with that of H446/VP cells. The H446/VP cell was stably resistant to VP-16. The decreased expression of Topo II was correlated with the H446/VP multidrug resistance. The elevated expressions of MDR1, and the altered apoptotic pathways also played an important role in VP-16 induced multidrug resistance of SCLC.

  13. Capsaicin and Piperine Can Overcome Multidrug Resistance in Cancer Cells to Doxorubicin

    Directory of Open Access Journals (Sweden)

    Hanmei Li

    2018-03-01

    Full Text Available Background: Multidrug resistance (MDR can develop in cancer cells after treatment with anticancer drugs, mainly due to the overexpression of the ATP-binding cassette (ABC transporters. We analyzed the ability of two pungent-tasting alkaloids—capsaicin and piperine from Capsicum frutescens and Piper nigrum, respectively—to reverse multidrug resistance in the cancer cell lines Caco-2 and CEM/ADR 5000, which overexpress P-glycoprotein (P-gp and other ABC transporters. Methods: The MTT assay was first used to determine the cytotoxicity of doxorubicin, the alkaloids, and digitonin alone, and then their combinations. Furthermore, rhodamine (Rho 123 and calcein-AM were used to detect the effects of alkaloids on the activity of P-gp. Results: Capsaicin and piperine synergistically enhanced the cytotoxicity of doxorubicin in Caco-2 and CEM/ADR 5000 cells. Furthermore, capsaicin and piperine increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp substrates rhodamine and calcein and inhibited their efflux from the MDR cell lines. Conclusion: Our study has demonstrated that capsaicin and piperine are P-gp substrates and have potential chemosensitizing activity, which might be interesting for the development of novel modulators of multidrug resistance.

  14. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  15. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    Science.gov (United States)

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  16. MicroRNA signatures from multidrug-resistant Mycobacterium tuberculosis

    Science.gov (United States)

    REN, NA; GAO, GUIJU; SUN, YUE; ZHANG, LING; WANG, HUIZHU; HUA, WENHAO; WAN, KANGLIN; LI, XINGWANG

    2015-01-01

    Tuberculosis (TB) infections, caused by multi-drug-resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains. The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug-resistance in MTB. PMID:26324150

  17. Pattern of multi-drug resistant Salmonella enterica serovar typhi ...

    African Journals Online (AJOL)

    There was an increase in the number of isolates with decreased sensitivity to nalixidic acid and cotrimoxazole. All isolates had complete resistance to augmentin, tetracycline and amoxicillin commonly used for treatment of typhoid fever. Therefore physicians should be advised to conduct effective susceptibility test before ...

  18. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  19. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-01-01

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  20. Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension.

    Science.gov (United States)

    Lu, Yan; Wei, Jin; Stec, David E; Roman, Richard J; Ge, Ying; Cheng, Liang; Liu, Eddie Y; Zhang, Jie; Hansen, Pernille B Laerkegaard; Fan, Fan; Juncos, Luis A; Wang, Lei; Pollock, Jennifer; Huang, Paul L; Fu, Yiling; Wang, Shaohui; Liu, Ruisheng

    2016-08-01

    Nitric oxide (NO) is an important negative modulator of tubuloglomerular feedback responsiveness. We recently found that macula densa expresses α-, β-, and γ-splice variants of neuronal nitric oxide synthase 1 (NOS1), and NOS1β expression in the macula densa increases on a high-salt diet. This study tested whether upregulation of NOS1β expression in the macula densa affects sodium excretion and salt-sensitive hypertension by decreasing tubuloglomerular feedback responsiveness. Expression levels of NOS1β mRNA and protein were 30- and five-fold higher, respectively, than those of NOS1α in the renal cortex of C57BL/6 mice. Furthermore, macula densa NO production was similar in the isolated perfused juxtaglomerular apparatus of wild-type (WT) and nitric oxide synthase 1α-knockout (NOS1αKO) mice. Compared with control mice, mice with macula densa-specific knockout of all nitric oxide synthase 1 isoforms (MD-NOS1KO) had a significantly enhanced tubuloglomerular feedback response and after acute volume expansion, significantly reduced GFR, urine flow, and sodium excretion. Mean arterial pressure increased significantly in MD-NOS1KO mice (Psalt diet. After infusion of angiotensin II, mean arterial pressure increased by 61.6 mmHg in MD-NOS1KO mice versus 32.0 mmHg in WT mice (Psalt diet. These results indicate that NOS1β is a primary NOS1 isoform expressed in the macula densa and regulates the tubuloglomerular feedback response, the natriuretic response to acute volume expansion, and the development of salt-sensitive hypertension. These findings show a novel mechanism for salt sensitivity of BP and the significance of tubuloglomerular feedback response in long-term control of sodium excretion and BP. Copyright © 2016 by the American Society of Nephrology.

  1. Increased Salt-Sensitivity in Endothelial Nitric Oxide Synthase-Knockout Mice

    OpenAIRE

    Leonard, Allison M.; Chafe, Linda L.; Montani, Jean-Pierre; Van Vliet, Bruce N.

    2017-01-01

    Background: Although impaired nitric oxide production contributes importantly to salt-sensitivity, the role of the endothelial isoform of nitric oxide synthase (eNOS) has received little attention. In the present study we compared the effects of a high-salt diet on the blood pressure response of eNOS knockout (eNOS−/−) and control (eNOS+/+) mice. Methods: Mean arterial pressure (MAP), heart rate, pulse pressure, and activity levels were recorded by telemetry in mice fed a regular-salt diet (0...

  2. Surveillance of multidrug resistance-associated genes in Acinetobacter baumannii isolates from elderly patients

    Directory of Open Access Journals (Sweden)

    Zhe DONG

    2012-03-01

    Full Text Available Objective To understand the status of multidrug resistance-associated genes carried by Acinetobacter baumannii isolates from elderly patients in our hospital in order to provide a basis for surveillance of drug-resistance and inflection control. Methods One hundred and twenty A. baumannii isolates were collected from elderly patients between 2008 and 2010. The mean age of the patients was 85 (65 to 95 years. Whonet 5.6 software was used to analyze the resistance rate of 16 antimicrobial agents. Polymerase chain reaction (PCR and the sequencing method were adopted to detect 10 kinds of resistance genes (blaOXA-51-like, blaOXA- 23-like, blaOXA-24-like, blaOXA-58-like, blaTEM, blaampC, armA, ISAba1, intI 1, and intI 2. The corresponding resistance gene profiling(RGP was analyzed and designated according to the status of resistance genes. Results The resistance rates to the remaining 15 kinds of antibiotics varied between 70.8% and 97.5%, with the exception of the sensitivity rate to polymyxin B by up to more than 90%. The positivity rates of blaOXA-51-like, blaOXA-23-like, blaOXA-58-like, blaTEM, blaampC, armA, ISAba1 and intI 1 were 100%, 81.7%, 0.8%, 10.8%, 91.7%, 81.7%, 86.7%, and 83.3% respectively. A total of 18 kinds of drug-resistant gene maps were found, but blaOXA-24-like and intI 2 were not detected. Among these gene maps, the rate of RGP1 (blaOXA-23-like+blaampC+armA+ISAba1+ intI 1 was as high as 60.8%. Conclusions A. baumannii isolates from elderly patients have a higher carrying rate of drug-resistant genes, resulting in severe multidrugresistant conditions. Therefore, full-time infection control personnel and clinical physicians should actively participate in the surveillance, prevention, and control of infections caused by A. baumannii in the elderly.

  3. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis.

    Science.gov (United States)

    Kendall, Emily A; Fofana, Mariam O; Dowdy, David W

    2015-12-01

    Multidrug-resistant (MDR) tuberculosis can be acquired through de-novo mutation during tuberculosis treatment or through transmission from other individuals with active MDR tuberculosis. Understanding the balance between these two mechanisms is essential when allocating resources for MDR tuberculosis. We aimed to create a dynamic transmission model of an MDR tuberculosis epidemic to estimate the contributions of treatment-related acquisition and person-to-person transmission of resistance to incident MDR tuberculosis cases. In this modelling analysis, we constructed a dynamic transmission model of an MDR tuberculosis epidemic, allowing for both treatment-related acquisition and person-to-person transmission of resistance. We used national tuberculosis notification data to inform Bayesian estimates of the proportion of each country's 2013 MDR tuberculosis incidence that resulted from MDR transmission rather than treatment-related MDR acquisition. Global estimates of 3·5% MDR tuberculosis prevalence among new tuberculosis notifications and 20·5% among re-treatment notifications translate into an estimate that resistance transmission rather than acquisition accounts for a median 95·9% (95% uncertainty range [UR] 68·0-99·6) of all incident MDR tuberculosis, and 61·3% (16·5-95·2) of incident MDR tuberculosis in previously treated individuals. The estimated proportion of MDR tuberculosis resulting from transmission varied substantially with different countries' notification data-ranging from 48% (95% UR 30-75) in Bangladesh to 99% (91-100) in Uzbekistan. Estimates were most sensitive to estimates of the transmissibility of MDR strains, the probability of acquiring MDR during tuberculosis treatment, and the responsiveness of MDR tuberculosis to first-line treatment. Notifications of MDR prevalence from most high-burden settings are consistent with most incident MDR tuberculosis resulting from transmission rather than new treatment-related acquisition of resistance

  4. Transfer of multidrug resistance among acute myeloid leukemia cells via extracellular vesicles and their microRNA cargo.

    Science.gov (United States)

    Bouvy, Céline; Wannez, Adeline; Laloy, Julie; Chatelain, Christian; Dogné, Jean-Michel

    2017-11-01

    The treatment of acute leukemia is still challenging due in part to the development of resistance and relapse. This chemotherapeutics resistance is established by clonal selection of resistant variants of the cancer cells. Recently, a horizontal transfer of chemo-resistance among cancer cells via extracellular vesicles (EVs) has been suggested. The aim of this research was to investigate the role of EVs in chemo-resistance in acute myeloid leukemia. For this purpose, the sensitive strain of the promyelocytic leukemia HL60 cell line was studied along with its multi-resistant strain, HL60/AR that overexpresses the multidrug resistance protein 1 (MRP-1). A chemo-resistance transfer between the two strains was established by treating HL60 cells with EVs generated by HL60/AR. This study reveals that EVs from HL60/AR can interact with HL60 cells and transfer at least partially, their chemo-resistance. EVs-treated cells begin to express MRP-1 probably due to a direct transfer of MRP-1 and nucleic acids transported by EVs. In this context, two microRNAs were highlighted for their high differential expression in EVs related to sensitive or chemo-resistant cells: miR-19b and miR-20a. Because circulating microRNAs are found in all biological fluids, these results bring out their potential clinical use as chemo-resistance biomarkers in acute myeloid leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Targeting druggable enzymome by exploiting natural medicines: An in silico-in vitro integrated approach to combating multidrug resistance in bacterial infection.

    Science.gov (United States)

    Zang, Ping; Gong, Aijie; Zhang, Peirong; Yu, Jinling

    2016-01-01

    Antibiotic resistance is a major clinical and public health problem. Development of new therapeutic approaches to prevent bacterial multidrug resistance during antimicrobial chemotherapy has thus been becoming a primary consideration in the medicinal chemistry community. We described a new strategy that combats multidrug resistance by using natural medicines to target the druggable enzymome (i.e., enzymatic proteome) of Staphylococcus aureus. A pipeline of integrating in silico analysis and in vitro assay was purposed to identify antibacterial agents from a large library of natural products with diverse structures, high drug-likeness, and relatively low flexibility, with which a systematic interactome of 826 natural product candidates with 125 functionally essential S. aureus enzymes was constructed via a high-throughput cross-docking approach. The obtained docking score matrix was then converted into an array of synthetic scores; each corresponds to a natural product candidate. By systematically examining the docking results, a number of highly promising candidates with potent antibacterial activity were suggested. Three natural products, i.e., radicicol, jorumycin, and amygdalin, have been determined to possess strong broad-spectrum potency combating both the drug-resistant and drug-sensitive strains (MIC value <10 μg/ml). In addition, some natural products such as tetrandrine, bilobalide, and arbutin exhibited selective inhibition on different strains. Combined quantum mechanics/molecular mechanics analysis revealed diverse non-bonded interactions across the complex interfaces of newly identified antibacterial agents with their putative targets GyrB ATPase and tyrosyl-tRNA synthetase.

  6. bba, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10.

    Directory of Open Access Journals (Sweden)

    Jun-Jiang Chen

    Full Text Available Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-O-(1,4'-bipiperidine-1-carbonyl betulinic acid (BBA is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA, which is a natural pentacyclic triterpene and the major active constituent of the root of Pulsatillachinensis. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1-mediated multidrug resistance (MDR. In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [(3H]-paclitaxel by inhibiting the efflux of [(3H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy.

  7. 9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein.

    Science.gov (United States)

    Stefan, Katja; Schmitt, Sven Marcel; Wiese, Michael

    2017-11-09

    P-Glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2) are the three major ABC transport proteins conferring resistance to many structurally diverse anticancer agents, leading to the phenomenon called multidrug resistance (MDR). Much effort has been put into the development of clinically useful compounds to reverse MDR. Broad-spectrum inhibitors of ABC transport proteins can be of great use in cancers that simultaneously coexpress two or three transporters. In this work, we continued our effort to generate new, potent, nontoxic, and multiply effective inhibitors of the three major ABC transporters. The best compound was active in a very low micromolar concentration range against all three transporters and restored sensitivity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK II BCRP (BCRP) cells. Additionally, the compound is a noncompetitive inhibitor of daunorubicin (MRP1), calcein AM (P-gp), and pheophorbide A (BCRP) transport.

  8. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  9. Health system factors influencing management of multidrug-resistant tuberculosis in four European Union countries - learning from country experiences.

    Science.gov (United States)

    de Vries, Gerard; Tsolova, Svetla; Anderson, Laura F; Gebhard, Agnes C; Heldal, Einar; Hollo, Vahur; Cejudo, Laura Sánchez-Cambronero; Schmid, Daniela; Schreuder, Bert; Varleva, Tonka; van der Werf, Marieke J

    2017-04-19

    In the European Union and European Economic Area only 38% of multidrug-resistant tuberculosis patients notified in 2011 completed treatment successfully at 24 months' evaluation. Socio-economic factors and patient factors such as demographic characteristics, behaviour and attitudes are associated with treatment outcomes. Characteristics of healthcare systems also affect health outcomes. This study was conducted to identify and better understand the contribution of health system components to successful treatment of multidrug-resistant tuberculosis. We selected four European Union countries to provide for a broad range of geographical locations and levels of treatment success rates of the multidrug-resistant tuberculosis cohort in 2009. We conducted semi-structured interviews following a conceptual framework with representatives from policy and planning authorities, healthcare providers and civil society organisations. Responses were organised according to the six building blocks of the World Health Organization health systems framework. In the four included countries, Austria, Bulgaria, Spain, and the United Kingdom, the following healthcare system factors were perceived as key to achieving good treatment results for patients with multidrug-resistant tuberculosis: timely diagnosis of drug-resistant tuberculosis; financial systems that ensure access to a full course of treatment and support for multidrug-resistant tuberculosis patients; patient-centred approaches with strong intersectoral collaboration that address patients' emotional and social needs; motivated and dedicated healthcare workers with sufficient mandate and means to support patients; and cross-border management of multidrug-resistant tuberculosis to secure continuum of care between countries. We suggest that the following actions may improve the success of treatment for multidrug-resistant tuberculosis patients: deployment of rapid molecular diagnostic tests; development of context-specific treatment

  10. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Dönmez, Yaprak; Gündüz, Ufuk

    2011-03-01

    Resistance to anticancer drugs is a serious obstacle to cancer chemotherapy. A common form of multidrug resistance (MDR) is caused by the overexpression of transmembrane transporter proteins P-glycoprotein (P-gp) and multidrug resistance-associated protein-1 (MRP1), encoded by MDR1 and MRP1 genes, respectively. These proteins lead to reduced intracellular drug concentration and decreased cytotoxicity by means of their ability to pump the drugs out of the cells. Breast cancer tumor resistance is mainly associated with overexpression of P-gp/MDR1. Although some chemical MDR modulators aim to overcome MDR by interfering functioning of P-gp, their toxicities limit their usage in clinics. Consequently, RNA interference mediated sequence specific inhibition of the expression of P-gp/MDR1 mRNA may be an efficient tool to reverse MDR phenotype and increase the success of chemotherapy. Aim of this study was resensitizing doxorubicin-resistant breast cancer cells to anticancer agent doxorubicin by selective downregulation of P-gp/MDR1 mRNA. The effect of the selected MDR1 siRNA, and MRP1 expression after MDR1 silencing was determined by qPCR analysis. Intracellular drug accumulation and localization was investigated by confocal laser scanning microscopy after treatment with MDR1 siRNA. XTT cell proliferation assay was performed to determine the effect of MDR1 silencing on doxorubicin sensitivity. The results demonstrated that approximately 90% gene silencing occurred by the selected siRNA targeting MDR1 mRNA. However, the level of MRP1 mRNA did not change after MDR1 downregulation. Silencing of P-gp encoding MDR1 gene resulted in almost complete restoration of the intracellular doxorubicin accumulation and relocalization of the drug in the nuclei. Introduction of siRNA resulted in about 70% resensitization to doxorubicin. Selected siRNA duplex was shown to effectively inhibit MDR1 gene expression, restore doxorubicin accumulation and localization, and enhance

  11. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance

    Directory of Open Access Journals (Sweden)

    Dong K

    2016-10-01

    MDR cancer therapy. Keywords: reversal of multidrug resistance, reduction-sensitive, disulfide bond, mixed micelles, MCF-7/PTX cells

  12. Use of Ceftolozane/Tazobactam in the Treatment of Multidrug-resistant Pseudomonas aeruginosa Bloodstream Infection in a Pediatric Leukemia Patient.

    Science.gov (United States)

    Aitken, Samuel L; Kontoyiannis, Dimitrios P; DePombo, April M; Bhatti, Micah M; Tverdek, Frank P; Gettys, Suzanne C; Nicolau, David P; Nunez, Cesar A

    2016-09-01

    Multidrug-resistant Pseudomonas aeruginosa is of increasing concern in pediatric patients. Ceftolozane/tazobactam is a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant Pseudomonas; however, no data exist on its use in children. This report summarizes the treatment of a multidrug-resistant P. aeruginosa bloodstream infection in a pediatric leukemia patient with ceftolozane/tazobactam and provides the first description of its pharmacokinetics in pediatrics.

  13. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  14. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    Science.gov (United States)

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  15. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    Science.gov (United States)

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Effect of oxygen on multidrug resistance in the first trimester human placenta.

    Science.gov (United States)

    Lye, P; Bloise, E; Dunk, C; Javam, M; Gibb, W; Lye, S J; Matthews, S G

    2013-09-01

    The multidrug resistance proteins, P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP, encoded by ABCG2) are highly expressed in the first trimester placenta. These transporters protect the fetus from exposure to maternally derived toxins and xenobiotics. Since oxygen is a regulator of multidrug resistance in various tissues, we hypothesized that changes in oxygen tension alter placental ABCB1/P-gp and ABCG2/BCRP expression in the first trimester. Placental specimens were collected from first (n = 7), second (n = 5) and term pregnancies (n = 5). First trimester placental villous explants were incubated (24 or 48 h) in different oxygen tension (3-20%). ABCB1, ABCG2 and VEGFA mRNA expression levels were assessed by RT-PCR and protein was localized by IHC. ABCB1 is expressed most highly in the first trimester placenta (p < 0.05), whereas ABCG2 expression does not change significantly over pregnancy. P-gp and BCRP staining is present in the syncytiotrophoblast and in cytotrophoblasts. ABCG2 mRNA is increased in hyperoxic (20%) conditions after 48 h (p < 0.05). In contrast, hypoxia (3%) did not change ABCB1 mRNA expression but significantly increased VEGFA mRNA (p < 0.05). Hypoxia resulted in increased BCRP staining in cytotrophoblasts and in the microvillous membrane of the syncytium. Whereas, hypoxia resulted in increased P-gp staining in proliferating cytotrophoblasts. We conclude that placental multidrug resistance expression, specifically ABCG2, is regulated by oxygen tension in the first trimester. It is possible that changes in placental oxygen supply are capable of altering fetal drug exposure especially during early pregnancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts.

    Science.gov (United States)

    Porse, Andreas; Schønning, Kristian; Munck, Christian; Sommer, Morten O A

    2016-11-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid-host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. ACTIVITY OF THYME OIL (OLEUM THYMI) AGAINST MULTIDRUG-RESISTANT ACINETOBACTER BAUMANNII AND PSEUDOMONAS AERUGINOSA.

    Science.gov (United States)

    Trojanowska, Danuta; Paluchowska, Paulina; Soja, Łukasz; Budak, Alicja

    2016-07-01

    Almost as soon as antibiotics were introduced to treat infectious diseases, it could be observed that bacteria were able to develop resistance against them. Currently, multidrug-resistant strains are being isolated mainly in the hospital environment. These are primarily non-fermenting Gram-negative bacilli, which exhibit both natural and acquired resistance to multiple antibiotics and disinfectants rendering them difficult to eradicate. The development of new, effective and safe substances that prevent troublesome infections is greatly needed to provide alternative therapeutic options for patients. There is increasing interest in drugs of natural origin, including essential oils. It is of particular interest that, although active against many bacterial strains, they do not contribute to antibacterial resistance against their components. The aim of our study was to evaluate the in vino antibacterial activity of thyme oil against multidrug-resistant strains of A. baumannii and P. aeriginosa using the disc diffusion and macrodilution methods. The strains were isolated from patients hospitalized in the years 2013-2014. The in vitto antibacterial activity of thyme oil was assessed by the disc diffusion method and the inhibition zones for the oil at different concentrations, produced against A. baumannii, ranged from 7 to 44 mm. Low level of activity of thyme oil was observed against P. aeruginosa strains. The results of serial dilution tests confirmed the high activity of thyme oil against A. baumannii isolates, expressed as MIC values ranging from 0.25 to 2 μL/mL. These results suggest the need for further studies of antibacterial activity of essential oils, especially against multidrug-resistant bacterial isolates.

  19. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients.

    Science.gov (United States)

    Modongo, Chawangwa; Pasipanodya, Jotam G; Zetola, Nicola M; Williams, Scott M; Sirugo, Giorgio; Gumbo, Tawanda

    2015-10-01

    Aminoglycosides, such as amikacin, are used to treat multidrug-resistant tuberculosis. However, ototoxicity is a common problem and is monitored using peak and trough amikacin concentrations based on World Health Organization recommendations. Our objective was to identify clinical factors predictive of ototoxicity using an agnostic machine learning method. We used classification and regression tree (CART) analyses to identify clinical factors, including amikacin concentration thresholds that predicted audiometry-confirmed ototoxicity among 28 multidrug-resistant pulmonary tuberculosis patients in Botswana. Amikacin concentrations were measured for all patients. The quantitative relationship between predictive factors and the probability of ototoxicity were then identified using probit analyses. The primary predictors of ototoxicity on CART analyses were cumulative days of therapy, followed by cumulative area under the concentration-time curve (AUC), which improved on the primary predictor by 87%. The area under the receiver operating curve was 0.97 on the test set. Peak and trough were not predictors in any tree. When algorithms were forced to pick peak and trough as primary predictors, the area under the receiver operating curve fell to 0.46. Probit analysis revealed that the probability of ototoxicity increased sharply starting after 6 months of therapy to near maximum at 9 months. A 10% probability of ototoxicity occurred with a threshold cumulative AUC of 87,232 days · mg · h/liter, while that of 20% occurred at 120,000 days · mg · h/liter. Thus, cumulative amikacin AUC and duration of therapy, and not peak and trough concentrations, should be used as the primary decision-making parameters to minimize the likelihood of ototoxicity in multidrug-resistant tuberculosis. Copyright © 2015, Modongo et al.

  20. Genetic relatedness and molecular characterization of multidrug resistant Acinetobacter baumannii isolated in central Ohio, USA

    Directory of Open Access Journals (Sweden)

    Tadesse Daniel

    2009-06-01

    Full Text Available Abstract Background Over the last decade, nosocomial infections due to Acinetobacter baumannii have been described with an increasing trend towards multidrug resistance, mostly in intensive care units. The aim of the present study was to determine the clonal relatedness of clinical isolates and to elucidate the genetic basis of imipenem resistance. Methods A. baumannii isolates (n = 83 originated from two hospital settings in central Ohio were used in this study. Pulsed-field gel electrophoresis genotyping and antimicrobial susceptibility testing for clinically relevant antimicrobials were performed. Resistance determinants were characterized by using different phenotypic (accumulation assay for efflux and genotypic (PCR, DNA sequencing, plasmid analysis and electroporation approaches. Results The isolates were predominantly multidrug resistant (>79.5% and comprised of thirteen unique pulsotypes, with genotype VII circulating in both hospitals. The presence of blaOXA-23 in 13% (11/83 and ISAba1 linked blaOXA-66 in 79.5% (66/83 of clinical isolates was associated with high level imipenem resistance. In this set of OXA producing isolates, multidrug resistance was bestowed by blaADC-25, class 1 integron-borne aminoglycoside modifying enzymes, presence of sense mutations in gyrA/parC and involvement of active efflux (with evidence for the presence of adeB efflux gene. Conclusion This study underscores the major role of carbapenem-hydrolyzing class D β-lactamases, and in particular the acquired OXA-23, in the dissemination of imipenem-resistant A. baumannii. The co-occurrence of additional resistance determinant could also be a significant threat.

  1. Curative effect of transbronchoscopic perfusion combined with conventional chemotherapy on multi-drug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-12-01

    Full Text Available Objective: To analyze the curative effect of transbronchoscopic perfusion combined with conventional chemotherapy on multi-drug resistant tuberculosis. Methods: A total of 70 patients with multi-drug resistant tuberculosis treated in our hospital between April 2012 and April 2015 were selected and randomly divided into two groups, control group received conventional chemotherapy and observation group received transbronchoscopic perfusion + conventional chemotherapy. After treatment, negative conversion ratio of sputum mycobacterium tuberculosis, immune function, disease-specific indexes, oxidative stress indexes and liver function indexes were compared between two groups of patients. Results: After 6 months and 12 months of treatment, negative conversion ratio of sputum mycobacterium tuberculosis of observation group were significantly higher than those of control group; after 12 months of treatment, CD3+ , CD4+ , CD4+ /CD8+ , IgA, IgM and IgG levels in peripheral blood of observation group were significantly higher than those of control group while disease-specific indexes ADA and LDH content in serum were lower than those of control group; oxidative stress indexes TOS, MAOA and OSI content in serum were lower than those of control group while TAS and GSH-Px content were higher than those of control group; liver function indexes STB, ALP, ALT and AST content in serum were lower than those of control group while TP content was higher than that of control group. Conclusions: Transbronchoscopic perfusion combined with conventional chemotherapy can improve the treatment effectiveness, improve immune function as well as reduce oxidative stress and liver damage in patients with multi-drug resistant tuberculosis, and is advantageous in optimizing long-term treatment outcome.

  2. Lignans and norlignans inhibit multidrug resistance protein 1 (MRP1/ABCC1)-mediated transport.

    Science.gov (United States)

    Wróbel, Anna; Eklund, Patrik; Bobrowska-Hägerstrand, Malgorzata; Hägerstrand, Henry

    2010-11-01

    Multidrug resistance protein 1 (MRP1/ABCC1) is one of the drug efflux pumps mediating multidrug resistance in several cancer types. Efficient nontoxic inhibitors of MRP1-mediated transport are sought to potentially sensitise cancer cells to anticancer drugs. This study examined the potency of a series of plant lignans and norlignans of various structures to inhibit MRP1-mediated transport from human erythrocytes. The occurrence of MRP1 in the human erythrocyte membrane makes this cell a useful model in searching for efficient MRP1inhibitors. The inhibition of 2',7'-bis-(carboxypropyl)-5(6)-carboxyfluorescein (BCPCF) transport from human erythrocytes was measured fluorymetrically. In order to study possible membrane-perturbing effects of lignans and norlignans, the potency of these compounds to induce haemolysis, erythrocyte shape change, and phosphatidylserine (PS) exposure in the external layer of the erythrocyte membrane was examined. Nine compounds (six norlignans and three lignans) of the fourteen that were tested inhibited BCPCF transport from human erythrocytes. The most efficient inhibitor, the norlignan coded L1, had IC(50)=50 μM. Structure-activity relationship analysis showed that the strongest inhibitors were found among lignans and norlignans bearing a carbonyl function at position C-9. The highly oxidised structures and the presence of an ionisable group such as the carboxylic acid function enhance activity. All compounds that significantly decreased BCPCF transport were non-haemolytic, did not cause PS exposure and did not have any effect on erythrocyte shapes up to 200 μM. Lignans and norlignans can inhibit MRP1-mediated transport from human erythrocytes and should be further investigated as possible agents reversing multidrug resistance.

  3. A deletion mutation in nfxB of in vitro-induced moxifloxacin-resistant Pseudomonas aeruginosa confers multidrug resistance.

    Science.gov (United States)

    Thai, Van Chi; Pham, Hoang Vy; Nguyen, Duc Nhat Minh; Lambert, Peter; Nguyen, Thi Thu Hoai

    2017-09-01

    The modulation of efflux pump functions under fluoroquinolone (FQ) exposure is of great concern as it could result in occurrence of multidrug-resistant (MDR) bacterial strains. In this study, MDR mechanism in Pseudomonas aeruginosa induced via moxifloxacin (MOX) pressure was investigated. After serial MOX [concentration of 0.5 × the minimum inhibitory concentration (MIC)] exposure, the fully susceptible P. aeruginosa ATCC 9027 strain has increased its MIC not only toward MOX (1→128 mg/L) but also to other antibiotics. Furthermore, this MOX-exposed strain did not revert to antibiotic-sensitive phenotype when being cultured in antibiotic-free medium for 12 days. No mutation was observed for FQ-target (gyrA and parC) or most investigated efflux regulatory genes (mexT, mexR, and nalC) except nfxB in which a 100-bp deletion was found. This associated with the elevated expression of multidrug efflux pump operon (mexCD-oprJ) which could directly result in MDR phenotype.

  4. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    Science.gov (United States)

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-05-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.

  5. Regorafenib is transported by the organic anion transporter 1B1 and the multidrug resistance protein 2.

    Science.gov (United States)

    Ohya, Hiroki; Shibayama, Yoshihiko; Ogura, Jiro; Narumi, Katsuya; Kobayashi, Masaki; Iseki, Ken

    2015-01-01

    Regorafenib is a small molecule inhibitor of tyrosine kinases, and has been shown to improve the outcomes of patients with advanced colorectal cancer and advanced gastrointestinal stromal tumors. The transport profiles of regorafenib by various transporters were evaluated. HEK293/organic anion transporting polypeptide 1B1 (OATP1B1) cells exhibited increased drug sensitivity to regorafenib. Regorafenib inhibited the uptake of 3H-estrone sulfate by HEK293/OATP1B1 cells in a dose-dependent manner, but did not affect its elimination by P-glycoproteins. The concentration of regorafenib was significantly lower in LLC-PK1/multidrug resistance protein 2 (MRP2) cells than in LLC-PK1 cells treated with the MRP2 inhibitor, MK571. MK571 abolished the inhibitory effects of regorafenib on intracellular accumulation in LLC-PK1/MRP2 cells. The uptake of regorafenib was significantly higher in HEK293/OATP1B1 cells than in OATP1B1-mock cells. Transport kinetics values were estimated to be Km=15.9 µM and Vmax=1.24 nmol/mg/min. No significant difference was observed in regorafenib concentrations between HEK293/OATP1B3 and OATP1B3-mock cells. These results indicated that regorafenib is a substrate for MRP2 and OATP1B1, and also suggest that the substrate preference of regorafenib may implicate the pharmacokinetic profiles of regorafenib.

  6. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  7. Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant staphylococci

    Science.gov (United States)

    Mohammad, Haroon; Mayhoub, Abdelrahman S.; Cushman, Mark; Seleem, Mohamed N.

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are a leading cause of death among all fatalities caused by antibiotic-resistant bacteria. With the rise of increasing resistance to current antibiotics, new antimicrobials and treatment strategies are urgently needed. Thiazole compounds have been shown to possess potent antimicrobial activity. A lead thiazole 1 and a potent derivative 2 were synthesized and their activity in combination with glycopeptide antibiotics was determined against an array of MRSA and vancomycin-resistant Staphylococcus aureus (VRSA) clinical isolates. Additionally, the anti-biofilm activity of the novel thiazoles was investigated against Staphylococcus epidermidis. Compound 2 behaved synergistically with vancomycin against MRSA and was able to re-sensitize VRSA to vancomycin, reducing its minimum inhibitory concentration (MIC) by 512-fold in two strains. Additionally, both thiazole compounds were superior to vancomycin in significantly reducing S. epidermidis biofilm mass. Collectively the results obtained demonstrate compounds 1 and 2 possess potent antimicrobial activity alone or in combination with vancomycin against multidrug-resistant staphylococci and show potential for use in disrupting staphylococcal biofilm. PMID:25315757

  8. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1).

    Science.gov (United States)

    Wegner, Marthe-Susanna; Gruber, Lisa; Mattjus, Peter; Geisslinger, Gerd; Grösch, Sabine

    2018-02-06

    The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.

  9. Activity of solvent extracts of Prosopis spicigera, Zingiber officinale and Trachyspermum ammi against multidrug resistant bacterial and fungal strains.

    Science.gov (United States)

    Khan, Rosina; Zakir, Mohammad; Afaq, Sadul H; Latif, Abdul; Khan, Asad U

    2010-06-03

    The emerging trends of multidrug resistance among several groups of microorganisms against different classes of antibiotics led different researchers to develop efficient drugs from plant sources to counter multidrug resistant strains. This study investigated different solvent extracts of Prosopis spicigera (P. Spicigera), Zingiber officinale, and Trachyspermum ammi (T. ammi) to determine their efficacy against multidrug resistant microbes. Successive extractions of these plants were performed using a Soxhlet apparatus, using solvents with increasing polarities. Preliminary phytochemical analysis was also performed. Minimum inhibitory concentration was determined by a two-fold serial dilution method followed by determination of minimum bactericidal/fungicidal concentration. Multidrug resistant (MDR) strains of Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, Escherichia coli and reference strains of Streptococcus mutans and Streptococcus bovis were used in the study. The ethanolic fraction of P. spicigera (least minimum inhibitory concentration [MIC] - 4.88 microg/ml) demonstrated a remarkable inhibition of the microorganisms while fractions obtained from those of Zingiber officinale (least MIC-78.125 microg/ml) exhibited little activity. The petroleum ether fraction of T. ammi (least MIC- 625 microg/ml) showed best activity when compared to its other fractions. Qualitative analysis of the phytoconstituents was also performed. The potency shown by these extracts recommends their use against multidrug resistant microorganisms. This study also showed that P. spicigera could be a potential source of new antimicrobial agents.

  10. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance

    Science.gov (United States)

    Yu, Xiwei; Yang, Guang; Shi, Yijie; Su, Chang; Liu, Ming; Feng, Bo; Zhao, Liang

    2015-01-01

    Nowadays, multidrug resistance and side effects of drugs limit the effectiveness of chemotherapies in clinics. P-glycoprotein (P-gp) (MDR1), as a member of the ATP-binding cassette family, acts on transporting drugs into cell plasma across the membrane of cancer cells and leads to the occurrence of multidrug resistance, thus resulting in the failure of chemotherapy in cancer. The main aims of this research were to design a nanodelivery system for accomplishing the effective co-delivery of gene and antitumor drug and overcoming multidrug resistance effect. In this study, shMDR1 and gefitinib-encapsulating chitosan nanoparticles with sustained release, small particle size, and high encapsulation efficiency were prepared. The serum stability, protection from nuclease, and transfection efficiency of gene in vitro were investigated. The effects of co-delivery of shMDR1 and gefitinib in nanoparticles on reversing multidrug resistance were also evaluated by investigating the cytotoxicity, cellular uptake mechanism, and cell apoptosis on established gefitinib-resistant cells. The results demonstrated that chitosan nanoparticles entrapping gefitinib and shMDR1 had the potential to overcome the multidrug resistance and improve cancer treatment efficacy, especially toward resistant cells. PMID:26648717

  11. A portable 3D printer system for the diagnosis and treatment of multidrug-resistant bacteria

    OpenAIRE

    Glatzel, Stefan; Hezwani, Mohammed; Kitson, Philip J.; Gromski, Piotr S.; Schürer, Sophie; Cronin, Leroy

    2016-01-01

    Summary: Multidrug-resistant bacteria are a major threat to human health, but broad-spectrum\\ud antibiotics are losing efficacy. There is a need to screen a given drug against\\ud a bacterial infection outside of the laboratory. To address this need, we have designed\\ud and built an inexpensive and easy-to-use 3D-printer-based system that\\ud allows easily readable quantitative tests for the performance of antibacterial\\ud drugs. The platform creates a sterile diagnostic device by using 3D prin...

  12. Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Kiser, Tyree H; Obritsch, Marilee D; Jung, Rose; MacLaren, Robert; Fish, Douglas N

    2010-07-01

    To determine if increased expression of efflux pumps, mutations in the genes encoding regulatory proteins for efflux pumps, or the combination is associated with multidrug-resistant (MDR) Pseudomonas aeruginosa isolates. Microbiologic evaluation of prospectively collected Pseudomonas aeruginosa isolates. University teaching hospital. ISOLATES: One hundred eight unique P. aeruginosa isolates-50 non-MDR and 58 MDR isolates-obtained from pulmonary or blood sources from patients admitted to the intensive care unit between January 1, 1999, and December 31, 2004. Isolates were considered MDR if they were resistant to at least three of the following four drugs: ciprofloxacin, tobramycin, ceftazidime, or imipenem. Possible mutations in efflux regulatory genes mexR, nfxB, and mexZ were analyzed by using polymerase chain reaction amplification and DNA sequencing. Determination of the expression of outer membrane proteins OprM and OprJ was performed by using sodium dodecyl sulfate- polyacrylamide gel electrophoresis immunoblotting. Differences in regulatory gene mutations and outer membrane protein expression were compared between non-MDR and MDR isolates. Among the 108 P. aeruginosa isolates, the MDR isolates were more likely to overexpress OprM compared with non-MDR isolates (64% vs 2%, pMutations in mexR and mexZ were present in 64% and 26% of MDR strains, respectively, but were not associated with OprM overexpression or multidrug resistance. Expression of OprJ was not associated with MDR isolates (odds ratio [OR] 3.7, 95% confidence interval [CI] 0.7-18.5, p=0.11). Mutations in nfxB (12% of MDR strains) were also not associated with multidrug resistance (OR 3.5, 95% CI 0.7-17.8, p=0.13). Eight (100%) of 8 isolates with OprJ expression plus OprM overexpression, 12 (92%) of 13 isolates with combined mexR and mexZ mutations, 5 (100%) of 5 isolates with nfxB plus mexZ mutations, and 16 (100%) of 16 isolates with OprM overexpression plus mexZ mutations were MDR isolates. The

  13. A Case of Community-Acquired Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii in Korea.

    Science.gov (United States)

    Son, Young Woong; Jung, In Young; Ahn, Mi Young; Jeon, Yong Duk; Ann, Hea Won; Ahn, Jin Young; Ku, Nam Su; Han, Sang Hoon; Choi, Jun Young; Song, Young Goo; Kim, June Myung

    2017-12-01

    Acinetobacter baumannii is an aerobic Gram-negative coccobacillus that causes nosocomial pneumonia in patients on mechanical ventilation or previously treated with broad-spectrum antibiotics. Nevertheless, community-acquired pneumonia (CAP) caused by A. baumannii, especially multi-drug resistant (MDR) strains, is rare. We experienced the first case of CAP caused by MDR A. baumannii in Korea in a 78-year-old man. This case shows that MDR A. baumannii can cause CAP in Korea. Copyright © 2017 by The Korean Society of Infectious Diseases and Korean Society for Chemotherapy.

  14. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice

    Directory of Open Access Journals (Sweden)

    Vinodkumar C

    2008-07-01

    Full Text Available Drug resistance is the major cause of increase in morbidity and mortality in neonates. One thousand six hundred forty-seven suspected septicemic neonates were subjected for microbiological analysis over a period of 5 years. Forty-two P. aeruginosa were isolated and the antibiogram revealed that 28 P. aeruginosa were resistant to almost all the common drugs used (multidrug-resistant. The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. As a result, a novel and most effective approaches for treating infection caused by multidrug-resistant bacteria are urgently required. In this context, one intriguing approach is to use bacteriophages (viruses that kill bacteria in the treatment of infection caused by drug-resistant bacteria. In the present study, the utility of lytic bacteriophages to rescue septicemic mice with multidrug-resistant (MDR P. aeruginosa infection was evaluated. MDR P. aeruginosa was used to induce septicemia in mice by intraperitoneal (i.p. injection of 10 7 CFU. The resulting bacteremia was fatal within 48 hrs. The phage strain used in this study had lytic activity against a wide range of clinical isolates of MDR P. aeruginosa. A single i.p. injection of 3 x 10 9 PFU of the phage strain, administered 45 min after the bacterial challenge, was sufficient to rescue 100% of the animals. Even when treatment was delayed to the point where all animals were moribund, approximately 50% of them were rescued by a single injection of this phage preparation. The ability of this phage to rescue septicemic mice was demonstrated to be due to the functional capabilities of the phage and not to a nonspecific immune effect. The rescue of septicemic mice could be affected only by phage strains able to grow in vitro on the bacterial host used to infect the animals and when such strains are heat-inactivated, they lose their ability to rescue the infected mice. Multidrug-resistant bacteria have

  15. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Kostka, Libor; Sivák, Ladislav; Cuchalová, Lucie; Hvězdová, Zuzana; Laga, Richard; Filippov, Sergey K.; Černoch, Peter; Pechar, Michal; Janoušková, Olga; Šírová, Milada; Etrych, Tomáš

    2017-01-01

    Roč. 245, 10 January (2017), s. 41-51 ISSN 0168-3659 R&D Projects: GA MZd(CZ) NV16-28600A; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : multidrug resistance * P-glycoprotein inhibitor * EPR effect Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 7.786, year: 2016

  16. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Min; Lu, Guangyuan; Heng, Jie

    2018-03-01

    Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters. © 2017 The Protein Society.

  17. High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    Baral Pankaj

    2012-01-01

    Full Text Available Abstract Background Urinary Tract Infection (UTI is one of the most common infectious diseases and people of all age-groups and geographical locations are affected. The impact of disease is even worst in low-resource developing countries due to unaware of the UTIs caused by multidrug-resistant (MDR pathogens and the possibility of transfer of MDR traits between them. The present study aimed to determine the prevalence of MDR bacterial isolates from UTI patients, the antibiotic resistance pattern and the conjugational transfer of multidrug resistance phenotypes in Escherichia coli (E. coli. Results Two hundred and nineteen bacterial isolates were recovered from 710 urine samples at Kathmandu Model hospital during the study period. All samples and isolates were investigated by standard laboratory procedures. Among the significant bacterial growth (30.8%, 219 isolates, 41.1% isolates were MDR. The most prevailing organism, E. coli (81.3%, 178 isolates was 38.2% MDR, whereas second most common organism, Citrobacter spp. (5%, 11 isolates was found 72.7% MDR. Extended-spectrum β-lactamase (ESBL production was detected in 55.2% of a subset of MDR E. coli isolates. Among the 29 MDR E. coli isolates, plasmids of size ranging 2-51 kb were obtained with different 15 profiles. The most common plasmid of size 32 kb was detected in all of the plasmid-harbored E. coli strains. The majority of E. coli isolates investigated for the multidrug resistance transfer were able to transfer plasmid-mediated MDR phenotypes along with ESBL pattern with a frequency ranging from 0.3 × 10-7 to 1.5 × 10-7 to an E. coli HB101 recipient strain by conjugation. Most of the donor and recipient strain showed high levels of minimum inhibitory concentration (MIC values for commonly-used antibiotics. Conclusions The high prevalence of multidrug resistance in bacterial uropathogens was observed. Particularly, resistance patterns were alarmingly higher for amoxycillin, co

  18. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank Møller; Chen, P. C.

    2006-01-01

    Of the 798 clinical Salmonella isolates collected from multiple hospitals in Taiwan, resistance to ampicillin (48.5%), chloramphenicol (55.3%), streptomycin (59.0%), sulfamethoxazole (68.0%), and tetracycline (67.8%) was high, whereas resistance to all 5 antimicrobials (ACSSuT R-type) comprised 327...... multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc...

  19. Several Virulence Factors of Multidrug-Resistant Staphylococcus aureus Isolates From Hospitalized Patients in Tehran

    Directory of Open Access Journals (Sweden)

    Abdolmajid Ghasemian

    2015-05-01

    Full Text Available Background: Biofilm formation plays an important role in resistance of Staphylococcus aureus isolates; especially multidrug-resistant isolates are a threat to healthcare settings. Objectives: The aims of this study were to detect biofilm formation and presence of several related genes among multidrug-resistant (MDR isolates of Staphylococcus aureus. Patients and Methods: A total Of 209 S. aureus strains were isolated from patients and identified by conventional diagnostic tests. The multidrug-resistant MRSA isolates were detected by antibiotic susceptibility test. The phenotypic biofilm formation was detected by micro-titre tissue plate assay. The polymerase chain reaction (PCR was performed to detect the mecA, Staphylococcal Cassette Chromosome mec (SCCmec types, accessory gene regulatory (agr genes, the icaADBC and several genes encoding staphylococcal surface proteins including clfAB, fnbAB, fib, eno, can, ebps and bbp genes with specific primers. Results: Sixty-four (30.6% isolates were methicillin-resistant, among which thirty-six (56.2% were MDR. These isolates were resistant to amoxicillin, tetracycline, ciprofloxacin, gentamicin, erythromycin and trimethoprim-sulfamethoxazole (except to 6 isolates. All the isolates were susceptible to vancomycin and linezolid. All the MDR-MRSA harbored SCCmec type III. All the MDR- MRSA isolates were strong biofilm producers in the phenotypic test. The majority of MDR- MRSA was belonged to agrI (67%, n = 24, followed by agr II (17%, n = 6, agrIV (11%, n = 4 and agrIII (5.5%, n = 2. The frequency of icaADBC genes were 75% (n = 27, 61% (n = 22, 72% (n = 26 and 72% (n = 26, respectively. Furthermore, the prevalence of clfA, clfB, fnbA, fnbB, fib, can, eno, ebps and bbp genes was 100%, 100%, 67%, 56%, 80%, 63%, 78%, 7% and 0%, respectively. Furthermore, approximately all the MRSA was strong biofilm producers. Conclusions: Multidrug-resistant isolates produced biofilm strongly and the majority harbored most

  20. Features of Cytokine Regulation in Multidrug-Resistant Tuberculosis Depending on Severity of Endogenous Intoxication

    Directory of Open Access Journals (Sweden)

    L.D. Todoriko

    2016-02-01

    Conclusions. Comprehensive assessment of integral indices of endogenous intoxication and level of certain pro- and anti-inflammatory cytokines in the blood plasma of patients with MDR TB shows a moderate endogenous intoxication, break down of the cellular component of the immune reactivity due to the formation of conditions for the development of Mycobacterium tuberculosis resistance, with further growth of cytotoxic hypoxia and activation of systemic inflammatory response syndrome. Analysis of plasma concentration of IL-6, IL-10 and IL-18 in patients with multidrug-resistance proved, that their level depends on the nature of Mycobacterium tuberculosis resistance.

  1. Characterization of an IncA/C Multidrug Resistance Plasmid in Vibrio alginolyticus.

    Science.gov (United States)

    Ye, Lianwei; Li, Ruichao; Lin, Dachuan; Zhou, Yuanjie; Fu, Aisi; Ding, Qiong; Chan, Edward Wai Chi; Yao, Wen; Chen, Sheng

    2016-05-01

    Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with β-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017

    DEFF Research Database (Denmark)

    Terkelsen, David; Tolstrup, Jacob; Johnsen, Camilla Hundahl

    2017-01-01

    We describe a multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and azithromycin intermediate resistance in a heterosexual man in Denmark, 2017. Whole genome sequencing of the strain GK124 identified MSLT ST1903, NG-MAST ST1614 and all relevant resistance determinants...... including similar penA resistance mutations previously described in ceftriaxone-resistant gonococcal strains. Although treatment with ceftriaxone 0.5 g plus azithromycin 2 g was successful, increased awareness of spread of gonococcal strains threatening the recommended dual therapy is crucial....

  3. Multidrug resistant bacteria in companion animals: impact on animal health and zoonotic aspects

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro

    The role of companion animals as a source of antibiotic resistant bacteria has historically been given little emphasis when compared with that of food animals. However, various resistant bacteria may cause serious treatment problems in companion animal medicine. Some of the most important multidrug-resistant...... bacteria include methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These bacteria will be described with focus on their prevalence across Europe, their impact on animal...

  4. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    Science.gov (United States)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  5. Reversal of multi-drug resistance in HL60/VCR cell line of acute promyelocytic leukemia with anti-sense olignucleotide (ASOH)

    International Nuclear Information System (INIS)

    Qu Wei; Wang Zizheng; Wang Shukui; Li Yan

    2005-01-01

    Objective: To investigate the efficacy of ASON on reversal of the resistance to vincristine of HL60/VCR cell line in vitro. Methods: HL60/VCR cell line was cultured 48hr with ASON or sense olignucleotide (as control). The expression of mdr-1 mRNA (with RT-PCR), Pgp expression on cellularmembrance (with flow-cytometry) and sensitirity to vincristine were examined in both cultures. Results: The mdr-1 mRNA and Pgp expresson in cell line caltured with ASON were singificantly lower than those in cell line cultured with sense olignucleotide while the sensitity to vincristine was greatly enhanced. Conclusion: ASON could reverse the multi-drug resistance in HL60/VCR cell line, possibly through suppression of transcription of mdr-1 mRNA, resulting in decrease of Pgp expression with enhanced sensitivity to vincristine. (authors)

  6. Antioxidant Functions of Nitric Oxide Synthase in a Methicillin Sensitive Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Manisha Vaish

    2013-01-01

    Full Text Available Nitric oxide and its derivative peroxynitrites are generated by host defense system to control bacterial infection. However certain Gram positive bacteria including Staphylococcus aureus possess a gene encoding nitric oxide synthase (SaNOS in their chromosome. In this study it was determined that under normal growth conditions, expression of SaNOS was highest during early exponential phase of the bacterial growth. In oxidative stress studies, deletion of SaNOS led to increased susceptibility of the mutant cells compared to wild-type S. aureus. While inhibition of SaNOS activity by the addition of L-NAME increased sensitivity of the wild-type S. aureus to oxidative stress, the addition of a nitric oxide donor, sodium nitroprusside, restored oxidative stress tolerance of the SaNOS mutant. The SaNOS mutant also showed reduced survival after phagocytosis by PMN cells with respect to wild-type S. aureus.

  7. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2)

    DEFF Research Database (Denmark)

    Litman, Thomas; Brangi, M; Hudson, E

    2000-01-01

    known as ABCP1 or BCRP. The pharmacodynamics of mitoxantrone and 12 other fluorescent drugs were evaluated by confocal microscopy in four multidrug-resistant human colon (S1) and breast (MCF-7) cancer cell lines. We utilized two sublines, MCF-7 AdVp3000 and S1-M1-80, and detected overexpression of MXR...... by PCR, immunoblot assay and immunohistochemistry. These MXR overexpressing sublines were compared to cell lines with P-glycoprotein- and MRP-mediated resistance. High levels of cross-resistance were observed for mitoxantrone, the anthracyclines, bisantrene and topotecan. Reduced levels of mitoxantrone......, the multidrug-resistant phenotype due to MXR expression is overlapping with, but distinct from, that due to P-glycoprotein. Further, cells that overexpress the MXR protein seem to be more resistant to mitoxantrone and topotecan than cells with P-glycoprotein-mediated multidrug resistance. Our studies suggest...

  8. Epidemiology of Multidrug Resistant Uropathogenic Escherichia coli in Iran: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Hadifar, Shima; Moghoofei, Mohsen; Nematollahi, Shahrzad; Ramazanzadeh, Rashid; Sedighi, Mansour; Salehi-Abargouei, Amin; Miri, Ali

    2017-01-24

    Urinary tract infection (UTI) is one of the most common infections in humans. It is primarily caused by uropathogenic Escherichia coli (UPEC), which has a high multidrug resistance (MDR). In consideration of the prevalence of MDR-UPEC strains, the aims of the present study were to systematically review the published data about the prevalence rate of MDR-UPEC from different parts of Iran and to establish the overall relative frequency (RF) of these strains in Iran. We searched several databases including PubMed, ISI Web of Science, Scopus, Google Scholar, IranMedex, and Iranian Scientific Information Database by using the following keywords: "Escherichia coli", "multidrug resistant", "MDR", "urinary tract infections", "UTI", "uropathogenic". and "Iran". Articles or abstracts that reported the prevalence of MDR-UPEC were included in this review. We found 15 articles suitable for inclusion in this study. A pooled estimation of 10,247 UPEC strains showed that 49.4% (95% confidence interval = 48.0-50.7%) of the stranis were MDR positive. The RF of MDR-UPEC in different studies varied from 10.5% to 79.2% in the Kashan and Hamedan provinces, respectively. According to the results of the present study, the RF of MDR-UPEC in Iran is high. Thus, measures should be taken to keep the emergence and transmission of these strains to a minimum.

  9. Correlation between uptake of 99TcM-MIBI and multidrug resistant proteins of breast cancer

    International Nuclear Information System (INIS)

    Zhang Xuemei; Wu Hua

    2004-01-01

    Objectives: To assess the correlation between 99 Tc m -MIBI uptake and the expression level of multidrug resistant proteins of breast cancer. Methods: Thirty patients with infiltrating ductal carcinoma were enrolled in this study. 99Tcm-MIBI scintigraphy were performed at 15 min and 90 min after injecting the tracer. The uptake of 99Tcm-MIBI were evaluated as tumor over background ratio with region of interest technique. Such indexes as early uptake ratio (EUR), delay uptake ratio (DUR) and retention index (RI) were calculated respectively. P-gp (P-glycoprotein) and MRP (multidrug resistant-associated protein) expression in surgically resected tumors were investigated by immunohistochemistry. Immunohistochemistry HPIAS-1000 image analysis system was used to determined the level of P-gp and MRP expression. The difference of P-gp and MRP level in the group with RI ≥ 0 and the group with RI 99 Tc m -MIBI on delayed scans in breast cancer. The uptake of 99 Tc m -MIBI may be not related to the levels of MRP expression. Thus 99 Tc m -MIBI scintigraphy may predict the MDR development which associated with P-gp expression in breast carcinoma. (authors)

  10. Isolation and characterization of multidrug-resistant Leclercia species from animal clinical case.

    Science.gov (United States)

    Choudhary, M; Choudhary, B K; Bhoyar, S; Kale, S B; Chaudhari, S P; Bera, B C; Jain, A; Barbuddhe, S B

    2018-01-01

    Leclercia adecarboxylata, a Gram-negative bacillus of family Enterobacteriaceae, is an uncommonly identified pathogen isolated from environmental and clinical specimens. Most of the human infections are polymicrobial and commonly occur in immunocompromised hosts, although nosocomial infections in immunocompetent hosts have been documented. Here, we describe the case of isolation of Leclercia species as polymicrobial infection from bovine suffering from respiratory distress in Chhattisgarh state of India. The isolates were identified by their phenotypes, 16S rDNA sequencing and MALDI-TOF-MS. The isolate was found to be resistant to aminoglycosides and fluoroquinolone antibiotics and intermediate resistant to cephalosporins and evidenced for uncertain clinical relevance and could act as hidden source of public health hazard. Leclercia adecarboxylata is a rarely reported human pathogen. We report here the case from bovine suffering from respiratory distress; the sample yielded Leclercia species as polymicrobial culture. The isolate was found to be multidrug resistant and evidenced for uncertain clinical relevance and could act as hidden source of public health hazard. The limited literature available on this organism is reviewed, and the potential implications of findings are discussed. To the best of our knowledge, this is the first report of isolation and characterization of multidrug-resistant Leclercia species from animal clinical case from India. © 2017 The Society for Applied Microbiology.

  11. CXC Chemokines Exhibit Bactericidal Activity against Multidrug-Resistant Gram-Negative Pathogens

    Directory of Open Access Journals (Sweden)

    Matthew A. Crawford

    2017-11-01

    Full Text Available The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens.

  12. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nanomedicine to Deal With Cancer Cell Biology in Multi-Drug Resistance.

    Science.gov (United States)

    Tekchandani, Pawan; Kurmi, Balak Das; Paliwal, Shivani Rai

    2017-01-01

    Today Cancer still remains a major cause of mortality and death worldwide, in humans. Chemotherapy, a key treatment strategy in cancer, has significant hurdles such as the occurrence of chemoresistance in cancer, which is inherent unresponsiveness or acquired upon exposure to chemotherapeutics. The resistance of cancer cells to an antineoplastic agent accompanied to other chemotherapeutic drugs with different structures and mechanisms of action called multi-drug resistance (MDR) plays an important role in the failure of chemo- therapeutics. MDR is primarily based on the overexpression of drug efflux pumps in the cellular membrane, which belongs to the ATP-binding cassette (ABC) superfamily of proteins, are P-gp (P-glycoprotein) and multidrug resistance-associated protein (MRP). Over the years, various strategies have been evaluated to overcome MDR, based not only on the use of MDR modulators but also on the implementation an innovative approach and advanced nanosized drug delivery systems. Nanomedicine is an emerging tool of chemotherapy that focuses on alternative drug delivery for improvement of the treatment efficacy and reducing side effects to normal tissues. This review aims to focus on the details biology, reversal strategies option with the limitation of MDR and various advantages of the present medical science nanotechnology with intracellular delivery aspects for overcoming the significant potential for improving the treatment of MDR malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.

    Science.gov (United States)

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; Morais, Marcia Maria Camargo de; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-12-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.

  15. Isolation and partial characterization of soils actinomycetes with antimicrobial activity against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Romina Belén Parada

    2017-07-01

    Full Text Available Two hundred and thirty four actinobacteria strains were isolated from Argentinian and Peruvian soil in order to evaluate the antimicrobial activity against multidrug resistant bacteria On the basis of their antagonist activity against methicillin-resistant Staphylococcus aureus (MRSA and two vancomycin-resistant Enterococcus (EVR-Van A and  EVR Van B,13 strains were selected. The presence of NRPS, PKS-I and PKS-II genes were also investigated by PCR techniques. Among the 13 selected actinobacteria, strain AC69C displayed the higher activity in diffusion tests in solid medium and was further evaluated for the production of antagonist metabolites in liquid media. The best results were obtained using fermentation broth with carbohydrates, when starch and glucose were used in combination. Antimicrobial activities of 640 arbitrary units (AU, 320 AU, 320 AU and 80 AU were obtained against EVR-Van A, EVR-Van B, Listeria monocytogenes ATCC7644 and MRSA, respectively. PCR amplification of 16S rRNA gene and subsequent phylogenetic analysis of AC69C strain displayed a 100 % homology with Streptomyces antibioticus NRRL B-1701. It was not possible to establish a correlation between the amplified genes and antimicrobial activity of the 13 selected strains. The results of this work show the wide distribution of actinobacteria in soil and the importance of the isolation of strain to screen novel active metabolites against multidrug resistant bacteria of clinical origin.

  16. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  17. Multidrug-resistant tuberculosis in the Amazonas State, Brazil, 2000-2011.

    Science.gov (United States)

    Garrido, M da S; Bührer-Sékula, S; Souza, A B; de Oliveira, G P; Antunes, I A; Mendes, J M; Saraceni, V; Martinez-Espinosa, F E; Ramasawmy, R

    2015-05-01

    Amazonas is facing increasing challenges in tuberculosis (TB) control, with nearly 3000 cases per year, and multidrug-resistant TB (MDR-TB) may jeopardise the TB control programme. To assess the number of MDR-TB cases in the Amazonas and to improve estimates of the burden of TB. The Brazilian National Mandatory Disease Reporting System (SINAN) and the Brazilian Epidemiological Surveillance System of Multidrug Resistance (TBMR) were searched for MDR-TB cases in the State of Amazonas from 2000 to 2011. Eighty-one MDR-TB cases were notified. The rates of primary MDR-TB, initial MDR-TB during the first treatment regimen and acquired MDR-TB were respectively 3.8%, 13.7% and 82.7%; 26.9% of previously treated patients had ⩾ 4 treatment cycles. The MDR-TB cases reported 263 contacts, only 35.0% of whom were examined. The cure and death rates among the 81 patients with MDR-TB were respectively 45.7% and 25.9%. The number of MDR-TB cases seems incompatible with the high TB prevalence in the Amazonas. Most patients were unaware of contact with TB patients. TB is endemic in the Amazonas. This highlights the need for improving resistance investigation among all TB cases.

  18. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug resistant Pseudomonas aeruginosa in Malaysia.

    Science.gov (United States)

    Liew, Siew Mun; Rajasekaram, Ganeswrei; Puthucheary, Savithri D; Chua, Kek Heng

    2018-02-09

    The increasing incidence of carbapenem-resistant Pseudomonas aeruginosa along with the discovery of novel metallo-β-lactamases (MBLs) is of concern. In this study, the isolation of Malaysian MBL-producing P. aeruginosa clinical strains was investigated. Fifty-three P. aeruginosa clinical strains were isolated from different patients in Sultanah Aminah Hospital, Johor Bahru, Malaysia in 2015. Antimicrobial susceptibility test was conducted. Minimum inhibitory concentrations (MICs) of imipenem and meropenem were determined by Etest. The carbapenem-resistant strains were screened for MBL production by IMP-EDTA double disk synergy test (DDST), MBL imipenem/imipenem-inhibitor (IP/IPI) Etest and polymerase chain reaction (PCR). Genotyping was performed by multilocus sequence typing (MLST) analysis. Three (5.7%) clinical strains were identified as MBL producers. Multidrug resistance was observed in the three strains, and two were resistant to all the antimicrobials tested. Sequencing analysis confirmed the three strains to harbour carbapenemase genes: one with bla IMP-1 , one with bla VIM-2 and the other with bla NDM-1 genes. These multidrug resistant strains were identified as sequence type (ST) 235 and ST308. None of the bla IMP-1 and bla NDM-1 genes have been reported in Malaysian P. aeruginosa. The emergence of imipenemase 1 (IMP-1)- and New Delhi metallo-β-lactamase 1 (NDM-1)-producing P. aeruginosa in Malaysia maybe travel-associated. Copyright © 2018. Published by Elsevier Ltd.

  19. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rahat Ejaz

    2014-09-01

    Full Text Available Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S. aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S. aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration. Results: Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus

  20. [Multidrug resistant tuberculosis among health personnel in Côte d'Ivoire].

    Science.gov (United States)

    Bakayoko, A S; Ahui, B J M; Nguessan, R; Kone, A; Kone, Z; Daix, A T; Badoum, G; Adou, G; Kouakou, O A; Kouakou, J; Coulibaly, G; Domoua, K; Aka-Danguy, E

    2016-04-01

    Multidrug resistance tuberculosis (MDR-TB) of health workers raises the question of hospital-borne transmission of infection. We report 4 cases of MDR-TB confirmed at the health workers over a period of 8 years (January, 2005 to December 2012), in the 2 services of pulmonology from Abidjan to Côte d'Ivoire). It was about young grown-up patients (aged between 28 and 39 years), all HIV negatives, in a no-win situation of antituberculosis treatment (3 patients/4). The most concerned staffs were the male nurses (2/4). Two agents worked in general hospital and the only one in a pulmonology department at the time of the diagnosis. The tuberculosis was of lung seat with bilateral radiographic hurt (3/4) and multiples excavations (4/4). The case index, when it was identified (2/2), was a family case. Among 3 agents who benefited from a second line treatment, 1 died further to an extensive drug resistance and 2 are declared to be cured. The fourth died before the beginning of the treatment. These cases of cure were in touch with a premature care. Multidrug resistant tuberculosis at the health workers could have a negative impact on the antituberculosis fight imposing rigorous measures of infection control and better implication of the occupational medicine. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Quercetin Suppresses CYR61-Mediated Multidrug Resistance in Human Gastric Adenocarcinoma AGS Cells

    Directory of Open Access Journals (Sweden)

    Ho Bong Hyun

    2018-01-01

    Full Text Available Cysteine-rich angiogenic inducer 61 (CYR61 is an extracellular matrix-associated protein involved in survival, tumorigenesis, and drug resistance. Therefore, we examined the effects of flavones against CYR61-overexpressing human gastric adenocarcinoma AGS (AGS-cyr61 cells, which show remarkable resistance to 5-fluorouracil (5-FU, adriamycin (ADR, tamoxifen (TAM, paclitaxel (PAC, and docetaxel (DOC. Among the tested flavones, quercetin had the lowest 50% inhibitory concentration (IC50 and significantly reduced the viability of AGS-cyr61 cells compared with AGS cells. Quercetin: (1 reduced multidrug resistance-associated protein 1 and nuclear factor (NF-kappa B p65 subunit levels; (2 reversed multidrug resistance (MDR; (3 inhibited colony formation and induced caspase-dependent apoptosis; and (4 suppressed migration and down-regulated epithelial–mesenchymal transition-related proteins in AGS-cyr61. Moreover, AGS-cyr61 cells treated with quercetin concentrations close to the IC50 and simultaneously treated with 5-FU or ADR in the sub-lethal range showed strong synergism between quercetin and these two drugs. These findings indicate that CYR61 is a potential regulator of drug resistance and that quercetin may be a novel agent for improving the efficacy of anticancer drugs in AGS-cyr61 cells.

  2. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital.

    Science.gov (United States)

    Borges, C A; Beraldo, L G; Maluta, R P; Cardozo, M V; Barboza, K B; Guastalli, E A L; Kariyawasam, S; DebRoy, C; Ávila, F A

    2017-02-01

    Wild birds are carriers of Escherichia coli. However, little is known about their role as reservoirs for extra-intestinal pathogenic E. coli (ExPEC). In this work we investigated E. coli strains carrying virulence genes related to human and animal ExPEC isolated from free-living wild birds treated in a veterinary hospital. Multidrug resistance was found in 47.4% of the strains, but none of them were extended-spectrum beta-lactamase producers. Not only the virulence genes, but also the serogroups (e.g. O1 and O2) detected in the isolates of E. coli have already been implicated in human and bird diseases. The sequence types detected were also found in wild, companion and food animals, environmental and human clinical isolates in different countries. Furthermore, from the 19 isolates, 17 (89.5%) showed a degree of pathogenicity on an in vivo infection model. The isolates showed high heterogeneity by pulsed-field gel electrophoresis indicating that E. coli from these birds are clonally diverse. Overall, the results showed that wild birds can be reservoirs and/or vectors of highly pathogenic and multidrug-resistant E. coli that have the potential to cause disease in humans and poultry.

  3. Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona

    Directory of Open Access Journals (Sweden)

    Bowers Jolene R

    2012-01-01

    Full Text Available Abstract Background Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E and erm(B genes and post-vaccine clonal expansion of strains that carry them. Results Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E/erm(B-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E-positive, and 9% erm(B-positive strains. Conclusions The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.

  4. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  5. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-06-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5-17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  6. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-01-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5- 17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  7. Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens

    Science.gov (United States)

    Briers, Yves; Walmagh, Maarten; Van Puyenbroeck, Victor; Cornelissen, Anneleen; Cenens, William; Aertsen, Abram; Oliveira, Hugo; Azeredo, Joana; Verween, Gunther; Pirnay, Jean-Paul; Miller, Stefan; Volckaert, Guido

    2014-01-01

    ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). PMID:24987094

  8. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  9. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Jia; Wu, Lei; Kou, Longfa; Xu, Meng; Sun, Jin; Wang, Yongjun; Fu, Qiang; Zhang, Peng; He, Zhonggui

    2016-11-20

    Novel enoxaparin sodium-PLGA hybrid nanocarries (EPNs) were successfully designed for sustained delivery of hydrophilic cationic doxorubicin hydrochloride (DOX) and to overcome multidrug resistance (MDR). By incorporation of the negative polymer of enoxaparin sodium (ES), DOX was highly encapsulated into EPNs with an encapsulation efficiency of 92.49%, and ES effectively inhibited the proliferation of HUVEC cell lines. The in vivo pharmacokinetics study after intravenous injection indicated that DOX-loaded EPNs (DOX-EPNs) exhibited a higher area under the curve (AUC) and a longer half-life (t 1/2 ) in comparison with DOX solution (DOX-Sol). The biodistribution study demonstrated that DOX-EPNs increased the DOX level in plasma and decreased the accumulation of DOX in liver and spleen. Compared with DOX-Sol, DOX-EPNs increased the cytotoxicity in P-gp over-expressing MCF-7/Adr cells, attributed to the higher intracellular efficiency of DOX produced by the EPNs. DOX-EPNs entered into resistant tumor cells by multiple endocytosis pathways, which resulted in overcoming the multidrug resistance of MCF-7/Adr cells by escaping the efflux induced by P-gp transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evaluation of Etest for Susceptibility Testing of Multidrug-Resistant Isolates of Mycobacterium tuberculosis†

    Science.gov (United States)

    Hazbón, Manzour Hernando; del Socorro Orozco, Maria; Labrada, Luz Angela; Tovar, Rafael; Weigle, Kristen A.; Wanger, Audrey

    2000-01-01

    To prescribe effective treatment schemes for patients with tuberculosis, more-efficient susceptibility testing techniques for Mycobacterium tuberculosis are needed, especially in regions with multidrug resistance. Etest (AB BIODISK, Solna, Sweden) is a simple technique that provides quantitative drug susceptibility results for M. tuberculosis in 5 to 10 days from a culture grown at low cost. The performance of Etest was compared to that of the reference proportion method, using 95 M. tuberculosis clinical isolates of which 42.1% (40 of 95) were resistant to at least one antibiotic by the reference method. Overall agreement between Etest and the reference method was 98.9% (94 of 95) for detection of multidrug resistance; for resistance to individual drugs, agreement was 97.9% (93 of 95) for rifampin, 96.0% (92 of 95) for ethambutol, 94.7% (90 of 95) for isoniazid, and 85.3% (81 of 95) for streptomycin. This study supports the utility of Etest for timely detection of drug resistance in M. tuberculosis and for use in tuberculosis control programs. PMID:11101602

  11. Genome sequencing and annotation of a Campylobacter coli strain isolated from milk with multidrug resistance

    Directory of Open Access Journals (Sweden)

    Kun C. Liu

    2016-06-01

    Full Text Available As the most prevalent bacterial cause of human gastroenteritis, food-borne Campylobacter infections pose a serious threat to public health. Whole Genome Sequencing (WGS is a tool providing quick and inexpensive approaches for analysis of food-borne pathogen epidemics. Here we report the WGS and annotation of a Campylobacter coli strain, FNW20G12, which was isolated from milk in the United States in 1997 and carries multidrug resistance. The draft genome of FNW20G12 (DDBJ/ENA/GenBank accession number LWIH00000000 contains 1, 855,435 bp (GC content 31.4% with 1902 annotated coding regions, 48 RNAs and resistance to aminoglycoside, beta-lactams, tetracycline, as well as fluoroquinolones. There are very few genome reports of C. coli from dairy products with multidrug resistance. Here the draft genome of FNW20G12, a C. coli strain isolated from raw milk, is presented to aid in the epidemiology study of C. coli antimicrobial resistance and role in foodborne outbreak.

  12. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  13. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii

    Science.gov (United States)

    Weber, Brent S.; Ly, Pek Man; Irwin, Joshua N.; Pukatzki, Stefan; Feldman, Mario F.

    2015-01-01

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria. PMID:26170289

  14. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Lan-Hui Li

    Full Text Available The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226. Silver nanoparticles (Ag NPs, 120 nm showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae.

  15. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria.

    Science.gov (United States)

    Geisinger, Edward; Isberg, Ralph R

    2017-02-15

    Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, email: journals.permissions@oup.com.

  16. ANTIMICROBIAL ACTIVITY OF PINEAPPLE (ANANAS COMOSUS L. MERR EXTRACT AGAINST MULTIDRUG-RESISTANT OF PSEUDOMONAS AERUGINOSA: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Rahmat Sayyid Zharfan

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is the main cause of nosocomial infection which is responsible for 10% of hospital-acquired infection. Pseudomonas aeruginosa tends to mutate and displays potential for development of antibiotic resistance. Approximately, 10% of global bacterial isolates are found as Multidrug-resistant Pseudomonas aeruginosa. Pseudomonas aeruginosa have a quite tremendous severity index, especially on pneumonia and urinary tract infections, even sepsis, which 50% mortality rate. Pineapple (Ananas comosus L. Merr has antimicrobial properties. The active antimicrobial compounds in Ananas comosus L. Merr include saponin and bromelain. This research aims to find the potency of antimicrobial effect of pineapple (Ananas comosus L. Merr extract towards Multidrug-resistant Pseudomonas aeruginosa. Multidrug-resistant Pseudomonas aeruginosa specimen is obtained from patient’s pus in orthopaedic department, Dr Soetomo Public Hospital, Surabaya. Multidrug-resistant Pseudomonas aeruginosa specimen is resistant to all antibiotic agents except cefoperazone-sulbactam. This research is conducted by measuring the Minimum Inhibitory Concentration (MIC through dilution test with Mueller-Hinton broth medium. Pineapple extract (Ananas comosus L. Merr. is dissolved in aquadest, then poured into test tube at varying concentrations (6 g/ml; 3 g/ml; 1.5 g/ml; 0.75 g/ml, 0.375 g/ml; and 0.1875 g/ml. After 24 hours’ incubation, samples are plated onto nutrient agar plate, to determine the Minimum Bactericidal Concentration (MBC. The extract of pineapple (Ananas comosus L. Merr has antimicrobial activities against Multidrug-resistant Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC could not be determined, because turbidity changes were not seen. The Minimum Bactericidal Concentration (MBC of pineapple extract (Ananas comosus L. Merr to Multidrug-resistant Pseudomonas aeruginosa is 0.75 g/ml. Further study of in vivo is needed.

  17. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  18. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model

    Directory of Open Access Journals (Sweden)

    Webb Glenn

    2011-01-01

    Full Text Available Abstract Background Cancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations. Methodology and Principal Findings We report cell-to-cell transfers of functional P-gp in co-cultures of a P-gp overexpressing human breast cancer MCF-7 cell variant, selected for its resistance towards doxorubicin, with the parental sensitive cell line. We found that P-gp as well as efflux activity distribution are progressively reorganized over time in co-cultures analyzed by flow cytometry. A mathematical model based on a Boltzmann type integro-partial differential equation structured by a continuum variable corresponding to P-gp activity describes the cell populations in co-culture. The mathematical model elucidates the population elements in the experimental data, specifically, the initial proportions, the proliferative growth rates, and the transfer rates of P-gp in the sensitive and resistant subpopulations. Conclusions We confirmed cell-to-cell transfer of functional P-gp. The transfer process depends on the gradient of P-gp expression in the donor-recipient cell interactions, as they evolve over time. Extragenetically acquired drug resistance is an additional aptitude of neoplastic cells which has implications in the diagnostic value of P-gp expression and in the design of chemotherapy regimens. Reviewers This

  19. Active surveillance for asymptomatic colonisation by multidrug-resistant bacteria in patients transferred to a tertiary care hospital in the occupied Palestinian territory.

    Science.gov (United States)

    Taha, Adham Abu; Daoud, Ayman; Zaid, Sawsan; Sammour, Sajida; Belleh, Maram; Daifi, Refqa

    2018-02-21

    Active surveillance is important in infection control programmes, allowing the detection of patients colonised with multi-drug resistant organisms and preventing the spread of multi-drug resistant organisms. The aim of this study was to determine the rate of asymptomatic colonisation with multi-drug resistant organisms and the prevalence of each organism in patients transferred to An-Najah National University Hospital, Nablus, occupied Palestinian territory. Patients transferred from other hospitals between January and December, 2015, were screened at time of admission by taking nasal, groin, and axillary swabs. Swabs were cultured and assessed for the presence of multi-drug resistant organisms (extended spectrum β-lactamase producers, Pseudomonas aeroginosae, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and carbapenem-resistant enterobacteriaceae. Of the 822 screened patients, 265 (32%) had infections with multi-drug resistant organisms. 394 isolates of multi-drug resistant organisms were obtained: 131 (33%) isolates were extended spectrum β-lactamase producers, 119 (30%) isolates were P aeroginosae, 26 (9%) isolates were A baumannii, 94 (24%) isolates were methicillin-resistant S aureus, 13 (3%) isolates were vancomycin-resistant enterococci, and one (<1%) isolate was carbapenem-resistant enterobacteriaceae. We identified a high prevalence of asymptomatic colonisation with multidrug-resistant bacteria in transferred patients. These findings emphasise the need for a national strategy to combat the spread of multi-drug resistant organisms in the occupied Palestinian territory. An-Najah National University. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Complete Genome Sequences of Plasmid-Bearing Multidrug-Resistant Campylobacter jejuni and Campylobacter coli Strains with Type VI Secretion Systems, Isolated from Retail Turkey and Pork

    OpenAIRE

    Marasini, Daya; Fakhr, Mohamed K.

    2017-01-01

    ABSTRACT We report the complete genome sequences of multidrug-resistant Campylobacter jejuni and Campylobacter coli isolated from retail turkey and pork, respectively. The chromosomes of these two isolates contained type VI secretion system genes. The two isolates also harbored large plasmids with antimicrobial resistance genes possibly contributing to their multidrug resistance.

  1. An usual approach to treatment of a case of multidrug resistance Pseudomonas aeruginosa peritonitis: parenteral and intraperitoneal aminoglycosides and parenteral colistin

    Directory of Open Access Journals (Sweden)

    Ian May

    2012-09-01

    Full Text Available Infections caused by Pseudomonas aeruginosa are becoming more common and increasingly more difficult to treat due to the continued development of drug resistance. While sensitivity to colistin (polymyxin E is well known, it is frequently avoided due to concerns of nephrotoxicity. Reported here is a case of a multi-drug resistance pseudomonal typhlitis, bacteremia and pleural cavity infection that required significant intensive care, and serial abdominal washouts. Intra-peritoneal tobramycin in combination with broad-spectrum intravenous antibiotics including colistin were used. Several instillations of tobramycin into the abdominal cavity along with concomitant IV administration of colistin, ceftazidime and tobramycin and per os colistin, tobramycin and nystatin resulted in the clearance of the pseudomonal infection without any evidence of toxicity from the treatment. Intra-abdominal tobramycin with parenteral colistin therapy can be used in complicated clinical settings with appropriate nephroprotection.

  2. Reversal of P-glycoprotein-mediated multidrug resistance is induced by saikosaponin D in breast cancer MCF-7/adriamycin cells.

    Science.gov (United States)

    Li, Chun; Guan, Xingang; Xue, Haogang; Wang, Peng; Wang, Manli; Gai, Xiaodong

    2017-07-01

    Multidrug resistance (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene is major obstacles for successful cancer chemotherapy. P-gp could extrude anti-cancer drugs out of cancer cells and decrease effective intracellular drug concentrations. MDR reversal agents for P-gp can restore the sensitivity of MDR cells to such drugs. Saikosaponin D (SSd), one of the major triterpenoid saponins derived from Bupleurum chinense DC (BCDC), has been shown to possess anti-inflammatory, anti-infectious and anti-tumor properties. The aim of the present study was to investigate the reversal effect of SSd on MDR in MCF-7/adriamycin (ADR) human breast cancer cells and investigate the underlying mechanisms of SSd. The results demonstrated that SSd inhibited the proliferation of MCF-7/ADR and MCF-7 cells in a dose-dependent manner. Moreover, SSd increased the cytotoxicity of ADR on MCF-7/ADR cells and the resistance fold of SSd treatment was demonstrated to be significantly higher when compared with that of the group without SSd treatment. Additionally, the effects of the drug combination showed that SSd and ADR combination were synergistic. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that SSd restored Rh123 accumulation and inhibited P-gp-mediated drug efflux. Importantly, we found that SSd could enhance the sensitivity of MCF-7/ADR cells towards ADR by down-regulating MDR1 and P-gp expression. In conclusion, the results of the present study indicated that SSd may represent a potent reversal agent for P-gp-mediated MDR in breast cancer therapy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Genotyping Multidrug-Resistant Mycobacterium tuberculosis from Primary Sputum and Decontaminated Sediment with an Integrated Microfluidic Amplification Microarray Test.

    Science.gov (United States)

    Linger, Yvonne; Knickerbocker, Christopher; Sipes, David; Golova, Julia; Franke, Molly; Calderon, Roger; Lecca, Leonid; Thakore, Nitu; Holmberg, Rebecca; Qu, Peter; Kukhtin, Alexander; Murray, Megan B; Cooney, Christopher G; Chandler, Darrell P

    2018-03-01

    There is a growing awareness that molecular diagnostics for detect-to-treat applications will soon need a highly multiplexed mutation detection and identification capability. In this study, we converted an open-amplicon microarray hybridization test for multidrug-resistant (MDR) Mycobacterium tuberculosis into an entirely closed-amplicon consumable (an amplification microarray) and evaluated its performance with matched sputum and sediment extracts. Reproducible genotyping (the limit of detection) was achieved with ∼25 M. tuberculosis genomes (100 fg of M. tuberculosis DNA) per reaction; the estimated shelf life of the test was at least 18 months when it was stored at 4°C. The test detected M. tuberculosis in 99.1% of sputum extracts and 100% of sediment extracts and showed 100% concordance with the results of real-time PCR. The levels of concordance between M. tuberculosis and resistance-associated gene detection were 99.1% and 98.4% for sputum and sediment extracts, respectively. Genotyping results were 100% concordant between sputum and sediment extracts. Relative to the results of culture-based drug susceptibility testing, the test was 97.1% specific and 75.0% sensitive for the detection of rifampin resistance in both sputum and sediment extracts. The specificity for the detection of isoniazid (INH) resistance was 98.4% and 96.8% for sputum and sediment extracts, respectively, and the sensitivity for the detection of INH resistance was 63.6%. The amplification microarray reported the correct genotype for all discordant phenotype/genotype results. On the basis of these data, primary sputum may be considered a preferred specimen for the test. The amplification microarray design, shelf life, and analytical performance metrics are well aligned with consensus product profiles for next-generation drug-resistant M. tuberculosis diagnostics and represent a significant ease-of-use advantage over other hybridization-based tests for diagnosing MDR tuberculosis

  4. Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea.

    Science.gov (United States)

    Bisi-Johnson, Mary A; Obi, Chikwelu L; Samuel, Babatunde B; Eloff, Jacobus N; Okoh, Anthony I

    2017-06-19

    This study evaluated the antibacterial activity of some plants used in folklore medicine to treat diarrhoea in the Eastern Cape Province, South Africa. The acetone extracts of Acacia mearnsii De Wild., Aloe arborescens Mill., A. striata Haw., Cyathula uncinulata (Schrad.) Schinz, Eucomis autumnalis (Mill.) Chitt., E. comosa (Houtt.) Wehrh., Hermbstaedtia odorata (Burch. ex Moq.) T.Cooke, Hydnora africana Thunb, Hypoxis latifolia Wight, Pelargonium sidoides DC, Psidium guajava L and Schizocarphus nervosus (Burch.) van der Merwe were screened against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, multi-resistant Salmonella enterica serovar Isangi, S. typhi, S. enterica serovar Typhimurium, Shigella flexneri type 1b and Sh. sonnei phase II. A qualitative phytochemical screening of the plants extracts was by thin layer chromatography. Plants extracts were screened for antibacterial activity using serial dilution microplate technique and bioautography. The TLC fingerprint indicated the presence of terpenoids and flavonoids in the herbs. Most of the tested organisms were sensitive to the crude acetone extracts with minimum inhibitory concentration (MIC) values ranging from 0.018-2.5 mg/mℓ. Extracts of A. striata, C. uncinulata, E. autumnalis and P. guajava were more active against enteropathogens. S. aureus and Sh. flexneri were the most sensitive isolates to the crude extracts but of significance is the antibacterial activity of A. arborescens and P. guajava against a confirmed extended spectrum betalactamase positive S. enterica serovar Typhimurium. The presence of bioactive compounds and the antibacterial activity of some of the selected herbs against multidrug resistant enteric agents corroborate assertions by traditional healers on their efficacies.

  5. Oleanane triterpenoid CDDO-Me induces apoptosis in multidrug resistant osteosarcoma cells through inhibition of Stat3 pathway

    International Nuclear Information System (INIS)

    Ryu, Keinosuke; Susa, Michiro; Choy, Edwin; Yang, Cao; Hornicek, Francis J; Mankin, Henry J; Duan, Zhenfeng

    2010-01-01

    The activation of signal transducer and activator of transcription 3 (Stat3) pathway correlates with tumor growth, survival, drug resistance and poor prognosis in osteosarcoma. To explore the potential therapeutic values of this pathway, we assessed both the expression and the activation of Stat3 pathway in several pairs of multidrug resistant (MDR) osteosarcoma cell lines, and tissues. To explore the potential therapeutic values of this pathway, we analyzed the ability of the synthetic oleanane triterpenoid, C-28 methyl ester of 2-cyano-3,12-dioxoolen-1,9-dien-28-oic acid (CDDO-Me), to inhibit Stat3 expression and activation as well as its effects on doxorubicin sensitivity in osteosarcoma cells. Expression of Stat3, phosphorylated Stat3 (pStat3) and Stat3 targeted proteins, including Bcl-X L , Survivin and MCL-1 were determined in drug sensitive and MDR osteosarcoma cell lines and tissues by Western blot analysis. The effect of CDDO-Me on osteosarcoma cell growth was evaluated by MTT and apoptosis by PARP cleavage assay and caspase-3/7 activity. Stat3 pathway was activated in osteosarcoma tissues and in MDR cell lines. CDDO-Me inhibited growth and induced apoptosis in osteosarcoma cell lines. Treatment with CDDO-Me significantly decreased the level of nuclear translocation and phosphorylation of Stat3. The inhibition of Stat3 pathway correlated with the suppression of the anti-apoptotic Stat3 targeted genes Bcl-X L , survivin, and MCL-1. Furthermore, CDDO-Me increased the cytotoxic effects of doxorubicin in the MDR osteosarcoma cell lines. Stat3 pathway is overexpressed in MDR osteosarcoma cells. CDDO-Me significantly inhibited Stat3 phosphorylation, Stat3 nuclear translocation and induced apoptosis in osteosarcoma. This study provides the framework for the clinical evaluation of CDDO-Me, either as monotherapy or perhaps even more effectively in combination with doxorubicin to treat osteosarcoma and overcome drug resistance

  6. Modulation of P-glycoprotein by Stemona alkaloids in human multidrug resistance leukemic cells and structural relationships.

    Science.gov (United States)

    Umsumarng, Sonthaya; Pitchakarn, Pornsiri; Yodkeeree, Supachai; Punfa, Wanisa; Mapoung, Sariya; Ramli, Rosdayati Alino; Pyne, Stephen G; Limtrakul, Pornngarm

    2017-10-15

    Multidrug resistance (MDR) is a major reason for the failure of chemotherapy in the treatment of cancer patients. P-gp over-expression in MDR cancer cells is a multifactorial phenomenon with biochemical resistance mechanisms. Stemofoline (STF), isolated from Stemona bukillii, has been reported to be an MDR reversing compound. This study investigated whether other Stemona alkaloids that had been purified from Stemonaceae plants exerted MDR modulation activity. MTT assay was performed to determine the MDR reversing property of the alkaloids. Modulation of P-gp function by these compounds was investigated using cell cycle analysis and P-gp fluorescent substrate accumulation assays. P-gp expression was determined by Western blot analysis. We preliminarily examined the safety of these compounds in normal human fibroblasts and human peripheral blood mononuclear cells (PBMCs) using the MTT assay, and in red blood cells (human and rat) through in vitro hemolysis assays. Three of the eight alkaloids tested, isostemofoline (ISTF), 11Z -didehydrostemofoline (11Z-DSTF) and 11E-didehydrostemofoline (11E-DSTF), enhanced the chemotherapeutic sensitivity of MDR leukemic K562/Adr cells, which overexpressed P-gp. The P-gp functional studies showed that these three alkaloids increased the accumulation of P-gp substrates, calcein-AM (C-AM) and rhodamine123 (Rho 123) in K562/Adr cells, while this effect was not seen in drug sensitive parental K562 cells. Whereas, the alkaloids did not alter P-gp expression as was determined by Western blotting analysis. The alkaloids reversed MDR via the inhibition of P-gp function. For pharmaceutical safety testing, the alkaloids were found to be not toxic to normal human fibroblasts and PBMCs. Moreover, the effective compounds did not induce hemolysis in either human or rat erythrocytes. These compounds may be introduced as potential candidate molecules for treating cancers exhibiting P-gp-mediated MDR. Copyright © 2017 Elsevier GmbH. All rights

  7. Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4.

    Science.gov (United States)

    Feng, Xiaobin; Zhao, Lifen; Gao, Shuhang; Song, Xiaobo; Dong, Weijie; Zhao, Yongfu; Zhou, Huimin; Cheng, Lei; Miao, Xiaolong; Jia, Li

    2016-03-10

    Fucosylation is the final step in the glycosylation machinery, which produces glycans involved in tumor multidrug resistance development. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes of tumors, including drug resistance. This study was undertaken to determine the roles of fucosylation and miR-224-3p in multidrug resistance of human breast cancer cell lines. Comparative analysis revealed differential modification patterns of fucosylation of the fucosylated N-glycans in drug-resistant T47D/ADR cells and sensitive line T47D cells. The expressional profiles of fucosyltransferase genes in two pairs of parental and chemoresistant human breast cancer cell lines showed that FUT4 was up-regulated highly in MDR cell lines. Altered level of FUT4 affected the drug-resistant phenotype of T47D and T47D/ADR cells both in vitro and in vivo. By bioinformatics analysis, we identified FUT4 as one of the miR-224-3p-targeted genes. Further studies showed an inverse relationship between of FUT4 and miR-224-3p in parental and ADR-resistant breast cancer cells, wherein miR-224-3p was downregulated in resistant cells. 3'-UTR dual-luciferase reporter assay confirmed that miR-224-3p directly targeted 3'-untranslation region (3'-UTR) of FUT4 mRNA. In addition, miR-224-3p overexpression sensitized T47D/ADR cells to chemotherapeutics and reduced the growth rate of breast cancer xenografts in vivo. Our results indicate that FUT4 and miR-224-3p are crucial regulators of cancer response to chemotherapy, and may serve as therapeutic targets to reverse chemotherapy resistance in breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization of multi-drug resistant ESBL producing nonfermenter bacteria isolated from patients blood samples using phenotypic methods in Shiraz (Iran

    Directory of Open Access Journals (Sweden)

    Maneli Amin Shahidi

    2015-10-01

    Full Text Available Background and Aim: The emergence of  nonfermenter bacteria that are resistant to multidrug resistant ESBL  are  nowadays a principal problem  for hospitalized patients. The present study aimed at surveying the emergence of nonfermenter bacteria resistant to multi-drug ESBL producing isolated from patients blood samples using BACTEC 9240 automatic system in Shiraz. Materials and Methods: In this cross-sectional study, 4825 blood specimens were collected from hospitalized patients in Shiraz (Iran, and positive samples were detected by means of  BACTEC 9240 automatic system. The isolates  containing nonfermenter bacteria were identified based on biochemical tests embedded in the API-20E system. Antibiotic sensitivity  test was performed  and identification of  ESBL producing strains were done  using phenotypic detection of extended spectrum beta-lactamase producing isolates(DDST according to CLSI(2013 guidelines.   Results: Out of 4825 blood samples, 1145 (24% specimen were gram-positive using BACTEC system. Among all isolated microorganisms, 206 isolates were non-fermenting gram- negative bacteria. The most common non-fermenter isolates were Pseudomonas spp. (48%, Acinetobacter spp. (41.7% ,and Stenotrophomonas spp. (8.2%. Seventy of them (81.4% were  Acinetobacter spp. which were ESBL positive. Among &beta-lactam antibiotics, Pseudomonas spp. showed  the best sensitivity to piperacillin-tazobactam (46.5%.  Conclusion: It was found that  &beta-lactam antibiotics are not effective against more than 40% of Pseudomonas spp. infections and 78% Acinetobacter infections. Emergence of multi-drug resistant strains that are resistant to most antibiotic classes is a major public health problem in Iran. To resolve this problem using of practical guidelines is critical.

  9. The demise of multidrug-resistant HIV-1: the national time trend in Portugal

    Science.gov (United States)

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Águas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge; Mansinho, Kamal; Cláudia Miranda, Ana; Aldir, Isabel; Ventura, Fernando; Nina, Jaime; Borges, Fernando; Valadas, Emília; Doroana, Manuela; Antunes, Francisco; João Aleixo, Maria; João Águas, Maria; Botas, Júlio; Branco, Teresa; Vera, José; Vaz Pinto, Inês; Poças, José; Sá, Joana; Duque, Luis; Diniz, António; Mineiro, Ana; Gomes, Flora; Santos, Carlos; Faria, Domitília; Fonseca, Paula; Proença, Paula; Tavares, Luís; Guerreiro, Cristina; Narciso, Jorge; Faria, Telo; Teófilo, Eugénio; Pinheiro, Sofia; Germano, Isabel; Caixas, Umbelina; Faria, Nancy; Paula Reis, Ana; Bentes Jesus, Margarida; Amaro, Graça; Roxo, Fausto; Abreu, Ricardo; Neves, Isabel

    2013-01-01

    Objectives Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. Patients and methods We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. Results We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7–8.4) in 2001–03, 6.0% (95% CI: 4.9–7.2) in 2003–05, 3.7% (95% CI: 2.8–4.8) in 2005–07 and 1.6% (95% CI: 1.1–2.2) in 2007–09 down to 0.6% (95% CI: 0.3–0.9) in 2009–12 [OR = 0.80 (95% CI: 0.75–0.86); P < 0.001]. In July 2011 the last new case of MDR was seen. Conclusions The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains. PMID:23228933

  10. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  11. Clinical Validation of the Analysis of Linezolid and Clarithromycin in Oral Fluid of Patients with Multidrug-Resistant Tuberculosis

    NARCIS (Netherlands)

    Bolhuis, M. S.; van Altena, R.; van Hateren, K.; de Lange, W. C. M.; Greijdanus, B.; Uges, D. R. A.; Kosterink, J. G. W.; van der Werf, T. S.; Alffenaar, J. W. C.

    Linezolid plays an increasingly important role in the treatment of multidrug-resistant tuberculosis (MDR-TB). However, patients should be carefully monitored due to time-and dose-dependent toxicity. Clarithromycin plays a more modest role. Therapeutic drug monitoring may contribute to assessment of

  12. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Vu, D H; Bolhuis, M S; Koster, R A; Greijdanus, B; de Lange, W C M; van Altena, R; Brouwers, J R B J; Uges, D R A; Alffenaar, J W C

    2012-01-01

    Linezolid is a promising antimicrobial agent for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its use is limited by toxicity. Therapeutic drug monitoring (TDM) may help to minimize toxicity while adequate drug exposure is maintained. Conventional plasma sampling and monitoring

  13. Contribution of AcrAB-ToIC to multidrug resistance in an Escherichia coli sequence type 131 isolate

    NARCIS (Netherlands)

    Schuster, Sabine; Vavra, Martina; Schweigger, Tobias M.; Rossen, John W. A.; Matsumura, Yasufumi; Kern, Winfried V.

    Drug efflux by resistance-nodulation-cell division (RND)-type transporters, such as AcrAB-ToIC of Escherichia can, is an important resistance mechanism in Gram-negative bacteria; however, its contribution to multidrug resistance (MDR) in clinical isolates is poorly defined. We inactivated acrB of a

  14. Role of Individual Positive Charges in the Membrane Orientation and Activity of Transporters of the Small Multidrug Resistance Family

    NARCIS (Netherlands)

    Kolbusz, Magdalena A.; Slotboom, Dirk Jan; Lolkema, Juke S.

    2012-01-01

    The effect of individual positively charged residues on the orientation in the membrane was analyzed in three dual-topology transporters of the small. multidrug resistance (SMR) family: AAVE4701aave of Acidovorax avenae, EMREecol of Escherichia coli, and RRUA0272rrub of Rhodospirillum rubrum. It is

  15. MDR-TB treatment as prevention: The projected population-level impact of expanded treatment for multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Kendall, Emily A.; Azman, Andrew S.; Cobelens, Frank G.; Dowdy, David W.

    2017-01-01

    In 2013, approximately 480,000 people developed active multidrug-resistant tuberculosis (MDR-TB), while only 97,000 started MDR-TB treatment. We sought to estimate the impact of improving access to MDR-TB diagnosis and treatment, under multiple diagnostic algorithm and treatment regimen scenarios,

  16. Ability of polymer-bound P-glycoprotein inhibitor ritonavir to overcome multidrug resistance in various resistant neuroblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Chytil, Petr; Etrych, Tomáš; Janoušková, Olga

    2017-01-01

    Roč. 28, č. 10 (2017), s. 1126-1130 ISSN 0959-4973 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : drug-delivery polymers * multidrug resistance * N-(2-hydroxypropyl) methacrylamide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.320, year: 2016

  17. Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016-2017.

    Science.gov (United States)

    Arnott, Alicia; Wang, Qinning; Bachmann, Nathan; Sadsad, Rosemarie; Biswas, Chayanika; Sotomayor, Cristina; Howard, Peter; Rockett, Rebecca; Wiklendt, Agnieszka; Iredell, Jon R; Sintchenko, Vitali

    2018-04-01

    Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing-guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates.

  18. Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016–2017

    Science.gov (United States)

    Arnott, Alicia; Wang, Qinning; Bachmann, Nathan; Sadsad, Rosemarie; Biswas, Chayanika; Sotomayor, Cristina; Howard, Peter; Rockett, Rebecca; Wiklendt, Agnieszka; Iredell, Jon R.

    2018-01-01

    Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing–guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates. PMID:29553318

  19. Draft Genome Sequence of an Invasive Multidrug-Resistant Strain, Pseudomonas aeruginosa BK1, Isolated from a Keratitis Patient

    KAUST Repository

    Jeganathan, Lakshmi Priya

    2014-03-27

    Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain, isolated from a bacterial keratitis patient in southern India.

  20. Multidrug-Resistant Tuberculosis in Patients for Whom First-Line Treatment Failed, Mongolia, 2010-2011.

    Science.gov (United States)

    Dobler, Claudia C; Korver, Sarah; Batbayar, Ochirbat; Nyamdulam, Batiargal; Oyuntsetseg, Sodnomdarjaa; Tsolmon, Bold; Surmaajav, Bazarragchaa; Bayarjargal, Byambaa; Marais, Ben J

    2015-08-01

    In Ulaanbaatar, Mongolia, multidrug-resistant tuberculosis (MDR TB) was diagnosed for more than a third of new sputum smear-positive tuberculosis patients for whom treatment had failed. This finding suggests a significant risk for community-acquired MDR TB and a need to make rapid molecular drug susceptibility testing available to more people.

  1. A data-driven mathematical model of multi-drug resistant Acinetobacter baumannii transmission in an intensive care unit

    NARCIS (Netherlands)

    Wang, Xia; Chen, Yong; Zhao, Wei; Wang, Yan; Song, Qing; Liu, Hui; Zhao, Jingya; Han, Xuelin; Hu, Xiaohua; Grundmann, Hajo; Xiao, Yanni; Han, Li

    2015-01-01

    Major challenges remain when attempting to quantify and evaluate the impacts of contaminated environments and heterogeneity in the cohorting of health care workers (HCWs) on hospital infections. Data on the detection rate of multidrug-resistant Acinetobacter baumannii (MRAB) in a Chinese intensive

  2. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  3. Effects of treatment interruption patterns on treatment success among patients with multidrug-resistant tuberculosis in Armenia and Abkhazia.

    NARCIS (Netherlands)

    Bastard, M.; Sanchez-Padilla, E.; Hewison, C.; Hayrapetyan, A.; Khurkhumal, S.; Varaine, F.; Bonnet, M.

    2015-01-01

    BACKGROUND: The success of the current treatment regimen for multidrug-resistant (MDR) tuberculosis is poor partly owing to a high default rate. Many studies have explored predictors of poor outcomes, but very few have assessed the effects of treatment interruptions on treatment outcomes for MDR

  4. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  5. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group

    DEFF Research Database (Denmark)

    Iacono, M.; Villa, L.; Fortini, D.

    2008-01-01

    The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA-58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes...

  6. Associations Between Multidrug Resistance, Plasmid Content, and Virulence Potential Among Extraintestinal Pathogenic and Commensal Escherichia coli from Humans and Poultry

    NARCIS (Netherlands)

    Johnson, Timothy J.; Logue, Catherine M.; Johnson, James R.; Kuskowski, Michael A.; Sherwood, Julie S.; Barnes, H. John; DebRoy, Chitrita; Wannemuehler, Yvonne M.; Obata-Yasuoka, Mana; Spanjaard, Lodewijk; Nolan, Lisa K.

    2012-01-01

    The emergence of plasmid-mediated multidrug resistance (MDR) among enteric bacteria presents a serious challenge to the treatment of bacterial infections in humans and animals. Recent studies suggest that avian Escherichia coli commonly possess the ability to resist multiple antimicrobial agents,

  7. Effects of tea polyphenol components on reversion of tumor multidrug resistance

    International Nuclear Information System (INIS)

    Ran Tiecheng; Wang Yi; Liu Xinqi; Chu Taiwei; Wei Xionghui; Wang Xiangyun; Guo Zhenquan; Wei Bing

    2003-01-01

    The effects of tea polyphenol (TP) and its main components, (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) with caffeine on reversion of tumor multidrug resistance (MDR) are investigated by using MCF-7/Adr cell line and 99 Tc m -MIBI as a substrate of P-glucoprotein (P-gp). MCF-7/Adr cells are incubated with 99 Tc m -MIBI in the presence or absence of TP or its main components (separate or mixed). The cell uptake of 99 Tc m -MIBI is measured and compared with a contrast to estimate the MDR reversion effect. The experimental results indicate that the native tea polyphenol exhibits a moderate MDR reversion effect. The MDR reversion efficacies of the four main components of TP are found in the sequence ECG>EGC>EC>EGCG. Caffeine as well as the mixture of EGCG-ECG-EGC-EC in the mass ratio 10:3:2:1 shows practically no MDR reversion effect

  8. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field

    Science.gov (United States)

    Golberg, Alexander; Broelsch, G. Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R.; Austen, William G.; Sheridan, Robert L.; Yarmush, Martin L.

    2014-01-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol. PMID:25089285

  9. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species

    Science.gov (United States)

    de Sousa, Oscarina Viana; Hofer, Ernesto; Mafezoli, Jair; Barbosa, Francisco Geraldo

    2017-01-01

    Prospect of antibacterial agents may provide an alternative therapy for diseases caused by multidrug-resistant bacteria. This study aimed to evaluate the in vitro bioactivity of Moringa oleifera seed extracts against 100 vibrios isolated from the marine shrimp Litopenaeus vannamei. Ethanol extracts at low (MOS-E) and hot (MOS-ES) temperature are shown to be bioactive against 92% and 90% of the strains, respectively. The most efficient Minimum Inhibitory Concentration (MIC) levels of MOS-E and MOS-ES against a high percentage of strains were 32 µg mL−1. Bioguided screening of bioactive compounds showed that the ethyl acetate fraction from both extracts was the only one that showed antibacterial activity. Vibriocidal substances, niazirine and niazimicine, were isolated from the aforementioned fraction through chromatographic fractionation. PMID:28770224

  10. Serum vitamin d level and susceptibility to multidrug-resistant tuberculosis among household contacts

    Science.gov (United States)

    Herlina, N.; Sinaga, B. Y. M.; Siagian, P.; Mutiara, E.

    2018-03-01

    Low levels of vitamin D is a predisposing factor for Multidrug-resistant tuberculosis. Family members in contact with the patient are also at risk of infection. Currently, there is no study that compares vitamin D levels between MDR-TB patients and household contact. This study aims to identify the association between level vitamin D within MDR-TB occurrence. This was a case-control study, with the number of samples in each group (MDR-TB) patients and household contactswere40 people. Each member of each group was checked for vitamin D levels using enzyme-linked immunosorbent assay (ELISA) technique. Statistical analysis was by using Chi-Square analysis using SPSS. Mean levels of vitamin D in MDR-TB patients were 32.21, household contact 31.7. There was anosignificant association between vitamin D levels and MDR-TB occurrence (p=1.0).No significant associationbetween vitamin D level with theMDR-TB occurrence.

  11. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris.

    Science.gov (United States)

    Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S

    2017-08-01

    Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.

  12. Multidrug-Resistant Tuberculosis during Pregnancy: Two Case Reports and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Minakshi Rohilla

    2016-01-01

    Full Text Available Multidrug-resistant tuberculosis (MDR-TB is identified from the time of introduction of antituberculosis treatment and is a known worldwide public health crisis affecting women of reproductive age group. Management issues raised by pregnant women with MDR tuberculosis are challenging due to the limited clinical experience available with the use of second line drugs. We hereby report two cases of MDR-TB during pregnancy: one patient was on second line drugs, while another one was evaluated and diagnosed to have MDR-TB in last trimester. At 6 months of follow-up both mothers and babies are doing well. The approach to such cases along with review of the literature is discussed.

  13. Infected ptosis surgery – a rare complication from a multidrug-resistant organism

    Science.gov (United States)

    Jan-Bond, Chan; Norazah, Abdul-Rahman; Sree-Kumar, Palani; Zunaina, Embong; Fazilawati, Qamarruddin

    2015-01-01

    A 7-year-old boy had a case of congenital ptosis of the right eye and has undergone frontalis sling surgery using Gore-tex material. There was no intraoperative or immediate postoperative complication. However, the patient defaulted his follow-up and presented with right eye preseptal abscess secondary to infected surgical wound 1 month after surgery. He was treated with multiple antibiotics and underwent repeated incision and drainage procedures. However, there was still no resolution of the right eye preseptal abscess. The patient’s condition subsequently improved after removal of the Gore-tex material and treatment with an antibiotic combination of ceftazidime and amikacin. Microbiological analysis finally isolated the multidrug resistant Acinetobacter species. At 6 months follow-up, his right upper eyelid was healed with scarring, but without ptosis. PMID:25945032

  14. Multidrug resistant tuberculosis in prisons located in former Soviet countries: A systematic review.

    Science.gov (United States)

    Droznin, Maxwell; Johnson, Allen; Johnson, Asal Mohamadi

    2017-01-01

    A systematic literature review was performed to investigate the occurrence of multidrug-resistant tuberculosis (MDR TB) in prisons located in countries formerly part of the Soviet Union. A systematic search of published studies reporting MDR TB occurrence in prisons located in former Soviet countries was conducted by probing PubMed and Cumulative Index Nursing and Allied Health Literature for articles that met predetermined inclusion criteria. Seventeen studies were identified for systematic review. Studies were conducted in six different countries. Overall, prevalence of MDR TB among prisoners varied greatly between studies. Our findings suggest a high prevalence of MDR TB in prisons of Post-Soviet states with percentages as high as 16 times more than the worldwide prevalence estimated by the WHO in 2014. All studies suggested a high prevalence of MDR TB in prison populations in Post-Soviet states.

  15. Multidrug resistant tuberculosis in prisons located in former Soviet countries: A systematic review.

    Directory of Open Access Journals (Sweden)

    Maxwell Droznin

    Full Text Available A systematic literature review was performed to investigate the occurrence of multidrug-resistant tuberculosis (MDR TB in prisons located in countries formerly part of the Soviet Union.A systematic search of published studies reporting MDR TB occurrence in prisons located in former Soviet countries was conducted by probing PubMed and Cumulative Index Nursing and Allied Health Literature for articles that met predetermined inclusion criteria.Seventeen studies were identified for systematic review. Studies were conducted in six different countries. Overall, prevalence of MDR TB among prisoners varied greatly between studies. Our findings suggest a high prevalence of MDR TB in prisons of Post-Soviet states with percentages as high as 16 times more than the worldwide prevalence estimated by the WHO in 2014.All studies suggested a high prevalence of MDR TB in prison populations in Post-Soviet states.

  16. Structure-activity relationships of diverse xanthones against multidrug resistant human tumor cells.

    Science.gov (United States)

    Wang, Qiwen; Ma, Chenyao; Ma, Yun; Li, Xiang; Chen, Yong; Chen, Jianwei

    2017-02-01

    Thirteen xanthones were isolated naturally from the stem of Securidaca inappendiculata Hassk, and structure-activity relationships (SARs) of these compounds were comparatively predicted for their cytotoxic activity against three human multidrug resistant (MDR) cell lines MCF-7/ADR, SMMC-7721/Taxol, and A549/Taxol cells. The results showed that the selected xanthones exhibited different potent cytotoxic activity against the growth of different human tumor cell lines, and most of the xanthones exhibited selective cytotoxicity against SMMC-7721/Taxol cells. Furthermore, some tested xanthones showed stronger cytotoxicity than Cisplatin, which has been used in clinical application extensively. The SARs analysis revealed that the cytotoxic activities of diverse xanthones were affected mostly by the number and position of methoxyl and hydroxyl groups. Xanthones with more free hydroxyl and methoxyl groups increased the cytotoxic activity significantly, especially for those with the presence of C-3 hydroxyl and C-4 methoxyl groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Antimicrobial and Antibiofilm Potential of Acyclic Amines and Diamines against Multi-Drug Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Gurmeet Kaur

    2017-09-01

    Full Text Available Multi-drug resistant Staphylococcus aureus (MDRSA remains a great challenge despite a decade of research on antimicrobial compounds against their infections. In the present study, various acyclic amines and diamines were chemically synthesized and tested for their antimicrobial as well as antibiofilm activity against MDRSA. Among all the synthesized compounds, an acyclic diamine, (2,2′-((butane-1,4-diylbis(azanediylbis(methylenediphenol designated as ADM 3, showed better antimicrobial activity (minimum inhibitory concentration at 50 μg/mL and antibiofilm activity (MBIC50 at 5 μg/mL. In addition, ADM 3 was capable of reducing the virulence factors expression (anti-virulence. Confocal laser scanning microscope analysis of the in vitro tested urinary catheters showed biofilm reduction as well as bacterial killing by ADM 3. On the whole, our data suggest that acyclic diamines, especially ADM 3 can be a potent lead for the further studies in alternative therapeutic approaches.

  18. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Directory of Open Access Journals (Sweden)

    Lin Ge

    2010-07-01

    Full Text Available Abstract Multi-drug resistance (MDR of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  19. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines.

    Science.gov (United States)

    Chai, Stella; To, Kenneth Kw; Lin, Ge

    2010-07-25

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  20. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system.

    Science.gov (United States)

    Kibria, Golam; Hatakeyama, Hiroto; Harashima, Hideyoshi

    2014-01-01

    Multidrug resistance (MDR), the principal mechanism by which many cancers develop resistance to chemotherapy, is one of the major obstacles to the successful clinical treatment of various types of cancer. Several key regulators are responsible for mediating MDR, a process that renders chemotherapeutic drugs ineffective in the internal organelles of target cells. A nanoparticulate drug delivery system (DDS) is a potentially promising tool for circumventing such MDR, which can be achieved by targeting tumor cells themselves or tumor endothelial cells that support the survival of MDR cancer cells. The present article discusses key factors that are responsible for MDR in cancer cells, with a specific focus on the application of DDS to overcome MDR via the use of chemotherapy or macromolecules.

  1. Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Letícia Dias de Melo Carrasco

    2015-03-01

    Full Text Available The growing challenge of antimicrobial resistance to antibiotics requires novel synthetic drugs or new formulations for old drugs. Here, cationic nanostructured particles (NPs self-assembled from cationic bilayer fragments and polyelectrolytes are tested against four multidrug-resistant (MDR strains of clinical importance. The non-hemolytic poly(diallyldimethylammonium chloride (PDDA polymer as the outer NP layer shows a remarkable activity against these organisms. The mechanism of cell death involves bacterial membrane lysis as determined from the leakage of inner phosphorylated compounds and possibly disassembly of the NP with the appearance of multilayered fibers made of the NP components and the biopolymers withdrawn from the cell wall. The NPs display broad-spectrum activity against MDR microorganisms, including Gram-negative and Gram-positive bacteria and yeast.

  2. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens.

    Directory of Open Access Journals (Sweden)

    Daniel E Kadouri

    Full Text Available Multidrug-resistant (MDR Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was examined. Although the potential use of predatory bacteria to attack MDR pathogens has been suggested, the data supporting these claims is lacking. By conducting predation experiments we have established that predatory bacteria have the capacity to attack clinical strains of a variety of ß-lactamase-producing, MDR Gram-negative bacteria. Our observations indicate that predatory bacteria maintained their ability to prey on MDR bacteria regardless of their antimicrobial resistance, hence, might be used as therapeutic agents where other antimicrobial drugs fail.

  3. [On the importance of multidrug-resistant strains of pathogenic microorganisms in ophthalmic practice].

    Science.gov (United States)

    Galeeva, G Z; Samoylov, A N; Rascheskov, A Yu

    2015-01-01

    This is a review of epidemiological, microbiological and ophthalmological publications on the importance of multidrug-resistant bacterial strains in medical, particularly ophthalmological, care. Current state of pharmaceutical market and wide variety of generics confuses doctor's (including ophthalmologist's) sense of decision-making on the optimum antibiotic for the treatment of purulent inflammation. Indiscriminate use of antibiotics contributes to multiple drug resistance in bacteria. The world returns to the pre-antibiotic era, in which there was no treatment for severe infectious and inflammatory diseases. The most dangerous multiresistant strains known to medical science and their role in etiology of inflammatory eye diseases are listed in the article. Since neonatal conjunctivitis and postoperative endophthalmitis are the most common ocular inflammatory diseases caused by nosocomial multiresistant bacteria, their etiological classification is also described. Emergence of antibiotic resistance to most frequently used ophthalmic agents and prevention strategies are discussed.

  4. In vitro screening of snake venom against multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Sujay Kumar Bhunia

    2015-12-01

    Full Text Available The re-emergence of multidrug-resistant tuberculosis (MDR-TB has brought to light the importance of screening effective novel drugs. In the present study, in vitro activities of different snake (Naja naja, Bungarus fasciatus, Daboia russelli russelli, Naja kaouthia venoms have been investigated against clinical isolate of MDR-TB strains. The treatment with all the venoms inhibited the mycobacterial growth for at least a week in common and two of them (Naja naja and Naja kaouthia showed significantly longer inhibition up to two weeks against the MDR-TB strain with single dose and a repetition of those two venoms exhibited inhibition up to more than four weeks.

  5. Prognostic factors for treatment success in patients with multidrug-resistant tuberculosis in China.

    Science.gov (United States)

    Fan, Y-M; Ding, S-P; Bao, Z-J; Wu, L-M; Zhen, L-B; Xia, Q; Zhu, M

    2018-03-01

    To examine the clinical outcomes and associated prognostic factors among patients with multidrug-resistant tuberculosis (MDR-TB) in China. This retrospective study involved 243 patients with MDR-TB. All patients received standard regimens containing para-amino salicylic acid (PAS) and/or cycloserine (CS). The demographic, social and clinical characteristics of patients were recorded and the patients were followed up for 24 months. Treatment success was closely associated with young age, non-farming occupations, shorter history or smoking, normal urine results, initial MDR-TB treatment regimen, increased haemoglobin, direct bilirubin, uric acid and thyroid stimulating hormone (TSH) levels, and lower white blood cell, neutrophil and blood platelet counts (all P factors for treatment success in MDR-TB. Higher haemoglobin and TSH levels, normal urine results and initial MDR-TB treatment regimen might predict successful treatment of MDR-TB.

  6. Merremins A-G, resin glycosides from Merremia hederacea with multidrug resistance reversal activity.

    Science.gov (United States)

    Wang, Wen-qiong; Song, Wei-bin; Lan, Xiao-jing; Huang, Min; Xuan, Li-jiang

    2014-10-24

    Five new pentasaccharide resin glycosides, named merremins A-E (1-5), two new pentasaccharide resin glycoside methyl esters, named merremins F and G (6, 7), and four known resin glycosides, murucoidin IV, murucoidin V, stoloniferin IV, and murucoidin XVII, were obtained from the aerial parts of Merremia hederacea. This is the first report of resin glycosides obtained from M. hederacea. In addition, the new compounds can be divided into three types: those possessing an 18-membered ring (1-4), compound 5 with a 20-membered ring, and those with an acyclic core (6, 7). Furthermore, the different types of resin glycosides were evaluated for their multidrug resistance reversal activities. Compounds 1, 5, 6, and murucoidin V were noncytotoxic and enhanced the cytotoxicity of vinblastine by 2.3-142.5-fold at 25 μM. Compound 5 and murucoidin V, with 20-membered rings, were more active than compound 1, with an 18-membered ring.

  7. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  8. Infected ptosis surgery - a rare complication from a multidrug-resistant organism.

    Science.gov (United States)

    Jan-Bond, Chan; Norazah, Abdul-Rahman; Sree-Kumar, Palani; Zunaina, Embong; Fazilawati, Qamarruddin

    2015-01-01

    A 7-year-old boy had a case of congenital ptosis of the right eye and has undergone frontalis sling surgery using Gore-tex material. There was no intraoperative or immediate postoperative complication. However, the patient defaulted his follow-up and presented with right eye preseptal abscess secondary to infected surgical wound 1 month after surgery. He was treated with multiple antibiotics and underwent repeated incision and drainage procedures. However, there was still no resolution of the right eye preseptal abscess. The patient's condition subsequently improved after removal of the Gore-tex material and treatment with an antibiotic combination of ceftazidime and amikacin. Microbiological analysis finally isolated the multidrug resistant Acinetobacter species. At 6 months follow-up, his right upper eyelid was healed with scarring, but without ptosis.

  9. Study of peripheral blood multidrug resistance-associated protein 1 expression of children intractable epilepsy.

    Science.gov (United States)

    Yue, Xuan; Liu, Xiaoming; Chen, Shengzhi; Li, Rui

    2018-04-01

    The aim of this study was to analyze multidrug resistance-associated protein 1 (MRP1) expression of peripheral blood of children intractable epilepsy. Sixty children with epilepsy admitted to outpatient and inpatient services of Xuzhou Children's Hospital between November 2010 and October 2011 were divided into a refractory epilepsy group and a drug-controlled epilepsy group, with 30 cases each. Thirty healthy children who went to the hospital in the same year for health examination were enrolled as a control group. Reverse transcriptase polymerase chain reaction and Western blot method were used to determine peripheral blood MRP1 level, mRNA, and protein content of the 3 groups. MRP1 expression in the refractory epilepsy group was significantly higher than those of the epilepsy group with good drug control and of the control group. All differences had statistical significance (P0.05). Peripheral blood MRP1 expression in patients with refractory epilepsy increases.

  10. Screening of migrants for tuberculosis identifies patients with multidrug-resistant tuberculosis but is not sufficient.

    Science.gov (United States)

    Helbling, Peter; Kröger, Stefan; Haas, Walter; Brusin, Sergio; Cirillo, Daniela Maria; Groenheit, Ramona; Guthmann, Jean-Paul; Soini, Hanna; Hendrickx, David; van der Werf, Marieke J

    2018-03-17

    A cluster of multidrug-resistant tuberculosis (MDR-TB) among migrants is described by Walker et al. in their manuscript accepted for publication in Lancet Infectious Diseases. As most European countries have entry screening for tuberculosis (active case finding) for certain categories of migrants, we evaluated whether cases were identified by entry screening and if not, why not. Our assessment shows that 27 of 36 (75%) patients were screened for TB. Of these, 13 (50%) were diagnosed as a result of the screening. Most patients were eventually diagnosed with MDR-TB within months of entry in the country. We conclude that systematic screening of migrants at entry can identify tuberculosis but only captures active TB at entry and thus access for migrants to the health system in the host countries should be ensured to allow early detection and treatment of cases and avoid further spread. Copyright © 2018. Published by Elsevier Ltd.

  11. International spread of multidrug-resistant Salmonella Schwarzengrund in food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hendriksen, Rene S.; Lockett, Jana

    2007-01-01

    We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid......, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark...... had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products...

  12. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  13. Multidrug-resistant tuberculosis in children from 2003 to 2005: A brief report

    Directory of Open Access Journals (Sweden)

    I Shah

    2012-01-01

    Full Text Available Multidrug-resistant tuberculosis (MDR-TB has rarely been reported from children in India. Their response to therapy is also not known. We present four HIV-negative children with MDR-TB (3 children with extra-pulmonary TB and 1 child with pulmonary TB who presented in 2003-2005. All the four children were already on antituberculous therapy (ATT for 3-9 months prior to being detected as MDR-TB. These patients were started on second-line ATT for 18 months. In three patients, there was complete resolution, and one patient with severe bilateral pulmonary TB had the disease localized to one lung after 18 months of therapy.

  14. Congenital Multidrug-resistant Tuberculosis in a Neonate: A Case Report.

    Science.gov (United States)

    Lhadon, Tenzin; Jullien, Sophie

    2018-04-20

    Multidrug-resistant tuberculosis (MDR-TB) is a well-identified raising public health concern worldwide. However, the data available on MDR-TB in children and particularly in the neonate age group are limited. Congenital tuberculosis (TB) is rare, and its diagnosis is challenging because of non-specific manifestations. The choice of anti-tubercular drugs is difficult because of the lack of international consensus as a consequence of the scarcity of evidence-based data on this age group. We hereby present a case from Bhutan of a 23-day-old male neonate with congenital MDR-TB. His mother was diagnosed with disseminated TB, and treatment was commenced 11 days post-partum. Congenital transmission of TB was suspected, as direct postnatal transmission was unlikely and thorough screening of contacts for TB was negative. In this case, the mother's MDR-TB status was revealed only after her newborn's MDR-TB diagnosis.

  15. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance.

    Science.gov (United States)

    Natan, Michal; Banin, Ehud

    2017-05-01

    The spread of antibiotic resistance and increasing prevalence of biofilm-associated infections is driving demand for new means to treat bacterial infection. Nanotechnology provides an innovative platform for addressing this challenge, with potential to manage even infections involving multidrug-resistant (MDR) bacteria. The current review summarizes recent progress over the last 2 years in the field of antibacterial nanodrugs, and describes their unique properties, mode of action and activity against MDR bacteria and biofilms. Biocompatibility and commercialization are also discussed. As opposed to the more common division of nanoparticles (NPs) into organic- and inorganic-based materials, this review classifies NPs into two functional categories. The first includes NPs exhibiting intrinsic antibacterial properties and the second is devoted to NPs serving as a cargo for delivering antibacterial agents. Antibacterial nanomaterials used to decorate medical devices and implants are reviewed here as well. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Lethal inflammasome activation by a multi-drug resistant pathobiont upon antibiotic disruption of the microbiota

    Science.gov (United States)

    Ayres, Janelle S.; Trinidad, Norver J.; Vance, Russell E.

    2012-01-01

    The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobionts, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant E. coli pathobiont that expanded dramatically in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system. PMID:22522562

  17. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    Science.gov (United States)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  18. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains.

    Science.gov (United States)

    Sienkiewicz, Monika; Łysakowska, Monika; Denys, Paweł; Kowalczyk, Edward

    2012-04-01

    The aim of this work was to investigate the antimicrobial activity of thyme essential oil against clinical multidrug resistant strains of Staphylococcus, Enterococcus, Escherichia, and Pseudomonas genus. The antibacterial activity of oil was tested against standard strains of bacteria and 120 clinical strains isolated from patients with infections of the oral cavity, abdominal cavity, respiratory and genitourinary tracts, skin, and from the hospital environment. Agar diffusion was used to determine the microbial growth inhibition of bacterial growth at various concentrations of oil from Thymus vulgaris. Susceptibility testing to antibiotics was carried out using disk diffusion. Thyme essential oil strongly inhibited the growth of the clinical strains of bacteria tested. The use of phytopharmaceuticals based on an investigated essential oil from thyme in the prevention and treatment of various human infections may be reasonable.

  19. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies

    Directory of Open Access Journals (Sweden)

    Li B

    2012-01-01

    Full Text Available Bo Li1, Hui Xu2, Zhen Li1, Mingfei Yao1, Meng Xie1, Haijun Shen1, Song Shen1, Xinshi Wang1, Yi Jin11College of Pharmaceutical sciences, Zhejiang University, Hangzhou, 2No. 202 Hospital of People's Liberation Army, Shenyang, ChinaBackground: Multidrug resistance (MDR mediated by the overexpression of adenosine triphosphate (ATP-binding cassette (ABC transporters, such as P-glycoprotein (P-gp, remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs, consisting of a dimethyldidodecylammonium bromide (DMAB-modified poly(lactic-co-glycolic acid (PLGA nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp.Methods: Doxorubicin (DOX, a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR cells.Results: This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50 value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT assay, correlated with the strong nuclear retention of the drug.Conclusion: The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR.Keywords: chemotherapy, drug delivery, polymeric nanoparticles, multidrug resistance

  20. Multidrug-resistant organisms in neonatal sepsis in two tertiary neonatal ICUs, Egypt.

    Science.gov (United States)

    Awad, Hesham A; Mohamed, Maha H; Badran, Nabil F; Mohsen, Manal; Abd-Elrhman, Al-Sayed A

    2016-03-01

    Neonatal sepsis remains a serious problem in any neonatal intensive care unit (NICU). Bacterial organisms have developed increased resistance to commonly used antibiotics. Because not enough data are available from Egypt, the aim of the present study was to determine the causative bacteria and the level of their resistance to commonly used antibiotics in tertiary NICUs in Cairo, Egypt. A 3.5-year retrospective study was carried out at NICUs of the Children's Hospital of Ain Shams University and that of El-Hussein Hospital, Al-Azhar University, Egypt. Records of neonates were reviewed. All neonates with culture-proven sepsis were included in the study. Almost one-third of the admitted neonates (33.4%) were diagnosed as having neonatal sepsis, 32.25% of them culture-proven. Early/late onset sepsis was found in 35.4 and 64.6%, respectively. Gram-negative/gram-positive bacteria was found in 68 to 25.6%. Fungal infection was detected in 9% of the isolates. Escherichia coli was the main pathogen isolated in both early-onset sepsis (41.2%) and late-onset sepsis (24.5%). Overall, 77% of the isolates were multidrug-resistant (60% of gram-positive bacteria and 83.4% of gram-negative bacteria). Nearly 80% (79%) of mortality was caused by multidrug-resistant organisms. Gram-positive and gram-negative bacteria showed high resistance against commonly used antibiotics such as ampicillin, amoxicillin, cefotaxime, ceftriaxone, and gentamicin. There is an alarming increase in antibiotic resistance to the commonly used antibiotics. Continuous surveillance for antibiotic susceptibility is needed to ensure proper empirical therapy. Improvement of infection control practices, avoidance of irrational use of antibiotics, and revision of the protocols are mandatory in the prevention of neonatal sepsis.

  1. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  2. Control of multidrug resistant bacteria in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Jaggi Namita

    2012-06-01

    Full Text Available Abstract Background The objective of this study was to assess the impact of antimicrobial stewardship programs on the multidrug resistance patterns of bacterial isolates. The study comprised an initial retrospective analysis of multidrug resistance in bacterial isolates for one year (July 2007-June 2008 followed by prospective evaluation of the impact of Antimicrobial Stewardship programs on resistance for two years and nine months (July 2008-March 2011. Setting A 300-bed tertiary care private hospital in Gurgaon, Haryana (India Findings Methods Study Design • July 2007 to June 2008: Resistance patterns of bacterial isolates were studied. • July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital. • July 2008 to June 2010: Assessment of the impact of the Phase I intervention programme. • July 2010 to March 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Statistical correlation of the Defined daily dose (DDD for prescribed drugs with the antimicrobial resistance of Gram negatives. Results Phase I intervention programme (July 2008 resulted in a decrease of 4.47% in ESBLs (E.coli and Klebsiella and a significant decrease of 40.8% in carbapenem-resistant Pseudomonas. Phase II intervention (July 2010 brought a significant reduction (24.7% in carbapenem-resistant Pseudomonas. However, the resistance in the other Gram negatives (E.coli, Klebsiella, and Acinetobacter rose and then stabilized. A positive correlation was observed in Pseudomonas and Acinetobacter with carbapenems and cefoperazone-sulbactam. Piperacillin-tazobactam showed a positive correlation with Acinetobacter only. E.coli and Klebsiella showed positive correlation with cefoparazone-sulbactam and piperacillin-tazobactam. Conclusion An antimicrobial stewardship programme with sustained and multifaceted efforts is essential to promote the judicious use of antibiotics.

  3. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  4. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane eCoelho

    2015-04-01

    Full Text Available Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA to study single combinations between antituberculosis drugs and efflux inhibitors (EIs against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates.

  5. Colistin/daptomycin: an unconventional antimicrobial combination synergistic in vitro against multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Galani, Irene; Orlandou, Konstantina; Moraitou, Helen; Petrikkos, George; Souli, Maria

    2014-04-01

    The in vitro activity of the combination colistin/daptomycin was evaluated against multidrug-resistant Acinetobacter baumannii clinical isolates. Clonal relationships were assessed by pulsed-field gel electrophoresis. The following synergy studies were undertaken: (i) daptomycin MICs were determined by E-test on Mueller-Hinton agar plates supplemented with a subinhibitory concentration of colistin; and (ii) time-kill methodology using tubes containing an inoculum of 5×10(5)CFU/mL and subinhibitory concentrations of each antibiotic alone or in combination subcultured at 0, 5 and 24h for colony counting. Synergy was defined as ≥2log10CFU/mL decrease of viable colonies compared with colistin alone. Ten colistin-susceptible and four colistin-resistant A. baumannii isolates were tested. Isolates were assigned to nine different clonal types. Enhanced in vitro activity of the combination was detected only against colistin-susceptible isolates; using plates supplemented with colistin, the daptomycin MIC was reduced by 4- to 128-fold. From a total of 30 isolate-concentration combinations in time-kill studies, a synergistic interaction was detected in 16 (53.3%). The combination exhibited synergy against 8 and 12 of these combinations at 5h and 24h, respectively. No antagonism was detected. Colistin alone was bactericidal against two colistin-susceptible isolates at 24h, whereas the combination was bactericidal against 9 colistin-susceptible isolates at 24h. Against all colistin-resistant isolates, the combination exhibited a static effect and indifference in time-kill studies. Potent in vitro synergistic interactions between colistin and daptomycin provide evidence that this unorthodox combination may be beneficial in the treatment of colistin-susceptible multidrug-resistant A. baumannii. Copyright © 2014. Published by Elsevier B.V.

  6. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage

    Directory of Open Access Journals (Sweden)

    Balaram Das

    2017-09-01

    Full Text Available The growing need of antimicrobial agent for novel therapies against multi-drug resistant bacteria has drawn researchers to green nanotechnology. Especially, eco-friendly biosynthesis of silver nanoparticles (Ag NPs has shown its interesting impact against bacterial infection in laboratory research. In this study, a simple method was developed to form Ag NPs at room temperature, bio-reduction of silver ions from silver nitrate salt by leaf extract from Ocimum gratissimum. The Ag NPs appear to be capped with plant proteins, but are otherwise highly crystalline and pure. The Ag NPs have a zeta potential of −15 mV, a hydrodynamic diameter of 31 nm with polydispersity index of 0.65, and dry sizes of 18 ± 3 nm and 16 ± 2 nm, based on scanning and transmission electron microscopy respectively. The minimum inhibitory concentration (MIC of the Ag NPs against a multi-drug resistant Escherichia coli was 4 μg/mL and the minimum bactericidal concentration (MBC was 8 μg/mL, while the MIC and MBC against a resistant strain of Staphylococcus aureus were slightly higher at 8 μg/mL and 16 μg/mL respectively. Further, the Ag NPs inhibited biofilm formation by both Escherichia coli and S. aureus at concentrations similar to the MIC for each strain. Treatment of E. coli and S. aureus with Ag NPs resulted in damage to the surface of the cells and the production of reactive oxygen species. Both mechanisms likely contribute to bacterial cell death. In summary, this new method appears promising for green biosynthesis of pure Ag NPs with potent antimicrobial activity.

  7. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter.

    Science.gov (United States)

    Tang, Yizhi; Dai, Lei; Sahin, Orhan; Wu, Zuowei; Liu, Mingyuan; Zhang, Qijing

    2017-06-01

    To identify and characterize a novel cfr variant that recently emerged and confers multidrug resistance in Campylobacter , a major foodborne pathogen. WGS was initially used to identify the cfr (C) gene in Campylobacter isolates and its function was further verified by cloning into an antibiotic-susceptible Campylobacter jejuni strain. Distribution of cfr (C) in various Campylobacter isolates was determined by PCR analysis. Genotyping of cfr (C)-positive strains was done by PFGE and MLST. The cfr (C) gene is predicted to encode a protein that shares 55.1% and 54.9% identity with Cfr and Cfr(B), respectively. cfr (C) was located on a conjugative plasmid of ∼48 kb. Cloning of cfr (C) into C. jejuni NCTC 11168 and conjugative transfer of the cfr (C)-containing plasmid confirmed its role in conferring resistance to phenicols, lincosamides, pleuromutilins and oxazolidinones, and resulted in an 8-256-fold increase in their MICs in both C. jejuni and Campylobacter coli . The cfr (C) gene was detected in multiple C. coli (34 of 344; 10%) isolates derived from different cattle farms in different states, and molecular typing of the cfr (C)-positive C. coli isolates revealed its spread mainly via clonal expansion. These results identify cfr (C) as a new multidrug resistance mechanism in Campylobacter and suggest the potential transmission of this mechanism via the foodborne route, warranting enhanced efforts to monitor its spread in Campylobacter and other foodborne pathogens. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  9. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Tängdén, Thomas

    2014-05-01

    Combination antibiotic therapy for Gram-negative sepsis is controversial. The present review provides a brief summary of the existing knowledge on combination therapy for severe infections with multidrug-resistant Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae. Empirical combination antibiotic therapy is recommended for severe sepsis and septic shock to reduce mortality related to inappropriate antibiotic treatment. Because definitive combination therapy has not been proven superior to monotherapy in meta-analyses, it is generally advised to de-escalate antibiotic therapy when the antibiotic susceptibility profile is known, although it cannot be excluded that some subgroups of patients might still benefit from continued combination therapy. Definitive combination therapy is recommended for carbapenemase-producing Enterobacteriaceae and should also be considered for severe infections with Pseudomonas and Acinetobacter spp. when beta-lactams cannot be used. Because resistance to broad-spectrum beta-lactams is increasing in Gram-negative bacteria and because no new antibiotics are expected to become available in the near future, the antibacterial potential of combination therapy should be further explored. In vitro data suggest that combinations can be effective even if the bacteria are resistant to the individual antibiotics, although existing evidence is insufficient to support the choice of combinations and explain the synergistic effects observed. In vitro models can be used to screen for effective combinations that can later be validated in animal or clinical studies. Further, in the absence of clinical evidence, in vitro data might be useful in supporting therapeutic decisions for severe infections with multidrug-resistant Gram-negative bacteria.

  10. Monitoring in vitro efficacy of Holarrhena antidysenterica against multidrug resistant enteropathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Shakti Rath

    2014-02-01

    Full Text Available Objective: To assess antibacterial activities of leaf and bark extracts of Holarrhena antidysenterica (H. antidysenterica, used by an Indian aborigine for ailments of human gastrointestinal tract, against eight extended spectrum β-lactamase producing multidrug resistant enteropathogens. Methods: Antibacterial activities of eight solvent-extracts of the plant were monitored by the agar-well diffusion method on lawns of all bacteria. Further, minimum inhibitory concentrations and minimum bactericidal concentrations of the best three solvent extracts were determined by the micro-broth dilution method. Preliminary phytochemical analysis of the active leaf and bark extracts were carried out. Results: It was found that Enterobacter aerogenes was resistant to 14 of 16 antibiotics, likewise, Escherichia coli to 13, Klebsiella sp. to 14, Salmonella paratyphi to 7, Salmonella typhi to 15, Shigella dysenteriae and Shigella sonnei to 14, Vibrio cholerae to 4 of 16 antibiotics. It was found that plant-extracts with petroleum ether and n-hexane had the least antibacterial activity. Extracts of leaves with chloroform, methanol, and water registered moderate antibacterial activity, whereas bark-extracts with ethyl acetate, acetone, and ethanol had a comparatively higher antibacterial activity on all these strains. Maximum sizes of zone of inhibition due to leaf extracts with ethyl acetate, acetone, and ethanol, and on the other hand, bark extracts with ethyl acetate, acetone and methanol were recorded against these bacteria; minimum inhibitory concentration and minimum bactericidal concentration values of specifically these extracts were determined. Phytochemical analysis of the methanolic bark extract of H. antidysenterica confirmed the presence of alkaloids, terpenoids, reducing sugars, tannins, and flavonoids. Conclusions: Data analysis revealed that leaves and bark of H. antidysenterica could serve as complementary/supplementary drugs along with suitable

  11. Risk factors for healthcare-acquired urinary tract infections caused by multi-drug resistant microorganisms

    Directory of Open Access Journals (Sweden)

    Đorđević Zorana M.

    2016-01-01

    Full Text Available Introduction. Healthcare-acquired urinary tract infections (HAUTI make up to 40% of all healthcareacquired infections and contribute significantly to hospital morbidity, mortality, and overall cost of treatment. Objective. The aim of our study was to investigate possible risk factors for development of HAUTI caused by multi-drug resistant pathogens. Methods. The prospective case-control study in a large tertiary-care hospital was conducted during a five-year period. The cases were patients with HAUTI caused by multi-drug resistant (MDR pathogens, and the controls were patients with HAUTI caused by non-MDR pathogens. Results. There were 562 (62.6% patients with MDR isolates and 336 (37.4% patients with non-MDR isolates in the study. There were four significant predictors of HAUTI caused by MDR pathogens: hospitalization before insertion of urinary catheter for more than eight days (ORadjusted = 2.763; 95% CI = 1.352-5.647; p = 0.005, hospitalization for more than 15 days (ORadjusted = 2.144; 95% CI = 1.547-2.970; p < 0.001, previous stay in another department (intensive care units, other wards or hospitals (ORadjusted = 2.147; 95% CI = 1.585-2.908; p < 0.001, and cancer of various localizations (ORadjusted = 2.313; 95% CI = 1.255-4.262; p = 0.007. Conclusion. Early removal of urinary catheter and reduction of time spent in a hospital or in an ICU could contribute to a decrease in the rate of HAUTI caused by MDR pathogens.

  12. Converging risk factors but no association between HIV infection and multidrug-resistant tuberculosis in Kazakhstan.

    Science.gov (United States)

    van den Hof, S; Tursynbayeva, A; Abildaev, T; Adenov, M; Pak, S; Bekembayeva, G; Ismailov, S

    2013-04-01

    Kazakhstan is a country with a low HIV/AIDS (human immunodeficiency virus/acquired immune-deficiency syndrome) burden, but a high prevalence of multidrug-resistant tuberculosis (MDR-TB). We describe the epidemiology of multidrug resistance and HIV among TB patients, using the 2007-2011 national electronic TB register. HIV test results were available for 97.2% of TB patients. HIV prevalence among TB patients increased from 0.6% in 2007 to 1.5% in 2011. Overall, 41.6% of patients had a positive smear at diagnosis, 38.6% a positive culture and 51.7% either a positive smear or culture. Drug susceptibility testing (DST) results were available for 92.7% of culture-positive cases. Socio-economic factors independently associated with both HIV and MDR-TB were urban residency, drug use, homelessness and a history of incarceration. In adjusted analysis, HIV positivity was not associated with MDR-TB (OR 1.0, 95%CI 0.86-1.2). Overall, among TB patients with DST and HIV test results available, 65.0% were positive for neither HIV nor MDR-TB, 33.5% only for MDR-TB, 0.9% only for HIV and 0.6% for both HIV and MDR-TB. Among injection drug users, 12.5% were positive for HIV and MDR-TB. We showed increasing HIV prevalence among TB patients in Kazakhstan. HIV was not an independent risk factor for MDR-TB, but risk factors were largely overlapping and we did identify subgroups at particular risk of HIV-MDR-TB co-infection, notably drug users. Enhanced efforts are necessary to provide care to these socially vulnerable populations.

  13. Autophagy facilitates multidrug resistance development through inhibition of apoptosis in breast cancer cells.

    Science.gov (United States)

    Sun, W L; Lan, D; Gan, T Q; Cai, Z W

    2015-01-01

    Acquired multidrug resistance (MDR) is the main mechanism of chemotherapeutic drugs resistance. Nevertheless, the mechanisms of MDR are complex and still not very clear. Recently, including our previous study, several studies have revealed that macroautophagy (here referred to as autophagy) induced by anti-cancer drugs in breast cancer cells may facilitate the development of resistance to epirubicin (EPI), paclitaxel (PTX), tamoxifen or herceptin. Whereas there are a few studies on the relationship between autophagy and MDR, especially the studies designed directly employing induced resistant breast cancer cells. Based on previous study, we explored the relationship between autophagy and MDR. The results showed that induced EPI-resistant MCF-7er and SK-BR-3er cells were simultaneously resistant to PTX and vinorelbine (NVB), which demonstrated that the cells obtained MDR phenotype. Furthermore, PTX and NVB could also induce autophagy in MCF-7er and SK-BR-3er cells, and the induced autophagy protected the cells from apoptosis, which facilitated the development of resistance to PTX and NVB. Thus, autophagy promoted the development of MDR in breast cancer cells through inhibition of apoptosis. In addition, we found that P-glycoprotein (Pgp) was overexpressed in MCF-7er and SK-Br-3er cells. And we preliminarily investigated the relationship between autophagy and P-glycoprotein (Pgp). The results showed that the expression of the protein did not obviously change despite the inhibition of autophagy. Therefore, the role of Pgp in the development of MDR might be independent of autophahy. Also this finding implies that autophagy might be a target to overcome MDR in breast cancer cells, and clinical use autophagy inhibitors might be one of the important strategies for overcoming MDR in breast cancer therapy. Autophagy, apoptosis, multidrug resistance, breast cancer, chemotherapy.

  14. Rapid emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi.

    Science.gov (United States)

    Feasey, Nicholas A; Gaskell, Katherine; Wong, Vanessa; Msefula, Chisomo; Selemani, George; Kumwenda, Save; Allain, Theresa J; Mallewa, Jane; Kennedy, Neil; Bennett, Aisleen; Nyirongo, Joram O; Nyondo, Patience A; Zulu, Madalitso D; Parkhill, Julian; Dougan, Gordon; Gordon, Melita A; Heyderman, Robert S

    2015-04-01

    Between 1998 and 2010, S. Typhi was an uncommon cause of bloodstream infection (BSI) in Blantyre, Malawi and it was usually susceptible to first-line antimicrobial therapy. In 2011 an increase in a multidrug resistant (MDR) strain was detected through routine bacteriological surveillance conducted at Queen Elizabeth Central Hospital (QECH). Longitudinal trends in culture-confirmed Typhoid admissions at QECH were described between 1998-2014. A retrospective review of patient cases notes was conducted, focusing on clinical presentation, prevalence of HIV and case-fatality. Isolates of S. Typhi were sequenced and the phylogeny of Typhoid in Blantyre was reconstructed and placed in a global context. Between 1998-2010, there were a mean of 14 microbiological diagnoses of Typhoid/year at QECH, of which 6.8% were MDR. This increased to 67 in 2011 and 782 in 2014 at which time 97% were MDR. The disease predominantly affected children and young adults (median age 11 [IQR 6-21] in 2014). The prevalence of HIV in adult patients was 16.7% [8/48], similar to that of the general population (17.8%). Overall, the case fatality rate was 2.5% (3/94). Complications included anaemia, myocarditis, pneumonia and intestinal perforation. 112 isolates were sequenced and the phylogeny demonstrated the introduction and clonal expansion of the H58 lineage of S. Typhi. Since 2011, there has been a rapid increase in the incidence of multidrug resistant, H58-lineage Typhoid in Blantyre. This is one of a number of reports of the re-emergence of Typhoid in Southern and Eastern Africa. There is an urgent need to understand the reservoirs and transmission of disease and how to arrest this regional increase.

  15. Three Epidemics of Invasive Multidrug-Resistant Salmonella Bloodstream Infection in Blantyre, Malawi, 1998–2014

    Science.gov (United States)

    Feasey, Nicholas A.; Masesa, Clemens; Jassi, Chikondi; Faragher, E. Brian; Mallewa, Jane; Mallewa, Macpherson; MacLennan, Calman A.; Msefula, Chisomo; Heyderman, Robert S.; Gordon, Melita A.

    2015-01-01

    Background. The Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW) has routinely collected specimens for blood culture from febrile patients, and cerebrospinal fluid from patients with suspected meningitis, presenting to Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi, since 1998. Methods. We present bloodstream infection (BSI) and meningitis surveillance data from 1998 to 2014. Automated blood culture, manual speciation, serotyping, and antimicrobial susceptibility testing were performed at MLW. Population data for minimum-incidence estimates in urban Blantyre were drawn from published estimates. Results. Between 1998 and 2014, 167 028 blood cultures were taken from adult and pediatric medical patients presenting to QECH; Salmonella Typhi was isolated on 2054 occasions (1.2%) and nontyphoidal Salmonella (NTS) serovars were isolated 10 139 times (6.1%), of which 8017 (79.1%) were Salmonella Typhimurium and 1608 (15.8%) were Salmonella Enteritidis. There were 392 cases of NTS meningitis and 9 cases of Salmonella Typhi meningitis. There have been 3 epidemics of Salmonella BSI in Blantyre; Salmonella Enteritidis from 1999 to 2002, Salmonella Typhimurium from 2002 to 2008, and Salmonella Typhi, which began in 2011 and was ongoing in 2014. Multidrug resistance has emerged in all 3 serovars and is seen in the overwhelming majority of isolates, while resistance to third-generation cephalosporins and fluoroquinolones is currently uncommon but has been identified. Conclusions. Invasive Salmonella disease in Malawi is dynamic and not clearly attributable to a single risk factor, although all 3 epidemics were associated with multidrug resistance. To inform nonvaccine and vaccine interventions, reservoirs of disease and modes of transmission require further investigation. PMID:26449953

  16. Three Epidemics of Invasive Multidrug-Resistant Salmonella Bloodstream Infection in Blantyre, Malawi, 1998-2014.

    Science.gov (United States)

    Feasey, Nicholas A; Masesa, Clemens; Jassi, Chikondi; Faragher, E Brian; Mallewa, Jane; Mallewa, Macpherson; MacLennan, Calman A; Msefula, Chisomo; Heyderman, Robert S; Gordon, Melita A

    2015-11-01

    The Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW) has routinely collected specimens for blood culture from febrile patients, and cerebrospinal fluid from patients with suspected meningitis, presenting to Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi, since 1998. We present bloodstream infection (BSI) and meningitis surveillance data from 1998 to 2014. Automated blood culture, manual speciation, serotyping, and antimicrobial susceptibility testing were performed at MLW. Population data for minimum-incidence estimates in urban Blantyre were drawn from published estimates. Between 1998 and 2014, 167,028 blood cultures were taken from adult and pediatric medical patients presenting to QECH; Salmonella Typhi was isolated on 2054 occasions (1.2%) and nontyphoidal Salmonella (NTS) serovars were isolated 10,139 times (6.1%), of which 8017 (79.1%) were Salmonella Typhimurium and 1608 (15.8%) were Salmonella Enteritidis. There were 392 cases of NTS meningitis and 9 cases of Salmonella Typhi meningitis. There have been 3 epidemics of Salmonella BSI in Blantyre; Salmonella Enteritidis from 1999 to 2002, Salmonella Typhimurium from 2002 to 2008, and Salmonella Typhi, which began in 2011 and was ongoing in 2014. Multidrug resistance has emerged in all 3 serovars and is seen in the overwhelming majority of isolates, while resistance to third-generation cephalosporins and fluoroquinolones is currently uncommon but has been identified. Invasive Salmonella disease in Malawi is dynamic and not clearly attributable to a single risk factor, although all 3 epidemics were associated with multidrug resistance. To inform nonvaccine and vaccine interventions, reservoirs of disease and modes of transmission require further investigation. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  17. Genotyping and serotyping of macrolide and multidrug resistant Streptococcus pneumoniae isolated from carrier children

    Directory of Open Access Journals (Sweden)

    S F Swedan

    2016-01-01

    Full Text Available Aims: Streptococcus pneumoniae, an opportunistic pathogen commonly carried asymptomatically in the nasopharynx of children, is associated with increasing rates of treatment failures due to a worldwide increase in drug resistance. We investigated the carriage of S. pneumoniae in children 5 years or younger, the identity of prevalent serotypes, the rates of resistance to macrolides and other antimicrobial agents and the genotypes responsible for macrolide resistance. Materials and Methods: Nasopharyngeal swabs were collected from 157 children under 5 years for cultural isolation of S. pneumoniae. Antibiogram of isolates  was determined using the disk diffusion test, and the minimal inhibitory concentration to macrolides was determined using the E-test. Isolate serotypes and macrolide resistance genes, erm(B and mef(E, were identified using multiplex polymerase chain reactions. Results: S. pneumoniae was recovered from 33.8% of children; 41.9% among males and 21.9% among females (P = 0.009. The highest carriage rate occurred among age groups 7-12 months and 49-60 months. Most frequent serotypes were 19F, 6A/B, 11A, 19A, 14 and 15B/C.  Resistance to macrolides was 60.4%. Resistance to oxacillin, trimethoprim/sulfamethoxazole and clindamycin was present among 90.6%, 54.7% and 32.1% of isolates, respectively. All isolates were susceptible to chloramphenicol, levofloxacin and vancomycin. Isolates resistant to one or more macrolide drugs were more likely to be multidrug resistant. Resistance to clindamycin or oxacillin coexisted with macrolide resistance. Among the erythromycin-resistant isolates, erm(B, mef(E and erm(B and mef(E genes were present at rates of 43.8%, 37.5% and 6.3%, respectively. Erm(B and mef(E were associated with very high level and moderate-to-high level resistance to macrolides, respectively. Conclusion: A significant proportion of children harboured macrolide and multidrug-resistant S. pneumoniae.

  18. Identifying more epidemic clones during a hospital outbreak of multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Matthieu Domenech de Cellès

    Full Text Available Infections caused by multidrug-resistant bacteria are a major concern in hospitals. Current infection-control practices legitimately focus on hygiene and appropriate use of antibiotics. However, little is known about the intrinsic abilities of some bacterial strains to cause outbreaks. They can be measured at a population level by the pathogen's transmission rate, i.e. the rate at which the pathogen is transmitted from colonized hosts to susceptible hosts, or its reproduction number, counting the number of secondary cases per infected/colonized host. We collected data covering a 20-month surveillance period for carriage of multidrug-resistant Acinetobacter baumannii (MDRAB in a surgery ward. All isolates were subjected to molecular fingerprinting, and a cluster analysis of profiles was performed to identify clonal groups. We then applied stochastic transmission models to infer transmission rates of MDRAB and each MDRAB clone. Molecular fingerprinting indicated that 3 clonal complexes spread in the ward. A first model, not accounting for different clones, quantified the level of in-ward cross-transmission, with an estimated transmission rate of 0.03/day (95% credible interval [0.012-0.049] and a single-admission reproduction number of 0.61 [0.30-1.02]. The second model, accounting for different clones, suggested an enhanced transmissibility of clone 3 (transmission rate 0.047/day [0.018-0.091], with a single-admission reproduction number of 0.81 [0.30-1.56]. Clones 1 and 2 had comparable transmission rates (respectively, 0.016 [0.001-0.045], 0.014 [0.001-0.045]. The method used is broadly applicable to other nosocomial pathogens, as long as surveillance data and genotyping information are available. Building on these results, more epidemic clones could be identified, and could lead to follow-up studies dissecting the functional basis for variation in transmissibility of MDRAB lineages.

  19. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.

  20. An updated literature review concerning the treatment cost of multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Quang Vinh Tran

    2018-04-01

    Full Text Available Context: According to a report by the World Health Organization (WHO, there were 1.4 million deaths worldwide in 2015 from tuberculosis (TB, with 3.9% being new cases and 21% being previously treated cases of multidrug-resistant tuberculosis (MDR-TB. Aims: To review the literature concerning the costing analysis situation of MDR-TB treatment. Methods: The study was conducted as a systematic review, with a modified checklist being used as the vital instrument. A search was performed of three databases (PubMed, Cochrane, and Scopus using the terms (cost OR economic, socioeconomic, expenditure, burden, fee, charge, budget impact AND (resistance OR multidrug resistance, MDR AND (tuberculosis OR TB, Mycobacterium tuberculosis in order to identify relevant articles published from 2006 to the present. Results: A total of 1238 abstracts were identified, and 12 papers were ultimately included in the study. The quantity of the published articles was found to increase during in the period 2008 to 2016. Almost all the studies were based on patients’ and healthcare systems’ perceptions. The main data sources used were medical establishments and the reports of various relevant organizations. Primary data were used twice as much as secondary data. All the costing types, including direct costs and indirect costs, were mentioned, albeit not with the same frequency. Conclusions: Africa owns one-third of the articles included. Further, it was found that MDR-TB should be treated using ambulatory care rather than hospital-based models. Future research studies should focus on Asia, where drug resistance has proved to be a challenging issue.