WorldWideScience

Sample records for synthase homologues induced

  1. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Purpose: To explore the antioxidant properties of the methanol extract of Pericarpium Zanthoxyli and its effect on inducible nitric oxide synthase (iNOS), cycleooxygenase-2 (COX-2) and lipopolysaccharides (LPS)-induced cell damage in macrophage cells. Methods: Anti-oxidant activities were tested by measuring free ...

  2. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 and Lipid Peroxidation by Methanol Extract of Pericarpium Zanthoxyli. ... Production of iNOS induced by LPS was significantly (p < 0.05) inhibited by the extract, suggesting that the extract inhibits nitric oxide (NO) production by suppressing iNOS expression.

  3. Expression of Inducible Nitric Oxide Synthase in the Epithelial ...

    African Journals Online (AJOL)

    Conclusion: iNOS was over expressed in OKCs when compared with DC and RC suggesting that iNOS may contribute to the aggressive behavior of OKC. This is yet another evidence to support that OKC is the neoplasm. Keywords: Dentigerous cyst, Immunohistochemistry, Inducible nitric oxide synthase, Odontogenic ...

  4. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  5. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  6. DNA Damage Induced MutS Homologue hMSH4 Acetylation

    Directory of Open Access Journals (Sweden)

    Chengtao Her

    2013-10-01

    Full Text Available Acetylation of non-histone proteins is increasingly recognized as an important post-translational modification for controlling the actions of various cellular processes including DNA repair and damage response. Here, we report that the human MutS homologue hMSH4 undergoes acetylation following DNA damage induced by ionizing radiation (IR. To determine which acetyltransferases are responsible for hMSH4 acetylation in response to DNA damage, potential interactions of hMSH4 with hTip60, hGCN5, and hMof were analyzed. The results of these experiments indicate that only hMof interacts with hMSH4 in a DNA damage-dependent manner. Intriguingly, the interplay between hMSH4 and hMof manipulates the outcomes of nonhomologous end joining (NHEJ-mediated DNA double strand break (DSB repair and thereby controls cell survival in response to IR. This study also shows that hMSH4 interacts with HDAC3, by which HDAC3 negatively regulates the levels of hMSH4 acetylation. Interestingly, elevated levels of HDAC3 correlate with increased NHEJ-mediated DSB repair, suggesting that hMSH4 acetylation per se may not directly affect the role of hMSH4 in DSB repair.

  7. Tomato linalool synthase is induced in trichomes by jasmonic acid

    Science.gov (United States)

    van Schie, Chris C. N.; Haring, Michel A.

    2007-01-01

    Tomato (Lycopersicon esculentum) plants emit a blend of volatile organic compounds, which mainly consists of terpenes. Upon herbivory or wounding, the emission of several terpenes increases. We have identified and characterized the first two tomato monoterpene synthases, LeMTS1 and LeMTS2. Although these proteins were highly homologous, recombinant LeMTS1 protein produced (R)-linalool from geranyl diphosphate (GPP) and (E)-nerolidol from farnesyl diphosphate (FPP), while recombinant LeMTS2 produced β-phellandrene, β-myrcene, and sabinene from GPP. In addition, these genes were expressed in different tissues: LeMTS1 was expressed in flowers, young leaves, stems, and petioles, while LeMTS2 was strongest expressed in stems and roots. LeMTS1 expression in leaves was induced by spider mite-infestation, wounding and jasmonic acid (JA)-treatment, while LeMTS2 did not respond to these stimuli. The expression of LeMTS1 in stems and petioles was predominantly detected in trichomes and could be induced by JA. Because JA treatment strongly induced emission of linalool and overexpression of LeMTS1 in tomato resulted in increased production of linalool, we propose that LeMTS1 is a genuine linalool synthase. Our results underline the importance of trichomes in JA-induced terpene emission in tomato. PMID:17440821

  8. The expression of the rice (Oryza sativa L.) homologue of Snm1 is induced by DNA damages

    International Nuclear Information System (INIS)

    Kimura, Seisuke; Saotome, Ai; Uchiyama, Yukinobu; Mori, Yoko; Tahira, Yasue; Sakaguchi, Kengo

    2005-01-01

    We isolated and characterized the rice homologue of the DNA repair gene Snm1 (OsSnm1). The length of the cDNA was 1862 bp; the open reading frame encoded a predicted product of 485 amino acid residues with a molecular mass of 53.2 kDa. The OsSnm1 protein contained the conserved β-lactamase domain in its internal region. OsSnm1 was expressed in all rice organs. The expression was induced by MMS, H 2 O 2 , and mitomycin C, but not by UV. Transient expression of an OsSnm1/GFP fusion protein in onion epidermal cells revealed the localization of OsSnm1 to the nucleus. These results suggest that OsSnm1 is involved not only in the repair of DNA interstrand crosslinks, but also in various other DNA repair pathways

  9. Inducible expression of trehalose synthase in Bacillus licheniformis.

    Science.gov (United States)

    Li, Youran; Gu, Zhenghua; Zhang, Liang; Ding, Zhongyang; Shi, Guiyang

    2017-02-01

    Trehalose synthase (TreS) could transform maltose into trehalose via isomerization. It is a crucial enzyme in the process of trehalose enzymatical transformation. In this study, plasmid-based inducible expression systems were constructed to produce Thermomonospora curvata TreS in B. licheniformis. Xylose operons from B. subtilis, B. licheniformis and B. megaterium were introduced to regulate the expression of the gene encoding TreS. It was functionally expressed, and the BlsTs construct yielded the highest enzyme activity (12.1 U/mL). Furthermore, the effect of different cultural conditions on the inducible expression of BlsTs was investigated, and the optimal condition was as follows: 4% maltodextrin, 0.4% soybean powder, 1% xylose added after 10 h of growth and an induction time of 12 h at 37 °C. As a result, the maximal yield reached 24.7 U/mL. This study contributes to the industrial application of B. licheniformis, a GRAS workhorse for enzyme production. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    Science.gov (United States)

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  11. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    Science.gov (United States)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  12. Identification of gamma-interferon-inducible lysosomal thiol reductase (GILT) homologues in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Kongton, Kittima; McCall, Kimberly; Phongdara, Amornrat

    2014-06-01

    Gamma-interferon-inducible lysosomal thiol reductase (GILT) has been demonstrated to be involved in the immune response to bacterial challenge in various organisms. However, little is known about GILT function in innate immunity. Drosophila has been commonly used as a model for the study of the innate immune response of invertebrates. Here, we identify the CG9796, CG10157, and CG13822 genes of fruit fly Drosophila melanogaster as GILT homologues. All deduced Drosophila GILT coding sequences contained the major characteristic features of the GILT protein family: the GILT signature CQHGX2ECX2NX4C sequence and the active site CXXC or CXXS motif. The mRNA transcript levels of the Drosophila GILT genes were up-regulated after Gram-negative bacteria Escherichia coli DH5α infection. Moreover, a bacterial load assay showed that over-expression of Drosophila GILT in fat body or hemocytes led to a low bacterial colony number whereas knock-down of Drosophila GILT in fat body or hemocytes led to a high bacterial colony number when compared to a wild-type control. These results indicate that the Drosophila GILTs are very likely to play a role in the innate immune response upon bacterial challenge of Drosophila host defense. This study may provide the basis for further study on GILT function in innate immunity. Copyright © 2014. Published by Elsevier Ltd.

  13. Neuronal SIRT1 (Silent Information Regulator 2 Homologue 1) Regulates Glycolysis and Mediates Resveratrol-Induced Ischemic Tolerance.

    Science.gov (United States)

    Koronowski, Kevin B; Khoury, Nathalie; Saul, Isabel; Loris, Zachary B; Cohan, Charles H; Stradecki-Cohan, Holly M; Dave, Kunjan R; Young, Juan I; Perez-Pinzon, Miguel A

    2017-11-01

    Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1 , accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. © 2017 American Heart Association, Inc.

  14. Uropathogenic E. coli (UPEC) Infection Induces Proliferation through Enhancer of Zeste Homologue 2 (EZH2).

    Science.gov (United States)

    Ting, Kenneth; Aitken, Karen J; Penna, Frank; Samiei, Alaleh Najdi; Sidler, Martin; Jiang, Jia-Xin; Ibrahim, Fadi; Tolg, Cornelia; Delgado-Olguin, Paul; Rosenblum, Norman; Bägli, Darius J

    2016-01-01

    Host-pathogen interactions can induce epigenetic changes in the host directly, as well as indirectly through secreted factors. Previously, uropathogenic Escherichia coli (UPEC) was shown to increase DNA methyltransferase activity and expression, which was associated with methylation-dependent alterations in the urothelial expression of CDKN2A. Here, we showed that paracrine factors from infected cells alter expression of another epigenetic writer, EZH2, coordinate with proliferation. Urothelial cells were inoculated with UPEC, UPEC derivatives, or vehicle (mock infection) at low moi, washed, then maintained in media with Gentamycin. Urothelial conditioned media (CM) and extracellular vesicles (EV) were isolated after the inoculations and used to treat naïve urothelial cells. EZH2 increased with UPEC infection, inoculation-induced CM, and inoculation-induced EV vs. parallel stimulation derived from mock-inoculated urothelial cells. We found that infection also increased proliferation at one day post-infection, which was blocked by the EZH2 inhibitor UNC1999. Inhibition of demethylation at H3K27me3 had the opposite effect and augmented proliferation. Uropathogen-induced paracrine factors act epigenetically by altering expression of EZH2, which plays a key role in early host cell proliferative responses to infection.

  15. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S.

    1991-01-01

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[ 35 S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  16. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  17. A Lys49 phospholipase A(2) homologue from Bothrops asper snake venom induces proliferation, apoptosis and necrosis in a lymphoblastoid cell line.

    Science.gov (United States)

    Mora, Rodrigo; Valverde, Berta; Díaz, Cecilia; Lomonte, Bruno; Gutiérrez, José María

    2005-04-01

    Lys49 phospholipase A(2) homologues are abundant in viperid snake venoms. These proteins have substitutions at the calcium-binding loop and catalytic center which render them enzymatically inactive; however, they display a series of toxic activities, particularly cytotoxicity upon various cell lines in vitro. In this study we explored whether myotoxin II (MT-II), a Lys49 phospholipase A(2) homologue from the venom of the snake Bothrops asper, is capable of inducing various effects in a single cell type, using the lymphoblastoid B cell line CRL-8062 as a model. Cells were incubated with varying concentrations of MT-II for 24 and 48 h, time intervals that are more prolonged than the usual incubation times previously used in the characterization of this toxin. Results indicate that MT-II induces proliferation at low concentrations (0.5-5.0 microg/mL). Apoptosis was predominant at higher toxin levels (5-25 microg/mL), whereas necrosis, associated with overt plasma membrane disruption, occurred at concentrations > or =25 microg/mL, and was the predominant effect at higher MT-II concentrations (50 microg/mL). It is concluded that a single phospholipase A(2) homologue can induce markedly different effects on a single cell line, depending on the concentration used, an observation that may have implications for the action of this type of venom component in vivo.

  18. Inducible nitric oxide synthase and guinea-pig ileitis induced by adjuvant

    Directory of Open Access Journals (Sweden)

    N. D. Seago

    1995-01-01

    Full Text Available We sought to establish a model of inflammatory bowel disease by augmenting the activity of the local immune system with Freund's complete adjuvant, and to determine if inducible nitric oxide synthase (iNOS expression and peroxynitrite formation accompanied the inflammatory condition. In anaesthetized guinea-pigs, a loop of distal ileum received intraluminal 50% ethanol followed by Freund's complete adjuvant. Control animals were sham operated. When the animals were killed 7 or 14 days later, loop lavage fluid was examined for nitrite and PGE2 levels; mucosal levels of granulocyte and macrophages were estimated by myeloperoxidase (MPO and N-acetyl-D-glucosaminidase (NAG activity, respectively. Cellular localization if iNOS and peroxynitrite formation were determined by immunohistochemistry with polyclonal antibodies directed against peptide epitopes of mouse iNOS and nitrotyrosine, respectfully. Adjuvant administration resulted in a persistent ileitis, featuring gut thickening, crypt hyperplasia, villus tip swelling and disruption, and cellular infiltration. Lavage levels of PGE2 and nitrite were markedly elevated by adjuvant treatment. Immunoreactive iNOS and nitrotyrosine bordered on detectability in normal animals but were markedly evident with adjuvant treatment at day 7 and particularly day 14. Immunohistochemistry suggested that enteric neurons and epithelia were major sites of iNOS activity and peroxynitrite formation. We conclude that local administration of adjuvant establishes a chronic ileitis. Inducible nitric oxide synthase may contribute to the inflammatory process.

  19. Differential effects of nitric oxide synthase inhibitors on endotoxin-induced liver damage in rats

    NARCIS (Netherlands)

    Vos, TA; Gouw, ASH; Klok, PA; Havinga, R; vanGoor, H; Roelofsen, H; Kuipers, F; Jansen, PLM; Moshage, H

    1997-01-01

    Background & Aims: During endotoxemia, expression of inducible nitric oxide synthase (iNOS) and nitric oxide production in the liver is increased, NO has been suggested to have a hepatoprotective function. The aim of this study was to investigate the distribution of iNOS and the effect of different

  20. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse i...

  1. Constitutive expression of inducible nitric oxide synthase in the normal human colonic epithelium

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Normark, M

    2002-01-01

    Inducible nitric oxide synthase (iNOS) in the human colon is considered expressed only in inflammatory states such as ulcerative or collagenous colitis. As subtle iNOS labelling was previously observed in some colonic mucosal biopsies from a heterogeneous group of controls with non-inflamed bowel...

  2. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis.

    Science.gov (United States)

    Saijo, Hiroki; Tatsumi, Norifumi; Arihiro, Seiji; Kato, Tomohiro; Okabe, Masataka; Tajiri, Hisao; Hashimoto, Hisashi

    2015-07-01

    Ulcerative colitis (UC) is a representative clinical manifestation of inflammatory bowel disease that causes chronic gastrointestinal tract inflammation. Dextran sulfate sodium (DSS)-induced colitis mice have been used to investigate UC pathogenesis, and in this UC model, disturbance and impairment of the mucosal epithelium have been reported to cause colitis. However, how DSS sporadically breaks down the epithelium remains unclear. In this study, we focused on the colonic microcirculation and myenteric neurons of DSS-induced colitis. Moreover, we examined the potential of myenteric neurons as a target to prevent exacerbation of colitis. Fluorescent angiographic and histopathological studies revealed that DSS administration elicited blood vessel disruption before epithelial disorders appeared. Ischemic conditions in the lamina propria induced inducible nitric oxide synthase (iNOS) expression in myenteric neurons as colitis aggravated. When neuronal activity was inhibited with butylscopolamine, neuronal iNOS expression decreased, and the exacerbation of colitis was prevented. These results suggested that DSS-induced colitis was triggered by microcirculatory disturbance in the mucosa, and that excessive neuronal excitation aggravated colitis. During remission periods of human UC, endoscopic inspection of the colonic microcirculation may enable the early detection of disease recurrence, and inhibition of neuronal iNOS expression may prevent the disease from worsening.

  3. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  4. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents

    Directory of Open Access Journals (Sweden)

    Siqueira Francisco JWS

    2011-08-01

    Full Text Available Abstract Background Methotrexate treatment has been associated to intestinal epithelial damage. Studies have suggested an important role of nitric oxide in such injury. The aim of this study was to investigate the role of nitric oxide (NO, specifically iNOS on the pathogenesis of methotrexate (MTX-induced intestinal mucositis. Methods Intestinal mucositis was carried out by three subcutaneous MTX injections (2.5 mg/kg in Wistar rats and in inducible nitric oxide synthase knock-out (iNOS-/- and wild-type (iNOS+/+ mice. Rats were treated intraperitoneally with the NOS inhibitors aminoguanidine (AG; 10 mg/Kg or L-NAME (20 mg/Kg, one hour before MTX injection and daily until sacrifice, on the fifth day. The jejunum was harvested to investigate the expression of Ki67, iNOS and nitrotyrosine by immunohistochemistry and cell death by TUNEL. The neutrophil activity by myeloperoxidase (MPO assay was performed in the three small intestine segments. Results AG and L-NAME significantly reduced villus and crypt damages, inflammatory alterations, cell death, MPO activity, and nitrotyrosine immunostaining due to MTX challenge. The treatment with AG, but not L-NAME, prevented the inhibitory effect of MTX on cell proliferation. MTX induced increased expression of iNOS detected by immunohistochemistry. MTX did not cause significant inflammation in the iNOS-/- mice. Conclusion These results suggest an important role of NO, via activation of iNOS, in the pathogenesis of intestinal mucositis.

  5. Valerophenone synthase-like chalcone synthase homologues in Humulus lupulus

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Matoušek, Jaroslav; Bříza, Jindřich

    2003-01-01

    Roč. 46, - (2003), s. 375-381 ISSN 0006-3134 R&D Projects: GA ČR GA521/99/1591 Institutional research plan: CEZ:AV0Z5051902 Keywords : plant genetic Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.919, year: 2003

  6. Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4.

    Science.gov (United States)

    West, C E; Waterworth, W M; Jiang, Q; Bray, C M

    2000-10-01

    Rejoining of single- and double-strand breaks (DSBs) introduced in DNA during replication, recombination, and DNA damage is catalysed by DNA ligase enzymes. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Double-strand breaks in DNA, which can occur spontaneously in the cell or be induced experimentally by gamma-irradiation, represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination is the major pathway for repair of DSBs in organisms with complex genomes, including humans and plants. DNA ligase IV in Saccharomyces cerevisiae and humans catalyses the final step in the NHEJ pathway of DSB repair. In this study we identify an Arabidopsis thaliana homologue (AtLIG4) of human and S. cerevisiae DNA ligase IV which is shown to encode an ATP-dependent DNA ligase with a theoretical molecular mass of 138 kDa and 48% similarity in amino-acid sequence to the human DNA ligase IV. Yeast two-hybrid analysis demonstrated a strong interaction between A. thaliana DNA ligase IV and the A. thaliana homologue of the human DNA ligase IV-binding protein XRCC4. This interaction is shown to be mediated via the tandem BRCA C-terminal domains of A. thaliana DNA ligase IV protein. Expression of AtLIG4 is induced by gamma-irradiation but not by UVB irradiation, consistent with an in vivo role for the A. thaliana DNA ligase IV in DSB repair.

  7. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    Science.gov (United States)

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene.

  8. Synthesis of N-(Methoxycarbonylthienylmethylthioureas and Evaluation of Their Interaction with Inducible and Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Michael D. Threadgill

    2010-04-01

    Full Text Available Two isomeric N-(methoxycarbonylthienylmethylthioureas were synthesised by a sequence of radical bromination of methylthiophenecarboxylic esters, substitution with trifluoroacetamide anion, deprotection, formation of the corresponding isothiocyanates and addition of ammonia. The interaction of these new thiophene-based thioureas with inducible and neuronal nitric oxide synthase was evaluauted. These novel thienylmethylthioureas stimulated the activity of inducible Nitric Oxide Synthase (iNOS.

  9. Anticonvulsion effect of acupuncture might be related to the decrease of neuronal and inducible nitric oxide synthases.

    Science.gov (United States)

    Yang, R; Huang, Z N; Cheng, J S

    1999-01-01

    To measure the levels of hippocampal nitric oxide synthase isoforms in penicillin induced epilepsy and to test the effect of electroacupuncture (EA) on changes of these levels during epilepsy, we injected penicillin into rat hippocampus to make an epilepsy model and performed electroacupuncture treatment on "Feng Fu" (DU 16) and "Jin Suo" (DU 8) points in Wistar rats. Nitric oxide synthase (NOS) mRNA levels of rat hippocampus were determined by reverse transcription-polymerase chain reaction (RT-PCR). The neuronal nitric oxide synthase (nNOS) mRNA markedly increased (pepilepsy, whereas no significant change in epithelial nitric oxide synthase (eNOS) mRNA was observed. EA inhibited the epilepsy and decreased nNOS (pepilepsy caused an increase in nNOS and iNOS, and the EA anticonvulsant effect might be related to the decrease of these nitric oxide synthases.

  10. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting.

    Science.gov (United States)

    Ito, Junta; Uchida, Hiroyuki; Machida, Naomi; Ohtake, Kazuo; Saito, Yuki; Kobayashi, Jun

    2017-04-01

    We investigated the effects of endogenous inducible (iNOS) and neuronal nitric oxide synthase on recovery from intestinal mucosal atrophy caused by fasting-induced apoptosis and decreased cell proliferation during refeeding in rats. Rats were divided into five groups, one of which was fed ad libitum, and four of which underwent 72 h of fasting, followed by refeeding for 0, 6, 24, and 48 h, respectively. iNOS and neuronal nitric oxide synthase mRNA and protein levels in jejunal tissues were measured, and mucosal height was histologically evaluated. Apoptotic indices, interferon-γ (IFN-γ) transcription levels, nitrite levels (as a measure of nitric oxide [NO] production),8-hydroxydeoxyguanosine formation (indicating reactive oxygen species [ROS] levels), crypt cell proliferation, and the motility indices (MI) were also estimated. Associations between mucosal height and NOS protein levels were determined using Spearman's rank correlation test. Notably, we observed significant increases in mucosal height and in neuronal nitric oxide synthase mRNA and protein expression as refeeding time increased. Indeed, there was a significant positive correlation between neuronal nitric oxide synthase protein level and mucosal height during the 48-h refeeding period ( r = 0.725, P fasting. Our finding suggests that refeeding likely repairs fasting-induced jejunal atrophy by suppressing iNOS expression and subsequently inhibiting NO, ROS, and IFN-γ as apoptosis mediators, and by promoting neuronal nitric oxide synthase production and inducing crypt cell proliferation via mechanical stimulation. Impact statement Besides providing new data confirming the involvement of iNOS and nNOS in intestinal mucosal atrophy caused by fasting, this study details their expression and function during recovery from this condition following refeeding. We demonstrate a significant negative correlation between iNOS and nNOS levels during refeeding, and associate this with cell proliferation

  11. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  12. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina.

    Science.gov (United States)

    Sakamoto, Kenji; Yonoki, Yuzuru; Kubota, Yuko; Kuwagata, Mayumi; Saito, Maki; Nakahara, Tsutomu; Ishii, Kunio

    2006-03-01

    Brief ischemia was reported to protect retinal cells against injury induced by subsequent ischemia-reperfusion with de novo protein synthesis, and this phenomenon is known as late ischemic preconditioning. The aims of the present study were to determine whether nitric oxide synthase (NOS) was involved in the mechanism of late ischemic preconditioning in rat retina using pharmacological tools. Under anesthesia with pentobarbital sodium, male Sprague-Dawley rats were subjected to 60 min of retinal ischemia by raising intraocular pressure to 130 mm Hg. Ischemic preconditioning was achieved by applying 5 min of ischemia 24 hrs before 60 min of ischemia. Retinal sections sliced into 5 microm thick were examined 7 days after ischemia. Additional groups of rats received NG-nitro-L-arginine and NG-monomethyl-L-arginin, non-selective NO synthase inhibitors, 7-nitroindazole, a neuronal NOS inhibitor, and aminoguanidine and L-N6-(1-iminoethyl) lysine, inducible NO synthase (iNOS) inhibitors before preconditioning, and were subjected to 60 min of ischemia. In the non-preconditioned group, cell loss in the ganglion cell layer and thinning of the inner plexiform and inner nuclear layer were observed 7 days after 60 min of ischemia. Ischemic preconditioning for 5 min completely protected against the histological damage induced by 60 min of ischemia applied 24 hrs thereafter. Treatment of rats with aminoguanidine and L-N6-(1-iminoethyl) lysine, but not NG-nitro-L-arginine, NG-monomethyl-L-arginine or 7-nitroindazole, wiped off the protective effect of ischemic preconditioning. The inhibitory effect of aminoguanidine was abolished by L-arginine, but not D-arginine. The results in the present study suggest that NO synthesized by iNOS is involved in the histological protection by late ischemic preconditioning in rat retina.

  13. Pseudoguaianolides isolated from Inula britannica var. chinenis as inhibitory constituents against inducible nitric oxide synthase.

    Science.gov (United States)

    Lee, Hyun-Tai; Yang, Seung-Won; Kim, Kyeong Ho; Seo, Eun-Kyoung; Mar, Woongchon

    2002-04-01

    Three pseudoguaianolide type sesquiterpenes, bigelovin (1), 2,3-dihydroaromaticin (2), and ergolide (3) were isolated as inhibitory constituents against inducible nitric oxide synthase (iNOS) from the flowers of Inula britannica var. chinensis. Bigelovin (1) exhibited a highly potent inhibitory activity on lipopolysaccharide (LPS)-induced iNOS in murine macrophage RAW 264.7 cells with an IC50 value of 0.46 mM, which is about 8 times more potent than the known selective inhibitor of iNOS, L-N6-(1-iminoethyl)lysine (IC50 3.49 microM). 2,3-Dihydroaromaticin (2) and ergolide (3) also exhibited potent inhibitory activities on LPS-induced iNOS with IC50 values of 1.05 and 0.69 microM, respectively.

  14. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages.

    Science.gov (United States)

    Ashino, Takashi; Yamanaka, Rieko; Yamamoto, Masayuki; Shimokawa, Hiroaki; Sekikawa, Kenji; Iwakura, Yoichiro; Shioda, Seiji; Numazawa, Satoshi; Yoshida, Takemi

    2008-04-01

    Heme oxygenase-1 (HO-1) is induced under infectious diseases in macrophages. We performed experiments using various gene deficient mouse-derived macrophages to determine a detailed induction mechanism of HO-1 by lipopolysaccharide (LPS) and the functional role of HO-1 induction in macrophages. LPS (1 microg/mL) maximally induced inducible nitric oxide synthase (iNOS) and HO-1 mRNAs in wild-type (WT) macrophages at 6h and 12h after treatment, respectively, and liberated tumor necrosis factor alpha (TNFalpha) from WT macrophages. LPS also induced iNOS and HO-1 in TNFalpha(-/-) macrophages, but not in iNOS(-/-) macrophages. Interestingly, although LPS strongly induced iNOS, it failed to induce HO-1 almost completely in nuclear-factor erythroid 2-related factor 2 (Nrf2)(-/-) macrophages. The LPS-induced iNOS gene expression was suppressed by pretreatment with HO-1 inducers, hemin and Co-protoporphyrin (CoPP), but not with HO-1 inhibitor, Sn-protoporphyrin in WT macrophages. In the Nrf2(-/-) macrophages, the ability of CoPP to induce HO-1 and its inhibitory effect on the LPS-induced iNOS gene expression were lower than seen in WT macrophages. The present findings suggest that HO-1 is induced via NO-induced nuclear translocation of Nrf2, and the enzymatic function of HO-1 inhibits the overproduction of NO in macrophages.

  15. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato P12 promoter

    NARCIS (Netherlands)

    Yang, L.; Mercke, P.; Loon, van J.J.A.; Fang, Zhiyuan; Dicke, M.; Jongsma, M.A.

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FaNES1 linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The

  16. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation

    Science.gov (United States)

    Salvi, Prafull; Saxena, Saurabh Chandra; Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kaur, Harmeet; Verma, Pooja; Rao, Venkateswara; Ghosh, Shraboni; Majee, Manoj

    2016-01-01

    Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation. PMID:27725707

  17. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  18. Exposure of insect cells to ionising radiation in vivo induces persistent phosphorylation of a H2AX homologue (H2AvB).

    Science.gov (United States)

    Siddiqui, Mohammad S; Filomeni, Erika; François, Maxime; Collins, Samuel R; Cooper, Tamara; Glatz, Richard V; Taylor, Phillip W; Fenech, Michael; Leifert, Wayne R

    2013-09-01

    The response of eukaryotic cells to ionising radiation (IR)-induced double-strand DNA breaks is highly conserved and involves a DNA repair mechanism characterised by the early phosphorylation of histone protein H2AX (producing the active form γH2AX). Although the expression of an induced γH2AX variant has been detected in Drosophila melanogaster, the expression and radiation response of a γH2AX homologue has not been reported in economically important fruit flies. We use Bactrocera tryoni (Diptera: Tephritidae, Queensland fruit fly or 'Q-fly') to investigate this response with a view to developing molecular assays to detect/quantify exposure of fruit flies to IR and consequent DNA damage. Deep sequencing confirmed the presence of a H2AX homologue that we have termed H2AvB (i.e. variant Bactrocera) and has an identical sequence to a histone reported from the human disease vector Glossina morsitans. A linear dose-response of γH2AvB (0-400 Gy IR) was observed in whole Q-fly pupal lysates 24h post-IR and was detected at doses as low as 20 Gy. γH2AvB signal peaked at ~20min after IR exposure and at 24h post-IR the signal remained elevated but declined significantly by 5 days. Persistent and dose-dependent γH2AvB signal could be detected and quantified either by western blot or by laser scanning cytometry up to 17 days post-IR exposure in histone extracts or isolated nuclei from adult Q-flies (irradiated as pupae). We conclude that IR exposure in Q-fly leads to persistent γH2AvB signals (over a period of days) that can easily be detected by western blot or quantitative immunofluorescence techniques. These approaches have potential as the basis for assays for detection and quantification of prior IR exposure in pest fruit flies.

  19. ONO1714, a new inducible nitric oxide synthase inhibitor, attenuates sepsis-induced diaphragmatic dysfunction in hamsters.

    Science.gov (United States)

    Nishina, K; Mikawa, K; Kodama , S; Obara, H

    2001-04-01

    Sepsis causes impairment of diaphragmatic contractility and endurance capacity. Nitric oxide (NO) produced via inducible NO synthase (iNOS) has been implicated in the pathogenesis. Peroxynitrite, a NO-derived powerful oxidant, may be responsible for infection-induced diaphragmatic muscle failure. Therefore, we examined whether ONO1714, a new selective iNOS inhibitor, prevents sepsis-induced diaphragmatic dysfunction. Fifty male Golden-Syrian hamsters were randomly divided into five groups: hamsters that underwent sham laparotomy alone and received saline injection (Group Sham), those that underwent cecal ligation with puncture (CLP) and received saline injection (Group Sepsis), those that underwent sham laparotomy and received injection of ONO1714 0.3 mg/kg (Group Sham-ONO1714high), those that underwent CLP and received ONO1714 0.1 mg/kg (Group Sepsis-ONO1714low), and those that underwent CLP and received ONO1714 0.3 mg/kg (Group Sepsis-ONO1714high). ONO1714 or saline was intraperitoneally injected 10 min before surgery. Diaphragmatic contractility was assessed in vitro using diaphragm muscle strips excised 24 h after operation. Diaphragm fatigability was assessed by time until tension decreased to 50% of the initial value (T50%) during fatigue trials. Twitch, tetanic tensions, and T50% during fatigue trials were reduced in Group Sepsis. Pretreatment with ONO1714 dose-dependently attenuated sepsis-induced diaphragmatic contractile profiles and endurance capacity. CLP increased plasma nitrite/nitrate (NOx; stable NO metabolites), and diaphragm malondialdehyde (MDA; a product of lipid peroxidation), positive immunostaining for nitrotyrosine (peroxynitrite footprint), and iNOS activity. ONO1714 attenuated the increase. This beneficial effect of ONO1714 may be attributable, in part, to inhibition of peroxynitrite-induced lipid peroxidation in the diaphragm. Sepsis impairs diaphragmatic contractility and endurance capacity, which may be involved in acute respiratory

  20. Memory consolidation and inducible nitric oxide synthase expression during different sleep stages in Parkinson disease.

    Science.gov (United States)

    Wu, Dean; Tseng, Ing-Jy; Yuan, Rey-Yue; Hsieh, Chia-Yu; Hu, Chaur-Jong

    2014-01-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by motor and nonmotor dysfunctions, which include sleep disturbances. Rapid eye movement (REM) sleep is associated with numerous physiologic changes such as memory consolidation. Compelling evidence suggests that nitric oxide (NO) is crucial to both sleep regulation and memory consolidation. In our study, we explored changes in biologic molecules during various sleep stages and the effects of sleep on memory consolidation in PD. Ten PD patients and 14 volunteers without PD participated in our study. The gene expression of inducible NO synthase (iNOS) in all sleep stages was measured using realtime polymerase chain reaction (PCR) based on polysomnography (PSG)-guided peripheral blood sampling. In addition, the efficiency of memory consolidation during the sleep of the participants was measured using the Wechsler Memory Scale, third edition (WMS-III). The iNOS expression increased in all sleep stages among the PD patients compared to the control participants, in whom iNOS expression decreased during REM sleep. Regarding memory consolidation, the performance of the controls in logic memory and the patients in visual reproduction tasks improved after sleep. The iNOS synthase expression was different from control participants among PD patients, and the expression was dissimilar in various sleep stages. Sleep might enhance memory consolidation and there are different memory consolidation profiles between PD and control participants demonstrating distinct memory consolidation profiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Byungki Jang

    2017-10-01

    Full Text Available The conversion of peptidylarginine into peptidylcitrulline by calcium-dependent peptidylarginine deiminases (PADs has been implicated in the pathogenesis of a number of diseases, identifying PADs as therapeutic targets for various diseases. The PAD inhibitor Cl-amidine ameliorates the disease course, severity, and clinical manifestation in multiple disease models, and it also modulates dendritic cell (DC functions such as cytokine production, antigen presentation, and T cell proliferation. The beneficial effects of Cl-amidine make it an attractive compound for PAD-targeting therapeutic strategies in inflammatory diseases. Here, we found that Cl-amidine inhibited nitric oxide (NO generation in a time- and dose-dependent manner in maturing DCs activated by lipopolysaccharide (LPS. This suppression of NO generation was independent of changes in NO synthase (NOS enzyme activity levels but was instead dependent on changes in inducible NO synthase (iNOS transcription and expression levels. Several upstream signaling pathways for iNOS expression, including the mitogen-activated protein kinase, nuclear factor-κB p65 (NF-κB p65, and hypoxia-inducible factor 1 pathways, were not affected by Cl-amidine. By contrast, the LPS-induced signal transducer and the activator of transcription (STAT phosphorylation and activator protein-1 (AP-1 transcriptional activities (c-Fos, JunD, and phosphorylated c-Jun were decreased in Cl-amidine-treated DCs. Inhibition of Janus kinase/STAT signaling dramatically suppressed iNOS expression and NO production, whereas AP-1 inhibition had no effect. These results indicate that Cl-amidine-inhibited STAT activation may suppress iNOS expression. Additionally, we found mildly reduced cyclooxygenase-2 expression and prostaglandin E2 production in Cl-amidine-treated DCs. Our findings indicate that Cl-amidine acts as a novel suppressor of iNOS expression, suggesting that Cl-amidine has the potential to ameliorate the effects of

  2. Activated astrocytes induce nitric oxide synthase-2 in cerebral endothelium via tumor necrosis factor alpha.

    Science.gov (United States)

    Shafer, R A; Murphy, S

    1997-12-01

    Astrocytes under pathological conditions become activated and produce a variety of cytokines and low molecular weight signal molecules. Previously we demonstrated that activated astrocytes release nitric oxide which can downregulate the expression of nitric oxide synthase (NOS)-2 in co-cultured cerebral endothelium, and also release a transcriptionally regulated factor that can induce NOS-2 expression in endothelium (Borgerding and Murphy: J Neurochem 65:1342, 1995). The activity of this NOS-2-inducing factor was impeded by inhibitors of tyrosine kinases and NF-kappaB activation. Tumor necrosis factor (TNF alpha) alone, or in combination with IL-6, induced NOS-2 expression in endothelial cells. A neutralizing antibody against TNF alpha attenuated the NOS-2 expression in endothelial cells exposed to activated astrocytes. These results imply that cytokine-activated astrocytes release TNF alpha which can induce NOS-2 expression in endothelium and suggest that activated astrocytes within the CNS may induce expression of NOS-2 in cells of the adjacent microvasculature. The ensuing alterations in blood-brain barrier properties may be either beneficial or detrimental.

  3. Expression of endothelial nitric oxide synthase in acute radiation-induced cerebral edema

    International Nuclear Information System (INIS)

    Liu Baoguo; Zhang Baomin; Chen Xiaohua; Gao Yabing; Wang Dewen

    2000-01-01

    Objective: To study the relation between changes in expression of endothelial nitric oxide synthase (eNOS) in brain vascular endothelial cells and acute radiation-induced cerebral edema after 60 Co gamma knife irradiation with a high dose. Methods: The right caudate nucleus of rats were irradiated with 200 Gy 60 Co gamma knife. the rats were sacrificed within 14 days after irradiation. By a light microscopy, electron microscopy, immunohistochemistry and in situ hybridization, the authors studied the formation and development of acute radiation-induced cerebral edema as well as the expression of eNOS in brain vascular endothelial cells. Results: Acute radiation-induced cerebral edema was observed morphologically 2 hours after irradiation and peaked on day 3 after irradiation. The expression of eNOS in brain vascular endothelial cells markedly increased 2 hours after irradiation, which could be consistently visualized during the acute developmental phase of radiation-induced cerebral edema. Conclusion: The increased expression of eNOS may be related to the formation and development of acute radiation-induced cerebral edema after 60 Co gamma knife irradiation with a high dose

  4. Immunohistochemical localization of endothelial and inducible nitric oxide synthase within neurons of cattle with rabies.

    Science.gov (United States)

    Shin, Taekyun; Weinstock, Daniel; Castro, Marlene D; Hamir, Amir N; Wampler, Thomas; Walter, Mark; Kim, Hyun Young; Acland, Helen

    2004-05-01

    The expression of constitutive endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) in the brains of cattle with natural rabies was studied. Increased expression of eNOS was detected in neurons of the brain stem and Purkinje cells of cerebellum. By contrast, iNOS was diffusely localized in the cytoplasm of affected neurons, and some inflammatory cells were positive. eNOS and rabies antigen were co-localized in inclusion bodies (Negri bodies) in neurons. The specific localization of eNOS, but not iNOS, in the Negri bodies suggests that eNOS is involved in the formation of rabies virus inclusion bodies.

  5. Inducible nitric oxide synthase inhibitors from Saposhnikovia divaricata and Panax quinquefolium.

    Science.gov (United States)

    Wang, C N; Shiao, Y J; Kuo, Y H; Chen, C C; Lin, Y L

    2000-10-01

    A series of polyacetylenes, falcarinone, panaxynol, falcarindiol, panaxydol, and panaxytriol, were isolated from Saposhnikovia divaricata (Turcz.) Schischk and Panax quinquefolium L. These polyacetylenes were identified as active principles on the inhibition of nitrite production by inducible nitric oxide synthase (iNOS). Treatment with 10 microM of panaxynol, falcarindiol, panaxydol and panaxytriol decreased the LPS/IFN-gamma-stimulated accumulation of nitrite by 71.92 +/- 3.07, 69.95 +/- 3.68, 45.48 +/- 6.11 and 36.85 +/- 8.80%, respectively. The IC50 value of falcarinone, panaxynol, falcarindiol, panaxydol and panaxytriol was > 20, 2.23, 1.98, 6.58 and 9.85 microM, respectively.

  6. Expression of Inducible Nitric Oxide Synthase in Skin Lesions of Patients with American Cutaneous Leishmaniasis

    Science.gov (United States)

    Qadoumi, Muna; Becker, Inge; Donhauser, Norbert; Röllinghoff, Martin; Bogdan, Christian

    2002-01-01

    Cytokine-inducible (or type 2) nitric oxide synthase (iNOS) is indispensable for the resolution of Leishmania major or Leishmania donovani infections in mice. In contrast, little is known about the expression and function of iNOS in human leishmaniasis. Here, we show by immunohistological analysis of skin biopsies from Mexican patients with local (LCL) or diffuse (DCL) cutaneous leishmaniasis that the expression of iNOS was most prominent in LCL lesions with small numbers of parasites whereas lesions with a high parasite burden (LCL or DCL) contained considerably fewer iNOS-positive cells. This is the first study to suggest an antileishmanial function of iNOS in human Leishmania infections in vivo. PMID:12117977

  7. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis.

    Science.gov (United States)

    Ishimura, Norihisa; Bronk, Steven F; Gores, Gregory J

    2005-05-01

    Inflammatory mediators and cell fate genes, such as the Notch gene family, both have been implicated in cancer biology. Because cholangiocarcinomas arise in a background of inflammation and express the inflammatory mediator inducible nitric oxide synthase (iNOS), we aimed to determine whether iNOS expression alters Notch expression and signaling. Notch receptor and ligand expression in human liver was evaluated by immunohistochemistry. The effect of iNOS and NO on Notch-1 expression was examined in cell lines. Notch-1, but not other Notch receptors, were up-regulated by cholangiocytes in primary sclerosing cholangitis and cholangiocarcinoma. The colocalization of Notch-1 and iNOS also was observed in large bile ducts from the hilar region of primary sclerosing cholangitis patients. Notch-1 expression in murine cholangiocytes was iNOS dependent. iNOS expression also facilitated Notch signaling by inducing the nuclear translocation of its intracellular domain and the expression of a transcriptional target, hairy and enhancer of split (Hes)-1. The gamma-secretase inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl)-S-phenylglycine]-t-butyl ester, which blocks Notch signaling, enhanced tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cholangiocarcinoma cells. These data implicate a direct link between the inflammatory mediator iNOS and Notch signaling, and have implications for the development and progression of cholangiocarcinoma.

  8. Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status

    NARCIS (Netherlands)

    Vos, TA; van Goor, H; Tuyt, L; de Jager-Krikken, A; Leuvenink, R; Kuipers, F; Jansen, PLM; Moshage, H

    The inducible nitric oxide synthase (iNOS) promoter contains nuclear factor kappa B (NF-kappa B) binding sites. NF-kappa B activation is determined, in part, by the intracellular redox status, The aim of this study was to determine the importance of the cellular glutathione status in relation to

  9. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases

  10. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  11. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress.

    Science.gov (United States)

    Vassilopoulos, Athanassios; Pennington, J Daniel; Andresson, Thorkell; Rees, David M; Bosley, Allen D; Fearnley, Ian M; Ham, Amy; Flynn, Charles Robb; Hill, Salisha; Rose, Kristie Lindsey; Kim, Hyun-Seok; Deng, Chu-Xia; Walker, John E; Gius, David

    2014-08-01

    Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis. By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3. OSCP was further investigated and lysine 139 is a nutrient-sensitive SIRT3-dependent deacetylation target. Site directed mutants demonstrate that OSCP(K139) directs, at least in part, mitochondrial ATP production and mice lacking Sirt3 exhibit decreased ATP muscle levels, increased ATP synthase protein acetylation, and an exercise-induced stress-deficient phenotype. This work connects the aging and nutrient response, via SIRT3 direction of the mitochondrial acetylome, to the regulation of mitochondrial energy homeostasis under nutrient-stress conditions by deacetylating ATP synthase proteins. Our data suggest that acetylome signaling contributes to mitochondrial energy homeostasis by SIRT3-mediated deacetylation of ATP synthase proteins.

  12. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.

    Science.gov (United States)

    Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D

    2017-09-01

    Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in Kras G12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  14. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  15. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  16. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  17. Extracts of Magnoliae flos inhibit inducible nitric oxide synthase via ERK in human respiratory epithelial cells.

    Science.gov (United States)

    Baek, Jin Ah; Lee, Yang Deok; Lee, Chan Bog; Go, Hyeon Kyu; Kim, Jin Pyo; Seo, Jeong Ju; Rhee, Yang Keun; Kim, A Mi; Na, Dong Jib

    2009-03-01

    Nitric oxide (NO) is a marker of pulmonary inflammation. In asthma, the levels of exhaled NO are elevated and the source of this increased NO is inducible nitric oxide synthase (iNOS) within airway epithelial cells. Epimagnolin and fargesin are compounds isolated from the ethanol extract of Magnoliae flos, the seed of the Magnolia plant and are used to treat nasal congestion, headache and sinusitis in Asian countries. This study investigated whether epimagnolin and fargesin inhibit extracellular signal-regulated kinase (ERK) activation and decrease iNOS expression and NO production in stimulated human respiratory epithelial cells. An immortal Type II alveolar cell line of human origin (A549) was stimulated by cytomix (CM), composed of IL-1beta, TNF-alpha and IFN-gamma, with or without concurrent exposure to M. flos extract (epimagnolin or fargesin). CM-induced levels of NO production, iNOS expression and ERK activation were evaluated. A549 cells stimulated with CM showed increases in iNOS mRNA and protein expression, and NO synthesis. However, treatment with epimagnolin or fargesin decreased levels of iNOS mRNA and protein expression, and NO synthesis. CM stimulated a rapid increase in the activity of ERK, whereas epimagnolin and fargesin inhibited ERK phosphorylation. Epimagnolin and fargesin inhibit iNOS expression and decrease production of NO via ERK pathway in cytokine-stimulated human respiratory epithelial cells.

  18. Expression of Inducible Nitric Oxide Synthase (iNOS) in Microglia of the Developing Quail Retina

    Science.gov (United States)

    Sierra, Ana; Navascués, Julio; Cuadros, Miguel A.; Calvente, Ruth; Martín-Oliva, David; Ferrer-Martín, Rosa M.; Martín-Estebané, María; Carrasco, María-Carmen; Marín-Teva, José L.

    2014-01-01

    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid

  19. Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases.

    Directory of Open Access Journals (Sweden)

    Lingaraju M Halasiddappa

    Full Text Available Oxidized phospholipids (OxPLs, including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs. These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs, including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.

  20. Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Al-Bahlani, Shadia; Al-Lawati, Hanaa; Al-Adawi, Moza; Al-Abri, Nadia; Al-Dhahli, Buthaina; Al-Adawi, Kawther

    2017-06-01

    Fatty acid synthase (FASN) is a key enzyme in fat biosynthesis that is over-expressed in advanced breast cancer stages. Cisplatin (CDDP) is a platinum-based drug used in the treatment of certain types of this disease. Although it was shown that FASN inhibition induced apoptosis by enhancing the cytotoxicity of certain drugs in breast cancer, its role in regulating the chemosensitivity of different types of breast cancer cells to CDDP-induced apoptosis is not established yet. Therefore, two different breast cancer cell lines; triple negative breast cancer (TNBC; MDA-MB-231) and triple positive breast cancer (TPBC; BT-474) cells were used to examine such role. We show that TNBC cells had naturally less fat content than TPBC cells. Subsequently, the fat content increased in both cells when treated with Palmitate rather than Oleate, whereas both fatty acids produced apoptotic ultra-structural effects and attenuated FASN expression. However, Oleate increased FASN expression in TPBC cells. CDDP decreased FASN expression and increased apoptosis in TNBC cells. These effects were further enhanced by combining CDDP with fatty acids. We also illustrate that the inhibition of FASN by either siRNA or exogenous inhibitor decreased CDDP-induced apoptosis in TPBC cells suggesting its role as an apoptotic factor, while an opposite finding was observed in TNBC cells when siRNA and fatty acids were used, suggesting its role as a survival factor. To our knowledge, we are the first to demonstrate a dual role of FASN in CDDP-induced apoptosis in breast cancer cells and how it can modulate their chemosensitivity.

  1. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  2. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  3. Deltamethrin-induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor.

    Science.gov (United States)

    El-Gohary, M; Awara, W M; Nassar, S; Hawas, S

    1999-01-01

    This study is the first to examine and characterize the testicular apoptosis which might be induced due to exposure of male rats to deltamethrin. Furthermore, the role which might be played by nitric oxide (NO), as well as the other reactive oxygen species (ROS) in controlling this testicular apoptosis was assessed. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis and cellular morphology on testicular tissue sections. It was found that administration of deltamethrin (1 mg/kg daily for 21 days) to animals resulted in characteristic DNA migration patterns (laddering), thereby providing evidence that apoptosis is the major mechanism of cell death in the testicular tissues. In addition, histopathological examination of testicular tissue sections showed that apoptosis was confined to the basal germ cells, primary and secondary spermatocytes. These changes, in addition to the appearance of Sertoli cell vacuoles in deltamethrin-intoxicated animals, indicates the suppression of spermatogenesis. At the same time, the plasma levels of both NO and lipid peroxides measured as malondialdehyde (MDA) were found to be significantly increased in deltamethrin-treated animals. Administration of NO synthase (NOS) inhibitors such as N(G)-nitro monomethyl L-arginine hydrochloride (L-NMMA, 1 mg/kg) to rats 2 h before exposure to deltamethrin was effective in the reduction of the typically testicular apoptotic DNA fragmentation pattern and the associated histopathological changes. These findings may suggest that deltamethrin-induced testicular apoptosis is mediated by NO. Therefore, the pharmacological manipulation of apoptosis by selective NOS inhibitors such as L-NMMA may offer new possibilities for the control of deltamethrin-induced testicular dysfunction and infertility in the future.

  4. Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis

    Directory of Open Access Journals (Sweden)

    Nursel Dilek

    2016-12-01

    Full Text Available Introduction : Histological changes of psoriasis include invasion of neutrophils into the epidermis and formation of Munro abscesses in the epidermis. Neutrophils are the predominant white blood cells in circulation when stimulated; they discharge the abundant myeloperoxidase (MPO enzyme that uses hydrogen peroxide to oxidize chloride for killing ingested bacteria. Aim: To investigate the contribution of neutrophils to the pathogenesis of psoriasis at the blood and tissue levels through inducible nitric oxide synthase (iNOS and MPO. Material and methods: A total of 50 adult patients with a chronic plaque form of psoriasis and 25 healthy controls were enrolled to this study. Serum MPO and iNOS levels were measured using ELISA method. Two biopsy specimens were taken in each patient from the center of the lesion and uninvolved skin. Immunohistochemistry was performed for MPO and iNOS on both normal and psoriasis vulgaris biopsies. Results: While a significant difference between serum myeloperoxidase levels were detected, a similar statistical difference between participants in the serum iNOS levels was not found. In immunohistochemistry, intensely stained leukocytes with MPO and intensely staining with iNOS in psoriatic skin was observed. Conclusions : Neutrophils in psoriasis lesions are actively producing MPO and this indirectly triggers the synthesis of iNOS. Targeting of MPO or synthesis of MPO in the lesion area may contribute to development of a new treatment option.

  5. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  6. Chamomile, an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity

    OpenAIRE

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-01-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we aimed to investigate the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and to explore its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β , IL-6 and TNFα-induced NO levels in RAW 264.7 macropha...

  7. Phenotype of transgenic mice overexpressed with inducible nitric oxide synthase in the retina.

    Directory of Open Access Journals (Sweden)

    Guey Shuang Wu

    Full Text Available Unlike its constitutive isoforms, including neuronal and endothelial nitric oxide synthase, inducible nitric oxide synthase (iNOS along with a series of cytokines are generated in inflammatory pathologic conditions in retinal photoreceptors. In this study, we constructed transgenic mice overexpressing iNOS in the retina to evaluate the effect of sustained, intense iNOS generation in the photoreceptor damage.For construction of opsin/iNOS transgene in the CMVSport 6 expression vector, the 4.4 kb Acc65I/Xhol mouse rod opsin promoter was ligated upstream to a 4.1 kb fragment encoding the complete mouse cDNA of iNOS. From the four founders identified, two heterozygote lines and one homozygote line were established. The presence of iNOS in the retina was confirmed and the pathologic role of iNOS was assessed by detecting nitrotyrosine products and apoptosis. Commercial TUNEL kit was used to detect DNA strand breaks, a later step in a sequence of morphologic changes of apoptosis process.The insertion and translation of iNOS gene were demonstrated by an intense single 130 kDa band in Western blot and specific immunolocalization at the photoreceptors of the retina. Cellular toxicity in the retinas of transgenic animals was detected by a post-translational modification product, tyrosine-nitrated protein, the most significant one of which was nitrated cytochrome c. Following the accumulation of nitrated mitochondrial proteins and cytochrome c release, marked apoptosis was detected in the photoreceptor cell nuclei of the retina.We have generated a pathologic phenotype with sustained iNOS overexpression and, therefore, high output of nitric oxide. Under basal conditions, such overexpression of iNOS causes marked mitochondrial cytochrome c nitration and release and subsequent photoreceptor apoptosis in the retina. Therefore, the modulation of pathways leading to iNOS generation or its effective neutralization can be of significant therapeutic benefit in the

  8. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  9. Inhibition or knock out of Inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury

    Directory of Open Access Journals (Sweden)

    Crimi Nunzio

    2005-06-01

    Full Text Available Abstract Background In the present study, by comparing the responses in wild-type mice (WT and mice lacking (KO the inducible (or type 2 nitric oxide synthase (iNOS, we investigated the role played by iNOS in the development of on the lung injury caused by bleomycin administration. When compared to bleomycin-treated iNOSWT mice, iNOSKO mice, which had received bleomycin, exhibited a reduced degree of the (i lost of body weight, (ii mortality rate, (iii infiltration of the lung with polymorphonuclear neutrophils (MPO activity, (iv edema formation, (v histological evidence of lung injury, (vi lung collagen deposition and (vii lung Transforming Growth Factor beta1 (TGF-β1 expression. Methods Mice subjected to intratracheal administration of bleomycin developed a significant lung injury. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in lungs from bleomycin-treated iNOSWT mice. Results The intensity and degree of nitrotyrosine staining was markedly reduced in tissue section from bleomycin-iNOSKO mice. Treatment of iNOSWT mice with of GW274150, a novel, potent and selective inhibitor of iNOS activity (5 mg/kg i.p. also significantly attenuated all of the above indicators of lung damage and inflammation. Conclusion Taken together, our results clearly demonstrate that iNOS plays an important role in the lung injury induced by bleomycin in the mice.

  10. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Maiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Sugiura, Kazumitsu [Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Koichi, E-mail: koichi@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Keiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan)

    2014-03-07

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  11. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells.

    Science.gov (United States)

    Li, Ping; Tian, Weixi; Ma, Xiaofeng

    2014-06-03

    Fatty acid synthase (FAS) has been proven over-expressed in human breast cancer cells and consequently, has been recognized as a target for breast cancer treatment. Alpha-mangostin, a natural xanthone found in mangosteen pericarp, has a variety of biological activities, including anti-cancer effect. In our previous study, alpha-mangostin had been found both fast-binding and slow-binding inhibitions to FAS in vitro. This study was designed to investigate the activity of alpha-mangostin on intracellular FAS activity in FAS over-expressed human breast cancer cells, and to testify whether the anti-cancer activity of alpha-mangostin may be related to its inhibitory effect on FAS. We evaluated the cytotoxicity of alpha-mangostin in human breast cancer MCF-7 and MDA-MB-231 cells. Intracellular FAS activity was measured by a spectrophotometer at 340 nm of NADPH absorption. Cell Counting Kit assay was used to test the cell viability. Immunoblot analysis was performed to detect FAS expression level, intracellular fatty acid accumulation and cell signaling (FAK, ERK1/2 and AKT). Apoptotic effects were detected by flow cytometry and immunoblot analysis of PARP, Bax and Bcl-2. Small interfering RNA was used to down-regulate FAS expression and/or activity. Alpha-mangostin could effectively suppress FAS expression and inhibit intracellular FAS activity, and result in decrease of intracellular fatty acid accumulation. It could also reduce cell viability, induce apoptosis in human breast cancer cells, increase in the levels of the PARP cleavage product, and attenuate the balance between anti-apoptotic and pro-apoptotic proteins of the Bcl-2 family. Moreover, alpha-mangostin inhibited the phosphorylation of FAK. However, the active forms of AKT, and ERK1/2 proteins were not involved in the changes of FAS expression induced by alpha-mangostin. Alpha-mangostin induced breast cancer cell apoptosis by inhibiting FAS, which provide a basis for the development of xanthone as an agent for

  12. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  13. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates.

    Science.gov (United States)

    Roodgar, Morteza; Ross, Cody T; Kenyon, Nicholas J; Marcelino, Gretchen; Smith, David Glenn

    2015-04-01

    Inducible nitric oxide synthase (iNOS) is an enzyme that plays a key role in intracellular immune response against respiratory infections. Since various species of nonhuman primates exhibit different levels of susceptibility to infectious respiratory diseases, and since variation in regulatory regions of genes is thought to play a key role in expression levels of genes, two candidate regulatory regions of iNOS were mapped, sequenced, and compared across five species of nonhuman primates: African green monkeys (Chlorocebus sabaeus), pig-tailed macaques (Macaca nemestrina), cynomolgus macaques (Macaca fascicularis), Indian rhesus macaques (Macaca mulatta), and Chinese rhesus macaques (M. mulatta). In addition, we conducted an in silico analysis of the transcription factor binding sites associated with genetic variation in these two candidate regulatory regions across species. We found that only one of the two candidate regions showed strong evidence of involvement in iNOS regulation. Specifically, we found evidence of 13 conserved binding site candidates linked to iNOS regulation: AP-1, C/EBPB, CREB, GATA-1, GATA-3, NF-AT, NF-AT5, NF-κB, KLF4, Oct-1, PEA3, SMAD3, and TCF11. Additionally, we found evidence of interspecies variation in binding sites for several regulatory elements linked to iNOS (GATA-3, GATA-4, KLF6, SRF, STAT-1, STAT-3, OLF-1 and HIF-1) across species, especially in African green monkeys relative to other species. Given the key role of iNOS in respiratory immune response, the findings of this study might help guide the direction of future studies aimed to uncover the molecular mechanisms underlying the increased susceptibility of African green monkeys to several viral and bacterial respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular...

  16. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascul...

  17. Spinal motoneuron synaptic plasticity after axotomy in the absence of inducible nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Zanon Renata G

    2010-05-01

    Full Text Available Abstract Background Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO. The present work investigated the importance of inducible nitric oxide synthase (iNOS activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I expression and synaptic plasticity of inputs to lesioned alpha motoneurons. Methods In vivo analyses were carried out using C57BL/6J-iNOS knockout (iNOS-/- and C57BL/6J mice. Glial response after axotomy, glial MHC I expression, and the effects of axotomy on synaptic contacts were measured using immunohistochemistry and transmission electron microscopy. For this purpose, 2-month-old animals were sacrificed and fixed one or two weeks after unilateral sciatic nerve transection, and spinal cord sections were incubated with antibodies against classical MHC I, GFAP (glial fibrillary acidic protein - an astroglial marker, Iba-1 (an ionized calcium binding adaptor protein and a microglial marker or synaptophysin (a presynaptic terminal marker. Western blotting analysis of MHC I and nNOS expression one week after lesion were also performed. The data were analyzed using a two-tailed Student's t test for parametric data or a two-tailed Mann-Whitney U test for nonparametric data. Results A statistical difference was shown with respect to astrogliosis between strains at the different time points studied. Also, MHC I expression by iNOS-/- microglial cells did not increase at one or two weeks after unilateral axotomy. There was a difference in synaptophysin expression reflecting synaptic elimination, in which iNOS-/- mice displayed a decreased number of the inputs to alpha motoneurons, in comparison to that of C57BL/6J. Conclusion The findings herein indicate that i

  18. Expression of the inducible isoform of nitric oxide synthase in pigment cell lesions of the skin.

    Science.gov (United States)

    Ahmed, B; Van Den Oord, J J

    2000-03-01

    Nitric oxide (NO) is a small molecule produced during the conversion of L-arginine to L-citrulline by NO synthase (NOS). Several isoforms of NOS exist, of which the Ca2+-independent, inducible NOS (iNOS or NOS2) is most prominently expressed by macrophages. iNOS activity and increased levels of iNOS have been found in various tumours and tumour cell lines but not in normal tissues; however, the precise role of NO in tumour progression has yet to be elucidated. We studied the expression of iNOS in paraffin sections of 41 benign naevi and 52 primary malignant melanomas (MM) of the skin, as well as in 13 metastatic MM. In addition, nitrotyrosine, indicative of NO production and formation of peroxynitrite, was studied in frozen sections of 13 naevi and 30 MM. Virtually all naevi expressed iNOS, but very few expressed nitrotyrosine, indicating either that iNOS in naevi is functionally inactive, or that naevus cells lack reactive oxygen radicals and thus do not form peroxynitrite. Normal melanocytes in adjacent uninvolved skin were unreactive for both markers. In MM, iNOS was most frequently expressed in the 'pure' and 'invasive' radial growth phase (RGP), whereas expression in the vertical growth phase (VGP) and metastatic phase occurred only in 76% of cases; moreover, in these latest phases of tumour progression, iNOS staining was weak and focal. We conclude that iNOS is expressed de novo in most benign pigment cell lesions. In MM (iNOS-generated) NO appears to play an important part in the early steps of invasion (i.e. the 'invasive' RGP), where it may stimulate neo-angiogenesis and may be a prerequisite for further tumour progression; this view is also supported by the finding of iNOS in the associated blood vessels in the papillary dermis. Finally, our data suggest that (iNOS-generated) NO plays a less significant part in the VGP and in metastatic melanoma.

  19. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2007-01-01

    Full Text Available Objective: We tested the hypothesis that inducible nitric oxide synthase (iNOS modulates angiogenesis in human models and this information could be extrapolated in elucidating the pathophysiology of oral submucous fibrosis (OSF. A hypothesis which looks inadequate, but is deep rooted in literature is the epithelial alteration ("atrophy" seen in OSF and the events that lead to its causation. This aspect was tried to be addressed and an alternative pathogenetic pathway for the disease is proposed. Materials and Methods: This immunohistochemical study sought to investigate the expression of iNOS in OSF samples (n= 30 a using monospecific antibody (SC- 2050, Santa Cruz Biotechnology, Inc to the protein and also to correlate it with different grades of epithelial dysplasia associated with the disease. Twenty (20 healthy adults acted as controls. Results: iNOS staining was not demonstrated in normal oral epithelium. In oral epithelial dysplasia, staining was seen in all cases (100% in the basal layers of the epithelium and in 30% of cases it extended into the parabasal compartments as well. iNOS staining was uniformly positive in moderate dysplasia with an increase in intensity and distribution noted as the severity of dysplasia progressed. There were highly significant differences in overall positivity for iNOS in epithelium between cases and controls (Mann-Whitney U = 11.000, Wilcoxon W = 221.00, P = 0.000. Significant comparisons were made of mild Vs moderate dysplasia (Mann-Whitney U = 48.000, P = 0.014 Conclusions: This study supports our earlier morphological assessment (image analysis of the nature of vascularity in OSF mucosa. The significant vasodilation noticed in these cases argues against the concept of ischemic atrophy of the epithelium. This observation of vascularity and iNOS expression helped to explain the vasodilation noticed (sinusoids in this disease; NO being a net vasodilator. The mechanism of activation of iNOS in dysplasia is

  20. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice.

    Science.gov (United States)

    Wang, Ximing; Chandrashekar, Kiran; Wang, Lei; Lai, En Yin; Wei, Jin; Zhang, Gensheng; Wang, Shaohui; Zhang, Jie; Juncos, Luis A; Liu, Ruisheng

    2016-04-01

    We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈ 40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈ 15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading. © 2016 American Heart Association, Inc.

  1. Cytotoxicity induced in myotubes by a Lys49 phospholipase A2 homologue from the venom of the snake Bothrops asper: evidence of rapid plasma membrane damage and a dual role for extracellular calcium.

    Science.gov (United States)

    Villalobos, Juan Carlos; Mora, Rodrigo; Lomonte, Bruno; Gutiérrez, José María; Angulo, Yamileth

    2007-12-01

    Acute muscle tissue damage, myonecrosis, is a typical consequence of envenomations by snakes of the family Viperidae. Catalytically-inactive Lys49 phospholipase A(2) homologues are abundant myotoxic components in viperid venoms, causing plasma membrane damage by a mechanism independent of phospholipid hydrolysis. However, the precise mode of action of these myotoxins remains unsolved. In this work, a cell culture model of C2C12 myotubes was used to assess the action of Bothrops asper myotoxin II (Mt-II), a Lys49 phospholipase A(2) homologue. Mt-II induced a dose- and time-dependent cytotoxic effect associated with plasma membrane disruption, evidenced by the release of the cytosolic enzyme lactate dehydrogenase and the penetration of propidium iodide. A rapid increment in cytosolic Ca(2+) occurred after addition of Mt-II. Such elevation was associated with hypercontraction of myotubes and blebbing of plasma membrane. An increment in the Ca(2+) signal was observed in myotube nuclei. Elimination of extracellular Ca(2+) resulted in increased cytotoxicity upon incubation with Mt-II, suggesting a membrane-protective role for extracellular Ca(2+). Chelation of cytosolic Ca(2+) with BAPTA-AM did not modify the cytotoxic effect, probably due to the large increment induced by Mt-II in cytosolic Ca(2+) which overrides the chelating capacity of BAPTA-AM. It is concluded that Mt-II induces rapid and drastic plasma membrane lesion and a prominent Ca(2+) influx in myotubes. Extracellular Ca(2+) plays a dual role in this model: it protects the membrane from the cytolytic action of the toxin; at the same time, the Ca(2+) influx that occurs after membrane disruption is likely to play a key role in the intracellular degenerative events associated with Mt-II-induced myotube damage.

  2. Sunscreen ingredients inhibit inducible nitric oxide synthase (iNOS): a possible biochemical explanation for the sunscreen melanoma controversy.

    Science.gov (United States)

    Chiang, Thomas M; Sayre, Robert M; Dowdy, John C; Wilkin, Nathaniel K; Rosenberg, E William

    2005-02-01

    Sunscreen products are rated upon their ability to inhibit visible redness of the skin 24 h after measured doses of ultraviolet (UV) exposure (Sun Protection Factor, SPF). Although sunscreens prevent UV-induced redness, their ability to protect against melanoma or the development of moles is less clear. UV-induced redness occurs in part by the action of nitric oxide (NO), synthesized in the skin. NO is also an important immunoregulatory molecule in the induction of the cell-mediated tumour immune response. In this study, various sunscreen ingredients were tested for their ability to inhibit the production of NO. Four of the five sunscreens tested directly inhibited the conversion of arginine to citrulline by inducible nitric oxide synthase (iNOS) in vitro. These findings suggest that sunscreens may prevent redness partly by UV absorption and partly by inhibition of the skin's inflammatory response. As such, sunscreens might promote instead of protect against melanoma.

  3. β-Carboline harmine reverses the effects induced by stress on behaviour and citrate synthase activity in the rat prefrontal cortex.

    Science.gov (United States)

    Abelaira, Helena Mendes; Réus, Gislaine Zilli; Scaini, Giselli; Streck, Emilio Luiz; Crippa, José Alexandre; Quevedo, João

    2013-12-01

    The present study was aimed at evaluating the effects of the administration of β-carboline harmine on behaviour and citrate synthase activity in the brain of rats exposed to chronic mild stress (CMS) procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days, then memory, anhedonia and citrate synthase activity were assessed. Result Our findings demonstrated that stressed rats treated with saline increased the sucrose intake, and the stressed rats treated with harmine reversed this effect. Neither stress nor harmine treatment altered memory performance in rats. In addition, chronic stressful situations induced increase in citrate synthase activity in the prefrontal cortex, but not in the hippocampus and striatum. Treatment with harmine reversed the increase in citrate synthase activity in the prefrontal cortex. These findings support the hypothesis that harmine could be involved in controlling the energy metabolism.

  4. Neuronal nitric oxide synthase is involved in the induction of NGF induced neck muscle nociception

    OpenAIRE

    Isaak, Andreas

    2011-01-01

    BACKGROUND: Neck muscle nociception mediated by nitric oxide may play a role in the pathophysiology of tension-type headache.OBJECTIVE: The present study addresses the involvement of neuronal nitric oxide synthase (nNOS) in the facilitation of neck muscle nociception after local application of nerve growth factor (NGF).METHODS: After administration of NGF into semispinal neck muscles, the impact of neck muscle noxious input on brainstem processing was monitored by the jaw-opening reflex in an...

  5. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus.

    Science.gov (United States)

    Zhao, Bo; Gao, Wen-Wei; Liu, Ya-Jing; Jiang, Meng; Liu, Lian; Yuan, Quan; Hou, Jia-Bao; Xia, Zhong-Yuan

    2017-10-01

    Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.

  6. Insulin induces an increase in cytosolic glucose levels in 3T3-L1 cells with inhibited glycogen synthase activation.

    Science.gov (United States)

    Chowdhury, Helena H; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2014-10-02

    Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  7. Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn.

    Science.gov (United States)

    Wang, Qiang; Du, Xia; Zhou, Bingjie; Li, Jing; Lu, Wenlong; Chen, Qiuyun; Gao, Jing

    2017-12-01

    Targeting cellular metabolism is becoming a hallmark to overcome drug resistance in breast cancer treatment. Activation of fatty acid synthase (FASN) has been shown to promote breast cancer cell growth. However, there is no concrete report underlying the mechanism associated with mitochondrial dysfunction in relation to fatty acid synthase inhibition-induced apoptosis in breast cancer cells. The current study is aimed at exploring the effect of the novel manganese (Mn) complex, labeled as PdpaMn, on lipid metabolism and mitochondrial function in breast cancer cells. Herein, we observed that PdpaMn displayed strong cytotoxicity on breast cancer cell lines and selectively targeted the tumor without affecting the normal organs or cells in vivo. We also observed that PdpaMn could bind to TE domain of FASN and decrease the activity and the level of expression of FASN, which is an indication that FASN could serve as a target of PdpaMn. In addition, we demonstrated that PdpaMn increased intrinsic apoptosis in breast cancer cells relayed by a suppressed the level of expression of FASN, followed by the release of mitochondrial cytochrome c and the activation of caspases-9. Instigated by the above observations, we hypothesized that PdpaMn-induced apoptosis events are dependent on mitochondrial dysfunction. Indeed, we found that mitochondrial membrane potential (MMP) collapse, mitochondrial oxygen consumption reduction and adenosine triphosphate (ATP) release were deeply repressed. Furthermore, our results showed that PdpaMn significantly increased the reactive oxygen species (ROS) production, and the protection conferred by the free radical scavenger N-acetyl-cysteine (NAC) indicates that PdpaMn-induced apoptosis through an oxidative stress-associated mechanism. More so, the above results have demonstrated that mitochondrial dysfunction participated in FASN inhibition-induce apoptosis in breast cancer cells by PdpaMn. Therefore, PdpaMn may be considered as a good candidate

  8. Inducible NO synthase is constitutively expressed in porcine myocardium and its level decreases along with tachycardia-induced heart failure.

    Science.gov (United States)

    Paslawska, Urszula; Kiczak, Liliana; Bania, Jacek; Paslawski, Robert; Janiszewski, Adrian; Dzięgiel, Piotr; Zacharski, Maciej; Tomaszek, Alicja; Michlik, Katarzyna

    2016-01-01

    The adverse effects of oxidative stress and the presence of proinflammatory factors in the heart have been widely demonstrated mainly on rodent models. However, larger clinical trials focusing on inflammation or oxidative stress in heart failure (HF) have not been carried out. This may be due to differences in the anatomy and physiology of the cardiovascular system between small rodents and large mammals. Thus, we investigated myocardial inflammatory factors, such as inducible NO synthase (iNOS) and oxidative stress indices in female pigs with chronic tachycardia-induced cardiomyopathy. Homogenous female siblings of Large White breed swine (n=15) underwent continuous right ventricular (RV) pacing at 170bpm, whereas five sham-operated subjects served as controls. In the course of RV pacing, animals developed a clinical picture of HF and were euthanized at subsequent stages of the disease: mild, moderate and severe HF. Left ventricle (LV) sections were examined with electron microscopy. The relative expression of iNOS in LV was determined by quantitative PCR. The protein level of iNOS was determined by Western blotting and immunohistochemistry. The level of the S-nitrosylated (S-NO) protein in LV was determined after S-NO moieties were substituted by biotin, followed by a colorimetrical detection with streptavidin. Malondialdehyde (MDA), a marker of lipid peroxidation, was evaluated in the LV and serum using thiobarbituric acid. The aconitase activity (based on measurement of the concomitant formation of NADPH from NADP(+)), a marker of oxidative stress, was analyzed in mitochondrial and cytosolic LV fractions. The concentration of interleukin-1β (IL-1β) was measured in LV homogenates using enzyme-linked immunosorbent assay. RV pacing resulted in an impairment of LV systolic function, LV dilatation and neurohormonal activation. The electron microscopy revealed abnormalities within the cardiomyocytes of failing hearts, i.e. swollen mitochondria and myofibril

  9. Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Dobešová, Zdenka; Čejka, Jakub; Kuneš, Jaroslav; Zicha, Josef

    2004-01-01

    Roč. 22, č. 1 (2004), s. 167-173 ISSN 0263-6352 R&D Projects: GA ČR GA305/03/0769; GA MŠk LN00A069 Grant - others:VEGA(SK) 2/3185/23; SAV(SK) APVT51-017902 Institutional research plan: CEZ:AV0Z5011922 Keywords : nitric oxide synthase * L-NAME hypertension * aminoguanidine Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.871, year: 2004

  10. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells

    OpenAIRE

    Li, Ping; Tian, Weixi; Ma, Xiaofeng

    2014-01-01

    Background Fatty acid synthase (FAS) has been proven over-expressed in human breast cancer cells and consequently, has been recognized as a target for breast cancer treatment. Alpha-mangostin, a natural xanthone found in mangosteen pericarp, has a variety of biological activities, including anti-cancer effect. In our previous study, alpha-mangostin had been found both fast-binding and slow-binding inhibitions to FAS in vitro. This study was designed to investigate the activity of alpha-mangos...

  11. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  12. Small angle X-ray scattering studies on the X-ray induced aggregation of malate synthase

    International Nuclear Information System (INIS)

    Zipper, P.; Durchschlag, H.

    1980-01-01

    Malate synthase was investigated by the small-angle X-ray scattering technique in aqueous solution. Measurements extending for several hours revealed a continuous increase of the intensity in the innermost portion of the scattering curve. There is clear evidence that this increase was caused by an X-ray induced aggregation of enzyme particles during the performance of the small-angle X-ray scattering experiment. The monitoring of the aggregation process in situ by means of small-angle X-ray scattering led to a model of the way how the aggregation might proceed. The analysis of the scattering curves of malate synthase taken at various stages of aggregation established the retention of the thickness factor of the native enzyme and the occurrence of one and later on of two cross-section factors. The process of aggregation was also reflected by the increase of extension of the distance distribution function. Measurements of enzymic activity and small-angle X-ray scattering on samples, which had been X-irradiated with a defined dose prior to the measurements, established two different series of efficiency for the protection of the enzyme against aggregation and inactivation. The results showed that there is no direct relation between the extent of aggregation and the loss of enzymic activity. (orig./MG) [de

  13. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    Science.gov (United States)

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  14. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity.

    Science.gov (United States)

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-12-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we investigated the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and explored its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β, IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ, the upstream kinase regulating NF-κB/Rel activity, and degradation of inhibitory factor-κB. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent.

  15. Chamomile, an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity

    Science.gov (United States)

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-01-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we aimed to investigate the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and to explore its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β , IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ , the upstream kinase regulating NF-κ B/Rel activity, and degradation of inhibitory factor-κ B. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent. PMID:21042790

  16. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    Directory of Open Access Journals (Sweden)

    Tomishima Yoshiro

    2013-01-01

    Full Text Available Abstract Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2 synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg. The effects of ozagrel (200 mg/kg treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL on cytochrome P450 2E1 (CYP2E1 activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI, a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos and C/EBP homologous protein (chop, but did not suppress B-cell lymphoma 2-like protein11 (bim expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest

  17. Inducible nitric oxide synthase inhibition by 1400W limits pain hypersensitivity in a neuropathic pain rat model.

    Science.gov (United States)

    Staunton, C A; Barrett-Jolley, R; Djouhri, L; Thippeswamy, T

    2018-02-13

    What is the central question of this study? Can modulation of inducible NO synthase reduce pain behaviour and pro-inflammatory cytokine signalling in a rat model of neuropathic pain? What is the main finding and its importance? Nitric oxide synthase-based therapies could be effective for the treatment of peripheral neuropathic pain. Peripheral neuropathic pain (PNP), resulting from injury to or dysfunction of a peripheral nerve, is a major health problem that affects 7-8% of the population. It is inadequately controlled by current drugs and is characterized by pain hypersensitivity, which is believed to be attributable to sensitization of peripheral and CNS neurons by various inflammatory mediators. Here we examined, in a rat model of PNP: (i) whether reducing levels of nitric oxide (NO) with 1400W, a highly selective inhibitor of inducible NO synthase (iNOS), would prevent or attenuate pain hypersensitivity; and (ii) the effects of 1400W on plasma concentrations of several cytokines that are secreted after iNOS upregulation during chronic pain states. The L5 spinal nerve axotomy (SNA) model of PNP was used, and 1400W (20 mg kg -1 ) was administered i.p. at 8 h intervals for 3 days starting at 18 h post-SNA. Changes in plasma concentrations of 12 cytokines in SNA rats treated with 1400W were examined using multiplex enzyme-linked immunosorbent assay. The SNA rats developed behavioural signs of mechanical and heat hypersensitivity. Compared with the vehicle/control, 1400W significantly: (i) limited development of mechanical hypersensitivity at 66 h post-SNA and of heat hypersensitivity at 42 h and at several time points tested thereafter; and (ii) increased the plasma concentrations of interleukin (IL)-1α, IL-1β and IL-10 in the SNA rats. The findings suggest that 1400W might exert its analgesic effects by reducing iNOS and altering the balance between the pro-inflammatory (IL-1β and IL-1α) and anti-inflammatory (IL-10) cytokines and that therapies

  18. Inducible nitric oxide synthase catalyzes ethanol oxidation to alpha-hydroxyethyl radical and acetaldehyde.

    Science.gov (United States)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M

    2006-06-15

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O2, affording superoxide (O2*-) and hydrogen peroxide (H2O2). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to alpha-hydroxyethyl radical (CH3*CHOH). We now report that a competent NOS2 with l-arginine can, like NOS1, oxidize EtOH to CH3*CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of alpha-hydroxyethyl radical when L-arginine is present.

  19. Distinctive expression patterns of hypoxia-inducible factor-1α and endothelial nitric oxide synthase following hypergravity exposure.

    Science.gov (United States)

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-06-07

    This study was designed to examine the expression of hypoxia-inducible factor-1α (HIF-1α) and the level and activity of endothelial nitric oxide synthase (eNOS) in the hearts and livers of mice exposed to hypergravity. Hypergravity-induced hypoxia and the subsequent post-exposure reoxygenation significantly increased cardiac HIF-1α levels. Furthermore, the levels and activity of cardiac eNOS also showed significant increase immediately following hypergravity exposure and during the reoxygenation period. In contrast, the expression of phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) showed significant elevation only during the reoxygenation period. These data raise the possibility that the increase in cardiac HIF-1α expression induced by reoxygenation involves a cascade of signaling events, including activation of the Akt and ERK pathways. In the liver, HIF-1α expression was significantly increased immediately after hypergravity exposure, indicating that hypergravity exposure to causes hepatocellular hypoxia. The hypergravity-exposed livers showed significantly higher eNOS immunoreactivity than did those of control mice. Consistent with these results, significant increases in eNOS activity and nitrate/nitrite levels were also observed. These findings suggest that hypergravity-induced hypoxia plays a significant role in the upregulation of hepatic eNOS.

  20. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Nataliya E Chorna

    Full Text Available Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN, the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ of the dentate gyrus (DG and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v. microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.

  1. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation.

    Science.gov (United States)

    Chorna, Nataliya E; Santos-Soto, Iván J; Carballeira, Nestor M; Morales, Joan L; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña

    2013-01-01

    Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.

  2. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  3. Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide

    NARCIS (Netherlands)

    Dijkstra, Gerard; Blokzijl, Hans; Bok, Lisette; Homan, Manon; van Goor, Harry; Faber, Klaas Nico; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    Inducible nitric oxide synthase (iNOS) is expressed in intestinal epithelial cells (IEC) of patients with active inflammatory bowel disease (IBD) and in IEC of endotoxaemic rats. The induction of iNOS in IEC is an element of the NF-kappaB-mediated survival pathway. Haem oxygenase-1 (HO-1) is an

  4. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in Raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Martíšková, Hana; Vašíček, Ondřej; Binó, Lucia; Klinke, A.; Lau, D.; Kuchta, R.; Kadlec, J.; Vrba, R.; Kubala, Lukáš

    2011-01-01

    Roč. 11, - (2011), s. 2443-2457 ISSN 1537-744X R&D Projects: GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : macrophage s * L-arginine * inducible nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 1.524, year: 2010

  5. Expression of inducible nitric oxide synthase and effects of L-arginine on colonic nitric oxide production and fluid transport in patients with "minimal colitis"

    DEFF Research Database (Denmark)

    Perner, Anders; Andresen, Lars; Normark, Michel

    2005-01-01

    Some patients with idiopathic, chronic diarrhoea have minimal, non-specific colonic inflammation. As nitric oxide (NO) acts as a secretagogue in the colon, we studied the expression of inducible NO synthase (iNOS) in mucosal biopsies and the effects of NOS stimulation on colonic transfer of fluid...

  6. Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Formaldehyde is the inducing signal for the synthesis of the RuMP cycle enzyme hexulose phosphate synthase

    NARCIS (Netherlands)

    Croes, L.M.; Dijkhuizen, L.

    The inducing potential of formaldehyde on the synthesis of hexulose phosphate synthase, a key enzyme of the RuMP cycle in Arthrobacter P1, was investigated in resting cell suspensions. Induction of this enzyme only occurred at formaldehyde concentrations of 0.5 mM and below. No evidence was obtained

  7. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell......-mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic....... This might suggest a role of NO in regulating vascular reactivity in the context of T cell-mediated inflammation. In conclusion, these findings indicate a minimal role for iNOS/NO in the host response to LCMV. Except for a reduced local oedema in the knockout mice, iNOS/NO seems to be redundant...

  8. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase

    Science.gov (United States)

    Engelmann, Alexander J.; Aparicio, Mark B.; Kim, Airee; Sobieraj, Jeffery C.; Yuan, Clara J.; Grant, Yanabel

    2013-01-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake

  9. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  10. Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase.

    Science.gov (United States)

    Cingolani, Francesca; Simbari, Fabio; Abad, Jose Luis; Casasampere, Mireia; Fabrias, Gemma; Futerman, Anthony H; Casas, Josefina

    2017-08-01

    Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Possible Role of the Glycogen Synthase Kinase-3 Signaling Pathway in Trimethyltin-Induced Hippocampal Neurodegeneration in Mice

    Science.gov (United States)

    Kim, Sung-Ho; Kim, Jong-Choon; Wang, Hongbing; Shin, Taekyun; Moon, Changjong

    2013-01-01

    Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction. PMID:23940567

  12. Neuronal nitric oxide synthase is involved in the induction of nerve growth factor-induced neck muscle nociception.

    Science.gov (United States)

    Isaak, Andreas; Ellrich, Jens

    2011-05-01

    Neck muscle nociception mediated by nitric oxide may play a role in the pathophysiology of tension-type headache. The present study addresses the involvement of neuronal nitric oxide synthase (nNOS) in the facilitation of neck muscle nociception after local application of nerve growth factor (NGF). After administration of NGF into semispinal neck muscles, the impact of neck muscle noxious input on brainstem processing was monitored by the jaw-opening reflex in anesthetized mice. The modulatory effect of preceding and subsequent administration of an inhibitor of neuronal nitric oxide synthase on central facilitation was addressed in a controlled study. With preceding i.p. application of saline or 0.096 mg/kg of the specific nNOS inhibitor Nω-propyl-L-arginine (NPLA), NGF induced a sustained reflex facilitation within 60 minutes. Preceding injection of 0.96 mg/kg or 1.92 mg/kg NPLA completely prevented the potentially facilitatory effect of NGF. Subsequent administration of 0.96 mg/kg NPLA did not affect established NGF-evoked reflex facilitation. Thus, NPLA prevents facilitation of brainstem processing by noxious myofascial input from neck muscles in a dose-dependent manner. These findings suggest that nNOS is involved in the induction but not the maintenance of NGF-evoked facilitation of nociception in the brainstem. These results from an experimental animal model may support the idea of NOS and nNOS as potential targets for pharmacological treatment of tension-type headache. © 2011 American Headache Society.

  13. Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton.

    Science.gov (United States)

    Huang, Xinzheng; Xiao, Yutao; Köllner, Tobias G; Zhang, Wanna; Wu, Junxiang; Wu, Juan; Guo, Yuyuan; Zhang, Yongjun

    2013-12-01

    Cotton (Gossypium hirsutum L.) plants damaged by insects emit a blend of volatiles, including monoterpenes and sesquiterpenes, which can directly repel herbivores and/or indirectly protect the plant by attracting natural enemies of the herbivores. To understand the molecular basis of terpene biosynthesis and regulation in cotton, two terpene synthase genes, GhTPS1 and GhTPS2, were heterologously expressed and characterized. Recombinant GhTPS1 accepted farnesyl pyrophosphate as substrate and produced (E)-β-caryophyllene and α-humulene. GhTPS2 was characterized as a monoterpene synthase which formed α-pinene and β-pinene using geranyl pyrophosphate as substrate. Quantitative real-time PCR analysis revealed that GhTPS1 and GhTPS2 gene expression was elevated after methyl jasmonate (MeJA) treatment in cotton leaves. Moreover, feeding of the green plant bug Apolygus lucorum, a major cotton pest in northern China, resulted in increased GhTPS2 expression in young leaves, suggesting that GhTPS2 might be involved in plant defense in cotton. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  15. Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Tao Yuan-Xiang

    2007-10-01

    Full Text Available Abstract Neuronal nitric oxide synthase (nNOS is a key enzyme for nitric oxide production in neuronal tissues and contributes to the spinal central sensitization in inflammatory pain. However, the role of nNOS in neuropathic pain remains unclear. The present study combined a genetic strategy with a pharmacologic approach to examine the effects of genetic knockout and pharmacologic inhibition of nNOS on neuropathic pain induced by unilateral fifth lumbar spinal nerve injury in mice. In contrast to wildtype mice, nNOS knockout mice failed to display nerve injury-induced mechanical hypersensitivity. Furthermore, either intraperitoneal (100 mg/kg or intrathecal (30 μg/5 μl administration of L-NG-nitro-arginine methyl ester, a nonspecific NOS inhibitor, significantly reversed nerve injury-induced mechanical hypersensitivity on day 7 post-nerve injury in wildtype mice. Intrathecal injection of 7-nitroindazole (8.15 μg/5 μl, a selective nNOS inhibitor, also dramatically attenuated nerve injury-induced mechanical hypersensitivity. Western blot analysis showed that the expression of nNOS protein was significantly increased in ipsilateral L5 dorsal root ganglion but not in ipsilateral L5 lumbar spinal cord on day 7 post-nerve injury. The expression of inducible NOS and endothelial NOS proteins was not markedly altered after nerve injury in either the dorsal root ganglion or spinal cord. Our findings suggest that nNOS, especially in the dorsal root ganglion, may participate in the development and/or maintenance of mechanical hypersensitivity after nerve injury.

  16. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  17. Radiolabeling of a wound-inducible pyridoxal phosphate utilizing protein from tomato: evidence for its identification as ACC synthase

    International Nuclear Information System (INIS)

    Privalle, L.S.; Graham, J.S.; Caughey, P.A.

    1986-01-01

    Aminocyclopropane 1-carboxylic acid (ACC) synthase, a pyridoxal phosphate utilizing enzyme, catalyzes the conversion of S-adenosylmethionine to ACC, the rate limiting step in the biosynthesis of the plant hormone, ethylene. Ethylene, besides being involved in normal plant growth processes, is also produced in response to stress, e.g. wounding, pathogen infection, etc. The authors report the partial purification (400 fold) of ACC synthase from wounded pink tomato pericarp by classical techniques including ammonium sulfate precipitation, ion exchange and phenyl sepharose chromatography. Further purification results in a decrease in specific activity apparently due to the instability of the enzyme and the low levels present in plant tissue. Radiolabeling of a pyridoxal phosphate-utilizing protein in the ACC synthase enriched fraction was achieved. Evidence that this radiolabeled protein is ACC synthase will be presented. Amino acid sequence determination of putative ACC synthase-derived peptides is underway

  18. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Directory of Open Access Journals (Sweden)

    Ibukun P. Oyeyipo

    2015-09-01

    Conclusion: Taken together, the present data indicate the abilities of l-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  19. Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.

    Science.gov (United States)

    Kowalczyk, Katarzyna M; Petersen, Janni

    2016-05-01

    Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.

  20. Amide hydrolysis of a novel chemical series of microsomal prostaglandin E synthase-1 inhibitors induces kidney toxicity in the rat.

    Science.gov (United States)

    Bylund, Johan; Annas, Anita; Hellgren, Dennis; Bjurström, Sivert; Andersson, Håkan; Svanhagen, Alexander

    2013-03-01

    A novel microsomal prostaglandin E synthase 1 (mPGES-1) inhibitor induced kidney injury at exposures representing less than 4 times the anticipated efficacious exposure in man during a 7-day toxicity study in rats. The findings consisted mainly of tubular lesions and the presence of crystalline material and increases in plasma urea and creatinine. In vitro and in vivo metabolic profiling generated a working hypothesis that a bis-sulfonamide metabolite (determined M1) formed by amide hydrolysis caused this toxicity. To test this hypothesis, rats were subjected to a 7-day study and were administered the suspected metabolite and two low-potency mPGES-1 inhibitor analogs, where amide hydrolysis was undetectable in rat hepatocyte experiments. The results suggested that compounds with a reduced propensity to undergo amide hydrolysis, thus having less ability to form M1, reduced the risk of inducing kidney toxicity. Rats treated with M1 alone showed no histopathologic change in the kidney, which was likely related to underexposure to M1. To circumvent rat kidney toxicity, we identified a potent mPGES-1 inhibitor with a low propensity for amide hydrolysis and superior rat pharmacokinetic properties. A subsequent 14-day rat toxicity study showed that this compound was associated with kidney toxicity at 42, but not 21, times the anticipated efficacious exposure in humans. In conclusion, by including metabolic profiling and exploratory rat toxicity studies, a new and active mPGES-1 inhibitor with improved margins to chemically induced kidney toxicity in rats has been identified.

  1. Overexpression myocardial inducible nitric oxide synthase exacerbates cardiac dysfunction and beta-adrenergic desensitization in experimental hypothyroidism.

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2016-02-01

    Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cardiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca(2+)]i transient ([Ca(2+)]iT), and β-adrenergic hyporesponsiveness. We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca(2+)]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400 W, 10(-5)mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca(2+)]iT. In hypothyroidism, isoproterenol (10(-8)M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca(2+)]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca(2+)]iT. Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cardiomyocyte iNOS may promote progressive cardiac dysfunction in hypothyroidism. Copyright © 2015 Elsevier

  2. Overexpression Myocardial Inducible Nitric Oxide Synthase Exacerbates Cardiac Dysfunction and Beta-Adrenergic Desensitization in Experimental Hypothyroidism☆,☆☆

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F.; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2015-01-01

    Background Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cadiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca2+]i transient ([Ca2+]iT), and β-adrenergic hyporesponsiveness. Methods and Results We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca2+]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400W, 10−5 mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. In hypothyroidism, isoproterenol (10−8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca2+]iT. Conclusions Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cadiomyocyte iNOS may promote progressive cardiac dysfunction in

  3. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation

    Science.gov (United States)

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong

    2016-01-01

    Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859

  4. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced parkinson's disease rats.

    Science.gov (United States)

    Yin, Wei-Lan; Yin, Wei-Guo; Huang, Bai-Sheng; Wu, Li-Xiang

    2017-09-14

    Parkinson's disease (PD) is age-related neurodegenerative disorder by a progressive loss of dopaminergic(DA) neurons in the substantia nigra (SN) and striatum, which is at least partly associated with α-synuclein protein accumulation in these neurons. Hydrogen sulfide (H 2 S) plays an important role in the nervous system. Studies have shown that H 2 S has a protective effect on PD. However, as a kind of gas molecules, H 2 S is lively, volatile, and not conducive to scientific research and clinical application. Cystathionine-beta-synthase(CBS) is the main enzymes of synthesis of H 2 S in the brain. In order to examine the neuroprotective effects of CBS on PD, we detected the effects of CBS overexpression on 6-Hydroxydopamine (6-OHDA)-lesioned PD rats using lentivirus-mediated gene transfection techniques. In the injured SN of 6-OHDA-induced PD rats, the CBS expression and the endogenous H 2 S level markedly decreased, while administration of lentivirus-mediated CBS overexpression increased the CBS expression and the endogenous H 2 S production.CBS overexpression dramatically reversed apomorphine-induced rotation of the 6-OHDA model rats, decreased the number of TUNEL-positive neurons and the loss of the nigral DA neurons,specifically inhibited 6-OHDA-induced oxidase stress injury, and down-regulated the expression of α-synuclein(α-SYN) in the injured SN. NaHS (an H 2 S donor) had similar effects to CBS overexpression, while Amino-oxyacetate(AOAA, a CBS inhibitor) had opposite effects on PD rats. In summary, we demonstrated that CBS overexpression was able to provide neuroprotective on PD rats and improving the expression of CBS may be a potential therapeutic method for PD. Copyright © 2017. Published by Elsevier B.V.

  5. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs

    DEFF Research Database (Denmark)

    Lassen, L H; Christiansen, I; Iversen, Helle Klingenberg

    2003-01-01

    We have previously proposed that histamine causes migraine via increased NO production. To test this hypothesis, we here examined if the NOS inhibitor, L-NG methylarginine hydrochloride (L-NMMA:546C88), could block or attenuate histamine induced migraine attacks and responses of the middle cerebral......, temporal and radial arteries. In a double blind crossover design 12 patients were randomized to receive pretreatment with L-NMMA (6 mg/kg) or placebo i.v. over 15 min followed on both study days by histamine (0.5 microg/kg/min) i.v. for 20 min. Headache scores, mean maximal blood velocity (Vmean......) in the middle cerebral artery (MCA) (transcranial doppler) and diameters of temporal and radial arteries (high resolution ultrasound) were repeatedly measured. Pre-treatment with L-NMMA, had no effect on histamine induced headache or migraine, but also had no effect on the magnitude of histamine induced...

  6. GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Jørgensen, Stine Ringholm; Kiilerich, Kristian

    2012-01-01

    To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both...... than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate....... The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage....

  7. Effects of L-Carnitine on inducible nitric oxide synthase, insulin like ...

    African Journals Online (AJOL)

    Egyptian Journal of Biochemistry and Molecular Biology ... Metabolism of high dietary fructose induces insulin resistance and metabolic adaptation including changes in gene expression. The present ... Insulin-like Growth Factor-1(IGF-1), insulin receptor substrate-1 (IRS-1) in kidney tissues of rats fed on high fructose diet.

  8. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage.

    Science.gov (United States)

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M; Lage, Silvia L; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P; Hottiger, Michael O; De Carvalho, Daniel D; Bortoluci, Karina R

    2017-02-02

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases.

  9. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Sesamin Modulates Tyrosine Hydroxylase, Superoxide Dismutase, Catalase, Inducible No Synthase and Interleukin-6 Expression in Dopaminergic Cells Under Mpp+-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vicky Lahaie-Collins

    2008-01-01

    Full Text Available Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+ ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  11. Increased Inducible Nitric Oxide Synthase Expression in Organs Is Associated with a Higher Severity of H5N1 Influenza Virus Infection

    OpenAIRE

    Burggraaf, Simon; Bingham, John; Payne, Jean; Kimpton, Wayne G.; Lowenthal, John W.; Bean, Andrew G. D.

    2011-01-01

    BACKGROUND: The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible ...

  12. Upregulation of inducible NO synthase by exogenous adenosine in vascular smooth muscle cells activated by inflammatory stimuli in experimental diabetes.

    Science.gov (United States)

    Nassi, Alberto; Malorgio, Francesca; Tedesco, Serena; Cignarella, Andrea; Gaion, Rosa Maria

    2016-02-16

    Adenosine has been shown to induce nitric oxide (NO) production via inducible NO synthase (iNOS) activation in vascular smooth muscle cells (VSMCs). Although this is interpreted as a beneficial vasodilating pathway in vaso-occlusive disorders, iNOS is also involved in diabetic vascular dysfunction. Because the turnover of and the potential to modulate iNOS by adenosine in experimental diabetes have not been explored, we hypothesized that both the adenosine system and control of iNOS function are impaired in VSMCs from streptozotocin-diabetic rats. Male Sprague-Dawley rats were injected with streptozotocin once to induce diabetes. Aortic VSMCs from diabetic and nondiabetic rats were isolated, cultured and exposed to lipopolysaccharide (LPS) plus a cytokine mix for 24 h in the presence or absence of (1) exogenous adenosine and related compounds, and/or (2) pharmacological agents affecting adenosine turnover. iNOS functional expression was determined by immunoblotting and NO metabolite assays. Concentrations of adenosine, related compounds and metabolites thereof were assayed by HPLC. Vasomotor responses to adenosine were determined in endothelium-deprived aortic rings. Treatment with adenosine-degrading enzymes or receptor antagonists increased iNOS formation in activated VSMCs from nondiabetic and diabetic rats. Following treatment with the adenosine transport inhibitor NBTI, iNOS levels increased in nondiabetic but decreased in diabetic VSMCs. The amount of secreted NO metabolites was uncoupled from iNOS levels in diabetic VSMCs. Addition of high concentrations of adenosine and its precursors or analogues enhanced iNOS formation solely in diabetic VSMCs. Exogenous adenosine and AMP were completely removed from the culture medium and converted into metabolites. A tendency towards elevated inosine generation was observed in diabetic VSMCs, which were also less sensitive to CD73 inhibition, but inosine supplementation did not affect iNOS levels. Pharmacological

  13. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis

    DEFF Research Database (Denmark)

    Tafesse, Fikadu G.; Vacaru, Ana M.; Bosma, Elleke Fenna

    2014-01-01

    a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress...... ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile a-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels...

  14. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells.

    Science.gov (United States)

    Kumar, Ashutosh; Chen, Shih-Heng; Kadiiska, Maria B; Hong, Jau-Shyong; Zielonka, Jacek; Kalyanaraman, Balaraman; Mason, Ronald P

    2014-08-01

    Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. Copyright © 2014

  15. Crystal chemistry of sartorite homologues and related sulfosalts

    DEFF Research Database (Denmark)

    Berlepsch, Peter; Makovicky, Emil; Balic-Zunic, Tonci

    2001-01-01

    sartorite homologues, sulfosalt, crystal chemistry, coordination polyhedra, bond-pairs, crankshaft chains......sartorite homologues, sulfosalt, crystal chemistry, coordination polyhedra, bond-pairs, crankshaft chains...

  16. [Effect of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in the pathogenesis of hypoxia-induced pulmonary hypertension of the neonatal rats].

    Science.gov (United States)

    Sang, Kui; Zhou, Ying; Li, Ming-xia

    2012-12-01

    To study the effect of hypoxia-inducible factor-1α (HIF-1α) in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH) of the neonatal rats through the study on the expression level of HIF-1α and its regulation factors: endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in blood serum and lung tissue. To make an HPH model of neonatal rats, 120 newborn Wistar rats were divided at random into two groups: HPH group and the regular oxygen controlled group with the same birthday. The rats of the two groups were put in the condition of hypoxia for 3, 5, 7, 10, 14, 21 days and then 10 rats of HPH group and control group were picked up, their mean pulmonary arterial pressure (mPAP), serum HIF-1α, and iNOS, and ET-1 content were tested, and finally their lung tissue was taken after they were sacrificed and the expression level of the gene mRNA of HIF-1α, iNOS and ET-1. (1) The rats experienced hypoxia for 3, 5, 7, 10, 14 or 21 days had an increasing mPAP: [8.47 ± 1.45, 10.04 ± 1.69, 10.89 ± 2.97, 16.96 ± 1.97, 13.01 ± 1.93, 21.04 ± 2.13 (mm Hg)], which had a significant differences compared with control groups [5.11 ± 1.06, 8.12 ± 1.11, 8.77 ± 0.92, 12.23 ± 1.78, 8.89 ± 0.89, 11.09 ± 1.64 (mm Hg)] (P rats in hypoxia group had a higher serum HIF-1α [0.83 ± 0.07, 0.84 ± 0.17, 0.97 ± 0.13, 1.10 ± 0.30, 0.92 ± 0.19 (pg/nmol)] than the control group [0.26 ± 0.20, 0.37 ± 0.16, 0.44 ± 0.18, 0.41 ± 0.23, 0.66 ± 0.18 (pg/nmol)] as they experienced hypoxia for 3, 5, 7, 10, and 14 days (P 0.05), and the content of serum iNOS after hypoxia for 14 or 21 days (4.56 ± 0.96, 5.86 ± 1.76) µmol/L was lower than that of the control group (10.35 ± 1.99, 8.44 ± 2.76) µmol/L (P rats and causedn a imbalance of ET-1 and NO. HIF-1α, ET-1 and iNOS altogether contributed to the occurrence and development of HPH in neonatal rats.

  17. Falcarindiol impairs the expression of inducible nitric oxide synthase by abrogating the activation of IKK and JAK in rat primary astrocytes

    OpenAIRE

    Shiao, Young-Ji; Lin, Yun-Lian; Sun, Ya-Hui; Chi, Chih-Wen; Chen, Chieh-Fu; Wang, Chuen-Neu

    2004-01-01

    The effects of falcarindiol on the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide/interferon-γ (LPS/IFN-γ) in rat primary astrocytes were investigated. The molecular mechanisms underlying falcarindiol that confers its effect on iNOS expression were also elucidated.Falcarindiol abrogated the LPS/IFN-γ-mediated induction of iNOS by about 80%. Falcarindiol attenuated the induction of iNOS in a concentration-dependent manner.The inhibitory effect of falcarindio...

  18. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  19. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    Science.gov (United States)

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells stimulated with LPS/IFN-γ activated NO production; in this condition andrographolide (1–100 μM) inhibited NO production in a dose-dependent manner with an IC50 value of 17.4±1.1 μM. Andrographolide also reduces the expression of iNOS protein level but without a significant effect on iNOS mRNA. The reduction of iNOS activity is thought to be caused by decreased expression of iNOS protein.In a protein stability assay, andrographolide moderately but significantly reduced the amount of iNOS protein as suggested by accelerating degradation. Furthermore, andrographolide also inhibited total protein de novo synthesis as demonstrated by [35S]-methionine incorporation.As a whole, these data suggest that andrographolide inhibits NO synthesis in RAW 264.7 cells by reducing the expression of iNOS protein and the reduction could occur through two additional mechanisms: prevention of the de novo protein synthesis and decreasing the protein stability via a post-transcriptional mechanism. It is also possible that inhibition of iNOS protein expression and NO production under immune stimulation and/or bacteria infection may explain, in part, the beneficial effects of andrographolide as an anti-inflammatory agent. PMID:10780958

  20. The Fatty Acid Synthase Inhibitor Platensimycin Improves Insulin Resistance without Inducing Liver Steatosis in Mice and Monkeys.

    Directory of Open Access Journals (Sweden)

    Sheo B Singh

    Full Text Available Platensimycin (PTM is a natural antibiotic produced by Streptomyces platensis that selectively inhibits bacterial and mammalian fatty acid synthase (FAS without affecting synthesis of other lipids. Recently, we reported that oral administration of PTM in mouse models (db/db and db/+ with high de novo lipogenesis (DNL tone inhibited DNL and enhanced glucose oxidation, which in turn led to net reduction of liver triglycerides (TG, reduced ambient glucose, and improved insulin sensitivity. The present study was conducted to explore translatability and the therapeutic potential of FAS inhibition for the treatment of diabetes in humans.We tested PTM in animal models with different DNL tones, i.e. intrinsic synthesis rates, which vary among species and are regulated by nutritional and disease states, and confirmed glucose-lowering efficacy of PTM in lean NHPs with quantitation of liver lipid by MRS imaging. To understand the direct effect of PTM on liver metabolism, we performed ex vivo liver perfusion study to compare FAS inhibitor and carnitine palmitoyltransferase 1 (CPT1 inhibitor.The efficacy of PTM is generally reproduced in preclinical models with DNL tones comparable to humans, including lean and established diet-induced obese (eDIO mice as well as non-human primates (NHPs. Similar effects of PTM on DNL reduction were observed in lean and type 2 diabetic rhesus and lean cynomolgus monkeys after acute and chronic treatment of PTM. Mechanistically, PTM lowers plasma glucose in part by enhancing hepatic glucose uptake and glycolysis. Teglicar, a CPT1 inhibitor, has similar effects on glucose uptake and glycolysis. In sharp contrast, Teglicar but not PTM significantly increased hepatic TG production, thus caused liver steatosis in eDIO mice.These findings demonstrate unique properties of PTM and provide proof-of-concept of FAS inhibition having potential utility for the treatment of diabetes and related metabolic disorders.

  1. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.

    Science.gov (United States)

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Adamson, S Lee; Henkelman, R Mark; Ho, J J David; Wilson, David F; Heximer, Scott P; Connelly, Kim A; Bolz, Steffen-Sebastian; Lidington, Darcy; El-Beheiry, Mostafa H; Dattani, Neil D; Chen, Kevin M; Hare, Gregory M T

    2011-10-18

    Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.

  2. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  3. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  4. Role of neuronal nitric oxide synthase in regulating retinal blood flow during flicker-induced hyperemia in cats.

    Science.gov (United States)

    Yoshioka, Takafumi; Nagaoka, Taiji; Song, Youngseok; Yokota, Harumasa; Tani, Tomofumi; Yoshida, Akitoshi

    2015-05-01

    To investigate how neuronal nitric oxide synthase (nNOS) contributes to regulation of the retinal circulation during rest and flicker stimulation in cats. Using laser Doppler velocimetry, we measured the vessel diameter and blood velocity simultaneously and calculated the retinal blood flow (RBF) in feline first-order retinal arterioles. After intravitreal injections of Nω-Nitro-L-arginine methyl ester (L-NAME), a nonselective NOS inhibitor, and Nω-propyl-L-arginine (L-NPA), a selective nNOS inhibitor, we continuously monitored the retinal circulation without any perturbations for 2 hours. We then examined the changes in the RBF in response to 16-Hz flicker stimuli for 3 minutes at 2 hours after intravitreal injection of phosphate-buffered saline (PBS) as a control, L-NAME, L-NPA, and thromboxane A2 (TXA2) analogue U46619 as a basal tone-adjusted control. After intravitreal injection of L-NAME and L-NPA, the baseline RBF decreased gradually in a dose-dependent manner. In the PBS group, the RBF increased gradually and reached a maximal level after 2 to 3 minutes of flicker stimuli. After 3 minutes of 16-Hz flicker stimuli, the RBF increased by 53.5% ± 3.4% compared with baseline. In the L-NAME and L-NPA groups, the increases in RBF during flicker stimulation were attenuated significantly compared with the PBS group. In the TXA2 group, the reduction in the flicker-induced increase in RBF was comparable to that in the PBS group. The current results suggested that increased RBF in response to flicker stimulation may be mediated by nitric oxide (NO) production via nNOS activation.

  5. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  6. Inhibition of an inducible nitric oxide synthase expression by a hexane extract from perilla frutescens cv. chookyoupjaso mutant induced by mutagenesis with gamma-ray

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Dae; Kang, Min Ah; Lee, Hyo Jung; Jin, Chang Hyun; Choi, Dae Seong; Kim, Dong Sub; Kang, Si Yong; Byun, Myung Woo; Jeong, Il Yun [Korea Atomic Energy Research Institte, Jeongeup (Korea, Republic of)

    2009-03-15

    In earlier investigations, seeds of Perilla frutescens(L.) Britt. cv. Chookyoupjaso were irradiated with 200 Gy gamma ray to generate mutagenesis. The aim of this study is to investigate the effects of a hexane extract from Perilla frutescens(L.) Britt. cv. Chookyoupjaso mutant 45 on the actions of anti-inflammatory activity on inducible nitric oxide synthase, and an identification of the major active compound. The hexane extract from P. frutescens exhibited activity of inhibition of a NO production (IC{sub 50}, 295.1{mu}g ml{sup -1}). The hexane extract was further divided into sub-fractions by silica-gel chromatogarphy. Inhibition of the NO production by various fractions was assayed in LPS-stimulated RAW 264.7 cells. Among the seven fractions, the 5th fraction was the most effective (IC{sub 50}, 19.5{mu}g ml{sup -1}). The 5th fraction suppressed the expression of protein of iNOS in LPS-induced RAW 264.7 cells, and GC/MS analyses showed that isoegomaketone is a major bio-active compound in the 5th fraction. The result indicated that isoegomaketone has a good potential to be developed as an anti-inflammation agent.

  7. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS. We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  8. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  9. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  10. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  11. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... treatment. Ten obese patients with NIDDM were studied before and after 8 weeks of treatment with a weight-maintaining diet in combination with the sulphonylurea gliclazide. Gliclazide treatment was associated with significant reductions in HbA1C (p=0.001) and fasting plasma glucose (p=0.005) as well...... metabolism (p=0.02) was demonstrated in teh gliclazide-treated patients when compared to pre-treatment values. In biopsies obtained from vastus lateralis muscle during insulin infusion, the half-maximal activation of glycogen synthase was achieved at a significantly lower concentration of the allosteric...

  12. Lipoplex gene transfer of inducible nitric oxide synthase inhibits the reactive intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting.

    Science.gov (United States)

    Pfeiffer, Tomas; Wallich, Martina; Sandmann, Wilhelm; Schrader, Jürgen; Gödecke, Axel

    2006-05-01

    Intimal hyperplasia (IH) is most commonly the cause of graft occlusion in infrainguinal bypass grafting for arterial occlusive disease. We investigated the influence of nitric oxide on the IH of the arterial vessel wall at the region of prosthetic bypass anastomoses. Experiments were performed in 10 Foxhound dogs. We used a technique of inducible nitric oxide synthase (iNOS) overexpression by a non-virus-mediated, liposome-based iNOS gene transfer. The plasmid pSCMV-iNOS, which drives the expression of iNOS under control of the cytomegalovirus promoter, was complexed with cationic liposomes (lipoplexes). Segments of both carotid arteries were pretreated by intramural injection of a lipoplex solution by using an infiltrator balloon catheter (Infiltrator Drug Delivery Balloon System). In each dog, iNOS was administered at one side, and a control vector (pSCMV2) was administered at the contralateral side. Carotid arteries were ligated, and bypass grafts (expanded polytetrafluoroethylene, 6-mm, ring enforced) were implanted on both sides. The proximal and distal anastomoses (end-to-side fashion; running nonabsorbable sutures) were placed in the pretreated regions. After 6 months, the prostheses were excised, and the intimal thicknesses of 50 cross sections (orcein staining) of each anastomosis were measured planimetrically. The average reduction of the neointima thickness of the iNOS side in proximal anastomoses at the prosthetic wall, suture region, and arterial wall was 43%, 52%, and 81%, respectively. In distal anastomoses, the average reduction was 40%, 47%, and 52%, respectively. All differences of neointima thickness between the iNOS and control sides were statistically significant (Wilcoxon test; P < or = .05). Inducible NOS expression is an efficient approach for inhibition of IH. In contrast to earlier studies, which investigated the efficacy of gene therapeutic NOS expression at 3 to 4 weeks after intervention, the novelty of our findings is that a single

  13. Hypoxia-inducible factor-1α, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yin

    2016-07-01

    Full Text Available In Taiwan, the average prevalence of congenital heart disease (CHD is 13.08/1000 live births. Most children with CHD die before the age of 5 years; therefore, identifying treatment methods to extend the life of CHD patients is an important issue in clinical practice. The objective of this study is to evaluate the roles of hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, inducible nitric oxide synthase (iNOS, endothelin-1 (ET-1, and CD34 in CHD autopsy cases in comparison with autopsy cases without CHD. The study included 19 autopsy cases, which were divided into the following four groups: acyanotic CHD (n = 11, cyanotic CHD (n = 3, CHD associated with chromosomal abnormalities (n = 3, and complex CHD (n = 2. Heart specimens obtained from 10 autopsy cases without CHD were included as controls. Our results indicated that high percentages of HIF-1α (100%, VEGF (89.5%, iNOS (78.9%, and ET-1 (84.2% expressions were observed in CHD autopsy cases and this was found to be significant. HIF-1α induced by hypoxia could play a potential role in relating downstream gene expressions in CHD patients. Upregulation of VEGF by HIF-1α could play an important role in triggering angiogenesis to protect myocardial cell survival in a hypoxic microenvironment. Therefore, HIF-1α could be a significant prognosis marker in CHD and be a prospective candidate in the development of target therapy in cardiovascular diseases.

  14. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage

    Directory of Open Access Journals (Sweden)

    Malte Bachmann

    2017-07-01

    Full Text Available Cytokine regulation of high-output nitric oxide (NO derived from inducible NO synthase (iNOS is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression.

  15. Dystrophin Threshold Level Necessary for Normalization of Neuronal Nitric Oxide Synthase, Inducible Nitric Oxide Synthase, and Ryanodine Receptor-Calcium Release Channel Type 1 Nitrosylation in Golden Retriever Muscular Dystrophy Dystrophinopathy.

    Science.gov (United States)

    Gentil, Christel; Le Guiner, Caroline; Falcone, Sestina; Hogrel, Jean-Yves; Peccate, Cécile; Lorain, Stéphanie; Benkhelifa-Ziyyat, Sofia; Guigand, Lydie; Montus, Marie; Servais, Laurent; Voit, Thomas; Piétri-Rouxel, France

    2016-09-01

    At present, the clinically most advanced strategy to treat Duchenne muscular dystrophy (DMD) is the exon-skipping strategy. Whereas antisense oligonucleotide-based clinical trials are underway for DMD, it is essential to determine the dystrophin restoration threshold needed to ensure improvement of muscle physiology at the molecular level. A preclinical trial has been conducted in golden retriever muscular dystrophy (GRMD) dogs treated in a forelimb by locoregional delivery of rAAV8-U7snRNA to promote exon skipping on the canine dystrophin messenger. Here, we exploited rAAV8-U7snRNA-transduced GRMD muscle samples, well characterized for their percentage of dystrophin-positive fibers, with the aim of defining the threshold of dystrophin rescue necessary for normalization of the status of neuronal nitric oxide synthase mu (nNOSμ), inducible nitric oxide synthase (iNOS), and ryanodine receptor-calcium release channel type 1 (RyR1), crucial actors for efficient contractile function. Results showed that restoration of dystrophin in 40% of muscle fibers is needed to decrease abnormal cytosolic nNOSμ expression and to reduce overexpression of iNOS, these two parameters leading to a reduction in the NO level in the muscle fibers. Furthermore, the same percentage of dystrophin-positive fibers of 40% was associated with the normalization of RyR1 nitrosylation status and with stabilization of the RyR1-calstabin1 complex that is required to facilitate coupled gating. We concluded that a minimal threshold of 40% of dystrophin-positive fibers is necessary for the reinstatement of central proteins needed for proper muscle contractile function, and thus identified a rate of dystrophin expression significantly improving, at the molecular level, the dystrophic muscle physiology.

  16. Biosynthesis of the peroxisomal dihydroxyacetone synthase from Hansenula polymorpha in Saccharomyces cerevisiae induces growth but not proliferation of peroxisomes

    NARCIS (Netherlands)

    Gödecke, Axel; Veenhuis, Marten; Roggenkamp, Rainer; Janowicz, Zbigniew A.; Hollenberg, Cornelis P.

    The DAS gene of Hansenula polymorpha was expressed in Saccharomyces cerevisiae under the control of different promoters. The heterologously synthesized dihydroxyacetone synthase (DHAS), a peroxisomal enzyme in H. polymorpha, shows enzymatic activity in baker's yeast. The enzyme was imported into the

  17. The time-dependent effect of provinolsTM on brain NO synthase activity in L-NAME-induced hypertension

    Czech Academy of Sciences Publication Activity Database

    Jendeková, L.; Kojšová, S.; Andriantsitohaina, R.; Pecháňová, Olga

    2006-01-01

    Roč. 55, č. S1 (2006), S31-S37 ISSN 0862-8408 Grant - others:VEGA(SK) 2/6148/26; VEGA(SK) 1/342906 Institutional research plan: CEZ:AV0Z50110509 Keywords : red wine polyphenols * oxidative damage * nitric oxide synthase Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  18. Generation of nitric oxide by the inducible nitric oxide synthase protects gamma delta T cells from Mycobacterium tuberculosis-induced apoptosis.

    Science.gov (United States)

    Sciorati, C; Rovere, P; Ferrarini, M; Paolucci, C; Heltai, S; Vaiani, R; Clementi, E; Manfredi, A A

    1999-08-01

    Gamma delta T cells are early recruited into mycobacterial lesions. Upon microbial Ag recognition, gamma delta cells secrete cytokines and chemokines and undergo apoptosis via CD95/CD95 ligand (CD95L) interaction, possibly influencing the outcome of infection and the characteristics of the disease. In this paper we show that activated phagocytes acquire, upon challenge with Mycobacterium tuberculosis, the ability to inhibit M. tuberculosis-induced gamma delta cell apoptosis. Apoptosis protection was due to NO because it correlated with NO synthase (NOS)-2 induction and activity in scavenger cells and was abrogated by NOS inhibitors. Furthermore, the NO donor S-nitrosoacetylpenicillamine mimicked the effect of enzyme induction. NO left unaffected the expression of CD95 and CD95L, suggesting interference with an event ensuing CD95/CD95L interaction. NO was found to interfere with the intracellular accumulation of ceramide and the activation of caspases, which were involved in gamma delta T cells apoptosis after M. tuberculosis recognition. We propose that NO generated by infected macrophages determines the life span and therefore the function of lymphocytes at the infection site, thus linking innate and adaptive immunity.

  19. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children

    Directory of Open Access Journals (Sweden)

    Liomba N George

    2003-04-01

    Full Text Available Abstract Background The inflammatory nature of falciparum malaria has been acknowledged since increased circulating levels of tumour necrosis factor (TNF were first measured, but precisely where the mediators downstream from this prototype inflammatory mediator are generated has not been investigated. Here we report on the cellular distribution, by immunohistochemistry, of migration inhibitory factor (MIF and inducible nitric oxide synthase (iNOS in this disease, and in sepsis. Methods We stained for MIF and iNOS in tissues collected during 44 paediatric autopsies in Blantyre, Malawi. These comprised 42 acutely ill comatose patients, 32 of whom were diagnosed clinically as cerebral malaria and the other 10 as non-malarial diseases. Another 2 were non-malarial, non-comatose deaths. Other control tissues were from Australian adults. Results Of the 32 clinically diagnosed cerebral malaria cases, 11 had negligible histological change in the brain, and no or scanty intravascular sequestration of parasitised erythrocytes, another 7 had no histological changes in the brain, but sequestered parasitised erythrocytes were present (usually dense, and the remaining 14 brains showed micro-haemorrhages and intravascular mononuclear cell accumulations, plus sequestered parasitised erythrocytes. The vascular walls of the latter group stained most strongly for iNOS. Vascular wall iNOS staining was usually of low intensity in the second group (7 brains and was virtually absent from the cerebral vascular walls of 8 of the 10 comatose patients without malaria, and also from control brains. The chest wall was chosen as a typical non-cerebral site encompassing a range of tissues of interest. Here pronounced iNOS staining in vascular wall and skeletal muscle was present in some 50% of the children in all groups, including septic meningitis, irrespective of the degree of staining in cerebral vascular walls. Parasites or malarial pigment were rare to absent in all chest

  20. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Pindjáková, Jana; Zajícová, Alena; Krulová, Magdalena; Železná, Blanka; Matoušek, Petr; Svoboda, Petr

    2005-01-01

    Roč. 12, č. 3 (2005), s. 227-234 ISSN 0908-665X R&D Projects: GA MZd(CZ) NR7816; GA ČR(CZ) GP310/02/D162; GA ČR(CZ) GD310/03/H147; GA MŠk(CZ) ME 300; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5052915; CEZ:AV0Z50110509 Keywords : inducible nitric oxide synthase production * nitric oxide * suppressive molecule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2005

  1. New Role for L-Arginine in Regulation of Inducible Nitric-Oxide-Synthase-Derived Superoxide Anion Production in Raw 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Michaela Pekarova

    2011-01-01

    Full Text Available Dietary supplementation with L-arginine was shown to improve immune responses in various inflammatory models. However, the molecular mechanisms underlying L-arginine effects on immune cells remain unrecognized. Herein, we tested the hypothesis that a limitation of L-arginine could lead to the uncoupled state of murine macrophage inducible nitric oxide synthase and, therefore, increase inducible nitric-oxide-synthase-derived superoxide anion formation. Importantly, we demonstrated that L-arginine dose- and time dependently potentiated superoxide anion production in bacterial endotoxin-stimulated macrophages, although it did not influence NADPH oxidase expression and activity. Detailed analysis of macrophage activation showed the time dependence between LPS-induced iNOS expression and increased O2∙- formation. Moreover, downregulation of macrophage iNOS expression, as well as the inhibition of iNOS activity by NOS inhibitors, unveiled an important role of this enzyme in controlling O2∙- and peroxynitrite formation during macrophage stimulation. In conclusion, our data demonstrated that simultaneous induction of NADPH oxidase, together with the iNOS enzyme, can result in the uncoupled state of iNOS resulting in the production of functionally important levels of O2∙- soon after macrophage activation with LPS. Moreover, we demonstrated, for the first time that increased concentrations of L-arginine further potentiate iNOS-dependent O2∙- formation in inflammatory macrophages.

  2. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages.

    Science.gov (United States)

    Pekarova, Michaela; Lojek, Antonin; Martiskova, Hana; Vasicek, Ondrej; Bino, Lucia; Klinke, A; Lau, D; Kuchta, Radek; Kadlec, Jaroslav; Vrba, Radimir; Kubala, Lukas

    2011-01-01

    Dietary supplementation with L-arginine was shown to improve immune responses in various inflammatory models. However, the molecular mechanisms underlying L-arginine effects on immune cells remain unrecognized. Herein, we tested the hypothesis that a limitation of L-arginine could lead to the uncoupled state of murine macrophage inducible nitric oxide synthase and, therefore, increase inducible nitric-oxide-synthase-derived superoxide anion formation. Importantly, we demonstrated that L-arginine dose- and time dependently potentiated superoxide anion production in bacterial endotoxin-stimulated macrophages, although it did not influence NADPH oxidase expression and activity. Detailed analysis of macrophage activation showed the time dependence between LPS-induced iNOS expression and increased O(2)(∙-) formation. Moreover, downregulation of macrophage iNOS expression, as well as the inhibition of iNOS activity by NOS inhibitors, unveiled an important role of this enzyme in controlling O(2)(∙-) and peroxynitrite formation during macrophage stimulation. In conclusion, our data demonstrated that simultaneous induction of NADPH oxidase, together with the iNOS enzyme, can result in the uncoupled state of iNOS resulting in the production of functionally important levels of O(2)(∙-) soon after macrophage activation with LPS. Moreover, we demonstrated, for the first time that increased concentrations of L-arginine further potentiate iNOS-dependent O(2) (∙-) formation in inflammatory macrophages.

  3. New Role for L-Arginine in Regulation of Inducible Nitric-Oxide-Synthase-Derived Superoxide Anion Production in Raw 264.7 Macrophages

    Science.gov (United States)

    Pekarova, Michaela; Lojek, Antonin; Martiskova, Hana; Vasicek, Ondrej; Bino, Lucia; Klinke, A.; Lau, D.; Kuchta, Radek; Kadlec, Jaroslav; Vrba, Radimir; Kubala, Lukas

    2011-01-01

    Dietary supplementation with L-arginine was shown to improve immune responses in various inflammatory models. However, the molecular mechanisms underlying L-arginine effects on immune cells remain unrecognized. Herein, we tested the hypothesis that a limitation of L-arginine could lead to the uncoupled state of murine macrophage inducible nitric oxide synthase and, therefore, increase inducible nitric-oxide-synthase-derived superoxide anion formation. Importantly, we demonstrated that L-arginine dose- and time dependently potentiated superoxide anion production in bacterial endotoxin-stimulated macrophages, although it did not influence NADPH oxidase expression and activity. Detailed analysis of macrophage activation showed the time dependence between LPS-induced iNOS expression and increased O2∙− formation. Moreover, downregulation of macrophage iNOS expression, as well as the inhibition of iNOS activity by NOS inhibitors, unveiled an important role of this enzyme in controlling O2∙− and peroxynitrite formation during macrophage stimulation. In conclusion, our data demonstrated that simultaneous induction of NADPH oxidase, together with the iNOS enzyme, can result in the uncoupled state of iNOS resulting in the production of functionally important levels of O2∙− soon after macrophage activation with LPS. Moreover, we demonstrated, for the first time that increased concentrations of L-arginine further potentiate iNOS-dependent O2∙− formation in inflammatory macrophages. PMID:22219714

  4. Yeast Cells Lacking the CIT1-encoded Mitochondrial Citrate Synthase Are Hypersusceptible to Heat- or Aging-induced Apoptosis

    OpenAIRE

    Lee, Yong Joo; Hoe, Kwang Lae; Maeng, Pil Jae

    2007-01-01

    In Saccharomyces cerevisiae, the initial reaction of the tricarboxylic acid cycle is catalyzed by the mitochondrial citrate synthase Cit1. The function of Cit1 has previously been studied mainly in terms of acetate utilization and metabolon construction. Here, we report the relationship between the function of Cit1 and apoptosis. Yeast cells with cit1 deletion showed a temperature-sensitive growth phenotype, and they displayed a rapid loss in viability associated with typical apoptotic hallma...

  5. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  6. Gender-based reciprocal expression of transforming growth factor-β1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis

    Directory of Open Access Journals (Sweden)

    Loughran Patricia A

    2009-08-01

    Full Text Available Abstract Background The pluripotent cytokine transforming growth factor-β1 (TGF-β1 is the central regulator of inducible Nitric Oxide Synthase (iNOS that is responsible for nitric oxide (NO production in inflammatory settings. Previous studies have implicated a role for NO, presumably derived from iNOS, in cyclophosphamide (CYP-induced cystitis in the bladder. TGF-β1 is produced in latent form and requires dissociation from the latency-associated peptide (LAP to act as primary anti-inflammatory and pro-healing modulator following tissue injury in the upper urinary tract. Since the role of TGF-β1 in lower urinary tract inflammation is currently unknown, and since gender-based differences exist in the setting of interstitial cystitis (IC, the present study examined the relationship between TGF-β1 and iNOS/NO in the pathogenesis of CYP-induced cystitis in both male and female rats. Methods Sprague-Dawley rats, 4 months of age, of either gender were given 150 mg/kg CYP intraperitoneally. Urinary and bladder tissue TGF-β1 and NO reaction products (NO2-/NO3- were quantified as a function of time following CYP. Expression of active and latent TGF-β1 as well as iNOS in harvested bladder tissue was assessed by immunohistochemistry. Results Female rats had significantly higher levels of NO2-/NO3- in urine even at baseline as compared to male rats (p 2-/NO3- and TGF-β1. Male rats responded to CYP with significantly lower levels of NO2-/NO3- and significantly higher levels of TGF-β1 in urine (p 2-/NO3- after CYP were inversely correlated to latent and active TGF-β1 (Pearson coefficient of -0.72 and -0.69 in females and -0.89 and -0.76 in males, respectively; p Conclusion The results of this study suggest that there exists an inverse relationship between the expression of TGF-β1 and iNOS/NO2-/NO3- in CYP-inflamed bladder. The gender of the animal appears to magnify the differences in urine levels of TGF-β1 and NO2-/NO3- in this inflammatory

  7. A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules.

    Science.gov (United States)

    Coba de la Peña, Teodoro; Cárcamo, Claudia B; Almonacid, Luis; Zaballos, Angel; Lucas, M Mercedes; Balomenos, Dimitrios; Pueyo, José J

    2008-03-01

    A new cytokinin receptor homologue, MsHK1, was isolated from Medicago sativa root nodules. MsHK1 expression was induced in alfalfa seedlings by exogenous application of the cytokinin trans-zeatin. Transcript accumulation was detected in different plant organs. MsHK1 expression was induced by salt stress in alfalfa roots, leaves and nodules, and transcript accumulation in the vascular bundles pointed to a putative role in osmosensing for MsHK1 and/or other close cytokinin receptor homologues. Expression in the meristem and the invasion zone of the nodule suggest a role for cytokinin receptors in cytokinin sensing during nodule cell division and differentiation.

  8. Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes.

    Science.gov (United States)

    Kikugawa, Masaki; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji

    2017-08-01

    We recently reported that two water-soluble derivatives of ferulic acid (1-feruloyl glycerol, 1-feruloyl diglycerol) previously developed by our group exhibited protective effects against amyloid-β-induced neurodegeneration in vitro and in vivo. In the current study, we aimed to further understand this process by examining the derivatives' ability to suppress abnormal activation of astrocytes, the key event of neurodegeneration. We investigated the effects of ferulic acid (FA) derivatives on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in rat primary astrocytes. The results showed that these compounds inhibited NO production and iNOS expression in a concentration-dependent manner and that the mechanism underlying these effects was the suppression of the nuclear factor-κB pathway. This evidence suggests that FA and its derivatives may be effective neuroprotective agents and could be useful in the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

  9. Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies).

    Science.gov (United States)

    Phillips, Michael A; Walter, Michael H; Ralph, Steven G; Dabrowska, Paulina; Luck, Katrin; Urós, Eva Maria; Boland, Wilhelm; Strack, Dieter; Rodríguez-Concepción, Manuel; Bohlmann, Jörg; Gershenzon, Jonathan

    2007-10-01

    Conifers produce terpenoid-based oleoresins as constitutive and inducible defenses against herbivores and pathogens. Much information is available about the genes and enzymes of the late steps of oleoresin terpenoid biosynthesis in conifers, but almost nothing is known about the early steps which proceed via the methylerythritol phosphate (MEP) pathway. Here we report the cDNA cloning and functional identification of three Norway spruce (Picea abies) genes encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, and their differential expression in the stems of young saplings. Among them are representatives of both types of plant DXS genes. A single type I DXS gene is constitutively expressed in bark tissue and not affected by wounding or fungal application. In contrast, two distinct type II DXS genes, PaDXS2A and PaDXS2B, showed increased transcript abundance after these treatments as did two other genes of the MEP pathway tested, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) and 4-hydroxyl 3-methylbutenyl diphosphate reductase (HDR). We also measured gene expression in a Norway spruce cell suspension culture system that, like intact trees, accumulates monoterpenes after treatment with methyl jasmonate. These cell cultures were characterized by an up-regulation of monoterpene synthase gene transcripts and enzyme activity after elicitor treatment, as well as induced formation of octadecanoids, including jasmonic acid and 12-oxophytodienoic acid. Among the Type II DXS genes in cell cultures, PaDXS2A was induced by treatment with chitosan, methyl salicylate, and Ceratocystis polonica (a bark beetle-associated, blue-staining fungal pathogen of Norway spruce). However, PaDXS2B was induced by treatment with methyl jasmonate and chitosan, but was not affected by methyl salicylate or C. polonica. Our results suggest distinct functions of the three DXS genes in primary and defensive terpenoid metabolism in Norway

  10. The cardioprotective effects of thoracal epidural anestesia are induced by the expression of vascular endothelial growth factor and inducible nitric oxide synthase in cardiopulmonary bypass surgery.

    Science.gov (United States)

    Gonca, S; Kiliçkan, L; Dalçik, C; Dalçik, H; Bayindir, O

    2007-02-01

    The cardioprotective effects of thoracal epidural anesthesia (TEA) are induced by the expression of vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (i-NOS) in cardiopulmonary bypass (CPB) surgery. When general anaesthesia (GA) is combined with TEA during coronary artery bypass graft, we investigated whether TEA together with GA play a role on VEGF and i-NOS expression in human heart tissue in cardiac ischemia. Right atrial biopsy samples were taken before CPB, before aortic cross clamp (ACC) and at 15 min after ACC release (after ischemia and reperfusion). Human heart tissues were obtained from the TEA+GA and GA groups. Immunocytochemistry was performed using antibodies for VEGF and i-NOS. Both VEGF and i-NOS immunoreactivity was observed in cardiomyocytes and arteriol walls. Although VEGF and i-NOS immunoreactivity was apparent in both groups,, immunostaining intensity was greater in the TEA+GA group than the GA group. Between groups, at 4 h and at 24 h after the end of CPB, the cardiac index (CI) was significantly higher in the TEA+GA group than GA group (3.4+/-0.8 L/min/m(2) vs 2.5+/-0.8 L/min/m(2); P0.05), (2.6+/-0.8 L/min/m(2) vs 3.1+/-1.1 L/min/m(2); P>0.05) respectively. After ACC release, 11/40 (27.5%) patients in the TEA+GA group showed ventricular fibrillation (VF), atrial fibrillation or heart block versus 25/40 (62.5%) of those in the GA group. VF after ACC release in the TEA+GA group (9/20 patients, 22.5%) was significantly lower than in the GA group (21/40 patients, 52.5%); (P<0.006). Sinus rhythm after ACC release in the TEA+GA group (29/40 patients, 72.5%) was significantly higher than in the GA group (15/40 patients, 37.5%); (P<0.002). The results of the present study indicate that TEA plus GA in coronary surgery preserve cardiac function via increased expression of VEGF and i-NOS, improved hemodynamic function and reduced arrhythmias after ACC release.

  11. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  12. The Mycobacterium tuberculosis homologue of the Mycobacterium ...

    African Journals Online (AJOL)

    With the completion of genome sequencing of Mycobacterium tuberculosis and upsurge in the incidence of M. tuberculosis infection worldwide partly as a result of HIV pandemic, there is need for rationale approach to vaccine and chemotherapy discoveries for M. tuberculosis. The homologue of mig gene of. Mycobacterium ...

  13. Analysis of MaACS2, a stress-inducible ACC Synthase Gene in Musa acuminata AAA Group Cultivar Pisang Ambon

    Directory of Open Access Journals (Sweden)

    Resnanti Utami Handayani

    2014-07-01

    Full Text Available Ethylene has an important function in plant growth and development. Ethylene production generally increases in response to pathogen attacks and other environmental stress conditions. The synthesis of this phytohormone is regulated by two enzymes, ACC synthase (ACS and ACC oxidase (ACO. ACC synthase is encoded by a multigene that regulates the production of ACC, after which this precursor is converted into ethylene by ACO. Pisang Ambon (Musa sp. AAA group, a banana cultivar originating from Indonesia, has nine ACS genes (MaACS 1-9 and one ACO gene (MaACO. One of the banana ACS genes, MaACS2, is stress-inducible. In this research, we have investigated the expression profile of MaACS2 in the roots and leaf tissues of infected tissue culture plants. Quantification of gene expression was analyzed using Real-Time PCR (qPCR using Ma18srRNA and MaGAPDH as reference genes. The results showed nine-to ten fold higher MaACS2 expression levels in the infected roots tissues compared to the uninfected roots tissues. However, MaACS2 expression in the leaves was only detected in infected tissue.

  14. Mechanism of action of minoxidil in the treatment of androgenetic alopecia is likely mediated by mitochondrial adenosine triphosphate synthase-induced stem cell differentiation.

    Science.gov (United States)

    Goren, A; Naccarato, T; Situm, M; Kovacevic, M; Lotti, T; McCoy, J

    2017-01-01

    Topical minoxidil is the only topical drug approved by the US Food and Drug Administration (FDA) for the treatment of androgenetic alopecia. However, the exact mechanism by which minoxidil stimulates anagen phase and promotes hair growth is not fully understood. In the late telegen phase of the hair follicle growth cycle, stem cells located in the bulge region differentiate and re-enter anagen phase, a period of growth lasting 2-6 years. In androgenetic alopecia, the anagen phase is shortened and a progressive miniaturization of hair follicles occurs, eventually leading to hair loss. Several studies have demonstrated that minoxidil increases the amount of intracellular Ca2+, which has been shown to up-regulate the enzyme adenosine triphosphate (ATP) synthase. A recent study demonstrated that ATP synthase, independent of its role in ATP synthesis, promotes stem cell differentiation. As such, we propose that minoxidil induced Ca2+ influx can increase stem cell differentiation and may be a key factor in the mechanism by which minoxidil facilitates hair growth. Based on our theory, we provide a roadmap for the development of a new class of drugs for the treatment of androgenetic alopecia.

  15. [Effect of methylene blue on changes in inducible nitric oxide synthase in lung of rats with sepsis].

    Science.gov (United States)

    Dai, Cheng; Wang, Yi; Yu, Xiangyou

    2016-02-01

    To study the time course of effect of methylene blue on inducible nitric oxide synthase (iNOS) mRNA transcription and protein expression in lung tissue of rats with sepsis, and its mechanism. 126 female Wistar rats were randomly divided into sham group, sepsis group and methylene blue group. Each group was subdivided into 0-, 6-, 12-, 18-, 24-, 30-, and 36-hour subgroups according to the time after operation, with 6 rats in each subgroup. A model of sepsis was reproduced by cecal ligation and puncture (CLP), and the rats in sham group were only opened the abdominal cavity and isolated the membrane of the appendix without CLP. Rats in methylene blue group were given injection of 15 mg/kg methylene blue at all time points after CLP, the remaining rats were given 0.9%NaCl solution in same amount. Six hours after the injection, the rats were sacrificed and the lung tissue was harvested immediately. The expression of iNOS mRNA and protein in lung tissues were determined by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and Western Blot respectively, and the changes in histopathology were observed using hematoxylin and eosin (HE) staining. Compared with sham group, the expression of iNOS mRNA was significantly up-regulated at 6, 12, 18 and 24 hours after CLP in sepsis group (2(-ΔΔCt): 2.42±0.66 vs. 1.00±0.38 at 6 hours, P = 0.002; 2.54±0.76 vs. 1.00±0.27 at 12 hours, P = 0.000; 5.46±2.26 vs. 1.00±0.38 at 18 hours, P = 0.000; 3.03±0.62 vs. 1.00±0.33 at 24 hours, P = 0.001), and iNOS protein expression was significantly up-regulated at 12, 18 and 24 hours (gray value: 2.54±0.45 vs. 1.00±0.35 at 12 hours, P = 0.000; 2.65±0.64 vs. 1.00±0.33 at 18 hours, P = 0.000; 3.03±0.59 vs. 1.00±0.24 at 24 hours, P = 0.000). Compared with sepsis group, the expression of iNOS mRNA was significantly down-regulated at 6, 12, 18 and 24 hours in methylene blue group (2(-ΔΔCt): 1.55±0.82 vs. 2.42±0.66 at 6 hours, P = 0.034; 1.84±0.42 vs. 2

  16. Characterization of four RecQ homologues from rice (Oryza sativa L. cv. Nipponbare)

    International Nuclear Information System (INIS)

    Saotome, Ai; Kimura, Seisuke; Mori, Yoko; Uchiyama, Yukinobu; Morohashi, Kengo; Sakaguchi, Kengo

    2006-01-01

    The RecQ family of DNA helicases is conserved throughout the biological kingdoms. In this report, we have characterized four RecQ homologues clearly expressed in rice. OsRecQ1, OsRecQ886, and OsRecQsim expressions were strongly detected in meristematic tissues. Transcription of the OsRecQ homologues was differentially induced by several types of DNA-damaging agents. The expression of four OsRecQ homologues was induced by MMS and bleomycin. OsRecQ1 and OsRecQ886 were induced by H 2 O 2 , and MitomycinC strongly induced the expression of OsRecQ1. Transient expression of OsRecQ/GFP fusion proteins demonstrated that OsRecQ2 and OsRecQ886 are found in nuclei, whereas OsRecQ1 and OsRecQsim are found in plastids. Neither OsRecQ1 nor OsRecQsim are induced by light. These results indicate that four of the RecQ homologues have different and specific functions in DNA repair pathways, and that OsRecQ1 and OsRecQsim may not involve in plastid differentiation but different aspects of a plastid-specific DNA repair system

  17. Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1.

    Science.gov (United States)

    Arimura, Gen-Ichiro; Huber, Dezene P W; Bohlmann, Jörg

    2004-02-01

    Feeding forest tent caterpillars (FTCs) induced local and systemic diurnal emissions of (-)-germacrene D, along with (E)-beta-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), benzene cyanide, and (E,E)-alpha-farnesene, from leaves of hybrid poplar. FTC feeding induced substantially higher levels of volatiles in local and systemic leaves than did mechanical wounding. A full-length poplar sesquiterpene synthase cDNA (PtdTPS1) was isolated and functionally identified as (-)-germacrene D synthase. Expression of PtdTPS1, expression of genes of early, intermediate and late steps in terpenoid biosynthesis, and expression of a lipoxygenase gene (PtdLOX1) were analyzed in local FTC-infested and systemic leaves. Transcript levels of PtdTPS1 and PtdLOX1 were strongly increased in response to herbivory. PtdTPS1 was also induced by mechanical wounding or by methyl jasmonate (MeJA) treatment. FTC feeding did not affect transcript levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), and isoprene synthase (IPS). Two other TPS genes, PtdTPS2 and PtTPS3, and farnesyl diphosphate synthase were only very transiently induced. These results illustrate differential expression of terpenoid pathway genes in response to insect feeding and a key function of (-)-germacrene D synthase PtdTPS1 for herbivore-induced local and systemic volatile emissions in hybrid poplar. FTC-induced transcripts of PtdTPS1 followed diurnal rhythm. Spatial patterns of FTC-induced PtdTPS1 transcript accumulation revealed acropetal but not basipetal direction of the systemic response. Implications for tritrophic poplar-FTC-predator/parasitoid interactions are discussed.

  18. Treadmill exercise decreases incidence of Alzheimer’s disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong

    2015-01-01

    Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer’s disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence. PMID:25960981

  19. Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits

    DEFF Research Database (Denmark)

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo

    2016-01-01

    these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive...

  20. Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues

    NARCIS (Netherlands)

    Biernat, M.A.; Ros, V.I.D.; Vlak, J.M.; Oers, van M.M.

    2011-01-01

    Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)-induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and

  1. Hepatitis B Virus Induces Cell Proliferation via HBx-Induced microRNA-21 in Hepatocellular Carcinoma by Targeting Programmed Cell Death Protein4 (PDCD4) and Phosphatase and Tensin Homologue (PTEN)

    OpenAIRE

    Damania, Preeti; Sen, Bijoya; Dar, Sadaf Bashir; Kumar, Satendra; Kumari, Anupama; Gupta, Ekta; Sarin, Shiv Kumar; Venugopal, Senthil Kumar

    2014-01-01

    Hepatitis B viral infection-induced hepatocellular carcinoma is one of the major problems in the developing countries. One of the HBV proteins, HBx, modulates the host cell machinery via several mechanisms. In this study we hypothesized that HBV enhances cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma. HBx gene was over-expressed, and miRNA-21 expression and cell proliferation were measured in Huh 7 and Hep G2 cells. miRNA-21 was over-expressed in these cells, cell ...

  2. Characterization of the family of Mistic homologues

    Directory of Open Access Journals (Sweden)

    Castronovo Samantha

    2006-05-01

    Full Text Available Abstract Background Mistic is a unique Bacillus subtilis protein with virtually no detectable homologues in GenBank, which appears to integrate into the bacterial membrane despite an overall hydrophilic composition. These unusual properties have been shown to be useful for high-yield recombinant expression of other membrane proteins through fusion to the C-terminus of Mistic. To better understand the structure and function of Mistic, we systematically searched for and characterized homologous proteins among closely related bacteria. Results Three homologues of Mistic were found with 62% to 93% residue identity, all only 84 residues in length, corresponding to the C-terminal residues of B. subtilis Mistic. In every case, the Mistic gene was found partially overlapping a downstream gene for a K+ channel protein. Residue variation amongst these sequences is restricted to loop regions of the protein's structure, suggesting that secondary structure elements and overall fold have been conserved. Additionally, all three homologues retain the functional ability to chaperone fusion partners to the membrane. Conclusion The functional core of Mistic consists of 84 moderately conserved residues that are sufficient for membrane targeting and integration. Understanding the minimal structural and chemical complexity of Mistic will lead to insights into the mechanistic underpinnings of Mistic-chaperoned membrane integration, as well as how to optimize its use for the recombinant heterologous expression of other integral membrane proteins of interest.

  3. Hepatitis B virus induces cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma by targeting programmed cell death protein4 (PDCD4 and phosphatase and tensin homologue (PTEN.

    Directory of Open Access Journals (Sweden)

    Preeti Damania

    Full Text Available Hepatitis B viral infection-induced hepatocellular carcinoma is one of the major problems in the developing countries. One of the HBV proteins, HBx, modulates the host cell machinery via several mechanisms. In this study we hypothesized that HBV enhances cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma. HBx gene was over-expressed, and miRNA-21 expression and cell proliferation were measured in Huh 7 and Hep G2 cells. miRNA-21 was over-expressed in these cells, cell proliferation and the target proteins were analyzed. To confirm the role of miRNA-21 in HBx-induced proliferation, Hep G 2.2.1.5 cells (a cell line that expresses HBV stably were used for miRNA-21 inhibition studies. HBx over-expression enhanced proliferation (3.7- and 4.5-fold increase; n = 3; p<0.01 and miRNA-21 expression (24- and 36-fold increase, normalized with 5S rRNA; p<0.001 in Huh 7 and Hep G2 cells respectively. HBx also resulted in the inhibition of miRNA-21 target proteins, PDCD4 and PTEN. miRNA-21 resulted in a significant increase in proliferation (2- and 2.3-fold increase over control cells; p<0.05 in Huh 7 and Hep G2 cells respectively and decreased target proteins, PDCD4 and PTEN expression. Anti-miR-21 resulted in a significant decrease in proliferation (p<0.05 and increased miRNA-21 target protein expression. We conclude that HBV infection enhances cell proliferation, at least in part, via HBx-induced miRNA-21 expression during hepatocellular carcinoma progression.

  4. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  5. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-01-01

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  6. β-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells.

    Science.gov (United States)

    Ji, Deng Bo; Xu, Bo; Liu, Jing Tao; Ran, Fu Xiang; Cui, Jing Rong

    2011-12-01

    β-escin, a triterpene saponin, is one of the major active compounds extracted from horse chestnut (Aesculus hippocastanum) seed. Previous work has found that β-escin sodium has antiinflammatory and antitumor effects. In the present study, we investigated its effect on cell proliferation and inducible nitric-oxide synthase (iNOS) expression in human lung carcinoma A549 cells. β-escin sodium (5-40 µg/mL) inhibited cytokine mixture (CM)-induced nitric oxide (NO) production in A549 cells by reducing the expression of iNOS. β-escin sodium suppressed phosphorylation and nuclear translocation of STAT1 (Tyr701) and STAT3 (Tyr705) induced by CM but did not affect the activation of c-Jun and NF-κB. β-escin sodium inhibited the activation of protein tyrosine kinase JAK2. Pervanadate treatment reversed the β-escin sodium-induced downregulation of STAT3 and STAT1. β-escin sodium treatment enhanced an activating phosphorylation of the phosphatase SHP2. Small interfering RNA-mediated knockdown of SHP2 inhibited β-escin sodium-induced phospho-STAT dephosphorylation. Moreover β-escin sodium reduced the activation of p38 MAPK. Finally, β-escin sodium inhibited the proliferation of A549 cells, did not change the cell membrane's permeability, nuclear morphology and size and the mitochondria's transmembrane potential of A549 cells. Taken together, these results demonstrate that β-escin sodium could downregulate iNOS expression through inhibiting JAK/STAT signaling and p38 MAPK activation in A549 cells. β-escin sodium has a marked antiproliferative effect on A549 cells at least in part by inhibiting the JAK/STAT signaling pathway, but not by a cytotoxic effect. β-escin sodium would be useful as a chemopreventive agent or a therapeutic against inflammatory-associated tumor. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  7. Saturated free fatty acid sodium palmitate-induced lipoapoptosis by targeting glycogen synthase kinase-3β activation in human liver cells.

    Science.gov (United States)

    Cao, Jie; Feng, Xiao-Xia; Yao, Long; Ning, Bo; Yang, Zhao-Xia; Fang, Dian-Liang; Shen, Wei

    2014-02-01

    Elevated serum saturated fatty acid levels and hepatocyte lipoapoptosis are features of nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to investigate saturated fatty acid induction of lipoapoptosis in human liver cells and the underlying mechanisms. Human liver L02 and HepG2 cells were treated with sodium palmitate, a saturated fatty acid, for up to 48 h with or without lithium chloride, a glycogen synthase kinase-3β (GSK-3β) inhibitor, or GSK-3β shRNA transfection. Transmission electron microscopy was used to detect morphological changes, flow cytometry was used to detect apoptosis, a colorimetric assay was used to detect caspase-3 activity, and western blot analysis was used to detect protein expression. The data showed that sodium palmitate was able to induce lipoapoptosis in L02 and HepG2 cells. Western blot analysis showed that sodium palmitate activated GSK-3β protein, which was indicated by dephosphorylation of GSK-3β at Ser-9. However, inhibition of GSK-3β activity with lithium chloride treatment or knockdown of GSK-3β expression with shRNA suppressed sodium palmitate-induced lipoapoptosis in L02 and HepG2 cells. On a molecular level, inhibition of GSK-3β expression or activity suppressed sodium palmitate-induced c-Jun-N-terminal kinase (JNK) phosphorylation and Bax upregulation, whereas GSK-3β inhibition did not affect endoplasmic reticulum stress-induced activation of unfolded protein response. The present data demonstrated that saturated fatty acid sodium palmitate-induced lipoapoptosis in human liver L02 and HepG2 cells was regulated by GSK-3β activation, which led to JNK activation and Bax upregulation. This finding indicates that GSK-3β inhibition may be a potential therapeutic target to control NAFLD.

  8. Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer.

    Science.gov (United States)

    Ambs, Stefan; Glynn, Sharon A

    2011-02-15

    Inducible nitric oxide synthase (NOS2) is an inflammation responsive enzyme (EC 1.14.13.39) that is induced during acute and chronic inflammation and tissue injury as part of the host defense and wound healing process. NOS2 up-regulation leads to increased nitric oxide (NO) production, the means by which this enzyme can initiate NO-dependent signal transduction, influence the redox state of cells and induce modifications of proteins, lipids, and DNA. Aberrant expression of NOS2 has been observed in many types of human tumors. In breast cancer, increased NOS2 is associated with markers of poor outcome and decreased survival. Growth factor and cytokine signaling, tissue remodeling, NF-kB activation, and hypoxia are candidate mechanisms that induce NOS2 in tumor epithelial and tumor-infiltrating cells. NOS2 induction will trigger the release of variable amounts of NO into the tumor microenvironment and can activate oncogenic pathways, including the Akt, epidermal growth factor receptor and c-Myc signaling pathways, and stimulate tumor microvascularization. Constitutively increased NO levels may also select for mutant p53 cells to overcome the tumor suppressor function of NO-activated wild-type p53. More recent findings suggest that NO induces stem cell-like tumor characteristics in breast cancer. In this review, we will discuss the effects of NO in tumor biology and disease progression with an emphasis on breast cancer, and will examine the mechanisms that link increased NO to a basal-like transcription pattern in human breast tumors and poor disease outcome.

  9. Metformin Ameliorates Dysfunctional Traits of Glibenclamide- and Glucose-Induced Insulin Secretion by Suppression of Imposed Overactivity of the Islet Nitric Oxide Synthase-NO System.

    Directory of Open Access Journals (Sweden)

    Ingmar Lundquist

    Full Text Available Metformin lowers diabetic blood glucose primarily by reducing hepatic gluconeogenesis and increasing peripheral glucose uptake. However, possible effects by metformin on beta-cell function are incompletely understood. We speculated that metformin might positively influence insulin secretion through impacting the beta-cell nitric oxide synthase (NOS-NO system, a negative modulator of glucose-stimulated insulin release. In short-time incubations with isolated murine islets either glibenclamide or high glucose augmented insulin release associated with increased NO production from both neural and inducible NOS. Metformin addition suppressed the augmented NO generation coinciding with amplified insulin release. Islet culturing with glibenclamide or high glucose revealed pronounced fluorescence of inducible NOS in the beta-cells being abolished by metformin co-culturing. These findings were reflected in medium nitrite-nitrate levels. A glucose challenge following islet culturing with glibenclamide or high glucose revealed markedly impaired insulin response. Metformin co-culturing restored this response. Culturing murine islets and human islets from controls and type 2 diabetics with high glucose or high glucose + glibenclamide induced a pronounced decrease of cell viability being remarkably restored by metformin co-culturing. We show here, that imposed overactivity of the beta-cell NOS-NO system by glibenclamide or high glucose leads to insulin secretory dysfunction and reduced cell viability and also, importantly, that these effects are relieved by metformin inhibiting beta-cell NO overproduction from both neural and inducible NOS thus ameliorating a concealed negative influence by NO induced by sulfonylurea treatment and/or high glucose levels. This double-edged effect of glibenclamide on the beta-cellsuggests sulfonylurea monotherapy in type 2 diabetes being avoided.

  10. Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model

    Directory of Open Access Journals (Sweden)

    Savinova Olga V

    2007-12-01

    Full Text Available Abstract Background Nitric oxide synthase 2 (NOS2 contributes to neural death in some settings, but its role in glaucoma remains controversial. NOS2 is implicated in retinal ganglion cell degeneration in a rat glaucoma model in which intraocular pressure (IOP is experimentally elevated by blood vessel cauterization, but not in a rat glaucoma model where IOP was elevated by injection of hypertonic saline. To test the importance of NOS2 for an inherited glaucoma, in this study we both genetically and pharmacologically decreased NOS2 activity in the DBA/2J mouse glaucoma model. Methods The expression of Nos2 in the optic nerve head was analyzed at both the RNA and protein levels at different stages of disease pathogenesis. To test the involvement of Nos2 in glaucomatous neurodegeneration, a null allele of Nos2 was backcrossed into DBA/2J mice and the incidence and severity of glaucoma was assessed in mice of each Nos2 genotype. Additionally, DBA/2J mice were treated with the NOS2 inhibitor aminoguanidine and the disease compared to untreated mice. Results Optic nerve head Nos2 RNA levels varied and increased during moderate but decreased at early and severe stages of disease. Despite the presence of a few NOS2 positive cells in the optic nerve head, NOS2 protein was not substantially increased during the glaucoma. Genetic deficiency of Nos2 or aminoguanidine treatment did not alter the IOP profile of DBA/2J mice. Additionally, neither Nos2 deficiency nor aminoguanidine had any detectable affect on the glaucomatous optic nerve damage. Conclusion Glaucomatous neurodegeneration in DBA/2J mice does not require NOS2 activity. Further experiments involving various models are needed to assess the general importance of Nos2 in glaucoma.

  11. Hypoxic inactivation of glycogen synthase kinase-3β promotes gastric tumor growth and angiogenesis by facilitating hypoxia-inducible factor-1 signaling.

    Science.gov (United States)

    Ko, Young San; Cho, Sung Jin; Park, Jinju; Choi, Yiseul; Lee, Jae-Seon; Youn, Hong-Duk; Kim, Woo Ho; Kim, Min A; Park, Jong-Wan; Lee, Byung Lan

    2016-09-01

    Since the molecular mechanism of hypoxic adaptation in cancer cells is cell-type specific, we investigated whether glycogen synthase kinase-3β (GSK-3β) activation is involved in hypoxia-induced gastric tumor promotion. Stable gastric cancer cell lines (SNU-638, SNU-484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild-type GSK-3β (WT-GSK-3β) or kinase-dead mutant of GSK-3β (KD-GSK-3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK-3β activation in gastric cancer cells. Cell viability and the expressions of HIF-1α protein and VEGF mRNA in gastric cancer cells were higher in KD-GSK-3β transfectants than in WT-GSK-3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF-1α activation, and VEGF expression were higher in KD-GSK-3β tumors than in WT-GSK-3β tumors in vivo. In addition, the expression of hypoxia-induced HIF-1α protein was regulated by GSK-3β at the translational level. Our data suggest that GSK-3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF-1α/VEGF signaling pathway. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. Noise-Induced “Toughening” Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation

    Science.gov (United States)

    Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Gabaldón-Ull, María C.; Jareño-Flores, Tania; Miller, Josef M.; Juiz, José M.

    2016-01-01

    An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this “toughening” effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with “toughening” and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol. PMID:27065815

  13. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  15. Wound-induced ethylene synthesis and expression and formation of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, phenylalanine ammonia-lyase, and peroxidase in wounded mesocarp tissue of Cucurbita maxima.

    Science.gov (United States)

    Kato, M; Hayakawa, Y; Hyodo, H; Ikoma, Y; Yano, M

    2000-04-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase was rapidly induced in mesocarp tissue of Cucurbita maxima after wounding in the cut surface layer in 1 mm thickness (ca. 9 cells) (first layer) in both the enzyme activity and the levels of transcript. This led to a rapid accumulation of ACC and hence ethylene production. In the inside tissue (1-2 mm) (second layer), no significant induction of ACC synthase was observed, which resulted in a low level of ACC, although ethylene was evolved at a much lower rate than the first one. In contrast to ACC synthase, ACC oxidase was induced markedly in both the first and second layers and the development of its activity and the levels of mRNA remained high until later stages. It was considered that wound ethylene was closely associated with the development of ACC oxidase, since 2,5-norbornadiene (NBD), an inhibitor of ethylene action, substantially suppressed it. Phenylalanine ammonia-lyase (PAL) greatly increased in activity after wounding similarly to that of ACC synthase, in which increase in PAL activity occurred predominantly in the first layer. Induction of peroxidase activity after wounding had a close correlation in profile with that of ACC oxidase in that marked increases in the activity were observed in both the first and second layers and were strongly suppressed by NBD application. Four peroxidase isozymes were found by PAGE, among which a fraction was newly detected after wounding.

  16. Tyrosol Attenuates High Fat Diet-Induced Hepatic Oxidative Stress: Potential Involvement of Cystathionine β-Synthase and Cystathionine γ-Lyase.

    Science.gov (United States)

    Sarna, Lindsei K; Sid, Victoria; Wang, Pengqi; Siow, Yaw L; House, James D; O, Karmin

    2016-05-01

    The Mediterranean diet is known for its cardioprotective effects. Recently, its protective qualities have also been reported in patients with non-alcoholic fatty liver disease (NAFLD). Oxidative stress is one of the important factors responsible for the development and progression of NAFLD. Hydrogen sulfide (H2S), a multifaceted gasotransmitter, has emerged as a potential therapeutic target in NAFLD. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are major enzymes responsible for endogenous H2S synthesis. Since oxidative stress contributes to NAFLD pathogenesis, the objective of this study was to investigate the effect of tyrosol, a major compound in olive oil and white wine, on high fat diet-induced hepatic oxidative stress and the mechanisms involved. Mice (C57BL/6) were fed for 5 weeks with a control diet (10 % kcal fat), a high fat diet (60 % kcal fat, HFD) or a HFD supplemented with tyrosol. High fat diet feeding induced hepatic oxidative stress, as indicated by the significant increase in lipid peroxidation and NADPH oxidase activity. Tyrosol supplementation significantly increased hepatic CBS and CSE expression and H2S synthesis in high fat diet-fed mice. Such effects were associated with the attenuation of high fat diet-induced hepatic lipid peroxidation and the restoration of the redox equilibrium of the antioxidant glutathione. Tyrosol also inhibited palmitic acid-induced oxidative stress in hepatocytes (HepG2 cells). These results suggest that the antioxidant properties of tyrosol may be mediated through functional changes in CBS and CSE activity, which might contribute to the hepatoprotective effect of the Mediterranean diet.

  17. Glycated human serum albumin induces NF-κB activation and endothelial nitric oxide synthase uncoupling in human umbilical vein endothelial cells.

    Science.gov (United States)

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Raposeiras-Roubín, Sergio; González-Peteiro, Mercedes; González-Juanatey, José R; Álvarez, Ezequiel

    2015-01-01

    Non-enzymatic glycated proteins could mediate diabetes vascular complications, but the molecular mechanisms are unknown. Our objective was to find new targets involved in the glycated human serum albumin (gHSA)-enhanced extracellular reactive oxygen species (ROS) production in human endothelial cells. Some nuclear factors and phosphorylation cascades were analysed. gHSA activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which up-regulated NOX4 and P22PHOX and enhanced ROS production. Pharmacological inhibition of NF-κB reversed gHSA-enhanced NOX4 expression and decreased gHSA-induced ROS production in extra- and intracellular spaces. The inhibition of activator protein-1 (AP-1) induced a rise in NOX4 and P22PHOX subunit expression and a down-regulation of endothelial nitric oxide synthase (eNOS). AP-1 inhibition also enhanced extracellular ROS production in the presence of serum albumin, but not with gHSA. These results were explained by the eNOS uncoupling induced by gHSA, also demonstrated in this study. Phosphatidylinositol 3-kinase or mitogen-activated protein kinase kinase 1/2 did not show to be involved in gHSA-induced ROS production. All together, the results suggested that gHSA-enhanced ROS production in endothelium is mediated by: 1) NF-κB activation and subsequence up-regulation of NADPH oxidase, 2) eNOS uncoupling. AP-1, although is not directly affected by gHSA, is another target for regulating NADPH oxidase and eNOS expression in endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity.

    Science.gov (United States)

    Oertel, Stephanie; Scholich, Klaus; Weigert, Andreas; Thomas, Dominique; Schmetzer, Julia; Trautmann, Sandra; Wegner, Marthe-Susanna; Radeke, Heinfried H; Filmann, Natalie; Brüne, Bernhard; Geisslinger, Gerd; Tegeder, Irmgard; Grösch, Sabine

    2017-08-01

    Loss of intestinal barrier functions is a hallmark of inflammatory bowel disease like ulcerative colitis. The molecular mechanisms are not well understood, but likely involve dysregulation of membrane composition, fluidity, and permeability, which are all essentially regulated by sphingolipids, including ceramides of different chain length and saturation. Here, we used a loss-of-function model (CerS2 +/+ and CerS2 -/- mice) to investigate the impact of ceramide synthase 2, a key enzyme in the generation of very long-chain ceramides, in the dextran sodium salt (DSS) evoked model of UC. CerS2 -/- mice developed more severe disease than CerS2 +/+ mice in acute DSS and chronic AOM/DSS colitis. Deletion of CerS2 strongly reduced very long-chain ceramides (Cer24:0, 24:1) but concomitantly increased long-chain ceramides and sphinganine in plasma and colon tissue. In naive CerS2 -/- mice, the expression of tight junction proteins including ZO-1 was almost completely lost in the colon epithelium, leading to increased membrane permeability. This could also be observed in vitro in CerS2 depleted Caco-2 cells. The increase in membrane permeability in CerS2 -/- mice did not manifest with apparent clinical symptoms in naive mice, but with slight inflammatory signs such as an increase in monocytes and IL-10. AOM/DSS and DSS treatment alone led to a further deterioration of membrane integrity and to severe clinical symptoms of the disease. This was associated with stronger upregulation of cytokines in CerS2 -/- mice and increased infiltration of the colon wall by immune cells, particularly monocytes, CD4 + and Th17 + T-cells, and an increase in tumor burden. In conclusion, CerS2 is crucial for the maintenance of colon barrier function and epithelial integrity. CerS2 knockdown, and associated changes in several sphingolipids such as a drop in very long-chain ceramides/(dh)-ceramides, an increase in long-chain ceramides/(dh)-ceramides, and sphinganine in the colon, may weaken

  19. Falcarindiol impairs the expression of inducible nitric oxide synthase by abrogating the activation of IKK and JAK in rat primary astrocytes.

    Science.gov (United States)

    Shiao, Young-Ji; Lin, Yun-Lian; Sun, Ya-Hui; Chi, Chih-Wen; Chen, Chieh-Fu; Wang, Chuen-Neu

    2005-01-01

    The effects of falcarindiol on the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide/interferon-gamma (LPS/IFN-gamma) in rat primary astrocytes were investigated. The molecular mechanisms underlying falcarindiol that confers its effect on iNOS expression were also elucidated. Falcarindiol abrogated the LPS/IFN-gamma-mediated induction of iNOS by about 80%. Falcarindiol attenuated the induction of iNOS in a concentration-dependent manner. The inhibitory effect of falcarindiol on iNOS induction was attributable to decrease in the protein content and the mRNA level of iNOS. Treatment with 50 microM of falcarindiol for 30 min decreased LPS/IFN-gamma-induced nuclear factor-kappaB (NF-kappaB) activation by 32%. Treatment with 50 microM of falcarindiol for 60 min diminished the LPS/IFN-gamma-mediated activation of IkappaB kinase-alpha (IKK-alpha) and IKK-beta by 28.2 and 29.7%, respectively. Falcarindiol modulated the nuclear translocation of signal transducer and activator of transcription 1 (Stat1) in a time-dependent manner. Falcarindiol (50 microM) decreased the tyrosine phosphorylation of janus kinase 1 (JAK1) by 84.8% at 5 min. Falcarindiol also abrogated the tyrosine phoshorylation of JAK2 by 82.3% at 10 min.The present study demonstrates that falcarindiol attenuated the activation of IKK and JAK contributing to the blockade of activation of NF-kappaB and Stat1, thereby leading to the suppression of iNOS expression.

  20. Selective versus non-selective suppression of nitric oxide synthase on regional hemodynamics in rats with or without LPS-induced endotoxemia.

    Science.gov (United States)

    Cheng, Xing; Leung, Susan W S; Lo, Lawrence S; Pang, Catherine C Y

    2003-04-01

    The late phase of severe septic shock is associated with reduced cardiac output (CO) and activation of the inducible isoform of nitric oxide synthase (NOS). This study examined the effects of 1400 W (N-3-aminomethyl-benzyl-acetamidine), a new selective inhibitor of inducible NOS (iNOS), relative to those of N(G)-nitro-L-arginine (L-NNA, non-selective inhibitor of NOS) and the vehicle, on mean arterial pressure (MAP), CO, total peripheral resistance (TPR) and tissue blood flow (BF) in thiobutabarbital-anesthetized rats with lipopolysaccharide (LPS, 10 mg/kg, i.v.) induced endotoxemia. At 2.5 as well as 4 h after injection of LPS, MAP, CO, and BF of the stomach, skeletal muscle and skin were decreased, but TPR was increased, BF to the heart and kidneys were also decreased at 4 h after injection of LPS. Treatment of endotoxemic rats with 1400 W (3 mg/kg followed by 3 mg/kg/h, i.v.) at 2.5 h after endotoxin challenge prevented the late phase fall in MAP without exacerbating the decreases in CO and tissue BF. In contrast, treatment with L-NNA (8 mg/kg followed by 3 mg/kg/h, i.v.) at 2.5 h did not prevent the decline in MAP in the LPS-treated rats. Furthermore, CO drastically decreased, TPR markedly increased, and BF to the heart, brain, intestine and skeletal muscle were decreased at 4 h relative to the readings in saline- or 1400 W-treated endotoxemic rats. Therefore, selective inhibition of iNOS by 1400 W restores MAP without compromising CO, but non-selective inhibition of NOS is detrimental at the late stage of septic shock.

  1. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  2. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  3. Improvement of Tissue Survival of Skin Flaps by 5α-Reductase Inhibitors: Possible Involvement of Nitric Oxide and Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Karimi, Ali Asghar; Ajami, Marjan; Asadi, Yasin; Aboutaleb, Nahid; Gorjipour, Fazel; Malekloo, Roya; Pazoki-Toroudi, Hamidreza

    2015-01-01

    Background: Skin flap grafting is a popular approach for reconstruction of critical skin and underlying soft tissue injuries. In a previous study, we demonstrated the beneficial effects of two 5α-reductase inhibitors, azelaic acid and finasteride, on tissue survival in a rat model of skin flap grafting. In the current study, we investigated the involvement of nitric oxide and inducible nitric oxide synthase (iNOS) in graft survival mediated by these agents. Methods: A number of 42 male rats were randomly allocated into six groups: 1, normal saline topical application; 2, azelaic acid (100 mg/flap); 3, finasteride (1 mg/flap); 4, injection of L-NG-nitroarginine methyl ester (L-NAME) (i.p., 20 mg/kg); 5, L-NAME (20 mg/kg, i.p.) + azelaic acid (100 mg/flap, topical); 6, L-NAME (20 mg/kg, i.p.) + finasteride (1 mg/flap, topical). Tissue survival, level of nitric oxide, and iNOS expression in groups were measured. Results: Our data revealed that azelaic acid and finasteride significantly increased the expression of iNOS protein and nitric oxide (NO) levels in graft tissue (P azelaic acid- and finasteride-mediated survival of the skin flaps. PMID:25864816

  4. Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice.

    Science.gov (United States)

    Kusuda, Hiroki; Koga, Wataru; Kusano, Miyako; Oikawa, Akira; Saito, Kazuki; Hirai, Masami Yokota; Yoshida, Kaoru T

    2015-03-01

    Salt stress is an important factor that limits crop production worldwide. The salt tolerance of plants is a complex biological process mediated by changes in gene expression and metabolite composition. The enzyme myo-inositol 3-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, and overexpression of the MIPS gene enhances salt stress tolerance in several plant species. In this study, we performed metabolite profiling of both MIPS-overexpressing and wild-type rice. The enhanced salt stress tolerance of MIPS-overexpressing plants was clear based on growth and the metabolites under salt stress. We found that constitutive overexpression of the rice MIPS gene resulted in a wide range of metabolic changes. This study demonstrates for the first time that overexpression of the MIPS gene increases various metabolites responsible for protecting plants from abiotic stress. Activation of both basal metabolism, such as glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, and inositol metabolism is induced in MIPS-overexpressing plants. We discuss the relationship between the metabolic changes and the improved salt tolerance observed in transgenic rice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Involvement of extraneural tissues and upregulation of inducible nitric oxide synthase after experimental infection with rabies virus in BALB/c mice and LEW/SsN rats.

    Science.gov (United States)

    Liao, Pi-Hung; Hsu, Yung-Hsiang; Yang, Hui-Hua; Wang, Ming-Hseng; Chen, Li-Kuang

    2012-09-01

    Rabies virus can cause fatal encephalomyelitis, but the involvement of extraneural organs has not been well characterized. In this study, we investigated the histopathological changes and the distribution of viral antigens in extraneural organs after pathogenic rabies virus infection in mouse and rat models. In histopathological examination, classical viral encephalitis and rabies-specific Negri body were observed in the brain. In addition to the central nervous system (CNS), inflammatory responses were found in other organs, such as the heart, kidney, liver, and lung. Similarly, immunohistochemical staining and reverse transcription-polymerase chain reaction revealed the presence of rabies virus in the CNS and extraneural tissues. Moreover, macrophages, especially in the lung and heart, were involved in the infection. Transcriptional analyses of the expression of inducible nitric oxide synthase (iNOS) demonstrated that rabies virus potentiated the gene expression of iNOS in the brain, lung, and heart. The immunoreactive iNOS-positive macrophages were detected adjacent to the infection. These results suggest that macrophages are involved in the extraneural infection and the expression of iNOS in macrophages contributes to the formation of tissue inflammation. Our study indicates the involvement of extraneural organs following rabies virus infection, which may aggravate the progression of this deadly disease. © 2012 The Authors. Pathology International © 2012 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  6. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Corominas-Faja, Bruna; Cufi, Sílvia; Vellon, Luciano; Oliveras-Ferraros, Cristina; Menendez, Octavio J; Joven, Jorge; Lupu, Ruth; Menendez, Javier A

    2013-01-15

    Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic β-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The

  7. Prostaglandin E2 induces vascular relaxation by E-prostanoid 4 receptor-mediated activation of endothelial nitric oxide synthase

    DEFF Research Database (Denmark)

    Hristovska, Ana-Marija; Rasmussen, Lasse E; Hansen, Pernille B L

    2007-01-01

    and was abolished by N(G)-nitro-l-arginine methyl ester and the soluble guanylate cyclase inhibitor 1H(1,2,4)-oxadiazolo-[4,3-a]quinoxalin-1-one. In PGE(2)-relaxed aortic rings, the cGMP content increased significantly. PGE(2)-induced relaxations were abolished by the EP4 receptor antagonist AE3-208 (10(-8) mol...

  8. High nitric oxide production, secondary to inducible nitric oxide synthase expression, is essential for regulation of the tumour-initiating properties of colon cancer stem cells.

    Science.gov (United States)

    Puglisi, Maria Ausiliatrice; Cenciarelli, Carlo; Tesori, Valentina; Cappellari, Marianna; Martini, Maurizio; Di Francesco, Angela Maria; Giorda, Ezio; Carsetti, Rita; Ricci-Vitiani, Lucia; Gasbarrini, Antonio

    2015-08-01

    Chronic inflammation is a leading cause of neoplastic transformation in many human cancers and especially in colon cancer (CC), in part due to tumour promotion by nitric oxide (NO) generated at inflammatory sites. It has also been suggested that high NO synthesis, secondary to inducible NO synthase (iNOS) expression, is a distinctive feature of cancer stem cells (CSCs), a small subset of tumour cells with self-renewal capacity. In this study we explored the contribution of NO to the development of colon CSC features and evaluated potential strategies to treat CC by modulating NO production. Our data show an integral role for endogenous NO and iNOS activity in the biology of colon CSCs. Indeed, colon CSCs with high endogenous NO production (NO(high)) displayed higher tumourigenic abilities than NO(low) fractions. The blockade of endogenous NO availability, using either a specific iNOS inhibitor or a genetic knock-down of iNOS, resulted in a significant reduction of colon CSC tumourigenic capacities in vitro and in vivo. Interestingly, analysis of genes altered by iNOS-directed shRNA showed that the knockdown of iNOS expression was associated with a significant down-regulation of signalling pathways involved in stemness and tumour progression in colon CSCs. These findings confirm that endogenous NO plays an important role in defining the stemness properties of colon CSCs through cross-regulation of several cellular signalling pathways. This discovery could shed light on the mechanisms by which NO induces the growth and invasiveness of CC, providing new insights into the link between inflammation and colon tumourigenesis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Agnes eKeszler

    2014-08-01

    Full Text Available Far red/near-infrared light (NIR promotes a wide range of biological effects including tissue protection but whether and how NIR is capable of acutely protecting myocardium against ischemia and reperfusion injury in vivo is not fully elucidated. Our previous work indicates that NIR exposure immediately before and during early reperfusion protects the myocardium against infarction through mechanisms that are nitric oxide (NO-dependent. Here we tested the hypothesis that NIR elicits protection in a diabetic mouse model where other cardioprotective interventions such as pre- and postconditioning fail, and that the protection is independent of nitric oxide synthase (NOS. NIR reduced infarct size dose dependently. Importantly, NIR-induced protection was preserved in a diabetic mouse model (db/db and during acute hyperglycemia, as well as in endothelial NOS-/- mice and in wild type mice treated with NOS inhibitor L-NAME. In in vitro experiments NIR light liberates NO from nitrosyl hemoglobin (HbNO and nitrosyl myoglobin (MbNO in a wavelength (660-830 nm and dose-dependent manner. Irradiation at 660 nm yields the highest release of NO, while at longer wavelengths a dramatic decrease of NO release can be observed. Similar wavelength dependence was observed for the protection of mice against cardiac ischemia and reperfusion injury in vivo. NIR-induced NO release from deoxymyoglobin in the presence of nitrite mildly inhibits respiration of isolated mitochondria after hypoxia. In summary, NIR applied during reperfusion protects the myocardium against infarction in an NO dependent, but NOS-independent mechanisms, whereby mitochondria may be a target of NO released by NIR, leading to reduced reactive oxygen species generation during reperfusion. This unique mechanism preserves protection even during diabetes where other protective strategies fail.

  10. Binding thermodynamics of a glutamate transporter homologue

    Science.gov (United States)

    Reyes, Nicolas; Oh, SeCheol; Boudker, Olga

    2013-01-01

    Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes, and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homologue from Pyrococcus horikoshii in key conformational states with substrate-binding site facing either the extracellular or intracellular sides of the membrane to study their binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, and not to substrate translocation. Despite the structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest. PMID:23563139

  11. Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin.

    Science.gov (United States)

    Viačková, Daniela; Pekarová, Michaela; Crhák, Tomáš; Búcsaiová, Martina; Matiašovic, Ján; Lojek, Antonín; Kubala, Lukáš

    2011-04-01

    Reactive oxygen and nitrogen species are among the crucial mediators in the development of the pathological inflammatory process in the lungs and contribute to the damage of lung epithelium. The aim of the present study was to evaluate the potential of selected antioxidants or inhibitors of NADPH oxidase (glutathione, N-acetyl cysteine, trolox, apocynin, and diphenyleneiodonium chloride) to modulate nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression by mouse macrophages induced by lipopolysaccharide (LPS) in vitro and to evaluate the potential of apocynin to modulate the course of LPS-induced lung inflammation in vivo. All the tested drugs revealed inhibitory effects on LPS-induced NO production and iNOS expression in RAW 264.7 macrophages. Further, apocynin significantly inhibited activation of nuclear factor kappa B induced by LPS. Ex vivo, diphenyleneiodonium chloride and apocynin significantly reduced ROS production by inflammatory cells isolated from bronchoalveolar lavage fluid. In contrast, in vivo intranasal application of apocynin did not exert any significant effect on the course of lung inflammation in mice induced by LPS that was evaluated based on the accumulation of cells, interleukine-6, interleukine-12, RANTES, tumor necrosis factor-alpha, and protein concentration in bronchoalveolar lavage fluid and expression of iNOS in lung tissue. Only effected were the levels of nitrites 36 h after induction of lung inflammation that were reduced in the apocynin-treated group. In conclusion, our data suggest that the inhibitors of NADPH oxidase possess inhibitory potential against LPS-induced NO production by mouse macrophages; however, apocynin failed to reduce LPS-induced lung inflammation in mice. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Ji-Nan Dai

    Full Text Available Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine, has been known to display anti-inflammatory properties. The current study investigates the potential mechanisms whereby gastrodin affects the expression of potentially pro-inflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS.BV-2 cells were pretreated with gastrodin (30, 40, and 60 µM for 1 h and then stimulated with LPS (1 µg/ml for another 4 h. The effects on proinflammatory enzymes, inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2, and proinflammatory cytokines, tumor necrosis factor-α (TNF-α, and interleukin-1β (IL-1β, are analysed by double-immunofluorescence labeling and RT-PCR assay. To reveal the mechanisms of action of gastrodin we investigated the involvement of mitogen-activated protein kinases (MAPKs cascades and their downstream transcription factors, nuclear factor-κB (NF-κB and cyclic AMP-responsive element (CRE-binding protein (CREB. Gastrodin significantly reduced the LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β and NF-κB. LPS (1 µg/ml, 30 min-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2, c-Jun N-terminal protein kinase (JNK and p38 mitogen-activated protein kinase (p38 MAPK and this was inhibited by pretreatment of BV-2 cells with different concentrations of gastrodin (30, 40, and 60 µM. In addition, gastrodin blocked LPS-induced phosphorylation of inhibitor κB-α (IκB-α (and hence the activation of NF-κB and of CREB, respectively.This study indicates that gastrodin significantly attenuate levels of neurotoxic proinflammatory mediators and proinflammatory cytokines by inhibition of the NF-κB signaling pathway and phosphorylation of MAPKs in LPS

  13. A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene.

    Science.gov (United States)

    Tamiru, Amanuel; Bruce, Toby J A; Richter, Annett; Woodcock, Christine M; Midega, Charles A O; Degenhardt, Jörg; Kelemu, Segenet; Pickett, John A; Khan, Zeyaur R

    2017-04-01

    Maize ( Zea mays ) emits volatile terpenes in response to insect feeding and egg deposition to defend itself against harmful pests. However, maize cultivars differ strongly in their ability to produce the defense signal. To further understand the agroecological role and underlying genetic mechanisms for variation in terpene emission among maize cultivars, we studied the production of an important signaling component ( E )-caryophyllene in a South American maize landrace Braz1006 possessing stemborer Chilo partellus egg inducible defense trait, in comparison with the European maize line Delprim and North American inbred line B73. The ( E) - caryophyllene production level and transcript abundance of TPS23, terpene synthase responsible for ( E) - caryophyllene formation, were compared between Braz1006, Delprim, and B73 after mimicked herbivory. Braz1006-TPS23 was heterologously expressed in E. coli , and amino acid sequences were determined. Furthermore, electrophysiological and behavioral responses of a key parasitic wasp Cotesia sesamiae to C .  partellus egg-induced Braz1006 volatiles were determined using coupled gas chromatography electroantennography and olfactometer bioassay studies. After elicitor treatment, Braz1006 released eightfold higher ( E) -caryophyllene than Delprim, whereas no ( E) -caryophyllene was detected in B73. The superior (E)- caryophyllene production by Braz1006 was positively correlated with high transcript levels of TPS23 in the landrace compared to Delprim. TPS23 alleles from Braz1006 showed dissimilarities at different sequence positions with Delprim and B73 and encodes an active enzyme. Cotesia sesamiae was attracted to egg-induced volatiles from Braz1006 and synthetic (E)- caryophyllene. The variation in ( E) -caryophyllene emission between Braz1006 and Delprim is positively correlated with induced levels of TPS23 transcripts. The enhanced TPS23 activity and corresponding ( E) -caryophyllene production by the maize landrace could be

  14. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model.

    Science.gov (United States)

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p Arctigenin (p Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.

  15. Sodium salicylate-induced amelioration of experimental autoimmune encephalomyelitis in Lewis rats is associated with the suppression of inducible nitric oxide synthase and cyclooxygenases.

    Science.gov (United States)

    Moon, Changjong; Ahn, Meejung; Jee, Youngheun; Heo, Seungdam; Kim, Seungjoon; Kim, Hyungmin; Sim, Ki-Bum; Koh, Chang-Sung; Shin, Young-Gyun; Shin, Taekyun

    2004-02-12

    We studied the effects of oral administration of sodium salicylate on the expression of the pro-inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1 and 2, in rats with experimental autoimmune encephalomyelitis (EAE). Sodium salicylate (200 mg/kg) was administered orally for 13 days after the induction of EAE by immunization with guinea pig myelin basic protein and complete Freund's adjuvant. The onset (P<0.0001) and severity (P<0.05) of EAE paralysis in salicylate-treated animals were delayed and suppressed significantly compared with vehicle-treated controls. Western blot analysis showed that expression of COX-2 and iNOS, but not COX-1, decreased significantly in the spinal cords of salicylate-treated rats compared with vehicle-treated controls (P<0.05) and this finding was paralleled by immunohistochemical observations. These results suggest that the amelioration by salicylate of paralysis in rats with EAE is mediated in part by the suppression of COX and iNOS.

  16. Cloning and characterization of maize ZmSPK1 , a homologue to ...

    African Journals Online (AJOL)

    SnRK2s play important roles in plant stresses responses. One full-length cDNA encoding a SnRK2b homologue was isolated from maize by RT-PCR and named as ZmSPK1 (for stress-induced protein kinase). The ZmSPK1 protein has 364 amino acids with an estimated molecular mass of 41.8 KD and an isoelectric point of ...

  17. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. In silico Prediction and Docking of Tertiary Structure of LuxI, an Inducer Synthase of Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Mohammed Zaghlool Saeed Al-Khayyat

    2016-05-01

    Full Text Available Background: LuxI is a component of the quorum sensing signaling pathway in Vibrio fischeri responsible for the inducer synthesis that is essential for bioluminescence. Methods: Homology modeling of LuxI was carried out using Phyre2 and refined with the GalaxyWEB server. Five models were generated and evaluated by ERRAT, ANOLEA, QMEAN6, and Procheck. Results: Five refined models were generated by the GalaxyWEB server, with Model 4 having the greatest quality based on the QMEAN6 score of 0.732. ERRAT analysis revealed an overall quality of 98.9%, while the overall quality of the initial model was 54%. The mean force potential energy, as analyzed by ANOLEA, were better compared to the initial model. Sterochemical quality estimation by Procheck showed that the refined Model 4 had a reliable structure, and was therefore submitted to the protein model database. Drug Discovery Workbench V.2 was used to screen 2700 experimental compounds from the DrugBank database to identify inhibitors that can bind to the active site between amino acids 24 and 110. Ten compounds with high negative scores were selected as the best in binding. Conclusion: The model produced, and the predicted acteyltransferase binding site, could be useful in modeling homologous sequences from other microorganisms and the design of new antimicrobials.

  19. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    Science.gov (United States)

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts. 2012 Elsevier Inc. All rights reserved

  20. Isoflavonoids are present in Arabidopsis thaliana despite the absence of any homologue to known isoflavonoid synthases

    Czech Academy of Sciences Publication Activity Database

    Lapčík, O.; Honys, David; Koblovská, R.; Macková, Z.; Vítková, M.; Klejdus, B.

    2006-01-01

    Roč. 44, 2-3 (2006), s. 106-114 ISSN 0981-9428 R&D Projects: GA ČR GA525/03/0352; GA AV ČR KJB6038409 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Brassicaceae * HPLC-MS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.847, year: 2006

  1. L-arginine stimulates CAT-1-mediated arginine uptake and regulation of inducible nitric oxide synthase for the growth of chick intestinal epithelial cells.

    Science.gov (United States)

    Yuan, Chao; Zhang, Xiaoyun; He, Qiang; Li, Junming; Lu, Jianjun; Zou, Xiaoting

    2015-01-01

    L-arginine (L-Arg) uptake is mediated by members of cationic amino acid transporter (CAT) family and may coincide with the induction of nitric oxide synthases (NOS). The present study was conducted to investigate the extracellular concentrations of L-Arg regulating the CAT-1, CAT-4 and inducible NOS (iNOS) in chick intestinal epithelial cells. The cells were cultured for 4 days in Arg-free Dulbecco's modified Eagle's medium containing 10, 100, 200, 400, or 600 μM L-Arg. Cell viability, nitric oxide (NO) concentrations, uptake and metabolism of L-[3H]-Arg as well as expression of CAT-1, CAT-4, and iNOS were determined. Our results showed that L-Arg enhances cell growth with a maximal response at 10-400 μM. Addition of 100, 200, or 400 μM L-Arg increased the L-[3H]-Arg uptake, which was associated with greater conversion of L-[3H]-citrulline and NO production in comparison with 10 μM L-Arg group. Increasing extracellular concentrations of L-Arg from 10 to 400 μM dose dependently increased the levels of CAT-1 mRNA and protein, while no effect on CAT-4 mRNA abundance was found. Furthermore, supplementation of 100, 200, or 400 μM L-Arg upregulated the expression of iNOS mRNA, and the relative protein levels for iNOS in 200 and 400 μM L-Arg groups were higher than those in 10 and 100 μM L-Arg groups. Collectively, we conclude that the CAT-1 isoform plays a role in L-Arg uptake, and L-Arg-mediated elevation of NO via iNOS promotes the growth of chick intestinal epithelial cells.

  2. Features of the inducible nitric oxide synthase expression in paraventricular and supraoptic nuclei of hypothalamus in different models of arterial hypertension

    Directory of Open Access Journals (Sweden)

    Yu. M. Kolesnyk

    2016-08-01

    Full Text Available The regulation of the paraventricular (PVN and supraoptic (SON nuclei’s activity is carried out with a great amount of different neurotransmitters, in particular, with nitric oxide. In order to get clear understanding of the local NO effects in hypothalamus in normal condition and different models of hypertension it is necessary to study all isoforms of NOS in PVN and SON. Our purpose was to find out the features of the inducible nitric oxide synthase (iNOS expression in magnocellular SON and PVN in SHR and endocrine-saline model of hypertension in rats. Materials and methods. For all rats the mean blood pressure (mBP was measured. In Wistar rats mBP was stable during the experiment. In SHR mBP was higher than normal. In animals of the 3rd group with ESM the first measurement (before the modelling demonstrated normal rates of mBP. Since the 7th day of modelling mBP started increase and became steadily increased from the 21st day. We obtained the frontal slices of hypothalamus and performed the assessment of iNOS expression using immunofluorescence assay. The results showed the presence of the constitutive expression of iNOS in the magnocellular neurons of hypothalamus in Wistar rats as well as in both groups of experimental hypertension. The level of iNOS expression in magnocellular nuclei was dependent both on type of hypertension and topography of magnocellular neurons in hypothalamus. In SHR there was high expression of iNOS in PVN and low one in SON, whereas in endocrine-saline model there was high expression in SON and there were no substantial changes of the iNOS expression in PVN. Conclusions. We believe the alteration of iNOS expression in magnocellular nuclei of hypothalamus could participate in development and/or adaptation to hypertension.

  3. Impact of prenatal and postnatal exposure to the pesticide chlorpyrifos on the contraction of rat ileal muscle strips: involvement of an inducible nitric oxide synthase-dependent pathway.

    Science.gov (United States)

    Darwiche, W; Delanaud, S; Dupont, S; Ghamlouch, H; Ramadan, W; Joumaa, W; Bach, V; Gay-Quéheillard, J

    2017-02-01

    Prenatal/postnatal exposure to insecticides has been linked to developmental disorders in adulthood. Chlorpyrifos (CPF) is a widely used organophosphorus acetylcholinesterase (AChE)-inhibiting insecticide. The present study established whether prenatal and postnatal exposure to CPF is associated with intestinal motor dysfunction in adult rats. Three groups of pregnant rats were exposed to either CPF (1 or 5 mg/kg/day; the CPF1 and CPF5 groups) or vehicle (the control group) by gavage from gestational day 1 until weaning. At weaning, the pups were separated from their dams and individually gavaged (with the same dose) until postnatal day 60. We then measured in vivo intestinal transit and the in vitro contractile responses of ileal smooth muscle strips to electrical field stimulation. Expression of inducible nitric oxide synthase (iNOS) in the ileum was determined using qRT-PCR and immunoblots. Morphometry and AChE assays were also performed. At adulthood, the mean body mass was lower in the CPF1 and CPF5 groups than in controls. CPF5 exposure was associated with weaker in vitro contraction of ileal muscle strips, which was reversed by adding the NOS inhibitor (L-NAME). There was no significant intergroup difference in the mean in vivo transit time. Exposure to CPF was associated with greater iNOS expression, lower AChE activity and reduced circular and longitudinal smooth muscle thickness. Prenatal and postnatal exposure to CPF in the rat is associated with weaker contraction of ileal longitudinal smooth muscle via a nitrergic mechanism with increased iNOS expression. © 2016 John Wiley & Sons Ltd.

  4. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies.

    Science.gov (United States)

    Du, Shaoting; Zhang, Ranran; Zhang, Peng; Liu, Huijun; Yan, Minggang; Chen, Ni; Xie, Huaqiang; Ke, Shouwei

    2016-02-01

    CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. 4G/5G variant of plasminogen activator inhibitor-1 gene and severe pregnancy-induced hypertension: subgroup analyses of variants of angiotensinogen and endothelial nitric oxide synthase.

    Science.gov (United States)

    Kobashi, Gen; Ohta, Kaori; Yamada, Hideto; Hata, Akira; Minakami, Hisanori; Sakuragi, Noriaki; Tamashiro, Hiko; Fujimoto, Seiichiro

    2009-01-01

    Pregnancy-induced hypertension (PIH) is a common cause of perinatal mortality. It is believed to result from the interaction of several factors, including those related to the blood coagulation system. We performed genotyping and subgroup analyses to determine if the 4G/5G genotypes of the plasminogen activator inhibitor-1 gene (PAI-1) play a role in the pathogenesis of PIH, and to evaluate possible interactions of the PAI-1 polymorphisms with those of the angiotensinogen gene (AGT) and the endothelial nitric oxide synthase gene (NOS3). An association study of PAI-1 polymorphism, and subgroup analyses of common variants of AGT and NOS3, among 128 patients with PIH and 376 healthy pregnant controls. No significant differences were found between the cases and controls in the frequencies of allele 4G or the 4G/4G genotype. In subgroup analyses, after adjustment for multiple comparison, a significant association with the AGT TT genotype was found among women with the PAI-1 4G/4G genotype, and an association with the NOS3 GA+AA genotype was found among women with the 5G/5G or 4G/5G genotypes. Our findings suggest that there are at least 2 pathways in the pathogenesis of severe PIH. However, with respect to early prediction and prevention of severe PIH, although the PAI-1 4G/4G genotype alone was not a risk factor for severe PIH, the fact that PAI-1 genotypes are associated with varying risks for severe PIH suggests that PAI-1 genotyping of pregnant women, in combination with other tests, may be useful in the development of individualized measures that may prevent severe PIH.

  6. Altered expression of cyclooxygenase-2, 12-lipoxygenase, inducible nitric oxide synthase-2 and surfactant protein D in lungs of patients with pulmonary injury caused by sulfur mustard.

    Science.gov (United States)

    Tahmasbpour, Eisa; Ghanei, Mostafa; Khor, Abolfazl; Panahi, Yunes

    2018-03-14

    Sulfur mustard (SM) is a strong alkylating toxicant that targets different organs, particularly human lung tissue. Change in genes expression is one of the molecular mechanisms of SM toxicity in damaged tissue. The purpose of this investigation is to characterize the expression of cyclooxygenase-2 (COX-2), 12-lipoxygenase (12-LO), inducible nitric oxide synthase 2 (iNOS2), and surfactant protein D (SFTPD) in lungs of patients who exposed to SM. Lung biopsies were provided from SM-exposed patients (n = 6) and controls (n = 5). Total RNA were extracted from all specimens and then cDNA was synthesized for each sample. Changes in gene expression were measured using RT 2 Profiler ™PCR Array. Pulmonary function tests revealed more obstructive and restrictive spirometric patterns among patients compared to the control group. Expression of COX-2 and 12-LO in the lung of patients was increased by 6.2555 (p = 0.004) and 6.2379-folds (p = 0.002), respectively. In contrast, expression of SF-D and iNOS genes was reduced by 8.5869-fold (p = 0.005) and 2.4466-folds (p = 0.011), respectively. Mustard lungs were associated with overexpression of COX-2 and 12-LO, which are responsible for inflammation, overproduction of free radicals and oxidative stress. Downregulation of iNOS2 and SF-D are probably the reason for lung disease and dysfunction among these patients. Therefore, the expression of these genes could be an important, routine part of the management of such patients.

  7. The radiosensitizing effect of immunoadjuvant OM-174 requires cooperation between immune and tumor cells through interferon-gamma and inducible nitric oxide synthase

    International Nuclear Information System (INIS)

    Ridder, Mark de; Verovski, Valeri N.; Chiavaroli, Carlo; Berge, Dirk L. van den; Monsaert, Christinne; Law, Kalun; Storme, Guy A.

    2006-01-01

    Purpose: To explore whether antitumor immunoadjuvant OM-174 can stimulate immune cells to produce interferon-γ (IFN-γ) and thereby radiosensitize tumor cells. Methods and Materials: Splenocytes from BALB/c mice were stimulated by OM-174 at plasma-achievable concentrations (0.03-3 μg/mL), and afterward analyzed for the expression and secretion of IFN-γ by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Stimulated splenocytes were used as a source of IFN-γ to radiosensitize hypoxic EMT-6 tumor cells through the cytokine-inducible isoform of nitric oxide synthase (iNOS). Results: OM-174 activated the production of IFN-γ at high levels that reached 70 ng/mL in normoxia (21% oxygen) and 27 ng/mL in tumor-relevant hypoxia (1% oxygen). This caused up to 2.1-fold radiosensitization of EMT-6 tumor cells, which was associated with the iNOS-mediated production of the radiosensitizing molecule nitric oxide, as confirmed by accumulation of its oxidative metabolite nitrite, Western blot analysis, and reverse transcriptase-polymerase chain reaction. Both iNOS activation and radiosensitization were counteracted by neutralizing antibodies against IFN-γ. The same mechanism of radiosensitization through the IFN-γ secretion pathway was identified for IL-12 + IL-18, which are known to mediate IFN-γ responses. Hypoxia displayed a dual effect on the immune-tumor cell interaction, by downregulating the expression of the IFN-γ gene while upregulating iNOS at transcriptional level. Conclusion: Immunoadjuvant OM-174 is an efficient radiosensitizer of tumor cells through activation of the IFN-γ secretion pathway in immune cells. This finding indicates a rationale for combining immunostimulatory and radiosensitizing strategies and extends the potential therapeutic applications of OM-174

  8. Inducible nitric oxide synthase (iNOS expression in monocytes during acute Dengue Fever in patients and during in vitro infection

    Directory of Open Access Journals (Sweden)

    Cerqueira Denise IS

    2005-08-01

    Full Text Available Abstract Mononuclear phagocytes are considered to be main targets for Dengue Virus (DENV replication. These cells are activated after infection, producing proinflammatory mediators, including tumour-necrosis factor-α, which has also been detected in vivo. Nitric oxide (NO, usually produced by activated mononuclear phagocytes, has antimicrobial and antiviral activities. Methods The expression of DENV antigens and inducible nitric oxide synthase (iNOS in human blood isolated monocytes were analysed by flow cytometry using cells either from patients with acute Dengue Fever or after DENV-1 in vitro infection. DENV-1 susceptibility to iNOS inhibition and NO production was investigated using NG-methyl L-Arginine (NGMLA as an iNOS inhibitor, which was added to DENV-1 infected human monocytes, and sodium nitroprussiate (SNP, a NO donor, added to infected C6/36 mosquito cell clone. Viral antigens after treatments were detected by flow cytometry analysis. Results INOS expression in activated monocytes was observed in 10 out of 21 patients with Dengue Fever and was absent in cells from ten healthy individuals. DENV antigens detected in 25 out of 35 patients, were observed early during in vitro infection (3 days, significantly diminished with time, indicating that virus replicated, however monocytes controlled the infection. On the other hand, the iNOS expression was detected at increasing frequency in in vitro infected monocytes from three to six days, exhibiting an inverse relationship to DENV antigen expression. We demonstrated that the detection of the DENV-1 antigen was enhanced during monocyte treatment with NGMLA. In the mosquito cell line C6/36, virus detection was significantly reduced in the presence of SNP, when compared to that of untreated cells. Conclusion This study is the first to reveal the activation of DENV infected monocytes based on induction of iNOS both in vivo and in vitro, as well as the susceptibility of DENV-1 to a NO production.

  9. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy.

    Science.gov (United States)

    Suborov, Evgeny V; Smetkin, Alexey A; Kondratiev, Timofey V; Valkov, Andrey Y; Kuzkov, Vsevolod V; Kirov, Mikhail Y; Bjertnaes, Lars J

    2012-06-21

    Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). Both the injuriously ventilated groups demonstrated a 2-3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following

  10. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  11. Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection.

    Science.gov (United States)

    Burggraaf, Simon; Bingham, John; Payne, Jean; Kimpton, Wayne G; Lowenthal, John W; Bean, Andrew G D

    2011-01-19

    The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis. There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression. The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies

  12. Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Simon Burggraaf

    Full Text Available BACKGROUND: The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO, appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS family such as the inducible form of NOS (iNOS generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression. CONCLUSIONS/SIGNIFICANCE: The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1

  13. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features

    International Nuclear Information System (INIS)

    Feng, Chang Wei; Wang, Li Dong; Jiao, Lian Hua; Liu, Bin; Zheng, Shu; Xie, Xin Ji

    2002-01-01

    The growth and metastasis of tumors depend on the development of an adequate blood supply via angiogenesis. Recent studies indicate that the inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF) and the tumor suppressor p53 are fundamental play-markers of the angiogenic process. Overexpression of iNOS and VEGF has been shown to induce angiogenesis in tumors. P53 suppresses angiogenesis by down-regulating VEGF and iNOS. The correlation of expression of p53, VEGF and iNOS and clinical features in gastric carcinogenesis, however, has not been well characterized. The expression of p53, iNOS and VEGF in gastric precancerous and cancerous lesions and its relation with the clinical features was determined with immunohistochemistry (avidin-biotin-peroxidase complex method) on 55 randomly selected GC patients and 60 symptom-free subjects from the mass survey in the high-incidence area for GC in Henan, northern China. The positive immunostainig rates for p53, iNOS and VEGF in gastric carcinomas were 51%, 44% and 51%, respectively, and correlated well with TNM stages, but did not show significant difference among the groups with different degrees of gastric wall invasion depth by GC. A positive immunostaining reaction for the iNOS protein was significantly correlated with lymph node metastasis (p = 0.019; Spearman correlation coefficient). P53 protein accumulation was higher in the poorly-differentiated gastric carcinoma than in well-differentiated one. In gastric biopsies, no positive immunosatining was observed for p53, iNOS and VEGF in the histologically normal tissue and chronic superficial gastritis (CSG). However, p53, iNOS and VEGF positive immunostaining was observed in the tissues with different severities of lesions of chronic atrophic gastritis (CAG), intestinal metaplasia (IM) and dysplasia (DYS), and the positive rates increased with the lesion progression from CAG to IM to DYS. A high coincidental positive and negative immunostaining

  14. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Directory of Open Access Journals (Sweden)

    Muhammad T Salam

    Full Text Available Exhaled nitric oxide (FeNO, a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2 and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children.In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes around the subjects' homes were estimated using geographic information system (GIS methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level.The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively. In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI: 9.99 to 13.80 than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63 with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002. In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34. Similar interactive effects of this haplotype and local

  15. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    International Nuclear Information System (INIS)

    Choudhury, Mahua G.; Saha, Nirmalendu

    2012-01-01

    Highlights: ► High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). ► Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. ► Activation of NFκB that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear

  16. The Effect of Artemisia fragrans Willd: Essential Oil on Inducible Nitric Oxide Synthase Gene Expression and Nitric Oxide Production in Lipopolysaccharide-stimulated Murine Macrophage Cell Line.

    Science.gov (United States)

    Farghadan, Maryam; Ghafoori, Hosein; Vakhshiteh, Faezeh; Shahzadeh Fazeli, Seyed Abolhassan; Farzaneh, Parvaneh; Kokhaei, Parviz

    2016-12-01

    The genus Artemisia is estimated to comprise over 800 species with anti-cancer, anti-fungal, anti-oxidant and anti-inflammatory properties. Artemisia fragrans (A. fragrans), a species that belongs to genus Artemisia, is rich in monoterpenes and sesquiterpenes derivatives. Due to anti-inflammatory properties of monoterpenes and sesquiterpenes, we aimed to investigate the effect of A. fragrans essential oil on mRNA expression of inducible nitric oxide synthase (iNOS) gene and nitric oxide (NO) production in Lipopolysaccharide (LPS) -stimulated RAW264.7 cell line. NO, which is synthesized by iNOS, is the main macrophage-derived inflammatory mediator. The oil obtained from the A. fragrans was prepared from aerial parts of the plant. Chemical composition of essential oil was analyzed by gas chromatography-mass spectrometry (GC/MS).The cytotoxicity of various concentrations of essential oil was evaluated by mitochondrial reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test assay. The effect of different doses (1.75-7 mg/mL) of A. fragrans oil on mRNA expression of iNOS gene and NO production in LPS-stimulated RAW 264.7 cells was assessed by real-time PCR method and Griess reagent, respectively. In GC/MS analyses of A. fragrans oil, 32 compounds were identified. The main components of the oil were camphor and 1, 8-cineole. The results demonstrated that the essential oil of A. fragrans (1.75- 7 mg/mL), in a dose-dependent manner, inhibits mRNA expression of iNOS induced by LPS in the RAW264.7 cells without cytotoxic effect even at higher doses. The results of iNOS were consistent with the results of NO production. Our preliminary results suggest the possible anti-inflammatory effect of A. fragrans. Further studies are needed to determine the full pharmacokinetics of A. fragrans activity in vivo.

  17. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  18. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xie, Ling; Zhang, Xuze; Qi, Delin; Guo, Xinyi; Pang, Bo; Du, Yurong; Zou, Xiaoyan; Guo, Songchang; Zhao, Xinquan

    2014-04-30

    Nitric oxide (NO), a potent vasodilator, plays an important role in preventing hypoxia induced pulmonary hypertension. Endogenous NO is synthesized by nitric oxide synthases (NOSs) from l-arginine. In mammals, three different NOSs have been identified, including neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Plateau pika (Ochotona curzoniae) is a typical hypoxia tolerant mammal that lives at 3000-5000 m above sea level on the Qinghai-Tibet Plateau. The aim of this study was to investigate whether NOS expression and NO production are regulated by chronic hypoxia in plateau pika. Quantitative real-time PCR and western blot analyses were conducted to quantify relative abundances of iNOS and eNOS transcripts and proteins in the lung tissues of plateau pikas at different altitudes (4550, 3950 and 3200 m). Plasma NO metabolites, nitrite/nitrate (NO(x)⁻) levels were also examined by Ion chromatography to determine the correlation between NO production and altitude level. The results revealed that iNOS transcript levels were significantly lower in animals at high altitudes (decreased by 53% and 57% at altitude of 3950 and 4550 m compared with that at 3200 m). Similar trends in iNOS protein abundances were observed (26% and 41% at 3950 and 4550 m comparing with at 3200 m). There were no significant differences in eNOS mRNA and protein levels in the pika lungs among different altitudes. The plasma NO(x)⁻ levels of the plateau pikas at high altitudes significantly decreased (1.65±0.19 μg/mL at 3200 m to 0.44±0.03 μg/mL at 3950 m and 0.24±0.01 μg/mL at 4550 m). This is the first evidence describing the effects of chronic hypoxia on NOS expression and NO levels in the plateau pika in high altitude adaptation. We conclude that iNOS expression and NO production are suppressed at high altitudes, and the lower NO concentration at high altitudes may serve crucial roles for helping the plateau pika to survive at hypoxic environment. Copyright © 2014

  19. Is the Prosthetic Homologue Necessary for Embodiment?

    Science.gov (United States)

    Dornfeld, Chelsea; Swanston, Michelle; Cassella, Joseph; Beasley, Casey; Green, Jacob; Moshayev, Yonatan; Wininger, Michael

    2016-01-01

    Embodiment is the process by which patients with limb loss come to accept their peripheral device as a natural extension of self. However, there is little guidance as to how exacting the prosthesis must be in order for embodiment to take place: is it necessary for the prosthetic hand to look just like the absent hand? Here, we describe a protocol for testing whether an individual would select a hand that looks like their own from among a selection of five hands, and whether the hand selection (regardless of homology) is consistent across multiple exposures to the same (but reordered) set of candidate hands. Pilot results using healthy volunteers reveals that hand selection is only modestly consistent, and that selection of the prosthetic homologue is atypical (61 of 192 total exposures). Our protocol can be executed in minutes, and makes use of readily available equipment and softwares. We present both a face-to-face and a virtual protocol, for maximum flexibility of implementation. PMID:28066228

  20. Is the prosthetic homologue necessary for embodiment?

    Directory of Open Access Journals (Sweden)

    Chelsea Dornfeld

    2016-12-01

    Full Text Available Embodiment is the process by which patients with limb loss come to accept their peripheral device as a natural extension of self. However, there is little guidance as to how exacting the prosthesis must be in order for embodiment to take place: is it necessary for the prosthetic hand to look just like the absent hand? Here, we describe a protocol for testing whether an individual would select a hand that looks like their own from among a selection of 5 hands, and whether the hand selection (regardless of homology is consistent across multiple exposures to the same (but reordered set of candidate hands. Pilot results using healthy volunteers reveals that hand selection is only modestly consistent, and that selection of the prosthetic homologue is atypical (61 of 192 total exposures. Our protocol can be executed in minutes, and makes use of readily available equipment and softwares. We present both a face-to-face and a virtual protocol, for maximum flexibility of implementation.

  1. Is the Prosthetic Homologue Necessary for Embodiment?

    Science.gov (United States)

    Dornfeld, Chelsea; Swanston, Michelle; Cassella, Joseph; Beasley, Casey; Green, Jacob; Moshayev, Yonatan; Wininger, Michael

    2016-01-01

    Embodiment is the process by which patients with limb loss come to accept their peripheral device as a natural extension of self. However, there is little guidance as to how exacting the prosthesis must be in order for embodiment to take place: is it necessary for the prosthetic hand to look just like the absent hand? Here, we describe a protocol for testing whether an individual would select a hand that looks like their own from among a selection of five hands, and whether the hand selection (regardless of homology) is consistent across multiple exposures to the same (but reordered) set of candidate hands. Pilot results using healthy volunteers reveals that hand selection is only modestly consistent, and that selection of the prosthetic homologue is atypical (61 of 192 total exposures). Our protocol can be executed in minutes, and makes use of readily available equipment and softwares. We present both a face-to-face and a virtual protocol, for maximum flexibility of implementation.

  2. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i...

  3. An (E,E)-a-farnesene synthase gene of soybean has a role in defense against nematodes and is involved in synthesizing insect-induced volatiles

    Science.gov (United States)

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here we report the functional characterization of one member of the soybean TP S gene family, which was designated GmAFS. Recombinant GmAFS produced in E.coli catalyzed the formation of a sesquiterpene (E,E)-a-farnesene....

  4. Targeting the Enhancer of Zeste Homologue 2 in Medulloblastoma

    Science.gov (United States)

    Alimova, Irina; Venkataraman, Sujatha; Harris, Peter; Marquez, Victor E.; Northcott, Paul A; Dubuc, Adrian; Taylor, Michael D; Foreman, Nicholas K; Vibhakar, Rajeev

    2012-01-01

    Enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 that catalyzes the trimethylation of histone H3 on Lys 27, and represses gene transcription. EZH2 enhances cancer-cell proliferation and regulates stem cell maintenance and differentiation. Here, we demonstrate that EZH2 is highly expressed in medulloblastoma, a highly malignant brain tumor of childhood, and this altered expression is correlated with genomic gain of chromosome 7 in a subset of medulloblastoma. Inhibition of EZH2 by RNAi suppresses medulloblastoma tumor cell growth. We show that 3-deazaneplanocin A, a chemical inhibitor of EZH2, can suppress medulloblastoma cell growth partially by inducing apoptosis. Suppression of EZH2 expression diminishes the ability of tumor cells to form spheres in culture and strongly represses the ability of known oncogenes to transform neural stem cells. These findings establish a role of EZH2 in medulloblastoma and identify EZH2 as a potential therapeutic target especially in high-risk tumors. PMID:22287205

  5. Secretory pathway antagonism by calicivirus homologues of Norwalk virus nonstructural protein p22 is restricted to noroviruses

    Directory of Open Access Journals (Sweden)

    Sharp Tyler M

    2012-09-01

    Full Text Available Abstract Background Our previous report that the Norwalk virus nonstructural protein p22 is an antagonist of the cellular secretory pathway suggests a new aspect of norovirus/host interaction. To explore conservation of function of this highly divergent calicivirus protein, we examined the effects of p22 homologues from four human and two murine noroviruses, and feline calicivirus on the secretory pathway. Findings All human noroviruses examined induced Golgi disruption and inhibited protein secretion, with the genogroup II.4 Houston virus being the most potent antagonist. Genogroup II.6 viruses have a conserved mutation in the mimic of an Endoplasmic Reticulum export signal (MERES motif that is highly conserved in human norovirus homologues of p22 and is critical for secretory pathway antagonism, and these viruses had reduced levels of Golgi disruption and inhibition of protein secretion. p22 homologues from both persistent and nonpersistent strains of murine norovirus induced Golgi disruption, but only mildly inhibited cellular protein secretion. Feline calicivirus p30 did not induce Golgi disruption or inhibit cellular protein secretion. Conclusions These differences confirm a norovirus-specific effect on host cell secretory pathway antagonism by homologues of p22, which may affect viral replication and/or cellular pathogenesis.

  6. CG0009, a novel glycogen synthase kinase 3 inhibitor, induces cell death through cyclin D1 depletion in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyun Mi Kim

    Full Text Available Glycogen synthase kinase 3α/β (GSK3α/β is a constitutively active serine/threonine kinase involved in multiple physiological processes, such as protein synthesis, stem cell maintenance and apoptosis, and acts as a key suppressor of the Wnt-β-catenin pathway. In the present study, we examined the therapeutic potential of a novel GSK3 inhibitor, CG0009, in the breast cancer cell lines, BT549, HS578T, MDA-MB-231, NCI/ADR-RES, T47D, MCF7 and MDA-MB-435, from the NCI-60 cancer cell line panel. Assessment of cytotoxicity, apoptosis and changes in estrogen-signaling proteins was performed using cell viability assays, Western blotting and quantitative real-time PCR. CG0009 enhanced the inactivating phosphorylation of GSK3α at Ser21 and GSK3β at Ser9 and simultaneously decreased activating phosphorylation of GSK3β at Tyr216, and induced caspase-dependent apoptosis independently of estrogen receptor α (ERα expression status, which was not observed with the other GSK3 inhibitors examined, including SB216763, kenpaullone and LiCl. CG0009 treatment (1 µmol/L completely ablated cyclin D1 expression in a time-dependent manner in all the cell lines examined, except T47D. CG0009 alone significantly activated p53, leading to relocation of p53 and Bax to the mitochondria. GSK3 inhibition by CG0009 led to slight upregulation of the β-catenin target genes, c-Jun and c-Myc, but not cyclin D1, indicating that CG0009-mediated cyclin D1 depletion overwhelms the pro-survival signal of β-catenin, resulting in cell death. Our findings suggest that the novel GSK3 inhibitor, CG0009, inhibits breast cancer cell growth through cyclin D1 depletion and p53 activation, and may thus offer an innovative therapeutic approach for breast cancers resistant to hormone-based therapy.

  7. Inducible Nitric Oxide Synthase in Heart Tissue and Nitric Oxide in Serum of Trypanosoma cruzi-Infected Rhesus Monkeys: Association with Heart Injury

    Science.gov (United States)

    Carvalho, Cristiano Marcelo Espinola; Silverio, Jaline Coutinho; da Silva, Andrea Alice; Pereira, Isabela Resende; Coelho, Janice Mery Chicarino; Britto, Constança Carvalho; Moreira, Otacílio Cruz; Marchevsky, Renato Sergio; Xavier, Sergio Salles; Gazzinelli, Ricardo Tostes; da Glória Bonecini-Almeida, Maria; Lannes-Vieira, Joseli

    2012-01-01

    Background The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2 −/−) mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. Methodology Rhesus monkeys and C57BL/6 and Nos2 −/− mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG), echocardiogram (ECHO), creatine kinase heart isoenzyme (CK-MB) activity levels in serum and connexin 43 (Cx43) expression in the cardiac tissue. Results Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC). Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2 −/− mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. Conclusion T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute to CCC

  8. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  10. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  11. Induced nitric oxide synthase (iNOS and indoleamine 2,3-dioxygenase (IDO detection in circulating monocyte subsets from Brazilian patients with Dengue-4 virus

    Directory of Open Access Journals (Sweden)

    Luciana Gomes Fialho

    2017-06-01

    Full Text Available Among viral diseases transmitted by mosquitoes, dengue is characterized by its rapid dispersion around the world. Dengue severity is associated to a cytokine “storm” leading to vascular hemorrhagic manifestations, plasma leakage and shock, but also producing viral clearance. Macrophage/monocyte activation occurs during infection. Monocyte lineage cells are among those that allow virus replication. We investigated circulating human monocyte subsets - classical CD14+CD16− and non-classical CD14+CD16+ - during DENV-4 infection in patients. Intracellular inducible nitric oxide synthase (iNOS and indoleamine 2,3–dioxygenase (IDO were detected in both monocyte subsets. Circulating CD14+CD16+ monocyte frequency is mildly increased during DENV-4 infection. INOS is more intensely detected in CD14+CD16− than in CD16+ monocytes and IDO in CD14+CD16+. DENV-4 patients show increase in NO, TNF-α, IFN-y, IP-10/CXL10, IL-10 and MCP-1/CCL2 plasma levels when compared to healthy individuals. The classical monocyte subset, CD14+CD16− was shown to be inversely correlated with IL-10 and IP-10/CXCL10 levels, while the non-classical CD14+CD16+ is positively correlated with IL-10 cytokine. TNF-α, IL-10 cytokines and IP-10/CXL10 chemokine are positively correlated with the CD14+iNOS+ monocyte population. Both CD14+ cells - CD16−iNOS+ and CD16+iNOS+ subsets - presented positive correlation with IL-10, IP-10/CXL10 and MCP-1/CCL2, besides TNF-α associated with CD16−iNOS+ cells. CD14+CD16−IDO+and CD16+IDO+ populations correlated positively with IL-10. Furthermore, CD16−IDO+ monocyte subset also presented a positive correlation with TNF-α and IP-10/CXCL10. According to these data, we considered that iNOS and IDO are activated in monocyte CD16− and CD16+ subsets, likely exerting both antiviral effects and modulating exacerbated immunological responses during dengue fever.

  12. Feasibility and dosimetry studies for 18F-NOS as a potential PET radiopharmaceutical for inducible nitric oxide synthase in humans.

    Science.gov (United States)

    Herrero, Pilar; Laforest, Richard; Shoghi, Kooresh; Zhou, Dong; Ewald, Gregory; Pfeifer, John; Duncavage, Eric; Krupp, Kitty; Mach, Robert; Gropler, Robert

    2012-06-01

    Nitric oxide (NO), the end product of the inducible form of NO synthase (iNOS), is an important mediator of a variety of inflammatory diseases. Therefore, a radiolabeled iNOS radiopharmaceutical for assessing iNOS protein concentration as a marker for its activity would be of value to the study and treatment of NO-related diseases. We recently synthesized an (18)F-radiolabeled analog of the reversible NOS inhibitor, 2-amino-4-methylpyridine ((18)F-NOS), and confirmed its utility in a murine model of lung inflammation. To determine its potential for use in humans, we measured (18)F-NOS myocardial activity in patients after orthotopic heart transplantation (OHT) and correlated it with pathologic allograft rejection, tissue iNOS levels, and calculated human radiation dosimetry. Two groups were studied-a kinetic analysis group and a dosimetry group. In the kinetic analysis group, 10 OHT patients underwent dynamic myocardial (18)F-NOS PET/CT, followed by endomyocardial biopsy. Myocardial (18)F-NOS PET was assessed using volume of distribution; standardized uptake values at 10 min; area under the myocardial moment curve (AUMC); and mean resident time at 5, 10, and 30 min after tracer injection. Tissue iNOS levels were measured by immunohistochemistry. In the dosimetry group, the biodistribution and radiation dosimetry were calculated using whole-body PET/CT in 4 healthy volunteers and 12 OHT patients. The combined time-activity curves were used for residence time calculation, and organ doses were calculated with OLINDA. Both AUMC at 10 min (P < 0.05) and tissue iNOS (P < 0.0001) were higher in patients exhibiting rejection than in those without rejection. Moreover, the (18)F-NOS AUMC at 10 min correlated positively with tissue iNOS at 10 min (R(2) = 0.42, P < 0.05). (18)F-NOS activity was cleared by the hepatobiliary system. The critical organ was the bladder wall, with a dose of 95.3 μGy/MBq, and an effective dose of 15.9 μSv/MBq was calculated. Myocardial (18)F

  13. Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia

    Science.gov (United States)

    2013-01-01

    Background Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs. Results We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved. Conclusions The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these

  14. Suppression of lipopolysaccharide-induced of inducible nitric oxide synthase and cyclooxygenase-2 by Sanguis Draconis, a dragon's blood resin, in RAW 264.7 cells.

    Science.gov (United States)

    Choy, Cheuk-Sing; Hu, Chien-Ming; Chiu, Wen-Ta; Lam, Carlos-Shu Kei; Ting, Yih; Tsai, Shin-Han; Wang, Tzu-Chien

    2008-02-12

    Sanguis Draconis (SD) is a kind of dragon's blood resin that is obtained from Daemomorops draco (Palmae). It is used in traditional medicine and has shown anti-inflammatory activity in some diseases. In this study, we examined the effects of Sanguis Dranonis ethanol extract (SDEE) on LPS-induced inflammation using RAW 264.7 cells. Our data indicated that SDEE inhibits LPS-stimulated NO, PGE2, IL-1 beta and TNF-alpha release, and iNOS and COX-2 expression. Furthermore, SDEE suppressed the LPS-induced p65 expression of NF-kappa B, which was associated with the inhibition of I kappa B-alpha degradation. We also found that the expression of HO-1 was significantly increased in RAW 264.7 cells by SDEE. These results suggest among possibilities of anti-inflammation that SDEE inhibits the production of NO and PGE2 by the down-regulation of iNOS and COX-2 gene expression via the suppression of NF-kappaB (p65) activation. SDEE can induce HO-1 over-expression in macrophage cells, which indicates that it may possess antioxidant properties. This result means that SEDD its anti-inflammatory effects in macrophages may be through a novel mechanism that involves the action of HO-1. Thus, SD could provide a potential therapeutic approach for inflammation-associated disorders.

  15. Nitric oxide synthase responsible for L-arginine-induced relaxation of rat aortic rings in vitro may be an inducible type.

    OpenAIRE

    Moritoki, H.; Takeuchi, S.; Hisayama, T.; Kondoh, W.

    1992-01-01

    1. Characteristics of L-arginine-induced non-endothelial nitric oxide (NO) formation in rat isolated thoracic aorta were investigated. 2. Relaxation to L-arginine in arterial rings devoid of endothelium developed about 2 h after the first challenge with L-arginine and reached a maximum after a further 4 h of incubation. 3. After the arteries had relaxed in response to L-arginine, guanosine 3':5'-cyclic monophosphate (cyclic GMP) production was stimulated. In fresh arteries that had not yet re...

  16. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model

    Directory of Open Access Journals (Sweden)

    Chih-Zen Chang

    2015-01-01

    Full Text Available Upregulation of protein kinase B (PKB, also known as Akt is observed within the cerebral arteries of subarachnoid hemorrhage (SAH animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS and Akt pathways in a SAH in vitro study. Basilar arteries (BAs were obtained to examine phosphatidylinositol-3-kinase (PI3K, phospho-PI3K, Akt, phospho-Akt (Western blot and morphological examination. Endothelins (ETs and eNOS evaluation (Western blot and immunostaining were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p<0.01. The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p<0.01. This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.

  17. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  18. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  19. Polyketide synthase from Fusarium

    DEFF Research Database (Denmark)

    Kvesel, Kasper; Wimmer, Reinhard; Sørensen, Jens Laurids

    Fungi produce a wide array of secondary metabolites, with interesting bioactivities by help of a number of enzyme complexes. Polyketide synthases (PKS) are a class of multidomain enzymes, producing a class of secondary metabolites called polyketides1,2. Only few structures of PKS’s have been...

  20. Detection of a Yersinia pestis gene homologue in rodent samples

    Directory of Open Access Journals (Sweden)

    Timothy A. Giles

    2016-08-01

    Full Text Available A homologue to a widely used genetic marker, pla, for Yersinia pestis has been identified in tissue samples of two species of rat (Rattus rattus and Rattus norvegicus and of mice (Mus musculus and Apodemus sylvaticus using a microarray based platform to screen for zoonotic pathogens of interest. Samples were from urban locations in the UK (Liverpool and Canada (Vancouver. The results indicate the presence of an unknown bacterium that shares a homologue for the pla gene of Yersinia pestis, so caution should be taken when using this gene as a diagnostic marker.

  1. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  2. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    Science.gov (United States)

    Shen, Yuefei

    This dissertation focuses on the development and investigation of antisense imaging and therapeutic agents, combined with nanotechnology, to detect and suppress inducible nitric oxide synthase (iNOS) expression for the diagnosis and treatment of acute lung injury (ALI). To achieve this goal, several efforts were made. The first effort was the identification and characterization of high binding affinity antisense peptide nucleic acids (PNAs) and shell-crosslinked knedel-like nanoparticle (SCK)-PNA conjugates to the iNOS mRNA. Antisense binding sites on the iNOS mRNA were first mapped by a procedure for rapidly generating a library of antisense accessible sites on native mRNAs (MASL) which involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific PCR. Antisense PNAs against the antisense accessible sites were accordingly synthesized and characterized. The second effort was the investigation of cationic shell crosslinked knedel-like nanoparticle (cSCK)-mediated siRNA delivery to suppress iNOS expression for the treatment of ALI. siRNA with its unique gene-specific properties could serve as a promising therapeutic agent, however success in this area has been challenged by a lack of efficient biocompatible transfection agents. cSCK with its nanometer size and positive charge previously showed efficient cellular delivery of phosphorothioate ODNs (oligodeoxynucleotides), plasmid DNA and PNA. Herein, cSCK showed good siRNA binding and facilitated efficient siRNA transfection in HeLa, a mouse macrophage cell line and other human cell lines. cSCK led to greater silencing efficiency than Lipofectamine 2000 in HeLa cells as determined by the viability following transfection with cytotoxic and non-cytotoxic siRNAs, as well in 293T and HEK cells, and was comparable in BEAS-2B and MCF10a cells. The third effort was the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabeled

  3. Cloning and expression analysis of a partial LEAFY homologue from ...

    African Journals Online (AJOL)

    A partial homologue of LEAFY, designated as AcLFY (Genebank accession no HQ433335), was isolated from pineapple (Ananas comosus L. cv. Comte de Paris) by PCR. The conserved cDNA fragment of AcLFY is 256 bp in length and contained an open reading frame of 248 bp, which encodes 82 amino acids protein.

  4. Neurospora crassa fmf-1 encodes the homologue of the ...

    Indian Academy of Sciences (India)

    Neurospora crassa fmf-1 encodes the homologue of the. Schizosaccharomyces pombe Ste11p regulator of sexual development. Srividhya V. Iyer, Mukund Ramakrishnan and Durgadas P. Kasbekar. J. Genet. 88, 33–39. Figure 1. Sequence at the junction of the proximal breakpoint of T(AR173) has homology with Cen-VII ...

  5. A homologue of the defender against the apoptotic death gene ...

    Indian Academy of Sciences (India)

    The 327 bp transcript showed an open reading frame of 87 amino acid residues. The deduced amino acid sequence of the putative C. reinhardtii DAD1 homologue showed 54% identity with Oryza sativa, 56% identity with Drosophila melanogaster, 66% identity with Xenopus laevis, and 64% identity with Homo sapiens, Sus ...

  6. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  7. Neurospora crassa fmf-1 encodes the homologue of the ...

    Indian Academy of Sciences (India)

    Partial sequencing of this segment revealed a point mutation in the gene NCU 09387.1, a homologue of the Schizosaccharomyces pombe ste11+ regulator of sexual development. The fmf-1 mutation did not complement a NCU 09387.1 deletion mutation, and transformation with wild-type NCU 09387.1 complemented fmf-1.

  8. Characterization and cloning of TMV resistance gene N homologues ...

    African Journals Online (AJOL)

    Tobacco cultivars Nicotiana tabacum cv. Samsun NN plants carrying the N gene contain a multitude of N-related genes. We cloned a few N homologues and isolated two full-length cDNAs of NL-C26 and NL-B69 genes from N. tabacum cv. Samsun NN. Nucleotide sequence analysis showed that the coding regions of ...

  9. Isolation and characterization of an AGAMOUS homologue from cocoa

    NARCIS (Netherlands)

    Chaidamsari, T.; Sugiarit, H.; Santoso, D.; Angenent, G.C.; Maagd, de R.A.

    2006-01-01

    We report the cloning of a cDNA from TcAG, an AG (Arabidopsis thaliana MADS-box C-type transcription factor gene AGAMOUS) homologue from cocoa (Theobroma cacao L.). TcAG was in the cocoa flower expressed primarily in stamens and ovaries, comparable to AG in Arabidopsis. Additionally, we found that

  10. Cleaning up polyketide synthases.

    Science.gov (United States)

    Kwan, Jason C; Schmidt, Eric W

    2012-03-23

    Complex biosynthetic enzymes such as polyketide synthases make mistakes. In this issue of Chemistry & Biology, Jensen et al. report that a discrete family of acyltransferases is responsible for error correction, hydrolyzing key biosynthetic intermediates from a multi-enzyme complex. This activity might find use in understanding polyketide biosynthesis, particularly in uncultivated organisms and in tailoring the synthesis of small molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  12. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  13. Cloning of a cDNA that encodes farnesyl diphosphate synthase and the blue-light-induced expression of the corresponding gene in the leaves of rice plants.

    Science.gov (United States)

    Sanmiya, K; Iwasaki, T; Matsuoka, M; Miyao, M; Yamamoto, N

    1997-02-28

    A cDNA encoding farnesyl diphosphate synthase (FPPS), a key enzyme in isoprenoid biosynthesis, was isolated from a cDNA library constructed from mRNA that had been prepared from etiolated rice (Oriza sativa L. variety Nipponbare) seedlings after three hours of illumination by a subtraction method. The putative polypeptide deduced from the 1289 bp nucleotide sequence consisted of 353 amino acids and had a molecular mass of 40 676 Da. The predicted amino acid sequence exhibited high homology to those of FPPS from Arabidopsis (73% to type 1, 72% to type 2) and white lupin (74%). Southern blot analysis showed that the rice genome might contain only one gene for FPPS. The highest level of expression of the gene was demonstrated in leaves by RNA blot analysis. Moreover, light, in particular blue light, effectively enhanced expression of the gene.

  14. DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1

    Energy Technology Data Exchange (ETDEWEB)

    Diener, A.C.; Fink, G.R. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-06-01

    DMC1/LIM15 homologue 1 (DLH1), a gene related to meiosis-specific genes, has been isolated from Candida albicans, a fungus thought not to undergo meiosis. The deduced protein sequence of DLH1 contains 74% amino acid identity with Dmc1p from Saccharomyces cerevisiae and 63% with Lim15p from the plant Lilium longiflorum, meiosis-specific homologous of Escherichia coli RecA. Candida DLH1 complements a dmc1/dmc1 null mutant in S. cerevisiae. High copy expression of DLH1 restores both sporulation and meiotic recombination to a Saccharomyces dmc1/{Delta}/dmc1{Delta} strain. Unlike the DMC1 gene, which is transcribed only in meiotic cells, the heterologous Candida DLH1 gene is transcribed in both vegetative and meiotic cells of S. cerevisiae. Transcription of DLH1 is not detected or induced in C. albicans under conditions that induce DMC1 and meiosis in S. cerevisiae. The presence of an intact homologue of a meiosis-specific gene in C. albicans raises the possibility that this organism has a cryptic meiotic pathway. 25 refs., 6 figs., 3 tabs.

  15. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    Science.gov (United States)

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  16. [Advances in isoprene synthase research].

    Science.gov (United States)

    Gou, Yan; Liu, Zhongchuan; Wang, Ganggang

    2017-11-25

    Isoprene emission can lead to significant consequence for atmospheric chemistry. In addition, isoprene is a chemical compound for various industrial applications. In the organisms, isoprene is produced by isoprene synthase that eliminates the pyrophosphate from the dimethylallyl diphosphate. As a key enzyme of isoprene formation, isoprene synthase plays an important role in the process of natural emission and artificial synthesis of isoprene. So far, isoprene synthase has been found in various plants. Isoprene synthases from different sources are of conservative structural and similar biochemical properties. In this review, the biochemical and structural characteristics of isoprene synthases from different sources were compared, the catalytic mechanism of isoprene synthase was discussed, and the perspective application of the enzyme in bioengineering was proposed.

  17. Type III Polyketide Synthases: Functional Classification and Phylogenomics.

    Science.gov (United States)

    Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu

    2017-01-03

    Polyketide synthases (PKSs) catalyze the sequential condensation of simple acetate units to produce a large class of natural products, including pharmacologically valuable compounds. PKSs are classified into three types on the basis of their domain structures; type III PKSs have the simplest domain structure, although their products have various structures and functions. The sequence-function relationship is fundamental for predicting enzyme functions, but it has not been well investigated in type III PKSs to date. Consequently, the current methods for predicting type III PKS functions are still immature in comparison with those that target type I/II PKSs. In this review we summarize the current functional and phylogenomic knowledge about type III PKSs and propose a new classification of their enzymatic reactions. We also discuss possible directions for the development of better computational tools for functional prediction of type III PKS homologues. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  19. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth.

    Science.gov (United States)

    Navarro Gallón, Sandra M; Elejalde-Palmett, Carolina; Daudu, Dimitri; Liesecke, Franziska; Jullien, Frédéric; Papon, Nicolas; Dugé de Bernonville, Thomas; Courdavault, Vincent; Lanoue, Arnaud; Oudin, Audrey; Glévarec, Gaëlle; Pichon, Olivier; Clastre, Marc; St-Pierre, Benoit; Atehortùa, Lucia; Yoshikawa, Nobuyuki; Giglioli-Guivarc'h, Nathalie; Besseau, Sébastien

    2017-07-01

    The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.

  20. Oxidized lipoproteins induce long-lasting inhibition of nitric oxide synthase from a murine endothelioma cell line (bEnd.4).

    Science.gov (United States)

    Fogliatto, G; Musanti, R; Pirillo, A; Ghiselli, G

    1995-04-01

    The vascular endothelium produces nitric oxide, which has vasodilatory properties. It has been postulated that some lipoproteins may increase arterial vascular tone by decreasing the availability of endothelium-derived nitric oxide. The mechanism underlying this effect, however, is still poorly understood. We investigated the effect of native and oxidized human low- and high-density lipoproteins on the nitric oxide synthetic activity of an endothelioma cell line (bEnd.4). Oxidized lipoproteins were obtained by incubation with CuSO4. The production of nitric oxide by the cells was monitored by quantifying the nitrite concentration in the medium using Greiss reagent. The synthesis of nitric oxide by the bEnd.4 cell line was calcium-dependent and was abolished by a selective inhibitor of the constitutive nitric oxide synthase. Incubation with oxidized lipoproteins caused a time- and dose-dependent inhibition of nitric oxide synthetic activity. At a concentration of 100 micrograms/ml cholesterol, oxidized low- and high-density lipoproteins inhibited the production of nitric oxide by 27 and 51%, respectively, within 6h. The lipid fraction obtained from the native or the oxidized lipoproteins mimicked the effect of the intact lipoproteins. These results support the involvement of oxidized lipoproteins in the modulation of endothelial functions relevant to the pathogenesis of cardiovascular disease.

  1. The role of nitric oxide in aspirin induced thrombolysis in vitro and the purification of aspirin activated nitric oxide synthase from human blood platelets.

    Science.gov (United States)

    Karmohapatra, Soumendra K; Chakraborty, Kushal; Kahn, Nighat N; Sinha, Asru K

    2007-11-01

    Aspirin, a well-known inhibitor of platelet aggregation, is extensively used for the prevention/treatment of coronary artery disease. The beneficial and antithrombotic effects of the compound are related to the inhibition of platelet cyclooxygenase. It is currently believed that aspirin has no effect on the formed thrombus, which results in coronary artery disease. It was found that the exposure of platelets to 4.0 microM aspirin either in vitro or in vivo resulted in fibrinolysis of the formed "clot" produced by the recalcification of platelet-rich plasma due to the production of NO in these cells by the compound. The lysis of clot in the presence of aspirin was found to be related to the fibrinolysis with simultaneous appearance of fibrin degradation products due to the generation of serine proteinase activity by NO in the assay mixture. The aspirin activated nitric oxide synthase that catalyzed the synthesis of NO in platelets was solubilized by Triton X-100 treatment and purified to homogeneity by chromatography on DEAE cellulose and Sephadex G-50 columns. The enzyme was found to be a single chain polypeptide with M.W. 19 kDa. The treatment of human plasminogen with NO was found to directly activate the zymogen to plasmin with the production of preactivation peptide in the absence of cofactors, or cells without the formation of cyclic GMP in the assay mixture. (c) 2007 Wiley-Liss, Inc.

  2. The expression of endothelial and inducible nitric oxide synthase and apoptosis in intestinal ischemia and reperfusion injury under the action of ischemic preconditioning and pentoxifylline.

    Science.gov (United States)

    Oliveira, Teresinha Regina Ribeiro de; Oliveira, Geraldo Ferreira de; Simões, Ricardo Santos; Feitosa, Suellen Maurim; Tikazawa, Eduardo Hiroshi; Monteiro, Hugo Pequeno; Fagundes, Djalma José; Taha, Murched Omar

    2017-11-01

    To investigate the expression of nitric oxide synthase (NOS) and apoptosis associated with ischemic preconditioning (IPC) and pentoxifylline (PTX) in intestinal ischemia (I) and reperfusion (R) injury. Thirty male rats were assigned to 5 groups: (CG), no clamping of the superior mesenteric artery (90 minutes); (IR-SS) saline + ischemia (30 minutes) + reperfusion (60 minutes); (IR-PTX) PTX + ischemia (30 minutes) + reperfusion (60 minutes); (IPC-IR-SS) 5 minutes of ischemia + 5 minutes of reperfusion (IPC) + saline + I(30 minutes)+R(60 minutes); and (IPC-IR-PTX) IPC + PTX + I(30 minutes)+ R(60 minutes). The application of IPC and PTX showed a significantly lower immunohistochemistry reaction for active caspase-3 (P0.05). The NOS-2 expression (qRTPCR) in the IR-PTX group (P<0.05) was higher than the values for the IPC+IR-SS and IPC-IR-PTX groups. The NOS-3 expression was significantly upper in the IPC-IR-PTX group than in the CG (P<0.05), the IR-SS (P<0.05) and the IR-PTX (P<0.05) groups. The BCL-2 and active caspase-3 showed beneficial effects on PTX and IPC. The expression of NOS-2 and NOS-3 in the IPC and IPC-PTX groups showed no synergistic effect.

  3. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    NARCIS (Netherlands)

    Menzel, T.R.; Weldegergis, B.T.; David, A.; Boland, W.; Gols, R.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those

  4. Analysis of lysophosphatidic acid (LPA) receptor and LPA-induced endometrial prostaglandin-endoperoxide synthase 2 expression in the porcine uterus.

    Science.gov (United States)

    Seo, Heewon; Kim, Mingoo; Choi, Yohan; Lee, Chang-Kyu; Ka, Hakhyun

    2008-12-01

    Lysophosphatidic acid (LPA), a simple phospholipid-derived mediator with diverse biological actions, acts through the specific G protein-coupled receptors endothelial differentiation gene (EDG) 2, EDG4, EDG7, and GPR23. Recent studies indicate a critical role for LPA receptor signaling in embryo implantation. To understand how LPA acts in the uterus during pregnancy in pigs, we evaluated: 1) spatial and temporal expression of LPA receptors in the uterine endometrium during the estrous cycle and pregnancy and in early-stage concepti, 2) LPA levels in uterine luminal fluids from d 12 of the estrous cycle and pregnancy, 3) effects of steroid hormones on EDG7 mRNA levels, and 4) effects of LPA on prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA levels in the uterine endometrium using explant cultures. Of the four receptors, EDG7 was dominant, and its expression was regulated by pregnancy stage and status. EDG7 expression was highest on d 12 pregnancy, and localized to the luminal and glandular epithelium, and EDG7 mRNA levels were elevated by estrogen in the endometrium. EDG7 expression was also detected in concepti of d 12 and 15. LPA with various fatty acyl groups was present in the uterine lumen on d 12 of both the estrous cycle and pregnancy. LPA increased PTGS2 mRNA abundance in the uterine endometrium. These results indicate that LPA produced in the uterine endometrium may play a critical role in uterine endometrial function and conceptus development through EDG7-mediated PTGS2 expression during implantation and establishment of pregnancy in pigs.

  5. Intensification of Doxorubicin-Related Oxidative Stress in the Heart by Hypothyroidism Is Not Related to the Expression of Cytochrome P450 NADPH-Reductase and Inducible Nitric Oxide Synthase, As Well As Activity of Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Jaroslaw Dudka

    2012-01-01

    Full Text Available Cytochrome P450 NADPH-reductase (P450R, inducible synthase (iNOS and xanthine oxidase play an important role in the antracycline-related cardiotoxicity. The expression of P450R and iNOS is regulated by triiodothyronine. The aim of this study was to evaluate the effect of methimazole-induced hypothyreosis on oxidative stress secondary to doxorubicin administration. 48 hours after methimazole giving cessation, rats were exposed to doxorubicin (2.0, 5.0 and 15 mg/kg. Blood and heart were collected 4, 48 and 96 h after the drug administration. Animals exposed exclusively to doxorubicin or untreated ones were also assessed. The hypothyreosis (0.025% of methimazole significantly increased the doxorubicin effect on the cardiac carbonyl group and they may increase the glutathione level. An insignificant effect of methimazole was noticed in case of the cardiac lipid peroxidation product, the amount of DNA oxidative damages, iNOS and xanthine oxidase-enzymes responsible for red-ox activation of doxorubicin. However, the concentration of P450R was affected by a lower dose of methimazole in rats administered with doxorubicin. Since in rats receiving doxorubicin changes in oxidative stress caused by methimazole were not accompanied by elevation of bioreductive enzymes, it may be concluded that these changes in the oxidative stress were not related to the tested enzymes.

  6. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    Science.gov (United States)

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  7. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    International Nuclear Information System (INIS)

    Nagahama, Yu; Obama, Takashi; Usui, Michihiko; Kanazawa, Yukari; Iwamoto, Sanju; Suzuki, Kazushige; Miyazaki, Akira; Yamaguchi, Tomohiro; Yamamoto, Matsuo; Itabe, Hiroyuki

    2011-01-01

    Highlights: → OxLDL-induced responses in human gingival epithelial cells were studied. → OxLDL enhanced the production of IL-8, IL-1β and PGE 2 in Ca9-22 cells. → An NF-κB inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. → Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E 2 (PGE 2 ) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE 2 -producing enzymes, cyclooxygenase-2 and microsomal PGE 2 synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-κB) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-κB pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  8. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Yu [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Obama, Takashi [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Usui, Michihiko [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Kanazawa, Yukari [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Iwamoto, Sanju [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Suzuki, Kazushige [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Miyazaki, Akira [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Yamaguchi, Tomohiro [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Itabe, Hiroyuki, E-mail: h-itabe@pharm.showa-u.ac.jp [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan)

    2011-10-07

    Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  9. Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams).

    Science.gov (United States)

    Pua, Eng-Chong; Chandramouli, Sumana; Han, Ping; Liu, Pei

    2003-01-01

    Malate synthase (MS) is a key enzyme responsible for malic acid synthesis in the glyoxylate cycle, which functions to convert stored lipids to carbohydrates, by catalysing the glyoxylate condensation reaction with acetyl-CoA in the peroxisome. In this study, the cloning of an MS cDNA, designated MaMS-1, from the banana fruit is reported. MaMS-1 was 1801 bp in length encoding a single polypeptide of 556 amino acid residues. Sequence analysis revealed that MaMS-1 possessed the conserved catalytic domain and a putative peroxisomal targeting signal SK(I/L) at the carboxyl terminal. MaMS-1 also shared an extensive sequence homology (79-81.3%) with other plant MS homologues. Southern analysis indicated that MS might be present as multiple members in the banana genome. In Northern analysis, MaMS-1 was expressed specifically in ripening fruit tissue and transcripts were not detected in other organs such as roots, pseudostem, leaves, ovary, male flower, and in fruit at different stages of development. However, the transcript abundance in fruit was affected by stage of ripening, during which transcript was barely detectable at the early stage of ripening (FG and TY), but the level increased markedly in MG and in other fruits at advanced ripening stages. Furthermore, MaMS-1 expression in FG fruit could be stimulated by treatment with 1 microl l(-1) exogenous ethylene, but the stimulatory effect was abolished by the application of an ethylene inhibitor, norbornadiene. Results of this study clearly show that MS expression in banana fruit is temporally regulated during ripening and is ethylene-inducible.

  10. Structural characterization and expression analysis of a beta-thymosin homologue (Tβ) in disk abalone, Haliotis discus discus.

    Science.gov (United States)

    Kasthuri, Saranya Revathy; Premachandra, H K A; Umasuthan, Navaneethaiyer; Whang, Ilson; Lee, Jehee

    2013-09-15

    Repertoires of proteins and small peptides play numerous physiological roles as hormones, antimicrobial peptides, and cellular signaling factors. The beta-thymosins are a group of small acidic peptides involved in processes such as actin sequestration, neuronal development, wound healing, tissue repair, and angiogenesis. Recent characterization of the beta thymosins as immunological regulators in invertebrates led to our identification and characterization of a beta-thymosin homologue (Tβ) from Haliotis discus discus. The cDNA possessed an ORF of 132 bp encoding a protein of 44 amino acids with a molecular mass of 4977 Da. The amino acid sequence shows high identity with another molluskan beta-thymosin and has a characteristic actin binding motif (LKKTET) and glutamyl donors. Phylogenetic analysis showed a close relationship with molluskan homologues, as well as its distinct identity and common ancestral origin. Genomic analysis revealed a 3 exon-2 intron structure similar to the other homologues. In silico promoter analysis also revealed significant transcription factor binding sites, providing evidence for the expression of this gene under different cellular conditions, including stress or pathogenic attack. Tissue distribution profiling revealed a ubiquitous presence in all the examined tissues, but with the highest expression in mantle and hemocyte. Immune challenge with lipopolysaccharide, poly I:C and Vibrio parahemolyticus induced beta-thymosin expression in gill and hemocytes, affirming an immune-related role in invertebrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    Science.gov (United States)

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis. © 2014 The Authors.

  12. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes.

    Science.gov (United States)

    Pereira-Junior, Ronaldo A; Huarte-Bonnet, Carla; Paixão, Flávia R S; Roberts, Donald W; Luz, Christian; Pedrini, Nicolás; Fernandes, Éverton K K

    2018-02-23

    The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was (a) evaluated on conidial tolerance (based on germination) to UV-B radiation and (b) on conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lcc) and polyketide synthase (Pks). Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (a) potato dextrose agar medium (PDA), (b) PDA supplemented with 1% yeast extract (PDAY), (c) PDA supplemented with Rb (PDA+Rb), or (d) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866.7 mW m -2 of UV-B Quaite-weighted irradiance to total doses of 3.9 kJ m -2 or 6.24 kJ m -2 . Some conidia also were exposed to 16 klux of white light after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to white light, or exposed to white light only. Rb in culture medium increase the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of photolyase, laccase and pks genes in these conidia. The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. The Dictyostelium discoideum cellulose synthase: Structure/function analysis and identification of interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Blanton

    2004-02-19

    OAK-B135 The major accomplishments of this project were: (1) the initial characterization of dcsA, the gene for the putative catalytic subunit of cellulose synthase in the cellular slime mold Dictyostelium discoideum; (2) the detection of a developmentally regulated event (unidentified, but perhaps a protein modification or association with a protein partner) that is required for cellulose synthase activity (i.e., the dcsA product is necessary, but not sufficient for cellulose synthesis); (3) the continued exploration of the developmental context of cellulose synthesis and DcsA; (4) the isolation of a GFP-DcsA-expressing strain (work in progress); and (5) the identification of Dictyostelium homologues for plant genes whose products play roles in cellulose biosynthesis. Although our progress was slow and many of our results negative, we did develop a number of promising avenues of investigation that can serve as the foundation for future projects.

  14. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Directory of Open Access Journals (Sweden)

    Yong Mi Choi

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP to thymidine-5'-monophosphate (dTMP using 5,10-methylenetetrahydrofolate (mTHF as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo, complexes with dUMP (binary, and complexes with both dUMP and raltitrexed (ternary were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  15. Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Tomaz, V S; Cordeiro, R C; Costa, A M N; de Lucena, D F; Nobre Júnior, H V; de Sousa, F C F; Vasconcelos, S M M; Vale, M L; Quevedo, J; Macêdo, D

    2014-05-30

    Inflammation, oxidative and nitrosative stress underlie depression being assessed in rodents by the systemic administration of lipopolysacharide (LPS). There is an increasing body of evidence of an involvement of nitric oxide (NO) pathway in depression, but this issue was not investigated in LPS-induced model. Thus, herein we evaluated the effects of NO-pathway-modulating drugs, named aminoguanidine, l-NAME, sildenafil and l-arginine, on the behavioral (forced swimming test [FST], sucrose preference [SPT] and prepulse inhibition [PPI] of the startle) and neurochemical (glutathione [GSH], lipid peroxidation, IL-1β) alterations in the prefrontal cortex, hippocampus and striatum as well as in BDNF levels in the hippocampus 24h after LPS (0.5mg/kg, i.p.) administration, a time-point related to depressive-like behavior. Twenty-four hours post LPS there was an increase in immobility time in the FST, decrease in sucrose preference and PPI levels accompanied by a decrease in GSH levels and an increase in lipid peroxidation, IL-1β and hippocampal BDNF levels suggestive of a depressive-like state. The pretreatment with the NOS inhibitors, l-NAME and aminoguanidine as well as sildenafil prevented the behavioral and neurochemical alterations induced by LPS, although sildenafil and l-NAME were not able to prevent the increase in hippocampal BDNF levels induced by LPS. The iNOS inhibitor, aminoguanidine, and imipramine prevented all behavioral and neurochemical alterations induced by LPS. l-arginine did not prevent the alterations in immobility time, sucrose preference and GSH induced by LPS. Taken together our results show that the NO-cGMP pathway is important in the modulation of the depressive-like alterations induced by LPS. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Innate immune evasion mediated by the Ambystoma tigrinum virus eukaryotic translation initiation factor 2alpha homologue.

    Science.gov (United States)

    Jancovich, James K; Jacobs, Bertram L

    2011-05-01

    Ranaviruses (family Iridoviridae, genus Ranavirus) are large, double-stranded DNA (dsDNA) viruses whose replication is restricted to ectothermic vertebrates. Many highly pathogenic members of the genus Ranavirus encode a homologue of the eukaryotic translation initiation factor 2α (eIF2α). Data in a heterologous vaccinia virus system suggest that the Ambystoma tigrinum virus (ATV) eIF2α homologue (vIF2αH; open reading frame [ORF] 57R) is involved in evading the host innate immune response by degrading the interferon-inducible, dsRNA-activated protein kinase, PKR. To test this hypothesis directly, the ATV vIF2αH gene (ORF 57R) was deleted by homologous recombination, and a selectable marker was inserted in its place. The ATVΔ57R virus has a small plaque phenotype and is 8-fold more sensitive to interferon than wild-type ATV (wtATV). Infection of fish cells with the ATVΔ57R virus leads to eIF2α phosphorylation, in contrast to infection with wtATV, which actively inhibits eIF2α phosphorylation. The inability of ATVΔ57R to prevent phosphorylation of eIF2α correlates with degradation of fish PKZ, an interferon-inducible enzyme that is closely related to mammalian PKR. In addition, salamanders infected with ATVΔ57R displayed an increased time to death compared to that of wtATV-infected salamanders. Therefore, in a biologically relevant system, the ATV vIF2αH gene acts as an innate immune evasion factor, thereby enhancing virus pathogenesis.

  17. Expression of inducible and endothelial nitric oxide synthases, formation of peroxynitrite and reactive oxygen species in human chronic renal transplant failure

    NARCIS (Netherlands)

    Albrecht, EWJA; Stegeman, CA; Tiebosch, ATMG; Tegzess, Adam; van Goor, H

    Nitric oxide (NO.) is produced by NO syntheses (NOS) and can interact with reactive oxygen species (ROS) to form peroxynitrite, which induces protein damage by formation of nitrotyrosine. NO. has a promotional effect on acute rejection. To investigate the role of NO. during chronic renal transplant

  18. U-Bang-Haequi Tang: A Herbal Prescription that Prevents Acute Inflammation through Inhibition of NF-κB-Mediated Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Min Hwangbo

    2014-01-01

    Full Text Available Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine. U-bang-haequi tang (UBT is a herbal prescription containing Arctii fructus and Forsythia suspensa as its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS. Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bα induced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.

  19. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase

    Directory of Open Access Journals (Sweden)

    Gila Idelman

    2015-08-01

    Full Text Available It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4 signaling. LPS-stimulated iNOS and NADPH oxidase (Nox activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide (O2− production, respectively. The generation of both nitrate and O2− in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD and bilirubin effectively abolished LPS-mediated O2− production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α, an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.

  20. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.

    Science.gov (United States)

    Idelman, Gila; Smith, Darcey L H; Zucker, Stephen D

    2015-08-01

    It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin. Copyright © 2015. Published by Elsevier B.V.

  1. Dynamics of glyphosate-induced conformational changes of Mycobacterium tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) determined by hydrogen-deuterium exchange and electrospray mass spectrometry.

    Science.gov (United States)

    Marques, Maurício R; Vaso, Alessandra; Neto, João Ruggiero; Fossey, Marcelo A; Oliveira, Jaim S; Basso, Luiz A; dos Santos, Diógenes S; de Azevedo Junior, Walter F; Palma, Mario S

    2008-07-15

    The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis ( Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.

  2. Functional Characterization of Nine Norway Spruce TPS Genes and Evolution of Gymnosperm Terpene Synthases of the TPS-d Subfamily1[w

    Science.gov (United States)

    Martin, Diane M.; Fäldt, Jenny; Bohlmann, Jörg

    2004-01-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (−)-limonene synthase, (−)-α/β-pinene synthase, and (−)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-α-farnesene synthase, and E-α-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed. PMID:15310829

  3. Neurobiological correlates of inhibition of the right Broca homologue during new-word learning

    Directory of Open Access Journals (Sweden)

    Pierre Nicolo

    2016-07-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS has demonstrated beneficial effects on motor learning. It would be important to obtain a similar enhancement for verbal learning. However, previous studies have mostly assessed short-term effects of rTMS on language performance and the effect on learning is largely unknown. This study examined whether an inhibition of the right Broca homologue has long-term impact on neural processes underlying the acquisition of new words in healthy individuals. Sixteen young participants trained a new-word learning paradigm with rare, mostly unknown objects and their corresponding words immediately after continuous theta burst stimulation (cTBS or sham stimulation of right inferior frontal gyrus (IFG in a cross-over design. Neural effects were assessed with electroencephalography (EEG source power analyses during the naming task as well as coherence analyses at rest one day before and after training.Inhibition of the right Broca homologue did not affect new word learning performance at the group level. Behavioral and neural responses to cTBS were variable across participants and were associated with the magnitude of resting-state alpha-band coherence between the stimulated area and the rest of the brain before stimulation. Only participants with high intrinsic alpha-band coherence between the stimulated area and the rest of the brain before stimulation showed the expected inhibition during naming and greater learning performance. In conclusion, our study confirms that cTBS can induce lasting modulations of neural processes which are associated with learning, but the effect depends on the individual network state.

  4. Functional Promiscuity of Homologues of the Bacterial ArsA ATPases

    Directory of Open Access Journals (Sweden)

    Rostislav Castillo

    2010-01-01

    Full Text Available The ArsA ATPase of E. coli plays an essential role in arsenic detoxification. Published evidence implicates ArsA in the energization of As(III efflux via the formation of an oxyanion-translocating complex with ArsB. In addition, eukaryotic ArsA homologues have several recognized functions unrelated to arsenic resistance. By aligning ArsA homologues, constructing phylogenetic trees, examining ArsA encoding operons, and estimating the probable coevolution of these homologues with putative transporters and auxiliary proteins unrelated to ArsB, we provide evidence for new functions for ArsA homologues. They may play roles in carbon starvation, gas vesicle biogenesis, and arsenic resistance. The results lead to the proposal that ArsA homologues energize four distinct and nonhomologous transporters, ArsB, ArsP, CstA, and Acr3.

  5. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    Science.gov (United States)

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Therapy with radio-attenuated vaccine in experimental murine visceral leishmaniasis showed enhanced T cell and inducible nitric oxide synthase levels, suppressed tumor growth factor-beta production with higher expression of some signaling molecules.

    Science.gov (United States)

    Datta, Sanchita; Roy, Syamal; Manna, Madhumita

    2015-01-01

    Visceral leishmaniasis (VL) or Kala-Azar (KA) is one of the most deadly forms of disease among all neglected tropical diseases. There are no satisfactory drugs or vaccine candidates available for this dreaded disease. Our previous studies showed promising therapeutic and prophylactic efficacy of the live, radio-attenuated parasites through intramuscular (I.M.) and intraperitoneal (I.P.) route in BALB/c mice model. The T-cell proliferation level, the mRNA expression level of inducible nitric oxide synthase (iNOS) and tumor growth factor-beta (TGF-β) genes and finally the phosphorylation levels of phosphoinositide dependent kinase 1 (PDK1), phosphoinositide 3 kinase (PI3K) and p38 mitogen activated protein kinase (p38MAPK) molecules were checked in BALB/c mice model immunized with radio-attenuated Leishmania donovani parasites through I.M. route. Higher T-cell proliferation, increased iNOS level, and suppressed TGF-β level were found in treated infected animal groups (100 and 150Gy) in relation to untreated infected animals. Likewise, phosphorylation levels of PDK1, PI3K and p38MAPK of these two groups were increased when compared to untreated infected controls. The clearance of the parasites from treated infected groups of animals may be mediated by the restoration of T-cell due to therapy with radio-attenuated L. donovani parasites. The killing of parasites was mediated by increase in nitric oxide release through PDK1, PI3K and p38MAPK signaling pathways. A lower TGF-β expression has augmented the restored Th1 ambience in the 100 and 150Gy treated animal groups proving further the efficacy of the candidate vaccine. Copyright © 2015. Published by Elsevier Editora Ltda.

  7. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase [v1; ref status: indexed, http://f1000r.es/4ta

    Directory of Open Access Journals (Sweden)

    Michael Horn

    2014-11-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO from dioxygen and L-arginine (L-Arg in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOSoxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOSoxy-NO, demonstrating the strong trans effect of the heme-bound NO.

  8. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase [v2; ref status: indexed, http://f1000r.es/4w9

    Directory of Open Access Journals (Sweden)

    Michael Horn

    2014-12-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO from dioxygen and L-arginine (L-Arg in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOSoxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOSoxy-NO, demonstrating the strong trans effect of the heme-bound NO.

  9. Expression of Cyclooxygenase-2, Nitric Oxide Synthase 2 and Heme Oxygenase-1 mRNA Induced byBis-Eugenol in RAW264.7 Cells and their Antioxidant Activity Determined Using the Induction Period Method.

    Science.gov (United States)

    Murakami, Yukio; Kawata, Akifumi; Fujisawa, Seiichiro

    2017-01-01

    To clarify the mechanisms responsible for the anti-inflammatory/proinflammatory activities of eugenol-related compounds, we investigated the cytotoxicity and up-regulatory/down-refgulatory effects of the biphenols curcumin, bis-eugenol, magnolol and honokiol, and the monophenols eugenol and isoeugenol, on major regulators of cyclooxygenase-2 (Cox-2), nitric oxide synthase 2 (Nos2) and heme oxygenase-1 (HO-1) mRNA in RAW264.7 cells. mRNA expression was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and the theoretical parameters were calculated using the DFT/B3LYP/6-31* method. Also, the antioxidant activity of eugenol-related compounds in combination with 2-mercapto-1-methylimidazole (MMI, as a model for glutathione (GSH)) was investigated using the induction period method for polymerization of methyl methacrylate initiated by benzoyl peroxide (BPO). The cytotoxicity of eugenol-related compounds showed a linear relationship with their softness (σ) and electrophilicity (ω). At a concentration of 50 μM, biphenols except for bis-eugenol elicited the expression of mRNA for both Cox-2 and Nos2, but monophenols did not. In contrast, bis-eugenol elicited Cox-2 gene expression, but down-regulated Nos2 gene expression. bis-Eugenol alone induced the expression of HO-1 mRNA, and when combined with MMI it showed a potent antagonistic effect on BPO-induced antioxidant activity. The ability of methoxyphenols to inhibit LPS-stimulated Cox-2 gene expression declined in the order curcumin > isoeugenol > bis-eugenol > eugenol, and the rank of ability was related to their ω value. Most eugenol-related compounds had proinflammatory activity at high concentrations. However, they had also anti-inflammatory activity at lower concentrations. Eugenol-related compounds may exert antioxidant and anti-inflammatory activity in LPS-stimulated RAW264.7 cells possibly by inhibiting the activation of nuclear factor-kappa B (Nf-ĸB), whereas bis

  10. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...

  11. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    OpenAIRE

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2009-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to ...

  12. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication.

    Science.gov (United States)

    Wu, Faqiang; Sedivy, Eric J; Price, William Brian; Haider, Waseem; Hanzawa, Yoshie

    2017-06-01

    To clarify the molecular bases of flowering time evolution in crop domestication, here we investigate the evolutionary fates of a set of four recently duplicated genes in soybean: FT2a, FT2b, FT2c and FT2d that are homologues of the floral inducer FLOWERING LOCUS T (FT). While FT2a maintained the flowering inducer function, other genes went through contrasting evolutionary paths. FT2b evolved attenuated expression potentially associated with a transposon insertion in the upstream intergenic region, while FT2c and FT2d obtained a transposon insertion and structural rearrangement, respectively. In contrast to FT2b and FT2d whose mutational events occurred before the separation of G. max and G. soja, the evolution of FT2c is a G. max lineage specific event. The FT2c allele carrying a transposon insertion is nearly fixed in soybean landraces and differentiates domesticated soybean from wild soybean, indicating that this allele spread at the early stage of soybean domestication. The domesticated allele causes later flowering than the wild allele under short day and exhibits a signature of selection. These findings suggest that FT2c may have underpinned the evolution of photoperiodic flowering regulation in soybean domestication and highlight the evolutionary dynamics of this agronomically important gene family. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available Plants and invertebrates can suppress viral infection through RNA silencing, mediated by RNA-induced silencing complex (RISC. Trans-activation response RNA-binding protein (TRBP, consisting of three double-stranded RNA-binding domains, is a component of the RISC. In our previous paper, a TRBP homologue in Fenneropenaeus chinensis (Fc-TRBP was reported to directly bind to eukaryotic initiation factor 6 (Fc-eIF6. In this study, we further characterized the function of TRBP and the involvement of TRBP and eIF6 in antiviral RNA interference (RNAi pathway of shrimp. The double-stranded RNA binding domains (dsRBDs B and C of the TRBP from Marsupenaeus japonicus (Mj-TRBP were found to mediate the interaction of TRBP and eIF6. Gel-shift assays revealed that the N-terminal of Mj-TRBP dsRBD strongly binds to double-stranded RNA (dsRNA and that the homodimer of the TRBP mediated by the C-terminal dsRBD increases the affinity to dsRNA. RNAi against either Mj-TRBP or Mj-eIF6 impairs the dsRNA-induced sequence-specific RNAi pathway and facilitates the proliferation of white spot syndrome virus (WSSV. These results further proved the important roles of TRBP and eIF6 in the antiviral response of shrimp.

  14. Aromaticity in Group 14 homologues of the cyclopropenylium cation.

    Science.gov (United States)

    Fernández, Israel; Duvall, Matthew; I-Chia Wu, Judy; Schleyer, Paul von Ragué; Frenking, Gernot

    2011-02-11

    The nature of the bonding and the aromaticity of the heavy Group 14 homologues of cyclopropenylium cations E3H3+ and E2H2E'H+ (E, E' = C-Pb) have been investigated systematically at the BP86/TZ2P DFT level by using several methods. Aromatic stabilization energies (ASE) were evaluated from the values obtained from energy decomposition analysis (EDA) of charged acyclic reference molecules. The EDA-ASE results compare well with the extra cyclic resonance energy (ECRE) values given by the block localized wavefunction (BLW) method. Although all compounds investigated are Hückel 4n+2 π electron species, their ASEs indicate that the inclusion of Group 14 elements heavier than carbon reduces the aromaticity; the parent C3H3+ ion and Si2H2CH+ are the most aromatic, and Pb3H3+ is the least so. The higher energies for the cyclopropenium analogues reported in 1995 employed an isodesmic scheme, and are reinterpreted by using the BLW method. The decrease in the strength of both the π cyclic conjugation and the aromaticity in the order C ≫ Si>Ge>Sn>Pb agrees reasonably well with the trends given by the refined nucleus-independent chemical shift NICS(0)πzz index.

  15. Physiological and pathological functions of the prion protein homologue Dpl.

    Science.gov (United States)

    Behrens, Axel

    2003-01-01

    A misfolded version of the prion protein PrP(C), known as PrP(Sc), is the major component of scrapie infectivity, the pathological agent in transmissible spongiform encephalopathies. The Prnp gene that encodes the cellular PrP(C) protein was cloned almost 20 years ago, but remained without sequence or structural relatives for over a decade. Only recently a novel protein, named Doppel (Dpl), was identified, which shares significant biochemical and structural homology with PrP(C). When overexpressed, Dpl is neurotoxic and causes a neurological disease. Strikingly, Dpl neurotoxicity is counteracted and prevented by PrP(C). In contrast to its homologue PrP(C), Dpl is dispensable for prion disease progression and for the generation of PrP(Sc), but Dpl appears to have an essential function in male spermatogenesis. Although Dpl research is still in its infancy, the discovery of Dpl has already solved some enigmas of prion biology and an understanding of its physiological function is emerging.

  16. Characterization of Major Surface Protease Homologues of Trypanosoma congolense

    Directory of Open Access Journals (Sweden)

    Veronica Marcoux

    2010-01-01

    Full Text Available Trypanosomes encode a family of proteins known as Major Surface Metalloproteases (MSPs. We have identified six putative MSPs encoded within the partially sequenced T. congolense genome. Phylogenic analysis indicates that T. congolense MSPs belong to five subfamilies that are conserved among African trypanosome species. Molecular modeling, based on the known structure of Leishmania Major GP63, reveals subfamily-specific structural variations around the putative active site despite conservation of overall structure, suggesting that each MSP subfamily has evolved to recognize distinct substrates. We have cloned and purified a protein encoding the amino-terminal domain of the T. congolense homologue TcoMSP-D (most closely related to Leishmania GP63. We detect TcoMSP-D in the serum of T. congolense-infected mice. Mice immunized with the amino-terminal domain of TcoMSP-D generate a persisting IgG1 antibody response. Surprisingly, a low-dose challenge of immunized mice with T. congolense significantly increases susceptibility to infection, indicating that immunity to TcoMSP-D is a factor affecting virulence.

  17. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato.

    Science.gov (United States)

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  18. Virus-induced Gene Silencing-based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-08-01

    Full Text Available Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst DC3000 as well as to defense signaling hormones (e.g. salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4 or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7 or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7 and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  19. Ergolide, sesquiterpene lactone from Inula britannica, inhibits inducible nitric oxide synthase and cyclo-oxygenase-2 expression in RAW 264.7 macrophages through the inactivation of NF-κB

    Science.gov (United States)

    Whan Han, Jeung; Gon Lee, Byeong; Kee Kim, Yong; Woo Yoon, Jong; Kyoung Jin, Hye; Hong, Sungyoul; Young Lee, Hoi; Ro Lee, Kang; Woo Lee, Hyang

    2001-01-01

    We investigated the mechanism of suppression of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) by ergolide, sesquiterpene lactone from Inula britannica.iNOS activity in cell-free extract of LPS/IFN-γ-stimulated RAW 264.7 macrophages was markedly attenuated by the treatment with ergolide. Its inhibitory effect on iNOS was paralleled by decrease in nitrite accumulation in culture medium of LPS/IFN-γ-stimulated RAW 264.7 macrophages in a concentration-dependent manner. However, its inhibitory effect does not result from direct inhibition of the catalytic activity of NOS.Ergolide markedly decreased the production of prostaglandin E2 (PGE2) in cell-free extract of LPS/IFN-γ-stimulated RAW 264.7 macrophages in a concentration-dependent manner, without alteration of the catalytic activity of COX-2 itself.Ergolide decreased the level of iNOS and COX-2 protein, and iNOS mRNA caused by stimulation of LPS/IFN-γ in a concentration-dependent manner, as measured by Western blot and Northern blot analysis, respectively.Ergolide inhibited nuclear factor-κB (NF-κB) activation, a transcription factor necessary for iNOS and COX-2 expression in response to LPS/IFN-γ. This effect was accompanied by the parallel reduction of nuclear translocation of subunit p65 of NF-κB as well as IκB-α degradation. In addition, these effects were completely blocked by treatment of cysteine, indicating that this inhibitory effect of ergolide could be mediated by alkylation of NF-κB itself or an upstream molecule of NF-κB.Ergolide also directly inhibited the DNA-binding activity of active NF-κB in LPS/IFN-γ-pretreated RAW 264.7 macrophages.These results demonstrate that the suppression of NF-κB activation by ergolide might be attributed to the inhibition of nuclear translocation of NF-κB resulted from blockade of the degradation of IκB and the direct modification of active NF-κB, leading to the suppression of the expression of iNOS and COX-2, which play important

  20. Ergolide, sesquiterpene lactone from Inula britannica, inhibits inducible nitric oxide synthase and cyclo-oxygenase-2 expression in RAW 264.7 macrophages through the inactivation of NF-kappaB.

    Science.gov (United States)

    Whan Han, J; Gon Lee, B; Kee Kim, Y; Woo Yoon, J; Kyoung Jin, H; Hong, S; Young Lee, H; Ro Lee, K; Woo Lee, H

    2001-06-01

    We investigated the mechanism of suppression of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) by ergolide, sesquiterpene lactone from Inula britannica. iNOS activity in cell-free extract of LPS/IFN-gamma-stimulated RAW 264.7 macrophages was markedly attenuated by the treatment with ergolide. Its inhibitory effect on iNOS was paralleled by decrease in nitrite accumulation in culture medium of LPS/IFN-gamma-stimulated RAW 264.7 macrophages in a concentration-dependent manner. However, its inhibitory effect does not result from direct inhibition of the catalytic activity of NOS. Ergolide markedly decreased the production of prostaglandin E(2) (PGE(2)) in cell-free extract of LPS/IFN-gamma-stimulated RAW 264.7 macrophages in a concentration-dependent manner, without alteration of the catalytic activity of COX-2 itself. Ergolide decreased the level of iNOS and COX-2 protein, and iNOS mRNA caused by stimulation of LPS/IFN-gamma in a concentration-dependent manner, as measured by Western blot and Northern blot analysis, respectively. Ergolide inhibited nuclear factor-kappaB (NF-kappaB) activation, a transcription factor necessary for iNOS and COX-2 expression in response to LPS/IFN-gamma. This effect was accompanied by the parallel reduction of nuclear translocation of subunit p65 of NF-kappaB as well as IkappaB-alpha degradation. In addition, these effects were completely blocked by treatment of cysteine, indicating that this inhibitory effect of ergolide could be mediated by alkylation of NF-kappaB itself or an upstream molecule of NF-kappaB. Ergolide also directly inhibited the DNA-binding activity of active NF-kappaB in LPS/IFN-gamma-pretreated RAW 264.7 macrophages. These results demonstrate that the suppression of NF-kappaB activation by ergolide might be attributed to the inhibition of nuclear translocation of NF-kappaB resulted from blockade of the degradation of IkappaB and the direct modification of active NF-kappaB, leading to the

  1. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes

    Directory of Open Access Journals (Sweden)

    Ceretto Monica

    2007-06-01

    Full Text Available Abstract Background Enhanced production of nitric oxide (NO following upmodulation of the inducible isoform of NO synthase (iNOS by haemozoin (HZ, inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. Methods Adherent immunopurified human monocytes (purity >85%, and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. Results Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. Conclusion Results indicate that human monocytes fed or not with HZ/sHZ were constantly

  2. Bet v 1 homologues in strawberry identified as IgE-binding proteins and presumptive allergens.

    Science.gov (United States)

    Karlsson, A L; Alm, R; Ekstrand, B; Fjelkner-Modig, S; Schiött, A; Bengtsson, U; Björk, L; Hjernø, K; Roepstorff, P; Emanuelsson, C S

    2004-12-01

    No strawberry allergen has so far been identified and characterized. Serum samples were collected from patients with a suggestive case history of adverse reactions to strawberry and other fruits. Extracts from fresh and frozen strawberries were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and mass spectrometry. Patient blood samples were analysed for inhibition of IgE binding and basophil degranulation. Several IgE-binding proteins could be detected. In more than half of the patient sera, a 20/18-kDa doublet band was observed in Western blotting. These two bands were excised and analysed by mass spectrometry showing the presence of proteins belonging to the Bet v 1 family of allergens. Inhibition of the IgE binding to the 20/18-kDa doublet was obtained by addition of two recombinantly expressed allergens belonging to the Bet v 1 family (Bet v 1 and Mal d 1) and strawberry protein extract. In a cell-based assay of patient blood samples, basophil degranulation could be induced by strawberry protein extract and by Bet v 1 and Mal d 1. We conclude that strawberry homologues to Bet v 1 may be allergens of importance for adverse reactions to strawberry.

  3. Validating tyrosinase homologue MelA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert; Zemp, Roger

    2015-03-01

    Antibiotic drug resistance is a major worldwide issue. Development of new therapies against pathogenic bacteria requires appropriate research tools for replicating and characterizing infections. Previously fluorescence and bioluminescence modalities have been used to image infectious burden in animal models but scattering significantly limits imaging depth and resolution. We hypothesize that photoacoustic imaging, which has improved depth-toresolution ratio, could be useful for visualizing MelA-expressing bacteria since MelA is a bacterial tyrosinase homologue involved in melanin production. Using an inducible expression system, E. coli expressing MelA were visibly black in liquid culture. Phosphate buffered saline (PBS), MelA-expressing bacteria (at different dilutions in PBS), and chicken embryo blood were injected in plastic tubes which were imaged using a VisualSonics Vevo LAZR system. Photoacoustic imaging at 6 different wavelengths (680, 700, 750, 800, 850 and 900nm) enabled spectral de-mixing to distinguish melanin signals from blood. The signal to noise ratio of 9x diluted MelA bacteria was 55, suggesting that ~20 bacteria cells could be detected with our system. When MelA bacteria were injected as a 100 μL bolus into a chicken embryo, photoacoustic signals from deoxy- and oxy- hemoglobin as well as MelA-expressing bacteria could be separated and overlaid on an ultrasound image, allowing visualization of the bacterial location. Photoacoustic imaging may be a useful tool for visualizing bacterial infections and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  4. [Patterns of PCDD/Fs, PCBs and PCNs homologues in fly ash from cement kilns].

    Science.gov (United States)

    Zhang, Jing; Ni, Yu-Wen; Zhang, Hai-Jun; Zhang, Xue-Ping; Zhang, Qing; Chen, Ji-Ping

    2009-02-15

    The concentrations and toxic equivalent (TEQ) values of PCDD/Fs, PCBs and PCNs in fly ash collected from three types of cement kilns (vertical shaft kiln, wet-process rotary kiln and dry-process rotary kiln) and two types of waste incinerators were determined, and the patterns of homologues and congeners were compared. The results showed that the total TEQ of PCDD/Fs, PCBs and PCNs in cement kiln fly ash, which were in the range of 4.0-62, 0.069-3.9 and 0.47-2.8 ng x kg(-1) respectively, were much lower than that of fly ash from waste incinerators. In cement kiln fly ash, the predominating PCDD/Fs homologues were TCDFs, and the chief 2, 3, 7, 8-PCDD/Fs congeners were OCDD, 2, 3, 7, 8-TCDF and 1, 2, 3, 4, 6, 7, 8-HpCDF. The patterns of PCBs homologues in cement kiln fly ash were similar to those of waste incinerators in which TeCB were predominating homologues. PCB77, PCB105, PCB118 were at higher concentrations than other co-polar PCBs. Different types of cement kiln fly ash presented similar PCNs homologue patterns. The predominant homologues were TeCN, whereas OcCN were not detected. PCN 66/67 which has dioxin like toxity was the most abundant congener in all fly ash.

  5. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  6. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  7. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and sex showed no such changes. Our data support the hypothesis that NO is a pathogenic factor in MS, and that NOS IR is strongly expressed in brain regions appearing normal by MRI...

  8. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  9. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-κB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line

    Directory of Open Access Journals (Sweden)

    Ana Luísa Vital

    2003-01-01

    Full Text Available Aims: Nitric oxide (NO has been increasingly implicated in inflammatory skin diseases, namely in allergic contact dermatitis. In this work, we investigated the effect of dexamethasone on NO production induced by the epidermal cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF in a mouse fetal skin dendritic cell line.

  10. Protective effects of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon: removal of O(6)-methylguanine DNA adducts, p53 expression, inducible nitric oxide synthase downregulation and apoptotic induction.

    Science.gov (United States)

    Samanta, Shaonly; Swamy, Viswanath; Suresh, D; Rajkumar, M; Rana, Basabi; Rana, Ajay; Chatterjee, Malay

    2008-02-29

    Previous studies have shown that dietary micronutrient vanadium can protect neoplastic development induced by chemical carcinogens. Current investigation is an attempt to evaluate the role of vanadium (4.27 micro mol/l) in inhibiting 1,2 dimethyhydrazine (DMH) (20 mg/kg body weight) induced rat colon carcinogenesis. We investigated the effect of vanadium against the formation of DMH-induced O(6)-methylguanine (O(6)-Meg) DNA adduct, a potent cytotoxic and mutagenic agent for colon cancer. Supplementation of vanadium significantly reduced the hepatic (Pvanadium's potency in limiting the initiation event of colon carcinogenesis. Removal of initiated and damaged precancerous cells by apoptosis can prevent tumorigenesis and further malignancy. DNA fragmentation study revealed the vanadium-mediated apoptotic induction in colon tumors. The increased value of apoptotic index (AI) (62.27%; Pvanadium. This paralleled the nuclear immunoexpression of p53. A significant positive correlation between p53 immunoexpression and AI (P=0.0026, r=0.83, r(2)=0.69) links its association with vanadium-mediated apoptotic induction. Vanadium treatment also abated the mRNA expression of iNOS (54.03%), reflecting its protective effect against nitric oxide-mediated genotoxicity and colon tumorigenesis. These studies cumulatively provide strong evidence for the inhibitory actions of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon.

  11. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  12. Crystallization and preliminary X-ray diffraction analysis of a novel Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis venom

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Mário T. [Department of Physics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000 (Brazil); Center for Applied Toxinology, CAT-CEPID, São Paulo, SP (Brazil); Advanced Center for Genomics and Proteomics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000 (Brazil); Kuch, Ulrich; Mebs, Dietrich [Zentrum der Rechtsmedizin, Klinikum der Johann Wolfgang Goethe-Universität, Kennedyallee 104, D-60596 Frankfurt am Main (Germany); Arni, Raghuvir K., E-mail: arni@ibilce.unesp.br [Department of Physics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000 (Brazil); Center for Applied Toxinology, CAT-CEPID, São Paulo, SP (Brazil); Advanced Center for Genomics and Proteomics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000 (Brazil)

    2007-07-01

    A single crystal of zhaoermiatoxin with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å. Zhaoermiatoxin, an Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA{sub 2}-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49→Arg substitution that does not alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA{sub 2} homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA{sub 2} catalytic activity. A single crystal with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å.

  13. Whole genome sequencing enables the characterization of BurI, a LuxI homologue of Burkholderia cepacia strain GG4

    Directory of Open Access Journals (Sweden)

    Kah Yan How

    2015-08-01

    Full Text Available Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3. The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.

  14. Cloning and expression analysis of two ROR-γ homologues (ROR-γa1 and ROR-γa2) in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Monte, Milena M; Wang, Tiehui; Costa, Maria M; Harun, Nor Omaima; Secombes, Chris J

    2012-08-01

    This paper describes the cloning and characterisation of two retinoid-related orphan receptor (ROR)-γ homologues (ROR-γa1 and -γa2) in rainbow trout (Oncorhynchus mykiss). The coding region predicted for both homologues consists of 1410 base pairs (bp), which translate into two 469 amino acid (aa) proteins. The trout ROR-γs revealed a high conservation of both DNA- and ligand-binding domains (functional regions of the nuclear receptor family), and shared a high homology to mammalian ROR-γt. A phylogenetic tree containing ROR family members confirmed that both trout homologues clustered within the ROR-γ group. Both results suggested that these molecules are likely to be ROR-γ homologues, more similar to the mammalian splice variant ROR-γt than the full length ROR-γ. Expression analysis of tissues obtained from healthy fish revealed highest constitutive expression of trout ROR-γ in muscle, followed by the brain, heart and skin. This suggests that these genes may play an important role in such tissues. In vitro studies, using trout cell lines, demonstrated that ROR-γ is induced significantly by LPS and down-regulated by the presence of PolyI:C and recombinant interferon (IFN)-γ. Moreover, analysis of this gene in head kidney macrophages and mixed primary leucocyte cultures indicated that differences were apparent between the different cell types/sources used, indicating that its expression may be cell-type dependent. Additional studies to investigate the regulation of this gene in vivo demonstrated that its expression was significantly higher in vaccinated vs unvaccinated fish following bacterial (Yersinia ruckeri) challenge but it was down-regulated after a viral (VHSV) infection. This suggests a potential role of trout ROR-γ, a putative T(H)17 transcription factor, in protection against extracellular bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Man o' War Mutation in UDP-α-D-Xylose Synthase Favors the Abortive Catalytic Cycle and Uncovers a Latent Potential for Hexamer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Jr., Richard M.; Polizzi, Samuel J.; Kadirvelraj, Renuka; Howard, Wesley W.; Wood, Zachary A. [Georgia

    2015-03-17

    The man o’ war (mow) phenotype in zebrafish is characterized by severe craniofacial defects due to a missense mutation in UDP-α-D-xylose synthase (UXS), an essential enzyme in proteoglycan biosynthesis. The mow mutation is located in the UXS dimer interface ~16 Å away from the active site, suggesting an indirect effect on the enzyme mechanism. We have examined the structural and catalytic consequences of the mow mutation (R236H) in the soluble fragment of human UXS (hUXS), which shares 93% sequence identity with the zebrafish enzyme. In solution, hUXS dimers undergo a concentration-dependent association to form a tetramer. Sedimentation velocity studies show that the R236H substitution induces the formation of a new hexameric species. Using two new crystal structures of the hexamer, we show that R236H and R236A substitutions cause a local unfolding of the active site that allows for a rotation of the dimer interface necessary to form the hexamer. The disordered active sites in the R236H and R236A mutant constructs displace Y231, the essential acid/base catalyst in the UXS reaction mechanism. The loss of Y231 favors an abortive catalytic cycle in which the reaction intermediate, UDP-α-D-4-keto-xylose, is not reduced to the final product, UDP-α-D-xylose. Surprisingly, the mow-induced hexamer is almost identical to the hexamers formed by the deeply divergent UXS homologues from Staphylococcus aureus and Helicobacter pylori (21% and 16% sequence identity, respectively). The persistence of a latent hexamer-building interface in the human enzyme suggests that the ancestral UXS may have been a hexamer.

  16. Impaired induction of allergic lung inflammation by Alternaria alternata mutant MAPK homologue Fus3.

    Science.gov (United States)

    Kim, Hee-Kyoo; Baum, Rachel; Lund, Sean; Khorram, Naseem; Yang, Siwy Ling; Chung, Kuang-Ren; Doherty, Taylor A

    2013-11-01

    The fungal allergen Alternaria alternata is associated with development of asthma, though the mechanisms underlying the allergenicity of Alternaria are largely unknown. The aim of this study was to identify whether the MAP kinase homologue Fus3 of Alternaria contributed to allergic airway responses. Wild-type (WT) and Fus3 deficient Alternaria extracts were given intranasal to mice. Extracts from Fus3 deficient Alternaria that had a functional copy of Fus3 introduced were also administered (CpFus3). Mice were challenged once and levels of BAL eosinophils and innate cytokines IL-33, thymic stromal lymphopoeitin (TSLP), and IL-25 (IL-17E) were assessed. Alternaria extracts or protease-inhibited extract were administered with (OVA) during sensitization prior to ovalbumin only challenges to determine extract adjuvant activity. Levels of BAL inflammatory cells, Th2 cytokines, and OX40-expressing Th2 cells as well as airway infiltration and mucus production were measured. WT Alternaria induced innate airway eosinophilia within 3 days. Mice given Fus3 deficient Alternaria were significantly impaired in developing airway eosinophilia that was largely restored by CpFus3. Further, BAL IL-33, TSLP, and Eotaxin-1 levels were reduced after challenge with Fus3 mutant extract compared with WT and CpFus3 extracts. WT and CpFus3 extracts demonstrated strong adjuvant activity in vivo as levels of BAL eosinophils, Th2 cytokines, and OX40-expressing Th2 cells as well as peribronchial inflammation and mucus production were induced. In contrast, the adjuvant activity of Fus3 extract or protease-inhibited WT extract was largely impaired. Finally, protease activity and Alt a1 levels were reduced in Fus3 mutant extract. Thus, Fus3 contributes to the Th2-sensitizing properties of Alternaria.

  17. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  18. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.

    Science.gov (United States)

    Molina, Rosana S; Tran, Tam M; Campbell, Robert E; Lambert, Gerard G; Salih, Anya; Shaner, Nathan C; Hughes, Thomas E; Drobizhev, Mikhail

    2017-06-15

    Fluorescent proteins (FPs) are indispensable markers for two-photon imaging of live tissue, especially in the brains of small model organisms. The quantity of physiologically relevant data collected, however, is limited by heat-induced damage of the tissue due to the high intensities of the excitation laser. We seek to minimize this damage by developing FPs with improved brightness. Among FPs with the same chromophore structure, the spectral properties can vary widely due to differences in the local protein environment. Using a physical model that describes the spectra of FPs containing the anionic green FP (GFP) chromophore, we predict that those that are blue-shifted in one-photon absorption will have stronger peak two-photon absorption cross sections. Following this prediction, we present 12 blue-shifted GFP homologues and demonstrate that they are up to 2.5 times brighter than the commonly used enhanced GFP (EGFP).

  19. A spinach O-acetylserine(thiollyase homologue, SoCSaseLP, suppresses cysteine biosynthesis catalysed by other enzyme isoforms

    Directory of Open Access Journals (Sweden)

    Miki Noda

    2016-06-01

    Full Text Available An enzyme, O-acetylserine(thiollyase (OASTL, also known as O-acetylserine sulfhydrylase or cysteine synthase (CSase, catalyses the incorporation of sulfide into O-acetylserine and produces cysteine. We previously identified a cDNA encoding an OASTL-like protein from Spinacia oleracea, (SoCSaseLP, but a recombinant SoCSaseLP produced in Escherichia coli did not show OASTL activity. The exon-intron structure of the SoCSaseLP gene shared conserved structures with other spinach OASTL genes. The SoCSaseLP and a Beta vulgaris homologue protein, KMT13462, comprise a unique clade in the phylogenetic tree of the OASTL family. Interestingly, when the SoCSaseLP gene was expressed in tobacco plants, total OASTL activity in tobacco leaves was reduced. This reduction in total OASTL activity was most likely caused by interference by SoCSaseLP with cytosolic OASTL. To investigate the possible interaction of SoCSaseLP with a spinach cytosolic OASTL isoform SoCSaseA, a pull-down assay was carried out. The recombinant glutathione S-transferase (GST-SoCSaseLP fusion protein was expressed in E. coli together with the histidine-tagged SoCSaseA protein, and the protein extract was subjected to glutathione affinity chromatography. The histidine-tagged SoCSaseA was co-purified with the GST-SoCSaseLP fusion protein, indicating the binding of SoCSaseLP to SoCSaseA. Consistent with this interaction, the OASTL activity of the co-purified SoCSaseA was reduced compared with the activity of SoCSaseA that was purified on its own. These results strongly suggest that SoCSaseLP negatively regulates the activity of other cytosolic OASTL family members by direct interaction.

  20. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  1. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  2. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Expression pattern of INNER NO OUTER homologue in Nymphaea (water lily family, Nymphaeaceae).

    Science.gov (United States)

    Yamada, Toshihiro; Ito, Motomi; Kato, Masahiro

    2003-10-01

    Two homologues of INNER NO OUTER ( INO) in Nymphaea alba and N. colorata (Nymphaeaceae) were isolated and the expression pattern of the N. alba INO homologue NaINO was examined by in situ hybridization. The INO homologues obtained have a portion similar to INO in the predicted amino acid sequences between the conserved zinc finger-like and YABBY domains. In an in situ hybridization analysis, NaINO is expressed in the outer epidermis of the outer integument, inner integument, and the tip of the nucellus. The pattern observed in the outer integument is very similar to that of Arabidopsis thaliana, while the expression in the inner integument and nucellus is not observed in A. thaliana.

  4. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    Science.gov (United States)

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J

    2016-03-15

    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  5. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations

    Directory of Open Access Journals (Sweden)

    Ziniu Zhou

    2016-03-01

    Full Text Available A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3 project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  6. Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging.

    Science.gov (United States)

    Li, Wei; Sun, Libo; Liang, Qiuli; Wang, Juan; Mo, Weike; Zhou, Bing

    2006-04-01

    Apoptosis-inducing factor (AIF) and AIF-homologous mitochondrion-associated inducer of death (AMID) are both mitochondrial flavoproteins that trigger caspase-independent apoptosis. Phylogenetic analysis suggests that these two proteins evolutionarily diverge back from their common prokaryote ancestor. Compared with AIF, the proapoptotic nature of AMID and its mode of action are much less clarified. Here, we show that overexpression of yeast AMID homologue internal NADH dehydrogenase (NDI1), but not external NADH dehydrogenase (NDE1), can cause apoptosis-like cell death, and this effect can be repressed by increased respiration on glucose-limited media. This result indicates that the regulatory network of energy metabolism, in particular the cross-talk between mitochondria and the rest of the cell, is involved in Ndi1p-induced yeast cell apoptosis. The apoptotic effect of NDI1 overexpression is associated with increased production of reactive oxygen species (ROS) in mitochondria. In addition, NDI1 overexpression in sod2 background causes cell lethality in both fermentable and semifermentable media. Interruption of certain components in the electron transport chain can suppress the growth inhibition from Ndi1p overexpression. We finally show that disruption of NDI1 or NDE1 decreases ROS production and elongates the chronological life span of yeast, accompanied by the loss of survival fitness. Implication of these findings for Ndi1p-induced apoptosis is discussed.

  7. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  8. Homologue of Protein Kinase Mζ Maintains Context Aversive Memory and Underlying Long-Term Facilitation in Terrestrial Snail Helix.

    Directory of Open Access Journals (Sweden)

    Pavel M. Balaban

    2015-06-01

    Full Text Available It has been shown that a variety of long-term memories in different regions of the brain and in different species are quickly erased by local inhibition of PKMζ. Using antibodies to mammalian PKMζ, we describe in the present study the localization of immunoreactive molecules in the nervous system of the terrestrial snail Helix lucorum. Presence of a homologue of PKMζ was confirmed with transcriptomics. We have demonstrated in behavioral experiments that contextual fear memory disappeared under a blockade of PKMζ with a selective peptide blocker of PKMζ (ZIP, but not with scrambled ZIP. If ZIP was combined with a reminder (20 min in noxious context, no impairment of the long-term contextual memory was observed. In electrophysiological experiments we investigated whether PKMζ takes part in the maintenance of long-term facilitation (LTF in the neural circuit mediating tentacle withdrawal. LTF of excitatory synaptic inputs to premotor interneurons was induced by high-frequency nerve stimulation combined with serotonin bath applications and lasted at least four hours. We found that bath application of 2x10-6 M ZIP at the 90th min after the tetanization reduced the EPSP amplitude to the non-tetanized EPSP values. Applications of the scrambled ZIP peptide at a similar time and concentration didn't affect the EPSP amplitudes. In order to test whether effects of ZIP are specific to the synapses, we performed experiments with LTF of somatic membrane responses to local glutamate applications. It was shown earlier that serotonin application in such an artificial synapse condition elicits LTF of responses to glutamate. It was found that ZIP had no effect on LTF in these conditions, which may be explained by the very low concentration of PKMζ molecules in somata of these identified neurons, as evidenced by immunochemistry. Obtained results suggest that the Helix homologue of PKMζ might be involved in post-induction maintenance of long-term changes in

  9. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence.

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-10-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases.

    Science.gov (United States)

    Beck, J; Ripka, S; Siegner, A; Schiltz, E; Schweizer, E

    1990-09-11

    6-Methylsalicylic acid synthase (MSAS) from Penicillium patulum is a homomultimer of a single, multifunctional protein subunit. The enzyme is induced, at the transcriptional level, during the end of the logarithmic growth phase. After approximately 150-fold purification, a homogeneous enzyme preparation was obtained exhibiting, upon SDS gel electrophoresis, a subunit molecular mass of 188 kDa. By immunological screening of a genomic P. patulum DNA expression library, the MSAS gene together with its flanking sequences was isolated; 7131 base pairs of the cloned genomic DNA were sequenced. Within this sequence the MSAS gene was identified as a 5322-bp-long open reading frame coding for a protein of 1774 amino acids and 190,731 Da molecular mass. Transcriptional initiation and termination sites were determined both by primer extension studies and from cDNA sequences specially prepared for the 5' and 3' portions of the gene. The same cDNA sequences revealed the presence of a 69-bp intron within the N-terminal part of the MSAS gene. The intron contains the canonical GT and AG dinucleotides at its 5'- and 3'-splice junctions. An internal TACTGAC sequence, resembling the TACTAAC consensus element of Saccharomyces cerevisiae introns is suggested to represent the branch point of the lariat splicing intermediate. When compared to other known polyketide synthases, distinct amino acid sequence similarities of limited lengths were observed with some, though not all, of them. A comparatively low degree of similarity was detected to the yeast and Penicillium FAS or to the plant chalcone and resveratrol synthases. In contrast, a significantly higher sequence similarity was found between MSAS and the rat fatty acid synthase, especially at their transacylase, 2-oxoacyl reductase, 2-oxoacyl synthase and acyl carrier protein domains. Besides several dissimilar, interspersed regions probably coding for MSAS- and FAS-specific functions, the sequential order of the similar domains was

  11. Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.).

    Science.gov (United States)

    Barnes, J R; Lorenz, W W; Dean, J F D

    2008-04-30

    1-Aminocyclopropane-1-carboxylate (ACC) synthase catalyzes what is typically the rate-limiting step in the biosynthesis of ethylene, a gaseous plant growth regulator that plays numerous roles in the growth and development of higher plants. Although ACC synthase genes have been characterized from a wide variety of angiosperm plant species, no ACC synthase genes have been described previously for gymnosperms. Evidence suggests that ethylene helps to regulate wood formation in trees, and may also signal for the metabolic shifts that lead to compression wood formation on the undersides of branches and leaning stems in gymnosperm trees. Since compression wood is an inferior feedstock for the manufacturing of most wood products, a better understanding of the factors influencing its formation could lead to substantial economic benefits. This study describes the isolation and characterization of a putative ACC synthase gene, PtaACS1, from loblolly pine (Pinus taeda L.), an important commercial forest tree species. Also described is an apparent splice variant of PtaACS1 (PtaACS1s) that is missing 138 bp from the 5' end of the transcript, including bases that encode a conserved amino acid residue considered critical for ACC synthase activity. The two sequences share interesting homologies with a group of plant aminotransferases, in addition to ACC synthases, but structural models and the conservation of critical catalytic amino acid residues strongly support PtaACS1 as encoding an active ACC synthase. The two transcripts were differentially expressed in various tissues of loblolly pine, as well as in response to perturbations of pine seedling stems. Transcript levels of this ACC synthase gene increased rapidly in response to bending stress but returned to near starting levels within 30 min. It remains unclear to what extent bending-induced expression of this gene product plays a role in compression wood formation.

  12. Improved crystallization of Escherichia coli ATP synthase catalytic complex (F1) by introducing a phosphomimetic mutation in subunit ∊

    International Nuclear Information System (INIS)

    Roy, Ankoor; Hutcheon, Marcus L.; Duncan, Thomas M.; Cingolani, Gino

    2012-01-01

    A phosphomimetic mutation in subunit ∊ dramatically increases reproducibility for crystallization of Escherichia coli ATP synthase catalytic complex (F 1 ) (subunit composition α 3 β 3 γ∊). Diffraction data were collected to ∼3.15 Å resolution using synchrotron radiation. The bacterial ATP synthase (F O F 1 ) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single-molecule studies on F-type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli F O F 1 represents nature’s smallest rotary motor, composed of a membrane-embedded proton transporter (F O ) and a peripheral catalytic complex (F 1 ). The ATPase activity of isolated F 1 is fully expressed by the α 3 β 3 γ ‘core’, whereas single δ and ∊ subunits are required for structural and functional coupling of E. coli F 1 to F O . In contrast to mitochondrial F 1 -ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F 1 -ATPase catalytic core. Destabilizing the compact conformation of ∊’s C-terminal domain with a phosphomimetic mutation (∊S65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F 1 that diffract to ∼3.15 Å resolution

  13. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    Science.gov (United States)

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS), and we show that these are active biocatalysts for monoterpene production using biocatalysis and metabolic engineering platforms. In metabolically engineered monoterpene-producing E. coli strains, use of bLinS leads to 300-fold higher linalool production compared with the corresponding plant monoterpene synthase. With bCinS, 1,8-cineole is produced with 96% purity compared to 67% from plant species. Structures of bLinS and bCinS, and their complexes with fluorinated substrate analogues, show that these bacterial monoterpene synthases are similar to previously characterized sesquiterpene synthases. Molecular dynamics simulations suggest that these monoterpene synthases do not undergo large-scale conformational changes during the reaction cycle, making them attractive targets for structured-based protein engineering to expand the catalytic scope of these enzymes toward alternative monoterpene scaffolds. Comparison of the bLinS and bCinS structures indicates how their active sites steer reactive carbocation intermediates to the desired acyclic linalool (bLinS) or bicyclic 1,8-cineole (bCinS) products. The work reported here provides the analysis of structures for this important class of monoterpene synthase. This should now guide exploitation of the bacterial enzymes as gateway biocatalysts for the production of other monoterpenes and monoterpenoids. PMID:28966840

  14. From Cell Death to Metabolism: Holin-Antiholin Homologues with New Functions

    DEFF Research Database (Denmark)

    van den Esker, Marielle H.; Kovács, Ákos T.; Kuipers, Oscar P.

    2017-01-01

    , but their functions can be different, depending on the species. Using a series of biochemical and genetic approaches, in a recent article in mBio, Charbonnier et al. (mBio 8:e00976-17, 2017, https://doi.org/10.1128/mBio.00976-17) demonstrate that the antiholin homologue in Bacillus subtilis transports pyruvate...

  15. A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue

    NARCIS (Netherlands)

    Spassieva, S; Hille, J

    Lesion mimic phenotypes serve as a tool to study the regulation of cell death in plants. In order to obtain a tomato lesion mimic phenotype, we used the conservation of the lethal leaf spot 1 (Lls1) genes between plant species. The tomato Lls1 homologue was cloned, sequenced and analyzed. It showed

  16. Behaviour of the homologues of Rf and Db in complexing media

    International Nuclear Information System (INIS)

    Trubert, D.; Monroy Guzman, F.; Hussonnois, M.; Brillard, L.; Le Naour, C.; Servajean, V.; Constantinescu, O.; Constantinescu, M.; Ardisson, G.; Barci, V.; Weiss, B.

    1999-01-01

    In order to study the chemical behaviour of the trans-actinide elements, the chemical properties of their most probable homologues have been investigated by ion exchange methods in various complexing media. A new chromatographic method allowing the determination of distribution coefficients in the case o short-lived isotopes has been developed and successfully tested with the RACHEL device. (authors)

  17. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening.

    Science.gov (United States)

    Bertolini, Alberto; Peresson, Carlo; Petrussa, Elisa; Braidot, Enrico; Passamonti, Sabina; Macrì, Francesco; Vianello, Angelo

    2009-01-01

    A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both K(m) and V(max), than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues.

  18. The archaeal TFIIE homologue facilitates transcription initiation by enhancing TATA-box recognition

    NARCIS (Netherlands)

    Bell, S.D.; Brinkman, A.B.; Oost, van der J.; Jackson, S.P.

    2001-01-01

    Transcription from many archaeal promoters can be reconstituted in vitro using recombinant TATA-box binding protein (TBP) and transcription factor B (TFB)—homologues of eukaryal TBP and TFIIB—together with purified RNA polymerase (RNAP). However, all archaeal genomes sequenced to date reveal the

  19. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33...

  20. Structural studies on a non-toxic homologue of type II RIPs from ...

    Indian Academy of Sciences (India)

    Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. MS accepted http://www.ias.ac.in/jbiosci. THYAGESHWAR CHANDRAN, ALOK SHARMA and M VIJAYAN. J. Biosci. 40(5), October 2015, 929–941, © Indian Academy of ...

  1. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo.

    Science.gov (United States)

    Farrell, H E; Vally, H; Lynch, D M; Fleming, P; Shellam, G R; Scalzo, A A; Davis-Poynter, N J

    1997-04-03

    Herpesviruses, such as murine and human cytomegalovirus (MCMV and HCMV), can establish a persistent infection within the host and have diverse mechanisms as protection from host immune defences. Several herpesvirus genes that are homologous to host immune modulators have been identified, and are implicated in viral evasion of the host immune response. The discovery of a viral major histocompatibility complex (MHC) class I homologue, encoded by HCMV, led to speculation that it might function as an immune modulator and disrupt presentation of peptides by MHC class I to cytotoxic T cells. However, there is no evidence concerning the biological significance of this gene during viral infection. Recent analysis of the MCMV genome has also demonstrated the presence of a MHC class I homologue. Here we show that a recombinant MCMV, in which the gene encoding the class I homologue has been disrupted, has severely restricted replication during the acute stage of infection compared with wild-type MCMV. We demonstrate by in vivo depletion studies that natural killer (NK) cells are responsible for the attenuated phenotype of the mutant. Thus the viral MHC class I homologue contributes to immune evasion through interference with NK cell-mediated clearance.

  2. Genetic link between Cabeza, a Drosophila homologue of Fused in Sarcoma (FUS), and the EGFR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Mai; Kyotani, Akane [Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Azuma, Yumiko [Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566 (Japan); Yoshida, Hideki; Binh Nguyen, Thanh [Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Mizuta, Ikuko; Yoshida, Tomokatsu; Mizuno, Toshiki [Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566 (Japan); Nakagawa, Masanori [North Medical Center, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566 (Japan); Tokuda, Takahiko, E-mail: ttokuda@koto.kpu-m.ac.jp [Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566 (Japan); Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2014-08-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila. - Highlights: • Knockdown of Cabeza induced rough eye phenotype. • Knockdown of Cabeza induced fusion of cone cells in pupal retinae. • Knockdown of Cabeza induced apoptosis in pupal retinae. • Mutation in EGFR pathway-related genes suppressed the rough eye phenotype. • Cabeza may negatively regulate the EGFR pathway.

  3. Genetic link between Cabeza, a Drosophila homologue of Fused in Sarcoma (FUS), and the EGFR signaling pathway

    International Nuclear Information System (INIS)

    Shimamura, Mai; Kyotani, Akane; Azuma, Yumiko; Yoshida, Hideki; Binh Nguyen, Thanh; Mizuta, Ikuko; Yoshida, Tomokatsu; Mizuno, Toshiki; Nakagawa, Masanori; Tokuda, Takahiko; Yamaguchi, Masamitsu

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila. - Highlights: • Knockdown of Cabeza induced rough eye phenotype. • Knockdown of Cabeza induced fusion of cone cells in pupal retinae. • Knockdown of Cabeza induced apoptosis in pupal retinae. • Mutation in EGFR pathway-related genes suppressed the rough eye phenotype. • Cabeza may negatively regulate the EGFR pathway

  4. Fungal type III polyketide synthases.

    Science.gov (United States)

    Hashimoto, Makoto; Nonaka, Takamasa; Fujii, Isao

    2014-10-01

    This article covers the literature on fungal type III polyketide synthases (PKSs) published from 2005 to 2014. Since the first discovery of fungal type III PKS genes in Aspergillus oryzae, reported in 2005, putative genes for type III PKSs have been discovered in fungal genomes. Compared with type I PKSs, type III PKSs are much less abundant in fungi. However, type III PKSs could have some critical roles in fungi. This article summarizes the studies on fungal type III PKS functional analysis, including Neurospora crassa ORAS, Aspergillus niger AnPKS, Botrytis cinerea BPKS and Aspergillus oryzae CsyA and CsyB. It is mostly in vitro analysis using their recombinant enzymes that has revealed their starter and product specificities. Of these, CsyB was found to be a new kind of type III PKS that catalyses the coupling of two β-keto fatty acyl CoAs. Homology modelling reported in this article supports the importance of the capacity of the acyl binding tunnel and active site cavity in fungal type III PKSs.

  5. Terpene synthases from Cannabis sativa.

    Directory of Open Access Journals (Sweden)

    Judith K Booth

    Full Text Available Cannabis (Cannabis sativa plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E-β-ocimene, (--limonene, (+-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  6. Nitric oxide synthase expression and apoptotic cell death in brains of AIDS and AIDS dementia patients

    NARCIS (Netherlands)

    Vincent, V. A.; de Groot, C. J.; Lucassen, P. J.; Portegies, P.; Troost, D.; Tilders, F. J.; van Dam, A. M.

    1999-01-01

    To determine the occurrence and cellular localization of inducible nitric oxide synthase (iNOS), NOS activity and its association with cell death in brains of AIDS and AIDS dementia complex (ADC) patients. Post-mortem cerebral cortex tissue of eight AIDS patients, eight ADC patients and eight

  7. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs

    NARCIS (Netherlands)

    Veldman, RJ; Mita, A; Cuvillier, O; Garcia, [No Value; Klappe, K; Medin, JA; Campbell, JD; Carpentier, S; Kok, JW; Levade, T

    Conversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected

  8. Prostaglandin E1 protects coronary microvascular function via the glycogen synthase kinase 3β-mitochondrial permeability transition pore pathway in rat hearts subjected to sodium laurate-induced coronary microembolization.

    Science.gov (United States)

    Zhu, Houyong; Ding, Yu; Xu, Xiaoqun; Li, Meiya; Fang, Yangliang; Gao, Beibei; Mao, Hengyi; Tong, Guoxin; Zhou, Liang; Huang, Jinyu

    2017-01-01

    Prostaglandin E1 (PGE1) is used as a pretreatment for ischemia reperfusion injury in many biological systems. However, its value as a pretreatment for coronary microembolization (CME) is unknown. The goal of this study was to determine whether PGE1 would protect against CME. In a CME rat model, we observed microthrombi and early myocardial ischemia, with endothelium appearing exfoliated and mitochondria having irregular morphology and decreased internal complexity. The level of fibrinogen-like protein 2 prothrombinase was increased and superoxide dismutase and catalase levels were decreased. Moreover, mitochondria copy number and mitochondrial permeability transition pore (mPTP) opening were increased. Pretreatment with PGE1 (1 or 2 μg/kg) significantly improved these cardiological deficits, acting via the glycogen synthase kinase 3β (GSK-3β)-mPTP pathway. Unexpectedly, the phosphorylation of Akt at Ser473 decreased in the PGE1 at high dose. Overall, our findings suggested an important role for PGE1 in pretreatment of coronary microvascular dysfunction.

  9. Studies on the chalcone synthase gene of two higher plants: petroselinum hortense and matthiola incana

    Energy Technology Data Exchange (ETDEWEB)

    Hemleben, V.; Frey, M.; Rall, S.; Koch, M.; Kittel, M.; Kreuzaler, F.; Ragg, H.; Fautz, E.; Hahlbrock, K.

    1982-01-01

    Two higher plant systems are presented which allow to study coordinated gene expression of the light-induced metabolic pathway of flavonoid biosynthesis: tissue culture cells of Petroselinum hortense (Apiaceae) and different developmental stages of various genotypes of Matthiola incana (Brassicaceae). The gene structure of the chalcone synthase is mainly studied. A cDNA clone (pLF56) of parsley has been constructed and characterized conferring the chalcone synthase gene sequence. Strong cross hybridization between the parsley cDNA and Matthiola DNA allowed to identify a HindIII fragment (6000 bp) identical in size for parsley and different Matthiola wild type lines and a mutant line.

  10. Studies on the chalcone synthase gene of two higher plants: petroselinum hortense and matthiola incana.

    Science.gov (United States)

    Hemleben, V; Frey, M; Rall, S; Koch, M; Kittel, M; Kreuzaler, F; Ragg, H; Fautz, E; Hahlbrock, K

    1982-01-01

    Two higher plant systems are presented which allow to study coordinated gene expression of the light-induced metabolic pathway of flavonoid biosynthesis: tissue culture cells of Petroselinum hortense (Apiaceae) and different developmental stages of various genotypes of Matthiola incana (Brassicaceae). The gene structure of the chalcone synthase is mainly studied. A cDNA clone (pLF56) of parsley has been constructed and characterized conferring the chalcone synthase gene sequence. Strong cross hybridization between the parsley cDNA and Matthiola DNA allowed to identify a HindIII fragment (6000 bp) identical in size for parsley and different Matthiola wild type lines and a mutant line.

  11. Aromatic Polyketide Synthases (Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits).

    Science.gov (United States)

    Borejsza-Wysocki, W.; Hrazdina, G.

    1996-03-01

    p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response.

  12. Periodontal status of teeth restored with crowns and its contralateral homologue, Valdivia- Chile.

    OpenAIRE

    Israel Antonio Juárez; Sofía Larroulet; Makarena Ojeda; Cristian Rosas

    2015-01-01

    ABSTRACT Aim: To determine periodontal status of fixes single prostheses (FSP) made during the year 2013 in Austral University of Chile, and its contralateral homologue (CH).Methods: All patients with FSP made during 2013, that met the selection criteria and agreed to participate were evaluated. During the year 2014 was measured: probing depth, attachment level; bleeding on probing and dental plaque index for each FSP and CH; and consigned biological width invasion. Were measured one FSP...

  13. Crystal structure of myotoxin-II: a myotoxic phospholipase A2 - homologue from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Azevedo, W.F.; Ward, R.J.; Lombardi, F.R.; Arni, R.K.; Soares, A.M.; Giglio, J.R.; Fontes, M.R.M.

    1997-01-01

    Full text. Phospho lipases A2 (PLA 2 ; E C 3.1.1.4, phosphatides s n-2 acyl hydrolases) hydrolysis the s n-2 ester bond of phospholipids showing enhanced activity at lamellar or membrane surfaces. Intracellular PLA 2 s are involved at phospholipid metabolism and signal transduction, whereas extracellular PLA 2 s are found in mammalian pancreatic juices, the venoms of snakes, lizards and insects. Based on their high primary sequence similarity, extracellular PLA 2 s are separated into Classes I, II and III. Class II PLA 2 s are found in snake venoms of Crotalidae an Viperidae species, and include the sub-family of Lys PLA 2 s homologue. he coordination of the Ca 2+ ion in the PLA 2 calcium-binding loop includes and aspartate at position 49. In the catalytically active PLA 2 s, this calcium ion plays a critical role in the stabilization of the tetrahedral transition state intermediate in the catalytic mechanism. The conservative substitution Asp49-Lys results in a decreased calcium affinity with a concomitant loss of catalytic activity, and naturally occurring PLA 2 s-homologues showing the same substitution are catalytically inactive. However, the Lys PLA 2 s possess cytolytic and myotoxic activities and furthermore retain the ability to disrupt the integrity of both plasma membranes and model lipid layers by a ca 2+ -independent mechanism for which there is no evidence of lipid hydrolysis. Lys 49 PLA 2 homologues have been isolated from several Bothrops spp. venoms including B. moojeni. Therefore, in order to improve our understanding of the molecular basis of the myotoxic and Ca 2+ independent membrane damaging activities we have determined the crystal structure of MjTX-II, a Lys 49 homologue from the venom of B. moojeni. The model presented has been determined at 2.0 A resolution and refined to a crystallographic residual of 19.7% (R f ree=28.1%). (author)

  14. Comparative evaluation of the efficacy of the cyclooxygenase pathway inhibitor and nitric oxide synthase inhibitor in the reduction of alveolar bone loss in ligature induced periodontitis in rats: An experimental study

    Directory of Open Access Journals (Sweden)

    Rekha Jagadish

    2014-01-01

    Full Text Available Background: Alveolar bone loss is the most striking feature of periodontal disease. The aim of this study was to investigate the effect of a cyclooxygenase (COX pathway inhibitor and nitric oxide synthase (NOS inhibitor in the reduction of alveolar bone loss in an experimental periodontal disease (EPD model. Materials and Methods: The study was conducted on 60 Wistar rats divided into three groups of 20 rats each and then subjected to a ligature placement around the left maxillary second molars. Group 1 rats were treated with COX inhibitor (diclofenac sodium 10 mg/kg/d, group 2 with NOS inhibitor (aminoguanidine hydrochloride 10 mg/kg/d and group 3 served as controls, receiving only saline, intraperitoneally 1h before EPD induction and daily until the sacrifice on the 11 th day. Leukogram was performed before ligation, at 6 h and at the first, seventh and 11 th days after EPD induction. After sacrifice, all the excised maxillae were subjected to morphometric and histometric analysis to measure the alveolar bone loss. Histopathological analysis was carried out to estimate cell influx, alveolar bone and cementum integrity. Results: Induction of experimental periodontitis in the rat model produced pronounced leucocytosis, which was significantly reduced by the administration of diclofenac sodium and aminoguanidine on the 11 th day. In morphometric and histometric examinations, both the test drugs significantly (P < 0.05 inhibited the alveolar bone loss as compared with the control group. Conclusion: Both COX inhibitor and NOS inhibitor are equally effective in inhibiting the inflammatory bone resorption in an experimental periodontitis model.

  15. High-resolution modeling of transmembrane helical protein structures from distant homologues.

    Directory of Open Access Journals (Sweden)

    Kuang-Yui M Chen

    2014-05-01

    Full Text Available Eukaryotic transmembrane helical (TMH proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs, size (from 183 to 420 residues and sequence identity (from 15% to 70%, the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.

  16. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas

    Science.gov (United States)

    Li, Chaoqiong; Fu, Qiantang; Niu, Longjian; Luo, Li; Chen, Jianghua; Xu, Zeng-Fu

    2017-01-01

    Recent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1. Transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c showed late flowering, whereas only JcTFL1b and JcTFL1c overexpression delayed flowering in transgenic Arabidopsis. JcTFL1b-RNAi transgenic Jatropha consistently exhibited moderately early flowering phenotype. JcFT and JcAP1 were significantly downregulated in transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c, which suggested that the late flowering phenotype of these transgenic Jatropha may result from the repressed expression of JcFT and JcAP1. Our results indicate that these three JcTFL1 genes play redundant roles in repressing flowering in Jatropha. PMID:28225036

  17. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  18. Biological characterization of a myotoxin phosphoplipase A2 homologue purified from the venom of the snake Bothrops moojeni

    Directory of Open Access Journals (Sweden)

    MR Queiroz

    2011-01-01

    Full Text Available A myotoxin phospholipase A2 homologue, BmooMtx, was isolated from the venom of Bothrops moojeni by a combination of ion-exchange chromatography on DEAE-Sephacel column and gel filtration on Sephadex G-75. SDS-PAGE showed the enzyme to be a monomer with a molecular weight of 16,500. BmooMtx induced release of creatine kinase and morphological analyses indicated that it provoked an intense myonecrosis, with visible leukocyte infiltrate and damaged muscle cells 24 hours after injection. Anti-BmooMTx antibodies partially neutralized the myotoxic activity of BmooMtx and crude B. moojeni venom, as judged by determination of plasma creatine kinase levels and histological evaluation of skeletal muscle in mice. Anti-BmooMTx antibodies were effective in reducing the plasma creatine kinase levels of crude B. alternatus and B. leucurus venoms, evidencing immunological cross-reactivity between BmooMTx and other bothropic venoms. Intraplantar (i.pl. injection of BmooMtx (1 to 15 μg/animal caused a dose- and time-dependent hyperalgesia and edematogenic responses. Dexamethasone (0.4 mg/kg, meloxicam (2 mg/kg and promethazine (5 mg/kg markedly reduced the hyperalgesia. Our data suggest that these drugs may likely serve as complementary therapies in cases of accidents with Bothrops moojeni, provided that such pharmacological treatments are administered immediately after the incident.

  19. Class II recombinant phosphoribosyl diphosphate synthase from spinach

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows...

  20. Evolutionary and mechanistic insights from the reconstruction of (+)-humulene synthases from a modern (+)-Germacrene A Synthase

    OpenAIRE

    Gonzalez Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J.; Faraldos, Juan A.; Allemann, Rudolf Konrad

    2014-01-01

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and

  1. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  2. Glutamate synthase: An archaeal horizontal gene transfer?

    Indian Academy of Sciences (India)

    (GOGAT) which is a key enzyme in ammonia assimilation in bacteria, algae and plants. It catalyzes the reductive transamidation of amido nitrogen from glutamine to 2-oxoglutarate to form two molecules of glutamate (Temple et al 1998). Glutamate synthases differ according to their molecular weights, subunit compositions, ...

  3. Relationship between endothelial nitric oxide synthase gene ...

    African Journals Online (AJOL)

    Introduction: Endothelial nitric oxide synthase (eNOS), the enzyme in charge of nitric oxide production, plays a crucial role in vascular biology. However, the impact of single nucleotide polymorphisms (SNPs) affecting the gene encoding for eNOS (eNOS) on coronary artery diseases remains under debate and no data were ...

  4. Producing alpha-olefins using polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.; Keasling, Jay D.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  5. Expression of Deinococcus geothermalis trehalose synthase gene ...

    African Journals Online (AJOL)

    A novel trehalose synthase gene from Deinococcus geothermalis (DSMZ 11300) containing 1692 bp reading-frame encoding 564 amino acids was amplified using polymerase chain reaction (PCR). The gene was ligated into pET30Ek/LIC vector and expressed after isopropyl β-D-thiogalactopyranoside induction in ...

  6. Cloning and expression of pineapple sucrosephosphate synthase ...

    African Journals Online (AJOL)

    A 1132-base pairs (bp) polymerase-chain-reaction product of sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from pineapple (Ananas comosus cv. Comte de paris) fruit was cloned and nominated as Ac- SPS1. The sequence encodes a putative 377 amino acids protein containing two serine conserved features that had ...

  7. Intestinal nitric oxide synthase activity changes during experimental colon obstruction.

    Science.gov (United States)

    Palásthy, Zsolt; Kaszaki, József; Lázár, György; Nagy, Sándor; Boros, Mihály

    2006-08-01

    The experiments in this study were designed to follow the time course of nitric oxide (NO) synthesis in the large bowel during acute mechanical ileus. Occlusion of the mid-transverse colon was maintained for 420 min in anesthetized dogs. Strain-gauge transducers were used to analyze motility changes on the hepatic and lienal flexures, respectively. Constitutive NO synthase (cNOS) and inducible NOS (iNOS) activities were determined in tissue biopsies, and plasma nitrite/nitrate (NOx) level was measured in the portal blood. Following completion of the baseline studies, the animals were treated with either 7-nitroindazole (7-NI, selective neuronal NOS inhibitor), or N-nitro-L-arginine (NNA, non-selective NOS inhibitor). In the sham-operated group the cNOS activities differed significantly in the oral and aboral tissue samples (oral: 102.9; versus aboral: 62.1 fmol/mg protein/min). The obstruction elicited a significant increase in portal NOx and elevated tissue inducible NO synthase (iNOS) activity. NNA treatment decreased the motility index in both intestinal segments for 60 min, but 120 min later the motility index was significantly elevated (2.5-fold increase in the oral part, and 1.8-fold enhancement in the aboral segment, respectively). Treatment with 7-NI decreased the cNOS activity in the oral and aboral parts by approximately 40% and 70%, respectively, and suppressed the motility increase in the aboral colon segment. The motility of the colon was either significantly increased or decreased, depending on the type and selectivity of the NOS inhibitor compounds applied. NO of neuronal origin is a transmitter that stimulates peristaltic activity; but an increased iNOS/nNOS ratio significantly moderates the obstruction-induced motility increase.

  8. The phytochelatin synthase gene in date palm (Phoenix dactylifera L.): Phylogeny, evolution and expression.

    Science.gov (United States)

    Zayneb, Chaâbene; Imen, Rekik Hakim; Walid, Kriaa; Grubb, C Douglas; Bassem, Khemakhem; Franck, Vandenbulcke; Hafedh, Mejdoub; Amine, Elleuch

    2017-06-01

    We studied date palm phytochelatin synthase type I (PdPCS1), which catalyzes the cytosolic synthesis of phytochelatins (PCs), a heavy metal binding protein, in plant cells. The gene encoding PdPCS1 (Pdpcs) consists of 8 exons and 7 introns and encodes a protein of 528 amino acids. PCs gene history was studied using Notung phylogeny. During evolution, gene loss from several lineages was predicted including Proteobacteria, Bilateria and Brassicaceae. In addition, eleven gene duplication events appeared toward interior nodes of the reconciled tree and four gene duplication events appeared toward the external nodes. These latter sequences belong to species with a second copy of PCs suggesting that this gene evolved through subfunctionalization. Pdpcs1 gene expression was measured in seedling hypocotyls exposed to Cd, Cu and Cr using quantitative real-time polymerase chain reaction (qPCR). A Pdpcs1 overexpression was evidenced in P. dactylifera seedlings exposed to metals suggesting that 1-the Pdpcs1 gene is functional, 2-there is an implication of the enzyme in metal detoxification mechanisms. Additionally, the structure of PdPCS1 was predicted using its homologue from Nostoc (cyanobacterium, NsPCS) as a template in Discovery studio and PyMol software. These analyses allowed us to identify the phytochelatin synthase type I enzyme in date palm (PdPCS1) via recognition of key consensus amino acids involved in the catalytic mechanism, and to propose a hypothetical binding and catalytic site for an additional substrate binding cavity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    Energy Technology Data Exchange (ETDEWEB)

    Enderle, Mathias [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); McCarthy, Andrew [EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9 (France); Paithankar, Karthik Shivaji, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Grininger, Martin, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  10. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition.

    Directory of Open Access Journals (Sweden)

    Jeroen Coumou

    Full Text Available Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in the gut of Rhipicephalus microplus. Bm86 vaccine formulations cause a reduction in the number of Rhipicephalus microplus ticks that successfully feed, i.e. lower engorgement weights and a decrease in the number of oviposited eggs. Furthermore, Bm86 vaccines reduce transmission of bovine Babesia spp. Previously two conserved Bm86 homologues in I. ricinus ticks, designated as Ir86-1 and Ir86-2, were described. Here we investigated the effect of a vaccine against recombinant Ir86-1, Ir86-2 or a combination of both on Ixodes ricinus feeding. Recombinant Ixodes ricinus Bm86 homologues were expressed in a Drosophila expression system and rabbits were immunized with rIr86-1, rIr86-2, a combination of both or ovalbumin as a control. Each animal was infested with 50 female adults and 50 male adults Ixodes ricinus and tick mortality, engorgement weights and egg mass were analyzed. Although serum IgG titers against rIr86 proteins were elicited, no effect was found on tick feeding between the rIr86 vaccinated animals and ovalbumin vaccinated animals. We conclude that vaccination against Bm86 homologues in Ixodes ricinus is not an effective approach to control Ixodes ricinus populations, despite the clear effects of Bm86 vaccination against Rhipicephalus microplus.

  11. Structure of HLA-A*1101 in complex with a hepatitis B peptide homologue

    DEFF Research Database (Denmark)

    Blicher, Thomas; Kastrup, Jette Sandholm; Pedersen, Lars Østergaard

    2006-01-01

    A high-resolution structure of the human MHC-I molecule HLA-A*1101 is presented in which it forms a complex with a sequence homologue of a peptide that occurs naturally in hepatitis B virus DNA polymerase. The sequence of the bound peptide is AIMPARFYPK, while that of the corresponding natural pe...... peptide is LIMPARFYPK. The peptide does not make efficient use of the middle E pocket for binding, which leads to a rather superficial and exposed binding mode for the central peptide residues. Despite this, the peptide binds with high affinity (IC50 of 31 nM)....

  12. The urokinase receptor and its structural homologue C4.4A in human cancer

    DEFF Research Database (Denmark)

    Jacobsen, B; Ploug, M

    2008-01-01

    The urokinase-type plasminogen activator receptor (uPAR) and its structural homologue C4.4A are multidomain members of the Ly6/uPAR/alpha-neurotoxin protein domain family. Both are glycosylphosphatidylinositol-anchored membrane glycoproteins encoded by neighbouring genes located on chromosome 19q13...... in a number of human cancers including colon adenocarcinoma and pulmonary squamous cell carcinoma. Targeting uPAR in experimental animal models has also provided promising results regarding the interference with pathogenic plasminogen activation. In the case of C4.4A, very recent data have demonstrated...

  13. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    Science.gov (United States)

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. © 2015 Wiley Periodicals, Inc.

  14. Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L.

    Directory of Open Access Journals (Sweden)

    Hongzhen Wang

    Full Text Available In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS, epi-cedrol (ECS and β-farnesene (FS synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS, a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.

  15. Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L.

    Science.gov (United States)

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.

  16. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    International Nuclear Information System (INIS)

    Różycki, Bartosz; Cieplak, Marek

    2014-01-01

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme

  17. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits*

    Science.gov (United States)

    Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E.; Osbourn, Anne

    2016-01-01

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  18. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    Science.gov (United States)

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Engineering of plant type III polyketide synthases.

    Science.gov (United States)

    Wakimoto, Toshiyuki; Morita, Hiroyuki; Abe, Ikuro

    2012-01-01

    Members of the chalcone synthase superfamily of type III polyketide synthases (PKSs) catalyze iterative condensations of CoA thioesters to produce a variety of polyketide scaffolds with remarkable structural diversity and biological activities. The homodimeric type III PKSs share a common three-dimensional overall fold with a conserved Cys-His-Asn catalytic triad; notably, only a slight modification of the active site dramatically expands the catalytic repertoire of the enzymes. In addition, the enzymes exhibit extremely promiscuous substrate specificities, and accept a variety of nonphysiological substrates, making the type III PKSs an excellent platform for the further production of unnatural, novel polyketide scaffolds with promising biological activities. This chapter summarizes recent advances in the engineering of plant type III PKS enzymes in our laboratories, using approaches combining structure-based enzyme engineering and precursor-directed biosynthesis with rationally designed substrate analogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The use of polynuclear aromatic hydrocarbon (PAH) alkyl homologues in determining petroleum source identification and weathering

    International Nuclear Information System (INIS)

    Brown, J.S.; Boehm, P.D.; Sauer, T.C.; Wong, W.M.C.

    1993-01-01

    Techniques utilizing double ratio plots of selected polynuclear aromatic hydrocarbon (PAH) alkyl homologues were used to identify and distinguish crude oils and refined petroleum products from each other and to distinguish petroleum sources in complex pollutant regimes. Petroleum samples were fractionated by high performance liquid chromatography (HPLC) into saturated and aromatic (PAH) hydrocarbon fractions. The saturated hydrocarbon fractions were then analyzed by gas chromatography/flame ionization detection (GC/FID) to obtain a resolved/unresolved alkane fingerprint of each oil. The aromatic fractions of the oils were analyzed by gas chromatography/mass spectrometry (GC/MS) for PAH and selected alkyl homologues. Comparisons of the saturated hydrocarbon fingerprints indicated that some oils were indistinguishable based on the alkane fingerprint alone. Another double ratio plot of the alkyl chrysenes and alkyl dibenzothiophenes was effective in establishing the weathering of oil in environmental samples which were processed using the same analytical techniques, since the dibenzothiophenes are degraded more rapidly than the chrysenes. The application of selected ratios in oil spill source identification in complex environmental samples from Suisin Bay California and Boston Harbor are discussed. The use of ratios to measure the extent of weathering in oil spill samples from Prince William Sound and the Gulf of Alaska is examined

  1. Distributions of PCB congeners and homologues in white sucker and coho salmon from Lake Michigan

    Science.gov (United States)

    Stapanian, Martin A.; Madenjian, Charles P.; Batterman, Stuart A.; Chernyak, Sergei M.; Edwards, William; McIntyre, Peter B.

    2018-01-01

    We tested the hypothesis of the proportion of higher chlorinated biphenyl (PCB) congeners increasing with increasing trophic level by comparing the respective PCB homologue distributions in an omnivore, white sucker (Catostomus commersoni), and a top predator, coho salmon (Oncorhynchus kisutch), from Lake Michigan. Adult females had the same congener and homologue proportions of total PCB concentration (ΣPCB) as adult males in both species. Hexachlorinated congeners comprised the largest proportion (32%) found in white sucker, followed by heptachlorinated (21%) and octochlorinated (18%) congeners. In contrast, pentachlorinated congeners comprised the largest proportion (33%) of ΣPCB found in coho salmon, followed by hexachlorinated (26%) and tetrachlorinated (24%) congeners. Coho salmon contained significantly higher proportions of tri-, tetra-, and pentachlorinated congeners, whereas white sucker contained significantly higher proportions of hexa- through decachlorinated congeners. Our results were opposite of the hypothesis of greater degree of PCB chlorination with increasing trophic level, and supported the contention that the PCB congener proportions in fish depends mainly on diet, and does not necessarily reflect the trophic level of the fish. Our results also supported the contention that diets do not vary between the sexes in most fish populations.

  2. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance.

    Science.gov (United States)

    Brotman, Y.; Silberstein, L.; Kovalski, I.; Perin, C.; Dogimont, C.; Pitrat, M.; Klingler, J.; Thompson, A.; Perl-Treves, R.

    2002-05-01

    Genomic and cDNA fragments with homology to known disease resistance genes (RGH fragments) were cloned from Cucumis melo using degenerate-primer PCR. Fifteen homologues of the NBS-LRR gene family have been isolated. The NBS-LRR homologues show high divergence and, based on the partial NBS-fragment sequences, appear to include members of the two major subfamilies that have been described in dicot plants, one that possesses a TIR-protein element and one that lacks such a domain. Genomic organization of these sequences was explored by DNA gel-blot analysis, and conservation among other Cucurbitaceae was assessed. Two mapping populations that segregate for several disease and pest resistance loci were used to map the RGH probes onto the melon genetic map. Several NBS-LRR related sequences mapped to the vicinity of genetic loci that control resistance to papaya ringspot virus, Fusarium oxysporum race 1, F. oxysporum race 2 and to the insect pest Aphis gossypii. The utility of such markers for breeding resistant melon cultivars and for cloning the respective R-genes is discussed.

  3. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    Science.gov (United States)

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  4. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.

    Science.gov (United States)

    Sun, Linfeng; Zeng, Xin; Yan, Chuangye; Sun, Xiuyun; Gong, Xinqi; Rao, Yu; Yan, Nieng

    2012-10-18

    Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.

  5. Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase.

    Science.gov (United States)

    Yoshikuni, Yasuo; Martin, Vincent J J; Ferrin, Thomas E; Keasling, Jay D

    2006-01-01

    The combined approaches of rational design and random mutagenesis were applied to generate a sesquiterpene synthase with an altered activity. Due to the lack of a convenient screen for sesquiterpene synthase activity, a high-throughput dual-activity screen was used by fusing (+)-delta-cadinene synthase to chloramphenicol acetyltransferase (CAT). The gene encoding (+)-delta-cadinene synthase was mutagenized using error-prone PCR. The resulting mutant fusion proteins were screened for CAT activity and altered sesquiterpene selectivity. Twenty-one clones producing (+)-delta-cadinene and germacrene D-4-ol in different ratios were isolated from the library. Analysis using a homology model of (+)-delta-cadinene synthase suggested that the G helix plays a very important role in (+)-delta-cadinene formation. Reconstruction of the G helix using site-directed, saturation mutagenesis yielded a mutant, N403P/L405H, that maintained its specific activity and showed higher selectivity to germacrene D-4-ol in vivo (up to 93%).

  6. Dynamic 1-aminocyclopropane-1-carboxylate-synthase and -oxidase transcript accumulation patterns during pollen tube growth in tobacco styles.

    Science.gov (United States)

    Weterings, Koen; Pezzotti, Mario; Cornelissen, Marc; Mariani, Celestina

    2002-11-01

    In flowering plants, pollination of the stigma sets off a cascade of responses in the distal flower organs. Ethylene and its biosynthetic precursor 1-aminocyclopropane-1-carboxylate (ACC) play an important role in regulating these responses. Because exogenous application of ethylene or ACC does not invoke the full postpollination syndrome, the pollination signal probably consists of a more complex set of stimuli. We set out to study how and when the pollination signal moves through the style of tobacco (Nicotiana tabacum) by analyzing the expression patterns of pistil-expressed ACC-synthase and -oxidase genes. Results from this analysis showed that pollination induces high ACC-oxidase transcript levels in all cells of the transmitting tissue. ACC-synthase mRNA accumulated only in a subset of transmitting tract cells and to lower levels as compared with ACC-oxidase. More significantly, we found that although ACC-oxidase transcripts accumulate to uniform high levels, the ACC-synthase transcripts accumulate in a wave-like pattern in which the peak coincides with the front of the ingrowing pollen tube tips. This wave of ACC-synthase expression can also be induced by incongruous pollination and (partially) by wounding. This indicates that wounding-like features of pollen tube invasion might be part of the stimuli evoking the postpollination response and that these stimuli are interpreted differently by the regulatory mechanisms of the ACC-synthase and -oxidase genes.

  7. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer

    Science.gov (United States)

    Abu-Soud, Husam M.; Stuehr, Dennis J.

    1993-11-01

    Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O_2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

  8. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms.

    Science.gov (United States)

    Barouch, Lili A; Harrison, Robert W; Skaf, Michel W; Rosas, Gisele O; Cappola, Thomas P; Kobeissi, Zoulficar A; Hobai, Ion A; Lemmon, Christopher A; Burnett, Arthur L; O'Rourke, Brian; Rodriguez, E Rene; Huang, Paul L; Lima, João A C; Berkowitz, Dan E; Hare, Joshua M

    2002-03-21

    Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.

  9. Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues

    DEFF Research Database (Denmark)

    Chrzanowski, L; Stasiewicz, M; Owsianiak, Mikolaj

    2009-01-01

    hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C-3 to C-18) on biodegradation of diesel fuel...... by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C-8-C-18) caused a decrease in diesel fuel biodegradation....... As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C-3 and C-18 homologues...

  10. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  11. OVO homologue-like 1 (Ovol1) transcription factor: a novel target of neurogenin-3 in rodent pancreas.

    Science.gov (United States)

    Vetere, A; Li, W-C; Paroni, F; Juhl, K; Guo, L; Nishimura, W; Dai, X; Bonner-Weir, S; Sharma, A

    2010-01-01

    The basic helix-loop-helix transcription factor neurogenin-3 (NGN3) commits the fates of pancreatic progenitors to endocrine cell types, but knowledge of the mechanisms regulating the choice between proliferation and differentiation of these progenitors is limited. Using a chromatin immunoprecipitation cloning approach, we searched for direct targets of NGN3 and identified a zinc-finger transcription factor, OVO homologue-like 1 (OVOL1). Transactivation experiments were carried out to elucidate the functional role of NGN3 in Ovol1 gene expression. Embryonic and adult rodents pancreases were immunostained for OVOL1, Ki67 and NGN3. We showed that NGN3 negatively regulates transcription of Ovol1 in an E-box-dependent fashion. The presence of either NGN3 or NEUROD1, but not MYOD, reduced endogenous Ovol1 mRNA. OVOL1 was detected in pancreatic tissue around embryonic day 15.5, after which OVOL1 levels dramatically increased. In embryonic pancreas, OVOL1 protein levels were low in NGN3(+) or Ki67(+) cells, but high in quiescent differentiated cells. OVOL1 presence was maintained in adult pancreas, where it was detected in islets, pancreatic ducts and some acinar cells. Additionally OVOL1 presence was lacking in proliferating ductules in regenerating pancreas and induced in cells as they began to acquire their differentiated phenotype. The timing of OVOL1 appearance in pancreas and its increased levels in differentiated cells suggest that OVOL1 promotes the transition of cells from a proliferating, less-differentiated state to a quiescent more-differentiated state. We conclude that OVOL1, a downstream target of NGN3, may play an important role in regulating the balance between proliferation and differentiation of pancreatic cells.

  12. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    Science.gov (United States)

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  13. The Neurospora crassa UVS-3 epistasis group encodes homologues of the ATR/ATRIP checkpoint control system.

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Chizu; Schroeder, Alice L; Shimada, Hisao; Wakabayashi, Michiyoshi; Inoue, Hirokazu

    2008-02-01

    The mutagen sensitive uvs-3 and mus-9 mutants of Neurospora show mutagen and hydroxyurea sensitivity, mutator effects and duplication instability typical of recombination repair and DNA damage checkpoint defective mutants. To determine the nature of these genes we used cosmids from a genomic library to clone the uvs-3 gene by complementation for MMS sensitivity. Mutation induction by transposon insertion and RIP defined the coding sequence. RFLP analysis confirmed that this sequence maps in the area of uvs-3 at the left telomere of LG IV. Analysis of the cDNA showed that the UVS-3 protein contains an ORF of 969 amino acids with one intron. It is homologous to UvsD of Aspergillus nidulans, a member of the ATRIP family of checkpoint proteins. It retains the N' terminal coiled-coil motif followed by four basic amino acids typical of these proteins and shows the highest homology in this region. The uvsD cDNA partially complements the defects of the uvs-3 mutation. The uvs-3 mutant shows a higher level of micronuclei in conidia and failure to halt germination and nuclear division in the presence of hydroxyurea than wild type, suggesting checkpoint defects. ATRIP proteins bind tightly to ATR PI-3 kinase (phosphatidylinositol 3-kinase) proteins. Therefore, we searched the Neurospora genome sequence for homologues of the Aspergillus nidulans ATR, UvsB. A uvsB homologous sequence was present in the right arm of chromosome I where the mus-9 gene maps. A cosmid containing this genomic DNA complemented the mus-9 mutation. The putative MUS-9 protein is 2484 amino acids long with eight introns. Homology is especially high in the C-terminal 350 amino acids that correspond to the PI-3 kinase domain. In wild type a low level of constitutive mRNA is present for both genes. It is transiently induced upon UV exposure.

  14. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.

    Science.gov (United States)

    Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin Ja; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan; Radak, Zsolt

    2017-06-01

    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in

  15. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast

    OpenAIRE

    Helliwell, S. B.; Wagner, P.; Kunz, J.; Deuter-Reinhard, M.; Henriquez, R.; Hall, M. N.

    1994-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 were originally identified by mutations that confer resistance to the immunosuppressant rapamycin. TOR2 was previously shown to encode an essential 282-kDa phosphatidylinositol kinase (PI kinase) homologue. The TOR1 gene product is also a large (281 kDa) PI kinase homologue, with 67% identity to TOR2. TOR1 is not essential, but a TOR1 TOR2 double disruption uniquely confers a cell cycle (G1) arrest as does exposure to rapamycin; disruption of T...

  16. The Ca{sup 2+} channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Suzy; Kim, Hyun Jin, E-mail: kimhyunjin@skku.edu

    2014-01-03

    Highlights: •Split-ubiquitin MY2H screen identified GATE16 as an interacting protein of TRPML3. •TRPML3 specifically binds to a mammalian ATG8 homologue GATE16, not to LC3B. •The interaction of TRPML3 with GATE16 facilitates autophagosome formation. •GATE16 is expressed in both autophagosome and extra-autophagosomal compartments. -- Abstract: TRPML3 is a Ca{sup 2+} permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca{sup 2+} in the fusion process.

  17. A gonococcal homologue of meningococcal γ-glutamyl transpeptidase gene is a new type of bacterial pseudogene that is transcriptionally active but phenotypically silent

    Directory of Open Access Journals (Sweden)

    Watanabe Haruo

    2005-10-01

    Full Text Available Abstract Background It has been speculated that the γ-glutamyl transpeptidase (ggt gene is present only in Neisseria meningitidis and not among related species such as Neisseria gonorrhoeae and Neisseria lactamica, because N. meningitidis is the only bacterium with GGT activity. However, nucleotide sequences highly homologous to the meningococcal ggt gene were found in the genomes of N. gonorrhoeae isolates. Results The gonococcal homologue (ggt gonococcal homologue; ggh was analyzed. The nucleotide sequence of the ggh gene was approximately 95 % identical to that of the meningococcal ggt gene. An open reading frame in the ggh gene was disrupted by an ochre mutation and frameshift mutations induced by a 7-base deletion, but the amino acid sequences deduced from the artificially corrected ggh nucleotide sequences were approximately 97 % identical to that of the meningococcal ggt gene. The analyses of the sequences flanking the ggt and ggh genes revealed that both genes were localized in a common DNA region containing the fbp-ggt (or ggh-glyA-opcA-dedA-abcZ gene cluster. The expression of the ggh RNA could be detected by dot blot, RT-PCR and primer extension analyses. Moreover, the truncated form of ggh-translational product was also found in some of the gonococcal isolates. Conclusion This study has shown that the gonococcal ggh gene is a pseudogene of the meningococcal ggt gene, which can also be designated as Ψggt. The gonococcal ggh (Ψggt gene is the first identified bacterial pseudogene that is transcriptionally active but phenotypically silent.

  18. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  19. Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’to western flower thrips

    NARCIS (Netherlands)

    Ting Yang, Ting; Stoopen, G.M.; Thoen, H.P.M.; Wiegers, G.L.; Jongsma, M.A.

    2013-01-01

    Herbivore-induced plant volatiles are often involved in direct and indirect plant defence against herbivores. Linalool is a common floral scent and found to be released from leaves by many plants after herbivore attack. In this study, a linalool/nerolidol synthase, FaNES1, was overexpressed in the

  20. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Peng, Bingyin; Nielsen, Lars K.; Kampranis, Sotirios C

    2018-01-01

    /sesquiterpene (linalool/nerolidol) synthase, AcNES1, was used as a reporter of intracellular GPP and FPP production. Transcription of the synthetic pathway was controlled by either constitutive or diauxie-inducible promoters. A combination of degron K3K15 and the ERG1 promoter increased linalool titre by 27-fold to 11 mg...

  1. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... in the sarcolemma as well as the cytoplasm of type I muscle fibres. NADPH diaphorase activity confirmed a higher level of NO synthase activity in the sarcolemma as well as the cytoplasm of type I muscle fibers. Histochemical staining for cytochrome oxidase showed a staining pattern similar to that observed for type...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...

  2. Functional plasticity of paralogous diterpene synthases involved in conifer defense

    OpenAIRE

    Keeling, Christopher I.; Weisshaar, Sabrina; Lin, Roy P. C.; Bohlmann, Jörg

    2008-01-01

    The diversity of terpenoid compounds produced by plants plays an important role in mediating various plant–herbivore, plant–pollinator, and plant–pathogen interactions. This diversity has resulted from gene duplication and neofunctionalization of the enzymes that synthesize and subsequently modify terpenes. Two diterpene synthases in Norway spruce (Picea abies), isopimaradiene synthase and levopimaradiene/abietadiene synthase, provide the hydrocarbon precursors for most of the diterpene resin...

  3. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce [Pullman, WA; Burke, Charles Cullen [Moscow, ID

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  4. Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd

    Directory of Open Access Journals (Sweden)

    Mei Lan Jin

    2017-11-01

    Full Text Available Oxidosqualene cyclases (OSCs are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA, RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG values calculated by fragments per kilobase million (FPKM. In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1, and PtCAS2, were found, in addition to the PtBS (β-amyrin synthase gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia. All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.

  5. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    Science.gov (United States)

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Enhanced Symbiotic Performance by Rhizobium tropici Glycogen Synthase Mutants

    Science.gov (United States)

    Marroquí, Silvia; Zorreguieta, Angeles; Santamaría, Carmen; Temprano, Francisco; Soberón, Mario; Megías, Manuel; Downie, J. Allan

    2001-01-01

    We isolated a Tn5-induced Rhizobium tropici mutant that has enhanced capacity to oxidize N,N-dimethyl-p-phenylendiamine (DMPD) and therefore has enhanced respiration via cytochrome oxidase. The mutant had increased levels of the cytochromes c1 and CycM and a small increase in the amount of cytochrome aa3. In plant tests, the mutant increased the dry weight of Phaseolus vulgaris plants by 20 to 38% compared with the control strain, thus showing significantly enhanced symbiotic performance. The predicted product of the mutated gene is homologous to glycogen synthases from several bacteria, and the mutant lacked glycogen. The DNA sequence of the adjacent gene region revealed six genes predicted to encode products homologous to the following gene products from Escherichia coli: glycogen phosphorylase (glgP), glycogen branching enzyme (glgB), ADP glucose pyrophosphorylase (glgC), glycogen synthase (glgA), phosphoglucomutase (pgm), and glycogen debranching enzyme (glgX). All six genes are transcribed in the same direction, and analysis with lacZ gene fusions suggests that the first five genes are organized in one operon, although pgm appears to have an additional promoter; glgX is transcribed independently. Surprisingly, the glgA mutant had decreased levels of high-molecular-weight exopolysaccharide after growth on glucose, but levels were normal after growth on galactose. A deletion mutant was constructed in order to generate a nonpolar mutation in glgA. This mutant had a phenotype similar to that of the Tn5 mutant, indicating that the enhanced respiration and symbiotic nitrogen fixation and decreased exopolysaccharide were due to mutation of glgA and not to a polar effect on a downstream gene. PMID:11208782

  7. Evaluation for a novel methicillin resistance (mecC) homologue in methicillin-resistant Staphylococcus aureus isolates obtained from injured military personnel.

    Science.gov (United States)

    Ganesan, Anuradha; Crawford, Katrina; Mende, Katrin; Murray, Clinton K; Lloyd, Bradley; Ellis, Michael; Tribble, David R; Weintrob, Amy C

    2013-09-01

    A total of 102 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected from 50 injured service members (June 2009 to December 2011) at U.S. military treatment facilities were analyzed for the conventional mecA gene and mecC homologue by using standard PCR-based methods. The prevalence of the mecC homologue was zero.

  8. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    Kaur, Jatinder; Sawhney, Meenakshi; DattaGupta, Siddartha; Shukla, Nootan K; Srivastava, Anurag; Ralhan, Ranju

    2010-01-01

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  9. Divinyl ether synthase gene and protein, and uses thereof

    Science.gov (United States)

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  10. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.

    Science.gov (United States)

    Lücker, Joost; Bowen, Pat; Bohlmann, Jörg

    2004-10-01

    Valencene is a volatile sesquiterpene emitted from flowers of grapevine, Vitis vinifera L. A full-length cDNA from the cultivar Gewürztraminer was functionally expressed in Escherichia coli and found to encode valencene synthase (VvVal). The two major products formed by recombinant VvVal enzyme activity with farnesyl diphosphate (FPP) as substrate are (+)-valencene and (-)-7-epi-alpha-selinene. Grapevine valencene synthase is closely related to a second sesquiterpene synthase from this species, (-)-germacrene D synthase (VvGerD). VvVal and VvGerD cDNA probes revealed strong signals in Northern hybridizations with RNA isolated from grapevine flower buds. Transcript levels were lower in open pre-anthesis flowers, flowers after anthesis, or at early onset of fruit development. Similar results were obtained using a third probe, (-)-alpha-terpineol synthase, a monoterpenol synthase. Sesquiterpene synthase and monoterpene synthase transcripts were not detected in the mesocarp and exocarp during early stages of fruit development, but transcripts hybridizing with VvVal appeared during late ripening of the berries. Sesquiterpene synthase transcripts were also detected in young seeds.

  11. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  12. Divergent reactivity of homologue ortho-allenylbenzaldehydes controlled by the tether length: chromone versus chromene formation.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Martínez del Campo, Teresa; Naranjo, Teresa

    2015-01-19

    The divergent behavior of two homologue allenals, namely, 2-(buta-2,3-dienyloxy)- and 2-(propa-1,2-dienyloxy)benzaldehydes, as cyclization substrates is described. 2-(Buta-2,3-dienyloxy)benzaldehydes suffers a formal allenic carbocyclization reaction to afford chromenes, whereas 2-(propa-1,2-dienyloxy)benzaldehydes react to yield chromones. The formation of chromenes is strictly a formal hydroarylation process divided into two parts, namely, allenic Claisen-type rearrangement and oxycyclization. An unknown N-heterocyclic carbene (NHC)-catalyzed allenic hydroacylation reaction must be invoked to account for the preparation of chromones. ortho-Allenylbenzaldehydes bearing either electron-donating substituents or electron-withdrawing substituents worked well to afford both the hydroarylation and hydroacylation products. This unexpected difference in reactivity can be rationalized by means of density functional theory calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular investigations of pathogenesis-related Bet v 1 homologues in Passiflora (Passifloraceae).

    Science.gov (United States)

    Finkler, Carla; Giacomet, Carolina; Muschner, Valéria C; Salzano, Francisco M; Freitas, Loreta B

    2005-07-01

    The major birch pollen allergen, Bet v 1, responsible for allergic reactions in many areas of the world, is homologous to a large number of pathogenesis-related proteins (PRs), identified as PR10. As part of a long-range investigation of these types of proteins and of evolution in Passiflora, DNA sequences from eight Bet v 1 homologue isoforms were obtained from five species of this genus in Brazil, and their sequences compared among themselves and with 30 others from 8 different species, classified in different taxonomic units. The objective was a first characterization of these PRs in wild passionflowers, and their use for evolutionary and applied investigations. High interspecific, but low intraspecific variability was observed, as expected from multigenic families subjected to concerted evolution. The relationships obtained both within Passiflora and between it and seven other genera probably best reflect functional similarities than evolutionary history.

  14. Entamoeba histolytica: identification and characterization of an N-ethylmaleimide sensitive fusion protein homologue.

    Science.gov (United States)

    Libros-Ziv, Pazit; Villalobo, Eduardo; Mirelman, David

    2005-07-01

    Entamoeba histolytica is a phagocytic cell with numerous vesicles of different sizes and shapes but without a well-defined Golgi apparatus. Despite this, genes implied in membrane trafficking have been identified in the genome of this parasite. One of these genes is homologous to the N-ethylmaleimide sensitive fusion factor (NSF), whose protein has been shown to play an important role in vesicle fusion in other eukaryotic cells. In this report, we investigated the NSF homologue gene from a pathogenic E. histolytica, characterized its protein product and two of its activities, ATPase and in vitro intra-Golgi transport. The finding of an active NSF protein in E. histolytica indicates that a simple or primordial Golgi apparatus probably exists in this microorganism, as has been proposed by others.

  15. The Bactrocera tryoni homologue of the Drosophila melanogaster sex-determination gene doublesex.

    Science.gov (United States)

    Shearman, D C; Frommer, M

    1998-11-01

    A homologue of the bifunctional sex-determining gene, doublesex (dsx), has been identified in the tephritid fruit fly, Bactrocera tryoni, and has been found to be expressed in a sex-specific manner in adult flies. The male- and female-specific cDNAs are identical at their 5' ends but differ at their 3' ends and appear to be the products of alternate splicing. The level of identity of the sex-specific DSX proteins of B. tryoni with the D. melanogaster DSX proteins, across the region corresponding to the DNA binding domain and the oligomerization domains, is greater than 85%. Four sequence motifs which are ten to thirteen bases identical to the TRA/TRA-2 binding sites (thirteen-nucleotide repeat sequences) are present in the female-specific exon of the B. tryoni dsx gene.

  16. Updated catalogue of homologues to human disease-related proteins in the yeast genome.

    Science.gov (United States)

    Andrade, M A; Sander, C; Valencia, A

    1998-04-10

    The recent availability of the full Saccharomyces cerevisiae genome offers a perfect opportunity for revising the number of homologues to human disease-related proteins. We carried out automatic analysis of the complete S. cerevisiae genome and of the set of human disease-related proteins as identified in the SwissProt sequence data base. We identified 285 yeast proteins similar to 155 human disease-related proteins, including 239 possible cases of human-yeast direct functional equivalence (orthology). Of these, 40 cases are suggested as new, previously undiscovered relationships. Four of them are particularly interesting, since the yeast sequence is the most phylogenetically distant member of the protein family, including proteins related to diseases such as phenylketonuria, lupus erythematosus, Norum and fish eye disease and Wiskott-Aldrich syndrome.

  17. E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor

    International Nuclear Information System (INIS)

    Jenei, Veronika; Andersson, Tommy; Jakus, Judit; Dib, Karim

    2005-01-01

    E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21 Ras and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21 Ras . Remarkably, we found that EGF-induced activation of the p21 Ras -related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1 cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation

  18. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A. (UNL)

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  19. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  20. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene.

    NARCIS (Netherlands)

    Nijtmans, L.G.J.; Henderson, N.S.; Attardi, G.; Holt, L.J.

    2001-01-01

    Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome.

  1. Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes.

    Science.gov (United States)

    Seifi, Alireza; Kaloshian, Isgouhi; Vossen, Jack; Che, Daidi; Bhattarai, Kishor K; Fan, Junmei; Naher, Zabun; Goverse, Aska; Tjallingii, W Freddy; Lindhout, Pim; Visser, Richard G F; Bai, Yuling

    2011-04-01

    On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes have evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot nematodes, aphids, and whiteflies. Previously, we mapped two genes, Ol-4 and Ol-6, for resistance to tomato powdery mildew in this cluster. The aim of this study was to investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. We show that near-isogenic lines (NIL) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. Genetically, the resistance to nematodes cosegregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from other nematode-resistant tomato lines, Motelle and VFNT, harboring the Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and tomato powdery mildew in these two NIL is governed by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster. Finally, we discuss how Solanum crops exploit Mi-1 homologues to defend themselves against distinct pathogens.

  2. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    International Nuclear Information System (INIS)

    Elegheert, Jonathan; Hemel, Debbie van den; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.

    2009-01-01

    Of the four old yellow enzyme homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex

  3. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin

    NARCIS (Netherlands)

    Läppchen, Tilman; Hartog, Aloysius F.; Pinas, Victorine A.; Koomen, Gerrit-Jan; den Blaauwen, Tanneke

    2005-01-01

    The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of

  4. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin.

    NARCIS (Netherlands)

    Läppchen, T.; Hartog, A.F.; Pinas, V.; Koomen, G.J.; den Blaauwen, T.

    2005-01-01

    The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of

  5. Evaluation of the Effects of SDIA, a LUXR Homologue, on Adherence and Motility of Escherichia coli O157:H7

    Science.gov (United States)

    Quorum-sensing (QS) signaling pathways are important regulatory networks for controlling the expression of genes promoting adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to epithelial cells. A recent study has shown that EHEC O157:H7 encodes a luxR homologue, called sdiA¸ which upon...

  6. 4-Oxalocrotonate tautomerase, its homologue YwhB, and active vinylpyruvate hydratase : Synthesis and evaluation of 2-fluoro substrate analogues

    NARCIS (Netherlands)

    Johnson, William H; Wang, Susan C; Stanley, Thanuja M; Czerwinski, Robert M; Almrud, Jeffrey J; Poelarends, Gerrit J; Murzin, Alexey G; Whitman, Christian P

    2004-01-01

    A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in

  7. Efeito da inibição da óxido nítrico sintase induzível na capacitação in vitro de espermatozoides bovinos Effect of inhibition of inducible nitric oxide synthase on in vitro capacitation of bovine spermatozoa

    Directory of Open Access Journals (Sweden)

    J.B.P. Ferreira-Berbari

    2010-06-01

    Full Text Available Avaliaram-se o papel do óxido nítrico (NO por meio da inibição da enzima óxido nítrico sintase induzível (iNOS, após a adição da aminoguanidina (AG, na motilidade, no vigor e na integridade da membrana plasmática nos tempos de 15, 60, 120, 180, 240 e 300min e a atividade mitocondrial e a capacitação de espermatozoides bovinos após 300min de cultivo. Adicionaram-se diferentes concentrações (0,001, 0,01 e 0,1M de AG durante a capacitação induzida pela heparina e 500μM de nitroprussiato de sódio (SNP, doador de NO à concentração deletéria. A adição de 0,1M de AG diminuiu a motilidade e o vigor espermático e a integridade da membrana (PThe role of nitric oxide (NO was evaluated by inhibition of inducible nitric oxide synthase (iNOS, with aminoguanidine (AG on motility, vigor, and plasmatic membrane integrity of bovine spermatozoa culture after 15, 60, 120, 180, 240, and 300min and on mitochondrial activity and capacitation after 300min, respectively. Different concentrations, 0.001, 0.01, and 0.1M of AG were added during the heparin induced capacitation and sodium nitroprusside (SNP, NO donor-500μM to the deleterious concentration. The addition of 0.1M of AG diminished progressive motility, spermatic vigor, and membrane integrity (P<0.05. SNP addition to the 0.1M of AG did revert only plasmatic membrane integrity after 300min. Mitochondrial activity was not influenced by addition of AG. Percentage of penetrated oocytes after addition of 0.01 and 0.1M of AG diminished, 20.3 and 100%, respectively, in relation to the control oocytes (P<0.05. However, an increase of 15% was observed when denuded oocytes were used with 0.1M AG treated sperm (P<0.05. It was concluded that the inhibition of NO synthesis with aminoguanidine diminished sperm quality during in vitro capacitation of bovine spermatozoa, except the mitochondrial activity. Only membrane integrity was reverted with the addition of NO to culture medium, suggesting

  8. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate.

    Science.gov (United States)

    Burke, Charles; Croteau, Rodney

    2002-02-01

    Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.

  9. Characterizing homologues of crop domestication genes in poorly described wild relatives by high-throughput sequencing of whole genomes.

    Science.gov (United States)

    Malory, Sylvia; Shapter, Frances M; Elphinstone, Martin S; Chivers, Ian H; Henry, Robert J

    2011-12-01

    Wild crop relatives represent a source of novel alleles for crop genetic improvement. Screening biodiversity for useful or diverse gene homologues has often been based upon the amplification of targeted genes using available sequence information to design primers that amplify the target gene region across species. The crucial requirement of this approach is the presence of sequences with sufficient conservation across species to allow for the design of universal primers. This approach is often not successful with diverse organisms or highly variable genes. Massively parallel sequencing (MPS) can quickly produce large amounts of sequence data and provides a viable option for characterizing homologues of known genes in poorly described genomes. MPS of genomic DNA was used to obtain species-specific sequence information for 18 rice genes related to domestication characteristics in a wild relative of rice, Microlaena stipoides. Species-specific primers were available for 16 genes compared with 12 genes using the universal primer method. The use of species-specific primers had the potential to cover 92% of the sequence of these genes, while traditional universal primers could only be designed to cover 80%. A total of 24 species-specific primer pairs were used to amplify gene homologues, and 11 primer pairs were successful in capturing six gene homologues. The 23 million, 36-base pair (bp) paired end reads, equated to an average of 2X genome coverage, facilitated the successful amplification and sequencing of six target gene homologues, illustrating an important approach to the discovery of useful genes in wild crop relatives. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. An exploration of Glb1 Homologue AntibodyLevels in Children at Increased Risk for Type 1 Diabetes mellitus

    Science.gov (United States)

    Simpson, M.; Mojibian, M.; Barriga, K.; Scott, F.W.; Fasano, A.; Rewers, M.; Norris, J.M.

    2010-01-01

    Aims To determine whether Glb1 homologue antibodies are associated with islet autoimmunity (IA) in children at increased risk for type 1 diabetes (T1D), and to investigate their relation with putative environmental correlates of T1D. Methods We selected a sample from the Diabetes Autoimmunity Study in the Young (DAISY), a prospective study of children at increased risk for T1D. Cases were those who were positive for insulin, glutamic acid decarboxylase (GAD), or insulinoma-associated antigen-2 (IA-2) autoantibodies on two consecutive visits and either diagnosed with diabetes mellitus or still autoantibody positive when selected. Controls were from the same increased risk group, of similar age as the cases but negative for autoantibodies. Sera from 91 IA cases and 82 controls were analyzed in a blinded manner for immunoglobulin G (IgG) antibodies to Glb1 homologue by ELISA. Results Adjusting for family history of T1D and HLA-DR4 positivity, Glb1 homologue antibodies were not associated with IA case status (OR: 1.01, 95% CI: 0.99 – 1.03). Adjusting for age, family history of T1D, and HLA-DR4 positivity, Glb1 homologue antibody levels were inversely associated with breast-feeding duration (beta = −0.08, p = 0.001) and directly associated with current intake of foods containing gluten (beta = 0.24, p = 0.007) in IA cases but not in controls. Zonulin, a biomarker of gut permeability, was directly associated with Glb1 homologue antibody levels in cases (beta = 0.73, p = 0.003) but not in controls. Conclusion Differences in correlates of Glb1 antibodies in IA cases and controls suggest an underlying difference in mucosal immune response. PMID:19622083

  11. Uncovering the structures of modular polyketide synthases.

    Science.gov (United States)

    Weissman, Kira J

    2015-03-01

    The modular polyketide synthases (PKSs) are multienzyme proteins responsible for the assembly of diverse secondary metabolites of high economic and therapeutic importance. These molecular 'assembly lines' consist of repeated functional units called 'modules' organized into gigantic polypeptides. For several decades, concerted efforts have been made to understand in detail the structure and function of PKSs in order to facilitate genetic engineering of the systems towards the production of polyketide analogues for evaluation as drug leads. Despite this intense activity, it has not yet been possible to solve the crystal structure of a single module, let alone a multimodular subunit. Nonetheless, on the basis of analysis of the structures of modular fragments and the study of the related multienzyme of animal fatty acid synthase (FAS), several models of modular PKS architecture have been proposed. This year, however, the situation has changed - three modular structures have been characterized, not by X-ray crystallography, but by the complementary methods of single-particle cryo-electron microscopy and small-angle X-ray scattering. This review aims to compare the cryo-EM structures and SAXS-derived structural models, and to interpret them in the context of previously obtained data and existing architectural proposals. The consequences for genetic engineering of the systems will also be discussed, as well as unresolved questions and future directions.

  12. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Sumanti Gupta

    Full Text Available Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1 induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes.

  13. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, K

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...

  14. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed ...

  15. Sequence analysis of cereal sucrose synthase genes and isolation ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... sequencing of sucrose synthase gene fragment from sor- ghum using primers designed at their conserved exons. MATERIALS AND METHODS. Multiple sequence alignment. Sucrose synthase gene sequences of various cereals like rice, maize, and barley were accessed from NCBI Genbank database.

  16. REGULATION OF INDUCIBLE NITRIC OXIDE SYNTHASE IN COLLAGENOUS COLITIS

    DEFF Research Database (Denmark)

    Andresen, Lars

    2004-01-01

    ulcerøs colitis, der er karakteriseret ved en kronisk recidiverende, sårdannende inflammation af kolorektalslimhinden. I nærværende sammenlignende studie er ekspressionen af iNOS og aktiviteten af enzymets transkriptionsfaktor, nukleær faktor-kappa B (NF-B), i slimhindebiopsier fra colonslimhinden hos...

  17. Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue.

    Science.gov (United States)

    Coddeville, Bernadette; Wu, Sz-Wei; Fabre, Emeline; Brassart, Colette; Rombouts, Yoann; Burguière, Adeline; Kremer, Laurent; Khoo, Kay-Hooi; Elass-Rochard, Elisabeth; Guérardel, Yann

    2012-10-22

    The 45/47 kDa Apa, an immuno-dominant antigen secreted by Mycobacterium tuberculosis is O-mannosylated at multiple sites. Glycosylation of Apa plays a key role in colonization and invasion of the host cells by M. tuberculosis through interactions of Apa with the host immune system C-type lectins. Mycobacterium marinum (M.ma) a fish pathogen, phylogenetically close to M. tuberculosis, induces a granulomatous response with features similar to those described for M. tuberculosis in human. Although M.ma possesses an Apa homologue, its glycosylation status is unknown, and whether this represents a crucial element in the pathophysiology induced by M.ma remains to be addressed. To this aim, we have identified two concanavalin A-reactive 45/47 kDa proteins from M.ma, which have been further purified by a two-step anion exchange chromatography process. Advanced liquid chromatography-nanoESI mass spectrometry-based proteomic analyses of peptides, derived from either tryptic digestion alone or in combination with the Asp-N endoproteinase, established that M.ma Apa possesses up to seven distinct O-mannosylated sites with mainly single mannose substitutions, which can be further extended at the Ser/Thr/Pro rich region near the N-terminus. This opens the way to further studies focussing on the involvement and biological functions of Apa O-mannosylation using the M.ma/zebrafish model. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  19. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  20. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2010-01-01

    Full Text Available Abstract Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively. Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin

  1. Novel applications of plant polyketide synthases.

    Science.gov (United States)

    Abe, Ikuro

    2012-04-01

    The structurally and mechanistically simple type III polyketide synthases (PKSs) catalyze iterative condensations of CoA thioesters to produce a variety of polyketide scaffolds with remarkably diverse structures and biological activities. By exploiting the enzymes, we combined precursor-directed biosynthesis with nitrogen-containing substrates and structure-based enzyme engineering and generated unnatural, novel polyketide-alkaloid scaffolds with promising biological activities. The nucleophilic nitrogen atom and the engineered enzymes thus facilitated the formation of additional CC and CN bonds during the enzymatic transformations. The methodology will contribute to the further production of chemically and structurally divergent, unnatural natural products, as well as the rational design of novel biocatalysts with unprecedented catalytic functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  3. Tyrosine nitration affects thymidylate synthase properties.

    Science.gov (United States)

    Dąbrowska-Maś, Elżbieta; Frączyk, Tomasz; Ruman, Tomasz; Radziszewska, Karolina; Wilk, Piotr; Cieśla, Joanna; Zieliński, Zbigniew; Jurkiewicz, Agata; Gołos, Barbara; Wińska, Patrycja; Wałajtys-Rode, Elżbieta; Leś, Andrzej; Nizioł, Joanna; Jarmuła, Adam; Stefanowicz, Piotr; Szewczuk, Zbigniew; Rode, Wojciech

    2012-01-14

    Highly purified preparations of thymidylate synthase, isolated from calf thymus, and L1210 parental and FdUrd-resistant cells, were found to be nitrated, as indicated by a specific reaction with anti-nitro-tyrosine antibodies, suggesting this modification to appear endogenously in normal and tumor tissues. Each human, mouse and Ceanorhabditis elegans recombinant TS preparation, incubated in vitro in the presence of NaHCO(3), NaNO(2) and H(2)O(2) at pH 7.5, underwent tyrosine nitration, leading to a V(max)(app) 2-fold lower following nitration of 1 (with human or C. elegans TS) or 2 (with mouse TS) tyrosine residues per monomer. Enzyme interactions with dUMP, meTHF or 5-fluoro-dUMP were not distinctly influenced. Nitration under the same conditions of model tripeptides of a general formula H(2)N-Gly-X-Gly-COOH (X = Phe, Tyr, Trp, Lys, Arg, His, Ser, Thr, Cys, Gly), monitored by NMR spectroscopy, showed formation of nitro-species only for H-Gly-Tyr-Gly-OH and H-Gly-Phe-Gly-OH peptides, the chemical shifts for nitrated H-Gly-Tyr-Gly-OH peptide being in a very good agreement with the strongest peak found in (15)N-(1)H HMBC spectrum of nitrated protein. MS analysis of nitrated human and C. elegans proteins revealed several thymidylate synthase-derived peptides containing nitro-tyrosine (at positions 33, 65, 135, 213, 230, 258 and 301 in the human enzyme) and oxidized cysteine (human protein Cys(210), with catalytically critical Cys(195) remaining apparently unmodified) residues.

  4. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    Science.gov (United States)

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  5. Acetolactate Synthase Activity in Developing Maize (Zea mays L.) Kernels

    Science.gov (United States)

    Muhitch, Michael J.

    1988-01-01

    Acetolactate synthase (EC 4.1.3.18) activity was examined in maize (Zea mays L.) endosperm and embryos as a function of kernel development. When assayed using unpurified homogenates, embryo acetolactate synthase activity appeared less sensitive to inhibition by leucine + valine and by the imidazolinone herbicide imazapyr than endosperm acetolactate synthase activity. Evidence is presented to show that pyruvate decarboxylase contributes to apparent acetolactate synthase activity in crude embryo extracts and a modification of the acetolactate synthase assay is proposed to correct for the presence of pyruvate decarboxylase in unpurified plant homogenates. Endosperm acetolactate synthase activity increased rapidly during early kernel development, reaching a maximum of 3 micromoles acetoin per hour per endosperm at 25 days after pollination. In contrast, embryo activity was low in young kernels and steadily increased throughout development to a maximum activity of 0.24 micromole per hour per embryo by 45 days after pollination. The sensitivity of both endosperm and embryo acetolactate synthase activities to feedback inhibition by leucine + valine did not change during kernel development. The results are compared to those found for other enzymes of nitrogen metabolism and discussed with respect to the potential roles of the embryo and endosperm in providing amino acids for storage protein synthesis. PMID:16665871

  6. Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues

    Science.gov (United States)

    Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.

    2017-10-01

    Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.

  7. The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK

    Science.gov (United States)

    Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2014-01-01

    A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930

  8. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT

    Science.gov (United States)

    Hu, Nien-Jen; Iwata, So; Cameron, Alexander D.; Drew, David

    2011-01-01

    High cholesterol levels greatly increase the risk of cardiovascular disease. By its conversion into bile acids, about 50% of cholesterol is eliminated from the body. However bile acids released from the bile duct are constantly recycled, being reabsorbed in the intestine via the Apical Sodium dependent Bile acid Transporter (ASBT). It has been shown in animal models that plasma cholesterol levels are significantly lowered by specific inhibitors of ASBT1,2, thus ASBT is a target for hypercholesterolemia drugs. Here, we describe the crystal structure of a bacterial homologue of ASBT from Neisseria meningitidis (ASBTNM) at 2.2Å. ASBTNM contains two inverted structural repeats of five transmembrane helices. A Core domain of six helices harbours two sodium ions while the remaining helices form a Panel-like domain. Overall the architecture of the protein is remarkably similar to the sodium-proton antiporter NhaA3 despite no detectable sequence homology. A bile acid molecule is situated between the Core and Panel domains in a large hydrophobic cavity. Residues near to this cavity have been shown to affect the binding of specific inhibitors of human ASBT4. The position of the bile acid together with the molecular architecture suggests the rudiments of a possible transport mechanism. PMID:21976025

  9. Equilibrium evaporation behavior of polonium and its homologue tellurium in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Ohno, Shuji; Miyahara, Shinya; Kurata, Yuji; Katsura, Ryoei; Yoshida, Shigeru

    2006-01-01

    Experimental study using the transpiration method investigates equilibrium evaporation behavior of radionuclide polonium ( 210 Po) generated and accumulated in liquid lead-bismuth eutectic (LBE) cooled nuclear systems. The experiment consists of two series of tests: preliminary evaporation tests for homologue element tellurium (Te) in LBE, and evaporation tests for 210 Po-accumulated LBE in which test specimens are prepared by neutron irradiation. The evaporation tests of Te in LBE provide the suggestion that Te exists in a chemical form of PbTe as well as the information for confirming the validity of technique and conditions of Po test. From the evaporation tests of 210 Po in LBE, we obtain fundamental data and empirical equations such as 210 Po vapor concentration in the gas phase, 210 Po partial vapor pressure, thermodynamic activity coefficients, and gas-liquid equilibrium partition coefficient of 210 Po in LBE in the temperature range from 450 to 750degC. Additionally, radioactivity concentration of 210 Po and 210m Bi vapor in a cover gas region of a typical LBE-cooled nuclear system is specifically estimated based on the obtained experimental results, and the importance of 210 Po evaporation behavior is quantitatively demonstrated. (author)

  10. Expression pattern of zebrafish rxfp2 homologue genes during embryonic development.

    Science.gov (United States)

    Donizetti, Aldo; Fiengo, Marcella; Del Gaudio, Rosanna; Iazzetti, Giovanni; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-11-01

    RXFP2 is one of the 4 receptors for relaxin insulin-like peptides, in particular it binds with high affinity the INSL3 peptide. INSL3/RXFP2 pair is essential for testicular descent during placental mammalian development. The evolutionary history of this ligand/receptor pair has received much attention, since its function in vertebrate species lacking testicular descent, such as the fishes, remains elusive. Herein, we analyzed the expression pattern of three rxfp2 homologue genes in zebrafish embryonic development. For all the three rxfp2 genes (rxfp2a, rxfp2b, and rxfp2-like) we showed the presence of maternally derived transcripts. Later in the development, rxfp2a is only expressed at larval stage, whereas rxfp2b is expressed in all the analyzed stage with highest level in the larvae. The rxfp2-like gene is expressed in all the analyzed stage with a transcript level that increased starting at early pharyngula stage. The spatial localization analysis of rxfp2-like gene showed that it is expressed in many cell clusters in the developing brain. In addition, other rxfp2-like-expressing cells were identified in the retina and oral epithelium. This analysis provides new insights to elucidate the evolution of rxfp2 genes in vertebrate lineage and lays the foundations to study their role in vertebrate embryonic development. © 2015 Wiley Periodicals, Inc.

  11. Crystallization and preliminary diffraction analysis of a DsbA homologue from Wolbachia pipientis

    International Nuclear Information System (INIS)

    Kurz, M.; Iturbe-Ormaetxe, I.; Jarrott, R.; O’Neill, S. L.; Byriel, K. A.; Martin, J. L.; Heras, B.

    2008-01-01

    The first crystallization of a W. pipientis protein, α-DsbA1, was achieved using hanging-drop and sitting-drop vapour diffusion. α-DsbA1 is one of two DsbA homologues encoded by the Gram-negative α-proteobacterium Wolbachia pipientis, an endosymbiont that can behave as a reproductive parasite in insects and as a mutualist in medically important filarial nematodes. The α-DsbA1 protein is thought to be important for the folding and secretion of Wolbachia proteins involved in the induction of reproductive distortions. Crystals of native and SeMet α-DsbA1 were grown by vapour diffusion and belong to the monoclinic space group C2, with unit-cell parameters a = 71.4, b = 49.5, c = 69.3 Å, β = 107.0° and one molecule in the asymmetric unit (44% solvent content). X-ray data were recorded from native crystals to a resolution of 2.01 Å using a copper anode and data from SeMet α-DsbA1 crystals were recorded to 2.45 Å resolution using a chromium anode

  12. Experimental and theoretical model of reactivity and vibrational detection modes of triacetone triperoxide (TATP) and homologues

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.

    2004-12-01

    Fully optimized molecular geometry, parameters of reactivity and vibrational spectra of triacetone triperoxide (TATP) and homologue organic peroxides were calculated using B3LYP/6-31G(d,p) method within the Density Functional Theory formalism. Infrared and Raman Spectroscopy were utilized to obtain vibrational spectra of the energetic compound. The model consists in the relation found between the Raman Shift location of the important symmetric stretch ν(O-O) of the organic peroxides and the reactivity of the organic peroxides. A good correlation between the band location in the series studied and the x-y plane polarizability component and the ionization energy was found. Gas phase IR absorption of TATP in air was used for developing stand-off detection schemes of the important organic peroxide in air. The sublimation properties of TATP were measured using two methods: Grazing Angle Probe-Fiber Coupled FTIR and gravimetric on stainless steel surfaces. Sublimation rates, loading concentration values and absorbance band areas were measured and modeled using the persistent IR vibrational signature of the ν(C-O) mode.

  13. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum.

    Science.gov (United States)

    Rockel, Beate; Jakana, Joanita; Chiu, Wah; Baumeister, Wolfgang

    2002-04-12

    VAT (valosine containing protein-like ATPase from Thermoplasma acidophilum), an archaeal member of the AAA-family (ATPases associated with a variety of cellular activities) that possesses foldase as well as unfoldase-activity, forms homo-hexameric rings like its eukaryotic homologues p97 and CDC48. The VAT-monomer exhibits the tripartite domain architecture typical for type II AAA-ATPases: N-D1-D2, whereby N is the substrate binding N-terminal domain preceding domains D1 and D2, both containing AAA-modules. Recent 3-D reconstructions of VAT and p97 as obtained by electron microscopy suffer from weakly represented N-domains, probably a consequence of their flexible linkage to the hexameric core. Here we used electron cryo-microscopy and 3-D reconstruction of single particles in order to generate a 3-D model of VAT at 2.3 nm resolution. The hexameric core of the VAT-complex (diameter 13.2 nm, height 8.4 nm) encloses a central cavity and the substrate-binding N-domains are clearly arranged in the upper periphery. Comparison with the p97 3-D reconstruction and the recently determined crystal structure of p97-N-D1 suggests a tail-to-tail arrangement of D1 and D2 in VAT. Copyright 2002 Elsevier Science Ltd.

  14. Replacement of the essential Dictyostelium Arp2 gene by its Entamoeba homologue using parasexual genetics

    Directory of Open Access Journals (Sweden)

    Fütterer Klaus

    2007-06-01

    Full Text Available Abstract Background Cell motility is an essential feature of the pathogenesis and morbidity of amoebiasis caused by Entamoeba histolytica. As motility depends on cytoskeletal organisation and regulation, a study of the molecular components involved is key to a better understanding of amoebic pathogenesis. However, little is known about the physiological roles, interactions and regulation of the proteins of the Entamoeba cytoskeleton. Results We have established a genetic strategy that uses parasexual genetics to allow essential Dictyostelium discoideum genes to be manipulated and replaced with modified or tagged homologues. Our results show that actin related protein 2 (Arp2 is essential for survival, but that the Dictyostelium protein can be complemented by E. histolytica Arp2, despite the presence of an insertion of 16 amino acids in an otherwise highly conserved protein. Replacement of endogenous Arp2 with myc-tagged Entamoeba or Dictyostelium Arp2 has no obvious effects on growth and the protein incorporates effectively into the Arp2/3 complex. Conclusion We have established an effective two-step method for replacing genes that are required for survival. Our protocol will allow such genes to be studied far more easily, and also allows an unambiguous demonstration that particular genes are truly essential. In addition, cells in which the Dictyostelium Arp2 has been replaced by the Entamoeba protein are potential targets for drug screens.

  15. Distinct isoforms of the Drosophila Brd4 homologue are present at enhancers, promoters and insulator sites.