WorldWideScience

Sample records for synthase downregulates expression

  1. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  2. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  3. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    OpenAIRE

    Ning Xia; Andrea Pautz; Ursula Wollscheid; Gisela Reifenberg; Ulrich Förstermann; Huige Li

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects ...

  4. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  6. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  7. Oxide Synthase Expression by p38 MAP Kinase

    Directory of Open Access Journals (Sweden)

    Tuija Turpeinen

    2011-01-01

    Full Text Available The role of dual specificity phosphatase 1 (DUSP1 in inducible nitric oxide synthase (iNOS expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1β in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1(−/− mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.

  8. Cloning and expression of pineapple sucrose- phosphate synthase ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... phosphate; EDTA, ethylene diamine tetraacetic acid; Ivr, invertase; SS .... phenolics, tannins and artifacts due to differences of tissue composition ..... Banana sucrose-phosphate synthase gene expression during fruit ripening.

  9. Cloning and expression of pineapple sucrosephosphate synthase ...

    African Journals Online (AJOL)

    A 1132-base pairs (bp) polymerase-chain-reaction product of sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from pineapple (Ananas comosus cv. Comte de paris) fruit was cloned and nominated as Ac- SPS1. The sequence encodes a putative 377 amino acids protein containing two serine conserved features that had ...

  10. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion

    2005-01-01

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARα and PLZF-RARα fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARα from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells

  11. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  12. Beta-Glucan Synthase Gene Expression in Pleurotus sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus sp. is a popular edible mushroom, containing various functional component, in particular, Beta-glucan. Beta-glucans is a part of glucan family of polysaccharides and supposedly contribute to medicinal and nutritional value of Pleurotus.sp. In order to understand the distribution of Beta-glucan in Pleurotus.sp, the Beta-glucan synthase gene expression was determined and compared in different part of Pleurotus, namely mycelium, stripe and cap. The Pleurotus.sp RNA was extracted using commercial kit, employing Tissuelyser ll (Qiagen, USA) to disrupt the cell walls. Then the RNA was quantified by Nano drop (Thermo Fisher, USA) and visualized using denaturing agarose gel. RNA with good OD 260.280 reading (∼2.0) was chosen and converted to cDNA. Using Laccase synthase gene as home keeping gene, Beta-glucan synthase gene expression was quantified using CFX 96 Real Time PCR detection system (Biorad, USA). Preliminary result shows that Beta-glucan synthase was relatively expressed the most in stripe, followed by mycelium and barely in cap. (author)

  13. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  14. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  15. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  16. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles.

    Science.gov (United States)

    Tan, Xiangling; Qi, Wen-Ning; Gu, Xiaosong; Urbaniak, James R; Chen, Long-En

    2006-01-01

    This study investigated the effects of intermittent pneumatic compression (IPC) on expression of nitric oxide synthase (NOS) isoforms in compressed (anterior tibialis, AT) and uncompressed (cremaster muscles, CM) skeletal muscles. Following IPC application of 0.5, 1, and 5h on both legs of rats, the endothelial NOS (eNOS) mRNA expression was significantly up-regulated to 1.2-, 1.8, and 2.7-fold from normal, respectively, in both AT and CM, and protein expression increased more than 1.5-fold of normal at each time point. Similarly, neuronal NOS expression was up-regulated, but to a lesser degree. In contrast, inducible NOS expression was significantly and time-dependently down-regulated in both muscles. After IPC cessation, eNOS levels returned to normal in both AT and CM. The results confirm our hypothesis that IPC-induced vasodilation is mediated by regulating expression of NOS isoforms, in particular eNOS, in both compressed and uncompressed skeletal muscles. The results also suggest the importance of precisely characterizing expression of each NOS isoform in tissue pathophysiology.

  17. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  18. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  19. Inducible expression of trehalose synthase in Bacillus licheniformis.

    Science.gov (United States)

    Li, Youran; Gu, Zhenghua; Zhang, Liang; Ding, Zhongyang; Shi, Guiyang

    2017-02-01

    Trehalose synthase (TreS) could transform maltose into trehalose via isomerization. It is a crucial enzyme in the process of trehalose enzymatical transformation. In this study, plasmid-based inducible expression systems were constructed to produce Thermomonospora curvata TreS in B. licheniformis. Xylose operons from B. subtilis, B. licheniformis and B. megaterium were introduced to regulate the expression of the gene encoding TreS. It was functionally expressed, and the BlsTs construct yielded the highest enzyme activity (12.1 U/mL). Furthermore, the effect of different cultural conditions on the inducible expression of BlsTs was investigated, and the optimal condition was as follows: 4% maltodextrin, 0.4% soybean powder, 1% xylose added after 10 h of growth and an induction time of 12 h at 37 °C. As a result, the maximal yield reached 24.7 U/mL. This study contributes to the industrial application of B. licheniformis, a GRAS workhorse for enzyme production. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold...... decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein...... for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent...

  1. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    Science.gov (United States)

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  2. Dianthus superbus fructus suppresses airway inflammation by downregulating of inducible nitric oxide synthase in an ovalbumin-induced murine model of asthma

    Science.gov (United States)

    2012-01-01

    Background Dianthus superbus has long been used as a herbal medicine in Asia and as an anti-inflammatory agent. In this study, we evaluated the anti-inflammatory effects of Dianthus superbus fructus ethanolic extract (DSE) on Th2-type cytokines, eosinophil infiltration, and other factors in an ovalbumin (OVA)-induced murine asthma model. To study the possible mechanism of the anti-inflammatory effect of DSE, we also evaluated the expression of inducible nitric oxide synthase (iNOS) in the respiratory tract. Methods Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA. On days 21, 22 and 23 after initial sensitization, mice received an airway challenge with OVA for 1 h using an ultrasonic nebulizer. DSE was applied 1 h prior to OVA challenge. Mice were administered DSE orally at doses of 100 mg/kg or 200 mg/kg once daily from day 18 to 23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-13 and eotaxin in BALF were measured using enzyme-linked immunosorbent assays (ELISAs). Lung tissue sections were stained with hematoxylin and eosin for assessment of cell infiltration and mucus production with periodic acid shift staining, in conjunction with ELISA and western blot analyses for iNOS expression. Results DSE significantly reduced the levels of IL-4, IL-13, eotaxin, and immunoglobulin (Ig) E, number of inflammatory cells in BALF, and inflammatory cell infiltration and mucus production in the respiratory tract. DSE also attenuated the overexpression of iNOS protein induced by OVA challenge. Conclusion Our results suggest that DSE effectively protects against allergic airway inflammation by downregulating of iNOS expression and that DSE has potential as a therapeutic agent for allergic asthma. PMID:23110404

  3. Hypoxia downregulates Ku70/80 expression in cervical carcinoma tumors

    International Nuclear Information System (INIS)

    Lara, Pedro Carlos; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa Maria; Bordon, Elisa; Rey, Agustin; Falcon, Orlando; Alonso, Ana Ruiz; Belka, Claus

    2008-01-01

    Hypoxia may inhibits the NHEJ DNA repair through downregulating Ku70/80 expression and combined with an increased angiogenesis and altered p53 expression would be responsible for tumor progression in cervical carcinoma

  4. Expression, Purification, and Characterisation of Dehydroquinate Synthase from Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Leonardo Negron

    2011-01-01

    Full Text Available Dehydroquinate synthase (DHQS catalyses the second step of the shikimate pathway to aromatic compounds. DHQS from the archaeal hyperthermophile Pyrococcus furiosus was insoluble when expressed in Escherichia coli but was partially solubilised when KCl was included in the cell lysis buffer. A purification procedure was developed, involving lysis by sonication at 30∘C followed by a heat treatment at 70∘C and anion exchange chromatography. Purified recombinant P. furiosus DHQS is a dimer with a subunit Mr of 37,397 (determined by electrospray ionisation mass spectrometry and is active over broad pH and temperature ranges. The kinetic parameters are KM (3-deoxy-D-arabino-heptulosonate 7-phosphate 3.7 μM and kcat 3.0 sec-1 at 60∘C and pH 6.8. EDTA inactivates the enzyme, and enzyme activity is restored by several divalent metal ions including (in order of decreasing effectiveness Cd2+, Co2+, Zn2+, and Mn2+. High activity of a DHQS in the presence of Cd2+ has not been reported for enzymes from other sources, and may be related to the bioavailability of Cd2+ for P. furiosus. This study is the first biochemical characterisation of a DHQS from a thermophilic source. Furthermore, the characterisation of this hyperthermophilic enzyme was carried out at elevated temperatures using an enzyme-coupled assay.

  5. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  6. Use of heterologous expressed polyketide synthase and small molecule foldases to make aromatic and cyclic compounds

    DEFF Research Database (Denmark)

    2016-01-01

    A method for producing individual or libraries of tri- to pentadecaketide-derived aromatic compounds of interest by heterologous expression of polyketide synthase and aromatase/cyclase in a recombinant host cell.......A method for producing individual or libraries of tri- to pentadecaketide-derived aromatic compounds of interest by heterologous expression of polyketide synthase and aromatase/cyclase in a recombinant host cell....

  7. Characterization of D-myo-inositol 3-phosphate synthase gene expression in two soybean low phytate mutants

    International Nuclear Information System (INIS)

    Yuan Fengjie; Dong Dekun; Li Baiquan; Yu Xiaomin; Fu Xujun; Zhu Danhua; Zhu Shenlong; Yang Qinghua

    2013-01-01

    1D-myo-inositol 3-phosphate synthase (MIPS) gene plays a significant role in phytic acid biosynthesis. In this study, we used two low phytic acid mutants Gm-lpa-TW-1, Gm-lpa-ZC-2 and their respective wild type parents Taiwan75 and Zhechun No.3 to analyze the expression pattern and characterization of MIPS1 gene. The results showed that there was a common expression pattern of MIPS1 in soybean developing seeds. Expression was weak as detected by RT-PCR in initial stage, increased in the following stages, and the peak expression was appeared in 22 day after flowering (DAF). The expression of MIPS1 gene of non-seed tissues in mutant Gm-lpa-TW-1 and its wildtype Taiwan75 was very weak. In the developing seeds, the MIPS1 expression by qRT-PCR revealed a significant reduction in 22 DAF in mutant Gm-lpa-TW-1 as compared with the wildtype. Similarly, the expression of MIPS1 gene in non-seed tissue of Zhenchun No.3 and Gm-lpa-ZC-2 was very weak. However, stronger expression in developing seeds of the mutant Gm-lpa-ZC-2 than Zhechun No.3 was found. We concluded that the MIPS1 gene expression in the developing seed exhibited an up-regulation pattern in mutant Gm-lpa-ZC-2, but a down-regulation pattern in the mutant Gm-lpa-TW-1. (authors)

  8. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    International Nuclear Information System (INIS)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning; Boehm, Beate; Pfeilschifter, Josef; Dummer, Reinhard; Mihic-Probst, Daniela; Gutwein, Paul

    2010-01-01

    Research highlights: → Strong ADAM15 expression is found in normal melanocytes. → ADAM15 expression is significantly downregulated in patients with melanoma metastasis. → TGF-β can downregulate ADAM15 expression in melanoma cells. → Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. → Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-γ and TGF-β downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  9. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ungerer, Christopher; Doberstein, Kai [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning [Department of Dermatology, Clinic of the Goethe-University, Theodor-Stern-Kai, Frankfurt (Germany); Boehm, Beate [Division of Rheumatology, Goethe University, Frankfurt am Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Dummer, Reinhard [Department of Pathology, Institute of Surgical Pathology, University Hospital, Zurich (Switzerland); Mihic-Probst, Daniela [Department of Dermatology, University Hospital Zurich (Switzerland); Gutwein, Paul, E-mail: p.gutwein@med.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany)

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  10. Downregulation of Clusterin Expression in Human Testicular Seminoma

    Directory of Open Access Journals (Sweden)

    Bianjiang Liu

    2013-11-01

    Full Text Available Background: Clusterin, a heterodimeric glycoprotein of approximately 80 kDa, exists extensively in human body fluids. The abnormal expression of clusterin is closely related to the occurrence, progression, and prognosis of tumors. Up to now, few studies have focused on clusterin in human testicular cancer. This study describes an extensive exploration of the presence and expression of clusterin in testicular seminoma. Methods: Tumor tissues and normal testis tissues were collected from 13 patients with testicular seminoma and 16 patients undergoing surgical castration for prostate cancer. Real-time polymerase chain reaction (PCR was performed to detect the expression difference of clusterin mRNA between testicular seminoma and normal testis. Western blot and immunohistochemical analysis were performed to detect the presence and expression difference of clusterin protein between two groups. Results: Real-time PCR showed the expression of clusterin mRNA in testicular seminoma to be significantly lower than in normal testis (only 13% relative quantification. Western blot analysis indicated marked reductions in the expression of clusterin protein in testicular seminoma. Similar results were observed upon immunohistochemical analysis. Conclusion: In testicular seminoma and normal testis, clusterin exists in its heterodimeric secretory isoform. Clusterin expression is significantly lower in testicular seminoma than in normal testis. This is the first comprehensive study of the presence and expression of clusterin in human testicular cancer.

  11. Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression.

    Directory of Open Access Journals (Sweden)

    Carlos F Solis

    Full Text Available BACKGROUND: Modern RNA interference (RNAi methodologies using small interfering RNA (siRNA oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. PRINCIPAL FINDINGS: Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica beta-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. CONCLUSIONS: Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.

  12. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  13. Downregulation of transferrin receptor surface expression by intracellular antibody

    International Nuclear Information System (INIS)

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin

    2007-01-01

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 ± 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors

  14. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S.

    1991-01-01

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[ 35 S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  15. Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression.

    Science.gov (United States)

    Yagnik, Darshna; Serafin, Vlad; J Shah, Ajit

    2018-01-29

    The global escalation in antibiotic resistance cases means alternative antimicrobials are essential. The aim of this study was to investigate the antimicrobial capacity of apple cider vinegar (ACV) against E. coli, S. aureus and C. albicans. The minimum dilution of ACV required for growth inhibition varied for each microbial species. For C. albicans, a 1/2 ACV had the strongest effect, S. aureus, a 1/25 dilution ACV was required, whereas for E-coli cultures, a 1/50 ACV dilution was required (p < 0.05). Monocyte co-culture with microbes alongside ACV resulted in dose dependent downregulation of inflammatory cytokines (TNFα, IL-6). Results are expressed as percentage decreases in cytokine secretion comparing ACV treated with non-ACV treated monocytes cultured with E-coli (TNFα, 99.2%; IL-6, 98%), S. aureus (TNFα, 90%; IL-6, 83%) and C. albicans (TNFα, 83.3%; IL-6, 90.1%) respectively. Proteomic analyses of microbes demonstrated that ACV impaired cell integrity, organelles and protein expression. ACV treatment resulted in an absence in expression of DNA starvation protein, citrate synthase, isocitrate and malate dehydrogenases in E-coli; chaperone protein DNak and ftsz in S. aureus and pyruvate kinase, 6-phosphogluconate dehydrogenase, fructose bisphosphate were among the enzymes absent in C.albican cultures. The results demonstrate ACV has multiple antimicrobial potential with clinical therapeutic implications.

  16. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Stable expression of lipocalin-type prostaglandin D synthase in cultured preadipocytes impairs adipogenesis program independently of endogenous prostanoids

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Nishimura, Kohji [Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Jisaka, Mitsuo; Nagaya, Tsutomu [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Shono, Fumiaki [Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima-shi, Tokushima 770-8514 (Japan); Yokota, Kazushige, E-mail: yokotaka@life.shimane-u.ac.jp [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan)

    2012-02-15

    Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction. The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids

  18. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  19. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Directory of Open Access Journals (Sweden)

    Smrati Mishra

    Full Text Available Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  20. High SINE RNA Expression Correlates with Post-Transcriptional Downregulation of BRCA1

    Directory of Open Access Journals (Sweden)

    Giovanni Bosco

    2013-04-01

    Full Text Available Short Interspersed Nuclear Elements (SINEs are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.

  1. Expression of prostaglandin synthases (pgds and pges) during zebrafish gonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Nielsen, Betina Frydenlund

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E2 synthase (pges) and especially the lipocalin-type prostaglandin D2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found....... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...... microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph. The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference...

  2. Expression of prostaglandin synthases (pgds and pges) duringzebrafishgonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E.; Nielsen, Betina F.

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E-2 synthase (pges) and especially the lipocalin-type prostaglandin D-2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found...... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...... microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference...

  3. Optimization of expression and properties of the recombinant acetohydroxyacid synthase of Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Mohammad S. Eram

    2015-12-01

    Full Text Available The data provide additional support of the characterization of the biophysical and biochemical properties of the enzyme acetohydroxyacid synthase from the hyperthermophilic bacterium Thermotoga maritima (Eram et al., 2015 [1]. The genes encoding the enzyme subunits have been cloned and expressed in the mesophilic host Escherichia coli. Detailed data include information about the optimization of the expression conditions, biophysical properties of the enzyme and reconstitution of the holoenzyme from individually expressed and purified subunits.

  4. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  5. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli.

    Science.gov (United States)

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  6. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    International Nuclear Information System (INIS)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T.

    2006-01-01

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy β and originally identified CoA synthase, CoASy α. The transcript specific for CoASy β was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy β. In contrast to CoASy α, which shows ubiquitous expression, CoASy β is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  7. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  8. Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Tippmann, Stefan; Ferreira, Raphael; Siewers, Verena

    2017-01-01

    to overcome the thermodynamic constraint imposed on the first reaction, in which acetoacetyl-CoA is produced from two moles of acetyl-CoA by acetoacetyl-CoA thiolase. Recently, a novel acetoacetyl-CoA synthase (nphT7) has been identified from Streptomyces sp. strain CL190, which catalyzes the irreversible...... functionality of the bypass was limited by the efficiency of acetoacetyl-CoA synthase (nphT7). Besides modulation of the expression level, which could be used as a means to partially restore the phenotype, nphT7 from Streptomyces glaucescens showed clearly higher efficiency compared to Streptomyces sp. strain...

  9. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  10. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  11. Downregulation of leptin and resistin expression in blood following bariatric surgery.

    Science.gov (United States)

    Edwards, Claire; Hindle, A Katharine; Fu, Sidney; Brody, Fredrick

    2011-06-01

    Type 2 diabetes (T2D) resolves rapidly after bariatric surgery, even before substantial weight is lost. However, the molecular pathways underlying this phenomenon remain unclear. Microarray data has shown that numerous genes are differentially expressed in blood after bariatric surgery, including resistin and leptin. Resistin and leptin are circulating hormones derived from adipose tissue, which are associated with obesity and insulin resistance. This study examined expression of these genes before and after bariatric surgery in diabetic and nondiabetic obese patients. The study included 16 obese patients who underwent bariatric surgery, either Roux-en-Y gastric bypass (RYGB) or adjustable gastric banding. Eight patients had T2D. Preoperative blood samples were collected in PAXgene tubes to stabilize mRNA. Postoperative samples were collected 3 months after surgery. Total RNA was isolated and cDNA was synthesized. Real-time quantitative PCR was used to quantify mRNA. Results were analyzed using Student's t test with a P<0.05 considered significant. Postoperatively, five diabetic patients had discontinued hypoglycemic medications and one showed improved glycemic control. Both leptin and resistin mRNA levels were elevated in the diabetic group but decreased after surgery to levels near those of the nondiabetic group. Greater downregulation of resistin and leptin expression occurred in patients who lost more excess body weight (EBW), while patients who lost less than 10% EBW had a mean increase in expression of the two genes. Downregulation of both genes was more pronounced after RYGB compared to gastric banding. Downregulation of resistin and leptin gene expression after bariatric surgery may play a role in normalizing obesity-associated insulin resistance. Interestingly, downregulation is greater after RYGB and in patients who lose a greater proportion of EBW. Targeted therapies for obesity and diabetes may be developed by understanding the pathways by which these

  12. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    International Nuclear Information System (INIS)

    Chen, Huimin; Ma, Feng; Hu, Xiaona; Jin, Ting; Xiong, Chuhui; Teng, Xiaochun

    2013-01-01

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases

  13. Cloning and expression analysis of chalcone synthase gene from ...

    Indian Academy of Sciences (India)

    Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate ... Journal of Genetics, DOI 10.1007/s12041-016-0680-8, Vol. 95, No. ... leaf of C. forskohlii. Quantitative real time RT-PCR was used ..... SGG acknowledges the financial support for this work from CSIR. 12th FYP project ...

  14. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models.

    Directory of Open Access Journals (Sweden)

    Irina Petrache

    Full Text Available Increases in ceramide levels have been implicated in the pathogenesis of both acute or chronic lung injury models. However, the role of individual ceramide species, or of the enzymes that are responsible for their synthesis, in lung health and disease has not been clarified. We now show that C24- and C16-ceramides are the most abundant lung ceramide species, paralleled by high expression of their synthetic enzymes, ceramide synthase 2 (CerS2 and CerS5, respectively. Furthermore, the ceramide species synthesis in the lung is homeostatically regulated, since mice lacking very long acyl chain C24-ceramides due to genetic deficiency of CerS2 displayed a ten-fold increase in C16-ceramides and C16-dihydroceramides along with elevation of acid sphingomyelinase and CerS5 activities. Despite relatively preserved total lung ceramide levels, inhibition of de novo sphingolipid synthesis at the level of CerS2 was associated with significant airflow obstruction, airway inflammation, and increased lung volumes. Our results suggest that ceramide species homeostasis is crucial for lung health and that CerS2 dysfunction may predispose to inflammatory airway and airspace diseases.

  15. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    International Nuclear Information System (INIS)

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-01-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  16. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: anne.kultti@uku.fi [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Pasonen-Seppaenen, Sanna [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Jauhiainen, Marjo [Department of Pharmaceutical Chemistry, University of Kuopio, FIN-70211 Kuopio (Finland); Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I. [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland)

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  17. Expression, crystallization and preliminary crystallographic study of octaprenyl pyrophosphate synthase from Helicobacter pylori

    International Nuclear Information System (INIS)

    Zhang, Jinyong; Zhang, Xiaoli; Mao, Xuhu; Zou, Quanming; Li, Defeng

    2011-01-01

    Octaprenyl pyrophosphate synthase from H. pylori has been expressed, purified and crystallized, and a diffraction data set was collected to 2.00 Å resolution. Octaprenyl pyrophosphate synthase (OPPs) is involved in the synthesis of the side chains of ubiquinone and menaquinone and catalyzes consecutive condensation reactions of farnesyl pyrophosphate with isopentenyl pyrophosphate to generate polyprenyl pyrophosphate and pyrophosphate. In order to investigate the roles played by OPPs in the metabolism of ubiquinone and menaquinone and the enzymatic mechanisms of these enzymes, analysis of the structure–function relationship of OPPs from Helicobacter pylori was initiated. The gene for OPPs was cloned, the protein was expressed, purified and crystallized and a diffraction data set was collected to 2.00 Å resolution. The crystals belonged to space group P4 1 2 1 2 or P4 3 2 1 2, with unit-cell parameters a = b = 109.33, c = 103.41 Å

  18. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    DEFF Research Database (Denmark)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens

    2009-01-01

    unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. METHODS: MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS....... Absence of repair protein expression was assessed in 52 (17.0%) tumors, which had primarily lost hMLH1 in 39 (12.7%), hMSH2 in 5 (1.6%), and hMSH6 in 8 (2.6%) tumors. In multivariate analysis MSI (instable) compared to MSS (stable) tumors were significantly associated with lower risk of recurrence (hazard...

  19. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    Science.gov (United States)

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  20. Immunohistochemical expression of nitric oxide synthases in gastric adenocarcinomas

    OpenAIRE

    Begnami, Maria Dirlei F. S.; Cunha, Isabela Werneck da; Montagnini, André; Nonogaki, Sueli; Soares, Fernando

    2004-01-01

    INTRODUÇÃO: O óxido nítrico (NO) é uma molécula mediadora de diversas funções, tais como vasodilatação, neurotransmissão e metabolismo do ferro. Os efeitos do NO na biologia tumoral são ambíguos e complexos. A atividade das sintases do óxido nítrico (NOS) tem sido demonstrada em diversos tumores humanos. OBJETIVO: Pesquisar a expressão das isoformas das NOS em carcinomas gástricos e correlacionar estes achados com características demográficas e histopatológicas destes tumores. MATERIAL E MÉTO...

  1. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial. Addendum

    Science.gov (United States)

    2011-07-01

    controls, Menendez et al demonstrated that addition of omega-3 fatty acids (-3 FA), docosahexanoic acid ( DHA ), alpha- linolenic acid , and -6 FA, γ...AD_________________ Award Number: W81XWH-04-1-0296 TITLE: Fish Oil Supplementation and Fatty Acid ...COVERED 1 March 2010 – 30 June 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fish Oil Supplementation and Fatty Acid Synthase Expression in the

  2. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  3. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  4. Downregulation of telomerase maintenance-related ACD expression in patients undergoing immunosuppresive therapy following kidney transplantation.

    Science.gov (United States)

    Witkowska, Agnieszka; Strzalka-Mrozik, Barbara; Owczarek, Aleksander; Gola, Joanna; Mazurek, Urszula; Grzeszczak, Wladyslaw; Gumprecht, Janusz

    2015-12-01

    Chronic administration of immunosuppressants has been associated with long-term consequences, including a higher risk of neoplasm development. The processes regulating telomere function exert a major influence on human cancer biology. The present study aimed to assess the effect of immunosuppressive therapy on the expression of genes associated with telomere maintenance and protection in patients following renal transplantation. A total of 51 patients that had undergone kidney transplantation and 54 healthy controls were enrolled in the study. The 51 transplant patients received a three-drug immunosuppressive regimen consisting of cyclosporine A, prednisone and mycophenolate mofetil. In stage 1 of the study, the expression profiles of 123 transcripts, which represented 70 genes, were assessed in peripheral mononuclear blood cells using an oligonucleotide microarray technique in 8 transplant recipients and 4 healthy control subjects. Among the analyzed transcripts, the expression levels of 4 differed significantly between the studied groups; however, only the ACD (adrenocortical dysplasia homolog) gene, encoding the telomere-binding protein POT1-interacting protein 1 (TPP1), was sufficiently specific for telomere homeostasis. The expression of ACD was downregulated in transplant recipients (fold change, 2.11; P=0.006). In stage 2 of the study, reverse transcription-quantitative polymerase chain reaction analysis of ACD , DKC1 and hTERT mRNA was conducted for all transplant patients and control subjects. The results confirmed the downregulation of the ACD gene in patients that had received immunosuppressive therapy (P=0.002). The results of the present study indicate that the downregulation of ACD gene transcription, and thus TPP1 protein expression, may enhance the capacity for cell immortalization, despite normal levels of other key telomere maintenance factors, in patients undergoing immunosuppressive therapy. Furthermore, the results indicate that TPP1 has

  5. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  6. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  7. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression.

    Science.gov (United States)

    Guo, Xiaoyun; Li, Zezhi; Zhang, Chen; Yi, Zhenghui; Li, Haozhe; Cao, Lan; Yuan, Chengmei; Hong, Wu; Wu, Zhiguo; Peng, Daihui; Chen, Jun; Xia, Weiping; Zhao, Guoqing; Wang, Fan; Yu, Shunying; Cui, Donghong; Xu, Yifeng; Golam, Chowdhury M I; Smith, Alicia K; Wang, Tong; Fang, Yiru

    2015-10-01

    Subsyndromal symptomatic depression (SSD) is a common disease with significant social dysfunction. However, SSD is still not well understood and the pathophysiology of it remains unclear. We classified 48 candidate genes for SSD according to our previous study into clusters and pathways using DAVID Bioinformatics Functional Annotation Tool. We further replicated the result by using real-time Quantitative PCR (qPCR) studies to examine the expression of identified genes (i.e., STAT5b, PKCB1, ABL1 and NRAS) in another group of Han Chinese patients with SSD (n = 50). We further validated the result by examining PRKCB1 expression collected from MDD patients (n = 20). To test whether a deficit in PRKCB1 expression leads to dysregulation in PRKCB1 dependent transcript networks, we tested mRNA expression levels for the remaining 44 genes out of 48 genes in SSD patients. Finally, the power of discovery was improved by incorporating information from Quantitative Trait (eQTL) analysis. The results showed that the PRCKB1 gene expression in peripheral blood mononuclear cells (PBMC) was 33.3% down-regulated in SSD patients (n = 48, t = 3.202, p = 0.002), and a more dramatic (n = 17, 49%) down-regulation in MDD patients than control (n = 49, t = 2.114, p = 0.001). We also identified 37 genes that displayed a strong correlation with PRKCB1 mRNA expression levels in SSD patients. The expression of PRKCB1 was regulated by multiple single nucleotide polymorphisms (SNPs) both at the transcript level and exon level. In conclusion, we first found a significant decrease of PRCKB1 mRNA expression in SSD, suggesting PRKCB1 might be the candidate gene and biomarker for SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Bai

    Full Text Available Bioactive gibberellins (GAs comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

  9. Regulation of galactan synthase expression to modify galactan content in plants

    Science.gov (United States)

    None

    2017-08-22

    The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.

  10. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  11. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  12. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    Science.gov (United States)

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts

    Directory of Open Access Journals (Sweden)

    Sandra R Boiça Silva

    2010-08-01

    Full Text Available Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14 and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.

  14. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  15. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    Science.gov (United States)

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  16. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white versus red color flower formation in plants

    Directory of Open Access Journals (Sweden)

    Ping eLuo

    2016-01-01

    Full Text Available Flower colour is the main character throughout the plant kingdom. Though substantial information exists regarding the structural and regulatory genes involved in anthocyanin and flavonol biosynthesis, little is known that what make a diverse white versus red color flower in natural species. Here, the contents of pigments in seven species from varied phylogenetic location in plants with red and white flowers.were determined. Flavonols could be detected in red and white flowers, but anthocyanins were almost undetectable in the white cultivar. Comparisons of expression patterns of gene related to the flavonoid biosynthesis indicated that disequilibrium expression of flavonol synthase (FLS and dihydroflavonol-4-reductase (DFR genes determined the accumulation of flavonols and anothcyanins in both red and white flowers of seven species. To further investigate the role of such common regulatory patterns in determining flower color, FLS genes were isolated from Rosa rugosa (RrFLS1, Prunus persica (PpFLS and Petunia hybrida (PhFLS, and DFR genes were isolated from Rosa rugosa (RrDFR1 and Petunia hybrida (PhDFR. Heterologous expression of the FLS genes within tobacco host plants demonstrated conservation of function, with the transgenes promoting flavonol biosynthesis and inhibiting anthocyanin accumulation, so resulting in white flowers. Conversely, overexpression of DFR genes in tobacco displayed down-regulation of the endogenous NtFLS gene, and the promotion of anthocyanin synthesis. On this basis, we propose a model in which FLS and DFR gene-products compete for common substrates in order to direct the biosynthesis of flavonols and anthocyanins, respectively, thereby determining white versus red coloration of flowers.

  17. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Galinousky, Dmitry; Padvitski, Tsimafei; Bayer, Galina; Pirko, Yaroslav; Pydiura, Nikolay; Anisimova, Natallia; Nikitinskaya, Tatyana; Khotyleva, Liubov; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2017-08-09

    Fiber flax is an important source of natural fiber and a comprehensive model for the plant fiber biogenesis studies. Cellulose-synthase (CesA) and cytoskeletal genes are known to be important for the cell wall biogenesis in general and for the biogenesis of flax fibers in particular. Currently, knowledge about activity of these genes during the plant growth is limited. In this study, we have investigated flax fiber biogenesis by measuring expression of CesA and cytoskeletal genes at two stages of the flax development (seedlings and stems at the rapid growth stage) in several flax subspecies (elongatum, mediterraneum, crepitans). RT-qPCR has been used to quantify the expression of LusСesA1, LusСesA4, LusСesA7, LusСesA6, Actin, and α-Tubulin genes in plant samples. We report that CesA genes responsible for the secondary cell wall synthesis (LusCesA4, LusCesA7) have different expression pattern compared with CesA genes responsible for the primary cell wall synthesis (LusCesA1, LusCesA6): an average expression of LusCesA4 and LusCesA7 genes is relatively high in seedlings and further increases in stems at the rapid growth stage, whereas an average expression of LusCesA1 and LusCesA6 genes decreases. Interestingly, LusCesA1 is the only studied gene with different expression dynamics between the flax subspecies: its expression decreases by 5.2-10.7 folds in elongatum and mediterraneum but does not change in crepitans subspecies when the rapid growth stage and seedlings are compared. The expression of cytoskeleton genes (coding actin and α-tubulin) is relatively stable and significantly higher than the expression of cellulose-synthase genes in all the studied samples. © 2017 International Federation for Cell Biology.

  18. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  19. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  20. Down-regulation of a chitin synthase a gene by RNA interference enhances pathogenicity of Beauveria bassiana ANU1 against Spodoptera exigua (HÜBNER).

    Science.gov (United States)

    Lee, Jung-Bok; Kim, Hyun Soo; Park, Youngjin

    2017-02-01

    Chitin synthase (CHS) is an important enzymatic component, which is required for chitin formation in the cuticles and cuticular linings of other tissues in insects. CHSs have been divided into two classes, classes A and B, based on their amino acid sequence similarities and functions. Class A CHS (CHS-A) is specifically expressed in the epidermis and related ectodermal cells such as tracheal cells, while class B CHS (CHS-B) is expressed in gut epithelial cells that produce peritrophic matrices. In this study, we cloned the CHS-A gene from the beet armyworm, Spodoptera exigua (SeCHS-A). The SeCHS-A contains an open reading frame of 4,698 nucleotides, encoding a protein of 1,565 amino acids with a predicted molecular mass of approximately 177.8 kDa. The SeCHS-A mRNA was expressed in all developmental stages and specifically in the epidermis and tracheae tissue by quantitative real-time-PCR analysis. Expression of SeCHS-A gene was suppressed by feeding double-stranded RNA (dsCHS-A, 400 ng/larva) in the third instar larvae of S. exigua. Suppression of the SeCHS-A gene expression significantly increased 35% of mortality on pupation of S. exigua. Also, the third instar larvae fed with dsCHS-A significantly increased susceptibility to entomopathogenic fungi, Beauveria bassiana ANU1 at 3 days after treatment. These results suggest that the SeCHS-A gene plays an important role in development of S. exigua and RNA interference may apply to effective pest control with B. bassiana. © 2017 Wiley Periodicals, Inc.

  1. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  2. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    International Nuclear Information System (INIS)

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook

    2006-01-01

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 μg/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects

  3. The Coexpression of Reelin and Neuronal Nitric Oxide Synthase in a Subpopulation of Dentate Gyrus Neurons Is Downregulated in Heterozygous Reeler Mice

    Directory of Open Access Journals (Sweden)

    Raquel Romay-Tallón

    2010-01-01

    Full Text Available Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the same population of hippocampal interneurons, and whether this colocalization is altered in the heterozygous reeler mouse. We found colocalization of nNOS in reelin-positive cells in the CA1 stratum radiatum and lacunosum moleculare, the CA3 stratum radiatum, and the dentate gyrus subgranular zone, molecular layer, and hilus. In heterozygous reeler mice, the colocalization of nNOS in reelin-positive cells was significantly decreased only in the subgranular zone and molecular layer. The coexpression of reelin and nNOS in several hippocampal regions suggests that reelin and nNOS may work synergistically to promote glutamatergic function, and the loss of this coexpression in heterozygous reeler mice may underlie some of the behavioral deficits observed in these animals.

  4. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell......Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular......, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...

  5. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma.

    Science.gov (United States)

    Byrum, M L; Pondenis, H C; Fredrickson, R L; Wycislo, K L; Fan, T M

    2016-07-01

    The establishment and progression of metastases remains the life-limiting factor for dogs diagnosed with osteosarcoma (OS). The pattern of metastases is likely regulated through interactions between chemokine receptors and chemokines, and perturbations in these signaling cascades responsible for cytoskeletal organization and directional migration have the potential to alter metastatic cell trafficking behaviors. Zoledronate will impair directional migration of OS cells through downregulation of chemokine (C-X-C motif) receptor 4 (CXCR4) expression and functionality. Nineteen archived tumor specimens and plasma from 20 dogs with OS. Prospectively, the expressions of CXCR4 were studied in OS cell lines and spontaneous tumor samples. The effect of zoledronate on CXCR4 expression and functionality was investigated by characterizing responses in 3 OS cell lines. In 19 OS specimens and 20 dogs with OS, changes in CXCR4 expression and circulating CXCR4 concentrations were characterized in response to zoledronate therapy respectively. All canine OS cells express CXCR4, and zoledronate reduces CXCR4 expression and functionality by 27.7% (P < .0001), through augmented proteasome degradation and reduced prenylation of heterotrimeric G-proteins in 33% of tumor cell lines evaluated. In OS-bearing dogs, zoledronate reduces CXCR4 expressions by 40% within the primary tumor compared to untreated controls (P = .03) and also decreases the circulating concentrations of CXCR4 in 18 of 20 dogs with OS. Zoledronate can alter CXCR4 expression and functionality in OS cells, and consequent perturbations in CXCR4 intracellular signaling cascades might influence patterns of metastases. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  6. [The Effect of TALENs-mediated Downregulation Expression of Nanog on Malignant Behavior of Cervical Cancer HeLa Cells].

    Science.gov (United States)

    Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong

    2016-01-01

    To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P HeLa cells were observed when compared to those of wild-type HeLa cells (P HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.

  7. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  8. Strengthening Triterpene Saponins Biosynthesis by Over-Expression of Farnesyl Pyrophosphate Synthase Gene and RNA Interference of Cycloartenol Synthase Gene in Panax notoginseng Cells

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2017-04-01

    Full Text Available To conform to the multiple regulations of triterpene biosynthesis, the gene encoding farnesyl pyrophosphate synthase (FPS was transformed into Panax notoginseng (P. notoginseng cells in which RNA interference (RNAi of the cycloartenol synthase (CAS gene had been accomplished. Transgenic cell lines showed both higher expression levels of FPS and lower expression levels of CAS compared to the wild-type (WT cells. In the triterpene and phytosterol analysis, transgenic cell lines provided a higher accumulation of total triterpene saponins, and a lower amount of phytosterols in comparison with the WT cells. Compared with the cells in which RNAi of the CAS gene was achieved, the cells with simultaneously over-expressed FPS and silenced CAS showed higher triterpene contents. These results demonstrate that over-expression of FPS can break the rate-limiting reaction catalyzed by FPS in the triterpene saponins biosynthetic pathway; and inhibition of CAS expression can decrease the synthesis metabolic flux of the phytosterol branch. Thus, more precursors flow in the direction of triterpene synthesis, and ultimately promote the accumulation of P. notoginseng saponins. Meanwhile, silencing and over-expressing key enzyme genes simultaneously is more effective than just manipulating one gene in the regulation of saponin biosynthesis.

  9. Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse.

    Directory of Open Access Journals (Sweden)

    Srikant Ambatipudi

    Full Text Available Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development.We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL, oral squamous cell carcinoma (OSCC and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO mice.We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue.The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.

  10. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Atkinson, Sarah C.; Dogovski, Con; Dobson, Renwick C. J.; Perugini, Matthew A.

    2012-01-01

    Dihydrodipicolinate synthase from the plant pathogen A. tumefaciens has been cloned, expressed, purified and crystallized in its unliganded form, in the presence of its substrate pyruvate and in the presence of pyruvate and the allosteric inhibitor lysine. Diffraction data for the crystals were collected to a maximum resolution of 1.40 Å. Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP-354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents

  12. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the psychrophile Shewanella benthica

    International Nuclear Information System (INIS)

    Wubben, Jacinta M.; Dogovski, Con; Dobson, Renwick C. J.; Codd, Rachel; Gerrard, Juliet A.; Parker, Michael W.; Perugini, Matthew A.

    2010-01-01

    Dihydrodipicolinate synthase (DHDPS) is an essential oligomeric enzyme of interest to antibiotic discovery research and studies probing the importance of quaternary structure to protein function, stability and dynamics. The cloning, expression, purification and crystallization of DHDPS from the psychrophilic (cold-dwelling) bacterium Shewanella benthica are described. Dihydrodipicolinate synthase (DHDPS) is an oligomeric enzyme that catalyzes the first committed step of the lysine-biosynthesis pathway in plants and bacteria, which yields essential building blocks for cell-wall and protein synthesis. DHDPS is therefore of interest to drug-discovery research as well as to studies that probe the importance of quaternary structure to protein function, stability and dynamics. Accordingly, DHDPS from the psychrophilic (cold-dwelling) organism Shewanella benthica (Sb-DHDPS) was cloned, expressed, purified and crystallized. The best crystals of Sb-DHDPS were grown in 200 mM ammonium sulfate, 100 mM bis-tris pH 5.0–6.0, 23–26%(w/v) PEG 3350, 0.02%(w/v) sodium azide and diffracted to beyond 2.5 Å resolution. Processing of diffraction data to 2.5 Å resolution resulted in a unit cell with space group P2 1 2 1 2 1 and dimensions a = 73.1, b = 84.0, c = 143.7 Å. These studies of the first DHDPS enzyme to be characterized from a bacterial psychrophile will provide insight into the molecular evolution of enzyme structure and dynamics

  13. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera

    International Nuclear Information System (INIS)

    Atkinson, Sarah C.; Dogovski, Con; Newman, Janet; Dobson, Renwick C. J.; Perugini, Matthew A.

    2011-01-01

    Dihydrodipicolinate synthase from the common grapevine V. vinifera has been cloned, expressed, purified and crystallized in the presence of the substrate pyruvate by in-drop hexahistidine-tag cleavage. A diffraction data set has been collected to a resolution of 2.2 Å. Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS from the grapevine Vitis vinifera (Vv-DHDPS). Following in-drop cleavage of the hexahistidine tag, cocrystals of Vv-DHDPS with the substrate pyruvate were grown in 0.1 M Bis-Tris propane pH 8.2, 0.2 M sodium bromide, 20%(w/v) PEG 3350. X-ray diffraction data in space group P1 at a resolution of 2.2 Å are presented. Preliminary diffraction data analysis indicated the presence of eight molecules per asymmetric unit (V M = 2.55 Å 3 Da −1 , 52% solvent content). The pending crystal structure of Vv-DHDPS will provide insight into the molecular evolution in quaternary structure of DHDPS enzymes

  14. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  15. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  16. Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum

    International Nuclear Information System (INIS)

    Pasquo, Alessandra; Bonamore, Alessandra; Franceschini, Stefano; Macone, Alberto; Boffi, Alberto; Ilari, Andrea

    2008-01-01

    The cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from T. flavum, a protein which catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids, are reported. Norcoclaurine synthase (NCS) catalyzes the condensation of 3,4-dihydroxyphenylethylamine (dopamine) and 4-hydroxyphenylacetaldehyde (4-HPAA) as the first committed step in the biosynthesis of benzylisoquinoline alkaloids in plants. The protein was cloned, expressed and purified. Crystals were obtained at 294 K by the hanging-drop vapour-diffusion method using ammonium sulfate and sodium chloride as precipitant agents and diffract to better than 3.0 Å resolution using a synchrotron-radiation source. The crystals belong to the trigonal space group P3 1 21, with unit-cell parameters a = b = 86.31, c = 118.36 Å. A selenomethionine derivative was overexpressed, purified and crystallized in the same space group. A complete MAD data set was collected at 2.7 Å resolution. The model is under construction

  17. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    International Nuclear Information System (INIS)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens; Sørensen, Jens B

    2009-01-01

    Microsatellite instability (MSI) refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR). Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. MSI was found in 43 (13.8%) tumors. Absence of repair protein expression was assessed in 52 (17.0%) tumors, which had primarily lost hMLH1 in 39 (12.7%), hMSH2 in 5 (1.6%), and hMSH6 in 8 (2.6%) tumors. In multivariate analysis MSI (instable) compared to MSS (stable) tumors were significantly associated with lower risk of recurrence (hazard ratio (HR) = 0.3; 95% CI: 0.2–0.7; P = 0.0007) and death (HR = 0.4; 95% CI: 0.2–0.9; P = 0.02) independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001) was found, while there was no significant association with DPD intensity (P = 0.1). The favourable outcome of MSI colorectal carcinomas is ascribed mainly to the tumor biology and to a lesser extent to antitumor response to 5-fluorouracil therapy. There is no evidence that differential TS or DPD expression may account for these outcome characteristics

  18. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  19. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  20. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. (+)-(10R)-Germacrene A synthase from goldenrod, Solidago canadensis; cDNA isolation, bacterial expression and functional analysis.

    Science.gov (United States)

    Prosser, Ian; Phillips, Andy L; Gittings, Simon; Lewis, Mervyn J; Hooper, Antony M; Pickett, John A; Beale, Michael H

    2002-08-01

    Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.

  2. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were...... treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  3. Cell-Specific Expression of Homospermidine Synthase, the Entry Enzyme of the Pyrrolizidine Alkaloid Pathway in Senecio vernalis, in Comparison with Its Ancestor, Deoxyhypusine Synthase1

    Science.gov (United States)

    Moll, Stefanie; Anke, Sven; Kahmann, Uwe; Hänsch, Robert; Hartmann, Thomas; Ober, Dietrich

    2002-01-01

    Pyrrolizidine alkaloids (PAs) are constitutive plant defense compounds with a sporadic taxonomic occurrence. The first committed step in PA biosynthesis is catalyzed by homospermidine synthase (HSS). Recent evidence confirmed that HSS evolved by gene duplication from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activation of the eukaryotic translation initiation factor 5A. To better understand the evolutionary relationship between these two enzymes, which are involved in completely different biological processes, we studied their tissue-specific expression. RNA-blot analysis, reverse transcriptase-PCR, and immunolocalization techniques demonstrated that DHS is constitutively expressed in shoots and roots of Senecio vernalis (Asteraceae), whereas HSS expression is root specific and restricted to distinct groups of endodermis and neighboring cortex cells located opposite to the phloem. All efforts to detect DHS by immunolocalization failed, but studies with promoter-β-glucuronidase fusions confirmed a general expression pattern, at least in young seedlings of tobacco (Nicotiana tabacum). The expression pattern for HSS differs completely from its ancestor DHS due to the adaptation of HSS to the specific requirements of PA biosynthesis. PMID:12226485

  4. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... as enhanced beta-cell responses to an oral glucose load. During euglycaemic, hyperinsulinaemic clamp (2 mU x kg-1 x min-1) in combination with indirect calorimetry, a 35% (p=0.005) increase in whole-body insulin-stimulated glucose disposal rate, predominantly due to an increased non-oxidative glucose....... In conclusion, improved blood glucose control in gliclazide-treated obese NIDDM patients has no impact on the gene expression of muscle glycogen synthase....

  5. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  6. Principal component analysis (PCA of volatile terpene compounds dataset emitted by genetically modified sweet orange fruits and juices in which a D-limonene synthase was either up- or down-regulated vs. empty vector controls

    Directory of Open Access Journals (Sweden)

    Ana Rodríguez

    2016-12-01

    Full Text Available We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S, down-regulated (AS or non-altered (EV; control (“Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception”(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016 [1]. Data from volatile identification and quantification by HS-SPME and GC–MS were classified by Principal Component Analysis (PCA individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.

  7. Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yahong Jiang

    Full Text Available Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ, trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11, KISS1, insulin-like growth factor binding protein 4 (IGFBP4, collagen type I alpha 1 (COLIA1, matrix metallopeptidase 9 (MMP9, and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA, MMP1, gap junction protein alpha 1 (GJA1, et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.

  8. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  9. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  10. Cloning and Expression of the PHA Synthase Gene From a Locally Isolated Chromobacterium sp. USM2

    Directory of Open Access Journals (Sweden)

    Bhubalan, K.

    2010-01-01

    Full Text Available Chromobacterium sp. USM2, a locally isolated bacterium was found to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate, P(3HB-co-3HV copolymer with high 3HV monomer composition. The PHA synthase gene was cloned and expressed in Cupriavidus necator PHB¯4 to investigate the possibilities of incorporating other monomer. The recombinant successfully incorporated 3-hydroxyhexanoate (3HHx monomer when fed with crude palm kernel oil (CPKO as the sole carbon source. Approximately 63 ± 2 wt% of P(3HB-co-3HHx copolymer with 4 mol% of 3HHx was synthesized from 5 g/L of oil after 48 h of cultivation. In addition, P(3HB-co-3HV-co-3HHx terpolymer with 9 mol% 3HV and 4 mol% 3HHx could be synthesized with a mixture of CPKO and sodium valerate. The presence of 3HV and 3HHx monomers in the copolymer and terpolymer was further confirmed with +H-NMR analysis. This locally isolated PHA synthase has demonstrated its ability to synthesize P(3HB-co-3HHx copolymer from a readily available and renewable carbon source; CPKO, without the addition of 3HHx precursors.

  11. [Effect of adaptation to hypoxia on expression of NO synthase isoforms in rat myocardium].

    Science.gov (United States)

    Goryacheva, A V; Terekhina, O L; Abramochkin, D V; Budanova, O P; Belkina, L M; Smirin, B V; Downey, H F; Malyshev, I Yu; Manukhina, E B

    2015-01-01

    Previously we have shown that adaptation to hypoxia (AH) is cardio- and vasoprotective in myocardial ischemic and reperfusion injury and this protection is associated with restriction of nitrosative stress. The present study was focused on further elucidation of NO-dependent mechanisms of AH by identifying specific NO synthases (NOS) that could play the major role in AH protection. AH was performed in a normobaric hypoxic chamber by breathing hypoxic gas mixture (9.5-10% O2) for 5-10 min with intervening 4 min normoxia (5-8 cycles daily for 21 days). Expression of neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) protein was measured in the left ventricular myocardium using Western blot analysis with respective antibodies. AH educed iNOS protein expression by 71% (p < 0.05) whereas eNOS protein expression tended to be reduced by 41% compared to control (p < 0.05). nNOS protein expression remained unchanged after AH. Selective iNOS inhibition can mimic the AH-induced protection. Therefore protective effects of AH could be at least partially due to restriction of iNOS and, probably, eNOS expression.

  12. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  13. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    International Nuclear Information System (INIS)

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-01-01

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  14. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    Science.gov (United States)

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  15. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    Science.gov (United States)

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  16. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    Science.gov (United States)

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  17. Influence of thymidylate synthase expression on survival in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Kinjal K Gajjar

    2017-01-01

    Full Text Available Background: Thymidylate synthase (TS plays a critical role in nucleotide metabolism and is an important target for 5-fluorouracil (5-FU, the standard chemotherapeutic drug for treatment of colorectal cancer (CRC. Aims and Methods: The present study aimed to evaluate TS variable number tandem repeat sequences (VNTR polymorphism by polymerase chain reaction and TS protein expression by immunohistochemistry and its association with clinicopathological parameters in untreated CRC patients (n = 100. Further, the prognostic and predictive role of TS has been evaluated. Results: For TS VNTR polymorphism, the observed frequencies of 2R/2R, 2R/3R, and 3R/3R genotypes were 22%, 51%, and 27%, respectively. When immunohistochemical localization was studied, cytoplasmic staining for TS was observed in 70% of patients. A significant inverse correlation was noted between TS protein expression and tumor, node, metastasis staging (P = 0.027, Dukes' staging (P = 0.039, and lymph node status (P = 0.012 of CRC patients. However, there was no significant correlation between TS VNTR polymorphism and TS protein expression. On survival analysis, a significantly shorter overall survival (OS was seen in CRC patients with negative protein expression (P = 0.031. Moreover, the subgroup of CRC patients treated only with surgery also showed a trend of poor OS in patients with negative TS protein expression (P = 0.058. However, neither TS polymorphism nor its protein expression was able to predict relapse-free survival. Conclusion: Negative TS protein expression may be related to unfavorable clinical outcome in CRC patients. However, further studies in a larger set of patients are necessary to better assess TS as a prognostic and predictive marker for 5-FU response in CRC patients.

  18. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma.

    Science.gov (United States)

    Etoh, Mitsuhiko; Jinnin, Masatoshi; Makino, Katsunari; Yamane, Keitaro; Nakayama, Wakana; Aoi, Jun; Honda, Noritoshi; Kajihara, Ikko; Makino, Takamitsu; Fukushima, Satoshi; Ihn, Hironobu

    2013-01-01

    Localized scleroderma (LSc), a connective tissue disorder restricted to the skin and subcutaneous tissue, is characterized by skin fibrosis due to an excessive deposition of types I collagen. The mechanism of such fibrosis is still unknown, but epigenetics may play some roles in the excessive collagen expression. In the present study, we investigated the mechanism of fibrosis seen in LSc, focusing on microRNA (miRNA). miRNA expression was determined by PCR array, real-time PCR, and in situ hybridization. The function of miRNA was evaluated using specific inhibitor. Immunoblotting was performed to detect α2(I) collagen protein. PCR array analysis using tissue miRNA demonstrated miR-7 level was significantly decreased in LSc skin as well as keloid tissue compared to normal skin in vivo. In situ hybridization also showed miR-7 expression in dermal fibroblasts was decreased in LSc dermis. The transfection of specific inhibitor for miR-7 into cultured normal dermal fibroblasts resulted in the up-regulation of α2(I) collagen protein in vitro. Also, the serum levels of miR-7 were significantly decreased in LSc patients compared with healthy controls, but serum miR-29a levels not. Systemic or local down-regulation of miR-7 may contribute to the pathogenesis of LSc via the overexpression of α2(I) collagen, and serum miR-7 may be useful as a disease marker. Investigation of the regulatory mechanisms of LSc by miRNA may lead to new treatments by the transfection into the lesional skin of this disease.

  19. Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium

    Science.gov (United States)

    Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har

    2015-01-01

    Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the

  20. SENP1 attenuates the liver fibrosis through down-regulating the expression of SMAD2.

    Science.gov (United States)

    Wu, Linshi; Qiu, Weiqing; Sun, Jianhua; Wang, Jian

    2018-01-01

    To investigate whether SENP1 could play a regulating role in the liver fibrosis process, the Sprague-Dawley (SD) rats were used to establish the liver fibrosis rat models by intraperitoneally injecting with 1 ml/kg of 10% CCl 4 , while the control normal rats were injected with olive oil. Then confirmation experiments to verify the successful establishment of these models were conducted by detecting the cellular and lobular architecture, and liver function indexes using hematoxylin-eosin staining, Masson's trichrome staining and microplate method, respectively. In addition, the expression levels of fibrosis markers including collagen I, collagen III, α-SMA and TGF-β1 were inspected using quantitative real-time PCR (qRT-PCR), as well as SMAD2. Subsequently, the relative mRNA and protein level of SENP1 was also determined via qRT-PCR and western blot analysis. Next, the HSC-T6 cells of SENP1 knock-down were constructed and used to test the relative protein expression levels of α-SMA and SMAD2 in these cells. The results of hematoxylin-eosin staining, Masson's trichrome staining and microplate method turned out that the rat liver fibrosis models were constructed successfully, which was further confirmed by the increased expression of collagen I, collagen III, α-SMA and TGF-β1 in mRNA and protein level, as well as SMAD2. Then the expression of SENP1 was overexpressed in the rat liver fibrosis models induced by CCl 4 and the TGF-β1 treatment could increase the protein expression level of collagen I, collagen III and α-SMA. Lastly, the SENP1 knockdown HSC-T6 cells were successfully constructed, while the silence of SENP1 down-regulated the protein expression of α-SMA and SMAD2. In conclusion, this study provided a new regulation mechanism about the liver fibrosis process. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Thymidylate synthase protein expression levels remain stable during paclitaxel and carboplatin treatment in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Thymidylate synthase (TS) is a potential predictive marker for efficacy of treatment with pemetrexed. The current study aimed at investigating whether TS expression changes during non-pemetrexed chemotherapy of non-small cell lung cancer (NSCLC), thus making rebiopsy necessary for dec...

  2. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail.In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought.RDR1 is regulated by a much broader range of phytohormones than previously thought, indicating that it plays roles beyond those already suggested in virus

  3. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  4. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma.

    Science.gov (United States)

    Morelatto, Rosana; Itoiz, María-Elina; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-05-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes.

  5. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  6. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  7. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  8. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  9. Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7.

    Science.gov (United States)

    Karpov, V; Ilarraza, R; Catalli, A; Kulka, M

    2018-01-01

    Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.

  10. Alpha-tryptophan synthase of Isatis tinctoria: gene cloning and expression.

    Science.gov (United States)

    Salvini, M; Boccardi, T M; Sani, E; Bernardi, R; Tozzi, S; Pugliesi, C; Durante, M

    2008-07-01

    Indole producing reaction is a crux in the regulation of metabolite flow through the pathways and the coordination of primary and secondary product biosynthesis in plants. Indole is yielded transiently from indole-3-glycerol phosphate and immediately condensed with serine to give tryptophan, by the enzyme tryptophan synthase (TS). There is evidence that plant TS, like the bacterial complex, functions as an alpha beta heteromer. In few species, e.g. maize, are known enzymes, related with the TS alpha-subunit (TSA), able to catalyse reaction producing indole, which is free to enter the secondary metabolite pathways. In this contest, we searched for TSA and TSA related genes in Isatis tinctoria, a species producing the natural blue dye indigo. The It-TSA cDNA and the full-length exons/introns genomic region were isolated. The phylogenetic analysis indicates that It-TSA is more closely related to Arabidopsis thaliana At-T14E10.210 TSA (95.7% identity at the amino acid level) with respect to A. thaliana At-T10P11.11 TSA1-like (63%), Zea mays indole-3-glycerol phosphate lyase (54%), Z. mays TSA (53%), and Z. mays indole synthase (50%). The It-TSA cDNA was also able to complement an Escherichia coli trpA mutant. To examine the involvement of It-TSA in the biosynthesis of secondary metabolism compounds, It-TSA expression was tested in seedling grown under different light conditions. Semi-quantitative RT-PCR showed an increase in the steady-state level of It-TSA mRNA, paralleled by an increase of indigo and its precursor isatan B. Our results appear to indicate an involvement for It-TSA in indigo precursor synthesis and/or tryptophan biosynthesis.

  11. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  12. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  13. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  14. Effects of cavernous nerve reconstruction on expression of nitric oxide synthase isoforms in rats.

    Science.gov (United States)

    Schlenker, Boris; Matiasek, Kaspar; Saur, Dieter; Gratzke, Christian; Bauer, Ricarda M; Herouy, Yared; Arndt, Christian; Blesch, Armin; Hartung, Rudolf; Stief, Christian G; Weidner, Norbert; May, Florian

    2010-12-01

    To evaluate the expression of nitric oxide synthase (NOS) isoforms after various reconstruction techniques in rats, to improve the understanding of neuronal repair mechanisms after radical prostatectomy, as Schwann cell-seeded guidance tubes have been shown to promote cavernous nerve regeneration, and glial cell-line-derived neurotrophic factor (GDNF)-overexpressing Schwann cells enhance nerve regenerative capacity. Segments (5 mm) of the cavernous nerve were excised bilaterally, followed by immediate bilateral microsurgical reconstruction. In four rats per group, the eight nerves were reconstructed by autologous nerve grafting (A), interposition of Schwann cell-seeded silicon tubes (B), or silicon tubes seeded with GDNF-hypersecreting Schwann cells (C). Further rats were either sham-operated (D) or had nerve excision without repair (E). Erectile function was evaluated after 6 weeks by re-laparotomy, electrical nerve stimulation and morphological evaluation of reconstructed nerves. NOS isoform mRNA expression was analysed by reverse transcription-polymerase chain reaction in tissue specimens taken from the corpora cavernosa. GDNF-transduced Schwann cell grafts restored erectile function better than untransduced Schwann cell and autologous nerve grafts (88% vs 75% vs 38%; not significant). Tissue specimens in group C had the highest expression of neuronal NOS mRNA in relation to the neuronal marker PGP9.5 among all treatment groups (not significant). Compared to nerve grafts (A) and negative controls (E) nNOS/PGP9.5 expression was significantly higher (P Schwann cell grafts (P < 0.05). Restoration of erectile function is paralleled by an increase of neuronal NOS expression in rats. Further experiments will determine the physiological role of neuronal NOS in erectile nerve repair processes. © 2010 THE AUTHORS. JOURNAL COMPILATION © 2010 BJU INTERNATIONAL.

  15. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  16. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  17. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  19. Cloning and expression analysis of two dehydrodolichyl diphosphate synthase genes from Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Lin-Hui Gao

    2018-01-01

    Full Text Available Objective: To clone and investigate two dehydrodolichyl diphosphate synthase genes of Tripterygium wilfordii by bioinformatics and tissue expression analysis. Materials and Methods: According to the T. wifordii transcriptome database, specific primers were designed to clone the TwDHDDS1 and TwDHDDS2 genes via PCR. Based on the cloned sequences, protein structure prediction, multiple sequence alignment and phylogenetic tree construction were performed. The expression levels of the genes in different tissues of T. wilfordii were measured by real-time quantitative PCR. Results: The TwDHDDS1 gene encompassed a 873 bp open reading frame (ORF and encoded a protein of 290 amino acids. The calculated molecular weight of the translated protein was about 33.46 kDa, and the theoretical isoelectric point (pI was 8.67. The TwDHDDS2 encompassed a 768 bp ORF, encoding a protein of 255 amino acids with a calculated molecular weight of about 21.19 kDa, and a theoretical isoelectric point (pI of 7.72. Plant tissue expression analysis indicated that TwDHDDS1 and TwDHDDS2 both have relatively ubiquitous expression in all sampled organ tissues, but showed the highest transcription levels in the stems. Conclusions: The results of this study provide a basis for further functional studies of TwDHDDS1 and TwDHDDS2. Most importantly, these genes are promising genetic targets for the regulation of the biosynthetic pathways of important bioactive terpenoids such as triptolide.

  20. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  1. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients.

    Science.gov (United States)

    Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; De Lena, M; Allegra, C J; Johnston, P G

    2000-02-01

    The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated-5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53- cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively; P < 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P < 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34-1.01; two-sided P < 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85-1.26; two-sided P < 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy.

  2. Cytidine triphosphate synthase activity and mRNA expression in normal human blood cells

    NARCIS (Netherlands)

    Verschuur, A. C.; van Gennip, A. H.; Muller, E. J.; Voûte, P. A.; Vreken, P.; van Kuilenburg, A. B.

    1999-01-01

    Cytidine triphosphate (CTP) synthase is one of the key enzymes in pyrimidine nucleotide anabolic pathways. The activity of this enzyme is elevated in various malignancies including acute lymphocytic leukemia (ALL). In this study we investigated the activity of CTP synthase in various human blood

  3. miR-30a suppresses osteosarcoma proliferation and metastasis by downregulating MEF2D expression

    Directory of Open Access Journals (Sweden)

    Du L

    2018-04-01

    Full Text Available Liuxue Du,* Tianpei Chen,* Kai Zhao,* Dong Yang Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China *These authors contributed equally to this work Abstract: Many studies have revealed that microRNAs (miRNAs play crucial roles in cancer development and progression. miRNA-30a (miR-30a, as a member of the miR-30 family, has been implicated in various cancers. However, the role of miR-30a in osteosarcoma remains unclear. In the current study, we found that miR-30a was significantly downregulated in osteosarcoma tissues and cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR. In addition, miR-30a could inhibit cancer cell growth, migration, and invasion in vitro. Furthermore, bioinformatics of miRNA target prediction and luciferase reporter assay indicated that MEF2D is a direct target of miR-30a. miR-30a was able to reduce the mRNA and protein expression of MEF2D as assessed using RT-PCR and Western blotting assay. Interestingly, overexpression of MEF2D partially reversed the miR-30a-reduced cell proliferation, migration, and invasion of osteosarcoma cell, indicating that miR-30a suppresses osteosarcoma cell proliferation and metastasis partially mediated by inhibition of MEF2D. Overall, our study demonstrated that miR-30a functions as a tumor suppressor by targeting MEF2D in osteosarcoma, providing a promising prognostic biomarker and a therapeutic strategy for osteosarcoma. Keywords: miR-30a, MEF2D, osteosarcoma, proliferation, invasion, migration

  4. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  5. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  6. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer

    Science.gov (United States)

    Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M

    2014-01-01

    Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714

  7. Expression of Cyclic GMP-AMP Synthase in Patients With Systemic Lupus Erythematosus.

    Science.gov (United States)

    An, Jie; Durcan, Laura; Karr, Reynold M; Briggs, Tracy A; Rice, Gillian I; Teal, Thomas H; Woodward, Joshua J; Elkon, Keith B

    2017-04-01

    Type I interferon (IFN) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and interferonopathies such as Aicardi-Goutières syndrome. A recently discovered DNA-activated type I IFN pathway, cyclic GMP-AMP synthase (cGAS), has been linked to Aicardi-Goutières syndrome and mouse models of lupus. The aim of this study was to determine whether the cGAS pathway contributes to type I IFN production in patients with SLE. SLE disease activity was measured by the Safety of Estrogens in Lupus Erythematosus National Assessment version of the Systemic Lupus Erythematosus Disease Activity Index. Expression of messenger RNA for cGAS and IFN-stimulated genes (ISGs) was determined by quantitative polymerase chain reaction analysis. Cyclic GMP-AMP (cGAMP) levels were examined by multiple reaction monitoring with ultra-performance liquid chromatography tandem mass spectrometry. Expression of cGAS in peripheral blood mononuclear cells (PBMCs) was significantly higher in SLE patients than in normal controls (n = 51 and n = 20 respectively; P < 0.01). There was a positive correlation between cGAS expression and the IFN score (P < 0.001). The expression of cGAS in PBMCs showed a dose response to type I IFN stimulation in vitro, consistent with it being an ISG. Targeted measurement of cGAMP by tandem mass spectrometry detected cGAMP in 15% of the SLE patients (7 of 48) but none of the normal (0 of 19) or rheumatoid arthritis (0 of 22) controls. Disease activity was higher in SLE patients with cGAMP versus those without cGAMP. Increased cGAS expression and cGAMP in a proportion of SLE patients indicates that the cGAS pathway should be considered as a contributor to type I IFN production. Whereas higher cGAS expression may be a consequence of exposure to type I IFN, detection of cGAMP in patients with increased disease activity indicates potential involvement of this pathway in disease expression. © 2016, American College of Rheumatology.

  8. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei

    Directory of Open Access Journals (Sweden)

    Yue Ming

    2009-06-01

    Full Text Available Abstract Background Trehalose synthase (TreS which converts maltose to trehalose is considered to be a potential biocatalyst for trehalose production. This enzymatic process has the advantage of simple reaction and employs an inexpensive substrate. Therefore, new TreS producing bacteria with suitable enzyme properties are expected to be isolated from extreme environment. Results Six TreS producing strains were isolated from a specimen obtained from soil of the Tibetan Plateau using degenerate PCR. A novel treS gene from Enterobacter hormaechei was amplified using thermal asymmetric interlaced PCR. The gene contained a 1626 bp open reading frame encoding 541 amino acids. The gene was expressed in Escherichia coli, and the recombinant TreS was purified and characterized. The purified TreS had a molecular mass of 65 kDa and an activity of 18.5 U/mg. The optimum temperature and pH for the converting reaction were 37°C and 6, respectively. Hg2+, Zn2+, Cu2+and SDS inhibited the enzyme activity at different levels whereas Mn2+ showed an enhancing effect by 10%. Conclusion In this study, several TreS producing strains were screened from a source of soil bacteria. The characterization of the recombinant TreS of Enterobacter hormaechei suggested its potential application. Consequently, a strategy for isolation of TreS producing strains and cloning of novel treS genes from natural sources was demonstrated.

  9. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Hershey, H P; Schwartz, L J; Gale, J P; Abell, L M

    1999-07-01

    Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.

  10. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  11. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine.

    Science.gov (United States)

    Song, Shikui; Hou, Wensheng; Godo, Itamar; Wu, Cunxiang; Yu, Yang; Matityahu, Ifat; Hacham, Yael; Sun, Shi; Han, Tianfu; Amir, Rachel

    2013-04-01

    Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.

  12. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA

    International Nuclear Information System (INIS)

    Tsai, Shihfeng; Bishop, D.F.; Desnick, R.J.

    1988-01-01

    Uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for conversion of the linear tetrapyrrole, hydroxymethylbilane, to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-synthase is the enzymatic defect in the autosomal recessive disorder congenital erythropoietic porphyria. To facilitate the isolation of a full-length cDNA for human URO-synthase, the human erythrocyte enzyme was purified to homogeneity and 81 nonoverlapping amino acids were determined by microsequencing the N terminus and four tryptic peptides. Two synthetic oligonucleotide mixtures were used to screen 1.2 x 10 6 recombinants from a human adult liver cDNA library. Eight clones were positive with both oligonucleotide mixtures. Of these, dideoxy sequencing of the 1.3 kilobase insert from clone pUROS-2 revealed 5' and 3' untranslated sequences of 196 and 284 base pairs, respectively, and an open reading frame of 798 base pairs encoding a protein of 265 amino acids with a predicted molecular mass of 28,607 Da. The isolation and expression of this full-length cDNA for human URO-synthase should facilitate studies of the structure, organization, and chromosomal localization of this heme biosynthetic gene as well as the characterization of the molecular lesions causing congenital erythropoietic porphyria

  13. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  15. The clinical significance of thymidylate synthase expression in human papillomavirus-related oropharyngeal squamous carcinoma

    International Nuclear Information System (INIS)

    Kato, Hisayuki; Yui, Takehiro; Okada, Tatsuyoshi; Urano, Makoto; Sakurai, Kazuo; Naito, Kensei; Yamamoto, Naoki

    2012-01-01

    The focus of human papilloma virus (HPV), particulary HPV 16 is on the role of carcinogenic and prognostic factors on oropharyngeal squamous carcinoma (OSCC). However, it remains unclear why patients with HPV-positive tumors have better outcomes than those with HPV-negative tumors. Thymidylate synthase (TS) is one of the initial key enzymes in the 5-fluouracil (5-FU) metabolic pathway. Clinical studies showed that intratumoural TS level was related to the response to 5-FU-based chemotherapy in patients with several types of cancer such as gastroenterological and head and neck cancers. We investigated the prevalence of HPV infection and TS expression in the patients with OSCC and evaluated the prognostic implications according to the HPV status and TS expression. We evaluated for high-risk HPV types (HPV 16, 18, 31, 33, 51, 52, 58) using a real-time polymerase chain reaction (RT-PCR) assay on archival biopsies from 54 patients with OSCC. Immunohistochemical assessments for TS were also performed. HPV was positive in 22 (40.7%) of 54 samples. Of these positive cases, 21 (95%) carried HPV 16 and only 1 (5%) HPV58 sequences. TS was overexpressed in 25 (46.3%) of 54 samples. Of these, 19 (76.0%) had an HPV-negative status and 21 (84.0%) were heavy smokers. TS overexpression was associated with the patients with HPV-negative tumors (P=0.02) and heavy smokers (p=0.012). Univariate analysis revealed that HPV positive status (77.3% vs. 29.0%; p=0.006) significantly improved overall survival. Conversely, no remarkable prognostic difference was observed on immunohistochemical analysis of TS expression. A multivariate analysis using Cox's proportional hazard model showed that early T stage (T1-2), early N stage (N0-1), and positive HPV status were significantly independent predictors for superior overall survival. Our studies suggested that positive HPV status was most strongly associated with a favorable prognosis in the patients with OSCC. TS expression has an unusual aspect

  16. Expression of an (E-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation

    Directory of Open Access Journals (Sweden)

    Xiudao Yu

    2013-10-01

    Full Text Available Aphids are major agricultural pests that cause significant yield losses in crop plants each year. (E-β-farnesene (EβF is the main or only component of an alarm pheromone involved in chemical communication within aphid species and particularly in the avoidance of predation. EβF also occurs in the essential oil of some plant species, and is catalyzed by EβF synthase. By using oligonucleotide primers designed from the known sequence of an EβF synthase gene from black peppermint (Mentha × piperita, two cDNA sequences, MaβFS1 and MaβFS2, were isolated from Asian peppermint (Mentha asiatica. Expression pattern analysis showed that the MaβFS1 gene exhibited higher expression in flowers than in roots, stems and leaves at the transcriptional level. Overexpression of MaβFS1 in tobacco plants resulted in emission of pure EβF ranging from 2.62 to 4.85 ng d− 1 g− 1 of fresh tissue. Tritrophic interactions involving peach aphids (Myzus persicae, and predatory lacewing (Chrysopa septempunctata larvae demonstrated that transgenic tobacco expressing MaβFS1 had lower aphid infestation. This result suggested that the EβF synthase gene from Asian peppermint could be a good candidate for genetic engineering of agriculturally important crop plants.

  17. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2 expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.

  18. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  19. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

    Directory of Open Access Journals (Sweden)

    Mariela V Catone

    Full Text Available Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB, a short chain length polyhydroxyalkanoate (sclPHA infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA. All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC in comparison with the mclPHA core genome genes (phaC1 and phaC2 indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.

  20. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Natascia [IRCSS SDN, Naples 80131 (Italy); Laudati, Giusy [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Anzilotti, Serenella [IRCSS SDN, Naples 80131 (Italy); Secondo, Agnese [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Montuori, Paolo [Department of Public Health, ‘Federico II’ University of Naples, Naples (Italy); Di Renzo, Gianfranco [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Canzoniero, Lorella M.T. [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy); Formisano, Luigi, E-mail: cformisa@unisannio.it [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy)

    2015-11-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  1. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    International Nuclear Information System (INIS)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2015-01-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  2. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    DEFF Research Database (Denmark)

    Castrop, H; Kammerl, M; Mann, Birgitte

    2000-01-01

    Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) expression in the kidney are localized to the cortical thick ascending limb of the loop of Henle (cTALH), including the macula region, and increase after salt restriction. Because of the similar localization and regulation of n...... excretion. These findings suggest that under these conditions the control of nNOS and COX-2 gene expression in the macula densa regions of the kidney cortex are not dependent on each other....

  3. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth in Mice.

    Science.gov (United States)

    Li, Bo; Chen, Shuqiang; Tang, Na; Xiao, Xifeng; Huang, Jianlei; Jiang, Feng; Huang, Xiuying; Sun, Fangzhen; Wang, Xiaohong

    2016-02-01

    Alteration of intrauterine growth trajectory is linked to metabolic diseases in adulthood. In mammalian and, specifically, human species, pregnancies through assisted reproductive technology (ART) are associated with changes in intrauterine growth trajectory. However, it is still unclear how ART alters intrauterine growth trajectory, especially reduced fetal growth in early to midgestation. In this study, using a mouse model, it was found that ART procedures reduce fetal and placental growth at Embryonic Day 10.5. Furthermore, ART leads to decreased methylation levels at H19, KvDMR1, and Snrpn imprinting control regions in the placentae, instead of fetuses. Furthermore, in the placenta, ART downregulated a majority of parentally expressed imprinted genes, which enhance fetal growth, whereas it upregulated a majority of maternally expressed genes which repress fetal growth. Additionally, the expression of genes that regulate placental development was also affected by ART. ART also downregulated a majority of placental nutrient transporters. Disruption of genomic imprinting and abnormal expression of developmentally and functionally relevant genes in placenta may influence the placental development and function, which affect fetal growth and reprogramming. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  5. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells.

    Science.gov (United States)

    Chen, Honglang; Song, Lijun; Li, Guixian; Chen, Wenfeng; Zhao, Shumin; Zhou, Ruoxia; Shi, Xiaoying; Peng, Zhenying; Zhao, Wenchang

    2017-06-01

    Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na + -coupled transport mechanisms at the luminal membrane, including Na + /H + exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca 2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca 2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.

  6. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis

    International Nuclear Information System (INIS)

    Midha, Shuchi; Mishra, Rajeev; Aziz, M.A.; Sharma, Meenakshi; Mishra, Ashish; Khandelwal, Puneet; Bhatnagar, Rakesh

    2005-01-01

    Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with L-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of L-arginine, N ω -hydroxy-L-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein

  7. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    Science.gov (United States)

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of

  8. Expression, purification and preliminary crystallographic analysis of sucrose phosphate synthase (SPS) from Halothermothrix orenii

    International Nuclear Information System (INIS)

    Huynh, Frederick; Tan, Tien-Chye; Swaminathan, Kunchithapadam; Patel, Bharat K. C.

    2004-01-01

    The first crystallographic study of a sucrose phosphate synthase from H. orenii, an organism that is both thermophilic and halophilic, is reported. The protein crystal diffracts X-rays to 3.01 Å. This is the first report of the crystallization of a sucrose phosphate synthase (SPS; EC 2.4.1.14). It also constitutes the first study of a sucrose phosphate synthase from a non-photosynthetic thermohalophilic anaerobic bacterium, Halothermothrix orenii. The purified recombinant spsA protein has been crystallized in the monoclinic space group C2, with unit-cell parameters a = 154.2, b = 47.9, c = 72.3 Å, β = 103.16°, using the hanging-drop vapour-diffusion method. The crystal diffracts X-rays to a resolution limit of 3.01 Å. Heavy-metal and halide-soaking trials are currently in progress to solve the structure

  9. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects.

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    Full Text Available Recent studies suggest that alterations in expression of genes, including those which regulate neural and structural plasticity, may be crucial in the pathogenesis of depression. MicroRNAs (miRNAs are newly discovered regulators of gene expression that have recently been implicated in a variety of human diseases, including neuropsychiatric diseases.The present study was undertaken to examine whether the miRNA network is altered in the brain of depressed suicide subjects. Expression of miRNAs was measured in prefrontal cortex (Brodmann Area 9 of antidepressant-free depressed suicide (n = 18 and well-matched non-psychiatric control subjects (n = 17 using multiplex RT-PCR plates. We found that overall miRNA expression was significantly and globally down-regulated in prefrontal cortex of depressed suicide subjects. Using individual tests of statistical significance, 21 miRNAs were significantly decreased at p = 0.05 or better. Many of the down-regulated miRNAs were encoded at nearby chromosomal loci, shared motifs within the 5'-seeds, and shared putative mRNA targets, several of which have been implicated in depression. In addition, a set of 29 miRNAs, whose expression was not pairwise correlated in the normal controls, showed a high degree of co-regulation across individuals in the depressed suicide group.The findings show widespread changes in miRNA expression that are likely to participate in pathogenesis of major depression and/or suicide. Further studies are needed to identify whether the miRNA changes lead to altered expression of prefrontal cortex mRNAs, either directly (by acting as miRNA targets or indirectly (e.g., by affecting transcription factors.

  10. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    International Nuclear Information System (INIS)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin α, karyopherin β, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  11. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  12. Geranylgeranyl diphosphate synthases from Scoparia dulcis and Croton sublyratus. cDNA cloning, functional expression, and conversion to a farnesyl diphosphate synthase.

    Science.gov (United States)

    Kojima, N; Sitthithaworn, W; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Sankaw, U

    2000-07-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene producing plants, Scoparia dulcis and Croton sublyratus, were isolated using the homology-based polymerase chain reaction method. Both cloned genes showed high amino acid sequence homology (60-70%) to other plant GGPPSs and contained highly conserved aspartate-rich motifs. The obtained clones were functionally expressed in Escherichia coli and showed sufficient GGPPS activity to catalyze the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate to form geranylgeranyl diphosphate. To investigate the factor determining the product chain length of plant GGPPSs, S. dulcis GGPPS mutants in which either the small amino acids at the fourth and fifth positions before the first aspartate-rich motif (FARM) were replaced with aromatic amino acids or in which two additional amino acids in FARM were deleted were constructed. Both mutants behaved like FPPS-like enzymes and almost exclusively produced FPP when dimethylallyl diphosphate was used as a primer substrate, and failed to accept FPP as a primer substrate. These results indicate that both small amino acids at the fourth and fifth positions before FARM and the amino acid insertion in FARM play essential roles in product length determination in plant GGPPSs.

  13. Nitric oxide synthase expression and apoptotic cell death in brains of AIDS and AIDS dementia patients

    NARCIS (Netherlands)

    Vincent, V. A.; de Groot, C. J.; Lucassen, P. J.; Portegies, P.; Troost, D.; Tilders, F. J.; van Dam, A. M.

    1999-01-01

    To determine the occurrence and cellular localization of inducible nitric oxide synthase (iNOS), NOS activity and its association with cell death in brains of AIDS and AIDS dementia complex (ADC) patients. Post-mortem cerebral cortex tissue of eight AIDS patients, eight ADC patients and eight

  14. An In Planta-Expressed Polyketide Synthase Produces (R)-Mellein in the Wheat Pathogen Parastagonospora nodorum

    Science.gov (United States)

    Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.

    2014-01-01

    Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302

  15. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Gallego-Giraldo, Lina; Jikumaru, Yusuke; Kamiya, Yuji; Tang, Yuhong; Dixon, Richard A

    2011-05-01

    Downregulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) in alfalfa (Medicago sativa) reduces lignin levels and improves forage quality and saccharification efficiency for bioethanol production. However, the plants have reduced stature. It was previously reported that HCT-down-regulated Arabidopsis have impaired auxin transport, but this has recently been disproved. • To address the basis for the phenotypes of lignin-modified alfalfa, we measured auxin transport, profiled a range of metabolites including flavonoids and hormones, and performed in depth transcriptome analyses. • Auxin transport is unaffected in HCT antisense alfalfa despite increased flavonoid biosynthesis. The plants show increased cytokinin and reduced auxin levels, and gibberellin levels and sensitivity are both reduced. Levels of salicylic, jasmonic and abscisic acids are elevated, associated with massive upregulation of pathogenesis and abiotic stress-related genes and enhanced tolerance to fungal infection and drought. • We suggest that HCT downregulated alfalfa plants exhibit constitutive activation of defense responses, triggered by release of bioactive cell wall fragments and production of hydrogen peroxide as a result of impaired secondary cell wall integrity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  17. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  18. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  19. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage

    Directory of Open Access Journals (Sweden)

    Babban Jee

    2017-07-01

    Full Text Available Mycobacterium tuberculosis (MTB adopts a special survival strategy to overcome the killing mechanism(s of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3 of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ and recombinant murine interleukin-10 (rmIL-10 on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.

  20. Downregulation of CD147 expression alters cytoskeleton architecture and inhibits gelatinase production and SAPK pathway in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Weng Yuan-Yuan

    2008-10-01

    Full Text Available Abstract Background CD147 plays a critical role in the invasive and metastatic activity of hepatocellular carcinoma (HCC cells by stimulating the surrounding fibroblasts to express matrix metalloproteinases (MMPs. Tumor cells adhesion to extracellular matrix (ECM proteins is the first step to the tumor metastasis. MMPs degrade the ECM to promote tumor metastasis. The aim of this study is to investigate the effects of small interfering RNA (siRNA against CD147 (si-CD147 on hepatocellular carcinoma cells' (SMMC-7721 architecture and functions. Methods Flow cytometry and western blot assays were employed to detect the transfection efficiency of si-CD147. Confocal microscopy was used to determine the effects of si-CD147 on SMMC-7721 cells' cytoskeleton. Invasion assay, gelatin zymography and cell adhesion assay were employed to investigate the effects of si-CD147 on SMMC-7721 cells' invasion, gelatinase production and cell adhesive abilities. Western blot assay was utilized to detect the effects of si-CD147 on focal adhesion kinase (FAK, vinculiln and mitogen-activated protein kinase (MAPK expression in SMMC-7721 cells. Results Downregulation of CD147 gene induced the alteration of SMMC-7721 cell cytoskeleton including actin, microtubule and vimentin filaments, and inhibited gelatinase production and expression, cells invasion, FAK and vinculin expression. si-CD147 also blocked SMMC-7721 cells adhesion to collagen IV and phosphorylation level of SAPK/JNKs. SAPK/JNKs inhibitor SP600125 inhibited gelatinase production and expression. Conclusion CD147 is required for normal tumor cell architecture and cell invasion. Downregulation of CD147 affects HCC cell structure and function. Moreover, the alteration of cell behavior may be related to SAPK/JNK Pathway. siRNA against CD147 may be a possible new approach for HCC gene therapy.

  1. Morphine Preconditioning Downregulates MicroRNA-134 Expression Against Oxygen-Glucose Deprivation Injuries in Cultured Neurons of Mice.

    Science.gov (United States)

    Meng, Fanjun; Li, Yan; Chi, Wenying; Li, Junfa

    2016-07-01

    Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.

  2. [Expression of enterotoxigenic Bacteroides fragilis and polyketide synthase gene-expressing Escherichia coli in colorectal adenoma patients].

    Science.gov (United States)

    Xie, L L; Wu, N; Zhu, Y M; Qiu, X Y; Chen, G D; Zhang, L M; Liu, Y L

    2016-03-29

    To investigate the distribution of various bacteria in adenoma tissue of colorectal adenoma (T/CRA), normal colonic mucosa tissue adjacent to the adenoma (N/CRA), and healthy colonic mucosa tissue (N/H) by comparing the number of total bacteria, Bacteroides fragilis (BF), enterotoxigenic Bacteroides fragilis (ETBF), polyketide synthase (pks) gene-expressing Escherichia coli(E.coli)(pks(+) E. coli)among the above 3 types of tissues. A total of 36 patients diagnosed with colorectal adenoma by colonoscopy and pathology in Department of Gastroenterology, Peking University People's Hospital from September 2011 to September 2013 were selected into this study. T/CRA and N/CRA tissues from the 36 patients and N/H tissues from 18 healthy controls were collected for DNA extraction. The number of total bacteria, BF, ETBF, pks(+) E. coli was detected by quantitative real time PCR, and their correlation with colorectal adenoma was analyzed. (1) The number of total bacteria decreased gradually from N/H, N/CRA, to T/CRA, with the median values being 3.18×10(8,) 1.57×10(8,) and 7.91×10(7) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the median values being 6.03×10(5,) 4.28×10(4,) and 5.48×10(3) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the relative expression being 1.73±0.30, 6.15±1.52, and 8.54±1.80, respectively. Significant difference was found between the T/CRA and N/H tissue (P=0.003), but not between any other two groups. (4) The expression of clbB in pks(+) E.coli was highest in T/CRA colonic tissue (2.96±0.28), followed by the N/CRA (2.79±0.19) and N/H tissue (1.06±0.08). Significant difference was found between T/CRA and N/H tissues, as well as between N/CRA and N/H tissues (both PCRA and N/CRA tissues. The number of total bacteria is markedly reduced in the colonic mucosa of CRA patients

  3. Niclosamide, an oral antihelmintic drug, exhibits antimetastatic activity in hepatocellular carcinoma cells through downregulating twist-mediated CD10 expression.

    Science.gov (United States)

    Chien, Ming-Hsien; Ho, Yung-Chuan; Yang, Shun-Fa; Yang, Yi-Chieh; Lai, Szu-Yu; Chen, Wan-Shen; Chen, Ming-Jenn; Yeh, Chao-Bin

    2018-02-26

    Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, especially, in eastern Asia, and its prognosis is poor once metastasis occurs. Niclosamide, a US Food and Drug Administration-approved antihelmintic drug, was shown to inhibit the growth of various cancers including HCC, but the effect of niclosamide on cell motility and the underlying mechanism have not yet been completely defined. The present study demonstrated that niclosamide, at 0-40 nM, concentration-dependently inhibited wound closure and the migratory/invasive capacities of human Huh7 and SK-Hep-1 HCC cells without exhibiting cytotoxicity. A protease array analysis showed that CD10 was dramatically downregulated in Huh7 cells after niclosamide treatment. Western blot and flow cytometric assays further demonstrated that CD10 expression was concentration-dependently downregulated in Huh7 and SK-Hep-1 cells after niclosamide treatment. Mechanistic investigations found that niclosamide suppressed Twist-mediated CD10 transactivation. Moreover, knockdown of CD10 expression by CD10 small interfering RNA in HCC cells suppressed cell migratory/invasive abilities and overexpression of CD10 relieved the migration inhibition induced by niclosamide. Taken together, our results indicated that niclosamide could be a potential agent for inhibiting metastasis of HCC, and CD10 is an important target of niclosamide for suppressing the motility of HCC cells. © 2018 Wiley Periodicals, Inc.

  4. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS...... increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion...

  5. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  6. Canine placental prostaglandin E2 synthase: expression, localization, and biological functions in providing substrates for prepartum PGF2alpha synthesis.

    Science.gov (United States)

    Gram, Aykut; Fox, Barbara; Büchler, Urs; Boos, Alois; Hoffmann, Bernd; Kowalewski, Mariusz P

    2014-12-01

    The prepartum output of PGF2alpha in the bitch is associated with increased placental PGE2-synthase (PTGES) mRNA levels. Contrasting with this is a decreased expression of PGF2alpha-synthase (PGFS/AKR1C3) in uteroplacental compartments during prepartum luteolysis, suggesting an involvement of alternative synthetic pathways in PGF2alpha synthesis, for example, conversion of PGE2 to PGF2alpha. However, because the expression and possible functions of the respective PTGES proteins remained unknown, no further conclusion could be drawn. Therefore, a canine-specific PTGES antibody was generated and used to investigate the expression, cellular localization, and biochemical activities of canine uteroplacental PTGES throughout pregnancy and at prepartum luteolysis. Additionally, the biochemical activities of these tissues involved in the conversion of PGE2 to PGF2alpha were investigated. The endometrial PTGES was localized in the uterine surface epithelium at preimplantation and in superficial and deep uterine glands, endothelial cells, and myometrium throughout pregnancy and at parturition. Placental signals were mostly in the trophoblast. The biochemical properties of recombinant PTGES protein were confirmed. Additionally, expression of two PGE2-receptors, PTGER2/EP2 and PTGER4/EP4, revealed their decreasing expression during luteolysis. In contrast, the uteroplacental expression of prostaglandin transporter (PGT) was strongly elevated prior to parturition. These localization patterns resembled that of PTGES. The increased expression of PTGES and PGT at parturition, together with the accompanying decreased levels of PGE2-receptors and the capability of canine uterine and placental homogenates to take part in the conversion of PGE2 to PGF2alpha, as found in this study, suggest that PGE2 could be used locally as a substrate for prepartum PGF2alpha synthesis in the dog. © 2014 by the Society for the Study of Reproduction, Inc.

  7. Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    indices of the embryos' health. However, vascularization of the heart and the density of branched vessels were significantly reduced after treatment with diamond nanoparticles and, to a lesser extent, graphite nanoparticles. Application of nanoparticles significantly downregulated gene and protein......Carbon nanoparticles, with their high biocompatibility and low toxicity, have recently been considered for biomedical applications, including antiangiogenic therapy. Critical to normal development and tumor formation, angiogenesis is the process of forming capillary blood vessels from preexisting...... vessels. In the present study, we evaluated the effects of diamond and graphite nanoparticles on the development of chicken embryos, as well as vascularization of the chorioallantoic membrane and heart at the morphological and molecular level. Nanoparticles did not affect either body/heart weight or serum...

  8. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  9. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism?

    Science.gov (United States)

    Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C

    2016-04-01

    The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.

  10. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  11. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  12. Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize

    OpenAIRE

    Zhou, Xiaojin; Li, Suzhen; Zhao, Qianqian; Liu, Xiaoqing; Zhang, Shaojun; Sun, Cheng; Fan, Yunliu; Zhang, Chunyi; Chen, Rumei

    2013-01-01

    Background Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome sequencing of maize was completed, and many gene families ...

  13. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    OpenAIRE

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils.

  14. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    Science.gov (United States)

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530

  15. Chrysanthemum expressing a linalool synthase gene 'smells good', but 'tastes bad' to western flower thrips

    DEFF Research Database (Denmark)

    Yang, Ting; Stoopen, Geert; Thoen, Manus

    2013-01-01

    Herbivore-induced plant volatiles are often involved in direct and indirect plant defence against herbivores. Linalool is a common floral scent and found to be released from leaves by many plants after herbivore attack. In this study, a linalool/nerolidol synthase, FaNES1, was overexpressed...... less preferred by WFT. Considering the common occurrence of linalool and its glycosides in plant tissues, it suggests that plants may balance attractive fragrance with 'poor taste' using the same precursor compound....

  16. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean.

    Science.gov (United States)

    Takagi, Kyoko; Nishizawa, Keito; Hirose, Aya; Kita, Akiko; Ishimoto, Masao

    2011-10-01

    Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α' subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.

  17. Nitric oxide is involved in the down-regulation of sost expression induced by mechanical loading

    NARCIS (Netherlands)

    Delgado-Calle, J.; Riancho, J.A.; Klein-Nulend, J.

    2014-01-01

    Mechanical stimulation reduces sclerostin expression in rodents. However, few data are available about the effect of physical stimuli in human systems. Recently we observed that the demethylating agent AzadC induces SOST expression in bone cells. This allowed us in this study to explore the effect

  18. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  19. Down regulation by a low-zinc diet in gene expression of rat prostatic thymidylate synthase and thymidine kinase

    Directory of Open Access Journals (Sweden)

    Sassa Shuji

    2008-05-01

    Full Text Available Abstract Background Zinc has a wide spectrum of biological activities and its deficiency is related to various abnormalities of cell metabolism. Methods Wistar male rats, at age of 4 weeks, were fed a low-zinc diet for six weeks. The levels of bromodeoxyuridine incorporated into the prostatic DNA and the mRNA expression levels of prostate thymidylate synthase and thymidine kinase were examined. Result The low-zinc diet caused a marked reduction in the body growth and organ weights, resulted in a low hematopoiesis, hypo-albuminemia and hypocholesterolemia. Although there were few differences in plasma biochemical markers, plasma levels of luteinizing hormone and testosterone were reduced by the low-zinc diet. Bromodeoxyuridine-immunoreactive (S-phase cells and mRNA expression levels of thymidylate synthase and thymidine kinase in the prostate cells were markedly affected by the low-zinc diet. Conclusion A low-zinc diet appears to reduce the body growth and organ weights including prostate, causing low plasma levels of luteinizing hormone and testosterone and reduction in prostate DNA replication in growing-rats.

  20. Infection Structure–Specific Expression of β-1,3-Glucan Synthase Is Essential for Pathogenicity of Colletotrichum graminicola and Evasion of β-Glucan–Triggered Immunity in Maize[W

    Science.gov (United States)

    Oliveira-Garcia, Ely; Deising, Holger B.

    2013-01-01

    β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of β-1,3-glucan is unknown. We functionally characterized the β-1,3-glucan synthase gene GLS1 of the maize (Zea mays) pathogen Colletotrichum graminicola, employing RNA interference (RNAi), GLS1 overexpression, live-cell imaging, and aniline blue fluorochrome staining. This hemibiotroph sequentially differentiates a melanized appressorium on the cuticle and biotrophic and necrotrophic hyphae in its host. Massive β-1,3-glucan contents were detected in cell walls of appressoria and necrotrophic hyphae. Unexpectedly, GLS1 expression and β-1,3-glucan contents were drastically reduced during biotrophic development. In appressoria of RNAi strains, downregulation of β-1,3-glucan synthesis increased cell wall elasticity, and the appressoria exploded. While the shape of biotrophic hyphae was unaffected in RNAi strains, necrotrophic hyphae showed severe distortions. Constitutive expression of GLS1 led to exposure of β-1,3-glucan on biotrophic hyphae, massive induction of broad-spectrum defense responses, and significantly reduced disease symptom severity. Thus, while β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and fast-growing necrotrophic hyphae, its rigorous downregulation during biotrophic development represents a strategy for evading β-glucan–triggered immunity. PMID:23898035

  1. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients.

    Science.gov (United States)

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.

  2. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    Science.gov (United States)

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  3. Optimization of the expression of phaC2 encoding poly (3-hydroxyalkanoate synthase from Pseudomonas aeruginosa PTCC1310 in Fad B deleted Escherichia coli

    Directory of Open Access Journals (Sweden)

    Daryoush Abedi

    2016-01-01

    Conclusion: We obtained functional expression of the phaC2 gene and investigated various conditions that could influence the expression of protein to optimize production of PHA synthase enzymes. This would allow us to study PHA production in large quantities.

  4. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  5. Serum amyloid P down-regulates CCL-1 expression, and inhibits ...

    African Journals Online (AJOL)

    Differentially expressed proteins in SAP-Tg and C57BL/6 serum were analyzed, and further determined by enzymelinked immunosorbent assay (ELISA) and ... SAP recombinant protein, ELISA results showed that CCL-1 secretion significantly ...

  6. Down-regulation of GST and CAT gene expression by methanolic ...

    African Journals Online (AJOL)

    DELL

    2013-07-03

    Jul 3, 2013 ... methanolic extract of Nigella sativa seed in human peripheral blood ... expression in human PBMCs. Key words: ... oxidative stress (Sen et al., 2010; Yoruk et al., 2010). NS .... Antioxidant activities of black cumin. (Nigella ...

  7. Aquaporin-6 Expression in the Cochlear Sensory Epithelium Is Downregulated by Salicylates

    Directory of Open Access Journals (Sweden)

    Paola Perin

    2010-01-01

    Full Text Available We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.

  8. Aquaporin-6 expression in the cochlear sensory epithelium is downregulated by salicylates.

    Science.gov (United States)

    Perin, Paola; Tritto, Simona; Botta, Laura; Fontana, Jacopo Maria; Gastaldi, Giulia; Masetto, Sergio; Tosco, Marisa; Laforenza, Umberto

    2010-01-01

    We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.

  9. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  10. Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells.

    Science.gov (United States)

    Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing

    2014-06-01

    Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Downregulation of TGF-β Receptor-2 Expression and Signaling through Inhibition of Na/K-ATPase.

    Directory of Open Access Journals (Sweden)

    Jennifer La

    Full Text Available Transforming growth factor-beta (TGF-β is a multi-functional cytokine implicated in the control of cell growth and differentiation. TGF-β signals through a complex of TGF-β receptors 1 and 2 (TGFβR1 and TGFβR2 that phosphorylate and activate Smad2/3 transcription factors driving transcription of the Smad-target genes. The Na+/K+-ATPase is an integral plasma membrane protein critical for maintaining the electro-chemical gradient of Na+ and K+ in the cell. We found that inhibition of the Na+/K+ ATPase by ouabain results in a dramatic decrease in the expression of TGFβR2 in human lung fibrobalsts (HLF at the mRNA and protein levels. This was accompanied by inhibition of TGF-β-induced Smad phosphorylation and the expression of TGF-β target genes, such as fibronectin and smooth muscle alpha-actin. Inhibition of Na+/K+ ATPase by an alternative approach (removal of extracellular potassium had a similar effect in HLF. Finally, treatment of lung alveolar epithelial cells (A549 with ouabain also resulted in the downregulation of TGFβR2, the inhibition of TGF-β-induced Smad phosphorylation and of the expression of mesenchymal markers, vimentin and fibronectin. Together, these data demonstrate a critical role of Na+/K+-ATPase in the control of TGFβR2 expression, TGF-β signaling and cell responses to TGF-β.

  12. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  13. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats.

    Science.gov (United States)

    Qi, Cong-Cong; Zhang, Zhi; Fang, Hui; Liu, Ji; Zhou, Nan; Ge, Jin-Fang; Chen, Fang-Han; Xiang, Cheng-Bin; Zhou, Jiang-Ning

    2014-10-31

    Corticotrophin-releasing hormone (CRH) is considered to be the central driving force of the hypothalamic-pituitary-adrenal axis, which plays a key role in the stress response and depression. Clinical reports have suggested that excess retinoic acid (RA) is associated with depression. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share a similar molecular structure. Here, we proposed that ABA also plays a role in the regulation of CRH activity sharing with the RA signaling pathway. [3H]-ABA radioimmunoassay demonstrated that the hypothalamus of rats shows the highest concentration of ABA compared with the cortex and the hippocampus under basal conditions. Under acute stress, ABA concentrations increased in the serum, but decreased in the hypothalamus and were accompanied by increased corticosterone in the serum and c-fos expression in the hypothalamus. Moreover, chronic ABA administration increased sucrose intake and decreased the mRNA expression of CRH and retinoic acid receptor alpha (RARα) in the hypothalamus of rats. Furthermore, ABA improved the symptom of chronic unpredictable mild stress in model rats, as indicated by increased sucrose intake, increased swimming in the forced swim test, and reduced mRNA expression of CRH and RARα in the rat hypothalamus. In vitro, CRH expression decreased after ABA treatment across different neural cells. In BE(2)-C cells, ABA inhibited a series of retinoid receptor expression, including RARα, a receptor that could facilitate CRH expression directly. These results suggest that ABA may play a role in the pathogenesis of depression by downregulating CRH mRNA expression shared with the RA signaling pathway. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  14. Morphological alterations and NO-synthase expression in the heart after continuous light exposure of rats

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Važan, R.; Šimko, F.; Pecháňová, Olga; Styk, J.; Babál, P.; Janega, P.

    2007-01-01

    Roč. 56, Suppl.2 (2007), S71-S76 ISSN 0862-8408 Grant - others:VEGA(SK) 1/3429/06; VEGA(SK) 2/6148/26; VEGA(SK) 2/5110/25; -(SK) 29/2007; -(SK) 30/2007; -(SK) SP51/0280900/0280901; -(SK) APVT-51-027404; -(SK) APVT51-018004 Institutional research plan: CEZ:AV0Z50110509 Keywords : myocardium * collagen I/III * nitric oxide synthase Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.505, year: 2007

  15. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  16. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  17. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats

    International Nuclear Information System (INIS)

    Pelzer, Theo; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARγ in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARγ agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARγ, glucose transporter-4 and α-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARγ, glut-4, and α-MHC expression levels in diabetic ZDF rats. Cardiac [ 18 F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARγ agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARγ expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin

  18. Intra-uterine Growth Restriction Downregulates the Hepatic Toll Like Receptor-4 Expression and Function

    Directory of Open Access Journals (Sweden)

    Ozlem Equils

    2005-01-01

    Full Text Available Maternal starvation is a significant cause of intrauterine growth restriction (IUGR in the world and increases the risk of infection in the neonate. We examined the effect of maternal starvation on Toll like receptor (TLR4 expression in hepatic, splenic and intestinal tissues obtained from the adult IUGR offspring of prenatal calorie restricted rats. The hepatic TLR4 protein concentration was undetectable in the IUGR rats that had restricted milk intake during the suckling period (SM/SP; n = 4, p < 0.05 as compared to the normal growth controls (CM/CP; n=4, and access to ad lib milk intake during the sucking period partially corrected the hepatic TLR4 expression (SM/CP; n = 4. IUGR had no effect on the splenic (n = 4 or intestinal (n = 4 TLR4 mRNA levels. In the liver, IUGR led to a 20% increase in baseline tumor necrosis factor (TNF-α mRNA expression ( p < 0.03 and a 70% increase in interleukin-1β (IL-1β mRNA expression ( p < 0.008 as compared to the control rats (CM/CP; n = 7. LPS-induced hepatic TNF-α release was significantly higher in SM/SP as compared to CM/CP. We propose that IUGR dysregulates TLR4 expression and function in the offspring, which may help explain the increased risk of Gram-negative sepsis and inflammatory diseases in this population.

  19. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-01-01

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  20. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression.

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-02-15

    Cystic fibrosis (CF) is one of the most common lethal genetic diseases in which the role of microRNAs has yet to be explored. Predicted to be regulated by miR-126, TOM1 (target of Myb1) has been shown to interact with Toll-interacting protein, forming a complex to regulate endosomal trafficking of ubiquitinated proteins. TOM1 has also been proposed as a negative regulator of IL-1beta and TNF-alpha-induced signaling pathways. MiR-126 is highly expressed in the lung, and we now show for the first time differential expression of miR-126 in CF versus non-CF airway epithelial cells both in vitro and in vivo. MiR-126 downregulation in CF bronchial epithelial cells correlated with a significant upregulation of TOM1 mRNA, both in vitro and in vivo when compared with their non-CF counterparts. Introduction of synthetic pre-miR-126 inhibited luciferase activity in a reporter system containing the full length 3\\'-untranslated region of TOM1 and resulted in decreased TOM1 protein production in CF bronchial epithelial cells. Following stimulation with LPS or IL-1beta, overexpression of TOM1 was found to downregulate NF-kappaB luciferase activity. Conversely, TOM1 knockdown resulted in a significant increase in NF-kappaB regulated IL-8 secretion. These data show that miR-126 is differentially regulated in CF versus non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an important role in regulating innate immune responses in the CF lung. To our knowledge, this study is the first to report of a role for TOM1 in the TLR2\\/4 signaling pathways and the first to describe microRNA involvement in CF.

  1. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer

    International Nuclear Information System (INIS)

    Lundberg, Ida V.; Edin, Sofia; Eklöf, Vincy; Öberg, Åke; Palmqvist, Richard; Wikberg, Maria L.

    2016-01-01

    To improve current treatment strategies for patients with aggressive colorectal cancer (CRC), the molecular understanding of subgroups of CRC with poor prognosis is of vast importance. SOX2 positive tumors have been associated with a poor patient outcome, but the functional role of SOX2 in CRC patient prognosis is still unclear. An in vitro cell culture model expressing SOX2 was used to investigate the functional role of SOX2 in CRC. In vitro findings were verified using RNA from fresh frozen tumor tissue or immunohistochemistry on formalin fixed paraffin embedded (FFPE) tumor tissue from a cohort of 445 CRC patients. Using our in vitro model, we found that SOX2 expressing cells displayed several characteristics of cancer stem cells; such as a decreased proliferative rate, a spheroid growth pattern, and increased expression of stem cell markers CD24 and CD44. Cells expressing SOX2 also showed down-regulated expression of the intestinal epithelial marker CDX2. We next evaluated CDX2 expression in our patient cohort. CDX2 down-regulation was more often found in right sided tumors of high grade and high stage. Furthermore, a decreased expression of CDX2 was closely linked to MSI, CIMP-high as well as BRAF mutated tumors. A decreased expression of CDX2 was also, in a stepwise manner, strongly correlated to a poor patient prognosis. When looking at SOX2 expression in relation to CDX2, we found that SOX2 expressing tumors more often displayed a down-regulated expression of CDX2. In addition, SOX2 expressing tumors with a down-regulated CDX2 expression had a worse patient prognosis compared to those with retained CDX2 expression. Our results indicate that SOX2 expression induces a cellular stem cell state in human CRC with a decreased expression of CDX2. Furthermore, a down-regulated expression of CDX2 results in a poor patient prognosis in CRC and at least part of the prognostic importance of SOX2 is mediated through CDX2 down-regulation. The online version of this

  2. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  3. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    International Nuclear Information System (INIS)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition

  4. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression.

    Science.gov (United States)

    Nissen, Lorenzo; Sgorbati, Barbara; Biavati, Bruno; Belibasakis, Georgios N

    2014-01-01

    Beneficial microbes, such as lactobacilli establish a symbiosis with the host and confer health-associated effects, by limiting the growth of indigenous pathogens and challenging microbes introduced by altered foods. Nevertheless, there is scarce information on the effects of beneficial microbes on the virulence properties of bacterial species associated with oral diseases, such as periodontitis. Aggregatibacter actinomycetemcomitans is a Gram-negative species highly implicated in the etiology of localized aggressive periodontitis. The objective of this study was to investigate the effect of lactobacilli on the expression of the two major virulence factors of A. actinomycetemcomitans . Lactobacillus salivarius and L. gasseri were selected as beneficial species. The gene expressions of leukotoxin ( LtxA ) and cytolethal distending toxin ( CdtB ) by A. actinomycetemcomitans were analyzed in response to challenge by lactobacilli cell-free supernatants. Neither lactobacilli affected the growth, but strongly attenuated the expressions of both CdtB and LtxA in the two A. actinomycetemcomitans strains tested. This reduction of the expression of these two exotoxins was time-dependent. These fundamental findings may indicate that lactobacilli can reduce the virulence of putative opportunistic oral pathogens, and may provide insights to future therapeutic approaches for the respective diseases.

  5. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    International Nuclear Information System (INIS)

    Sharpe, Laura J.; Brown, Andrew J.

    2008-01-01

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2

  6. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    OpenAIRE

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H4MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and...

  7. The effect of inoculation with mycorrhizal arbuscular fungi on expression of limonene synthase in Mentha spicata L. genotypes

    Directory of Open Access Journals (Sweden)

    Leila Shabani

    2015-03-01

    Full Text Available Spearmint (Mentha spicata L. is an important economical and medicinal plant from Lamiaceae family, which has gained research attraction as a model for biosynthesis of essential oils due to its high capability for synthesis of monoterpenes. Limonene is a simple monoterpene and its biosynthesis is catalyzed by limonene synthase a key regulatory enzyme in the biosynthesis pathway of monoterpenes in spearmint plant. This study was concerned with the effect of colonization of roots with Funneliformis mosseae and F. etunicatum fungi on spearmint plant growth indices, leaf essential oils and changes in the expression of limonene synthase (LS gene. This study also explained the application of GADPH gene as the internal standard for real-time quantitative PCR (RTqPCR analysis of LS in spearmints. Our results showed that essential oil content of leaf in spearmint genotype Meybod inoculated with F. etunicatum was higher than that of genotypes from populations Kashan and Bojnourd and was 130% higher than the control. According to the results of this study, increase in transcript accumulation of the LS gene in leaves of spearmint plants inoculated with F. etunicatum was concordant with the increased essential oil contents and was dependent on the plant genotype.

  8. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of molybdopterin synthase from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Ohmori, Miwa; Agari, Kazuko; Kitamura, Yoshiaki; Baba, Seiki; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-01-01

    The molybdopterin synthase from T. thermophilus HB8 was cloned, expressed, purified and crystallized. The crystals belong to space group P2 1 and diffracted to a resolution of 1.64 Å. Thermus thermophilus is a Gram-negative aerobic thermophilic eubacterium which can grow at temperatures ranging from 323 to 355 K. In addition to their importance in thermostability or adaptation strategies for survival at high temperatures, the thermostable enzymes in thermophilic organisms contribute to a wide range of biotechnological applications. The molybdenum cofactor in all three kingdoms consists of a tricyclic pyranopterin termed molybdopterin that bears the cis-dithiolene group responsible for molybdenum ligation. The crystals of molybdopterin synthase from T. thermophilus HB8 belong to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 33.94, b = 103.32, c = 59.59 Å, β = 101.3°. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit

  9. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  10. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  11. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    Science.gov (United States)

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  12. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hjort, C.M.; Hansen, K.

    2002-01-01

    In Aspergillus oryzae, one full-length chitin synthase (chsB) and fragments of two other chitin synthases (csmA and chsC) were identified. The deduced amino acid sequence of chsB was similar (87% identity) to chsB from Aspergillus nidulans, which encodes a class III chitin synthase. The sequence...

  13. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  14. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco

    Directory of Open Access Journals (Sweden)

    Yonghai Fan

    2017-12-01

    Full Text Available Galactinol synthase (GolS is a key enzyme in raffinose family oligosaccharide (RFO biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus and tobacco (Nicotiana tabacum remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.

  15. Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the boraginales.

    Science.gov (United States)

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-07-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant's chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature.

  16. Germacrene A Synthase in Yarrow (Achillea millefolium Is an Enzyme with Mixed Substrate Specificity: Gene Cloning, Functional Characterization and Expression Analysis

    Directory of Open Access Journals (Sweden)

    Leila ePazouki

    2015-03-01

    Full Text Available Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5 residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS. The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3, functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP, while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP. Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

  17. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  18. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression.

    Science.gov (United States)

    Woo, S M; Min, K-J; Seo, B R; Nam, J-O; Choi, K S; Yoo, Y H; Kwon, T K

    2014-11-06

    Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.

  19. Istaroxime Inhibits Motility and Down-Regulates Orai1 Expression, SOCE and FAK Phosphorylation in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matias Julian Stagno

    2017-07-01

    Full Text Available Background/Aims: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. Methods: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. Results: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. Conclusion: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.

  20. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features

    International Nuclear Information System (INIS)

    Feng, Chang Wei; Wang, Li Dong; Jiao, Lian Hua; Liu, Bin; Zheng, Shu; Xie, Xin Ji

    2002-01-01

    The growth and metastasis of tumors depend on the development of an adequate blood supply via angiogenesis. Recent studies indicate that the inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF) and the tumor suppressor p53 are fundamental play-markers of the angiogenic process. Overexpression of iNOS and VEGF has been shown to induce angiogenesis in tumors. P53 suppresses angiogenesis by down-regulating VEGF and iNOS. The correlation of expression of p53, VEGF and iNOS and clinical features in gastric carcinogenesis, however, has not been well characterized. The expression of p53, iNOS and VEGF in gastric precancerous and cancerous lesions and its relation with the clinical features was determined with immunohistochemistry (avidin-biotin-peroxidase complex method) on 55 randomly selected GC patients and 60 symptom-free subjects from the mass survey in the high-incidence area for GC in Henan, northern China. The positive immunostainig rates for p53, iNOS and VEGF in gastric carcinomas were 51%, 44% and 51%, respectively, and correlated well with TNM stages, but did not show significant difference among the groups with different degrees of gastric wall invasion depth by GC. A positive immunostaining reaction for the iNOS protein was significantly correlated with lymph node metastasis (p = 0.019; Spearman correlation coefficient). P53 protein accumulation was higher in the poorly-differentiated gastric carcinoma than in well-differentiated one. In gastric biopsies, no positive immunosatining was observed for p53, iNOS and VEGF in the histologically normal tissue and chronic superficial gastritis (CSG). However, p53, iNOS and VEGF positive immunostaining was observed in the tissues with different severities of lesions of chronic atrophic gastritis (CAG), intestinal metaplasia (IM) and dysplasia (DYS), and the positive rates increased with the lesion progression from CAG to IM to DYS. A high coincidental positive and negative immunostaining

  1. Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

    International Nuclear Information System (INIS)

    Erdmann, Kati; Kaulke, Knut; Thomae, Cathleen; Huebner, Doreen; Sergon, Mildred; Froehner, Michael; Wirth, Manfred P; Fuessel, Susanne

    2014-01-01

    Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction

  2. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  3. Expression of Prostacyclin-Synthase in Human Breast Cancer: Negative Prognostic Factor and Protection against Cell Death In Vitro

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Endogenously formed prostacyclin (PGI2 and synthetic PGI2 analogues have recently been shown to regulate cell survival in various cell lines. To elucidate the significance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze expression of prostacyclin-synthase (PGIS in 248 human breast cancer specimens obtained from surgical pathology files. We examined patients’ 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the effects of PGI2 and its analogues on cell death were examined in a human breast cancer cell line (MCF-7 and a human T-cell leukemia cell line (CCRF-CEM. PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically significant reduction in 10-year survival (P=0.038; n=193. Transient transfection of PGIS into MCF-7 cells exposed to sulindac increased cell viability by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential therapeutic target in breast cancer.

  4. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia.

    Science.gov (United States)

    Li, J N; Mahmoud, M A; Han, W F; Ripple, M; Pizer, E S

    2000-11-25

    Endogenous fatty acid synthesis has been observed in certain rapidly proliferating normal and neoplastic tissues. Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate the expression of lipogenic genes including fatty acid synthase (FAS), the major biosynthetic enzyme for fatty acid synthesis. We have previously shown that SREBP-1, FAS, and Ki-67, a proliferation marker, colocalized in the crypts of the fetal gastrointestinal tract epithelium. This study sought to determine whether SREBP-1 participates in the regulation of proliferation-associated fatty acid synthesis in colorectal neoplasia. An immunohistochemical analysis of SREBP-1, FAS, and Ki-67 expression in 25 primary human colorectal carcinoma specimens showed colocalization in 22 of these. To elucidate a functional linkage between SREBP-1 activation and proliferation-associated FA synthesis, SREBP-1 and FAS content were assayed during the adaptive response of cultured HCT116 colon carcinoma cells to pharmacological inhibition of FA synthesis. Cerulenin and TOFA each inhibited the endogenous synthesis of fatty acids in a dose-dependent manner and each induced increases in both precursor and mature forms of SREBP-1. Subsequently, both the transcriptional activity of the FAS promoter in a luciferase reporter gene construct and the FAS expression increased. These results demonstrate that tumor cells recognize and respond to a deficiency in endogenous fatty acid synthesis by upregulating both SREBP-1 and FAS expression and support the model that SREBP-1 participates in the transcriptional regulation of lipogenic genes in colorectal neoplasia. Copyright 2000 Academic Press.

  5. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression.

    Science.gov (United States)

    Eraky, Salma M; El-Mesery, Mohamed; El-Karef, Amro; Eissa, Laila A; El-Gayar, Amal M

    2018-05-01

    Lysophosphatidic acid is a lipid mediator that is supposed to be implicated in hepatic fibrosis. Silymarin and caffeine are natural compounds known for their anti-inflammatory and antioxidant effects. Our study aimed to explore the effect of silymarin, caffeine, and their combination on lysophosphatidic acid receptor 1 (LPAR1) pathway in thioacetamide (TAA)-induced hepatic fibrosis. Hepatic fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 200 mg/kg of TAA twice a week for 8 weeks. Silymarin (50 mg/kg), caffeine (50 mg/kg), and their combination (50 mg/kg silymarin + 50 mg/kg caffeine) were orally given to rats every day for 8 weeks along with TAA injection. Liver functions were measured. Histopathological examination of liver tissues was performed using hematoxylin and eosin and Masson's trichrome staining. mRNA expressions of LPAR1, transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), and alpha smooth muscle actin (α-SMA) were measured using RT-PCR. LPAR1 tissue expression was scored using immunohistochemistry. Silymarin, caffeine, and their combination significantly improved liver function. They caused significant decrease in fibrosis and necro-inflammatory scores. Combination of silymain and caffeine caused a significant decrease in the necro-inflammatory score than the single treatment with silymarin or caffeine. In addition, silymarin, caffeine, and their combination significantly decreased hepatic LPAR1, TGF-β1, CTGF, and α-SMA gene expressions and LPAR1 tissue expression. Silymarin, caffeine, and their combination protect against liver fibrosis through down-regulation of LPAR1, TGF-β1, and CTGF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  7. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS gene expression patterns

    Directory of Open Access Journals (Sweden)

    Abercrombie Jason M

    2011-07-01

    Full Text Available Abstract Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan walls and septae (callose plugs of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS. Of 12 CalS gene family members in Arabidopsis, only one (CalS5 has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5 (Nymphaeales. Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression

  8. Effects of Chinese yellow wine on nitric oxide synthase and intercellular adhesion molecule-1 expressions in rat vascular endothelial cells.

    Science.gov (United States)

    Zhao, Fei; Ji, Zheng; Chi, Jufang; Tang, Weiliang; Zhai, Xiaoya; Meng, Liping; Guo, Hangyuan

    2016-02-01

    The objective of this study was to determine similarities in the effect of yellow wine as compared to statin and the possibility that yellow wine inhibits tumour necrosis factor-α (TNF-α)-induced nitric oxide (NO) synthesis, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) in cultured rat vascular endothelial cells (VECs). We isolated VECs, and cultivated and purified Sprague Dawley (SD) rat thoracic aortas in vitro. We selected the optimal wine concentration using clonogenic and MTT assays to measure cell survival. Next, we divided the cells into 9 groups: (1) control, (2) TNF-α, (3) TNF-α + rosuvastatin (10 μmol/L), (4) TNF-α + ethanol 0.5%, (5) TNF-α + yellow wine 0.5%, (6) TNF-α + ethanol 1.0%, (7) TNF-α + yellow wine 1.0%, (8) TNF-α + ethanol 1.5%, and (9) TNF-α + yellow wine 1.5% and they were given the corresponding treatment for 24 h. We determined NO production with nitrate reductase. We then measured eNOS activity, and detected eNOS, iNOS, and ICAM-1 protein levels by Western blotting. Compared with the TNF-α group, NO production, eNOS activity, and eNOS protein expression in the rosuvastatin, and yellow wine 1.0%, and 1.5% groups were significantly increased. Protein expression of iNOS and ICAM-1 in the rosuvastatin, yellow wine 1.0%, and 1.5% groups were significantly decreased. Compared with the rosuvastatin group, eNOS, iNOS, and ICAM-1 protein expression in the yellow wine (0.5% -1.5%) groups were significantly different. Treatment with yellow wine increased NO production, eNOS activity, and eNOS protein expression, which decreases iNOS and ICAM-1 protein expression. We conclude that yellow wine may have similar beneficial effects as rosuvastatin on the cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions.

  9. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  10. Expression of Clarkia S-linalool synthase in transgenic petunia plant results in the accumulation of S-linalyl-b-D-glucopyranoside

    NARCIS (Netherlands)

    Lücker, J.; Bouwmeester, H.J.; Schwab, W.; Blaas, J.; Plas, van der L.H.W.; Verhoeven, H.A.

    2001-01-01

    Petunia hybrida W115 was transformed with a Clarkia breweri S-linalool synthase cDNA (lis). Lis was expressed in all tissues analysed, and linalool was detected in leaves, sepals, corolla, stem and ovary, but not in nectaries, roots, pollen and style. However, the S-linalool produced by the plant in

  11. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  12. Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide

    NARCIS (Netherlands)

    Dijkstra, Gerard; Blokzijl, Hans; Bok, Lisette; Homan, Manon; van Goor, Harry; Faber, Klaas Nico; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    Inducible nitric oxide synthase (iNOS) is expressed in intestinal epithelial cells (IEC) of patients with active inflammatory bowel disease (IBD) and in IEC of endotoxaemic rats. The induction of iNOS in IEC is an element of the NF-kappaB-mediated survival pathway. Haem oxygenase-1 (HO-1) is an

  13. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression

    Directory of Open Access Journals (Sweden)

    Pang B

    2012-02-01

    Full Text Available Wencai Xu1, Teng Luo2, Ping Li1, Chuanqing Zhou2, Daxiang Cui3, Bo Pang4, Qiushi Ren4, Shen Fu11Department of Radiation Oncology, Shanghai Sixth People's Hospital, 2School of Biomedical Engineering, and 3National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 4Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, People's Republic of ChinaBackground: Melanoma is known to be radioresistant and traditional treatments have been intractable. Therefore, novel approaches are required to improve the therapeutic efficacy of melanoma treatment. In our study, gold nanorods conjugated with Arg-Gly-Asp peptides (RGD-GNRs were used as a sensitizer to enhance the response of melanoma cells to 6 mV radiation.Methods and materials: A375 melanoma cells were treated by gold nanorods or RGD-GNRs with or without irradiation. The antiproliferative impact of the treatments was measured by MTT assay. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle data were measured by flow cytometry. Integrin αvβ3expression was also investigated by flow cytometry.Results: Addition of RGD-GNRs enhanced the radiosensitivity of A375 cells with a dose-modifying factor of 1.35, and enhanced radiation-induced apoptosis. DNA flow cytometric analysis indicated that RGD-GNRs plus irradiation induced significant G2/M phase arrest in A375 cells. Both spontaneous and radiation-induced expressions of integrin αvβ3 were downregulated by RGD-GNRs.Conclusion: Our study indicated that RGD-GNRs could sensitize melanoma A375 cells to irradiation. It was hypothesized that this was mainly through downregulation of radiation-induced αvβ3, in addition to induction of a higher proportion of cells within the G2/M phase. The combination of RGD-GNRs and

  14. Downregulation of hepatic and intestinal ATP-binding-cassette transporters abcg5 and abcg8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Bloks, VW; Bakker-van Waarde, WW; Verkade, HJ; Kema, IP; Havinga, R; Wolters, H; Schaap, FG; Sauer, PJJ; Vink, E; Groen, AK; Kuipers, F

    ABSTRACT: P234 Downregulation of Hepatic and Intestinal ATP-Binding-Cassette Transporters Abcg5 and Abcg8 Expression Associated with Altered Sterol Fluxes in Rats with Streptozotocin-Induced Diabetes Vincent W. Bloks, Willie W. Bakker-van Waarde, Henkjan J. Verkade, Ido P. Kema, Rick Havinga, Henk

  15. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Directory of Open Access Journals (Sweden)

    Jennifer M. Bratt

    2010-01-01

    Full Text Available Objectives and Design. The function of the airway nitric oxide synthase (NOS isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  17. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Science.gov (United States)

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  18. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism.

    Science.gov (United States)

    Yao, Lin; Tan, Chong; Song, Jinzhu; Yang, Qian; Yu, Lijie; Li, Xinling

    2016-01-01

    Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Vitamin K2 downregulates the expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Cao, Ke; Liu, Weidong; Nakamura, Hideji; Enomoto, Hirayuki; Yamamoto, Teruhisa; Saito, Masaki; Imanishi, Hiroyasu; Shimomura, Soji; Cao, Peiguo; Nishiguchi, Shuhei

    2009-11-01

    Vitamin K2 exerts an antitumor activity on human hepatocellular carcinoma (HCC), however, its inhibitory mechanism has not yet been clarified. This study was designed to identify the attractive target molecule of vitamin K2 and shed some light on its effects on fibroblast growth factor receptor (FGFR)3 in HCC cells. The changes in the gene expression of HuH-7 after vitamin K2 treatment were evaluated by a DNA chip analysis. The mRNA and protein levels of FGFR were evaluated by semiquantitative reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and western blot analysis. The promoter activity of the FGFR3 gene was measured by a dual-luciferase assay. The DNA chip analysis revealed different inhibitory rates of gene expression of FGFR3 (60.6%) and FGFR1 (19.4%) after vitamin K2 treatment. Vitamin K2 suppresses the proliferation of HuH-7 in a dose-dependent manner and its inhibitory rate reached approximately 61.8% at the dose of 30 microM. FGFR3 mRNA was significantly reduced based on semiquantitative RT-PCR and decreased 61.5% by a real-time PCR method after vitamin K2 treatment, but FGFR1 mRNA was not. The level of FGFR3 protein was also reduced by vitamin K2 treatment. The luciferase assay demonstrated that vitamin K2 significantly suppressed the promoter activity of FGFR3. Furthermore, the FGFR3-ERK1/2 signaling pathway was suppressed by vitamin K2 treatment. These findings suggest that vitamin K2 may suppress the proliferation of HCC cells through the downregulation of the FGFR3 expression. The transcriptional suppression of FGFR3 may be a novel mechanism of the vitamin K2 action for HCC cells.

  20. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  2. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun, E-mail: xqwu01@foxmail.com

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G{sub 0}/G{sub 1} cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G{sub 0}/G{sub 1} cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  3. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  4. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  5. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    Science.gov (United States)

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  6. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  7. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    Science.gov (United States)

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    Science.gov (United States)

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells stimulated with LPS/IFN-γ activated NO production; in this condition andrographolide (1–100 μM) inhibited NO production in a dose-dependent manner with an IC50 value of 17.4±1.1 μM. Andrographolide also reduces the expression of iNOS protein level but without a significant effect on iNOS mRNA. The reduction of iNOS activity is thought to be caused by decreased expression of iNOS protein.In a protein stability assay, andrographolide moderately but significantly reduced the amount of iNOS protein as suggested by accelerating degradation. Furthermore, andrographolide also inhibited total protein de novo synthesis as demonstrated by [35S]-methionine incorporation.As a whole, these data suggest that andrographolide inhibits NO synthesis in RAW 264.7 cells by reducing the expression of iNOS protein and the reduction could occur through two additional mechanisms: prevention of the de novo protein synthesis and decreasing the protein stability via a post-transcriptional mechanism. It is also possible that inhibition of iNOS protein expression and NO production under immune stimulation and/or bacteria infection may explain, in part, the beneficial effects of andrographolide as an anti-inflammatory agent. PMID:10780958

  9. HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice.

    Science.gov (United States)

    Corsi, Fabio; Fiandra, Luisa; De Palma, Clara; Colombo, Miriam; Mazzucchelli, Serena; Verderio, Paolo; Allevi, Raffaele; Tosoni, Antonella; Nebuloni, Manuela; Clementi, Emilio; Prosperi, Davide

    2011-08-23

    Subcellular destiny of targeted nanoparticles in cancer cells within living organisms is still an open matter of debate. By in vivo and ex vivo experiments on tumor-bearing mice treated with antibody-engineered magnetofluorescent nanocrystals, in which we combined fluorescence imaging, magnetic relaxation, and trasmission electron microscopy approaches, we provide evidence that nanoparticles are effectively delivered to the tumor by active targeting. These nanocrystals were demonstrated to enable contrast enhancement of the tumor in magnetic resonance imaging. In addition, we were able to discriminate between the fate of the organic corona and the metallic core upon cell internalization. Accurate immunohistochemical analysis confirmed that hybrid nanoparticle endocytosis is mediated by the complex formation with HER2 receptor, leading to a substantial downregulation of HER2 protein expression on the cell surface. These results provide a direct insight into the pathway of internalization and degradation of targeted hybrid nanoparticles in cancer cells in vivo and suggest a potential application of this immunotheranostic nanoagent in neoadjuvant therapy of cancer. © 2011 American Chemical Society

  10. Expression of nitric oxide synthase during the development of RCS rat retinas.

    Science.gov (United States)

    Sharma, R K; Warfvinge, K; Ehinger, B

    2001-01-01

    Nitric oxide (NO) has been reported to be both neurodestructive and neuroprotective in the central nervous system and could possibly play an important role in neurodegenerative disorders. On the assumption that NO synthesis may influence degenerative processes in the retina, we have examined the development and distribution of nitric-oxide-synthase(NOS)-immunoreactive cells in developing Royal College of Surgeons (RCS) rat retinas, which is an animal model for retinal degeneration. An antibody against constitutive neuronal NOS was used for immunocytochemistry on RCS rat retinas from postnatal (PN) days 3, 7, 10, 14, 35, 70 and 281 and compared with that in the normal rats of PN days 3, 7, 10, 14, 54 and adults. Immunoreactive cells were not seen in PN 3 retinas but were distinctly seen in the PN 7 retina along with a plexus in the inner plexiform layer. In both groups (normal and RCS rats) a distinct sublayering of the plexus in the inner plexiform layer could be seen at PN 10, which became more distinct at PN 14. The immunoreactive cells were detected also in the oldest retina examined, which was PN 281 in the case of RCS rats. In both groups, certain amacrine cells, certain bipolar cells and certain horizontal cells were found to be immunoreactive. In conclusion, the developmental timetable of the NOS immunoreactivity was identical in the normal and the RCS rat retinas. The NOS-immunoreactive cells persisted in the RCS retinas even when the retina had degenerated extensively. Abnormalities with the inducible isoforms of NOS cannot be ruled out from this study. We conclude that the chronological and qualitative development of the constitutive neuronal NOS immunoreactivity is normal in RCS rat retinas. Copyright 2001 S. Karger AG, Basel

  11. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Science.gov (United States)

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  12. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  13. The Balance of Expression of Dihydroflavonol 4-reductase and Flavonol Synthase Regulates Flavonoid Biosynthesis and Red Foliage Coloration in Crabapples.

    Science.gov (United States)

    Tian, Ji; Han, Zhen-yun; Zhang, Jie; Hu, YuJing; Song, Tingting; Yao, Yuncong

    2015-07-20

    Red leaf color is an attractive trait of Malus families, including crabapple (Malus spp.); however, little is known about the molecular mechanisms that regulate the coloration. Dihydroflavonols are intermediates in the production of both colored anthocyanins and colorless flavonols, and this current study focused on the gene expression balance involved in the relative accumulation of these compounds in crabapple leaves. Levels of anthocyanins and the transcript abundances of the anthocyanin biosynthetic gene, dihydroflavonol 4-reductase (McDFR) and the flavonol biosynthetic gene, flavonol synthase (McFLS), were assessed during the leaf development in two crabapple cultivars, 'Royalty' and 'Flame'. The concentrations of anthocyanins and flavonols correlated with leaf color and we propose that the expression of McDFR and McFLS influences their accumulation. Further studies showed that overexpression of McDFR, or silencing of McFLS, increased anthocyanin production, resulting in red-leaf and red fruit peel phenotypes. Conversely, elevated flavonol production and green phenotypes in crabapple leaves and apple peel were observed when McFLS was overexpressed or McDFR was silenced. These results suggest that the relative activities of McDFR and McFLS are important determinants of the red color of crabapple leaves, via the regulation of the metabolic fate of substrates that these enzymes have in common.

  14. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Directory of Open Access Journals (Sweden)

    Viglietti-Panzica Carla

    2009-07-01

    Full Text Available Abstract Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA (significantly higher number in estrus and in the arcuate nucleus (Arc (significantly higher number in proestrus. In the ventrolateral part of the ventromedial nucleus (VMHvl and in the bed nucleus of the stria terminalis (BST no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle in the VMHvl and in the BST (when considering only the less intensely stained elements. In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.

  16. The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review

    Directory of Open Access Journals (Sweden)

    Szyller Jakub

    2017-03-01

    Full Text Available Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2 and an increased pressure (hyperbaric conditions leads to an intensification of oxidative stress. Reactive oxygen species (ROS damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP. Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS. Its product - nitrogen oxide (NO can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.

  17. Differential regulation of glomerular and interstitial endothelial nitric oxide synthase expression in the kidney of hibernating ground squirrel.

    Science.gov (United States)

    Sandovici, Maria; Henning, Robert H; Hut, Roelof A; Strijkstra, Arjen M; Epema, Anne H; van Goor, Harry; Deelman, Leo E

    2004-09-01

    Hibernating animals transiently reduce renal function during their hypothermic periods (torpor), while completely restoring it during their periodical rewarming to euthermia (arousal). Moreover, structural integrity of the kidney is preserved throughout the hibernation. Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) is a crucial vasodilatory mediator and a protective factor in the kidney. We investigated renal NOS expression in hibernating European ground squirrels after 1 day and 7 days of torpor (torpor short, TS, and torpor long, TL, respectively), at 1.5 and at 10 h of rewarming (arousal short, AS, and arousal long, AL, respectively), and in continuously euthermic animals after hibernation (EU). For that purpose, we performed NOS activity assay, immunohistochemistry and real-time PCR analysis. Immunohistochemistry revealed a decreased glomerular eNOS expression in hibernating animals (TS, TL, AS, and AL) compared to non-hibernating animals (EU, p EU. In all methods used, torpid and aroused squirrels did not differ. These results demonstrate differential regulation of eNOS in glomeruli and interstitium of hibernating animals, which is unaffected during arousal. The differential regulation of eNOS may serve to reduce ultrafiltration without jeopardizing tubular structures during hibernation.

  18. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  19. A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chuang

    2018-06-01

    Full Text Available Phalaenopsis bellina is a scented orchid emitting large amount of monoterpenes. GERANYL DIPHOSPHATE SYNTHASE (PbGDPS is the key enzyme for monoterpene biosynthesis, and shows concomitant expression with the emission of monoterpenes during flower development in P. bellina. Here, we identified a dual repeat cis-element in the GDPS promoter that is critical for monoterpene biosynthesis in Phalaenopsis orchids. A strong correlation between the dual repeat and the monoterpene production was revealed by examination of the GDPS promoter fragments over 12 Phalaenopsis species. Serial-deletion of the 2-kb GDPS promoter fragments demonstrated that the integrity of the dual repeat was crucial for its promoter activities. By screening the Arabidopsis transcription factors (TFs cDNA library using yeast one-hybrid assay, AtbZIP18, a member of group I of bZIP TFs, was identified to be able to bind the dual repeat. We then identified PbbZIP4 in the transcriptome of P. bellina, showing 83% identity in the DNA binding region with that of AtbZIP18, and the expression level of PbbZIP4 was higher in the scented orchids. In addition, PbbZIP4 transactivated the GDPS promoter fragment containing the dual repeat in dual luciferase assay. Furthermore, transient ectopic expression of PbbZIP4 induced a 10-fold production of monoterpenoids in the scentless orchid. In conclusion, these results indicate that the dual repeat is a real TF-bound cis-element significant for GDPS gene expression, and thus subsequent monoterpene biosynthesis in the scented Phalaenopsis orchids.

  20. Expression of Nitric Oxide Synthase Isoenzyme in Lung Tissue of Smokers with and without Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Wen-Ting Jiang

    2015-01-01

    Full Text Available Background: It has been demonstrated that only 10%-20% cigarette smokers finally suffer chronic obstructive pulmonary disease (COPD. The underlying mechanism of development remains uncertain so far. Nitric oxide (NO has been found to be closely associated with the pathogenesis of COPD, the alteration of NO synthase (NOS expression need to be revealed. The study aimed to investigate the alterations of NOS isoforms expressions between smokers with and without COPD, which might be helpful for identifying the susceptibility of smokers developing into COPD. Methods: Peripheral lung tissues were obtained from 10 nonsmoker control subjects, 15 non-COPD smokers, and 15 smokers with COPD. Neuronal NOS (nNOS, inducible NOS (iNOS, and endothelial NOS (eNOS mRNA and protein levels were measured in each sample by using real-time polymerase chain reaction and Western blotting. Results: INOS mRNA was significantly increased in patients with COPD compared with nonsmokers and smokers with normal lung function (P < 0.001, P = 0.001, respectively. iNOS protein was also higher in COPD patients than nonsmokers and smokers with normal lung function (P < 0.01 and P = 0.01, respectively. However, expressions of nNOS and eNOS did not differ among nonsmokers, smokers with and without COPD. Furthermore, there was a negative correlation between iNOS protein level and lung function parameters forced expiratory volume in 1 s (FEV 1 (% predicted (r = −0.549, P = 0.001 and FEV 1 /forced vital capacity (%, r = −0.535, P = 0.001. Conclusions: The expression of iNOS significantly increased in smokers with COPD compared with that in nonsmokers or smokers without COPD. The results suggest that iNOS might be involved in the pathogenesis of COPD, and may be a potential marker to identify the smokers who have more liability to suffer COPD.

  1. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  2. Regulation of Banana Phytoene Synthase (MaPSY) Expression, Characterization and Their Modulation under Various Abiotic Stress Conditions

    Science.gov (United States)

    Kaur, Navneet; Pandey, Ashutosh; Shivani; Kumar, Prateek; Pandey, Pankaj; Kesarwani, Atul K.; Mantri, Shrikant S.; Awasthi, Praveen; Tiwari, Siddharth

    2017-01-01

    Phytoene synthase (PSY) is a key regulatory enzyme of carotenoid biosynthesis pathway in plants. The present study examines the role of PSY in carotenogenesis and stress management in banana. Germplasm screening of 10 Indian cultivars showed that Nendran (3011.94 μg/100 g dry weight) and Rasthali (105.35 μg/100 g dry weight) contained the highest and lowest amounts of β-carotene, respectively in ripe fruit-pulp. Nendran ripe pulp also showed significantly higher antioxidant activity as compared to Rasthali. Meta-analysis of three banana PSY genes (MaPSY1, MaPSY2, and MaPSY3) was performed to identify their structural features, subcellular, and chromosomal localization in banana genome. The distinct expression patterns of MaPSY1, MaPSY2, and MaPSY3 genes were observed in various tissues, and fruit developmental stages of these two contrasting cultivars, suggesting differential regulation of the banana PSY genes. A positive correlation was observed between the expression of MaPSY1 and β-carotene accumulation in the ripe fruit-peel and pulp of Nendran. The presence of stress responsive cis-regulatory motifs in promoter region of MaPSY genes were correlated with the expression pattern during various stress (abscisic acid, methyl jasmonate, salicylic acid and dark) treatments. The positive modulation of MaPSY1 noticed under abiotic stresses suggested its role in plant physiological functions and defense response. The amino acid sequence analysis of the PSY proteins in contrasting cultivars revealed that all PSY comprises conserved domains related to enzyme activity. Bacterial complementation assay has validated the functional activity of six PSY proteins and among them PSY1 of Nendran (Nen-PSY1) gave the highest activity. These data provide new insights into the regulation of PSY expression in banana by developmental and stress related signals that can be explored in the banana improvement programs. PMID:28421096

  3. GNC and CGA1 Modulate Chlorophyll Biosynthesis and Glutamate Synthase (GLU1/Fd-GOGAT) Expression in Arabidopsis

    Science.gov (United States)

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W.; Hannam, Carol; Long, Nykoll; Clarke, Joseph D.; Bi, Yong-Mei; Rothstein, Steven J.

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology. PMID:22102866

  4. Type-I interferon receptor expression: its circadian rhythm and downregulation after interferon-alpha administration in peripheral blood cells from renal cancer patients.

    Science.gov (United States)

    Shiba, Masahiro; Nonomura, Norio; Nakai, Yasutomo; Nakayama, Masashi; Takayama, Hitoshi; Inoue, Hitoshi; Tsujimura, Akira; Nishimura, Kazuo; Okuyama, Akihiko

    2009-04-01

    To investigate the regulation of interferon-alpha (IFN-alpha) receptor expression in metastatic renal cell carcinoma (RCC) after IFN-alpha administration. Blood sampling was carried out in eight patients with metastatic RCC and six healthy volunteers. Flow-cytometric analysis using a monoclonal antibody against the active subunit of the type-I IFN-alpha receptor (IFNAR2) was carried out to examine the circadian rhythm of IFNAR2 expression in peripheral blood mononuclear cells (PBMC) as well as its downregulation after IFN-alpha administration. According to its circadian rhythm IFNAR2 in PBMC had a peak expression at night. Once IFN-alpha is administered, IFNAR2 levels in PBMC showed downregulation within 48 h and recovered within another 48 h. Our findings might support the establishment of an optimal schedule for IFN-alpha administration.

  5. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    International Nuclear Information System (INIS)

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-01-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G 0 /G 1 phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G 0 /G 1 phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: ► miR-210 downregulation radiosensitized hypoxic hepatoma. ► AIFM3 was identified as a direct target gene of miR-210. ► miR-210 might be a therapeutic target to hypoxic hepatoma.

  6. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Sun, Ting [Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou (China); Cao, Jianping; Liu, Fenju [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Tian, Ye [Department of Radiotherapy and Oncology, The Second Affiliated Hospital, Soochow University, Suzhou (China); Zhu, Wei [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China)

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  7. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

    Directory of Open Access Journals (Sweden)

    Shi Shuobo

    2012-02-01

    Full Text Available Abstract Background Wax ester synthases (WSs can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. Results Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. Conclusions Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.

  9. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer.

    Science.gov (United States)

    Vāvere, Amy L; Kridel, Steven J; Wheeler, Frances B; Lewis, Jason S

    2008-02-01

    Although it is accepted that the metabolic fate of 1-(11)C-acetate is different in tumors than in myocardial tissue because of different clearance patterns, the exact pathway has not been fully elucidated. For decades, fatty acid synthesis has been quantified in vitro by the incubation of cells with (14)C-acetate. Fatty acid synthase (FAS) has been found to be overexpressed in prostate carcinomas, as well as other cancers, and it is possible that imaging with 1-(11)C-acetate could be a marker for its expression. In vitro and in vivo uptake experiments in prostate tumor models with 1-(11)C-acetate were performed both with and without blocking of fatty acid synthesis with either C75, an inhibitor of FAS, or 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase (ACC). FAS levels were measured by Western blot and immunohistochemical techniques for comparison. In vitro studies in 3 different prostate tumor models (PC-3, LNCaP, and 22Rv1) demonstrated blocking of 1-(11)C-acetate accumulation after treatment with both C75 and TOFA. This was further shown in vivo in PC-3 and LNCaP tumor-bearing mice after a single treatment with C75. A positive correlation between 1-(11)C-acetate uptake into the solid tumors and FAS expression levels was found. Extensive involvement of the fatty acid synthesis pathway in 1-(11)C-acetate uptake in prostate tumors was confirmed, leading to a possible marker for FAS expression in vivo by noninvasive PET.

  10. The Downregulation of the Expression of CD147 by Tumor Suppressor REIC/Dkk-3, and Its Implication in Human Prostate Cancer Cell Growth Inhibition.

    Science.gov (United States)

    Mori, Akihiro; Watanabe, Masami; Sadahira, Takuya; Kobayashi, Yasuyuki; Ariyoshi, Yuichi; Ueki, Hideo; Wada, Koichiro; Ochiai, Kazuhiko; Li, Shun-Ai; Nasu, Yasutomo

    2017-04-01

    The cluster of differentiation 147 (CD147), also known as EMMPRIN, is a key molecule that promotes cancer progression. We previously developed an adenoviral vector encoding a tumor suppressor REIC/Dkk-3 gene (Ad-REIC) for cancer gene therapy. The therapeutic effects are based on suppressing the growth of cancer cells, but, the underlying molecular mechanism has not been fully clarified. To elucidate this mechanism, we investigated the effects of Ad-REIC on the expression of CD147 in LNCaP prostate cancer cells. Western blotting revealed that the expression of CD147 was significantly suppressed by Ad-REIC. Ad-REIC also suppressed the cell growth of LNCaP cells. Since other researchers have demonstrated that phosphorylated mitogen-activated protein kinases (MAPKs) and c-Myc protein positively regulate the expression of CD147, we investigated the correlation between the CD147 level and the activation of MAPK and c-Myc expression. Unexpectedly, no positive correlation was observed between CD147 and its possible regulators, suggesting that another signaling pathway was involved in the downregulation of CD147. This is the first study to show the downregulation of CD147 by Ad-REIC in prostate cancer cells. At least some of the therapeutic effects of Ad-REIC may be due to the downregulation of the cancer-progression factor, CD147.

  11. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  12. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. TGF-β1 downregulates StAR expression and decreases progesterone production through Smad3 and ERK1/2 signaling pathways in human granulosa cells.

    Science.gov (United States)

    Fang, Lanlan; Chang, Hsun-Ming; Cheng, Jung-Chien; Leung, Peter C K; Sun, Ying-Pu

    2014-11-01

    Regulation of progesterone production in granulosa cells is important for normal reproductive functions. Steroidogenic acute regulatory protein (StAR) is recognized as the key regulatory protein involved in the rate-limiting step of steroidogenesis. TGF-β1 protein is detected in human follicular fluid, and TGF-β1 and its receptors are expressed in human granulosa cells. However, the functional role of TGF-β1 in the regulation of StAR expression and progesterone production in human granulosa cells remains unknown. Our objective was to investigate the effects of TGF-β1 on StAR expression and progesterone production in human granulosa cells. SVOG cells are human granulosa cells that were obtained from women undergoing in vitro fertilization and immortalized with SV40 large T antigen. SVOG cells were used to investigate the effects of TGF-β1 on StAR expression and progesterone production at an academic research center. Levels of mRNA and protein were examined by RT-qPCR and western blotting, respectively. The accumulation levels of progesterone were measured by enzyme-linked immunosorbent assay (ELISA). TGF-β1 treatment downregulated StAR expression and decreased progesterone production. The suppressive effects of TGF-β1 on StAR expression and progesterone production were abolished by the inhibition of TGF-β type I receptor. In addition, treatment with TGF-β1 activated the Smad2/3 and ERK1/2 signaling pathways. The inhibition of the Smad3 and ERK1/2 signaling pathways attenuated the TGF-β1-induced downregulation of StAR expression and progesterone production. TGF-β1 downregulated StAR expression and decreased progesterone production by activating the Smad3 and ERK1/2 signaling pathways in human granulosa cells.

  14. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model.

    Science.gov (United States)

    Yadav, Satyndra Kumar; Rai, Sachchida Nand; Singh, Surya Pratap

    2017-03-01

    Parkinson's disease is one of the most common neurodegenerative disease found in aged peoples. Plentiful studies are being conducted to find a suitable and effective cure for this disease giving special impetus on use of herbal plants. The study aimed at investigating the effect of ethanolic extract of Mucuna pruriens (Mp) on level of nitric oxide (NO) in paraquat (PQ) induced Parkinson's disease (PD) mouse model and its subsequent contribution to lipid peroxidation. Twenty four Swiss albino mice were divided into three groups; Control, PQ and PQ+Mp. PQ doses were given intraperitoneally, twice in a week and oral dose of ethanolic extract of Mp seed was given for 9 weeks. Nitrite content and lipid peroxidation was measured in all treated groups along with respective controls. RNA was isolated from the nigrostriatal tissue of control and the treated mice and was reverse transcribed into cDNA. PCR was performed to amplify iNOS mRNA and western blot analysis was performed to check its protein level. We had also perfused the mice in all treated group and performed Tyrosine hydroxylase (TH) and iNOS immunoreactivity in substantia nigra region of mice brain. PQ-treatment increased nitrite content, expression of iNOS and lipid peroxidation compared to respective controls. Mp treatment resulted in a significant attenuation of iNOS expression, nitrite content and lipid peroxidation demonstrating that it reduces nitric oxide in PQ-induced Parkinson's disease. Interestingly; we also observed that mRNA, protein expression and immunoreactivity of iNOS was significantly decreased after Mp treatment and TH immunoreactivity was significantly improved after the treatment of Mp. Our results demonstrated that Mp protects the dopaminergic neurons from the NO injury in substantia nigra. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells.

    Science.gov (United States)

    Sasidharan Nair, Varun; Toor, Salman M; Ali, Bassam R; Elkord, Eyad

    2018-05-02

    Breast cancer is the most commonly diagnosed cancer, and it is a leading cause of cancer-related deaths in females worldwide. Triple-negative breast cancer (TNBC) constitutes 15% of breast cancer and shows distinct metastasis profiles with poor prognosis. Strong PD-L1 expression has been observed in some tumors, supporting their escape from immune surveillance. Targeting PD-L1 could be a promising therapeutic approach in breast cancer patients. We investigated potential molecular mechanisms for constitutive expression of PD-L1 by inhibiting upstream STAT1 and STAT3 signals. PD-L1 expression in three breast cancer cell lines was measured using quantitative PCR and western blotting. Activation of STAT1 and STAT3 was blocked using pharmacological inhibitors and siRNA. The mechanism underlying the constitutive expression of PD-L1 was investigated using ChIP and co-immunoprecipitation assays. We found that individual inhibition of STAT1 and STAT3 activation partially downregulated PD-L1, while combined inhibition completely downregulated PD-L1 expression. Moreover, our results suggest that pSTAT1-pSTAT3 dimerize in cytosol and translocate to the nucleus, where they bind to PD-L1 promoter and induce PD-L1 expression. These findings provide a rationale for combined targeting of STAT1 and STAT3 for the development of immune-based cancer therapies for down regulation of PD-L1 expression.

  16. Francisella tularensis elicits IL-10 via a PGE₂-inducible factor, to drive macrophage MARCH1 expression and class II down-regulation.

    Directory of Open Access Journals (Sweden)

    Danielle Hunt

    Full Text Available Francisella tularensis is a bacterial pathogen that uses host-derived PGE₂ to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE₂ acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE₂ can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensismacrophage supernatant, which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 "resistant" class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE₂ can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE₂ drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE₂, these results suggest that a yet-to-be-identified PGE₂-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens.

  17. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    Science.gov (United States)

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  18. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    Science.gov (United States)

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  19. Expression of inducible nitric oxide synthase in macrophages inversely correlates with parasitism of lymphoid tissues in dogs with visceral leishmaniasis.

    Science.gov (United States)

    Sanches, Françoise P; Tomokane, Thaise Y; Da Matta, Vânia L R; Marcondes, Mary; Corbett, Carlos E P; Laurenti, Márcia D

    2014-09-07

    There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-γ levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well. Parasite density (amastigotes/mm2) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS⁺ cells was higher in infected dogs compared to controls (P spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS⁺ cells in lymph nodes and interferon-γ levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS⁺ cell densities both in lymph nodes (r = -0.5341; P = 0.0034) and spleen (r = -0.4669; P = 0.0329). The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.

  20. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1 in Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr.

    Directory of Open Access Journals (Sweden)

    Bua-In Saowaluck

    2014-01-01

    Full Text Available Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr. is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant and evaluate the mechanical wounding that may influence the transcription level of the monoterpene synthase gene. To isolate the gene, the selected clones from DNA derived from young leaves were sequenced and analyzed and the monoterpene synthase gene from cassumunar ginger (ZMM1 was identified. The ZMM1 CDS containing 1 773 bp (KF500399 is predicted to encode a protein of 590 amino acids. The deduced amino acid sequence is 40-74% identical with known sequences of other angiosperm monoterpene synthases belonging to the isoprenoid biosynthesis C1 superfamily. A transcript of ZMM1 was detected almost exclusively in the leaves and was related to leaf wounding. The results of this research offer insight into the control of monoterpene synthesis in this plant. This finding can be applied to breeding programs or crop management of cassumunar ginger for better yield and quality of essential oil.

  1. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1) in Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.)

    OpenAIRE

    Bua-In Saowaluck; Paisooksantivatana Yingyong; Weimer Bart C.; Chowpongpang Srimek

    2014-01-01

    Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant an...

  3. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of SAICAR synthase from Streptococcus suis serotype 2

    International Nuclear Information System (INIS)

    Cheng, Xia; Lu, Guangwen; Qi, Jianxun; Cheng, Hao; Gao, Feng; Wang, Jundong; Yan, Jinghua

    2010-01-01

    Crystals of SAICAR synthase from S. suis serotype 2 were obtained in the presence of 40 mM aspartic acid substrate; they belonged to space group P2 and diffracted to 2.8 Å resolution. Phosphoribosylaminoimidazole-succinocarboxamide synthase (SAICAR synthase) plays an essential role in the de novo biosynthesis of purine nucleotides. In this study, the SAICAR synthase from Streptococcus suis was cloned and overexpressed in Escherichia coli. The subsequent product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.8 Å resolution and belonged to space group P2, with unit-cell parameters a = 70.2, b = 52.2, c = 153.9 Å, β = 102.8°

  4. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  5. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β gene with differential expression patterns and regulatory functions.

    Directory of Open Access Journals (Sweden)

    Linjie Wang

    Full Text Available Glycogen synthase kinase 3 (GSK3α and GSK3β are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer's disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.

  6. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    Science.gov (United States)

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  7. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons

    Directory of Open Access Journals (Sweden)

    Anne Abot

    2018-04-01

    Full Text Available Objective: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. Methods: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut–brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism were assessed. Results: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. Conclusion: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D. Keywords: Galanin, Enteric nervous system, Diabetes

  8. Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex

    Directory of Open Access Journals (Sweden)

    Lorenza eMagno

    2012-09-01

    Full Text Available Cortical GABAergic interneurons in rodents originate in three subcortical regions: the medial ganglionic eminence (MGE, the lateral/caudal ganglionic eminence (LGE/CGE and the preoptic area (POA. Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. nNOS-expressing neurons represent a heterogenous population of cortical interneurons. We examined the development of these cells in the mouse embryonic cortex and their abundance and distribution in adult animals. Using genetic lineage tracing in transgenic mice we find that nNOS type I cells originate only in the MGE whereas type II cells have a triple origin in the MGE, LGE/CGE and POA. The two populations are born at different times during development, occupy different layers in the adult cortex and have distinct neurochemical profiles. nNOS neurons are more numerous in the adult cortex than previously reported and constitute a significant proportion of the cortical interneuron population. Our data suggest that the heterogeneity of nNOS neurons in the cortex can be attributed to their multiple embryonic origins which likely impose distinct genetic specification programs.

  9. Prostacyclin Synthase: Upregulation during Renal Development and in Glomerular Disease as well as Its Constitutive Expression in Cultured Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Prostacyclin (PGI2 plays a critical role in nephrogenesis and renal physiology. However, our understanding of how prostacyclin release in the kidney is regulated remains poorly defined. We studied expression of prostacyclin synthase (PGIS in developing and adult human kidneys, and also in selected pediatric renal diseases. We also examined PGI2 formation in human mesangial cells in vitro. We observed abundant expression of PGIS in the nephrogenic cortex in humans and in situ hybridization revealed an identical pattern in mice. In the normal adult kidney, PGIS-immunoreactive protein and mRNA appear to localize to mesangial fields and endothelial and smooth muscle cells of arteries and peritubular capillaries. In kidney biopsies taken from pediatric patients, enhanced expression of PGIS-immunoreactive protein was noted mainly in endothelial cells of patients with IgA-nephropathy. Cultured human mesangial cells produce primarily PGI2 and prostaglandin E2, followed by prostaglandin F2α Cytokine stimulation increased PGI2 formation 24-fold. Under these conditions expression of PGIS mRNA and protein remained unaltered whereas mRNA for cyclooxygenase-2 was markedly induced. In contrast to its constitutive expression in vitro, renal expression of prostacyclin-synthase appears to be regulated both during development and in glomerular disease. Further research is needed to identify the factors involved in regulation of PGIS-expression.

  10. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  11. Overall major histocompatibility complex class I expression is not downregulated in cervix cancer, as detected by immunoelectron microscopy

    NARCIS (Netherlands)

    van Eijkeren, MA; Roovers, JP; Oorschot, [No Value; Geuze, HJ

    2004-01-01

    Downregulation of major histocompatibility complex (MHC) class I molecules in cervix cancer has been proposed as a mechanism for cancer cells to escape immunodetection. By means of light microscopic immunohistochemistry, it has been shown that in 20-70% of cervix cancers MHC class I is

  12. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  13. Constitutive expression of feedback-insensitive cystathionine γ-synthase increases methionine levels in soybean leaves and seeds

    Institute of Scientific and Technical Information of China (English)

    YU Yang; HOU Wen-sheng; YaeI Hacham; SUN Shi; WU Cun-xiang; Ifat Matityahu; SONG Shikui; RacheI Amir; HAN Tian-fu

    2018-01-01

    Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Although the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low concentration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione γ-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.

  14. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  15. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  16. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  17. Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression

    Directory of Open Access Journals (Sweden)

    Po-Chun Chen

    2017-01-01

    Full Text Available Abstract Background Thrombospondin-2 (TSP-2 is a secreted matricellular glycoprotein that is found to mediate cell-to-extracellular matrix attachment and participates in many physiological and pathological processes. The expression profile of TSP-2 on tumors is controversial, and it up-regulates in some cancers, whereas it down-regulates in others, suggesting that the functional role of TSP-2 on tumors is still uncertain. Methods The expression of TSP-2 on prostate cancer progression was determined in the tissue array by the immunohistochemistry. The molecular mechanism of TSP-2 on prostate cancer (PCa metastasis was investigated through pharmaceutical inhibitors, siRNAs, and miRNAs analyses. The role of TSP-2 on PCa metastasis in vivo was verified through xenograft in vivo imaging system. Results Based on the gene expression omnibus database and immunohistochemistry, we found that TSP-2 increased with the progression of PCa, especially in metastatic PCa and is correlated with the matrix metalloproteinase-2 (MMP-2 expression. Additionally, through binding to CD36 and integrin ανβ3, TSP-2 increased cell migration and MMP-2 expression. With inhibition of p38, ERK, and JNK, the TSP-2-induced cell migration and MMP-2 expression were abolished, indicating that the TSP-2’s effect on PCa is MAPK dependent. Moreover, the microRNA-376c (miR-376c was significantly decreased by the TSP-2 treatment. Furthermore, the TSP-2-induced MMP-2 expression and the subsequent cell motility were suppressed upon miR-376c mimic stimulation. On the other hand, the animal studies revealed that the bone metastasis was abolished when TSP-2 was stably knocked down in PCa cells. Conclusions Taken together, our results indicate that TSP-2 enhances the migration of PCa cells by increasing MMP-2 expression through down-regulation of miR-376c expression. Therefore, TSP-2 may represent a promising new target for treating PCa.

  18. The expression, purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP synthase from bovine mitochondria

    International Nuclear Information System (INIS)

    Silvester, Jocelyn A.; Kane Dickson, Veronica; Runswick, Michael J.; Leslie, Andrew G. W.; Walker, John E.

    2006-01-01

    A recombinant subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been crystallized and a native data set has been collected to 2.8 Å resolution. A subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been expressed to high levels in a soluble form in Escherichia coli. The subcomplex consists of residues 79–184 of subunit b, residues 1–124 of subunit d and the entire F 6 subunit (76 residues). It has been purified and crystallized by vapour diffusion. The morphology and diffraction properties of the crystals of the subcomplex were improved by the presence of thioxane or 4-methylpyridine in the crystallization liquor. With a synchrotron-radiation source, these crystals diffracted to 2.8 Å resolution. They belong to the monoclinic space group P2 1

  19. Frequent downregulation of BTB and CNC homology 2 expression in Epstein-Barr virus-positive diffuse large B-cell lymphoma.

    Science.gov (United States)

    Noujima-Harada, Mai; Takata, Katsuyoshi; Miyata-Takata, Tomoko; Sakurai, Hiroaki; Igarashi, Kazuhiko; Ito, Etsuro; Nagakita, Keina; Taniguchi, Kohei; Ohnishi, Nobuhiko; Omote, Shizuma; Tabata, Tetsuya; Sato, Yasuharu; Yoshino, Tadashi

    2017-05-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma subtype, and the Epstein-Barr virus (EBV)-positive subtype of DLBCL is known to show a more aggressive clinical behavior than the EBV-negative one. BTB and CNC homology 2 (BACH2) has been highlighted as a tumor suppressor in hematopoietic malignancies; however, the role of BACH2 in EBV-positive DLBCL is unclear. In the present study, BACH2 expression and its significance were studied in 23 EBV-positive and 43 EBV-negative patient samples. Immunohistochemistry revealed BACH2 downregulation in EBV-positive cases (P < 0.0001), although biallelic deletion of BACH2 was not detected by FISH. Next, we analyzed the contribution of BACH2 negativity to aggressiveness in EBV-positive B-cell lymphomas using FL-18 (EBV-negative) and FL-18-EB cells (FL-18 sister cell line, EBV-positive). In BACH2-transfected FL-18-EB cells, downregulation of phosphorylated transforming growth factor-β-activated kinase 1 (pTAK1) and suppression in p65 nuclear fractions were observed by Western blot analysis contrary to non-transfected FL-18-EB cells. In patient samples, pTAK1 expression and significant nuclear p65, p50, and p52 localization were detected immunohistochemically in BACH2-negative DLBCL (P < 0.0001, P = 0.006, and P = 0.001, respectively), suggesting that BACH2 downregulation contributes to constitutive activation of the nuclear factor-κB pathway through TAK1 phosphorylation in BACH2-negative DLBCL (most EBV-positive cases). Although further molecular and pathological studies are warranted to clarify the detailed mechanisms, downregulation of BACH2 may contribute to constitutive activation of the nuclear factor-κB pathway through TAK1 activation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    Energy Technology Data Exchange (ETDEWEB)

    Kirimura, Kohtaro, E-mail: kkohtaro@waseda.jp; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-05-13

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  1. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    International Nuclear Information System (INIS)

    Kirimura, Kohtaro; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-01-01

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni"2"+-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  2. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis1[OPEN

    Science.gov (United States)

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E.; Chen, Ming; Zhou, Yongming; Yu, Bin

    2015-01-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. PMID:26048882

  3. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    Science.gov (United States)

    Popławski, Piotr; Wiśniewski, Jacek R; Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef; Piekiełko-Witkowska, Agnieszka

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3'-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes

  4. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    Directory of Open Access Journals (Sweden)

    Piotr Popławski

    Full Text Available Type 1 iodothyronine deiodinase (DIO1 contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4 yielding of 3,5,3'-triiodothyronine (T3, a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2 that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2, enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2, sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10. DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression

  5. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    Science.gov (United States)

    Formighieri, Cinzia; Melis, Anastasios

    2015-11-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to divert intermediate terpenoid metabolites and to generate the monoterpene β-phellandrene during photosynthesis. However, terpene synthases, including the PHLS, have a slow Kcat (low Vmax) necessitating high levels of enzyme concentration to enable meaningful rates and yield of product formation. Here, a novel approach was applied to increase the PHLS protein expression alleviating limitations in the rate and yield of β-phellandrene product generation. Different PHLS fusion constructs were generated with the Synechocystis endogenous cpcB sequence, encoding for the abundant in cyanobacteria phycocyanin β-subunit, expressed under the native cpc operon promoter. In one of these constructs, the CpcB·PHLS fusion protein accumulated to levels approaching 20% of the total cellular protein, i.e., substantially higher than expressing the PHLS protein alone under the same endogenous cpc promoter. The CpcB·PHLS fusion protein retained the activity of the PHLS enzyme and catalyzed β-phellandrene synthesis, yielding an average of 3.2 mg product g(-1) dry cell weight (dcw) versus the 0.03 mg g(-1)dcw measured with low-expressing constructs, i.e., a 100-fold yield improvement. In conclusion, the terpene synthase fusion-protein approach is promising, as, in this case, it substantially increased the amount of the PHLS in cyanobacteria, and commensurately improved rates and yield of β-phellandrene hydrocarbons production in these photosynthetic microorganisms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    Science.gov (United States)

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  7. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  8. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    International Nuclear Information System (INIS)

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-01-01

    Highlights: ► Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4 + T cells. ► Carrying out siRNA technology to study FOXO3A protein function. ► Helpful to understand the T cell especially CD4 + T cell‘s role in immunological reaction. -- Abstract: The TNF ligand family member “B cell-activating factor belonging to the TNF family” (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4 + spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4 + T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4 + spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4 + T cell proliferation.

  9. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  10. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    International Nuclear Information System (INIS)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-01-01

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl 4 -treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  11. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells.

    Science.gov (United States)

    Hua, Wen-Feng; Fu, Yong-Shui; Liao, Yi-Ji; Xia, Wen-Jie; Chen, Yang-Chao; Zeng, Yi-Xin; Kung, Hsiang-Fu; Xie, Dan

    2010-07-10

    Curcumin, a natural compound isolated from turmeric, may inhibit cell proliferation in various tumor cells through a mechanism that is not fully understood. The enhancer of zeste homolog 2 (EZH2) gene is overexpressed in human breast cancers with poor prognosis. In this study, we observed a dose- and time-dependent down-regulation of expression of EZH2 by curcumin that correlates with decreased proliferation in the MDA-MB-435 breast cancer cell line. The curcumin treatment resulted in an accumulation of cells in the G(1) phase of the cell cycle. Further investigation revealed that curcumin-induced down-regulation of EZH2 through stimulation of three major members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. These data suggest that an underlying mechanism of the MAPK pathway mediates the down-regulation of EZH2, thus contributing to the anti-proliferative effects of curcumin against breast cancer. Copyright 2010 Elsevier B.V. All rights reserved.

  12. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli. In this study, we investigated gene expression changes in the kidney after acute exposure to a nephrotoxin, D-serine, which targets the proximal tubule of the kidney. Male F-344 rats injected intraperitoneally with a single dose of D-serine (5, 20, 50, 200 or 500 mg/kg), and gene expression profiles in the kidney were determined using the Affymetrix RAE230A gene arrays at 96 h post-dosing. D-Serine treatment resulted in the up- and down-regulation of 1158 and 749 genes, respectively, over the entire dose range based on the intersection of the results of t-test, p < 0.01 over two consecutive doses, and ANOVA with Bonferonni correction for multiple testing. Interestingly, both the up-and down-regulated genes show a unified dose response pattern as revealed in the self-organized map clustering analysis using the expression profiles of the 1907 differentially expressed genes as input data. There appears to be minimal changes in the expression level of these genes in the dose range of 5-50 mg/kg, while the most prominent changes were observed at the highest doses tested, i.e. 200 and 500 mg/kg. Pathway analysis of the differentially expressed genes showed perturbation of a large number of biological processes/pathways after D-serine exposure. Among the up-regulated pathways are actin cytoskeleton biogenesis and organization, apoptosis, cell cycle regulation, chromatin assembly, excision repair of damaged DNA, DNA replication and packaging, protein biosynthesis

  13. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases

  14. Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status

    NARCIS (Netherlands)

    Vos, TA; van Goor, H; Tuyt, L; de Jager-Krikken, A; Leuvenink, R; Kuipers, F; Jansen, PLM; Moshage, H

    The inducible nitric oxide synthase (iNOS) promoter contains nuclear factor kappa B (NF-kappa B) binding sites. NF-kappa B activation is determined, in part, by the intracellular redox status, The aim of this study was to determine the importance of the cellular glutathione status in relation to

  15. Expression of microsomal prostaglandin E synthase-1 in intestinal type gastric adenocarcinoma and in gastric cancer cell lines

    NARCIS (Netherlands)

    van Rees, Bastiaan P.; Sivula, Anna; Thorén, Staffan; Yokozaki, Hiroshi; Jakobsson, Per-Johan; Offerhaus, G. Johan A.; Ristimäki, Ari

    2003-01-01

    Gastrointestinal carcinomas synthesize elevated levels of prostaglandin E(2) (PGE(2)), which has been mechanistically linked to carcinogenesis. Recently, microsomal prostaglandin E synthase-1 (mPGES-1) was cloned, which seems to be inducible and linked to cyclooxygenase-2 (Cox-2) in the biosynthesis

  16. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  17. Progesterone receptor activates Msx2 expression by downregulating TNAP/Akp2 and activating the Bmp pathway in EpH4 mouse mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jodie M Fleming

    Full Text Available Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR. Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2 was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers.

  18. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    Science.gov (United States)

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial

  19. Immunohistochemical properties of the expression of endothelial nitric oxide synthase in placenta in its dysfunction in women with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    I. A. Ancheva

    2014-08-01

    Full Text Available Aim. The pertinence of the study is related to a large prevalence of dysfunction of the placenta in pregnant women suffering from anemia. To evaluate the immunohistochemical expression characteristics of endothelial NO-synthase (eNOS in the placenta during its dysfunction in women against the background of anemia 30 samples of placental tissue were studied with the use of immunohistochemical and micrometer methods. Materials and results. It was found that the expression of eNOS in patients with iron defi ciency anemia in the cytoplasm of syncytium of villi and fetal capillary endothelium as well as decidual vessels decreases, with the most pronounced changes in the expression of eNOS observed in the presence of the combination of placental dysfunction and iron defi ciency anemia in the form of paradoxical increase in expression. Conclusion. This indicates the necessity for correction of endothelial function in women with anemia during pregnancy.

  20. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression.

    Science.gov (United States)

    Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue

    2016-04-26

    The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.

  1. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin.

    Science.gov (United States)

    Seo, Seung Un; Kim, Tae Hwan; Kim, Dong Eun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2017-10-01

    Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.

    Science.gov (United States)

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX 3 CR1 expression.

  3. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin

    Directory of Open Access Journals (Sweden)

    Seung Un Seo

    2017-10-01

    Full Text Available Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4, human breast carcinoma (MDA-MB231, and human glioma (U87MG cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926. We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5 expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.

  4. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    Science.gov (United States)

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  5. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    Energy Technology Data Exchange (ETDEWEB)

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  6. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  7. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-01-01

    Highlights: ► PTP1B protein showed decreased expression in 67.79% of the HCC patients. ► Low PTP1B expression predicts poor prognosis of HCC. ► Low PTP1B expression is correlated with expansion of OV6 + tumor-initiating cells. ► Down-regulation of PTP1B is associated with activation of Wnt/β-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6 + tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  8. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long-Yi [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhou, Dong-Xun [Department of Comprehensive Treatment II, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai 200438 (China); Lu, Jin [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhang, Wen-Jun [Department of Emergency, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zou, Da-Jin, E-mail: dajinzou@hotmail.com [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  9. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  10. Experimental study of inhibitory effects of diallyl trisulfide on the growth of human osteosarcoma Saos-2 cells by downregulating expression of glucose-regulated protein 78

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2018-01-01

    Full Text Available Yue Zhang,1,* Wen-Peng Xie,1,* Yong-Kui Zhang,2 Yi-Qiang Chen,3 Dong-Li Wang,2 Gang Li,2 Dong-Hui Guan2 1First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 2Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 3Department of Orthopedics, The First People’s Hospital of Taian City, Taian, People’s Republic of China *These authors contributed equally to the paper Background: Diallyl trisulfide (DATS is a natural organic sulfur compound isolated from garlic that has good anticancer activity according to many previous reports. There are many studies pointing out that DATS can downregulate expression of the glucose-regulated protein 78 (GRP78, which is associated with poor prognosis and drug resistance in various types of human cancers. However, it remains unknown whether DATS has the same effect on human osteosarcoma cells. This study attempted to clarify the potential molecular mechanisms of the action of DATS in human osteosarcoma Saos-2 cells.Methods: We used an inverted phase microscope and immunofluorescent staining to observe the morphological changes of Saos-2 cells after being cultured in different concentrations of DATS (0, 25, 50, and 100 µM for 24 h, or for four time periods (24, 48, 72, and 96 h in the same DATS concentration (50 µM. Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression level of GRP78 mRNA and proteins in Saos-2 cells. GRP78 expression was suppressed in Saos-2 cells by utilizing small-interfering RNA, and the cells were subsequently used to study the anti-proliferative effects of DATS treatment.Results: The expression level of GRP78 mRNA and proteins was significantly downregulated due to the increased concentration and effective times of DATS (P<0.05. In addition, there were significant associations between GRP78

  11. Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia.

    Science.gov (United States)

    Yin, Min; Chen, Zhiying; Ouyang, Yetong; Zhang, Huiyan; Wan, Zhigang; Wang, Han; Wu, Wei; Yin, Xiaoping

    2017-06-29

    Controlling thrombin-driven microglial activation may serve as a therapeutic target for intracerebral hemorrhage (ICH). Here, we investigated microRNA (miRNA)-based regulation of thrombin-driven microglial activation using an in vitro thrombin toxicity model applied to primary human microglia. A miRNA array identified 22 differential miRNA candidates. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) identified miR-181c as the most significantly downregulated miRNA. TargetScan analysis identified mixed lineage leukemia-1 (MLL1) as a putative gene target for miR-181c. qRT-PCR was applied to assess tumor necrosis factor-alpha (TNF-α), miR-181c, and MLL1 levels following thrombin or proteinase-activated receptor-4-specific activating peptide (PAR4AP) exposure. Anti-TNF-α antibodies and tumor necrosis factor receptor (TNFR) silencing were employed to test TNF-α/TNFR dependence. A dual-luciferase reporter system and miR-181c mimic transfection assessed whether mir-181c directly binds to and negatively regulates MLL1. Nuclear factor kappa-B (NF-κB)-dependent luciferase reporter assays and NF-κB target gene expression were assessed in wild-type (MLL1+) and MLL1-silenced cells. Thrombin or PAR4AP-induced miR-181c downregulation (p < 0.05) and MLL1 upregulation (p < 0.05) that were dependent upon TNF-α/TNFR. miR-181c decreased wild-type MLL1 3'-UTR luciferase reporter activity (p < 0.05), and a miR-181c mimic suppressed MLL1 expression (p < 0.05). Thrombin treatment increased, while miR-181c reduced, NF-κB activity and NF-κB target gene expression in both wild-type (MLL1+) and MLL1-silenced cells (p < 0.05). Thrombin-induced, TNF-α/TNFR-dependent miR-181c downregulation promotes MLL1 expression, increases NF-κB activity, and upregulates NF-κB target gene expression. As miR-181c opposes thrombin's stimulation of pro-inflammatory NF-κB activity, miR-181c mimic therapy may show promise in controlling thrombin

  12. Glycogen Phosphorylase and Glycogen Synthase: Gene Cloning and Expression Analysis Reveal Their Role in Trehalose Metabolism in the Brown Planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhang, Lu; Wang, Huijuan; Chen, Jianyi; Shen, Qida; Wang, Shigui; Xu, Hongxing; Tang, Bin

    2017-01-01

    RNA interference has been used to study insects' gene function and regulation. Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in carbohydrates' conversion in insects. Glycogen content and GP and GS gene expression in several tissues and developmental stages of the Brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) were analyzed in the present study, using quantitative reverse-transcription polymerase chain reaction to determine their response to double-stranded trehalases (dsTREs), trehalose-6-phosphate synthases (dsTPSs), and validamycin injection. The highest expression of both genes was detected in the wing bud, followed by leg and head tissues, and different expression patterns were shown across the developmental stages analyzed. Glycogen content significantly decreased 48 and 72 h after dsTPSs injection and 48 h after dsTREs injection. GP expression increased 48 h after dsTREs and dsTPSs injection and significantly decreased 72 h after dsTPSs, dsTRE1-1, and dsTRE1-2 injection. GS expression significantly decreased 48 h after dsTPS2 and dsTRE2 injection and 72 h after dsTRE1-1 and dsTRE1-2 injection. GP and GS expression and glycogen content significantly decreased 48 h after validamycin injection. The GP activity significantly decreased 48 h after validamycin injection, while GS activities of dsTPS1 and dsTRE2 injection groups were significantly higher than that of double-stranded GFP (dsGFP) 48 h after injection, respectively. Thus, glycogen is synthesized, released, and degraded across several insect tissues according to the need to maintain stable trehalose levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  13. Increased expressions of ADAMTS-13, neuronal nitric oxide synthase, and neurofilament correlate with severity of neuropathology in Border disease virus-infected small ruminants.

    Directory of Open Access Journals (Sweden)

    Gungor Cagdas Dincel

    Full Text Available Border Disease (BD, caused by Pestivirus from the family Flaviviridae, leads to serious reproductive losses and brain anomalies such as hydranencephaly and cerebellar hypoplasia in aborted fetuses and neonatal lambs. In this report it is aimed to investigate the expression of neuronal nitric oxide synthase (nNOS, A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13 (ADAMTS-13, and neurofilament (NF in the brain tissue in small ruminants infected with Border Disease Virus (BDV and to identify any correlation between hypomyelinogenesis and BD neuropathology. Results of the study revealed that the levels of ADAMTS-13 (p<0.05, nNOS (p<0.05, and NF (p<0.05 were remarkably higher in BDV-infected brain tissue than in the uninfected control. It was suggested that L-arginine-NO synthase pathway is activated after infection by BDV and that the expression of NF and nNOS is associated with the severity of BD. A few studies have focused on ADAMTS-13 expression in the central nervous system, and its function continues to remain unclear. The most prominent finding from our study was that ADAMTS-13, which contain two CUB domains, has two CUB domains and its high expression levels are probably associated with the development of the central nervous system (CNS. The results also clearly indicate that the interaction of ADAMTS-13 and NO may play an important role in the regulation and protection of the CNS microenvironment in neurodegenerative diseases. In addition, NF expression might indicate the progress of the disease. To the best of the authors'knowledge, this is the first report on ADAMTS-13 expression in the CNS of BDV-infected small ruminants.

  14. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Vannozzi Alessandro

    2012-08-01

    Full Text Available Abstract Background Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS, a type III polyketide synthase (PKS. Stilbene synthases are closely related to chalcone synthases (CHS, the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species. Results In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection and abiotic (wounding and UV-C exposure stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be

  15. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  16. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  17. Prolonged calorie restriction downregulates skeletal muscle mTORC1 signaling independent of dietary protein intake and associated microRNA expression

    Directory of Open Access Journals (Sweden)

    Lee M Margolis

    2016-10-01

    Full Text Available Short-term (5-10 days calorie restriction (CR downregulates muscle protein synthesis, with consumption of a high protein-based diet attenuating this decline. Benefit of increase protein intake is believed to be due to maintenance of amino acid-mediated anabolic signaling through the mechanistic target of rapamycin complex 1 (mTORC1, however, there is limited evidence to support this contention. The purpose of this investigation was to determine the effects of prolonged CR and high protein diets on skeletal muscle mTORC1 signaling and expression of associated microRNA (miR. 12-wk old male Sprague Dawley rats consumed ad libitum (AL or calorie restricted (CR; 40% adequate (10%, AIN-93M or high (32% protein milk-based diets for 16 weeks. Body composition was determined using dual energy X-ray absorptiometry and muscle protein content was calculated from muscle homogenate protein concentrations expressed relative to fat-free mass to estimate protein content. Western blot and RT-qPCR were used to determine mTORC1 signaling and mRNA and miR expression in fasted mixed gastrocnemius. Independent of dietary protein intake, muscle protein content was 38% lower (P < 0.05 in CR compared to AL. Phosphorylation and total Akt, mTOR, rpS6 and p70S6K were lower (P < 0.05 in CR versus AL, and total rpS6 was associated with muscle protein content (r = 0.64, r2 = 0.36. Skeletal muscle miR expression was not altered by either energy or protein intake. This study provides evidence that chronic CR attenuates muscle protein content by downregulating mTORC1 signaling. This response is independent of skeletal muscle miR and dietary protein.

  18. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  19. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Gerber, Lucie; Madsen, Steffen S; Jensen, Frank B

    2017-01-01

    Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na(+)/K(+)-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production...... in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects....... Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle...

  20. Expression, purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Bacillus anthracis in the presence of pyruvate

    International Nuclear Information System (INIS)

    Voss, Jarrod E.; Scally, Stephen W.; Taylor, Nicole L.; Dogovski, Con; Alderton, Malcolm R.; Hutton, Craig A.; Gerrard, Juliet A.; Parker, Michael W.; Dobson, Renwick C. J.; Perugini, Matthew A.

    2009-01-01

    Dihydrodipicolinate synthase (DHDPS) catalyses an important step in lysine biosynthesis. Here, the expression, purification, crystallization and preliminary diffraction analysis to 2.15 Å resolution of DHDPS from B. anthracis soaked with the substrate pyruvate are reported. Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the lysine-biosynthesis pathway in bacteria, plants and some fungi. In this study, the expression of DHDPS from Bacillus anthracis (Ba-DHDPS) and the purification of the recombinant enzyme in the absence and presence of the substrate pyruvate are described. It is shown that DHDPS from B. anthracis purified in the presence of pyruvate yields greater amounts of recombinant enzyme with more than 20-fold greater specific activity compared with the enzyme purified in the absence of substrate. It was therefore sought to crystallize Ba-DHDPS in the presence of the substrate. Pyruvate was soaked into crystals of Ba-DHDPS prepared in 0.2 M sodium fluoride, 20%(w/v) PEG 3350 and 0.1 M bis-tris propane pH 8.0. Preliminary X-ray diffraction data of the recombinant enzyme soaked with pyruvate at a resolution of 2.15 Å are presented. The pending crystal structure of the pyruvate-bound form of Ba-DHDPS will provide insight into the function and stability of this essential bacterial enzyme

  1. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars.

    Science.gov (United States)

    Dhandapani, R; Singh, V P; Arora, A; Bhattacharya, R C; Rajendran, Ambika

    2017-12-01

    An experiment was conducted with twelve major Indian banana cultivars to investigate the molecular relationship between the differential accumulation of β-carotene in peel and pulp of the banana fruit and carotenoid biosynthetic pathway genes. The high performance liquid chromatography showed that all banana cultivars accumulated two-three fold more β-carotene in non-edible portion of the banana fruit. However, Nendran , a famous orange fleshed cultivar of South India, had high β-carotene content (1362 µg/100 g) in edible pulp. The gene encoding Musa accuminata phytoene synthase ( MaPsy ) was successfully amplified using a pair of degenerate primers designed from Oncidium orchid. The deduced amino acid sequences shared a high level of identity to phytoene synthase gene from other plants. Gene expression analysis confirmed the presence of two isoforms ( MaPsy1 and MaPsy2 ) of MaPsy gene in banana fruits. Presence of two isoforms of MaPsy gene in peel and one in pulp confirmed the differential accumulation of β-carotene in banana fruits. However, Nendran accumulated more β-carotene in edible pulp due to presence of both the isoforms of MaPsy gene. Thus, carotenoid accumulation is a tissue specific process strongly dependent on differential expression pattern of two isoforms of MaPsy gene in banana.

  2. Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.).

    Science.gov (United States)

    Cong, Ling; Wang, Cheng; Chen, Ling; Liu, Huijuan; Yang, Guangxiao; He, Guangyuan

    2009-09-23

    Dietary micronutrient deficiencies, such as the lack of vitamin A, are a major source of morbidity and mortality worldwide. Carotenoids in food can function as provitamin A in humans, while grains of Chinese elite wheat cultivars generally have low carotenoid contents. To increase the carotenoid contents in common wheat endosperm, transgenic wheat has been generated by expressing the maize y1 gene encoding phytoene synthase driven by a endosperm-specific 1Dx5 promoter in the elite wheat (Triticum aestivum L.) variety EM12, together with the bacterial phytoene desaturase crtI gene from Erwinia uredovora under the constitutive CaMV 35S promoter control. A clear increase of the carotenoid content was detected in the endosperms of transgenic wheat that visually showed a light yellow color. The total carotenoids content was increased up to 10.8-fold as compared with the nontransgenic EM12 cultivar. To test whether the variability of total carotenoid content in different transgenic lines was due to differences in the transgene copy number or expression pattern, Southern hybridization and semiquantitative reverse transcriptase polymerase chain reaction analyses were curried out. The results showed that transgene copy numbers and transcript levels did not associate well with carotenoid contents. The expression patterns of endogenous carotenoid genes, such as the phytoene synthases and carotene desaturases, were also investigated in wild-type and transgenic wheat lines. No significant changes in expression levels of these genes were detected in the transgenic endosperms, indicating that the increase in carotenoid transgenic wheat endosperms resulted from the expression of transgenes.

  3. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.Z. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Liu, N. [Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang (China); Dou, L.Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Jiang, Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Department of Dermatology, First Affiliated Hospital, China Medical University, Shenyang (China)

    2014-10-17

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r{sub s}=0.283, P=0.049) and serum albumin (r{sub s}=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r{sub s}=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.

  4. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Cai, X.Z.; Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S.; Liu, N.; Dou, L.Y.; Jiang, Y.

    2014-01-01

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r s =0.283, P=0.049) and serum albumin (r s =0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r s =-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE

  5. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  6. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  7. Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Di Fazio, Pietro, E-mail: difazio@med.uni-marburg.de [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Montalbano, Roberta [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Neureiter, Daniel; Alinger, Beate [Institute of Pathology, Paracelsus Private Medical University of Salzburg, Salzburg (Austria); Schmidt, Ansgar [Institute for Pathology, Philipps University of Marburg, Marburg (Germany); Merkel, Anna Lena; Quint, Karl; Ocker, Matthias [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany)

    2012-09-10

    Inhibitors of protein deacetylases represent a novel therapeutic option for cancer diseases due to their effects on transcriptional regulation by interfering with histones acetylation and on several other cellular pathways. Recently, their ability to modulate several transcription factors and, interestingly, also co-factors, which actively participate in formation and modulation of transcription complexes was shown. We here investigate whether HMGA2 (High Mobility Group AT-2 hook), a nuclear non-histone transcriptional co-factor with known oncogenic properties, can be influenced by the novel pan-deacetylase inhibitor panobinostat (LBH589) in human hepatocellular carcinoma models. Panobinostat strongly downregulated HMGA2 in HepG2 and Hep3B cells; this effect was mediated by transcriptional upregulation and promotion of the maturation of the tumorsuppressor miRNA hsa-let-7b, which could inhibit HMGA2 expression via RNA interference pathways. siRNA knockdown of HMGA2 or transfection of hsa-let-7b mimicking oligonucleotides confirmed the role of HMGA2 in regulating cell proliferation and apoptosis in liver cancer cell lines. Co-incubation with panobinostat showed an additive effect on inhibition of cell proliferation using an impedance-based real-time cell analyzer. Treatment of HepG2 xenografts with panobinostat also led to a downregulation of HMGA2 in vivo. These findings show that pan-deacetylase inhibitors also modulate other signaling pathways and networks than histone modifications to influence cell fate. -- Highlights: Black-Right-Pointing-Pointer Panobinostat for the treatment of liver cancer. Black-Right-Pointing-Pointer Panobinostat meddles with miRNAs-dependent transcriptional and translational control. Black-Right-Pointing-Pointer Tumorsuppressor miRNA hsa-let-7b upregulation. Black-Right-Pointing-Pointer HMGA2 is downregulated via RNA interference pathways mediated by hsa-let-7b. Black-Right-Pointing-Pointer Panobinostat determines inhibition of

  8. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    Science.gov (United States)

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  9. The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction

    International Nuclear Information System (INIS)

    Koes, R.E.; Spelt, C.E.; Mol, J.N.M.

    1989-01-01

    We have analysed the expression of the 8-10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences. (author)

  10. Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

    Science.gov (United States)

    Bai, Xue; Zhang, Xiangjian; Chen, Linyu; Zhang, Jian; Zhang, Lan; Zhao, Xumeng; Zhao, Ting; Zhao, Yuan

    2014-08-01

    Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague-Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG's influence on blood-brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

  11. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  12. Interleukin-4 inhibits RANKL-induced expression of NFATc1 and c-Fos: A possible mechanism for downregulation of osteoclastogenesis

    International Nuclear Information System (INIS)

    Kamel Mohamed, Saad Gad; Sugiyama, Eiji; Shinoda, Kouichiro; Hounoki, Hiroyuki; Taki, Hirofumi; Maruyama, Muneharu; Miyahara, Tatsuro; Kobayashi, Masashi

    2005-01-01

    Interleukin-4 (IL-4), an anti-inflammatory cytokine, has been shown to inhibit osteoclast differentiation. Therefore, this cytokine is considered to be a promising therapeutic applicant for bone-resorbing diseases such as rheumatoid arthritis (RA). Recently NFATc1, a transcription factor, has been shown to play critical roles in osteoclastogenesis. The aim of this study was to clarify the role of IL-4 on the intracellular signaling of NFATc1. A RAW264.7 monocyte/macrophage cell line and murine bone marrow precursors were differentiated into osteoclasts in the presence of receptor activator of nuclear factor κB ligand (RANKL) and/or macrophage colony-stimulating factor. Tartrate-resistant acid phosphatase (TRAP) staining and a pit assay using dentine were used for the identification of activated osteoclasts. The protein expression of IL-4 receptor, NFATc1, and c-Fos was determined by Western blot analysis. In addition, the gene expression of NFATc1 and c-Fos was determined by reverse transcription and polymerase chain reaction. The IL-4 receptor was constitutively expressed in RAW264.7 cells. RANKL induced osteoclast generation, as determined by TRAP staining and pit assay. IL-4 inhibited RANKL-induced osteoclastogenesis at low concentrations of 10 ng/ml and more. Interestingly, IL-4 potently inhibited RANKL-induced expression of NFATc1 at mRNA level. Furthermore, IL-4 inhibited c-Fos expression, which is shown to be responsible for NFATc1 expression, in time- and dose-dependent manners. In addition, IL-4 inhibited the RANKL-induced expression of NFATc1 and c-Fos in murine bone marrow cells. Thus, we suggest that IL-4 may downregulate osteoclastogenesis in part through inhibition of the expression of transcription factors, NFATc1 and c-Fos. These findings provide new insight into development of new medication for osteoporosis and RA

  13. Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus.

    Science.gov (United States)

    Xing, Fuguo; Wang, Limin; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Yan; Zhao, Yueju; Liu, Yang

    2017-09-01

    Twenty Aspergillus niger strains were isolated from peanuts and 14 strains were able to completely inhibit AFB 1 production with co-cultivation. By using a Spin-X centrifuge system, it was confirmed that there are some soluble signal molecules or antibiotics involved in the inhibition by A. niger, although they are absent during the initial 24h of A. flavus growth when it is sensitive to inhibition. In A. flavus, 19 of 20 aflatoxin biosynthetic genes were down-regulated by A. niger. Importantly, the expression of aflS was significantly down-regulated, resulting in a reduction of AflS/AflR ratio. The results suggest that A. niger could directly inhibit AFB 1 biosynthesis through reducing the abundance of aflS to aflR mRNAs. Interestingly, atoxigenic A. flavus JZ2 and GZ15 effectively degrade AFB 1 . Two new metabolites were identified and the key toxic lactone and furofuran rings both were destroyed and hydrogenated, meaning that lactonase and reductase might be involved in the degradation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    Science.gov (United States)

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.

  15. TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116.

    Science.gov (United States)

    Choi, Jee-Hye; Min, Na Young; Park, Jina; Kim, Jin Hong; Park, Soo Hyun; Ko, Young Jong; Kang, Yoonsung; Moon, Young Joon; Rhee, Sangmyung; Ham, Seung Wook; Park, Ae Ja; Lee, Kwang-Ho

    2010-01-01

    Trichostatin A (TSA), an inhibitor of histone deacetylase, is a well-known antitumor agent that effectively and selectively induces tumor growth arrest and apoptosis. Recently, it was reported that hTERT is one of the primary targets for TSA-induced apoptosis in cancer cells but the mechanism of which has not yet been elucidated. In the present study, to better understand the epigenetic regulation mechanism responsible for the repression of hTERT by TSA, we examined expression of hTERT in the HCT116 colon cancer cell line after treatment with TSA and performed site-specific CpG methylation analysis of the hTERT promoter. We found that TSA-induced the demethylation of site-specific CpGs on the promoter of hTERT, which was caused by down-regulation of DNA methyltransferase 1 (DNMT1). Among the demethylated region, the 31st-33rd CpGs contained a binding site for CTCF, an inhibitor of hTERT transcription. ChIP analysis revealed that TSA-induced demethylation of the 31st-33rd CpGs promoted CTCF binding on hTERT promoter, leading to repression of hTERT. Taken together, down-regulation of DNMT1 by TSA caused demethylation of a CTCF binding site on the hTERT promoter, the result of which was repression of hTERT via recruitment of CTCF to the promoter. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model

    International Nuclear Information System (INIS)

    Abe, Hajime; Ogawa, Takashi; Wang, Liyun; Kimura, Masayuki; Tanaka, Takeshi; Morita, Reiko; Yoshida, Toshinori; Shibutani, Makoto

    2014-01-01

    Thioacetamide (TAA) has been used to develop a rodent model for hepatocarcinogenesis. To determine the genes with epigenetic modifications in early hepatocarcinogenesis, we did a genome-wide scan for hypermethylated promoter regions using CpG island microarrays in TAA-promoted rat liver tissue. Eight genes were selected based on the microarray profile; of these, Yy1 and Wdr45b were confirmed to be hypermethylated by methylation-specific polymerase chain reaction (PCR) and pyrosequencing and downregulated by real-time reverse transcription PCR. Non-neoplastic liver cells had nuclear Yy1 immunoreactivity, while preneoplastic foci with glutathione S-transferase placental form (GST-P) immunoreactivity had decreased Yy1 immunoreactivity. The incidence of these foci was proportional to the dose of TAA administered. Co-expression analysis of gene products downstream of Yy1 revealed increased nuclear phospho-c-Myc + foci as well as nuclear and cytoplasmic p21 Cip1+ foci in Yy1 − or GST-P + foci in response to TAA-promotion dose. Although the absolute number of cells was low, the incidence of death receptor 5 − foci was increased in Yy1 − foci in proportion to the TAA dose. Yy1 − /GST-P + foci revealed a higher number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells than Yy1 + /GST-P + foci, while cleaved caspase-3 + cells were unchanged between Yy1 – /GST-P + and Yy1 + /GST-P + foci. In the case of Wdr45b, most GST-P + foci were Wdr45b – and were not increased by TAA promotion. These results suggest involvement of Yy1 in the epigenetic gene regulation at the early stages of TAA promoted cell proliferation and concomitant cell cycle arrest in preneoplastic lesions. - Highlights: • Epigenetically downregulated genes were searched in TAA-promnoted rat livers. • Yy1 and Wdr45b showed promoter-region hypermethylation and mRNA downregulation. • TAA promoted increase of preneoplastic Yy1 – /GST-P + foci showing high proliferation. • TAA

  17. Peroxireduxin-4 is Over-Expressed in Colon Cancer and its Down-Regulation Leads to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sandra M. Leydold

    2011-01-01

    Full Text Available The objective of this study was to gain insight into the biological basis of colon cancer progression by characterizing gene expression differences between normal colon epithelium, corresponding colorectal primary tumors and metastases. We found a close similarity in gene expression patterns between primary tumors and metastases, indicating a correlation between gene expression and morphological characteristics. PRDX4 was identified as highly expressed both in primary colon tumors and metastases, and selected for further characterization. Our study revealed that “Prdx4” (PrxIV, AOE372 shows functional similarities to other Prx family members by negatively affecting apoptosis induction in tumor cells. In addition, our study links Prdx4 with Hif-1α, a key regulatory factor of angiogenesis. Targeting Prdx4 may be an attractive approach in cancer therapy, as its inhibition is expected to lead to induction of apoptosis and blockage of Hif-1α-mediated tumor angiogenesis.

  18. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  19. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  20. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  1. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  2. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494

    Science.gov (United States)

    Verma, Jitender Kumar; Rastogi, Ruchir

    2017-01-01

    Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977

  3. Jolkinolide B inhibits glycolysis by downregulating hexokinase 2 expression through inactivating the Akt/mTOR pathway in non-small cell lung cancer cells.

    Science.gov (United States)

    Gao, Xiang; Han, Han

    2018-06-01

    Jolkinolide B (JB), a bioactive compound isolated from herbal medicine, has been found to inhibit tumor growth by altering glycolysis. However, whether glycolysis is influenced by JB in non-small cell lung cancer (NSCLC) cells and the mechanism remain unknown. The aim of the present study was to evaluate the effect of JB on the glycolysis in NSCLC cells and the underlying molecular mechanism. The results showed that JB treatment inhibited cell viability of A549 and H1299 cells in a concentration-dependent manner. JB reduced the glucose consumption, lactate production, and HK2 expression. The expressions of p-Akt and p-mTOR were also decreased by JB treatment. Knockdown of HK2 reduced glucose consumption and lactate production. Inhibition of the Akt/mTOR pathway decreased HK2 expression and inhibited glycolysis. In conclusion, the results indicated that JB inhibits glycolysis by down-regulating HK2 expression through inactivating the Akt/mTOR pathway in NSCLC cells, suggesting that JB might be a potential therapeutic agent for the treatment of NSCLC. © 2018 Wiley Periodicals, Inc.

  4. Overexpression of LncRNA AC067945.2 Down-Regulates Collagen Expression in Skin Fibroblasts and Possibly Correlates with the VEGF and Wnt Signalling Pathways.

    Science.gov (United States)

    Chen, Ling; Li, Jingyun; Li, Qian; Li, Xue; Gao, Yanli; Hua, Xiangdong; Zhou, Bei; Li, Jun

    2018-01-01

    Long non-coding RNAs (lncRNAs) are thought to play crucial roles in human diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly understood. Utilizing qRT-PCR, we explored the expression changes of AC067945.2. Overexpression of AC067945.2 in normal skin fibroblasts was performed by transient plasmid transfection. Western blot was used to check the proteins' expression changes. Cell Counting Kit-8 (CCK-8) assay and Annexin V/7-AAD staining were used to examine cell proliferation and apoptosis, respectively. mRNA-seq was applied to dissect the differentially expressed mRNAs in AC067945.2 overexpressed cells. We also performed ELISA to detect the VEGF secretion. AC067945.2 was down-regulated in hypertrophic scar tissues. Overexpression of AC067945.2 did not affect cell proliferation, but it mildly promoted early apoptosis in normal skin fibroblasts. Furthermore, AC067945.2 overexpression inhibited the expression of COL1A1, COL1A2, COL3A1 and α-SMA proteins. Transforming growth factor-β1 (TGF-β1) could inhibit the expression of AC067945.2. Based on mRNA-seq data, compared with mRNAs in the control group, 138 mRNAs were differentially expressed, including 14 up-regulated and 124 down-regulated transcripts, in the AC067945.2 overexpression group. Gene ontology and pathway analyses revealed that AC067945.2 overexpression was correlated with developmental processes, binding, extracellular region, and the vascular endothelial cell growth factor (VEGF) and Wnt signalling pathways. ELISA confirmed that AC067945.2 overexpression could repress VEGF secretion. Taken together, our data uncovered the functions of a novel lncRNA AC067945.2, which might help us understand the mechanisms regulated by AC067945.2 in the pathogenesis of hypertrophic scar formation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  5. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  6. Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells

    International Nuclear Information System (INIS)

    Mishra, Nawneet; Timilsina, Uddhav; Ghimire, Dibya; Dubey, Ravi C.; Gaur, Ritu

    2017-01-01

    Mitochondrial Dysfunction has been implicated in multiple human diseases, including cancer. Among all cancer, lung cancer is the most common type of cancer worldwide with low survival rates. Mammals possess multiple subunits of the mitochondrial enzyme Cytochrome C oxidase (COX). The COX subunits are expressed in a tissue specific manner and have been implicated in cancer cell metabolism although their molecular and regulatory mechanisms are not clearly understood. In this study, we aimed at identifying novel gene signatures in lung cancer. We performed extensive analysis of seven different Gene Expression Omnibus (GEO) datasets pertaining to different stages of lung adenocarcinoma and identified that multiple subunits of COX genes are differentially expressed in these patients. Amongst all COX genes, the expression of COX7A1 gene was observed to be highly down regulated in these patients. In order to validate the GEO datasets, we looked at the expression of multiple COX genes using quantitative real time PCR (qPCR) using human lung adenocarcinoma cell line A549. Our results confirmed that COX 7A1 gene expression was indeed highly reduced in these cells. Overexpression of COX7A1 in human lung cancer cells led to inhibition of cell proliferation and increase in cell death via apoptosis. These results indicated that low level of COX7A1 gene expression is essential to regulate cell viability and inhibit cell death in lung adenocarcinoma. Our study has identified COX7A1 as a novel gene that might play a crucial role in the etiology of lung adenocarcinoma and can serve as a biomarker for lung cancer disease progression.

  7. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  8. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells.

    Science.gov (United States)

    Cammarata, Patrick R; Neelam, Sudha; Brooks, Morgan M

    2015-01-01

    The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed. Recently, we reported

  9. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression

    OpenAIRE

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-01-01

    Background Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Methods Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder canc...

  10. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    International Nuclear Information System (INIS)

    Feng, Y; Feng, J; Huang, Z

    2016-01-01

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  11. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [East Carolina University, Greenville, NC (United States); Feng, J [Tianjin University, Tianjin (China); Huang, Z [East Carolina University, Greenville, NC (United States)

    2016-06-15

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  12. The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Kurzawa, Rafał; Głabowski, Wojciech; Trybek, Grzegorz; Wenda-Rózewicka, Lidia; Wiszniewska, Barbara

    2009-01-01

    In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNgamma, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNgamma-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

  13. Indomethacin treatment prior to pentylenetetrazole-induced seizures downregulates the expression of il1b and cox2 and decreases seizure-like behavior in zebrafish larvae.

    Science.gov (United States)

    Barbalho, Patrícia Gonçalves; Lopes-Cendes, Iscia; Maurer-Morelli, Claudia Vianna

    2016-03-09

    It has been demonstrated that the zebrafish model of pentylenetetrazole (PTZ)-evoked seizures and the well-established rodent models of epilepsy are similar pertaining to behavior, electrographic features, and c-fos expression. Although this zebrafish model is suitable for studying seizures, to date, inflammatory response after seizures has not been investigated using this model. Because a relationship between epilepsy and inflammation has been established, in the present study we investigated the transcript levels of the proinflammatory cytokines interleukin-1 beta (il1b) and cyclooxygenase-2 (cox2a and cox2b) after PTZ-induced seizures in the brain of zebrafish 7 days post fertilization. Furthermore, we exposed the fish to the nonsteroidal anti-inflammatory drug indomethacin prior to PTZ, and we measured its effect on seizure latency, number of seizure behaviors, and mRNA expression of il1b, cox2b, and c-fos. We used quantitative real-time PCR to assess the mRNA expression of il1b, cox2a, cox2b, and c-fos, and visual inspection was used to monitor seizure latency and the number of seizure-like behaviors. We found a short-term upregulation of il1b, and we revealed that cox2b, but not cox2a, was induced after seizures. Indomethacin treatment prior to PTZ-induced seizures downregulated the mRNA expression of il1b, cox2b, and c-fos. Moreover, we observed that in larvae exposed to indomethacin, seizure latency increased and the number of seizure-like behaviors decreased. This is the first study showing that il1b and cox-2 transcripts are upregulated following PTZ-induced seizures in zebrafish. In addition, we demonstrated the anticonvulsant effect of indomethacin based on (1) the inhibition of PTZ-induced c-fos transcription, (2) increase in seizure latency, and (3) decrease in the number of seizure-like behaviors. Furthermore, anti-inflammatory effect of indomethacin is clearly demonstrated by the downregulation of the mRNA expression of il1b and cox2b. Our results

  14. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    Science.gov (United States)

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  15. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2014-06-01

    87 MG cells were cultured in Eagle’s minimum essential medium (EMEM) modi - fied to contain Earle’s Balanced Salt Solution, nonessential amino acids, 2...engineered to ectopically express firefly luciferase and mCherry, allowing surrogate measurement of tumor growth in vivo. Nonobese diabetic severe combined

  16. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    Science.gov (United States)

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  17. TNF-a-induced down-regulation of CDX2 suppresses MEP1A expression in colitis

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Olsen, Anders Krüger; Holm, Thomas Lindebo

    2012-01-01

    was investigated in colonic biopsies of ulcerative colitis (UC) patients and in dextran sodium sulfate (DSS)-induced colitis. CDX2 protein expression was investigated by immunoblotting and immunohistochemical procedures. CDX2 and MEP1A regulation was examined in TNF-a-treated Caco-2 cells by reverse transcription...

  18. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model.

    Science.gov (United States)

    Song, Honghua; Zheng, Yuqin; Cai, Fuying; Ma, Yanyan; Yang, Jingyue; Wu, Youjia

    2018-04-01

    The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.

  19. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2015-06-01

    We next tested whether BET bromodomain inhibition mitigated the acti- vation of proadhesion pathways in aortic endothelium, which oc- curs during the...tinuum of activity as Myc flickers on and off of weakly bound, weakly expressed promoters, but stays longer or more frequently at high output promoters

  20. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pan, Zemin; Shao, Renfu; Zheng, Weinan; Zhang, Jinli; Gao, Rui; Li, Dongmei; Guo, Xiaoqing; Han, Hu; Li, Feng; Qu, Shen

    2014-01-01

    Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma

  1. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  2. DJ1 Expression Downregulates in Neuroblastoma Cells (SK-N-MC Chronically Exposed to HIV-1 and Cocaine.

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-07-01

    Full Text Available Background: HIV-associated neurological disorder (HAND has long been recognized as a consequence of Human Immunodeficiency Virus (HIV infection in the brain. The pathology of HAND gets more complicated with the recreational drug use such as cocaine. Recent studies have suggested multiple genetic influences involved in the pathology of addiction and HAND but only a fraction of the entire genetic risk has been investigated so far. In this regard, role of DJ1 protein (a gene linked to autosomal recessive early-onset Parkinson’s disease in regulating dopamine transmission and reactive oxygen species (ROS production in neuronal cells will be worth investigating in HIV-1 and cocaine exposed microenvironment. Being a very abundant protein in the brain, DJ1 could serve as a potential marker for early detection of HIV-1 and/or cocaine related neurological disorder.Methods: In vitro analysis was done to observe the effect of HIV-1 and/or cocaine on DJ1 protein expression in neuroblastoma cells (SK-N-MC. Gene expression and protein analysis of DJ1 was done on the HIV infected and/or cocaine treated SK-N-MC and compared to untreated cells using real time PCR, Western Blot and flow cytometry.Results: Gene expression and protein analysis indicated that there was a significant decrease in DJ1 expression in SK-N-MC chronically exposed to HIV-1 and/or cocaine.Conclusion: This is the first study to establish that DJ1 expression level in the neuronal cells significantly decreased in presence of HIV-1and/or cocaine indicating oxidative stress level of dopamine neurons.

  3. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  4. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  5. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression.

    Science.gov (United States)

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-04-04

    Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder cancer tissues and cell lines. HMGB1 protein levels were tested by western blot assays. Different doses of X-ray were used for radiation treatment of bladder cancer cells. Colony survival and cell viability were detected by clonogenic assay and CCK-8 Kit, respectively. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was constructed to observe the effect of TUG1 on tumor growth in vivo. The levels of TUG1 and HMGB1 were remarkably increased in bladder cancer tissues and cell lines. Radiation treatment markedly elevated the expression of TUG1 and HMGB1. TUG1 knockdown inhibited cell proliferation, promoted cell apoptosis and decreased colony survival in SW780 and BIU87 cells under radiation. Moreover, TUG1 depletion suppressed the HMGB1 mRNA and protein levels. Furthermore, overexpression of HMGB1 reversed TUG1 knockdown-induced effect in bladder cancer cells. Radiation treatment dramatically reduced the tumor volume and weight in xenograft model, and this effect was more obvious when combined with TUG1 silencing. LncRNA TUG1 knockdown enhances radiosensitivity of bladder cancer by suppressing HMGB1 expression. TUG1 acts as a potential regulator of radioresistance of bladder cancer, and it may represent a promising therapeutic target for bladder cancer patients.

  6. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    Directory of Open Access Journals (Sweden)

    Ismael Palacios-García

    Full Text Available Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that

  7. Tissue-specific posttranscriptional downregulation of expression of the S100A4(mts1) gene in transgenic animals

    DEFF Research Database (Denmark)

    Ambartsumian, N; Klingelhöfer, Jörg; Grigorian, M

    1998-01-01

    The S100A4(mts1) is a gene associated with generation of metastatic disease. In order to analyze the consequences of alteration of the pattern of expression of the S100A4(mts1) gene we obtained strains of transgenic mice bearing the S100A4(mts1) gene under the control of a ubiquitous and constitu....../or posttranslational degradation....

  8. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    Science.gov (United States)

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  9. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes.

    Science.gov (United States)

    Wonodi, Ikwunga; Stine, O Colin; Sathyasaikumar, Korrapati V; Roberts, Rosalinda C; Mitchell, Braxton D; Hong, L Elliot; Kajii, Yasushi; Thaker, Gunvant K; Schwarcz, Robert

    2011-07-01

    Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Case-control postmortem and clinical study. Maryland Brain Collection, outpatient clinics. Postmortem specimens from schizophrenia patients (n = 32) and control donors (n = 32) and a clinical sample of schizophrenia patients (n = 248) and healthy controls (n = 228). Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits.

  10. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.

    Science.gov (United States)

    de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-07-01

    Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.

  11. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    Science.gov (United States)

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  12. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    Science.gov (United States)

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  13. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma.

    Science.gov (United States)

    Makino, Katsunari; Jinnin, Masatoshi; Hirano, Ayaka; Yamane, Keitaro; Eto, Mitsuhiko; Kusano, Takamitsu; Honda, Noritoshi; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Masuguchi, Shinichi; Fukushima, Satoshi; Ihn, Hironobu

    2013-04-15

    Systemic and localized scleroderma (SSc and LSc) is characterized by excessive deposition of collagen and tissue fibrosis in the skin. Although they have fundamental common characteristics including autoimmunity, little is known about the exact mechanism that mediates the excessive collagen expression in these disorders. In the current study, we tried to evaluate the possibility that microRNAs (miRNAs) play some roles in the pathogenesis of fibrosis seen in these diseases. miRNA expression patterns were evaluated by miRNA array analysis, real-time PCR, and in situ hybridization. The function of miRNAs in dermal fibroblasts was assessed using miRNA inhibitors, precursors, or protectors. In the mouse model of bleomycin-induced dermal sclerosis, the overexpression of miRNAs was performed by i.p. miRNA injection. We demonstrated let-7a expression was downregulated in SSc and LSc skin both in vivo and in vitro, compared with normal or keloid skin. The inhibition or overexpression of let-7a in human or mouse skin fibroblasts affected the protein expression of type I collagen or luciferase activity of collagen 3'-untranslated region. Also, we found let-7a was detectable and quantitative in the serum and investigated serum let-7a levels in patients with SSc or LSc. let-7a concentration was significantly decreased in these patients, especially in LSc patients. Moreover, we revealed that the intermittent overexpression of let-7a in the skin by i.p. miRNA injection improved the skin fibrosis induced by bleomycin in mice. Investigation of more detailed mechanisms of miRNA-mediated regulation of collagen expression may lead to new therapeutic approaches against SSc and LSc.

  14. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas.

    Science.gov (United States)

    Anastasiadou, Eleni; Stroopinsky, Dina; Alimperti, Stella; Jiao, Alan L; Pyzer, Athalia R; Cippitelli, Claudia; Pepe, Giuseppina; Severa, Martina; Rosenblatt, Jacalyn; Etna, Marilena P; Rieger, Simone; Kempkes, Bettina; Coccia, Eliana M; Sui, Shannan J Ho; Chen, Christopher S; Uccini, Stefania; Avigan, David; Faggioni, Alberto; Trivedi, Pankaj; Slack, Frank J

    2018-06-26

    Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein-Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.

  15. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    The aim of the present study was to determine whether short-term appropriate insulinization of Type 1 (insulin-dependent) diabetic patients in long-term poor glycaemic control (HbA1C > 9.5%) was associated with an adaptive regulation of the activity and gene expression of key proteins in muscle...... glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... were given at 3-h intervals to improve glycaemic control in diabetic patients (fasting plasma glucose decreased from 20.8 +/- 0.8 to 8.7 +/- 0.8 mmol/l whereas fasting serum insulin increased from 59 +/- 8 to 173 +/- 3 pmol/l). Before intensified insulin therapy, analysis of muscle biopsies from...

  16. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  17. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  18. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  19. Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation.

    Science.gov (United States)

    Ramseyer, Vanesa D; Gonzalez-Vicente, Agustin; Carretero, Oscar A; Garvin, Jeffrey L

    2015-01-15

    Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P thick ascending limbs from ANG II-infused animals [ANG II -0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation. Copyright © 2015 the American Physiological Society.

  20. The expression of endothelial and inducible nitric oxide synthase and apoptosis in intestinal ischemia and reperfusion injury under the action of ischemic preconditioning and pentoxifylline.

    Science.gov (United States)

    Oliveira, Teresinha Regina Ribeiro de; Oliveira, Geraldo Ferreira de; Simões, Ricardo Santos; Feitosa, Suellen Maurim; Tikazawa, Eduardo Hiroshi; Monteiro, Hugo Pequeno; Fagundes, Djalma José; Taha, Murched Omar

    2017-11-01

    To investigate the expression of nitric oxide synthase (NOS) and apoptosis associated with ischemic preconditioning (IPC) and pentoxifylline (PTX) in intestinal ischemia (I) and reperfusion (R) injury. Thirty male rats were assigned to 5 groups: (CG), no clamping of the superior mesenteric artery (90 minutes); (IR-SS) saline + ischemia (30 minutes) + reperfusion (60 minutes); (IR-PTX) PTX + ischemia (30 minutes) + reperfusion (60 minutes); (IPC-IR-SS) 5 minutes of ischemia + 5 minutes of reperfusion (IPC) + saline + I(30 minutes)+R(60 minutes); and (IPC-IR-PTX) IPC + PTX + I(30 minutes)+ R(60 minutes). The application of IPC and PTX showed a significantly lower immunohistochemistry reaction for active caspase-3 (P0.05). The NOS-2 expression (qRTPCR) in the IR-PTX group (P<0.05) was higher than the values for the IPC+IR-SS and IPC-IR-PTX groups. The NOS-3 expression was significantly upper in the IPC-IR-PTX group than in the CG (P<0.05), the IR-SS (P<0.05) and the IR-PTX (P<0.05) groups. The BCL-2 and active caspase-3 showed beneficial effects on PTX and IPC. The expression of NOS-2 and NOS-3 in the IPC and IPC-PTX groups showed no synergistic effect.

  1. cDNA cloning and expression analyses of phytoene synthase 1, phytoene desaturase and ζ-carotene desaturase genes from Solanum lycopersicum KKU-T34003

    Directory of Open Access Journals (Sweden)

    Krittaya Supathaweewat

    2013-10-01

    Full Text Available We report on the cloning of Psy1, Pds and Zds cDNAs encoding the enzymes responsible for lycopene biosynthesis,namely phytoene synthase 1 (PSY1, phytoene desaturase (PDS and -carotene desaturase (ZDS, respectively, from high-lycopene tomato cultivar, Solanum lycopersicum KKU-T34003. DNA sequence analyses showed that the complete openreading frames of Psy1, Pds and Zds cDNAs were 1,239, 1,752 and 1,767 base pairs in length and encoded proteins of 412,583 and 588 amino acids, respectively. Phylogenetic and the conserved domain analyses suggest that PSY1, PDS and ZDSfrom S. lycopersicum KKU-T34003 potentially have similar structures and biological functions to the corresponding proteinsfrom other plants. Gene expression studies showed that Psy1 was expressed only in the petal and the breaker fruit, whereasthe expressions of Pds and Zds were observed in the petal, the breaker fruit and the leaf. The highest expression level for allgenes was detected in the breaker-stage fruit, suggesting that carotenoid accumulation was developmentally regulated inthe chromoplast-containing tissues.

  2. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    Science.gov (United States)

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  3. Triptolide Suppresses Alkali Burn-Induced Corneal Angiogenesis Along with a Downregulation of VEGFA and VEGFC Expression.

    Science.gov (United States)

    Wang, Geng; Li, Na; Lv, Xiaohong; Ahmed, Naila; Li, Xinlei; Liu, Huidong; Ma, Jing; Zhang, Yafang

    2017-07-01

    Triptolide (TPL) is an active compound extracted from a Chinese herbal medicine tripterygium wilfordii Hook. f. (Celastraceae), which has been used as an anti-inflammatory drug for years. It also inhibits the growth and proliferation of different types of cancer cells. The inhibitory effect of TPL on angiogenesis after chemical-induced corneal inflammation was studied in vivo. The effects of TPL on the proliferation, apoptosis, migration, and tube formation of rat aortic endothelial cells (RAECs) were studied in vitro. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. Migration was analyzed using the scratch wound healing assay and transwell assay. Tube formation assay was used to examine angiogenesis. Real-time PCR and Western blot were used to determine the expression of vascular endothelial growth factor A (VEGFA) and VEGFC. To study the in vivo effects of TPL, the mouse model of alkali burn-induced corneal angiogenesis was used. The angiogenesis was analyzed by determining the density of the newly generated blood vessels in corneas. We found that TPL induced apoptosis and inhibited the proliferation of RAECs in a dose-dependent manner. TPL inhibited migration and tube formation of RAECs and decreased the expression of VEGFA and VEGFC in vitro. Furthermore, TPL suppressed alkali burn-induced corneal angiogenesis and inhibited the expression of VEGFA and VEGFC in corneas in vivo. In conclusion, topical TPL as a pharmacological agent has the ability to reduce angiogenesis in cornea and may have clinical indications for the treatment of corneal angiogenesis diseases which have to be further explored. Anat Rec, 300:1348-1355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. [Curcumin down-regulates CX3CR1 expression in spinal cord dorsal horn and DRG in neuropathic pain rats].

    Science.gov (United States)

    Zheng, Jinwei; Zheng, Changjian; Cao, Hong; Li, Jun; Lian, Qingquan

    2011-09-01

    To investigate the effects of curcumin on the behavior of chronic constrictive injury (CCI) rats and the CX3CR1 expression in spinal cord dorsal horn and dorsal root ganglia (DRG). Seventy-two male SD rats were randomly divided into 4 groups: 1) Sham operation group (Sham); 2) Chronic constrictive injury group (CCI); 3) Curcumin treated group (Cur), administrated with curcumin 100 mg x kg(-1) x d(-1) ip for 14 days after CCI; 4) Solvent contrast group (SC), administrated with an equal volume of solvent for 14 days after CCI. Paw thermal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) were measured on 2 pre-operative and 1, 3, 5, 7, 10, 14 post-operative days respectively. The lumbar segments L4-5 of the spinal cord and the L4, L5 DRG were removed at 3, 7, 14 days after surgery. The expression of CX3CR1 was determined by immunohistochemical staining. Compared with Sham group, PTWL and PMWT in CCI group were significantly lower on each post-operative day (PDRG. In Cur group, PTWL were higher than in CCI group on 7, 10, 14 post-operative day (Pdorsal root ganglia.

  5. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity.

    Science.gov (United States)

    Zhang, Chen; Wang, Yongdi; Fang, Qiang; Xu, Minlin; Lv, Mengyuan; Liao, Jinxu; Li, Si; Nie, Zuoming; Zhang, Wenping

    2016-01-01

    Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  6. Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y.

    Science.gov (United States)

    Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D

    2014-03-14

    We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.

  7. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    Science.gov (United States)

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  8. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    Science.gov (United States)

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P arctigenin (P arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC. © 2013 Wiley Periodicals, Inc.

  9. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer

    Science.gov (United States)

    Tan, Xiaohui; Fu, Yebo; Chen, Liang; Lee, Woojin; Lai, Yinglei; Rezaei, Katayoon; Tabbara, Sana; Latham, Patricia; Teal, Christine B.; Man, Yan-Gao; Siegel, Robert S.; Brem, Rachel F.; Fu, Sidney W.

    2016-01-01

    MicroRNA (miRNA) dysfunction is associated with a variety of human diseases, including cancer. Our previous study showed that miR-671-5p was deregulated throughout breast cancer progression. Here, we report for the first time that miR-671-5p is a tumor-suppressor miRNA in breast tumorigenesis. We found that expression of miR-671-5p was decreased significantly in invasive ductal carcinoma (IDC) compared to normal in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Forkhead Box M1 (FOXM1), an oncogenic transcription factor, was predicted as one of the direct targets of miR-671-5p, which was subsequently confirmed by luciferase assays. Forced expression of miR-671-5p in breast cancer cell lines downregulated FOXM1 expression, and attenuated the proliferation and invasion in breast cancer cell lines. Notably, overexpression of miR-671-5p resulted in a shift from epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) phenotypes in MDA-MB-231 breast cancer cells and induced S-phase arrest. Moreover, miR-671-5p sensitized breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin exposure. Host cell reactivation (HCR) assays showed that miR-671-5p reduces DNA repair capability in post-drug exposed breast cancer cells. cDNA microarray data revealed that differentially expressed genes when miR-671-5p was transfected are associated with cell proliferation, invasion, cell cycle, and EMT. These data indicate that miR-671-5p functions as a tumor suppressor miRNA in breast cancer by directly targeting FOXM1. Hence, miR-671-5p may serve as a novel therapeutic target for breast cancer management. PMID:26588055

  10. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    International Nuclear Information System (INIS)

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-01

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression

  11. Celecoxib Alleviates Memory Deficits by Downregulation of COX-2 Expression and Upregulation of the BDNF-TrkB Signaling Pathway in a Diabetic Rat Model.

    Science.gov (United States)

    Yang, Ying; Gao, Ling

    2017-06-01

    Previous studies conveyed that diabetes causes learning and memory deficits. Data also suggest that celecoxib exerts an anti-hyperalgesic, anti-allodynic, and a plethora of other beneficial effects in diabetic rats. However, whether celecoxib could alleviate memory deficit in diabetic rat is unknown. In the present study, we aimed to examine the potential of celecoxib to counter memory deficits in diabetes. Experimental diabetes was induced by streptozotocin (STZ, 60 mg/kg) in male SD rats. Rats were divided into three groups (n = 16/group): normal control group injected with normal saline, diabetes group injected with STZ, and diabetes + celecoxib group in which diabetic rats were administered with celecoxib by gavage in drinking water (10 mg/kg) for 10 days in terms of which memory performance in animals was measured, hippocampal tissue harvested, and long-term potentiation assessed. Western blotting and immunohistochemical staining were performed to determine cyclooxygenase 2 (COX-2) expression in hippocampus. The results showed that a rat model of STZ-induced diabetes was successfully established and that celecoxib treatment significantly improved the associated nephropathy and inflammation. Moreover, spatial memory and hippocampal long-term potentiation (LTP) were impaired in diabetic model (P memory deficit and hippocampal LTP in the diabetic rats. To understand the underlying mechanisms, the expression of some important pathways involved in memory impairment was determined. We found that brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin-related kinase (p-TrkB) were decreased in diabetic rats but were effectively reversed by celecoxib treatment. As evidenced by western blotting and immunohistochemical staining, the expression of COX-2 in hippocampus was significantly upregulated in diabetic rat (P memory deficits via probable downregulation of hippocampal COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a

  12. Brain Metastases from Lung Cancer Show Increased Expression of DVL1, DVL3 and Beta-Catenin and Down-Regulation of E-Cadherin

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2014-06-01

    Full Text Available The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1, Dishevelled-3 (DVL3, E-cadherin (CDH1 and beta-catenin (CTNNB1. Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR/loss of heterozygosity (LOH. Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p = 0.0001. Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC were significantly associated to CDH1 LOH (p = 0.001. Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.

  13. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  14. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.