WorldWideScience

Sample records for synergistically induce cell

  1. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    DEFF Research Database (Denmark)

    Byskov, A G; Fenger, M; Westergaard, L

    1993-01-01

    We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... are fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced...... in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media...

  2. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Saleha B Vuyyuri

    Full Text Available Ascorbic acid (AA exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3-PO on the viability of three non-small cell lung cancer (NSCLC cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with

  3. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Simona [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Ranzato, Elia, E-mail: ranzato@unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Parodi, Monica [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); DI.ME.S., Università degli Studi di Genova, Via L. Alberti 2, 16132 Genova (Italy); Vitale, Massimo [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Burlando, Bruno [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy)

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  4. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: Application to determination of yeast cell activity

    Directory of Open Access Journals (Sweden)

    Shiro Yamashoji

    2017-03-01

    Full Text Available Membrane permeant acetaldehyde and menadione induced the synergistic reduction of toluylene blue (TB acting as non-membrane permeant redox indicator in yeast cell suspension. NADH and acetaldehyde also induced the synergistic TB reduction in permeabilized yeast cells and phosphate buffer, but menadione had no ability to promote TB reduction. The pre-incubation of acetaldehyde inhibited the above synergistic reduction of TB in intact and permeabilized yeast cell suspension. The pre-incubation of acetaldehyde might promote NADH oxidation by alcohol dehydrogenase, because acetaldehyde decreased the intracellular NAD(PH concentration. The above facts indicate that the synergistic reduction of TB is controlled by the order of addition of menadione and acetaldehyde. The synergistic reduction of TB by menadione and acetaldehyde was proportional to viable yeast cell number from 104 to 2×106 cells/ml, and this assay was applicable to cytotoxicity test. The time required for the above assay was only 2 min.

  5. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  6. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM)

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul

    2016-01-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4...... a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes....

  7. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  8. Synergistic combination of fluoro chalcone and doxorubicin on HeLa cervical cancer cells by inducing apoptosis

    Science.gov (United States)

    Arianingrum, Retno; Arty, Indyah Sulistyo; Atun, Sri

    2017-03-01

    Doxorubicin (Dox), a primary chemotherapeutic agent used for cancer treatment is known to have various side effect included multidrug resistance (MDR) phenomenon. Combination chemotherapy is one of some approaches to reduce Dox side effect. Chalcones have been reported to reduce the proliferation of many cancer cells. The research were conducted to investigate the cytotoxic activity and apoptosis induction of a chalcone derivate which is containing fluoro substituent [1 - (4" - fluorophenyl) -3 - (4' - hydroxy - 3' - methoxyphenyl) - 2 - propene - 1 -on] (FHM) and its combination with Dox on HeLa cells line. The observation of the cytotoxic activity was conducted using MTT [3 - (4, 5 - dimethyl thiazol - 2 - y1) - 2.5 - diphenyltetrazolium bromide] assay. Apoptosis induction was determined by flow cytometric. The changes of cell morphology were observed using phase contrast microscopy. The combination index (CI) was used to determine the effect of the combination. The study showed that FHM inhibited the HeLa cell growth with IC50 of 34 μM, while the IC50 of Dox was 1 μM. The combination had a higher inhibitory effect on cell growth compare to the single treatment of FHM and Dox. All of the combination doses under IC50 of FHM and Dox gave synergistic (CI: - 0.7) up to strong synergistic effect (CI: 0.l - 0.3). The synergistic effects of the combination were due to their ability to induce apoptosis in the HeLa cells. According to the result, FHM was potential to be developed as a co-chemotherapeutic agent with Dox for cervical cancer.

  9. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  10. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    Science.gov (United States)

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity.

  11. PMA synergistically enhances apicularen A-induced cytotoxicity by disrupting microtubule networks in HeLa cells

    International Nuclear Information System (INIS)

    Seo, Kang-Sik; Hwang, Byung-Doo; Kim, Jong-Seok; Park, Ji-Hoon; Song, Kyoung-Sub; Yun, Eun-Jin; Park, Jong-Il; Kweon, Gi Ryang; Yoon, Wan-Hee; Lim, Kyu

    2014-01-01

    Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells. Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively. We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G 1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKCα, but not PKCβ and PKCγ, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing α- and β-tubulin protein levels in a PKC-dependent manner. These results suggest that the synergy between PMA and apicularen A is involved by

  12. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    Science.gov (United States)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  13. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2.

    Science.gov (United States)

    Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C

    2012-06-01

    Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.

  14. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network.

    Science.gov (United States)

    Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam; Scumpia, Philip O; Lu, Jing; Pang, Yan Ling Joy; Russell, Brandon S; Lim, Kok Seong; Shell, Scarlet; Prestwich, Erin; Su, Dan; Elashoff, David; Hershberg, Robert M; Bloom, Barry R; Belisle, John T; Fortune, Sarah; Dedon, Peter C; Pellegrini, Matteo; Modlin, Robert L

    2018-05-01

    Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70. Copyright © 2018 by The American Association of Immunologists, Inc.

  15. Combination of Proteasomal Inhibitors Lactacystin and MG132 Induced Synergistic Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Robert B. Shirley

    2005-12-01

    Full Text Available The proteasome inhibitor Velcade (bortezomib/PS-341 has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego, CA and MG132 (Biomol International, Plymouth Meeting, PA may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKα, IKKβ, and IKKγ proteins and NFκB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFκB axis.

  16. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  17. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  18. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    Science.gov (United States)

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  19. Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yulong [Department of Orthopaedic; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Qazvini, Nader Taheri [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States; Argonne National Laboratory, Argonne, Illinois 60439, United States; Zane, Kylie [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States; Sadati, Monirosadat [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States; Argonne National Laboratory, Argonne, Illinois 60439, United States; Wei, Qiang [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Liao, Junyi [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Fan, Jiaming [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Song, Dongzhe [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Department of Conservative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Liu, Jianxiang [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Department; amp, Technology, Wuhan 430022, China; Ma, Chao [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Departments of Neurosurgery and Otolaryngology-Head; amp, Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Qu, Xiangyang [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Chen, Liqun [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Yu, Xinyi [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Zhang, Zhicai [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Department; amp, Technology, Wuhan 430022, China; Zhao, Chen [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Zeng, Zongyue [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Zhang, Ruyi [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Yan, Shujuan [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Wu, Tingting [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Departments of Neurosurgery and Otolaryngology-Head; amp, Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wu, Xingye [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Shu, Yi [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Li, Yasha [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; Zhang, Wenwen [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Department; Reid, Russell R. [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Department of Surgery, Section of Plastic; Lee, Michael J. [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Wolf, Jennifer Moritis [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Tirrell, Matthew [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States; Argonne National Laboratory, Argonne, Illinois 60439, United States; He, Tong-Chuan [Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States; Ministry of Education Key Laboratory of; de Pablo, Juan J. [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States; Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Zhong-Liang [Department of Orthopaedic

    2017-05-04

    Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased the ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPAR gamma was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.

  20. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines.

    Science.gov (United States)

    Balça-Silva, Joana; Matias, Diana; do Carmo, Anália; Girão, Henrique; Moura-Neto, Vivaldo; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste

    2015-04-01

    Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dina Ivanyuk

    2015-05-01

    Full Text Available Background: Reproducible and efficient differentiation of pluripotent stem cells (PSCs to cardiomyocytes (CMs is essential for their use in regenerative medicine, drug testing and disease modeling. The aim of this study was to evaluate the effect of some previously reported cardiogenic substances on cardiac differentiation of mouse PSCs. Methods: Differentiation was performed by embryoid body (EB-based method using three different murine PSC lines. The differentiation efficiency was monitored by RT-qPCR, immunocytochemistry and flow cytometry, and the effect mechanistically evaluated by transcriptome analysis of treated EBs. Results: Among the five tested compounds (ascorbic acid, dorsomorphin, cyclic adenosine 3',5'-monophosphate, cardiogenol C, cyclosporin A only ascorbic acid (AA exerted a strong and reproducible cardiogenic effect in CGR8 cells which was less consistent in other two PSC lines. AA induced only minor changes in transcriptome of CGR8 cells after administration during the initial two days of differentiation. Cardiospecific genes and transcripts involved in angiogenesis, erythropoiesis and hematopoiesis were up-regulated on day 5 but not on days 2 or 3 of differentiation. The cardiac differentiation efficiency was improved when QS11, a small-molecule synergist of Wnt/β-catenin signaling pathway, was added to cultures after AA-treatment. Conclusion: This study demonstrates that only minor transcriptional changes are sufficient for enhancement of cardiogenesis of murine PSCs by AA and that AA and QS11 exhibit synergistic effects and enhance the efficiency of CM differentiation of murine PSCs.

  2. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    International Nuclear Information System (INIS)

    Bender, Noemi

    2016-01-01

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through the

  3. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Noemi

    2016-12-19

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through

  4. Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells

    Directory of Open Access Journals (Sweden)

    Y. Linda Wu

    2017-04-01

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.

  5. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells.

    Science.gov (United States)

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian; Gadeberg, Ole V; Frank, David A; Petersen, Jørgen; Jurlander, Jesper; Pedersen, Mikkel W

    2013-10-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage secondary effector functions represent an attractive opportunity for CLL treatment. Here, a repertoire of mAbs against human CD5 was generated and tested for ability to induce complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) both as single mAbs and combinations of two mAbs against non-overlapping epitopes on human CD5. The results demonstrated that combinations of two mAbs significantly increased the level of CDC compared to the single mAbs, while no enhancement of ADCC was seen with anti-CD5 mAb combinations. High levels of CDC and ADCC correlated with low levels of Ab-induced CD5 internalization and degradation. Importantly, an anti-CD5 mAb combination enhanced CDC of CLL cells when combined with the anti-CD20 mAbs rituximab and ofatumumab as well as with the anti-CD52 mAb alemtuzumab. These results suggest that an anti-CD5 mAb combination inducing CDC and ADCC may be effective alone, in combination with mAbs against other targets or combined with chemotherapy for CLL and other CD5-expressing haematological or lymphoid malignancies. © 2013 John Wiley & Sons Ltd.

  6. Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats.

    Science.gov (United States)

    Chen, Shuchen; Chen, Liangwan; Wu, Xiaonan; Lin, Jiangbo; Fang, Jun; Chen, Xiangqi; Wei, Shijin; Xu, Jianxin; Gao, Qin; Kang, Mingqiang

    2012-11-01

    It has been reported that ischemic postconditioning (IPO) or mesenchymal stem cell (MSC) engraftment could protect organs from ischemia/reperfusion (I/R) injury. We investigated the synergetic effects of combined treatment on lung injury induced by I/R. Adult Sprague-Dawley rats were randomly assigned to one of the following groups: sham-operated control, I/R, IPO, MSC engraftment, and IPO plus MSC engraftment. Lung injury was assessed by arterial blood gas analysis, the wet/dry lung weight ratio, superoxide dismutase level, malondialdehyde content, myeloperoxidase activity, and tissue histologic changes. Cytokine expression was detected using real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end assay and annexin V staining. MSC engraftment or IPO alone markedly attenuated the lung wet/dry weight ratio, malondialdehyde and myeloperoxidase production, and lung pathologic injury and enhanced arterial partial oxygen pressure, superoxide dismutase content, inhibited pro-inflammatory cytokine levels, and decreased cell apoptosis in lung tissue, compared with the I/R group. In contrast, IPO pretreatment enhanced the protective effects of MSC on I/R-induced lung injury compared with treatment alone. Moreover, in the combined treatment group, the number of MSC engraftments in the lung tissue was increased, associated with enhanced survival of MSCs compared with MSC treatment alone. Additional investigation showed that IPO treatment increased expression of vascular endothelial growth factor and stromal cell-derived factor-1 in I/R lung tissue. IPO might contribute to the homing and survival of transplanted MSCs and enhance their therapeutic effects through improvement of the microenvironment of I/R injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  8. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  9. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  10. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy

    Directory of Open Access Journals (Sweden)

    Watanabe Hirotsuna

    2009-11-01

    Full Text Available Abstract Background The chemopreventive effects of dietary phytochemicals on malignant tumors have been studied extensively because of a relative lack of toxicity. To achieve desirable effects, however, treatment with a single agent mostly requires high doses. Therefore, studies on effective combinations of phytochemicals at relatively low concentrations might contribute to chemopreventive strategies. Results Here we found for the first time that co-treatment with I3C and genistein, derived from cruciferous vegetables and soy, respectively, synergistically suppressed the viability of human colon cancer HT-29 cells at concentrations at which each agent alone was ineffective. The suppression of cell viability was due to the induction of a caspase-dependent apoptosis. Moreover, the combination effectively inhibited phosphorylation of Akt followed by dephosphorylation of caspase-9 or down-regulation of XIAP and survivin, which contribute to the induction of apoptosis. In addition, the co-treatment also enhanced the induction of autophagy mediated by the dephosphorylation of mTOR, one of the downstream targets of Akt, whereas the maturation of autophagosomes was inhibited. These results give rise to the possibility that co-treatment with I3C and genistein induces apoptosis through the simultaneous inhibition of Akt activity and progression of the autophagic process. This possibility was examined using inhibitors of Akt combined with inhibitors of autophagy. The combination effectively induced apoptosis, whereas the Akt inhibitor alone did not. Conclusion Although in vivo study is further required to evaluate physiological efficacies and toxicity of the combination treatment, our findings might provide a new insight into the development of novel combination therapies/chemoprevention against malignant tumors using dietary phytochemicals.

  11. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    Science.gov (United States)

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  12. Dose-dependent folic acid and memantine treatments promote synergistic or additive protection against Aβ(25-35) peptide-induced apoptosis in SH-SY5Y cells mediated by mitochondria stress-associated death signals.

    Science.gov (United States)

    Chen, Ta-Fu; Tang, Ming-Chi; Chou, Chia-Hui; Chiu, Ming-Jang; Huang, R-F S

    2013-12-01

    Increased dietary folic acid (FA) is associated with reduced risks of Alzheimer's disease (AD). The AD drug memantine (Mn) has had limited therapeutic effects for the treatment of patients with moderate to severe AD. This study investigated whether and the underlying mechanisms by which the combination of Mn and FA may have synergistic or additive effects in protecting against amyloid-β(25-35) peptide (Aβ)-induced neurocytotoxicity. Aβ treatment of human neuroblastoma SH-SY5Y cells significantly induced a 6-fold increase of apoptotic cells compared with the Aβ-untreated group. Preincubation of Aβ-exposed cells with FA (500 μM) or Mn (20 μM) caused a 22% and 10% reduction of apoptotic cells, respectively, whereas the combo-treatments at such doses synergistically alleviated Aβ-induced apoptosis by 60% (P<0.05). The apoptotic protection by the combo-treatments coincided with attenuating Aβ-elicited mitochondrial (mt) membrane depolarization and abolishing Aβ-induced mt cytochrome c release to the cytosol. Increased levels of FA at 1000 μM in combination with 20 μM Mn exerted an additive protection against Aβ(25-35)-induced-apoptosis as compared to the isolate Mn group (P<0.05). The combo-treatments reversed Aβ-elicited mt membrane depolarization, attenuated Aβ-elicited mt cytochrome c release to the cytosol, and diminished Aβ-promoted superoxide generation. The apoptotic-protection by such combo-treatments was partially abolished by carbonyl cyanide 3-chlorophenylhydrazone (mt membrane potential uncoupler) and sodium azide (mt cytochrome c oxidase inhibitor). Taken together, the data demonstrated that dose-dependent FA and Mn synergistically or additively protected SH-SY5Y cells against Aβ-induced apoptosis, which was partially, if not completely, mediated by mt stress-associated death signals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  14. Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the α2β1 integrin and PDGFβ receptor

    International Nuclear Information System (INIS)

    Hollenbeck, Scott T.; Itoh, Hiroyuki; Louie, Otway; Faries, Peter L.; Liu Bo; Kent, K. Craig

    2004-01-01

    Smooth muscle cells (SMCs) are exposed to both platelet-derived growth factor (PDGF) and type I collagen (CNI) at the time of arterial injury. In these studies we explore the individual and combined effects of these agonists on human saphenous vein SMC proliferation. PDGF-BB produced a 5.5-fold increase in SMC DNA synthesis whereas CNI stimulated DNA synthesis to a much lesser extent (1.6-fold increase). Alternatively, we observed an 8.3-fold increase in DNA synthesis when SMCs were co-incubated with CNI and PDGF-BB. Furthermore, stimulation of SMCs with PDGF-BB produced a significant increase in ERK-2 activity whereas CNI alone had no effect. Co-incubation of SMCs with PDGF-BB and CNI resulted in ERK-2 activity that was markedly greater than that produced by PDGF-BB alone. In a similar fashion, PDGF-BB induced phosphorylation of the PDGF receptor β (PDGFRβ) and CNI did not, whereas concurrent agonist stimulation produced a synergistic increase in receptor activity. Blocking antibodies to the α2 and β1 subunits eliminated this synergistic interaction, implicating the α2β1 integrin as the mediator of this effect. Immunoprecipitation of the α2β1 integrin in unstimulated SMCs followed by immunoblotting for the PDGFRβ as well as Src family members, pp60 src , Fyn, Lyn, and Yes demonstrated coassociation of α2β1 and the PDGFRβ as well as pp60 src . Incubation of cells with CNI and/or PDGF-BB did not change the degree of association. Finally, inhibition of Src activity with SU6656 eliminated the synergistic effect of CNI on PDGF-induced PDGFRβ phosphorylation suggesting an important role for pp60 src in the observed receptor crosstalk. Together, these data demonstrate that CNI synergistically enhances PDGF-induced SMC proliferation through Src-dependent crosstalk between the α2β1 integrin and the PDGFRβ

  15. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Mara A. Bonelli

    2017-08-01

    Full Text Available Malignant pleural mesothelioma (MPM is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991, a highly selective inhibitor of cyclin-dependent kinase (CDK 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM.

  16. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    International Nuclear Information System (INIS)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran; Chu, Wenhua; Chu, Yunxiang; Mach, Robert H.; Zeng, Chenbo

    2017-01-01

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119, WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.

  17. RITA inhibits multiple myeloma cell growth through induction of p53-mediated caspase-dependent apoptosis and synergistically enhances nutlin-induced cytotoxic responses.

    Science.gov (United States)

    Saha, Manujendra N; Jiang, Hua; Mukai, Asuka; Chang, Hong

    2010-11-01

    Mutations or deletions of p53 are relatively rare in multiple myeloma (MM), at least in newly diagnosed patients. Thus, restoration of p53 tumor suppressor function in MM by blocking the inhibitory role of murine double minute 2 (MDM2) is a promising and applicable therapeutic strategy. RITA and nutlin are two new classes of small molecule MDM2 inhibitors that prevent the p53-MDM2 interaction. Earlier reports showed p53-dependent activity of RITA in solid tumors as well as in leukemias. We and others recently described nutlin-induced apoptosis in MM cells, but it remains unclear whether RITA exerts antimyeloma activity. Here, we found that RITA activates the p53 pathway and induces apoptosis in MM cell lines and primary MM samples, preferentially killing myeloma cells. The activation of p53 induced by RITA was mediated through modulation of multiple apoptotic regulatory proteins, including upregulation of a proapoptotic protein (NOXA), downregulation of an antiapoptotic protein, Mcl-1, and activation of caspases through extrinsic pathways. Moreover, a number of key p53-mediated apoptotic target genes were identified by gene expression profiling and further validated by quantitative real-time PCR. Importantly, the combination of RITA with nutlin displayed a strong synergism on growth inhibition with the combination index ranging from 0.56 to 0.82 in MM cells. Our data support further clinical evaluation of RITA as a potential novel therapeutic intervention in MM. ©2010 AACR.

  18. Experimentally induced, synergistic late effects of a single dose of radiation and aging: significance in LKS fraction as compared with mature blood cells.

    Science.gov (United States)

    Hirabayashi, Yoko; Tsuboi, Isao; Nakachi, Kei; Kusunoki, Yoichiro; Inoue, Tohru

    2015-03-01

    The number of murine mature blood cells recovered within 6 weeks after 2-Gy whole-body irradiation at 6 weeks of age, whereas in the case of the undifferentiated hematopoietic stem/progenitor cell (HSC/HPC) compartment [cells in the lineage-negative, c-kit-positive and stem-cell-antigen-1-positive (LKS) fraction], the numerical differences between mice with and without irradiation remained more than a year, but conclusively the cells showed numerical recovery. When mice were exposed to radiation at 6 months of age, acute damages of mature blood cells were rather milder probably because of their maturation with age; but again, cells in the LKS fraction were specifically damaged, and their numerical recovery was significantly delayed probably as a result of LKS-specific cellular damages. Interestingly, in contrast to the recovery of the number of cells in the LKS fraction, their quality was not recovered, which was quantitatively assessed on the basis of oxidative-stress-related fluorescence intensity. To investigate why the recovery in the number of cells in the LKS fraction was delayed, expression levels of genes related to cellular proliferation and apoptosis of cells in the bone marrow and LKS fraction were analyzed by real-time polymerase chain reaction (RT-PCR). In the case of 21-month-old mice after radiation exposure, Ccnd1, PiK3r1 and Fyn were overexpressed solely in cells in the LKS fraction. Because Ccnd1and PiK3r1 upregulated by aging were further upregulated by radiation, single-dose radiation seemed to induce the acceleration of aging, which is related to the essential biological responses during aging based on a lifetime-dependent relationship between a living creature and xenobiotic materials. Copyright © 2014 John Wiley & Sons, Ltd.

  19. [Mathematical modeling of synergistic interaction of sequential thermoradiation action on mammalian cells].

    Science.gov (United States)

    Belkina, S V; Semkina, M A; Kritskiĭ, R O; Petin, V G

    2010-01-01

    Data obtained by other authors for mammalian cells treated by sequential action of ionizing radiation and hyperthermia were used to estimate the dependence of synergistic enhancement ratio on the ratio of damages induced by these agents. Experimental results were described and interpreted by means of the mathematical model of synergism in accordance with which the synergism is expected to result from the additional lethal damage arising from the interaction of sublesions induced by both agents.

  20. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  1. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hai-Shan Peng

    Full Text Available OBJECTIVES: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS: Hepatoma cell lines (BEL-7402 and SK-Hep1 were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS: Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS: We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression

  2. Evaluation of Apoptosis and Autophagy Inducing Potential of Berberis aristata, Azadirachta indica, and Their Synergistic Combinations in Parental and Resistant Human Osteosarcoma Cells

    Science.gov (United States)

    Sengupta, Pracheta; Raman, Sukanya; Chowdhury, Rajdeep; Lohitesh, K.; Saini, Heena; Mukherjee, Sudeshna; Paul, Atish

    2017-01-01

    Cancer is a multifactorial disease and hence can be effectively overcome by a multi-constituently therapeutic strategy. Medicinal plant extracts represent a perfect example of such stratagem. However, minimal studies have been done till date that portray the effect of extraction techniques on the phyto-constituent profile of plant extracts and its impact on anticancer activity. In the present study, we have evaluated the anticancer potential of methanolic extracts of Berberis aristata root and Azadirachta indica seeds prepared by various extraction techniques in human osteosarcoma (HOS) cells. Soxhlation extract of B. aristata (BAM-SX) and sonication extract of A. indica (AIM-SO) were most effective in inducing apoptosis in parental drug sensitive, as well as resistant cell type developed by repeated drug exposure. Generation of reactive oxygen species and cell cycle arrest preceded caspase-mediated apoptosis in HOS cells. Interestingly, inhibition of autophagy enhanced cell death suggesting the cytoprotective role of autophagy. Combination studies of different methanolic extracts of BAM and AIM were performed, among which, the combination of BAM-SO and AIM-SO (BAAISO) was found to show synergism (IC50 10.27 µg/ml) followed by combination of BAM-MC and AIM-MC (BAAIMC) with respect to other combinations in the ratio of 1:1. BAAISO also showed synergism when it was added to cisplatin-resistant HOS cells (HCR). Chromatographic profiling of BAM-SX and AIM-SO by high performance thin layer chromatography resulted in identification of berberine (Rf 0.55), palmitine (Rf 0.50) in BAM-SX and azadirachtin A (Rf 0.36), azadirachtin B (Rf 0.56), nimbin (Rf 0.80), and nimbolide (Rf 0.43) in AIM-SO. The cytotoxic sensitivity obtained can be attributed to the above compounds. Our results highlight the importance of extraction technique and subsequent mechanism of action of multi-constituential B. aristata and A. indica against both sensitive and drug refractory HOS cells. PMID

  3. Evaluation of Apoptosis and Autophagy Inducing Potential of Berberis aristata, Azadirachta indica, and Their Synergistic Combinations in Parental and Resistant Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Pracheta Sengupta

    2017-12-01

    Full Text Available Cancer is a multifactorial disease and hence can be effectively overcome by a multi-constituently therapeutic strategy. Medicinal plant extracts represent a perfect example of such stratagem. However, minimal studies have been done till date that portray the effect of extraction techniques on the phyto-constituent profile of plant extracts and its impact on anticancer activity. In the present study, we have evaluated the anticancer potential of methanolic extracts of Berberis aristata root and Azadirachta indica seeds prepared by various extraction techniques in human osteosarcoma (HOS cells. Soxhlation extract of B. aristata (BAM-SX and sonication extract of A. indica (AIM-SO were most effective in inducing apoptosis in parental drug sensitive, as well as resistant cell type developed by repeated drug exposure. Generation of reactive oxygen species and cell cycle arrest preceded caspase-mediated apoptosis in HOS cells. Interestingly, inhibition of autophagy enhanced cell death suggesting the cytoprotective role of autophagy. Combination studies of different methanolic extracts of BAM and AIM were performed, among which, the combination of BAM-SO and AIM-SO (BAAISO was found to show synergism (IC50 10.27 µg/ml followed by combination of BAM-MC and AIM-MC (BAAIMC with respect to other combinations in the ratio of 1:1. BAAISO also showed synergism when it was added to cisplatin-resistant HOS cells (HCR. Chromatographic profiling of BAM-SX and AIM-SO by high performance thin layer chromatography resulted in identification of berberine (Rf 0.55, palmitine (Rf 0.50 in BAM-SX and azadirachtin A (Rf 0.36, azadirachtin B (Rf 0.56, nimbin (Rf 0.80, and nimbolide (Rf 0.43 in AIM-SO. The cytotoxic sensitivity obtained can be attributed to the above compounds. Our results highlight the importance of extraction technique and subsequent mechanism of action of multi-constituential B. aristata and A. indica against both sensitive and drug refractory HOS

  4. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali

    2015-01-01

    epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence......Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...

  5. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-01-01

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy

  6. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  7. Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.

    Science.gov (United States)

    Wang, Jing; Li, Yun; Sun, Wei; Liu, Jing; Chen, Wenming

    2018-03-22

    This study aimed to investigate synergistic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) and heat-shock protein 90 (HSP90) inhibitor (geldanamycin derivative 17 -allylamino- 17-demethoxy -geldanamycin, 17-AAG) on the proliferation and apoptosis of multiple myeloma (MM) cells. MTT assays evaluated inhibitory effects of rmhTRAIL and 17-AAG in different concentrations and treatment durations on the proliferation of RPMI8226 and U266 cells. The half maximal inhibitory concentration was calculated using OriginPro7.5. Synergistic effects of rmhTRAIL and 17-AAG on apoptosis of MM cells were detected using flow cytometry at 24 and 48 h post-treatment. To evaluate synergistic effects of rmhTRAIL and 17-AAG, the Q-value was calculated using King's formula. rmhTRAIL exhibited significant inhibitory effects on the proliferation of RPMI8226 cells in a dose- and time-dependent manner (>50%), whereas U266 cells were not sensitive to rmhTRAIL (80%). Significant synergistic effects of rmhTRAIL and 17-AAG on the proliferation of RPMI8226 cells were revealed (Q-value > 1.15), whereas synergistic effects were not evident on the proliferation of U266 cells (Q-value effects on apoptosis of RPMI8226 and U266 cells (Q-value > 1.15). The combined application of rmhTRAIL and 17-AAG revealed favorable synergistic effects in the treatment of MM.

  8. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    International Nuclear Information System (INIS)

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu

    2007-01-01

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor β (TGFβ) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGFβ treatment, or co-treatment with TGFβ inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGFβ signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGFβ signaling pathway in breast cancer cells

  9. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes

    NARCIS (Netherlands)

    Guan, J.; Sun, J.; Sun, F.; Lou, B.; Zhang, D.; Mashayekhi, V.; Sadeghi, N.; Storm, G.; Mastrobattista, E.; He, Z.

    2017-01-01

    Chemotherapeutic drug resistance of tumor cells under hypoxic conditions is caused by the inhibition of apoptosis by autophagy and drug efflux via adenosine triphosphate (ATP)-dependent transporter activation, among other factors. Here, we demonstrate that disrupting glyceraldehyde-3-phosphate

  10. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  11. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  12. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-01-01

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis

  13. Tretinoin-loaded lipid-core nanocapsules overcome the triple-negative breast cancer cell resistance to tretinoin and show synergistic effect on cytotoxicity induced by doxorubicin and 5-fluororacil.

    Science.gov (United States)

    Schultze, Eduarda; Buss, Julieti; Coradini, Karine; Begnini, Karine Rech; Guterres, Silvia S; Collares, Tiago; Beck, Ruy Carlos Ruver; Pohlmann, Adriana R; Seixas, Fabiana Kömmling

    2017-12-01

    Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1μM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  15. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  16. Synergistic Effect and Molecular Mechanism of Homoharringtonine and Bortezomib on SKM-1 Cell Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Myelodysplastic syndromes (MDS are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML. Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.Simultaneous exposure to HHT and Bortezomib (10.4:1 resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05. Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05. HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01. The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01.HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell

  17. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaini, Ramesh R. [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Hu, Chien-An A., E-mail: AHu@salud.unm.edu [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  18. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    International Nuclear Information System (INIS)

    Kaini, Ramesh R.; Hu, Chien-An A.

    2012-01-01

    Highlights: ► Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. ► Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. ► Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. ► Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  19. Persistent genetic instability induced by synergistic interaction between x-irradiation and 6-thioguanine

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Nelson, S.L.; Smith, L.E.

    1995-01-01

    Clonal karyotypic analysis was performed using G-banding on four groups of clones derived from TK6 human lymphoblasts: 25 HPRT - total gene deletion mutants induced by exposure to 2 Gy of x-rays; 8 spontaneous HPRT - total gene deletion mutants; 25 clones irradiated with 2 Gy, not selected with 6-thioguanine. Ten to twenty metaphases were examined for each clone. Extensive karyotypic heterogeneity was observed among x-ray induced HPRT - mutants involving translocations, deletions, duplications and aneuploidy; recovery of chromosomal aberrations and karyotypic heterogeneity was greater than the additive effects of clones treated with x-irradiation or 6-thioguanine alone. This synergistic interaction between x-irradiation and 6-thioguanine was observed despite a 7 day phenotypic expression interval between exposure to the two agents. Thus, x-irradiated TK6 cells appear to be persistently hypersensitive to the induction of genetic instability. Several mutants appeared to exhibit evidence of clonal evolution since aberrant chromosomes observed in one metaphase, were found to be further modified in other metaphases. In order to determine if genetic instability, identified by clonal karyotypic heterogeneity, affected specific locus mutation rates, we utilized the heterozygous thymidine kinase (tk) locus as a genetic marker. Four x-ray induced HPRT - mutants with extensive karyotypic heterogeneity, exhibited mutation rates at tk ranging from 5 to 8 fold higher than the parental TK6 cells. Further analysis, using fractionated low dose radiation exposure, is currently in progress

  20. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  1. Ozone acts alone and synergistically with ionizing radiation to induce in vitro neoplastic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C; Zaider, M; Ong, A; Mason, H; Witz, G

    1986-09-01

    Ozone, a major chemical oxidant in the atmosphere, is an environmental air pollutant whose ability to act as a direct carcinogen is unclear. Using in vitro transformation, a technique which permits the study of oncogenesis in the absence of host specific effects, it is reported for the first time that ozone (5 p.p.m. for 5 min) induces neoplastic transformation in vitro in both primary hamster embryo cells and mouse fibroblast cultures (C3H/10-1/2). Exposure of the hamster and mouse cells to ozone also results in enhanced levels of free radical-mediated lipid peroxidation products. The carcinogenic interaction between ozone and ionizing radiation is also reported. Exposure of the cells to 3 or 4 Gy of ..gamma..-rays, 2 h prior to O/sub 3/ treatment, results in markedly enhanced rates of transformation, statistically consistent with a synergistic interaction between the agents. The results demonstrate that O/sub 3/ acts as a direct carcinogen and co-carcinogen on susceptible cells, therefore having important consequences for public health.

  2. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Satbir Thakur

    Full Text Available Inhibitor of Growth (ING proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3 and target histone acetyl transferase (HAT and histone deacetylase (HDAC complexes to chromatin.Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat or a different epigenetic mechanism such as 5-azacytidine (5azaC, which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP. ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo.These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.

  3. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    International Nuclear Information System (INIS)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming; Wang, Yujiong

    2012-01-01

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC 50 ) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC 50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs

  4. FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fang Liang; Wang Huiming; Zhou Lin; Yu Da

    2011-01-01

    FOXO3a, a well-known transcriptional regulator, controls a wide spectrum of biological processes. The Phosphoinositide-3-kinase (PI3K)/Akt signaling pathway inactivates FOXO3a via phosphorylation-induced nuclear exclusion and degradation. A loss or gain of FOXO3a activity has been correlated with efficiency of chemotherapies in various cancers including oral squamous cell carcinoma (OSCC). Therefore, in the current study, we have investigated the FOXO3a activity modulating and antitumor effects of rapamycin and cisplatin in OSCC cells. Cisplatin inhibited proliferation and induced apoptosis in a dose-dependent way in OSCC Tca8113 cells. Rapamycin alone had no effect on cell proliferation and apoptosis. Rapamycin downregulated the expression of S-phase kinase associated protein-2 (Skp2) and increased the FOXO3a protein stability but induced the upregulation of feedback Akt activation-mediated FOXO3a phosphorylation. Cisplatin decreased the phosphorylation of FOXO3a via Akt inhibition. Rapamycin combined with cisplatin as its feedback Akt activation inhibitor revealed the most dramatic FOXO3a nuclear localization and reactivation with the prevention of its feedback loop and exposed significant synergistic effects of decreased cell proliferation and increased apoptosis in vitro and decreased tumor size in vivo. Furthermore, the downstream effects of FOXO3a reactivation were found to be accumulation of p27 and Bim. In conclusion, rapamycin/cisplatin combination therapy boosts synergistic antitumor effects through the significant FOXO3a reactivation in OSCC cells. These results may represent a novel mechanism by which rapamycin/cisplatin combination therapy proves to be a potent molecular-targeted strategy for OSCC.

  5. Synergistic effects of leflunomide and benazepril in streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Jin, Hua; Piao, Shang Guo; Jin, Ji Zhe; Jin, Ying Shun; Cui, Zhen Hua; Jin, Hai Feng; Zheng, Hai Lan; Li, Jin Ji; Jiang, Yu Ji; Yang, Chul Woo; Li, Can

    2014-01-01

    Leflunomide (LEF) and benazepril have renoprotective effects on diabetic nephropathy (DN) through their anti-inflammatory and anti-fibrotic activities. This study investigated whether combined treatment using LEF and benazepril affords superior protection compared with the respective monotherapies. Diabetes was induced with streptozotocin (STZ, 65 mg/kg) by intraperitoneal injection in male Wistar rats. Two weeks after STZ injection, diabetic rats were treated daily for 12 weeks with LEF (10 mg/kg), benazepril (10 mg/kg), or a combination of both. Basic parameters (body weight, fasting blood glucose level, and 24 h urinary protein excretion), histopathology, inflammatory [inflammatory cell infiltration (ED-1), monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor-2 (TLR-2)] and glomerulosclerotic factors [transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF)], and oxidative stress (8-hydroxy-2'-deoxyguanosine, 8-OHdG) were studied. Benazepril or LEF treatment significantly prevented body weight loss and 24 h urinary protein excretion induced by diabetes; combined treatment with LEF and benazepril further improved these parameters compared with giving each drug alone (all p benazepril and was further reduced by the combined administration of the two drugs (p benazepril provides synergistic effects in preventing DN. 2014 S. Karger AG, Basel

  6. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  7. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  8. Synergistic Effect of MiR-146a Mimic and Cetuximab on Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Suning Huang

    2014-01-01

    Full Text Available Previously, we found that the expression of microRNA-146a (miR-146a was downregulated in hepatocellular carcinoma (HCC formalin-fixed paraffin-embedded (FFPE tissues compared to the adjacent noncancerous hepatic tissues. In the current study, we have explored the in vitro effect of miR-146a on the malignant phenotypes of HCC cells. MiR-146a mimic could suppress cell growth and increase cellular apoptosis in HCC cell lines HepG2, HepB3, and SNU449, as assessed by spectrophotometry, fluorimetry, and fluorescence microscopy, respectively. Furthermore, western blot showed that miR-146a mimic downregulated EGFR, ERK1/2, and stat5 signalings. These effects were less potent compared to that of a siRNA targeting EGFR, a known target gene of miR-146a. Moreover, miR-146a mimic could enhance the cell growth inhibition and apoptosis induction impact of various EGFR targeting agents. The most potent combination was miR-146a mimic with cetuximab, presenting a synergistic effect. In conclusion, miR-146a plays a vital role in the cell growth and apoptosis of HCC cells and inducing miR-146a level might be a critical targeted molecular therapy strategy for HCC.

  9. Synergistic Antitumor Effect of Doxorubicin and Tacrolimus (FK506 on Hepatocellular Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Francesca Capone

    2014-01-01

    Full Text Available Hepatocellular carcinoma is the fifth most common cancer worldwide and shows a complex clinical course, poor response to pharmacological treatment, and a severe prognosis. Thus, the aim of this study was to investigate whether tacrolimus (FK506 has synergistic antitumor effects with doxorubicin on two human hepatocellular carcinoma cell lines, Huh7 and HepG2. Cell viability was analyzed by Sulforhodamine B assay and synergic effect was evaluated by the software CalcuSyn. Cell apoptosis was evaluated using Annexin V and Dead Cell assay. Apoptosis-related protein PARP-1 cleaved and autophagy-related protein expressions (Beclin-1 and LC3B were measured by western blotting analysis. Cytokines concentration in cellular supernatants after treatments was studied by Bio-Plex assay. Interestingly the formulation with doxorubicin and tacrolimus induced higher cytotoxicity level on tumor cells than single treatment. Moreover, our results showed that the mechanisms involved were (i a strong cell apoptosis induction, (ii contemporaneous decrease of autophagy activation, understood as prosurvival process, and (iii downregulation of proinflammatory cytokines. In conclusion, future studies could relate to the doxorubicin/tacrolimus combination effects in mice models bearing HCC in order to see if this formulation could be useful in HCC treatment.

  10. Synergistic effect of MiR-146a mimic and cetuximab on hepatocellular carcinoma cells.

    Science.gov (United States)

    Huang, Suning; He, Rongquan; Rong, Minhua; Dang, Yiwu; Chen, Gang

    2014-01-01

    Previously, we found that the expression of microRNA-146a (miR-146a) was downregulated in hepatocellular carcinoma (HCC) formalin-fixed paraffin-embedded (FFPE) tissues compared to the adjacent noncancerous hepatic tissues. In the current study, we have explored the in vitro effect of miR-146a on the malignant phenotypes of HCC cells. MiR-146a mimic could suppress cell growth and increase cellular apoptosis in HCC cell lines HepG2, HepB3, and SNU449, as assessed by spectrophotometry, fluorimetry, and fluorescence microscopy, respectively. Furthermore, western blot showed that miR-146a mimic downregulated EGFR, ERK1/2, and stat5 signalings. These effects were less potent compared to that of a siRNA targeting EGFR, a known target gene of miR-146a. Moreover, miR-146a mimic could enhance the cell growth inhibition and apoptosis induction impact of various EGFR targeting agents. The most potent combination was miR-146a mimic with cetuximab, presenting a synergistic effect. In conclusion, miR-146a plays a vital role in the cell growth and apoptosis of HCC cells and inducing miR-146a level might be a critical targeted molecular therapy strategy for HCC.

  11. Synergistic Effects of Natural Medicinal Plant Extracts on Growth Inhibition of Carcinoma (KB) Cells under Oxidative Stress

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Ju, Eun Mi; Kim, Jin Kyu

    2000-01-01

    Medicinal plants with synergistic effects on growth inhibition of cancer cells under oxidative stress were screened in this study. Methanol extracts from 51 natural medicinal plants, which were reported to have anticancer effect on hepatoma, stomach cancer or colon cancers which are frequently found in Korean, were prepared and screened for their synergistic activity on growth inhibition of cancer cells under chemically-induced oxidative stress by using MTT assay. Twenty seven samples showed synergistic activity on the growth inhibition in various extent under chemically-induced oxidative stress. Among those samples, eleven samples, such as Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffiusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, Cridium officinale, showed decrease in IC 50 values more than 50%, other 16 samples showed decrease in IC 50 values between 50-25%, compared with the value acquired when medicinal plant sample was used alone. Among those 11 samples, extract of Catalpa ovata showed the highest activity. IC 50 values were decrease to 61% and 28% when carcinoma cells were treated with Catalpa ovata extract in combination of 75 and 100 μM of hydrogen peroxide, respectively

  12. Synergistic effect of Ebselen and gamma radiation on breast cancer cells.

    Science.gov (United States)

    Thabet, Noura M; Moustafa, Enas M

    2017-08-01

    To explore the synergistic effect of a seleno-organic compound Ebselen (Ebs) and/or γ-radiation to exert antitumor effects on human breast cancer (MCF-7) cell line in vitro. Ebs cytotoxicity at various concentrations (10, 25, 50 and 75 μg), cell proliferation and clonogenic assay of Ebs and/or γ-radiation (at 1, 3 and 6 Gy), expression of p-IκBα and NF-κB, inflammatory cytokines levels (TNF-α, IL-2, INF-γ, IL-10 and TGF-β), apoptotic factors (Caspase-3, Granzyme-B and TRAIL) and angiogenic factor (VEGF) were investigated. The results showed that the effective dosage of this combination was observed at 25 μg/ml of Ebs with γ-radiation at 6 Gy. Data displayed a significant reduction in NF-κB mRNA along with an elevation in granzyme-B mRNA and TRAIL mRNA expression. Furthermore, protein expression of caspase-3 was elevated, whereas p-IκBα and p-NF-κB(p65) protein expression was reduced significantly. Also, a significant decline in TNF-α, IL-2, INF-γ, TGF-β with a significant increase in IL-10 levels were revealed. Meanwhile, a significant decrease in VEGF level and proliferation capacity were observed. We conclude that a combination of Ebs with radiotherapy has a major antitumor efficiency in inducing apoptosis and inhibiting cancer cell progression, due to the synergistic effect in regulating gene and protein expression, and in a modulating response of pro-and anti-inflammatory cytokines.

  13. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Meng; He, Hong-wei; Sun, Huan-xing; Ren, Kai-huan [Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050 (China); Shao, Rong-guang, E-mail: shaor@bbn.cn [Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050 (China)

    2009-09-18

    Hepatocellular carcinoma (HCC) is a major challenge because of its resistance to conventional cytotoxic chemotherapy and radiotherapy. Multi-targeted therapy might be a new option for HCC treatment. Our previous study showed that N-ras gene was activated in HCC and was inhibited by RNA interference. In the present study, we investigated the alternation of gene expression by microarray in N-Ras-siRNA-treated HepG2 cells. The results revealed that the EREG gene, encoding epiregulin, was dramatically up-regulated in response to silence of N-ras. We speculated that the up-regulation of epiregulin was involved in the compensatory mechanism of N-ras knockdown for cell growth. Therefore, we evaluated whether dual silence of N-ras and epiregulin display a greater suppression of cell growth. The results confirmed that dual knockdown of N-ras and epiregulin synergistically inhibited cell growth. Our results also showed that dual knockdown of N-ras and epiregulin significantly induced cell arrest at G0/G1 phase. Furthermore, Western blot assay showed that dual knockdown of N-ras and epiregulin markedly reduced the phosphorylations of ERK1/2, Akt and Rb, and inhibited the expression of cyclin D1. Our findings imply that multi-targeted silence of oncogenes might be an effective treatment for HCC.

  14. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy.

    Science.gov (United States)

    Machado, Yoan; Duinkerken, Sanne; Hoepflinger, Veronika; Mayr, Melissa; Korotchenko, Evgeniia; Kurtaj, Almedina; Pablos, Isabel; Steiner, Markus; Stoecklinger, Angelika; Lübbers, Joyce; Schmid, Maximillian; Ritter, Uwe; Scheiblhofer, Sandra; Ablinger, Michael; Wally, Verena; Hochmann, Sarah; Raninger, Anna M; Strunk, Dirk; van Kooyk, Yvette; Thalhamer, Josef; Weiss, Richard

    2017-11-28

    Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14 + dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib

    Science.gov (United States)

    Xia, Hongping; Lee, Kee Wah; Chen, Jianxiang; Kong, Shik Nie; Sekar, Karthik; Deivasigamani, Amudha; Seshachalam, Veerabrahma Pratap; Goh, Brian Kim Poh; Ooi, London Lucien; Hui, Kam M

    2017-01-01

    Sorafenib is currently the only US Food and Drug Administration (FDA)-approved molecular inhibitor for the systemic therapy of advanced hepatocellular carcinoma (HCC). Aspirin has been studied extensively as an anti-inflammation, cancer preventive and therapeutic agent. However, the potential synergistic therapeutic effects of sorafenib and aspirin on advanced HCC treatment have not been well studied. Drug combination studies and their synergy quantification were performed using the combination index method of Chou-Talalay. The synergistic therapeutic effects of sorafenib and aspirin were evaluated using an orthotopic mouse model of HCC and comprehensive gene profiling analyses were conducted to identify key factors mediating the synergistic therapeutic effects of sorafenib and aspirin. Sorafenib was determined to act synergistically on HCC cells with aspirin in vitro. Using Hep3B and HuH7 HCC cells, it was demonstrated that sorafenib and aspirin acted synergistically to induce apoptosis. Mechanistic studies demonstrated that combining sorafenib and aspirin yielded significant synergistically anti-tumor effects by simultaneously silencing ACSL4 and the induction of GADD45B expression in HCC cells both in vitro and in the orthotopic HCC xenograft mouse model. Importantly, clinical evidence has independently corroborated that survival of HCC patients expressing ACSL4highGADD45Blow was significantly poorer compared to patients with ACSL4lowGADD45Bhigh, thus demonstrating the potential clinical value of combining aspirin and sorafenib for HCC patients expressing ACSL4highGADD45Blow. In conclusion, sorafenib and aspirin provide synergistic therapeutic effects on HCC cells that are achieved through simultaneous silencing of ACSL4 and induction of GADD45B expression. Targeting HCC with ACSL4highGADD45Blow expression with aspirin and sorafenib could provide potential synergistic therapeutic benefits. PMID:28900541

  16. Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice

    International Nuclear Information System (INIS)

    Siddiqui, Rafat A; Harvey, Kevin A; Walker, Candace; Altenburg, Jeffrey; Xu, Zhidong; Terry, Colin; Camarillo, Ignacio; Jones-Hall, Yava; Mariash, Cary

    2013-01-01

    The major obstacles to the successful use of individual nutritional compounds as preventive or therapeutic agents are their efficacy and bioavailability. One approach to overcoming this problem is to use combinations of nutrients to induce synergistic effects. The objective of this research was to investigate the synergistic effects of two dietary components: docosahexaenoic acid (DHA), an omega-3 fatty acid present in cold-water fish, and curcumin (CCM), an herbal nutrient present in turmeric, in an in vivo model of DMBA-induced mammary tumorigenesis in mice. We used the carcinogen DMBA to induce breast tumors in SENCAR mice on control, CCM, DHA, or DHA + CCM diets. Appearance and tumor progression were monitored daily. The tumors were harvested 15 days following their first appearance for morphological and immunohistological analysis. Western analysis was performed to determine expression of maspin and survivin in the tumor tissues. Characterization of tumor growth was analyzed using appropriate statistical methods. Otherwise all other results are reported as mean ± SD and analyzed with one-way ANOVA and Tukey’s post hoc procedure. Analysis of gene microarray data indicates that combined treatment with DHA + CCM altered the profile of “PAM50” genes in the SK-BR-3 cell line from an ER - /Her-2 + to that resembling a “normal-like” phenotype. The in vivo studies demonstrated that DHA + CCM treatment reduced the incidence of breast tumors, delayed tumor initiation, and reduced progression of tumor growth. Dietary treatment had no effect on breast size development, but tumors from mice on a control diet (untreated) were less differentiated than tumors from mice fed CCM or DHA + CCM diets. The synergistic effects also led to increased expression of the pro-apoptotic protein, maspin, but reduced expression of the anti-apoptotic protein, survivin. The SK-BR-3 cells and DMBA-induced tumors, both with an ER - and Her-2 + phenotype, were affected by the

  17. Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhao

    Full Text Available BACKGROUND AND AIMS: Arsenic trioxide (As2O3, which used as an effective agent in the treatment of leukaemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden heart death have been implicated in the cardiotoxicity of As2O3. The present study was designed to explore whether the combination of As2O3 and resveratrol could generate a more powerful anti-cancer effect both in vitro and in vivo. MATERIALS AND METHODS: MTT assay was performed to assess the proliferation of Hela, MCF-7 and NB4 cells. Isobolographic analysis was used to evaluate combination index values from cell viability data. The apoptosis and the cellular reactive oxygen species (ROS level were assessed by fluorescent microscopy and flow cytometry separately in vitro. The effect of As2O3, alone and in combination with resveratrol on Hela tumor growth in an orthotopic nude mouse model was also investigated. The tumor volume and the immunohistochemical analysis of CD31, CD34 and VEGF were determined. RESULTS: Resveratrol dramatically enhanced the anti-cancer effect induced by As2O3 in vitro. In addition, isobolographic analysis further demonstrated that As2O3 and resveratrol generated a synergistic action. More apoptosis and ROS generation were observed in the combination treatment group. Similar synergistic effects were found in nude mice in vivo. The combination of As2O3 and resveratrol dramatically suppressed both tumor growth and angiogenesis in nude mice. CONCLUSIONS: Combining As2O3 with resveratrol would be a novel strategy to treat cancer in clinical practice.

  18. Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human Cholangiocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Tae Won Kwak

    2013-01-01

    Full Text Available The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.

  19. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  20. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    Science.gov (United States)

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  1. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain.

    Science.gov (United States)

    Zhang, Jin; Wu, Dan; Xie, Cheng; Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.

  2. Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model

    Directory of Open Access Journals (Sweden)

    Wang Cun

    2012-05-01

    Full Text Available Abstract Background Despite recent advances in the treatment of hepatocellular carcinoma (HCC, the chemotherapy efficacy against HCC is still unsatisfactory. The mammalian target of rapamycin (mTOR has been emerged as an important cancer therapeutic target. However, HCC cells often resistant to rapamycin because of the paradoxical activation of Akt by rapamycin. In this study, we investigated whether bortezomib could enhance the antitumor effects of rapamycin. Methods The effects of rapamycin and bortezomib on HCC proliferation, apoptosis, migration, and invasiveness in vitro were assessed by CCK-8 analysis, flow cytometry, Hoechst 33342 staining and transwell assays, respectively. Total and phosphorylated protein levels of Akt were detected by Western blotting. The effects of rapamycin and/or bortezomib on the mRNA expression levels of p53, p27, p21 and Bcl-2 family in HCCLM3 cells were evaluated by RT-PCR. The roles of rapamycin and bortezomib on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. The effects of rapamycin and bortezomib on cell proliferation and apoptosis in vivo were test by PCNA and TUNEL staining. Results Bortezomib synergized with rapamycin to reduce cell growth, induce apoptosis, and inhibit cell mobility in vitro. Further mechanistic studies showed that bortezomib inhibited rapamycin-induced phosphorylated Akt, which in turn enhanced apoptosis of HCC cell lines. The alteration of the mRNA expression of cell cycle inhibitors p53, p27, p21 and apoptosis associated genes Bcl-2, Bax were also involved in the synergistic antitumor effects of rapamycin and bortezomib. P53 inhibitor PFT-α significantly attenuate the effect of rapamycin and bortezomib on cell apoptosis, which indicated that the pro-apoptotic effect of rapamycin and bortezomib may be p53-dependent. Treatment of HCCLM3-R bearing nude mice with rapamycin and bortezomib significantly enhanced tumor growth

  3. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    Directory of Open Access Journals (Sweden)

    Felley-Bosco Emanuela

    2007-10-01

    Full Text Available Abstract Background The incidence of malignant pleural mesothelioma (MPM is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1 or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab and TRAIL-R2 (Lexatumumab and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM.

  4. Diospyros lotus leaf and grapefruit stem extract synergistically ameliorate atopic dermatitis-like skin lesion in mice by suppressing infiltration of mast cells in skin lesions.

    Science.gov (United States)

    Cho, Byoung Ok; Che, Denis Nchang; Yin, Hong Hua; Shin, Jae Young; Jang, Seon Il

    2017-05-01

    Atopic dermatitis, a chronic relapsing and pruritic inflammation of the skin also thought to be involved in, or caused by immune system destruction is an upsetting health problem due to its continuously increasing incidence especially in developed countries. Mast cell infiltration in atopic dermatitis skin lesions and its IgE-mediated activation releases various cytokines and chemokines that have been implicated in the pathogenesis of atopic dermatitis. This study was aimed at investigating synergistic anti-inflammatory, anti-pruritic and anti-atopic dermatitis effects of Diospyros lotus leaf extract (DLE) and Muscat bailey A grapefruit stem extract (GFSE) in atopic dermatitis-like induced skin lesions in mice. Combinations of DLE and GFSE inhibited TNF-α and IL-6 production more than DLE or GFSE in PMA plus calcium ionophore A23187-activated HMC-1 cells. DLE and GFSE synergistically inhibited compound 48/80-induced dermal infiltration of mast cells and reduced scratching behavior than DLE or GFSE. Furthermore, DLE and GFSE synergistically showed a stronger ameliorative effect in skin lesions by reducing clinical scores; dermal infiltration of mast cells; ear and dorsal skin thickness; serum IgE and IL-4 production in atopic dermatitis-like mice. Collectively, these results suggest that DLE and GFSE synergistically exhibit anti-atopic dermatitis effects in atopic dermatitis-like skin lesions in mice. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Dutasteride and enzalutamide synergistically suppress prostate tumor cell proliferation

    NARCIS (Netherlands)

    Hamid, A.R.; Verhaegh, G.W.C.T.; Smit, F.P.; RIjt-van de Westerlo, C.; Armandari, I.; Brandt, A.; Sweep, F.C.; Sedelaar, J.P.M.; Schalken, J.A.

    2015-01-01

    PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are

  7. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2011-01-01

    significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter

  8. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin A Nacev

    Full Text Available Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA, an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50 dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  9. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Science.gov (United States)

    Nacev, Benjamin A; Liu, Jun O

    2011-01-01

    Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  10. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes?

    Science.gov (United States)

    Li, Dong-Sheng; Warnock, Garth L; Tu, Han-Jun; Ao, Ziliang; He, Zehua; Lu, Hong; Dai, Long-Jun

    2009-10-07

    Type 1 diabetes (T1D) is the result of the autoimmune response against pancreatic insulin-producing ss-cells. Its ultimate consequence is beta-cell insufficiency-mediated dysregulation of blood glucose control. In terms of T1D treatment, immunotherapy addresses the cause of T1D, mainly through re-setting the balance between autoimmunity and regulatory mechanisms. Regulatory T cells play an important role in this immune intervention. An alternative T1D treatment is beta-cell replacement, which can reverse the consequence of the disease by replacing destroyed beta-cells in the diabetic pancreas. The applicable insulin-producing cells can be directly obtained from islet transplantation or generated from other cell sources such as autologous adult stem cells, embryonic stem cells, and induced pluripotent stem cells. In this review, we summarize the recent research progress and analyze the possible advantages and disadvantages of these two therapeutic options especially focusing on the potential synergistic effect on T1D treatment. Exploring the optimal combination of immunotherapy and beta-cell replacement will pave the way to the most effective cure for this devastating disease.

  11. Synergistic Effect of Metal Oxide Nanoparticles on Cell Viability and Activation of MAP Kinases and NFκB

    Directory of Open Access Journals (Sweden)

    Ángela Dávila-Grana

    2018-01-01

    Full Text Available In recent years, there has been an increase in the production of several types of nanoparticles (Nps for different purposes. Several studies have been performed to analyse the toxicity induced by some of these individual Nps, but data are scarce on the potential hazards or beneficial effects induced by a range of nanomaterials in the same environment. The purpose of the study described here was to evaluate the toxicological effects induced by in vitro exposure of human cells to ZnO Nps in combination with different concentrations of other metal oxide Nps (Al2O3, CeO2, TiO2 and Y2O3. The results indicate that the presence of these Nps has synergistic or antagonistic effects on the cell death induced by ZnO Nps, with a quite marked beneficial effect observed when high concentrations of Nps were tested. Moreover, analysis by Western blot of the main components of the intracellular activation routes (MAPKs and NFκB again showed that the presence of other Nps can affect cell activation. In conclusion, the presence of several Nps in the same environment modifies the functional activity of one individual Np. Further studies are required in order to elucidate the effects induced by combinations of nanomaterials.

  12. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  13. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  14. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    Science.gov (United States)

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures.

    Science.gov (United States)

    Cohn Yakubovich, Doron; Sheyn, Dmitriy; Bez, Maxim; Schary, Yeshai; Yalon, Eran; Sirhan, Afeef; Amira, May; Yaya, Alin; De Mel, Sandra; Da, Xiaoyu; Ben-David, Shiran; Tawackoli, Wafa; Ley, Eric J; Gazit, Dan; Gazit, Zulma; Pelled, Gadi

    2017-03-09

    A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 μg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 10 6 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (μCT), followed by histological analysis. Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. μCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4 th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the μCT scans, biomechanical analysis using the micro-finite element method demonstrated that

  16. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  17. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yun-feng Lou

    Full Text Available Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor synergized with gefitinib (an EGFR inhibitor to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1 which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon

  18. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. | Office of Cancer Genomics

    Science.gov (United States)

    Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition.

  19. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma

  20. c-FLIP and the NOXA/Mcl-1 axis participate in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells.

    Science.gov (United States)

    Zhao, Xiaofei; Kong, Feng; Wang, Lei; Zhang, Han

    2017-01-01

    Choroidal melanoma is the most common primary malignant intraocular tumor, and very few effective therapies are available to treat it. Our study aimed to understand whether pemetrexed plus cisplatin exerts a beneficial synergistic effect in human choroidal melanoma cells and to delineate the underlying molecular mechanism. To accomplish these aims, we treated choroidal melanoma cells with pemetrexed and cisplatin and assessed cell survival with SRB and MTT assays. Proteins were detected using western blotting analysis. NOXA and CHOP were knocked down with siRNA. We found that pemetrexed or cisplatin alone inhibited survival and induced apoptosis in human choroidal melanoma cells. Furthermore, the expression levels of c-FLIP, an anti-apoptotic protein in the extrinsic apoptosis pathway, and Mcl-1, an anti-apoptotic protein in the intrinsic apoptosis pathway, were decreased by pemetrexed or cisplatin respectively, while the expression of a pro-apoptotic protein in the intrinsic apoptosis pathway, NOXA, was up-regulated. Moreover, pemetrexed or cisplatin alone increased the protein expression of the endoplasmic reticulum stress markers IRE1α, Bip and CHOP. Silencing CHOP expression reduced NOXA expression. These findings suggest that the pemetrexed or cisplatin induced intrinsic apoptosis via activation of the ER stress response. Importantly, combining the two compounds more strongly induced apoptosis. Following the cotreatment, CHOP and NOXA expression increased, while c-FLIP and Mcl-1 expression decreased, and these effects were more pronounced than when using either compound alone. This result suggests that pemetrexed and cisplatin synergistically activate ER stress response-induced apoptosis in choroidal melanoma cells. To summarize, the c-FLIP and NOXA/Mcl-1 axis participated in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells. Intrinsic apoptosis was induced via activation of the ER stress response. Our study provides

  1. Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells.

    Science.gov (United States)

    Alizadeh Zarei, M; Takhshid, M A; Behzad Behbahani, A; Hosseini, S Y; Okhovat, M A; Rafiee Dehbidi, Gh R; Mosleh Shirazi, M A

    2017-09-01

    Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to explore the potential synergistic effects of N-Myc Downstream-Regulated Gene 2 (NDRG2) overexpression, a newly identified candidate tumor suppressor gene, with radiotherapy against proliferation of prostate LNCaP cell line. In this study, LNCaP cells were exposed to X-ray radiation in the presence or absence of NDRG2 overexpression using plasmid PSES- pAdenoVator-PSA-NDRG2-IRES-GFP. The effects of NDRG2 overexpression, X-ray radiation or combination of both on the cell proliferation and apoptosis of LNCaP cells were then analyzed using MTT assay and flow cytometery, respectively. Results of MTT assay showed that NDRG2 overexpression and X-ray radiation had a synergistic effect against proliferation of LNCaP cells. Moreover, NDRG2 overexpression increased apoptotic effect of X-ray radiation in LNCaP cells synergistically. Our findings suggested that NDRG2 overexpression in combination with radiotherapy may be an effective therapeutic option against prostate cancer.

  2. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    Science.gov (United States)

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists

    Science.gov (United States)

    Urso, Loredana; Biasini, Lorena; Zago, Giulia; Calabrese, Fiorella; Conte, Pier Franco; Ciminale, Vincenzo; Pasello, Giulia

    2017-01-01

    Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53. PMID:28562336

  4. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  5. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    Science.gov (United States)

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  6. Combination of Tramadol with Minocycline Exerted Synergistic Effects on a Rat Model of Nerve Injury-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Mei

    2012-09-01

    Full Text Available Neuropathic pain is a refractory clinical problem. Certain drugs, such as tramadol, proved useful for the treatment of neuropathic pain by inhibiting the activity of nociceptive neurons. Moreover, studies indicated that suppression or modulation of glial activation could prevent or reverse neuropathic pain, for example with the microglia inhibitor minocycline. However, few present clinical therapeutics focused on both neuronal and glial participation when treating neuropathic pain. Therefore, the present study hypothesized that combination of tramadol with minocycline as neuronal and glial activation inhibitor may exert some synergistic effects on spinal nerve ligation (SNL-induced neuropathic pain. Intrathecal tramadol or minocycline relieved SNL-induced mechanical allodynia in a dose-dependent manner. SNL-induced spinal dorsal horn Fos or OX42 expression was downregulated by intrathecal tramadol or minocycline. Combination of tramadol with minocycline exerted powerful and synergistic effects on SNL-induced neuropathic pain also in a dose-dependent manner. Moreover, the drug combination enhanced the suppression effects on SNL-induced spinal dorsal horn Fos and OX42 expression, compared to either drug administered alone. These results indicated that combination of tramadol with minocycline could exert synergistic effects on peripheral nerve injury-induced neuropathic pain; thus, a new strategy for treating neuropathic pain by breaking the interaction between neurons and glia bilaterally was also proposed.

  7. Synergistic interaction between the neutron and gamma radiation on LACA mice hemopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H

    1982-02-01

    Based on the radiation action dual theory of DNA single and double strand breaks, a hypothetical RBE mathematical model for the effect of the mixed radiation of neutron and gamma rays on LACA mice hemopoietic stem cells was formulated. In comparison of the RBE values of different ratio of neutron and gamma-ray mixed radiation with their theoretical additive RBE values, the preliminary impression is that the mixed radiation is more effective than that of the theoretical additive effect. It seems that the existence of synergist in the mixed radiation might be valid.

  8. Synergistic Effects of a Mixture of Glycosaminoglycans to Inhibit Adipogenesis and Enhance Chondrocyte Features in Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Petar D. Petrov

    2015-11-01

    Full Text Available Background/Aims: Multipotent mesenchymal stem cells affect homeostasis of adipose and joint tissues. Factors influencing their differentiation fate are of interest for both obesity and joint problems. We studied the impact of a mixture of glycosaminoglycans (GAGs (hyaluronic acid: dermatan sulfate 1:0.25, w/w used in an oral supplement for joint discomfort (Oralvisc™ on the differentiation fate of multipotent cells. Methods: Primary mouse embryo fibroblasts (MEFs were used as a model system. Post-confluent monolayer MEF cultures non-stimulated or hormonally stimulated to adipogenesis were chronically exposed to the GAGs mixture, its individual components or vehicle. The appearance of lipid laden cells, lipid accumulation and expression of selected genes at the mRNA and protein level was assessed. Results: Exposure to the GAGs mixture synergistically suppressed spontaneous adipogenesis and induced the expression of cartilage extracellular matrix proteins, aggrecan core protein, decorin and cartilage oligomeric matrix protein. Hormonally-induced adipogenesis in the presence of the GAGs mixture resulted in decreased adipogenic differentiation, down-regulation of adipogenic/lipogenic factors and genes for insulin resistance-related adipokines (resistin and retinol binding protein 4, and up-regulation of oxidative metabolism-related genes. Adipogenesis in the presence of dermatan sulfate, the minor component of the mixture, was not impaired but resulted in smaller lipid droplets and the induction of a more complete brown adipocyte-related transcriptional program in the cells in the adipose state. Conclusions: The Oralvisc™ GAGs mixture can tip the adipogenic/chondrogenic fate balance of multipotent cells away from adipogenesis while favoring chondrocyte related gene expression. The mixture and its dermatan sulfate component also have modulatory effects of interest on hormonally-induced adipogenesis and on metabolic and secretory capabilities of

  9. In Vitro Synergistic Enhancement of Newcastle Disease Virus to 5-Fluorouracil Cytotoxicity against Tumor Cells

    Directory of Open Access Journals (Sweden)

    Ahmed M. Al-Shammari

    2016-01-01

    Full Text Available Background: Chemotherapy is one of the antitumor therapies used worldwide in spite of its serious side effects and unsatisfactory results. Many attempts have been made to increase its activity and reduce its toxicity. 5-Fluorouracil (5-FU is still a widely-used chemotherapeutic agent, especially in combination with other chemotherapies. Combination therapy seems to be the best option for targeting tumor cells by different mechanisms. Virotherapy is a promising agent for fighting cancer because of its safety and selectivity. Newcastle disease virus is safe, and it selectively targets tumor cells. We previously demonstrated that Newcastle disease virus (NDV could be used to augment other chemotherapeutic agents and reduce their toxicity by halving the administered dose and replacing the eliminated chemotherapeutic agents with the Newcastle disease virus; the same antitumor activity was maintained. Methods: In the current work, we tested this hypothesis on different tumor cell lines. We used the non-virulent LaSota strain of NDV in combination with 5-FU, and we measured the cytotoxicity effect. We evaluated this combination using Chou–Talalay analysis. Results: NDV was synergistic with 5-FU at low doses when used as a combination therapy on different cancer cells, and there were very mild effects on non-cancer cells. Conclusion: The combination of a virulent, non-pathogenic NDV–LaSota strain with a standard chemotherapeutic agent, 5-FU, has a synergistic effect on different tumor cells in vitro, suggesting this combination could be an important new adjuvant therapy for treating cancer.

  10. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    Full Text Available Osteogenic differentiation from mesenchymal progenitor cells (MPCs are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of these two signaling pathways in regulating osteogenic differentiation of MPCs. We find that the activation of estrogen receptor (ER signaling by estradiol (E2 or exogenously expressed ERα in MPCs synergistically enhances Wnt3A-induced early and late osteogenic markers, as well as matrix mineralization. The E2 or ERα-mediated synergy can be effectively blocked by ERα antagonist tamoxifen. E2 stimulation can enhance endochondral ossification of Wnt3A-transduced mouse fetal limb explants. Furthermore, exogenously expressed ERα significantly enhances the maturity and mineralization of Wnt3A-induced subcutaneous and intramuscular ectopic bone formation. Mechanistically, we demonstrate that E2 does not exert any detectable effect on β-catenin/Tcf reporter activity. However, ERα expression is up-regulated within the first 48h in AdWnt3A-transduced MPCs, whereas ERβ expression is significantly inhibited within 24h. Moreover, the key enzyme for the biosynthesis of estrogens aromatase is modulated by Wnt3A in a biphasic manner, up-regulated at 24h but reduced after 48h. Our results demonstrate that, while ER signaling acts synergistically with Wnt3A in promoting osteogenic differentiation, Wnt3A may crosstalk with ER signaling by up-regulating ERα expression and down-regulating ERβ expression in MPCs. Thus, the signaling crosstalk and synergy between these two pathways should be further explored as a potential therapeutic approach to combating bone and skeletal disorders, such as fracture healing and osteoporosis.

  11. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma.

    Science.gov (United States)

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G 2 /M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for

  12. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  13. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells.

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V

    2015-02-01

    We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic

    Energy Technology Data Exchange (ETDEWEB)

    Alassane-Kpembi, Imourana [INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse (France); Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse (France); Institut des Sciences Biomédicales Appliquées, Cotonou, Bénin (Benin); Kolf-Clauw, Martine; Gauthier, Thierry; Abrami, Roberta [INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse (France); Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse (France); Abiola, François A. [Institut des Sciences Biomédicales Appliquées, Cotonou, Bénin (Benin); Oswald, Isabelle P., E-mail: Isabelle.Oswald@toulouse.inra.fr [INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse (France); Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse (France); Puel, Olivier [INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse (France); Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse (France)

    2013-10-01

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. DON is often present with other type B trichothecenes such as 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX). Although the cytotoxicity of individual mycotoxins has been widely studied, data on the toxicity of mycotoxin mixtures are limited. The aim of this study was to assess interactions caused by co-exposure to Type B trichothecenes on intestinal epithelial cells. Proliferating Caco-2 cells were exposed to increasing doses of Type B trichothecenes, alone or in binary or ternary mixtures. The MTT test and neutral red uptake, respectively linked to mitochondrial and lysosomal functions, were used to measure intestinal epithelial cytotoxicity. The five tested mycotoxins had a dose-dependent effect on proliferating enterocytes and could be classified in increasing order of toxicity: 3-ADON < 15-ADON ≈ DON < NIV ≪ FX. Binary or ternary mixtures also showed a dose-dependent effect. At low concentrations (cytotoxic effect between 10 and 30–40%), mycotoxin combinations were synergistic; however DON–NIV–FX mixture showed antagonism. At higher concentrations (cytotoxic effect around 50%), the combinations had an additive or nearly additive effect. These results indicate that the simultaneous presence of low doses of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. Considering the frequent co-occurrence of trichothecenes in the diet and the concentrations of toxins to which consumers are exposed, this synergy should be taken into account. - Highlights: • We assessed the individual and combined cytotoxicity of five trichothecenes. • The tested concentrations correspond to the French consumer exposure levels. • The type of interaction in combined cytotoxicity varied with the effect level. • Low doses of Type B trichothecenes induced synergistic

  15. Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners?

    Science.gov (United States)

    Bal, Naresh C; Maurya, Santosh K; Pani, Sunil; Sethy, Chinmayee; Banerjee, Ananya; Das, Sarita; Patnaik, Srinivas; Kundu, Chanakya N

    2017-10-31

    There are two well-described thermogenic sites; brown adipose tissue (BAT) and skeletal muscle, which utilize distinct mechanisms of heat production. In BAT, mitochondrial metabolism is the molecular basis of heat generation, while it serves only a secondary role in supplying energy for thermogenesis in muscle. Here, we wanted to document changes in mitochondrial ultrastructure in these two tissue types based upon adaptation to mild (16°C) and severe (4°C) cold in mice. When reared at thermoneutrality (29°C), mitochondria in both tissues were loosely packed with irregular cristae. Interestingly, adaptation to even mild cold initiated ultrastructural remodeling of mitochondria including acquisition of more elaborate cristae structure in both thermogenic sites. The shape of mitochondria in the BAT remained mostly circular, whereas the intermyofibrilar mitochondria in the skeletal muscle became more elongated and tubular. The most dramatic remodeling of mitochondrial architecture was observed upon adaptation to severe cold. In addition, we report cold-induced alteration in levels of humoral factors: fibroblast growth factor 21 (FGF21), IL1α, peptide YY (PYY), tumor necrosis factor α (TNFα), and interleukin 6 (IL6) were all induced whereas both insulin and leptin were down-regulated. In summary, adaptation to cold leads to enhanced cristae formation in mitochondria in skeletal muscle as well as the BAT. Further, the present study indicates that circulating cytokines might play an important role in the synergistic recruitment of the thermogenic program including cross-talk between muscle and BAT. © 2017 The Author(s).

  16. [Synergistic effect of cell kinetics-directed chemo-endocrine therapy on experimental mammary tumors].

    Science.gov (United States)

    Ueki, H

    1987-11-01

    We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.

  17. Sequential Exposure of Bortezomib and Vorinostat is Synergistic in Multiple Myeloma Cells

    Science.gov (United States)

    Nanavati, Charvi; Mager, Donald E.

    2018-01-01

    Purpose To examine the combination of bortezomib and vorinostat in multiple myeloma cells (U266) and xenografts, and to assess the nature of their potential interactions with semi-mechanistic pharmacodynamic models and biomarkers. Methods U266 proliferation was examined for a range of bortezomib and vorinostat exposure times and concentrations (alone and in combination). A non-competitive interaction model was used with interaction parameters that reflect the nature of drug interactions after simultaneous and sequential exposures. p21 and cleaved PARP were measured using immunoblotting to assess critical biomarker dynamics. For xenografts, data were extracted from literature and modeled with a PK/PD model with an interaction parameter. Results Estimated model parameters for simultaneous in vitro and xenograft treatments suggested additive drug effects. The sequence of bortezomib preincubation for 24 hours, followed by vorinostat for 24 hours, resulted in an estimated interaction term significantly less than 1, suggesting synergistic effects. p21 and cleaved PARP were also up-regulated the most in this sequence. Conclusions Semi-mechanistic pharmacodynamic modeling suggests synergistic pharmacodynamic interactions for the sequential administration of bortezomib followed by vorinostat. Increased p21 and cleaved PARP expression can potentially explain mechanisms of their enhanced effects, which require further PK/PD systems analysis to suggest an optimal dosing regimen. PMID:28101809

  18. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro

    International Nuclear Information System (INIS)

    Wang Baohong; He Jiliang; Jin Lifen; Lu Deqiang; Zheng Wei; Lou Jianlin; Deng Hongping

    2005-01-01

    The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3 h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P > 0.05). There were significant difference of DNA damage indexes between MMC group and RFR + MMC co-exposure group at 0 and 21 h incubation after treatment (P 0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2 h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious

  19. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus.

    Science.gov (United States)

    Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K; Rubinsky, Boris

    2015-01-01

    Freezing-cryosurgery, and electrolysis-electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products-which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing.

  20. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains.

    Science.gov (United States)

    R M Machado, Gabriella da; Pippi, Bruna; Dalla Lana, Daiane Flores; Amaral, Ana Paula S; Teixeira, Mário Lettieri; Souza, Kellen C B de; Fuentefria, Alexandre M

    2016-11-01

    The increased incidence of non-albicans Candida (NAC) resistant to fluconazole (FLZ) makes it necessary to use new therapeutic alternatives. Acca sellowiana (O.berg) Burret (Myrtaceae) is a guava with several proven biological activities. The interaction with fluconazole can be a feasible alternative to overcome this resistance. This study evaluates the in vitro antifungal activity of fractions obtained from the lyophilized aqueous extract of the leaves of A. sellowiana against resistant strains of NAC. The antifungal activity of the fractions was evaluated at 500 μg/mL by microdilution method. Checkerboard assay was performed to determine the effect of the combination of the F2 fraction and antifungal at concentrations: MIC/4, MIC/2, MIC, MIC × 2 and MIC × 4. Candida glabrata showed the lowest MIC values (500-3.90 μg/mL) and the F2 active fraction was the most effective. The association of F2 with FLZ showed a strong synergistic effect (FICI ≤ 0.5) against 100% of C. glabrata resistant isolates. Moreover, the F2 active fraction has demonstrated that probably acts in the cell wall of these yeasts. There was no observed acute dermal toxicity of lyophilized aqueous extract of leaves of A. sellowiana on pig ear skin cells. The interaction between substances present in the F2 active fraction is possibly responsible for the antifungal activity presented by this fraction. This study is unprecedented and suggests that the combination of F2 active fraction and FLZ might be used as an alternative treatment for mucocutaneus infections caused by C. glabrata resistant.

  1. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  2. Synergistic effect of aluminum and ionizing radiation upon ultrastructure, oxidative stress and apoptotic alterations in Paneth cells of rat intestine.

    Science.gov (United States)

    Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E

    2017-03-01

    Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the

  3. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    International Nuclear Information System (INIS)

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125 I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125 I-monoiodotyrosine) and progestin [mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)]. In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production

  4. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  5. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  7. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2

    Science.gov (United States)

    Yang, Hongchao; Li, Jingjuan; Cui, Lin; Ren, Yanqing; Niu, Liying; Wang, Xinguo; Huang, Yun; Cui, Lijian

    2018-03-01

    The influences of caffeine, lysozyme and the joint application of them on the hepatoma cell line HepG2 proliferation inhibition and cell apoptosis were observed by 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and Hoechst 33342, which showed the proliferation inhibition rate of the joint application on HepG2 cells was 47.21%, significantly higher than caffeine or lysozyme, and the joint application promoted the apoptosis of HepG2 cells obviously. Van't Hoff classical thermodynamics formula, the Föster theory of non-radiation energy transfer and fluorescence phase diagram were used to manifest that the process of lysozyme binding to caffeine followed a two-state model, which was spontaneous at low temperature driven by enthalpy change, and the predominant intermolecular force was hydrogen bonding or Van der Waals force to stabilize caffeine-lysozyme complex with the distance 5.86 nm. The attenuated total reflection-Fourier transform infrared spectra indicated that caffeine decreased the relative contents of α-helix and β-turn, which inferred the structure of lysozyme tended to be "loose". Synchronous fluorescence spectra and ultraviolet spectra supported the above conclusion. The amino acid residues in the cleft of lysozyme were exposed and electropositivity was increased attributing to the loose structure, which were conducive to increasing caffeine concentration on the HepG2 cell surface by electrostatic interaction to show synergistic effect. The great quantities of microvilli on the liver cancer cell membrane surface, is beneficial for the lysozyme-caffeine compound to aggregate on cell surface to increase the concentration of caffeine to play stronger physiological role by electrostatic effect.

  8. Plant extracts of spices and coffee synergistically dampen nuclear factor-κB in U937 cells.

    Science.gov (United States)

    Kolberg, Marit; Paur, Ingvild; Balstad, Trude R; Pedersen, Sigrid; Jacobs, David R; Blomhoff, Rune

    2013-10-01

    A large array of bioactive plant compounds (phytochemicals) has been identified and synergy among these compounds might contribute to the beneficial effects of plant foods. The transcription factor nuclear factor-κB (NF-κB) has been suggested as a target for many phytochemicals. Due to the complexity of mechanisms involved in NF-κB regulation, including numerous feedback loops, and the large number of phytochemicals which regulate NF-κB activity, we hypothesize that synergistic or antagonistic effects are involved. The objectives of our study were to develop a statistical methodology to evaluate the concept of synergy and antagonism and to use this methodology in a monocytic cell line (U937 expressing an NF-κB-luciferase reporter) treated with lipopolysaccharide and phytochemical-rich plant extracts. Both synergistic and antagonistic effects were clearly observed. Observed synergy was most pronounced for the combinations of oregano and coffee, and thyme and oregano. For oregano and coffee the synergistic effect was highest at 5 mg/mL with 13.9% (P oregano the highest synergistic effects was at 3 mg/mL with 13.7% (P phytochemical-rich plants may exert synergistic and antagonistic effects on NF-κB regulation. Such complex mechanistic interactions between phytochemicals are likely to underlie the protective effects of a plant-based diet on life-style related diseases. © 2013 Elsevier Inc. All rights reserved.

  9. HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency

    Directory of Open Access Journals (Sweden)

    Majid Aliabadi

    2013-01-01

    Full Text Available This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy propyl-3-trimethylammonium chitosan chloride (HTCC and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt with different chemical ratios was successfully synthesized, and their characteristics have been verified by XRD and FTIR analyses. Produced samples have been evaluated in terms of antibacterial efficiency and biocompatibility (cell culture test. Antibacterial efficiency of synthesized HTCC/Mt samples has been confirmed against both gram negative bacteria (Escherichia coli and gram positive bacteria (Staphylococcus aureus. The results disclosed that the antibacterial efficiency of HTCC-modified montmorillonite was unexpectedly even more than HTCC. This excellent synergistic effect has been referred to entrapping bacteria between the intercalated structures of HTCC-modified montmorillonite. Then HTCC on clay layers can seriously attack and damage the entrapped bacteria. An extraordinary biocompatibility, cell attachment, and cell growth even more than tissue culture polystyrene (TCPS have been recorded in the case of this novel kind of modified clay. Due to existing concerns about serious and chronic infections after implant placement, this natural-based bioactive and antibacterial modified clay can be used in electrospun nanofibers and other polymeric implants with promising mechanical properties for tissue engineering applications.

  10. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Coffey Matthew C

    2009-07-01

    Full Text Available Abstract Background Reovirus type 3 Dearing strain (ReoT3D has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC. Results ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 ± 0.12 ~2.68 ± 0.25 (mean ± SD log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells. Conclusion These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

  11. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc

    International Nuclear Information System (INIS)

    Bresson, Carole; Darolles, Carine; Sage, Nicole; Malard, Veronique; Carmona, Asuncion; Roudeau, Stephane; Ortega, Richard; Gautier, Celine; Ansoborlo, Eric

    2013-01-01

    Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl 2 .6H 2 O, on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same co-exposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc. (authors)

  12. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc

    International Nuclear Information System (INIS)

    Bresson, Carole; Darolles, Carine; Sage, Nicole; Malard, Veronique; Carmona, Asuncion; Roudeau, Stephane; Ortega, Richard; Gautier, Celine; Ansoborlo, Eric

    2013-01-01

    Complete text of publication follows: Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl 2 , on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same co-exposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc

  13. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro.

    Science.gov (United States)

    Prescott, Matthew; Mitchell, James; Totti, Stella; Lee, Judy; Velliou, Eirini; Bussemaker, Madeleine

    2018-01-01

    The presence of ultrasound-induced cavitation in sonodynamic therapy (SDT) treatments has previously enhanced the activity and delivery of certain sonosensitisers in biological systems. The purpose of this work was to investigate the potential for two novel anti-cancer agents from natural derivatives, sanguinarine and ginger root extract (GRE), as sonosensitisers in an SDT treatment with in vitro PANC-1 cells. Both anti-cancer compounds had a dose-dependent cytotoxicity in the presence of PANC-1 cells. A range of six discreet ultrasound power-frequency configurations were tested and it was found that the cell death caused directly by ultrasound was likely due to the sonomechanical effects of cavitation. Combined treatment used dosages of 100μM sanguinarine or 1mM of GRE with 15s sonication at 500kHz and 10W. The sanguinarine-SDT and GRE-SDT treatments showed a 6% and 17% synergistic increase in observed cell death, respectively. Therefore both sanguinarine and GRE were found to be effective sonosensitisers and warrant further development for SDT, with a view to maximising the magnitude of synergistic increase in toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synergistic efficacy of a novel combination therapy controls growth of Bcl-x(L) bountiful neuroblastoma cells by increasing differentiation and apoptosis.

    Science.gov (United States)

    Mohan, Nishant; Banik, Naren L; Ray, Swapan K

    2011-11-01

    Neuroblastoma is the most prevalent extracranial solid tumor mainly in pediatric patients. We explored the efficacy of the combination of 2[(3-[2,3-dichlorophenoxy]propyl)amino]ethanol (2,3-DCPE, a small molecule inhibitor of the anti-apoptotic protein Bcl-x(L)) and N-(4-hydroxyphenyl) retinamide (4-HPR, a synthetic retinoid) in inducing differentiation and apoptosis in human malignant neuroblastoma cells. Immunofluorescence confocal microscopy and flow cytometry showed that the highest level of Bcl-x(L) expression occurred in SK-N-DZ cells followed by SH-SY5Y and IMR-32 cells. Combination of 20 μM 2,3-DCPE and 1 μM 4-HPR acted synergistically in decreasing viability of SK-N-DZ and SH-SY5Y cells. In situ methylene blue staining and protein gel blotting showed the efficacy of this combination of drugs in inducing neuronal differentiation morphologically and also biochemically with upregulation of the neuronal markers such as neurofilament protein (NFP) and neuron specific enolase (NSE) and downregulation of the differentiation inhibiting molecules such as N-Myc and Notch-1 in SK-N-DZ and SH-SY5Y cells. Annexin V-FITC/PI staining showed the synergistic action of this combination therapy in increasing apoptosis in both cell lines. Protein gel blotting manifested that combination therapy increased apoptosis with downregulation of the anti-apoptotic proteins Bcl-x(L), Bcl-2 and Mcl-1 and upregulation of the pro-apoptotic proteins Bax, p53, Puma (p53 upregulated modulator of apoptosis), and Noxa, ultimately causing activation of caspase-3. In conclusion, our results appeared highly encouraging in advocating the use of 2,3-DCPE and 4-HPR as a novel combination therapy for increasing both differentiation and apoptosis in human malignant neuroblastoma cells having Bcl-x(L) overexpression.

  15. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    International Nuclear Information System (INIS)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-01-01

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  16. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  17. Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs.

    Science.gov (United States)

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Ichihara, Sahoko

    2014-12-30

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs.

  18. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jaruchotikamol, Atika [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jarukamjorn, Kanokwan [Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sirisangtrakul, Wanna [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sakuma, Tsutomu; Kawasaki, Yuki [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Nemoto, Nobuo [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2007-10-15

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression.

  19. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    International Nuclear Information System (INIS)

    Jaruchotikamol, Atika; Jarukamjorn, Kanokwan; Sirisangtrakul, Wanna; Sakuma, Tsutomu; Kawasaki, Yuki; Nemoto, Nobuo

    2007-01-01

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, β-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression

  20. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Jeannot V

    2016-11-01

    Full Text Available Victor Jeannot,1,2 Benoit Busser,1–3 Laetitia Vanwonterghem,1,2 Sophie Michallet,1,2 Sana Ferroudj,1,2 Murat Cokol,4 Jean-Luc Coll,1,2 Mehmet Ozturk,1,2,5 Amandine Hurbin1,2 1INSERM U1209, Department Cancer Targets and Experimental Therapeutics, Grenoble, France; 2University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France; 3Department of Biochemistry, Toxicology and Pharmacology, Grenoble University Hospital, Grenoble, France; 4Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; 5Faculty of Medicine, Dokuz Eyul University, Izmir Biomedicine and Genome Center, Izmir, Turkey Abstract: Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR-tyrosine kinase inhibitor (gefitinib or a multi-targeted kinase inhibitor (sorafenib in combination with a histone deacetylase inhibitor (vorinostat on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G2/M cell cycle arrest without

  1. Red blood cell antibodies in pregnancy and their clinical consequences: synergistic effects of multiple specificities.

    Science.gov (United States)

    Nordvall, Maria; Dziegiel, Morten; Hegaard, Hanne Kristine; Bidstrup, Mogens; Jonsbo, Finn; Christensen, Birgit; Hedegaard, Morten

    2009-10-01

    The objective was to determine clinical consequences of various specificities for the infant/fetus. The population was patients referred between 1998 and 2005 to the tertiary center because of detected red blood cell (RBC) alloimmunization. Altogether 455 infants were delivered by 390 alloimmunized women. This was a retrospective cohort study. Data were obtained from the blood bank register and the obstetric and neonatal database. As indicators of hemolytic activity of the antibodies, the frequency of the therapeutic interventions intrauterine transfusion, exchange transfusion, and simple transfusion was used. Anti-D was the most common antibody (46.6%), followed by anti-K (15.4%). A combination of antibodies was detected in 27%. All three types of therapeutic intervention were significantly more frequent in women with anti-D plus an additional antibody than in women with anti-D as the sole antibody. The anti-D titer closely paralleled the clinical importance of the antibody. One case of anti-s with a titer of 512 required all three types of transfusion. Anti-D was the single most frequent and harmful specificity closely followed by anti-K. Combinations of antibody specificities were more harmful than single specificities, and a potentially synergistic effect should be considered.

  2. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells.

    Science.gov (United States)

    Qu, Ding; Ma, Yihua; Sun, Wenjie; Chen, Yan; Zhou, Jing; Liu, Congyan; Huang, Mengmeng

    2015-01-01

    A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer.

  3. Synergistic immune responses induced by endogenous retrovirus and herpesvirus antigens result in increased production of inflammatory cytokines in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Brudek, T; Christensen, T; Hansen, H J

    2008-01-01

    Human endogenous retroviruses (HERV) and herpesviruses are increasingly associated with the pathogenesis of the neurological inflammatory disease multiple sclerosis (MS). Herpesviruses are capable of HERV activation and simultaneous presence of HERV and herpesvirus antigens have a synergistic...... effect on cell-mediated immune responses, which tend to be higher in MS patients in comparison with healthy individuals. Here, we investigate whether these synergistic immune responses are reflected in changes in the production of proinflammatory cytokines. Using enzyme-linked immunosorbent assays...

  4. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  5. Toxicological Responses of Environmental Mixtures: Environmental Metals Mixtures Display Synergistic Induction of Metal-Responsive and Oxidative Stress Genes in Placental Cells

    Science.gov (United States)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2016-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158

  6. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    OpenAIRE

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) aga...

  7. Synergistic interaction between cisplatin and gemcitabine in neuroblastoma cell lines and multicellular tumor spheroids

    NARCIS (Netherlands)

    Besançon, Odette G.; Tytgat, Godelieve A. M.; Meinsma, Rutger; Leen, René; Hoebink, Jerry; Kalayda, Ganna V.; Jaehde, Ulrich; Caron, Huib N.; van Kuilenburg, André B. P.

    2012-01-01

    The efficacy and mechanism of action of cisplatin and gemcitabine were investigated in a panel of neuroblastoma cell lines and multicellular tumor spheroids. In neuroblastoma spheroids, the combination of cisplatin and gemcitabine induced a complete cytostasis at clinical relevant concentrations. A

  8. Synergistic interaction between total glucosides and total flavonoids on chronic constriction injury induced neuropathic pain in rats.

    Science.gov (United States)

    Zhang, Juan; Lv, Chen; Wang, Hai-na; Cao, Yi

    2013-04-01

    Shaoyao Gancao Decoction (SGD), a famous herbal medicine, consists of two herbs (Paeoniae Radix and Glycyrrhizae Radix) and is traditionally used for the treatment of pain. To investigate the synergistic potential of total glucosides of Paeoniae Radix (TGP) and total flavonoids of Glycyrrhizae Radix (TFL). Oral administration of TGP and TFL alone at the doses of 60,120 and 240 mg/kg or in combination were given only one time to the neuropathic pain rat induced by chronic constriction injury. Paw pressure and heat immersion tests were performed to assess degrees of mechanical allodynia and thermal hyperalgesia, respectively. Synergistic interactions between TGP and TFL were characterized using isobolographic analysis. Expressions of Sirt1 protein were detected by immunohistochemistry. On day 14 after surgery, single oral administration of TGP and TFL both produced significant anti-allodynic and anti-hyperalgesic effects in dose-dependent and time-dependent manners. The ED(50) value of TGP was 249.4 ± 10.8 mg/kg while TFL was 871.4 ± 30.5 mg/kg. Isobolographic analysis revealed that the combination of TGP with TFL at the fixed ratios of 3:1 exerted the highest sub-additive (synergistic) interaction, of which the experimental ED(50) value was 95.1 ± 9.0 mg/kg. SGD could also downregulate Sirt1 protein expression, which was 4.2-fold higher than that of model rats in dorsal root ganglion. Analgesic effects of SGD may contribute to simultaneous inhibition of Sirt1 overexpression and could warrant further evaluation as a possible agent for the treatment of neuropathic pain.

  9. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    Science.gov (United States)

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-07-01

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4. © 2017 Wiley Periodicals, Inc.

  10. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    Science.gov (United States)

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  11. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis.

    Science.gov (United States)

    Chong, Dianlong; Ma, Linyan; Liu, Fang; Zhang, Zhirui; Zhao, Surong; Huo, Qiang; Zhang, Pei; Zheng, Hailun; Liu, Hao

    2017-09-01

    3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.

  12. Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death

    Directory of Open Access Journals (Sweden)

    Suzuki Masami

    2011-11-01

    Full Text Available Abstract Background Fractalkine/CX3CL1 and its cognate receptor CX3CR1 are abundantly expressed in the CNS. Fractalkine is an unusual C-X3-C motif chemokine that is important in neuron-microglial communication, a co-receptor for HIV infection, and can be neuroprotective. To assess the effects of fractalkine on opiate-HIV interactive neurotoxicity, wild-type murine striatal neurons were co-cultured with mixed glia from the striata of wild-type or Cx3cr1 knockout mice ± HIV-1 Tat and/or morphine. Time-lapse digital images were continuously recorded at 20 min intervals for up to 72 h using computer-aided microscopy to track the same cells repeatedly. Results Co-exposure to Tat and morphine caused synergistic increases in neuron death, dendritic pruning, and microglial motility as previously reported. Exogenous fractalkine prevented synergistic Tat and morphine-induced dendritic losses and neuron death even though the inflammatory mediator TNF-α remained significantly elevated. Antibody blockade of CX3CR1 mimicked the toxic effects of morphine plus Tat, but did not add to their toxicity; while fractalkine failed to protect wild-type neurons co-cultured with Cx3cr1-/--null glia against morphine and Tat toxicity. Exogenous fractalkine also normalized microglial motility, which is elevated by Tat and morphine co-exposure, presumably limiting microglial surveillance that may lead to toxic effects on neurons. Fractalkine immunofluorescence was expressed in neurons and to a lesser extent by other cell types, whereas CX3CR1 immunoreactivity or GFP fluorescence in cells cultured from the striatum of Cx3cr1-/- (Cx3cr1GFP/GFP mice were associated with microglia. Immunoblotting shows that fractalkine levels were unchanged following Tat and/or morphine exposure and there was no increase in released fractalkine as determined by ELISA. By contrast, CX3CR1 protein levels were markedly downregulated. Conclusions The results suggest that deficits in fractalkine

  13. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    Science.gov (United States)

    Cheng, Yuanyuan; Tse, Hung Fat; Le, X. Chris; Rong, Jianhui

    2015-01-01

    Leukotriene B4 12-hydroxydehydrogenase (LTB4DH) catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s) from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid) may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury. PMID:26265982

  14. Synergistic effect of intervention of glypican-3 gene transcription combined with antitumor drugs in inhibiting hepatoma cell proliferation

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2016-12-01

    .20 μmol/L, 7.85±2.00 nmol/L, and 18.36±0.56 μmol/L, respectively, and their combination with shRNA1 had an HepG2 cell inhibition rate of 95.11%. ConclusionIntervention of GPC3 gene transcription with specific shRNA can inhibit hepatoma cell proliferation, migration and movement, and invasion ability, induce hepatoma cell apoptosis, and inhibit hepatoma cell proliferation when combined with antitumor drugs in a synergistic manner. This suggests that GPC3 may be an effective therapeutic target for liver cancer and that combined targeted therapy can provide better strategies for the treatment of liver cancer.

  15. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells.

    Science.gov (United States)

    Sun, Xin; Johnson, Jacqueline; St John, Justin C

    2018-05-02

    Replication of mitochondrial DNA is strictly regulated during differentiation and development allowing each cell type to acquire its required mtDNA copy number to meet its specific needs for energy. Undifferentiated cells establish the mtDNA set point, which provides low numbers of mtDNA copy but sufficient template for replication once cells commit to specific lineages. However, cancer cells, such as those from the human glioblastoma multiforme cell line, HSR-GBM1, cannot complete differentiation as they fail to enforce the mtDNA set point and are trapped in a 'pseudo-differentiated' state. Global DNA methylation is likely to be a major contributing factor, as DNA demethylation treatments promote differentiation of HSR-GBM1 cells. To determine the relationship between DNA methylation and mtDNA copy number in cancer cells, we applied whole genome MeDIP-Seq and RNA-Seq to HSR-GBM1 cells and following their treatment with the DNA demethylation agents 5-azacytidine and vitamin C. We identified key methylated regions modulated by the DNA demethylation agents that also induced synchronous changes to mtDNA copy number and nuclear gene expression. Our findings highlight the control exerted by DNA methylation on the expression of key genes, the regulation of mtDNA copy number and establishment of the mtDNA set point, which collectively contribute to tumorigenesis.

  16. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer.

    Science.gov (United States)

    Zou, Peng; Chen, Minxiao; Ji, Jiansong; Chen, Weiqian; Chen, Xi; Ying, Shilong; Zhang, Junru; Zhang, Ziheng; Liu, Zhiguo; Yang, Shulin; Liang, Guang

    2015-11-03

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for GC treatment. Auranofin (AF), clinically used to treat rheumatic arthritis, but it exhibited preclinical efficacy in GC cells. By increasing intracellular reactive oxygen species (ROS) levels, AF induces a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in cultured GC cells. Blockage of ROS production reversed AF-induced ER stress and mitochondrial pathways activation as well as apoptosis. In addition, AF displays synergistic lethality with an ROS-generating agent piperlongumine, which is a natural product isolated from the long pepper Piper longum L. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer. More importantly, it reveals that increased ROS generation might be an effective strategy in treating human gastric cancer.

  17. Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B

    International Nuclear Information System (INIS)

    Yoon, J-Y; Szwajcer, D; Ishdorj, G; Benjaminson, P; Xiao, W; Kumar, R; Johnston, J B; Gibson, S B

    2013-01-01

    Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins

  18. Synergistic protective role of mirazid (Commiphora molmol) and ascorbic acid against tilmicosin-induced cardiotoxicity in mice.

    Science.gov (United States)

    Abdel-Daim, Mohamed M; Ghazy, Emad W; Fayez, Mostafa

    2015-01-01

    Tilmicosin (TIL) is a long-acting macrolide antibiotic approved for the treatment of cattle with Bovine Respiratory Disease. However, overdose of TIL has been reported to induce cardiotoxicity. The purpose of our experiment was to evaluate the protective effects of Commiphora molmol (mirazid (MRZ); myrrh) and (or) ascorbic acid (AA) against TIL-induced cardiotoxicity in mice. MRZ and AA were orally administered using stomach gavage, either alone or in combination for 5 consecutive days, followed with a single TIL overdose. TIL overdose induced a significant increase in serum levels of cardiac damage biomarkers (AST, LDH, CK, CK-MB, and cTnT), as well as cardiac lipid peroxidation, but cardiac levels of antioxidant biomarkers (GSH, SOD, CAT, and TAC) were decreased. Both MRZ and AA tended to normalize the elevated serum levels of cardiac injury biomarkers. Furthermore, MRZ and AA reduced TIL-induced lipid peroxidation and oxidative stress parameters. MRZ and AA combined produced a synergistic cardioprotective effect. We conclude that myrrh and (or) vitamin C administration minimizes the toxic effects of TIL through their free-radical-scavenging and potent antioxidant activities.

  19. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells.

    Science.gov (United States)

    Yoshida, Toru; Kondo, Takashi; Ogawa, Ryohei; Feril, Loreto B; Zhao, Qing-Li; Watanabe, Akihiko; Tsukada, Kazuhiro

    2008-04-01

    Potential clinical use of ultrasound (US) in enhancing the effects of anticancer drugs in the treatment of cancers has been highlighted in previous reports. Increased uptake of drugs by the cancer cells due to US has been suggested as a mechanism. However, the precise mechanism of the enhancement has not yet been elucidated. Here, the combined effects of low-intensity pulsed US and doxorubicin (DOX) on cell killing and apoptosis induction of U937 cells, and mechanisms involved were investigated. Human myelomonocytic lymphoma U937 cells were used for the experiments. Experiments were conducted in 4 groups: (1) non-treated, (2) DOX treated (DOX), (3) US treated (US), and (4) combined (DOX + US). In DOX +US, cells were exposed to 5 microM DOX for 30 min and sonicated by 1 MHz pulsed US (PRF 100 Hz, DF 10%) at intensities of 0.2-0.5 W/cm(2) for 60 s. The cells were washed and incubated for 6 h. The viability was evaluated by Trypan blue dye exclusion test and apoptosis and incorporation of DOX was assessed by flow cytometry. Involvement of sonoporation in molecular incorporation was evaluated using FITC-dextran, hydroxyl radical formation was measured by electron paramagnetic resonance-spin trapping, membrane alteration including lipid peroxidation and membrane fluidity by DOX was evaluated using cis-parinaric acid and perylene fluorescence polarization method, respectively. Synergistic enhancement in cell killing and additive enhancement in induction of apoptosis were observed at and above 0.3 W/cm(2). No enhancement was observed at 0.2 W/cm(2) in cell killing and induction of apoptosis. Hydroxyl radicals formation was detected at and above 0.3 W/cm(2). The radicals were produced more in the DOX + US than US alone. Incorporation of DOX was increased 13% in DOX + US (vs. DOX) at 0.5 W/cm(2). Involvement of sonoporation for increase of drug uptake was suggested by experiment using FITC-labeled dextran. We made the hypothesis that DOX treatment made the cells weaken

  20. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin.

    Directory of Open Access Journals (Sweden)

    Elaine F Kenny

    Full Text Available B cells signal through both the B cell receptor (BCR which binds antigens and Toll-like receptors (TLRs including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.

  1. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  2. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    Science.gov (United States)

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  3. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties

    Science.gov (United States)

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-01

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  4. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

    Science.gov (United States)

    Proietti, Sara; Cucina, Alessandra; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Lisi, Elisabetta; Bizzarri, Mariano

    2011-03-01

    Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  5. An AP-2 element acts synergistically with the cyclic AMP- and Phorbol ester-inducible enhancer of the human proenkephalin gene

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, S.E.; Comb, M.; Pearlberg, J.; Goodman, H.M.

    1989-01-01

    An enhancer with two DNA elements, one containing the sequence CGTCA, is required for cyclic AMP-and phorbol ester-inducible transcription of the human proenkephalin gene. The authors report that an AP-2 element located adjacent to the enhancer acts synergistically with it to confer maximal response to cyclic AMP and phorbol esters.

  6. CXC-chemokines KC and macrophage inflammatory protein-2 (MIP-2) synergistically induce leukocyte recruitment to the central nervous system in rats

    NARCIS (Netherlands)

    Zwijnenburg, Petra J. G.; Polfliet, Machteld M. J.; Florquin, Sandrine; van den Berg, Timo K.; Dijkstra, Christine D.; van Deventer, Sander J. H.; Roord, John J.; van der Poll, Tom; van Furth, A. Marceline

    2003-01-01

    Intracisternal injection of the CXC-chemokines KC or macrophage inflammatory protein (MIP)-2 induced a pleocytosis in the cerebrospinal fluid (CSF) of rats in a dose dependent way. MIP-2 was much more potent than KC. The concurrent injection of both chemokines revealed a profound synergistic effect

  7. Synergistic action between inhibition of P2Y12/P2Y1 and P2Y12/thrombin in ADP- and thrombin-induced human platelet activation

    Science.gov (United States)

    Nylander, Sven; Mattsson, Christer; Ramström, Sofia; Lindahl, Tomas L

    2004-01-01

    The objective of this study was to investigate if there is a synergistic effect of a combination of P2Y12 and P2Y1 inhibition and P2Y12 and thrombin inhibition, on ADP- and thrombin-induced platelet activation, respectively. The rationale being that these combinations will cause a concurrent inhibition of both Gαq and Gαi signalling.Blood from healthy volunteers was preincubated with AR-C69931MX, a reversible P2Y12 antagonist; MRS2179, a reversible P2Y1 antagonist; or melagatran, a direct reversible thrombin inhibitor; alone or in various combinations prior to activation with ADP or thrombin. Platelet function in whole blood was assessed by flow cytometry using the antibody PAC-1 to estimate the expression of active αIIbβ3 (the fibrinogen receptor GPIIb/IIIa). A synergistic effect was evaluated by comparing the concentrations in the different combinations with those of corresponding equipotent concentrations of each single inhibitor alone. The equipotent single concentrations were experimentally obtained from concentration response curves performed in parallel.A synergistic effect regarding inhibition of ADP-induced platelet activation (10 μM) was obtained with different combinations of AR-C69931MX and MRS2179.Inhibition of thrombin-induced platelet activation (2 nM) with combinations of AR-C69931MX and the thrombin inhibitor melagatran did also result in a strong synergistic effect.To our knowledge, this is the first time that data supporting a synergistic effect has been published for the inhibitor combinations described.Whether this synergistic effect in vitro also results in an improved antithrombotic effect in vivo with or without an increased risk of bleeding remains to be studied in well-conducted clinical studies. PMID:15265806

  8. Arsenic trioxide synergistically enhances radiation response in human cervical cancer cells through ROS-dependent p38 MAPK and JNK signalling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young-Hee; Park, Seung-Moo; Kim, Min-Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2006-07-01

    Many factors affect susceptibility of tumor cells to ionizing radiation. Among them intrinsic apoptosis sensitivity or resistancy seems to play an important role. The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic efficacy by overcoming a high apoptotic threshold. Several recent studies demonstrated additive effects of As{sub 2}O{sub 3} with conventional chemotherapeutic agents such as cisplatin, adriamycin, and etoposide, but no synergism. Previously, we have shown for the first time that As{sub 2}O{sub 3} sensitize human cervical cancer cells to ionizing radiation. Treatment of As{sub 2}O{sub 3} in combination of ionizing radiation has synergistic effects in decreasing clonogenic survival and in the regression of tumor growth in xenografts. We also have shown that the combination treatment enhanced apoptotic cell death through a reactive oxygen species-dependent pathway in human cervical cancer cells. In this study, we investigated the regulatory mechanism of ROS-mediated mitochondrial apoptotic cell death induced by combination treatment with As{sub 2}O{sub 3} and ionizing radiation in human cervical cancer cells.

  9. Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells.

    Science.gov (United States)

    Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu

    2017-01-01

    Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.

  10. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds. © The

  11. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro

    International Nuclear Information System (INIS)

    Cardillo, Thomas M; Trisal, Preeti; Arrojo, Roberto; Goldenberg, David M; Chang, Chien-Hsing

    2013-01-01

    Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway. Clinically, there is an association of IGF-I receptor (IGF-IR) expression in RCC and poor long-term patient survival. We have developed a humanized anti-IGF-IR monoclonal antibody, hR1, which binds to RCC, resulting in effective down-regulation of IGF-IR and moderate inhibition of cell proliferation in vitro. In this work, we evaluate the anti-tumor activity of two novel IGF-1R-targeting agents against renal cell carcinoma given alone or in combination with an mTOR inhibitor. hR1 was linked by the DOCK-AND-LOCK™ (DNL™) method to four Fabs of hR1, generating Hex-hR1, or to four molecules of interferon-α2b, generating 1R-2b. Eight human RCC cell lines were screened for IGF-1R expression and sensitivity to treatment with hR1 in vitro. Synergy with an mTOR inhibitor, temsirolimus, was tested in a cell line (ACHN) with low sensitivity to hR1. Hex-hR1 induced the down-regulation of IGF-IR at 10-fold lower concentrations compared to the parental hR1. Sensitivity to growth inhibition mediated by hR1 and Hex-hR1 treatments correlated with IGF-1R expression (higher expression was more sensitive). The potency of 1R-2b to inhibit the in vitro growth of RCC was also demonstrated in two human cell lines, ACHN and 786-O, with EC 50 –values of 63 and 48 pM, respectively. When combined with temsirolimus, a synergistic growth-inhibition with hR1, Hex-hR1, and 1R-2b was observed in ACHN cells at concentrations as low as 10 nM for hR1, 1 nM for Hex-hR1, and 2.6 nM for 1R-2b. Both Hex-hR1

  12. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  13. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  14. Antidiabetic and Synergistic Effects of Anthocyanin Fraction from Berberis integerrima Fruit on Streptozotocin-Induced Diabetic Rats Model

    Directory of Open Access Journals (Sweden)

    Zahra Sabahi

    2016-03-01

    Full Text Available Diabetes mellitus is a complex endocrine disorder. There is a serious attempt to identify antidiabetic compounds from natural sources to use with other drugs for reduction of diabetes complications. Present study is based on the investigation of antihyperglycemic effect of anthocyanin fraction of Berberis integerrima Bunge (AFBI fruits on some physiological parameters (glucose level, glycogen content, and body weight in normal and streptozotocin-induced (STZ-induced diabetic rats and evaluation of synergic effect of this fraction with metformin and glibenclamide. Male Sprague dawley rats were divided into nine groups: healthy control group, diabetic control group, diabetic groups treated with anthocyanin fraction (200, 400 and 1000 mg/kg, respectively; diabetic groups treated with glibenclamide and metformin separately, diabetic groups treated with glibenclamide + anthocyanin fraction (1000 mg/kg, metformin + anthocyanin fraction (1000 mg/kg. Treatment of diabetic rats with AFBI (400, 1000mg/kg significantly decreased blood glucose as compared with control. Moreover, AFBI (400, 1000mg/kg significantly increased liver glycogen and body weight compared to control. Nevertheless, there were no synergistic effects between anthocyanin fraction and metformin or glibenclamide on blood glucose, liver glycogen, and body weight. The results of this study indicate that AFBI possesses hypoglycemic effects and may be considered for evaluation in future diabetes clinical studies.

  15. Palmitate and insulin synergistically induce IL-6 expression in human monocytes

    Directory of Open Access Journals (Sweden)

    Lumpkin Charles K

    2010-11-01

    Full Text Available Abstract Background Insulin resistance is associated with a proinflammatory state that promotes the development of complications such as type 2 diabetes mellitus (T2DM and atherosclerosis. The metabolic stimuli that initiate and propagate proinflammatory cytokine production and the cellular origin of proinflammatory cytokines in insulin resistance have not been fully elucidated. Circulating proinflammatory monocytes show signs of enhanced inflammation in obese, insulin resistant subjects and are thus a potential source of proinflammatory cytokine production. The specific, circulating metabolic factors that might stimulate monocyte inflammation in insulin resistant subjects are poorly characterized. We have examined whether saturated nonesterified fatty acids (NEFA and insulin, which increase in concentration with developing insulin resistance, can trigger the production of interleukin (IL-6 and tumor necrosis factor (TNF-α in human monocytes. Methods Messenger RNA and protein levels of the proinflammatory cytokines IL-6 and TNF-α were measured by quantitative real-time PCR (qRT-PCR and Luminex bioassays. Student's t-test was used with a significance level of p Results Esterification of palmitate with coenzyme A (CoA was necessary, while β-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and TNF-α in THP-1 monocytes. Monocytes incubated with insulin and palmitate together produced more IL-6 mRNA and protein, and more TNF-α protein, compared to monocytes incubated with palmitate alone. Incubation of monocytes with insulin alone did not affect the production of IL-6 or TNF-α. Both PI3K-Akt and MEK/ERK signalling pathways are important for cytokine induction by palmitate. MEK/ERK signalling is necessary for synergistic induction of IL-6 by palmitate and insulin. Conclusions High levels of saturated NEFA, such as palmitate, when combined with hyperinsulinemia, may activate human monocytes to produce

  16. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  17. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Oluwadamilare A. [Department of Biological Sciences, North Carolina State University (United States); Ray, Paul D. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Shea, Damian [Department of Biological Sciences, North Carolina State University (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States)

    2015-12-15

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu{sup 2+} transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments.

  18. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    International Nuclear Information System (INIS)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2015-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu 2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments

  19. Synergistic action of cisplatin and echistatin in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Czarnomysy, Robert; Surażyński, Arkadiusz; Popławska, Bożena; Rysiak, Edyta; Pawłowska, Natalia; Czajkowska, Anna; Bielawski, Krzysztof; Bielawska, Anna

    2017-03-01

    The aim of our study was to determine whether the use of cisplatin in the presence echistatin in MDA-MB-231 breast cancer cells leads to a reduction of toxic effects associated with the use of cisplatin. The expression of β 1 -integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: protein kinase B (AKT), mitogen-activated protein kinases (ERK1/ERK2), nuclear factor kappa B (NFκB), and caspase-3 and -9 activity was measured after 24 h of incubation with tested compounds to explain detailed molecular mechanism of induction of apoptosis. The viability of MDA-MB-231 breast cancer cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V-FITC/propidium iodide staining assay was performed to detect the induction of apoptosis. Inhibition DNA biosynthesis was determined by [ 3 H]thymidine incorporation into DNA. The expression of of β 1 -integrin, IGF-IR, AKT, ERK1/ERK2, NFκB, caspase-3 and -9 was evaluated using Western blot. The results suggest that treatment of MDA-MB-231 breast cancer cells for 24 h cisplatin plus echistatin severely inhibits cell growth and activates apoptosis by upregulation of caspase-3 and -9 expressions. The effect was stronger than treatment cisplatin and echistatin alone. In this study, we have found that cisplatin plus echistatin treatment decreases collagen biosynthesis in MDA-MB-231 breast cancer cells stronger than the individual compounds. The inhibition was found to be dependent on the β 1 -integrin and IGF receptor activation. A significant reduction of ERK1/ERK2, AKT expression in cancer cells after cisplatin plus echistatin treatment was also found. The cancer cells treated by echistatin, cisplatin, and in particular the combination of both compounds drastically increased expression of NFκB transcription factor. Our results suggest that combined therapy cisplatin plus echistatin is a possible way to improve selectiveness of cisplatin. This

  20. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid

    2015-06-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis-free, scan-independent, and stabilized devices with an efficiency of 16.1%. Electron-rich, nitrogen-doped ZnO (N:ZnO) NR-based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the -nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron-rich high aspect ratio N:ZnO NR arrays is -successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state-of-the-art PCE of ZnO-based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application

    Science.gov (United States)

    Siwal, Samarjeet; Ghosh, Sarit; Nandi, Debkumar; Devi, Nishu; Perla, Venkata K.; Barik, Rasmita; Mallick, Kaushik

    2017-09-01

    Aromatic polypyrene was synthesized by the oxidative polymerization of pyrene with potassium tetrachloropalladate (II), as oxidant. During the polymerization process the palladium salt was reduced to metallic palladium and forms the metal-polymer composite material. Polypyrene stabilized palladium nanoparticles showed electrocatalytic activity toward the oxidation of methanol. The performance of the electrocatalytic activity was substantially improved with the incorporation of graphene oxide to the palladium-polypyrene composite and the synergistic performance was attributed to the electronic and structural properties of the system.

  2. Synergistic effects of galantamine and memantine in attenuating scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Busquet, Perrine; Capurro, Valeria; Cavalli, Andrea; Piomelli, Daniele; Reggiani, Angelo; Bertorelli, Rosalia

    2012-01-01

    We investigated a possible drug efficacy enhancement obtained by combining inactive doses of galantamine and memantine in the scopolamine-induced amnesia model in mice. We evaluated the effects of the two drugs, either alone or in combination, using the spontaneous alternation and object recognition tasks. In both tests, combination of low doses of galantamine (0.1 mg/kg, s.c.) and memantine (0.5 mg/kg, i.p.), which were sub-active per se, rescued the memory impairment induced by scopolamine (1 mg/kg, i.p.). The results suggest that combinations of galantamine and memantine might provide a more effective treatment of memory impairments in cognitive disorders than either drug used alone.

  3. Synergistic activity of curcumin with methotrexate in ameliorating Freund's Complete Adjuvant induced arthritis with reduced hepatotoxicity in experimental animals.

    Science.gov (United States)

    Banji, David; Pinnapureddy, Jyothi; Banji, Otilia J F; Saidulu, A; Hayath, Md Sikinder

    2011-10-01

    Methotrexate is employed in low doses for the treatment of rheumatoid arthritis. One of the major drawbacks with methotrexate is hepatotoxicity resulting in poor compliance of therapy. Curcumin is an extensively used spice possessing both anti-arthritic and hepatoprotective potential. The present study was aimed at investigating the effect of curcumin (30 and 100 mg/kg) in combination with subtherapeutic dose of methotrexate (1 mg/kg) is salvaging hepatotoxicity, oxidative stress and producing synergistic anti-arthritic action with methotrexate. Wistar albino rats were induced with arthritis by subplantar injection of Freund's Complete Adjuvant and pronounced arthritis was seen after 9 days of injection. Groups of animals were treated with subtherapeutic dose of methotrexate followed half an hour later with 30 and 100mg/kg of curcumin from day 9 up to days 45 by intraperitoneal route. Methotrexate treatment in Freund's Complete Adjuvant induced arthritic animals produced elevation in the levels of aminotransferases, alkaline phosphatase, total and direct bilirubin. Enhanced oxidative stress in terms of measured lipid peroxides was observed in the methotrexate treated group. Curcumin significantly circumvented hepatotoxicity induced by methotrexate as evidenced by a change in biochemical markers possibly due to its strong anti-oxidant action. Hepatoprotective potential of curcumin was also confirmed from histological evaluation. Sub-therapeutic dose of methotrexate elicited substantial anti-arthritic action when used in combination with curcumin implying that the latter potentiated its action. Concomitant administration of curcumin with methotrexate was also found to minimize liver damage. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Science.gov (United States)

    Song, Xinxin; Kim, Seog-Young; Lee, Yong J.

    2013-01-01

    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. PMID:24013390

  5. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non‑small cell lung cancer cell lines.

    Science.gov (United States)

    Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu

    2015-01-01

    The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.

  6. Synergistic effects in mice of trichloroethylene and copper overload on pulmonary clara cells injury

    International Nuclear Information System (INIS)

    Giovanetti, A.; Winik, B.; Schlick, C.

    1992-01-01

    Trichloroethylene (TCE), an organic solvent of worldwide use, is also emitted by autovehicles as a by-product of fuel combustion. Previous works have demonstrated that TCE, given by inhalation or by i.p. injection, induces a selective, dose-dependent damage to pulmonary non-ciliated Clara cells. TCE needs to be bioactivated in order to exert its toxic effect. Compounds altering the enzymes activity can therefore modulate TCE cytotoxicity. Copper (Cu) is an essential element and its concentration in serum is under homeostatic control; it is a cofactor for enzymes such as cytochrome oxidase. Humans are exposed to Cu by drinking water. In order to investigate whether a Cu overload enhances enzymes-mediated damage, Albin Swiss male mice were fed with a Cu-supplemented diet; afterwards, they were treated with TCE. Epithelial damage was quantified by counting the percentage of non ciliated vacuolated cells. Ultrastructural studies showed that vacuolations consisted in swelling of SER cisternae. It was postulated that, at physiological levels, Cu protects against lipid peroxidation, while at higher dosages, it promotes free radical formation

  7. Phorbol ester and hydrogen peroxide synergistically induce the interaction of diacylglycerol kinase gamma with the Src homology 2 and C1 domains of beta2-chimaerin.

    Science.gov (United States)

    Yasuda, Satoshi; Kai, Masahiro; Imai, Shin-ichi; Kanoh, Hideo; Sakane, Fumio

    2008-01-01

    DGKgamma (diacylglycerol kinase gamma) was reported to interact with beta2-chimaerin, a GAP (GTPase-activating protein) for Rac, in response to epidermal growth factor. Here we found that PMA and H2O2 also induced the interaction of DGKgamma with beta2-chimaerin. It is noteworthy that simultaneous addition of PMA and H2O2 synergistically enhanced the interaction. In this case, PMA was replaceable by DAG (diacylglycerol). The beta2-chimaerin translocation from the cytoplasm to the plasma membrane caused by PMA plus H2O2 was further enhanced by the expression of DGKgamma. Moreover, DGKgamma apparently enhanced the beta2-chimaerin GAP activity upon cell stimulation with PMA. PMA was found to be mainly required for a conversion of beta2-chimaerin into an active form. On the other hand, H2O2 was suggested to induce a release of Zn2+ from the C1 domain of beta2-chimaerin. By stepwise deletion analysis, we demonstrated that the SH2 (Src homology 2) and C1 domains of beta2-chimaerin interacted with the N-terminal half of catalytic region of DGKgamma. Unexpectedly, the SH2 domain of beta2-chimaerin contributes to the interaction independently of phosphotyrosine. Taken together, these results suggest that the functional link between DGKgamma and beta2-chimaerin has a broad significance in response to a wide range of cell stimuli. Our work offers a novel mechanism of protein-protein interaction, that is, the phosphotyrosine-independent interaction of the SH2 domain acting in co-operation with the C1 domain.

  8. SU-F-T-677: Synergistic Effect(s) of Clotrimazole On Radiation Cell Survival of A549 Lung Cancer Cells in Glucose Vs. Galactose Media

    Energy Technology Data Exchange (ETDEWEB)

    Boss, G; Tambasco, M; Garakani, M [San Diego State University, San Diego, CA (United States)

    2016-06-15

    Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not rely on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.

  9. Synergistic effects of methyl methanesulfonate and X rays in inducing somatic mutations in the stamen hairs of Tradescantia clones, KU 27 and BNL 4430

    International Nuclear Information System (INIS)

    Ichikawa, Sadao; Yamaguchi, Akihiko; Okumura, Mikiko

    1993-01-01

    Young influorescences of Tradescantia clones KU 27 and BNL 4430, the both of which are blue/pink heterozygotes and have been demonstrated to be highly sensitive to alkylating agents, were exposed either to aqueous solutions of methyl methanesulfonate (MMS) for 16 hr alone (at 0.005 to 0.02% for KU 27 and at 0.005% for BNL 4430) or to acute 150 kVp X rays alone (161 to 531 mGy for Ku 27 and 501 to 976 mGy for BNL 4430), or in combinations (134 to 448 mGy for KU 27 and 458 to 865 mGy for BNL 4430 after the 0.005% MMS treatment). The induced somatic pink mutation frequencies per hair-cell division were studied and compared, and clone BNL 4430 was found to be nearly two times more sensitive to MMS than clone KU 27, while the X-ray-induced mutation frequencies in the latter was about 1.5 times higher than those in the former. The lower sensitivity to MMS of clone KU 27 (as compared with BNL 4430) was nevertheless about 5.6 times higher as compared with the responses of clone BNL 02 to MMS reported earlier, proving the high sensitivities of the two clones used in the present study. Clear synergistic effects of MMS and X rays were observed in the both clones, indicating that the mechanisms of inducing mutations are common at least in part between MMS and X rays. (author)

  10. Synergistic nonuniform shortening of atrial refractory period induced by autonomic stimulation.

    Science.gov (United States)

    Takei, M; Furukawa, Y; Narita, M; Ren, L M; Karasawa, Y; Murakami, M; Chiba, S

    1991-12-01

    We investigated the nonuniform effects of autonomic nerve stimulation of the effective refractory period (ERP) of the right atrium in the anesthetized dog. Stimulation of the discrete intracardiac sympathetic nerves to the sinoatrial (SA) nodal region uniformly shortened ERPs at three sites in the right atrium after administration of atropine. Right ansa subclavia (RS) stimulation similarly shortened ERPs in the absence of atropine. Stimulation of the discrete intracardiac parasympathetic nerves to the SA nodal region (SAP stimulation) shortened ERPs of the right atrium in a nonuniform manner. Simultaneous RS and SAP stimulation additively shortened ERPs at each site and decreased sinus rate much more than SAP stimulation alone. Shortening of ERP induced by SAP stimulation was greater than that induced by RS stimulation at similar absolute changes in heart rate. These results suggest that simultaneous activation of sympathetic and parasympathetic nerves nonuniformly shortens the ERP in the right atrium as the algebraic sum of the individual responses to each stimulation. However, parasympathetics exert the principal neural control over atrial ERP.

  11. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development

    KAUST Repository

    Jaiswal, Hemant

    2013-11-13

    Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8-/- bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α+ DCs. We show that, without Irf8 , expression of Id2 and Batf3 was not sufficient for directing classical CD8α+ DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α+ DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α+ DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α+ DC development.

  12. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29.

    Science.gov (United States)

    Du, Boyu; Jiang, Liping; Xia, Quan; Zhong, Laifu

    2006-01-01

    The synergistic effect of combination treatment with COX-2 inhibitors and chemotherapy may be another promising therapy regimen in the future treatment of colorectal cancer. Curcumin, a major yellow pigment in turmeric which is used widely all over the world, inhibits the growth of human colon cancer cell line HT-29 significantly and specifically inhibits the expression of COX-2 protein. However, the worldwide exposure of populations to curcumin raised the question of whether this agent would enhance or inhibit the effects of chemotherapy. In this report, we evaluated the growth-inhibitory effect of curcumin and a traditional chemotherapy agent, 5-FU, against the proliferation of a human colon cancer cell line (HT-29). The combination effect was quantitatively determined using the method of median-effect principle and the combination index. The inhibition of COX-2 expression after treatment with the curcumin-5-FU combination was also evaluated by Western blot analysis. The IC(50) value in the HT-29 cells for curcumin was 15.9 +/- 1.96 microM and for 5-FU it was 17.3 +/- 1.85 microM. When curcumin and 5-FU were used concurrently, synergistic inhibition of growth was quantitatively demonstrated. The level of COX-2 protein expression was reduced almost 6-fold after the combination treatment. Our results demonstrate synergism between curcumin and 5-FU at higher doses against the human colon cancer cell line HT-29. This synergism was associated with the decreased expression of COX-2 protein. Copyright 2006 S. Karger AG, Basel.

  13. In vitro synergistic efficacy of conjugated linoleic acid, oleic acid, safflower oil and taxol cytotoxicity on PC3 cells.

    Science.gov (United States)

    Kızılşahin, Sadi; Nalbantsoy, Ayşe; Yavaşoğlu, N Ülkü Karabay

    2015-01-01

    The aim of this study was to determine in vitro synergistic efficacy of conjugated linoleic acid (CLA), oleic acid (OLA), safflower oil and taxol (Tax) cytotoxicity on human prostate cancer (PC3) cell line. To determine synergistic efficacy of oil combinations, PC3 treated with different doses of compounds alone and combined with 10 μg/mL Tax. The MTT results indicated that OLA-Tax combinations exhibited cytotoxicity against PC3 at doses of 30 nM+10 μg-Tax, 15 nM+5 μg-Tax and 7.5 nM+2.5 μg-Tax. The treatment of OLA or Tax did not show significant inhibition on PC3, while OLA-Tax combinations showed effective cytotoxicity at treated doses. CLA-Tax combinations demonstrated the same effect on PC3 as combined form with 45.72% versus the alone form as 74.51% viability. Cytotoxic synergy between Tax, OLA and CLA shows enhanced cytotoxicity on PC3 which might be used in the therapy of prostate cancer.

  14. Constructed Single-Crystal Rutile TiO_2 Cluster and Plasmon Synergistic Effect for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Yu, Wenjing; Sun, Weiwei; Liu, Yumin; Mehnane, Hadja Fatima; Liu, Haimin; Zhang, Kun; Cai, Bo; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2015-01-01

    We demonstrate a method for incorporating plasmon metallic nanoparticles in hierarchical rutile TiO_2 clusters (RTC) assembled from single-crystal nanospindles. The RTC could efficiently improve the diffusion of the photoelectrons, which can be ascribed to the improvement of the connectivity by bridging the neighbouring microflowers through the single-crystal nanospindles. But not all the nanospindles are tightly interconnected, hence organic colloid has been prepared for post-treatment of the device based on RTC by the generation of TiO_2 nanoparticles. When added into Au nanoparticles, localized electric fields can be produced, because Au can excite dye molecules more intensively than incident far-field light. The surface plasmon synergistic effect had been investigated by Uv-vis absorption spectrum of Au@ organic colloid and the relative change of the IPCE. As a result, the cell based on RTC exhibits an overall conversion efficiency of 7.68%, indicating a 17% promotion compared with that derived from commercial P25 (6.58%) which could be ascribed to faster electron transfer of single-crystal nanospindles. With the Au nanoparticles incorporation in RTC, the device achieves a conversion efficiency of 9.15%, resulting in a 11% increase compared to the RTC device post-treated by organic colloid without Au nanoparticles (8.24%), which is attributed to the surface plasmon synergistic of Au nanoparticles.

  15. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  16. Synergistic Effect of Quercetin and α-Lipoic Acid on Aluminium Chloride Induced Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Sooad Saud Al-Otaibi

    2018-01-01

    Full Text Available Objectives. The present study was carried out to study the protective effects of quercetin and α-lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. Materials and Methods. The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α-lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Results. Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl3 exposed rats to either quercetin or α-lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α-lipoic acid pretreatment of AlCl3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α-lipoic acid resulted in a

  17. Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated prodrug TH-302, in vivo and in vitro.

    Science.gov (United States)

    Hu, Jinsong; Van Valckenborgh, Els; Xu, Dehui; Menu, Eline; De Raeve, Hendrik; De Bruyne, Elke; De Bryune, Elke; Xu, Song; Van Camp, Ben; Handisides, Damian; Hart, Charles P; Vanderkerken, Karin

    2013-09-01

    Recently, we showed that hypoxia is a critical microenvironmental factor in multiple myeloma, and that the hypoxia-activated prodrug TH-302 selectively targets hypoxic multiple myeloma cells and improves multiple disease parameters in vivo. To explore approaches for sensitizing multiple myeloma cells to TH-302, we evaluated in this study the antitumor effect of TH-302 in combination with the clinically used proteasome inhibitor bortezomib. First, we show that TH-302 and bortezomib synergistically induce apoptosis in multiple myeloma cell lines in vitro. Second, we confirm that this synergism is related to the activation of caspase cascades and is mediated by changes of Bcl-2 family proteins. The combination treatment induces enhanced cleavage of caspase-3/8/9 and PARP, and therefore triggers apoptosis and enhances the cleavage of proapoptotic BH3-only protein BAD and BID as well as the antiapoptotic protein Mcl-1. In particular, TH-302 can abrogate the accumulation of antiapoptotic Mcl-1 induced by bortezomib, and decreases the expression of the prosurvival proteins Bcl-2 and Bcl-xL. Furthermore, we found that the induction of the proapoptotic BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA is associated with this synergism. In response to the genotoxic and endoplasmic reticulum stresses by TH-302 and bortezomib, the expression of PUMA and NOXA were upregulated in p53-dependent and -independent manners. Finally, in the murine 5T33MMvv model, we showed that the combination of TH-302 and bortezomib can improve multiple disease parameters and significantly prolong the survival of diseased mice. In conclusion, our studies provide a rationale for clinical evaluation of the combination of TH-302 and bortezomib in patients with multiple myeloma.

  18. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX. Copyright © 2016. Published by Elsevier GmbH.

  19. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

    Science.gov (United States)

    Fredriksson, Lisa; Herpers, Bram; Benedetti, Giulia; Matadin, Quraisha; Puigvert, Jordi C; de Bont, Hans; Dragovic, Sanja; Vermeulen, Nico P E; Commandeur, Jan N M; Danen, Erik; de Graauw, Marjo; van de Water, Bob

    2011-06-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF-α). HepG2 cells were treated with diclofenac followed by TNF-α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF-α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF-α-mediated enhancement involved activation of caspase-3 through a caspase-8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c-Jun N-terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF-α-induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF-α-mediated nuclear factor kappaB (NF-κB) translocation oscillation in association with reduced NF-κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF-α-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS-345541 as well as stable lentiviral short hairpin RNA (shRNA)-based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF-α-induced cytotoxicity. Together, our data suggest a model whereby diclofenac-mediated stress signaling suppresses TNF-α-induced survival signaling routes and sensitizes cells to apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  20. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    Science.gov (United States)

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  1. Synergistic Cytotoxicity Effect by Combination Treatment of Polyketide Derivatives from Annona muricata Linn Leaves and Doxorubicin as Potential Anticancer Material on Raji Cell Line

    Science.gov (United States)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.

    2018-03-01

    Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.

  2. Synergistic Hepatoprotective and Antioxidant Effect of Artichoke, Fig, Blackberry Herbal Mixture on HepG2 Cells and Their Metabolic Profiling Using NMR Coupled with Chemometrics.

    Science.gov (United States)

    Youssef, Fadia S; Labib, Rola M; Eldahshan, Omayma A; Singab, Abdel Nasser B

    2017-12-01

    The edible plants have long been reported to possess a lot of biological activities. Herein, the hepatoprotective and the antioxidant activities of the aqueous infusion of the edible parts of Cynara cardunculus, Ficus carica, and Morus nigra and their herbal mixture (CFM) was investigated in vitro using CCl 4 induced damage in HepG2 cells. The highest amelioration was observed via the consumption of CFM at 1 mg/ml showing 47.00% and 37.09% decline in aspartate transaminase and alanine transaminase and 77.32% and 101.02% increase in reduced glutathione and superoxide dismutase comparable to CCl 4 treated cells. Metabolic profiling of their aqueous infusions was done using nuclear magnetic resonance spectroscopic experiments coupled with chemometrics particularly hierarchical cluster analysis (HCA) and principal component analysis (PCA). The structural closeness of the various metabolites existing in black berry and the mixture as reflected in the PCA score plot and HCA processed from the 1 H-NMR spectral data could eventually explained the close values in their biological behavior. For fig and artichoke, the existence of different phenolic metabolites that act synergistically could greatly interpret their potent biological behavior. Thus, it can be concluded that a herbal mixture composed of black berry, artichoke, and fig could afford an excellent natural candidate to combat oxidative stress and counteract hepatic toxins owing to its phenolic compounds. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  3. Action of caffeine on x-irradiated HeLa cells. II. Synergistic lethality

    International Nuclear Information System (INIS)

    Busse, P.M.; Bose, S.K.; Jones, R.W.; Tolmach, L.J.

    1977-01-01

    Postirradiation treatment of HeLa S3 cells with 1 mM caffeine results in a marked diminution of the surviving fraction as scored by colony formation. The decrease is dose dependent; the effect of a 24-hour postirradiation treatment of a nonsynchronous population with caffeine is to change the terminal slope of the survival curve and its intercept. D 0 is reduced from 130 to 60 rad; the extrapolation number is increased about twofold. The amount of postirradiation killing is maximal if cells are exposed to caffeine at a concentration of at least 1 mM for 8 hours; less than 10% of unirradiated cells are killed under these conditions. Dose-response curves were also obtained for synchronous cells at various phases of the cell cycle. Similar results were obtained at all cell ages, but the magnitude of the effect is age dependent. This age dependence was further explored in experiments in which mitotically collected cells were exposed to 300 or 500 rad doses at 2-hour intervals throughout the cell cycle. Treatment with caffeine for 24 hours after irradiation enchances the killing of cells late in the cycle more than cells in G1. The sensitivities of two other cell lines, CHO and EMT6, also were examined; both are substantially less sensitive to caffeine. The smaller cell-cycle dependence of CHO cells is qualitatively the same as that of HeLa cells

  4. Deciphering the molecular events necessary for synergistic tumor cell apoptosis mediated by the histone deacetylase inhibitor vorinostat and the BH3 mimetic ABT-737

    NARCIS (Netherlands)

    Wiegmans, Adrian P.; Alsop, Amber E.; Bots, Michael; Cluse, Leonie A.; Williams, Steven P.; Banks, Kellie-Marie; Ralli, Rachael; Scott, Clare L.; Frenzel, Anna; Villunger, Andreas; Johnstone, Ricky W.

    2011-01-01

    The concept of personalized anticancer therapy is based on the use of targeted therapeutics through in-depth knowledge of the molecular mechanisms of action of these agents when used alone and in combination. We have identified the apoptotic proteins and pathways necessary for synergistic tumor cell

  5. Synergistic Effect of Carboplatin and Piroxicam on Two Bladder Cancer Cell Lines.

    Science.gov (United States)

    Silva, Jéssica; Arantes-Rodrigues, Regina; Pinto-Leite, Rosário; Faustino-Rocha, Ana I; Fidalgo-Gonçalves, Lio; Santos, Lúcio; Oliveira, Paula A

    2017-04-01

    This study aimed to evaluate the in vitro efficacy of carboplatin and piroxicam, both in isolation and combined, against T24 and 5637 human urinary bladder cancer cell lines. Cell viability, drug interaction, cell morphology, cell proliferation, apoptosis and autophagy were analyzed after 72 h of drug exposure. Statistical analysis was performed and values of ppiroxicam produced a more potent antiproliferative effect when compared to single drugs. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Synergistic effects of arsenic trioxide combined with ascorbic acid in human osteosarcoma MG-63 cells: a systems biology analysis.

    Science.gov (United States)

    Huang, X C; Maimaiti, X Y M; Huang, C W; Zhang, L; Li, Z B; Chen, Z G; Gao, X; Chen, T Y

    2014-01-01

    To further understand the synergistic mechanism of As2O3 and asscorbic acid (AA) in human osteosarcoma MG-63 cells by systems biology analysis. Human osteosarcoma MG-63 cells were treated by As2O3 (1 µmol/L), AA (62.5 µmol/L) and combined drugs (1 µmol/L As2O3 plus 62.5 µmol/L AA). Dynamic morphological characteristics were recorded by Cell-IQ system, and growth rate was calculated. Illumina beadchip assay was used to analyze the differential expression genes in different groups. Synergic effects on differential expression genes (DEGs) were analyzed by mixture linear model and singular value decomposition model. KEGG pathway annotations and GO enrichment analysis were performed to figure out the pathways involved in the synergic effects. We captured 1987 differential expression genes in combined therapy MG-63 cells. FAT1 gene was significantly upregulated in all three groups, which is a promising drug target as an important tumor suppressor analogue; meanwhile, HIST1H2BD gene was markedly downregulated in the As2O3 monotherapy group and the combined therapy group, which was found to be upregulated in prostatic cancer. These two genes might play critical roles in synergetic effects of AA and As2O3, although the exact mechanism needs further investigation. KEGG pathway analysis showed many DEGs were related with tight junction, and GO analysis also indicated that DEGs in the combined therapy cells gathered in occluding junction, apical junction complex, cell junction, and tight junction. AA potentiates the efficacy of As2O3 in MG-63 cells. Systems biology analysis showed the synergic effect on the DEGs.

  7. Synergistic cytotoxic action of vitamin C and vitamin K3.

    Science.gov (United States)

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  8. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    Science.gov (United States)

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  9. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    Science.gov (United States)

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-09-01

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. SYNERGISTIC EFFECTS OF ETHANOL MEDICINAL PLANT EXTRACTS WITH ERYTHROMYCIN AGAINST SKIN STRAINS OF STAPHYLOCOCCI WITH INDUCIBLE PHENOTYPE OF MLS-RESISTANCE

    Directory of Open Access Journals (Sweden)

    Yurchyshyn O.I.

    2017-10-01

    Full Text Available Introduction. One of the main ways to control microorganisms’ resistance to antibiotics is to find substances that are able to overcome it and potentiate antibiotics action, in particular to neutralize the antibiotic-inactivating enzymes or block the active efflux of antibiotic from microbial cells. Every year there is a growing interest in the therapeutic potential of herbal active compounds as modifiers of antibiotic resistance including MLS-resistance (macrolide-lincosamide-streptoramin B. It should be emphasized that a number of biologically active substances of plant origin can potentiate antimicrobial activity of erythromycin (ERY against MLS-resistant staphylococci. The present study was designed to investigate the antibacterial and synergistic effects of eight Ukrainian ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Material & methods. S. aureus and S. epidermidis strains were tested for susceptibility to antibiotics of MLS-group by disk diffusion test. Effective antimicrobial concentrations of plant extracts and erythromycin were determined by two-fold serial dilution in nutrient agar and broth. Combinatory effects between organic extracts and ERY were assessed using the checkerboard assay against tested strains to evaluate culture growth in the presence of two antimicrobials with different concentrations. Results & discussion. The Alnus incana L. fruits extract was the most potent inhibitor against tested strains (MIC 40.625-162.5 µg/mL; while Geranium pratense L. rhizomes extract exhibited the least antimicrobial activity (MIC 650-2,600 µg/mL. The Alnus incana L. fruits extract and the Geranium pratense L. rhizomes extract showed synergistic effect with erythromycin against 100% strains of staphylococci (average FICI 0.028 – 0.057; p<0.001. In the presence of 1/4 MIC of ERY Alnus incana L. fruits extract antimicrobial concentration was

  11. Low-dose synergistic immunosuppression of T-dependent antibody responses by polycyclic aromatic hydrocarbons and arsenic in C57BL/6J murine spleen cells

    International Nuclear Information System (INIS)

    Li Qian; Lauer, Fredine T.; Liu Kejian; Hudson, Laurie G.; Burchiel, Scott W.

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and arsenic are both environmental agents that are known to have significant immunotoxicity. Previous studies have shown that PAH exposure of spleen cells in vitro produces significant immune suppression of humoral immunity, especially when P450 activation products are examined. Exposure to arsenic, particularly sodium arsenite, has also been found to be suppressive to antibody responses in vitro and in vivo. The purpose of the present studies was to examine the immunotoxicity of PAHs and arsenite following coexposures with the theory being that the agents may exert synergistic actions, which might be based on their different mechanisms of action. Spleen cells were isolated from male C57BL/6J wild-type mice and treated with PAHs and/or arsenic (arsenite or arsenate). Immunotoxicity assays were used to assess the T-dependent antibody response (TDAR) to sheep red blood cells (SRBCs), measured by a direct plaque-forming cell (PFC) assay. Cell viability was measured by trypan blue staining. Spleen cell viability was not altered following 4 days of PAH and/or arsenic treatment. However, the TDAR demonstrated suppression by both PAHs and arsenic in a concentration-dependent manner. p53 was also induced by NaAsO 2 (As 3+ ) and PAHs alone or in combination. The PAHs and their metabolites investigated included benzo[a]pyrene (BaP), BaP-7,8-diol, BaP-7,8-diol-9,10-epoxide (BPDE), 7,12-dimethylbenz[a]anthracene (DMBA), DMBA-3,4-diol, dibenzo[a,l]pyrene (DB[a,l]P). PAH metabolites were found to be more potent than parent compounds in producing immunosuppression and inducing p53 expression. Interestingly, DB[a,l]P, a potent carcinogenic PAH not previously characterized for immunotoxicity, was also found to be strongly immunosuppressive. Arsenite (NaAsO 2 , As 3+ ) was found to produce immunosuppression at concentrations as low as 0.5 μM and was immunosuppressive at a 10-fold lower concentration than sodium arsenate (Na 2 HAsO 4 , As 5

  12. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  13. Low-magnetization magnetic microcapsules: A synergistic theranostic platform for remote cancer cells therapy and imaging

    KAUST Repository

    Zhang, Wei; Deng, Lin; Wang, Guangchao; Guo, Xianrong; Li, Qiujin; Zhang, Jianfei; Khashab, Niveen M.

    2014-01-01

    Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer-by-layer technique of oppositely charged polyelectrolytes (poly

  14. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  15. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  16. Targeted therapy of renal cell carcinoma: synergistic activity of cG250-TNF and IFNg.

    NARCIS (Netherlands)

    Bauer, S.; Oosterwijk-Wakka, J.C.; Adrian, N.; Oosterwijk, E.; Fischer, E.; Wuest, T.; Stenner, F.; Perani, A.; Cohen, L.; Knuth, A.; Divgi, C.; Jager, D.; Scott, A.M.; Ritter, G.; Old, L.J.; Renner, C.

    2009-01-01

    Immunotherapeutic targeting of G250/Carbonic anhydrase IX (CA-IX) represents a promising strategy for treatment of renal cell carcinoma (RCC). The well characterized human-mouse chimeric G250 (cG250) antibody has been shown in human studies to specifically enrich in CA-IX positive tumors and was

  17. Low-magnetization magnetic microcapsules: A synergistic theranostic platform for remote cancer cells therapy and imaging

    KAUST Repository

    Zhang, Wei

    2014-04-02

    Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer-by-layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g-1, which is lower than the 7-22 emu g-1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.

  18. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    Science.gov (United States)

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest

  19. Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5.

    Directory of Open Access Journals (Sweden)

    Geqiang Li

    2010-02-01

    Full Text Available Grb2-associated binding (Gab adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol-3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs. Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5, a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner.To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit(+Lin(-Sca-1(+ (KLS cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150(+CD48(-, reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation.These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.

  20. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  1. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  2. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    Science.gov (United States)

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synergistic cytotoxic effects of antibodies directed against different cell surface determinants

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, E V; Pindar, A; Stevenson, F K; Stevenson, G T [Southampton General Hospital (UK). Tenovus Research Lab.

    1978-03-01

    Three antibody populations were raised in rabbits against surface antigens on guinea-pig L/sub 2/C leukaemic lymphocytes: against idiotypic determinants on the lambda chain of the surface immunoglobulin, against C region determinants on the lambda chain, and against the surface antigens recognised by conventional anti-lymphocyte sera. Complement and K-cell cytotoxicities effected by the antibodies on L/sub 2/C cells were studied in vitro. In both cytotoxic systems mixtures of the antibodies revealed synergy, in that the titres of the mixtures exceeded predicted additive titres of their components. The synergy was greater when the mixed antibodies were directed to determinants on the same molecule rather than to determinants on different molecules.

  4. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa.

    Science.gov (United States)

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-04-01

    The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the

  5. Synergistic Effect of Garcinol and Curcumin on Antiproliferative and Apoptotic Activity in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansi A. Parasramka

    2012-01-01

    Full Text Available Pancreatic cancer (PaCa is a major health concern due to its aggressiveness and early metastasis. Current treatments for PaCa are limited by development of resistance against therapy. As an alternative strategy, we assessed the combinatorial effect of dietary compounds, garcinol and curcumin, on human PaCa cells (BxPC-3 and Panc-1. A significant (<0.05 dose-dependent reduction in cell viability and increase in apoptosis were observed in both cell lines as compared to untreated controls. A combination index (CI value < 1, for a two-way comparison of curcumin and garcinol, suggests synergism. The potency (Dm of the combination of garcinol and curcumin was 2 to 10 fold that of the individual agents. This indicates that curcumin and garcinol in combination exhibit a high level of synergism, with enhanced bioactivity, thereby reducing the required effective dose required for each individually. This combinatorial strategy may hold promise in future development of therapies against PaCa.

  6. A synergistic effect of artocarpanone from Artocarpus heterophyllus L. (Moraceae) on the antibacterial activity of selected antibiotics and cell membrane permeability.

    Science.gov (United States)

    Septama, Abdi Wira; Xiao, Jianbo; Panichayupakaranant, Pharkphoom

    2017-01-01

    Artocarpanone isolated from Artocarpus heterophyllus L. (Moraceae) exhibits antibacterial activity. The present study investigated synergistic activity between artocarpanone and tetracycline, ampicillin, and norfloxacin, respectively, against methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa , and Escherichia coli . A broth microdilution method was used for evaluating antibacterial susceptibility. Synergistic effects were identified using a checkerboard method, and a bacterial cell membrane disruption was investigated by assay of released 260 nm absorbing materials following bacteriolysis. Artocarpanone exhibited weak antibacterial activity against MRSA and P. aeruginosa with minimum inhibitory concentrations values of 125 and 500 μg/mL, respectively. However, the compound showed strong antibacterial activity against E. coli (7.8 μg/mL). The interaction between artocarpanone and all tested antibiotics revealed indifference and additive effects against P. aeruginosa and E. coli (fractional inhibitory concentration index [FICI] values of 0.75-1.25). The combination of artocarpanone (31.2 μg/mL) and norfloxacin (3.9 μg/mL) resulted in synergistic antibacterial activity against MRSA, with an FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time-kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, the combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. These findings suggest that artocarpanone may be used to enhance the antibacterial activity of norfloxacin against MRSA.

  7. Cooperation of IRAK1/4 inhibitor and ABT-737 in nanoparticles for synergistic therapy of T cell acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Wu X

    2017-10-01

    Full Text Available Xiaoyan Wu,1 Lin Wang,1 Yining Qiu,1 Bingyu Zhang,1 Zhenhua Hu,2 Runming Jin1 1Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Pharmacy, Shanghai Jiao Tong University, Shanghai, China Abstract: T cell acute lymphoblastic leukemia (T-ALL is caused by clonal expansion of variant T cell progenitors and is considered as a high risk leukemia. Contemporary single chemotherapy has a limited effect due to dynamic and versatile properties of T-ALL. Here IRAK1/4 inhibitor and ABT-737 were co-encapsulated into polyethylene glycol modified poly (lactic-co-glycolic acid nanoparticles (IRAK/ABT-NP to enhance synergistic therapy of T-ALL. The formulation was optimized to achieve high drug loading using Box-Behnken design and response surface methodology. The optimal parameter comprised 2.98% polymer in acetonitrile, a ratio of oil phase to water phase of 1:8.33, and 2.12% emulsifier concentration. High drug loading and uniform spherical shape was achieved. In vitro release study showed sustained release of IRAK1/4 inhibitor for 72 hours as well as sustained release of ABT-737 for more than 120 hours. Uptake efficiency of IRAK/ABT-NP and induced apoptotic T-ALL fraction by IRAK/ABT-NP were much higher than the IRAK1/4 and ABT-737 combined solution. IC50 of IRAK/ABT-NP was two-fold lower than free drug combination in Jurkat cells. Additionally, we conducted in vivo experiments in which IRAK/ABT-NP exhibited greater cytotoxicity toward T-ALL cells, the capacity to significantly restore white blood cell number in peripheral blood, and improved survival time of T-ALL mouse model compared to the IRAK1/4 and ABT-737 combined solution. Keywords: T cell acute lymphoblastic leukemia, IRAK1/4 inhibitor, ABT-737, Box-Behnken design and response surface methodology, PEG-PLGA

  8. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    OpenAIRE

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the inc...

  9. Synergistic Effects of SAM and Selenium Compounds on Proliferation, Migration and Adhesion of HeLa Cells.

    Science.gov (United States)

    Sun, Licui; Zhang, Jianxin; Yang, Qiu; Si, Yang; Liu, Yiqun; Wang, Qin; Han, Feng; Huang, Zhenwu

    2017-08-01

    To determine the antitumor activities and molecular mechanism of selenium compounds in HeLa cells. Western blotting was used to detect ERK and AKT activation in HeLa cells induced by selenium compounds selenomethionine (SeMet), methylselenocysteine (MeSeCys) and methylseleninic acids (MeSeA). Using MTT, wound-healing and Matrigel adhesion assays, the antitumor effects of SAM and selenium compounds were evaluated in HeLa cells. MeSeA inhibited ERK and AKT signaling pathways and suppressed the proliferation (peffects compared to the other treatments. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Synergistic effects of acarbose and an Oroxylum indicum seed extract in streptozotocin and high-fat-diet induced prediabetic mice.

    Science.gov (United States)

    Sun, Wenlong; Sang, Yuanbin; Zhang, Bowei; Yu, Xiaoxia; Xu, Qinmin; Xiu, Zhilong; Dong, Yuesheng

    2017-03-01

    Prediabetes is defined as blood glucose levels above normal but below diabetes thresholds, and up to 70% of individuals with prediabetes will eventually develop diabetes if left untreated. Acarbose, the first FDA approved anti-prediabetes agent, has some disadvantages, such as reducing the risk of diabetes by only 36%, side effects and limited effects on complications. The aim of this study is to develop a new agent to treat prediabetes and to investigate the anti-prediabetes effects and mechanisms of acarbose and an Oroxylum indicum seed extract (OISE) in prediabetic mice. The combined drugs can reduce the dose of acarbose by 80% and reduce the risk of diabetes by 75%, which is one fold higher than acarbose monotherapy. The combined drugs showed synergistic anti-prediabetes effects and could be effective in preventing the complications of prediabetes. The combined drugs could improve glucose tolerance, improve lipid metabolism and reduce oxidative stress and tissue damage. For the mechanisms, the combined drugs can reduce synergistically postprandial hyperglycaemia by inhibiting α-glucosidase. Furthermore, baicalein in OISE was demonstrated to be a major component in reducing oxidative stress and chrysin was the primary compound that activated PPARγ. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D; Bieberich, Andrew A; Terry, Colin; Harvey, Kevin A; VanHorn, Justin F; Xu, Zhidong; Jo Davisson, V; Siddiqui, Rafat A

    2011-01-01

    Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone. Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED 50 . Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC. CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER - PR - Her2 + ) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes

  12. NF1, Sp1 and HSF1 are synergistically involved in sulfide-induced sqr activation in echiuran worm Urechis unicinctus

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolong; Qin, Zhenkui; Li, Xueyu; Ma, Xiaoyu; Gao, Beibei; Zhang, Zhifeng, E-mail: zzfp107@ouc.edu.cn

    2016-06-15

    Highlights: • Sulfide activates sqr transcription against respiratory toxicity in Urechis unicinctus. • Sulfide increases expressions and activities of NF1, Sp1 and HSF1 in a time-dependent manner. • NF1 and Sp1 participate in both basal and early sulfide-induced sqr transcription. • HSF1 functions more significantly than NF1 and Sp1 in sulfide-induced sqr transcription. • Transcription factors NF1, Sp1 and HSF1 enhance sqr promoter activity synergistically. - Abstract: Background: Sulfide is a well-known environmental toxic substance. Mitochondrial sulfide oxidation is a main mechanism of sulfide detoxification in organisms, and sulfide: quinone oxidoreductase (SQR) is a key enzyme which is involved in transferring electrons from sulfide to ubiquinone and converting sulfide into thiosulfate. Previous studies have revealed the SQR-mediated mitochondrial sulfide oxidation exists in the echiuran worm Urechis unicinctus, and its sqr mRNA level increased significantly when the worm is exposed to sulfide. In this study, we attempt to reveal the synergistic regulation of transcription factors on sulfide-induced sqr transcription in U. unicinctus. Methods: ChIP and EMSA were used to identify the interactions between sqr proximal promoter (from −391 to +194 bp) and transcription factors NF1 (nuclear factor 1) and Sp1 (specificity protein 1). Site-directed mutation and transfection assays further revealed their binding sites and synergistic roles of HSF1, NF1 and Sp1 in the sqr transcription. When U. unicinctus were exposed to 150 μM sulfide, the expression levels and nuclear contents of NF1 and Sp1 were examined by Western blotting, and the binding contents between NF1 or Sp1 and the sqr promoter were also detected by ChIP. Results: Transcription factors NF1 and Sp1 were confirmed to interact with the sqr proximal promoter, and their binding sites were identified in −75 to −69 bp for NF1 and −210 to −201 bp for Sp1. Transfection assays showed mutation

  13. Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

    Directory of Open Access Journals (Sweden)

    Ryota Akagi

    2017-09-01

    Full Text Available During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG and soleus muscle (SOL were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: −4.1 ± 13.9%; mean ± standard deviation and the alternate muscle activity during the fatiguing task (MG: 33 [20–51] times, SOL: 30 [17–36] times; median [25th–75th percentile] were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3% and the alternate muscle activity (37 [20–45] times of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with

  14. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    Directory of Open Access Journals (Sweden)

    Fucini Paola

    2004-04-01

    Full Text Available Abstract Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this r

  15. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    DEFF Research Database (Denmark)

    Jo, Andrew O; Ryskamp, Daniel A; Phuong, Tam T T

    2015-01-01

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potent...

  16. Synergistic interactions of blood-borne immune cells, fibroblasts and extracellular matrix drive repair in an in vitro peri-implant wound healing model

    Science.gov (United States)

    Burkhardt, Melanie A.; Waser, Jasmin; Milleret, Vincent; Gerber, Isabel; Emmert, Maximilian Y.; Foolen, Jasper; Hoerstrup, Simon P.; Schlottig, Falko; Vogel, Viola

    2016-02-01

    Low correlations of cell culture data with clinical outcomes pose major medical challenges with costly consequences. While the majority of biomaterials are tested using in vitro cell monocultures, the importance of synergistic interactions between different cell types on paracrine signalling has recently been highlighted. In this proof-of-concept study, we asked whether the first contact of surfaces with whole human blood could steer the tissue healing response. This hypothesis was tested using alkali-treatment of rough titanium (Ti) surfaces since they have clinically been shown to improve early implant integration and stability, yet blood-free in vitro cell cultures poorly correlated with in vivo tissue healing. We show that alkali-treatment, compared to native Ti surfaces, increased blood clot thickness, including platelet adhesion. Strikingly, blood clots with entrapped blood cells in synergistic interactions with fibroblasts, but not fibroblasts alone, upregulated the secretion of major factors associated with fast healing. This includes matrix metalloproteinases (MMPs) to break down extracellular matrix and the growth factor VEGF, known for its angiogenic potential. Consequently, in vitro test platforms, which consider whole blood-implant interactions, might be superior in predicting wound healing in response to biomaterial properties.

  17. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides.

    Science.gov (United States)

    Dixon, James E; Osman, Gizem; Morris, Gavin E; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J; Denning, Chris; Shakesheff, Kevin M

    2016-01-19

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application.

  18. Autophagy protects against neural cell death induced by piperidine alkaloids present in Prosopis juliflora (Mesquite).

    Science.gov (United States)

    Silva, Victor D A; Cuevas, Carlos; Muñoz, Patricia; Villa, Monica; Ahumada-Castro, Ulises; Huenchuguala, Sandro; Santos, Cleonice C Dos; Araujo, Fillipe M DE; Ferreira, Rafael S; Silva, Vanessa B DA; Silva, Juliana H C E; Soares, Érica N; Velozo, Eudes S; Segura-Aguilar, Juan; Costa, Silvia L

    2017-01-01

    Prosopis juliflora is a shrub that has been used to feed animals and humans. However, a synergistic action of piperidine alkaloids has been suggested to be responsible for neurotoxic damage observed in animals. We investigated the involvement of programmed cell death (PCD) and autophagy on the mechanism of cell death induced by a total extract (TAE) of alkaloids and fraction (F32) from P. juliflora leaves composed majoritary of juliprosopine in a model of neuron/glial cell co-culture. We saw that TAE (30 µg/mL) and F32 (7.5 µg/mL) induced reduction in ATP levels and changes in mitochondrial membrane potential at 12 h exposure. Moreover, TAE and F32 induced caspase-9 activation, nuclear condensation and neuronal death at 16 h exposure. After 4 h, they induced autophagy characterized by decreases of P62 protein level, increase of LC3II expression and increase in number of GFP-LC3 cells. Interestingly, we demonstrated that inhibition of autophagy by bafilomycin and vinblastine increased the cell death induced by TAE and autophagy induced by serum deprivation and rapamycin reduced cell death induced by F32 at 24 h. These results indicate that the mechanism neural cell death induced by these alkaloids involves PCD via caspase-9 activation and autophagy, which seems to be an important protective mechanism.

  19. Autophagy protects against neural cell death induced by piperidine alkaloids present in Prosopis juliflora (Mesquite

    Directory of Open Access Journals (Sweden)

    VICTOR D.A. SILVA

    Full Text Available ABSTRACT Prosopis juliflora is a shrub that has been used to feed animals and humans. However, a synergistic action of piperidine alkaloids has been suggested to be responsible for neurotoxic damage observed in animals. We investigated the involvement of programmed cell death (PCD and autophagy on the mechanism of cell death induced by a total extract (TAE of alkaloids and fraction (F32 from P. juliflora leaves composed majoritary of juliprosopine in a model of neuron/glial cell co-culture. We saw that TAE (30 µg/mL and F32 (7.5 µg/mL induced reduction in ATP levels and changes in mitochondrial membrane potential at 12 h exposure. Moreover, TAE and F32 induced caspase-9 activation, nuclear condensation and neuronal death at 16 h exposure. After 4 h, they induced autophagy characterized by decreases of P62 protein level, increase of LC3II expression and increase in number of GFP-LC3 cells. Interestingly, we demonstrated that inhibition of autophagy by bafilomycin and vinblastine increased the cell death induced by TAE and autophagy induced by serum deprivation and rapamycin reduced cell death induced by F32 at 24 h. These results indicate that the mechanism neural cell death induced by these alkaloids involves PCD via caspase-9 activation and autophagy, which seems to be an important protective mechanism.

  20. Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease induced by high fat diet in mice.

    Science.gov (United States)

    Hu, Jingjuan; Luo, Haihua; Jiang, Yong; Chen, Peng

    2017-06-13

    The prevalence of non-alcoholic fatty liver disease is increasing rapidly worldwide. However, effective strategies for combating high-fat diet (HFD) induced obesity, fatty liver and metabolic disorder are still limited, and outcomes remain poor. In the present study, we evaluated the combined actions of dietary capsaicin and antibiotics on HFD-induced physiological abnormalities in mice. C57BL/6 male mice were fed with HFD (60% calories from fat) for 17 weeks, and the resultant pathophysiological effects were examined. Antibiotic treatment markedly attenuated gut inflammation and leakiness induced by HFD, whereas capsaicin showed limited effects on the gut. However, dietary capsaicin significantly increased PPAR-α expression in adipose tissue, while antibiotics had no such effect. Animals treated with a combination of capsaicin and antibiotics had the smallest body weight gain and fat pad index, as well as the lowest hepatic fat accumulation. Combination treatment also maximally improved insulin responsiveness, as indicated by insulin tolerance tests. These results suggest the co-treatment of capsaicin and antibiotics, a novel combination strategy, would play synergistically to attenuate the HFD-induced obesity, fatty liver and metabolic disorder.

  1. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    Science.gov (United States)

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Synergistic Inhibition of Thalidomide and Icotinib on Human Non-Small Cell Lung Carcinomas Through ERK and AKT Signaling.

    Science.gov (United States)

    Sun, Xiang; Xu, Yang; Wang, Yi; Chen, Qian; Liu, Liu; Bao, Yangyi

    2018-05-15

    BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been widely used in the treatment of non-small cell lung cancer (NSCLC) patients with sensitive EGFR mutations. However, the survival of patients with EGFR-TKI administration is limited by the inevitable development of acquired drug resistance. Recently, multi-targeted drugs combination has been shown to be a promising strategy to improve the efficacy of EGFR-TKI treatment and enable the reduction of drug resistance in NSCLC. MATERIAL AND METHODS Humanized NSCLC cell lines PC9 and A549 were co-cultured with thalidomide and/or icotinib to test for anti-tumor efficiency. Cell proliferation was measured by MTT assay, cell apoptosis by flow cytometry and cell migration by wound healing assay. Western blot was performed to determine the expression of caspase-3, -8, -9, Bax, EGFR, VEGF-R, AKT, ERK, MMP2, MMP9, and NF-κB. The xenograft mouse model was used to explore the effects of thalidomide and icotinib in vivo. Immunohistochemical testing was used to determine the expression of Ki-67 and TUNEL staining in tumor tissues. RESULTS Treatments of thalidomide and/or icotinib reduced cell viability, induced apoptosis, and suppressed migration. Attenuation of pEGFR and pVEGF-R resulted in deactivation of ERK and AKT pathways, which eventually increased the anti-proliferative response. In PC9 xenograft model, combined administration of thalidomide and icotinib restrained tumor growth with remarkable reduced Ki-67 index and increased TUNEL positive cells. CONCLUSIONS Thalidomide sensitizes icotinib to increase apoptosis and prevent migration, and it may be a potentially promising anti-tumor drug in lung cancer multi-modality therapy.

  3. Synergistic suppression of the PI3K inhibitor CAL-101 with bortezomib on mantle cell lymphoma growth

    International Nuclear Information System (INIS)

    Qu, Fu-Lian; Xia, Bing; Li, Su-Xia; Tian, Chen; Yang, Hong-Liang; Li, Qian; Wang, Ya-Fei; Yu, Yong; Zhang, Yi-Zhuo

    2015-01-01

    To investigate the effects of CAL-101, particularly when combined with bortezomib (BTZ) on mantle cell lymphoma (MCL) cells, and to explore its relative mechanisms. MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B (NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ

  4. Core/Shell Microstructure Induced Synergistic Effect for Efficient Water-Droplet Formation and Cloud-Seeding Application.

    Science.gov (United States)

    Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda

    2017-12-26

    Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.

  5. Synergistic effect of radiation on N-2-fluorenylacetamide-induced hepatocarcinogenesis in male ACI/N rats

    International Nuclear Information System (INIS)

    Mori, Hideki; Iwata, Hitoshi; Morishita, Yukio; Mori, Yoshio; Ohno, Takatoshi; Tanaka, Takuji; Sasaki, Shunsaku.

    1990-01-01

    The effect of radiation on chemical hepatocarcinogenesis was examined in 3 groups of male ACI/N rats. In Group I, 21 rats received dietary administration of N-2-fluorenylacetamide (FAA) (0.02%) for 16 weeks. Six of the rats were killed at the cessation of FAA exposure. The remaining rats were then given the basal diet until termination (32 weeks). In Group II, 16 rats were given FAA for 16 weeks. The animals were then given radiation (whole body; 3 Gy) and kept on the diet for the subsequent 16 weeks. Thirteen rats of Group III were kept on the basal diet throughout the experiment. They received radiation for 16 weeks after the start of the experiment. Liver tumors were obtained in Groups I and II. The multiplicity of the neoplastic nodules or hepatocellular carcinomas of Group II (6.5±2.5 or 1.4±0.9) was significantly greater than that of Group I (2.9±1.7 or 0.3±0.4, respectively) (p<0.001). Furthermore, the incidence of hepatocellular carcinoma of Group II (13/16) was also significantly higher than that of Group I (4/15) (p<0.003). The results clearly indicate a synergistic effect of radiation with FAA on the hepatocarcinogenesis. The effect of radiation in this rat model appeared to be on the early progression of the carcinogenesis. (author)

  6. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C

    DEFF Research Database (Denmark)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-01-01

    that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor...... contribution to SAC silencing in HCT116 cells. Strikingly in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E...

  7. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    Directory of Open Access Journals (Sweden)

    Putcharawipa Maneesai

    2016-02-01

    Full Text Available This study examined the effect of Carthamus tinctorius (CT extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO bioavailability, oxidative stress and renin-angiotensin system (RAS in Nω-Nitro-l-arginine methyl ester (l-NAME-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day: captopril (5 mg/kg/day or CT extract (300 mg/kg/day plus captopril (5 mg/kg/day for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS.

  8. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Science.gov (United States)

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  9. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  10. Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro

    Science.gov (United States)

    Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Cheol; Kim, Hyeon Hoe

    2014-01-01

    Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer. PMID:24815071

  11. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate.

    Science.gov (United States)

    Tomasetti, M; Strafella, E; Staffolani, S; Santarelli, L; Neuzil, J; Guerrieri, R

    2010-04-13

    A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H(2)O(2) that promoted cell death. The redox-silent vitamin E analogue alpha-tocopheryl succinate (alpha-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Prostate cancer cells were sensitive to alpha-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3-AA, whereas alpha-TOS-VK3 and alpha-TOS-AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA-VK3 combination combined with a sub-toxic dose of alpha-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal-mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.

  12. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    Science.gov (United States)

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  13. Synergistic Effects of Aerobic Exercise after Bone Marrow Stem Cell Transplantation on Recovery of Dopaminergic Neurons and Angiogenesis Markers of Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Seyed Abdollah Hashemvarzi

    2016-03-01

    Full Text Available Abstract: Parkinson is a progressive neurodegenerative disease in central nervous system. Non-pharmacologic treatment methods such as stem cell transplantation and exercise have been considered as a treatment. The purpose of this study was to evaluate the synergistic effects of aerobic exercise after bone marrow stem cells transplantation on recovery of dopaminergic neurons and promotion of angiogenesis markers in the striatum of parkinsonian rats. 42 rats were divided into six groups: Normal (N, Sham (S, Parkinson’s (P, Stem cells transplanted Parkinson’s (SP, Exercised Parkinson’s (EP and Stem cells transplanted+Exercised Parkinson’s (SEP. To create a model of Parkinson's, the striatum was destroyed by injection of 6-hydroxy-dopamine into the striatum through stereotaxic apparatus. Stem cells were derived from the bone marrow of femur and tibia of male rats aged 6-8 weeks. After cultivation, approximately 5×105 cells were injected into the striatum of rats through the channel. Aerobic exercise was included 8 weeks of running on treadmill with a speed of 15 meters per minute. At the end of the study, all subjects were decapitated and striatum tissues were separately isolated for measurement of vascular endothelial growth factor (VEGF, dopamine (DA and tyrosine hydroxylase (TH levels. VEGF, DA and TH levels in the striatum of parkinsonian rats significantly increased in treatment groups (SP, EP and SEP, especially in SEP group compared to P group after treatment (P<0.05. The BMSCs transplantation in combination with exercise would have synergistic effects leading to functional recovery, dopaminergic neurons recovery and promotion of angiogenesis marker in the striatum of parkinsonian rats. Keywords: Stem cells, Aerobic exercise, Neurotrophic factors, Parkinson

  14. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4⁺ T cells.

    Science.gov (United States)

    Yamaki, Satoshi; Ine, Shouji; Kawabe, Takeshi; Okuyama, Yuko; Suzuki, Nobu; Soroosh, Pejman; Mousavi, Seyed Fazlollah; Nagashima, Hiroyuki; Sun, Shu-lan; So, Takanori; Sasaki, Takeshi; Harigae, Hideo; Sugamura, Kazuo; Kudo, Hironori; Wada, Motoshi; Nio, Masaki; Ishii, Naoto

    2014-10-01

    T-cell homeostasis preserves the numbers, the diversity and functional competence of different T-cell subsets that are required for adaptive immunity. Naïve CD4(+) T (TN ) cells are maintained in the periphery via the common γ-chain family cytokine IL-7 and weak antigenic signals. However, it is not clear how memory CD4(+) T-cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE-labeled CD4(+) CD44(high) CD62L(low) effector memory T (TEM ) cells were transferred into sublethally-irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL-7. The simultaneous blockade of both OX40 and IL-7 signaling completely inhibited the both fast and slow proliferation. The antigen- and OX40-dependent fast proliferation preferentially expanded IL-17-producing helper T cells (Th17 cells). Thus, OX40 and IL-7 play synergistic, but distinct roles in the homeostatic proliferation of CD4(+) TEM cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  16. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Brechbuhl, Heather M. [Pediatrics, National Jewish Health, Denver, Colorado (United States); Kachadourian, Remy; Min, Elysia [Department of Medicine, National Jewish Health, Denver, Colorado (United States); Chan, Daniel [Medical Oncology, University of Colorado Denver Health Sciences Center (United States); Day, Brian J., E-mail: dayb@njhealth.org [Department of Medicine, University of Colorado Denver Health Sciences Center (United States); Immunology, University of Colorado Denver Health Sciences Center (United States); Pharmaceutical Sciences, University of Colorado Denver Health Sciences Center (United States); Department of Medicine, National Jewish Health, Denver, Colorado (United States)

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.

  17. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  18. 5-Aza-2'-deoxycytidine synergistic action with thymidine on leukemic cells and interaction of 5-aza-dCMP with dCMP deaminase

    International Nuclear Information System (INIS)

    Momparler, R.L.; Bartolucci, S.; Bouchard, J.; Momparler, L.F.; Raia, C.A.; Rossi, M.

    1986-01-01

    The authors observe a synergistic antineoplastic effect between 5-AZA-dCR and dTR on leukemia cells in culture. In order to understand the mechanism behind this interaction the authors investigate the effects of dTTP on the deamination of 5-aza-2'-deoxycytidine-5'-monophosphate (5-AZA-dCMP) by dCMP deaminase. The effects of 5-AZA-dCTP on this enzyme is also studied. The incorporation of tritium-5-AZA-Cdr into DNA of leukemic cells was performed. The amount of radioactivity incorproated into DNA was determined by trapping the cells on GF/C glass fiber filters and washing with cold TCA. It is shown that the modulation of the atieoplastic activity of deoxycytidine analogs by allosteric effectors such as dTTP may have the potential to increase the effectiveness of the chemotherapy for acute leukemia

  19. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis.

    Science.gov (United States)

    Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet

    2017-08-01

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.

  20. Inhibition of p38 MAPK enhances ABT-737-induced cell death in melanoma cell lines: novel regulation of PUMA.

    Science.gov (United States)

    Keuling, Angela M; Andrew, Susan E; Tron, Victor A

    2010-06-01

    The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.

  1. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes

    Science.gov (United States)

    Zhang, Mingfeng; Lin, Qing; Qi, Tong; Wang, Tiankun; Chen, Ching-Cheng; Riggs, Arthur D.; Zeng, Defu

    2016-01-01

    We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9+ (Sox9+) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9+ ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9+ ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300–450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9+ ductal cell differentiation into β cells in adult mice. PMID:26733677

  2. Induced Pluripotent Stem Cells for Regenerative Medicine

    OpenAIRE

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies...

  3. Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation

    Directory of Open Access Journals (Sweden)

    Carla Busquets-Cortés

    2016-01-01

    Full Text Available Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA supplementation (1.14 g/day on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs from sportsmen. Subjects were assigned to an intervention (N=9 or placebo groups (N=7 in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1, and mitochondrial transcription factor A (Tfam were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation.

  4. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  5. Synergistic Cardioprotective Effects of Combined Chromium Picolinate and Atorvastatin Treatment in Triton X-100-Induced Hyperlipidemia in Rats: Impact on Some Biochemical Markers.

    Science.gov (United States)

    Shafik, Noha M; Baalash, Amal; Ebeid, Abla M

    2017-12-01

    Hyperlipidemia is one of the major risk factors for atherosclerosis and ischemic heart disease. Chromium (Cr) mineral is playing a crucial role in glucose and lipid homeostasis. The aim of this study was to evaluate the protective effects of combined chromium picolinate (CrPic) and atorvastatin treatment against hyperlipidemia-induced cardiac injury. Seventy-five male albino rats were divided into five groups (15 rats each). Hyperlipidemia was induced by intraperitoneal injection of a single dose of Triton X-100 (300 mg/kg body weight (b.w) (group ІІ). Treatment of hyperlipidemic rats was induced by daily administration of CrPic at a dose of 200 μg/kg b.w/day (group ІІІ), atorvastatin at a dose of 10 mg/kg/day (group IV), and combined treatment with both (group V) by gavage for 7 days. At the end of experiment, serum and heart tissues were obtained. Hyperlipidemia was confirmed by histopathology of heart tissues, marked serum dyslipidemia, increased atherogenic indices, and values of ischemia-modified albumin. In addition to increased values of proprotein convertase subtilisin/kexin type 9, activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase enzyme and high relative expression levels of pentraxin-3 were observed. However, paraoxonase-1 activity was markedly decreased in the hyperlipidemic group. Significant improvement in all assessed parameters was observed in the rat group treated with both CrPic and atorvastatin. It can be concluded that combined CrPic and atorvastatin treatments had synergistic cardioprotective effects against hyperlipidemia which may be through modulating atherosclerosis as well as cardiac and aortic damage and/or activation of anti-inflammatory and anti-oxidant pathways, thus reversing endothelial dysfunction.

  6. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  7. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    Science.gov (United States)

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can

  8. Enhancing cytotoxic and apoptotic effect in OVCAR-3 and MDAH-2774 cells with all-trans retinoic acid and zoledronic acid: a paradigm of synergistic molecular targeting treatment for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kısım Aslı

    2010-07-01

    Full Text Available Abstract Background Ovarian cancer is the most fatal gynecologic malignancies in the world. Although, platinum based treatments are widely used, the disease becomes treatment refractory within two years, and novel treatment options should be searched. All- trans retinoic acid (ATRA induces growth arrest, differentiation and cell death in some types of cancer cells and its combination with various anticancer agents results in enhanced cytotoxicity. Zoledronic acid is a common bisphosphonate known for its anticancer effects beyond its current use in the treatment of cancer-induced bone disease. We aimed to investigate the possible additive/synergistic effect of both agents in OVCAR-3 and MDAH-2774 ovarian cancer cell lines, since both agents show superiority to conventional cytotoxics in terms of adverse events. Methods XTT cell proliferation assay was used for showing cytotoxicity. For verifying apoptosis, both DNA Fragmentation by ELISA assay and caspase 3/7 activity measurement were used. OligoGeArray® which consists of 112 apoptosis related genes was used to elucidate the genetic changes within cancer cells. To validate our oligoarray results, quantitative real-time PCR was performed on four selected genes that were maximally effected by the combination treatment: lymphotoxin beta receptor (LTBR, myeloid cell leukemia-1 (MCL-1, tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A, TNFRSF1A-associated death domain protein (TRADD. Results We demonstrated that a novel combination of ATRA and zoledronic acid is a strong inducer of apoptotic related cell death in both ovarian cancer cells. While the combination therapy significantly induced proapoptotic genes such as tumor necrosis factor receptor superfamily (TNFRSF, TRADD and caspase 4, some of the antiapoptotic genes such as members of MCL-1, LTBR, BAG3 and Bcl-2 family members were inhibited. Conclusions These are the preliminary molecular results of a novel combination treatment of

  9. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  10. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    Science.gov (United States)

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  11. Synergistic antitumor cytotoxic actions of ascorbate and menadione on human prostate (DU145) cancer cells in vitro: nucleus and other injuries preceding cell death by autoschizis.

    Science.gov (United States)

    Gilloteaux, Jacques; Jamison, James M; Neal, Deborah; Summers, Jack L

    2014-04-01

    Scanning (SEM) and transmission electron microscopy (TEM) were used to characterize the cytotoxic effects of ascorbate (VC), menadione (VK3), or a VC:VK3 combination on a human prostate carcinoma cell line (DU145) following a 1-h vitamin treatment and a subsequent 24-h incubation in culture medium. Cell alterations examined by light and electron microscopy were treatment-dependent with VC + VK3 >VK3 > VC > Sham. Oxidative stress-induced damage was found in most organelles. This report describes injuries in the tumor cell nucleus (chromatin and nucleolus), mitochondria, endomembranes, lysosomal bodies (autophagocytoses) and inclusions. Morphologic alterations suggest that cytoskeleton damage is likely responsible for the superficial cytoplasmic changes, including major changes in cell shape and size and the self-excising phenomena. Unlike apoptotic bodies, the excised pieces contain ribonucleoproteins, but not organelles. These deleterious events cause a progressive, significant reduction in the tumor cell size. During nuclear alterations, the nuclei maintain their envelope during chromatolysis and karyolysis until cell death, while nucleoli undergo a characteristic segregation of their components. In addition, changes in fat and glycogen storage are consistent the cytotoxic and metabolic alterations caused by the respective treatments. All cellular ultrastructural changes are consistent with cell death by autoschizis and not apoptosis or other kinds of cell death.

  12. Synergistic Enhancement of Cancer Therapy Using a Combination of Ceramide and Docetaxel

    Directory of Open Access Journals (Sweden)

    Li-Xia Feng

    2014-03-01

    Full Text Available Ceramide (CE-based combination therapy (CE combination as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX (CE + DTX and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and combination index (CI assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31 and human breast carcinoma cell (MCF-7, CI = 0.48. The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01. The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.

  13. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    Science.gov (United States)

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Drosophila Ninjurin A induces nonapoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Sarah Broderick

    Full Text Available Ninjurins are conserved transmembrane proteins that are upregulated across species in response to injury and stress. Their biological functions are not understood, in part because there have been few in vivo studies of their function. We analyzed the expression and function of one of three Drosophila Ninjurins, NijA. We found that NijA protein is redistributed to the cell surface in larval immune tissues after septic injury and is upregulated by the Toll pathway. We generated a null mutant of NijA, which displayed no detectable phenotype. In ectopic expression studies, NijA induced cell death, as evidenced by cell loss and acridine orange staining. These dying cells did not display hallmarks of apoptotic cells including TUNEL staining and inhibition by p35, indicating that NijA induced nonapoptotic cell death. In cell culture, NijA also induced cell death, which appeared to be cell autonomous. These in vivo studies identify a new role for the Ninjurin family in inducing nonapoptotic cell death.

  15. IκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor

    International Nuclear Information System (INIS)

    Carter, Sarah Louise; Centenera, Margaret Mary; Tilley, Wayne Desmond; Selth, Luke Ashton; Butler, Lisa Maree

    2016-01-01

    Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, and the histone deacetylase inhibitor, vorinostat, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide or vorinostat, alone or in combination, was employed to determine the molecular mechanisms underlying this synergistic action. Cell viability assays and quantitative real time PCR were used to validate identified candidate genes. A substantial proportion of the genes modulated by the combination of bicalutamide and vorinostat were androgen regulated. Independent pathway analysis identified further pathways and genes, most notably NFKBIA (encoding IκBα, an inhibitor of NF-κB and p53 signaling), as targets of this combinatorial treatment. Depletion of IκBα by siRNA knockdown enhanced apoptosis of prostate cancer cells, while ectopic overexpression of IκBα markedly suppressed cell death induced by the combination of bicalutamide and vorinostat. These findings implicate IκBα as a key mediator of the apoptotic action of this combinatorial AR targeting strategy and a promising new therapeutic target for prostate cancer. The online version of this article (doi:10.1186/s12885-016-2188-2) contains supplementary material, which is available to authorized users

  16. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers.

    Science.gov (United States)

    Kim, Bomi; Seo, Bohyung; Park, Sanghyun; Lee, Changkyu; Kim, Jong Oh; Oh, Kyung Taek; Lee, Eun Seong; Choi, Han-Gon; Youn, Yu Seok

    2017-10-01

    Albumin nanoparticles are well-known as effective drug carriers used to deliver hydrophobic chemotherapeutic agents. Albumin nanoparticles encapsulating curcumin and doxorubicin were fabricated using slightly modified nanoparticle albumin-bound (nab™) technology, and the synergistic effects of these two drugs were examined. Albumin nanoparticles encapsulating curcumin, doxorubicin, and both curcumin and doxorubicin were prepared using a high pressure homogenizer. The sizes of albumin nanoparticles were ∼130nm, which was considered to be suitable for the EPR (enhanced permeability and retention) effect. Albumin nanoparticles gradually released drugs over a period of 24h without burst effect. To confirm the synergistic effect of two drugs, in vitro cytotoxicity assay was performed using B16F10 melanoma cells. The cytotoxic effect on B16F10 melanoma cells was highest when co-treated with both curcumin and doxorubicin compared to single treatment of either curcumin and doxorubicin. The combined index calculated by medium-effect equation was 0.6069, indicating a synergistic effect. Results of confocal laser scanning microscopy and fluorescence-activated cell sorting corresponded to results from an in vitro cytotoxicity assay, indicating synergistic cytotoxicity induced by both drugs. A C57BL/6 mouse model induced by B16F10 lung metastasis was used to study in vivo therapeutic effects. When curcumin and doxorubicin were simultaneously treated, the metastatic melanoma mass in the lungs macroscopically decreased compared to curcumin or doxorubicin alone. Albumin nanoparticles encapsulating two anticancer drugs were shown to have an effective therapeutic result and would be an excellent way to treat resistant lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    Science.gov (United States)

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  18. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

    Science.gov (United States)

    Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi

    2009-01-01

    Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual

  19. Promotion of initiated cells by radiation-induced cell inactivation.

    Science.gov (United States)

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  20. Dimethyl sulfoxide-inducible cytoplasmic factor involved in erythroid differentiation in mouse erythroleukemia (Friend) cells

    International Nuclear Information System (INIS)

    Watanabe, T.; Oishi, M.

    1987-01-01

    A previous report described an intracellular factor (differentiation-inducing factor I, or DIF-I) that seem to play a role in erythroid differentiation in mouse erythroleukemia (MEL) cells. The authors have detected another erythroid-inducing factor in cell-free extracts from dimethyl sulfoxide- or hexamethylenebis(acetamide)-treated MEL cells, which acts synergistically with DIF-I. The partially purified factor (termed DIF-II) triggered erythroid differentiation when introduced into undifferentiated MEL cells that had been potentiated by the induction of DIF-I. The activity in the extracts appeared in an inducible manner after addition of dimethyl sulfoxide or hexamethylenebis(acetamide), reached a maximum at 6 hr, and then rapidly decreased. The induction was inhibited by phorbol 12-myristate 13-acetate and also by cycloheximide. No induction was observed in a mutant MEL cell line defective in erythroid differentiation. These characteristics are consistent with the supposition that DIF-II is one of the putative dimethyl sulfoxide-inducible factors detected in previously reported cell-fusion and cytoplast-fusion experiments. The role of DIF-II in MEL-cell differentiation and in vitro differentiation in general is discussed

  1. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells.

    Science.gov (United States)

    Klaus, Christine R; Iwanowicz, Dorothy; Johnston, Danielle; Campbell, Carly A; Smith, Jesse J; Moyer, Mikel P; Copeland, Robert A; Olhava, Edward J; Scott, Margaret Porter; Pollock, Roy M; Daigle, Scott R; Raimondi, Alejandra

    2014-09-01

    EPZ-5676 [(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-((((1r,3S)-3-(2-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)ethyl)cyclobutyl)(isopropyl)amino)methyl)tetrahydrofuran-3,4-diol], a small-molecule inhibitor of the protein methyltransferase DOT1L, is currently under clinical investigation for acute leukemias bearing MLL-rearrangements (MLL-r). In this study, we evaluated EPZ-5676 in combination with standard of care (SOC) agents for acute leukemias as well as other chromatin-modifying drugs in cellular assays with three human acute leukemia cell lines: MOLM-13 (MLL-AF9), MV4-11 (MLL-AF4), and SKM-1 (non-MLL-r). Studies were performed to evaluate the antiproliferative effects of EPZ-5676 combinations in a cotreatment model in which the second agent was added simultaneously with EPZ-5676 at the beginning of the assay, or in a pretreatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. EPZ-5676 was found to act synergistically with the acute myeloid leukemia (AML) SOC agents cytarabine or daunorubicin in MOLM-13 and MV4-11 MLL-r cell lines. EPZ-5676 is selective for MLL-r cell lines as demonstrated by its lack of effect either alone or in combination in the nonrearranged SKM-1 cell line. In MLL-r cells, the combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the chemotherapeutic agents, suggesting that EPZ-5676 sets up a durable, altered chromatin state that enhances the chemotherapeutic effects. Our evaluation of EPZ-5676 in conjunction with other chromatin-modifying drugs also revealed a consistent combination benefit, including synergy with DNA hypomethylating agents. These results indicate that EPZ-5676 is highly efficacious as a single agent and synergistically acts with other chemotherapeutics, including AML SOC drugs and DNA hypomethylating agents in MLL-r cells. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Synergistic immune responses induced by endogenous retrovirus and herpesvirus antigens result in increased production of inflammatory cytokines in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Christensen, Tove; Hansen, Hans Jacob

    2008-01-01

    Human endogenous retroviruses (HERV) and herpesviruses are increasingly associated with the pathogenesis of the neurological inflammatory disease multiple sclerosis (MS). Herpesviruses are capable of HERV activation and simultaneous presence of HERV and herpesvirus antigens have a synergistic...

  3. Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro.

    Science.gov (United States)

    Tezcan, Gulcin; Taskapilioglu, Mevlut Ozgur; Tunca, Berrin; Bekar, Ahmet; Demirci, Hilal; Kocaeli, Hasan; Aksoy, Secil Ak; Egeli, Unal; Cecener, Gulsah; Tolunay, Sahsine

    2017-06-01

    Patients with glioblastoma multiforme (GBM) that are cancer stem-cell-positive (GSC [+]) essentially cannot benefit from anti-angiogenic or anti-invasive therapy. In the present study, the potential anti-angiogenic and anti-invasive effects of Olea europaea (olive) leaf extract (OLE) were tested using GSC (+) tumours. OLE (2mg/mL) caused a significant reduction in tumour weight, vascularisation, invasiveness and migration (p=0.0001, p<0.001, p=0.004; respectively) that was associated with reducing the expression of VEGFA, MMP-2 and MMP-9. This effect was synergistically increased in combination with bevacizumab. Therefore, our current findings may contribute to research on drugs that inhibit the invasiveness of GBM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer

    International Nuclear Information System (INIS)

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-01-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer

  5. Induced Pluripotent Stem Cells from Nonhuman Primates.

    Science.gov (United States)

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  6. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt

    International Nuclear Information System (INIS)

    Kuo, Selena Z; Blair, Katherine J; Rahimy, Elham; Kiang, Alan; Abhold, Eric; Fan, Jian-Bing; Wang-Rodriguez, Jessica; Altuna, Xabier; Ongkeko, Weg M

    2012-01-01

    Cancer stem cells (CSC) are believed to play a crucial role in cancer recurrence due to their resistance to conventional chemotherapy and capacity for self-renewal. Recent studies have reported that salinomycin, a livestock antibiotic, selectively targets breast cancer stem cells 100-fold more effectively than paclitaxel. In our study we sought to determine the effects of salinomycin on head and neck squamous cell carcinoma (HNSCC) stem cells. MTS and TUNEL assays were used to study cell proliferation and apoptosis as a function of salinomycin exposure in JLO-1, a putative HNSCC stem cell culture. MTS and trypan blue dye exclusion assays were performed to investigate potential drug interactions between salinomycin and cisplatin or paclitaxel. Stem cell-like phenotype was measured by mRNA expression of stem cell markers, sphere-forming capacity, and matrigel invasion assays. Immunoblotting was also used to determine expression of epithelial-mesenchymal transition (EMT) markers and Akt phosphorylation. Arrays by Illumina, Inc. were used to profile microRNA expression as a function of salinomycin dose. In putative HNSCC stem cells, salinomycin was found to significantly inhibit cell viability, induce a 71.5% increase in levels of apoptosis, elevate the Bax/Bcl-2 ratio, and work synergistically with cisplatin and paclitaxel in inducing cell death. It was observed that salinomycin significantly inhibited sphere forming-capability and repressed the expression of CD44 and BMI-1 by 3.2-fold and 6.2-fold, respectively. Furthermore, salinomycin reduced invasion of HNSCC stem cells by 2.1 fold. Contrary to expectations, salinomycin induced the expression of EMT markers Snail, vimentin, and Zeb-1, decreased expression of E-cadherin, and also induced phosphorylation of Akt and its downstream targets GSK3-β and mTOR. These results demonstrate that in HNSCC cancer stem cells, salinomycin can cause cell death and decrease stem cell properties despite activation of both EMT and

  7. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhang ZZ

    2011-10-01

    Full Text Available Lei Wang1, Mingyue Zhang1, Nan Zhang1, Jinjin Shi1, Hongling Zhang1, Min Li1, Chao Lu2, Zhenzhong Zhang1 1School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China; 2University of Maryland, College Park, MD, USA Background: Single-walled carbon nanotubes (SWNT are poorly soluble in water, so their applications are limited. Therefore, aqueous solutions of SWNT, designed by noncovalent functionalization and without toxicity, are required for biomedical applications. Methods: In this study, we conjugated docetaxel with SWNT via p-p accumulation and used a surfactant to functionalize SWNT noncovalently. The SWNT were then conjugated with docetaxel (DTX-SWNT and linked with NGR (Asn-Gly-Arg peptide, which targets tumor angiogenesis, to obtain a water-soluble and tumor-targeting SWNT-NGR-DTX drug delivery system. Results: SWNT-NGR-DTX showed higher efficacy than docetaxel in suppressing tumor growth in a cultured PC3 cell line in vitro and in a murine S180 cancer model. Tumor volumes in the S180 mouse model decreased considerably under near-infrared radiation compared with the control group. Conclusion: The SWNT-NGR-DTX drug delivery system may be promising for high treatment efficacy with minimal side effects in future cancer therapy. Keywords: single-walled carbon nanotubes, docetaxel, NGR peptide, tumor-targeting, near-infrared radiation

  8. Synergistic effect of the combination of triethylene-glycol modified Fe{sub 3}O{sub 4} nanoparticles and ultrasound wave on MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi Fard, Ali, E-mail: a.ebrahimi2008@yahoo.com [Department of Medical Physics, Isfahan University of Medical Science, Isfahan 81746-73461 (Iran, Islamic Republic of); Zarepour, Atefeh [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Zarrabi, Ali, E-mail: a.zarrabi@ast.ui.ac.ir [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Shanei, Ahmad [Department of Medical Physics, Isfahan University of Medical Science, Isfahan 81746-73461 (Iran, Islamic Republic of); Salehi, Hossein [Department of Anatomy, Isfahan University of Medical Science, Isfahan 81746-73461 (Iran, Islamic Republic of)

    2015-11-15

    Cancer is a group of disease characterized by uncontrolled growth and spread of abnormal cells in the body. The clinical treatments for cancer include surgery, chemotherapy and radiotherapy. Currently, employing new approaches for treatment has attracted more attentions. One of these approaches is sonodynamic therapy, which is an analogous approach based on the synergistic effect of ultrasound and a chemical component referred to as sonosensitizer. Recent years applications of nanotechnology have witnessed a tremendous expansion of research in medicine especially in treatment of cancers. The combination of sonodynamic therapy and nanotechnology can introduce a new way for cancer therapy. In this study, we used therapeutic ultrasonic waves with intensity of 1 MHz and different concentrations of Fe{sub 3}O{sub 4} nanoparticles, as sonosensitizer, to investigate their combination effect on MCF-7 cell line. Briefly, we divided cells into four different groups; control, cells which got in touch with nanoparticles, cells that with exposure to ultrasound waves and cells which were influenced with combination of nanoparticles and ultrasonic waves. Finally, cell viability assay was used for detection of cytotoxicity effects. Experimental results revealed a significant decrease in viability of cells, which were affected by the combined action of ultrasound field and Fe{sub 3}O{sub 4} nanoparticles, compared to the separate exposure of Fe{sub 3}O{sub 4} nanoparticles or ultrasonic field. The synergic effect of ultrasound waves and Fe ions might be due to the production of toxic free radicals. - Highlights: • We examined the combination effect of Fe{sub 3}O{sub 4} nanoparticles and ultrasound wave on MCF7. • The combination effect featured significant cytotoxic effects. • The cytotoxic effect is due to the production of reactive oxygen species.

  9. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.

  10. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C.

    Science.gov (United States)

    Pelicano, H; Carew, J S; McQueen, T J; Andreeff, M; Plunkett, W; Keating, M J; Huang, P

    2006-04-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

  11. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C.

    Science.gov (United States)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-10-15

    The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components. © 2016. Published by The Company of Biologists Ltd.

  12. Synergistic in-vitro effects of combining an antiglycolytic, 3-bromopyruvate, and a bromodomain-4 inhibitor on U937 myeloid leukemia cells.

    Science.gov (United States)

    Kapp, Nicolette; Stander, Xiao X; Stander, Barend A

    2018-06-01

    This project investigated the in-vitro effects of a glycolytic inhibitor, 3-bromopyruvate (3-BrP), in combination with and a new in silico-designed inhibitor of the bromodomain-4 (BRD-4) protein, ITH-47, on the U937 acute myeloid leukemia cell line. 3-BrP is an agent that targets the altered metabolism of cancer cells by interfering with glucose metabolism in the glycolytic pathway. ITH-47 is an acetyl-lysine inhibitor that displaces bromdomain 4 proteins from chromatin by competitively binding to the acetyl-lysine recognition pocket of this bromodomain and extraterminal (BET) BRD protein, thereby preventing transcription of cancer-associated genes and further cell growth. Cell growth studies determined the IC50 after 48 h exposure for 3-BrP and ITH-47 to be 6 and 2 μmol/l, respectively. When combined, 2.4 and 1 μmol/l of 3-BrP and ITH-47, respectively, inhibited 50% of the cell population, yielding a synergistic combination index of 0.9. Subsequent mechanistic studies showed that the IC50 concentrations of ITH-47 and 3-BrP and the combination increased observable apoptotic bodies and cell shrinkage in U937 cells treated for 48 h. Cell cycle analysis showed an increase in the sub-G1 fraction in all treated cells, suggesting that cell death was increased in the treated samples. Annexin-V-FITC apoptosis analysis showed a statistically significant increase in the number of cells in early and late apoptosis, indicating that cell death occurred through apoptosis and not necrosis. Only U937 cells exposed to ITH-47 showed a decrease in mitochondrial membrane potential compared with the vehicle control. Reactive oxygen species production was decreased in all treated samples. ITH-47-exposed cells showed a decrease in c-Myc, Bcl-2, and p53 gene expressions. 3-BrP-treated cells showed an increase in c-myc and p53 gene expressions. The combination of ITH-47 and 3-BrP lead to downregulation of c-myc and Bcl-2 genes. ITH-47 exposure conditions yielded a marked decrease

  13. DNA damage in human lymphocytes due to synergistic interaction between ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Kim, J. K.; Lee, K. H.; Lee, B. H.; Chun, K. J.

    2001-01-01

    Biological risks may arise from the possibility of the synergistic interaction between harmful factors such as ionizing radiation and pesticide. The effect of pesticide on radiation-induced DNA damage in human in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 2.0 Gy of gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it interacts synergistically with ionizing radiationon DNA damage, as well

  14. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma

    Directory of Open Access Journals (Sweden)

    Kai Qing

    2016-08-01

    Full Text Available Abstract We demonstrate the synergistic antitumor effect of oridonin and the PI3K/mTOR inhibitor NVP-BEZ235 on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma (non-GCB DLBCL both in vitro and in vivo. The underlying mechanism may be multifunctional, involving apoptosis, AKT/mTOR and NF-kB inactivation, and ROS-mediated DNA damage response. Our findings pave the way for a new potential treatment option for non-GCB DLBCL with the combination of oridonin and NVP-BEZ235.

  15. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation.

    Science.gov (United States)

    Hayes, Tyler F; Benaich, Nathan; Goldie, Stephen J; Sipilä, Kalle; Ames-Draycott, Ashley; Cai, Wenjun; Yin, Guangliang; Watt, Fiona M

    2016-12-01

    Oral squamous cell carcinoma (OSCC) is genetically highly heterogeneous, which contributes to the challenges of treatment. To create an in vitro model that accurately reflects this heterogeneity, we generated a panel of HPV-negative OSCC cell lines. By whole exome sequencing of the lines and matched patient blood samples, we demonstrate that the mutational spectrum of the lines is representative of primary OSCC in The Cancer Genome Atlas. We show that loss of function mutations in FAT1 (an atypical cadherin) and CASP8 (Caspase 8) frequently occur in the same tumour. OSCC cells with inactivating FAT1 mutations exhibited reduced intercellular adhesion. Knockdown of FAT1 and CASP8 individually or in combination in OSCC cells led to increased cell migration and clonal growth, resistance to Staurosporine-induced apoptosis and, in some cases, increased terminal differentiation. The OSCC lines thus represent a valuable resource for elucidating the impact of different mutations on tumour behaviour. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Synergistic effects of Artemisia iwayomogi and Curcuma longa radix on high-fat diet-induced hyperlipidemia in a mouse model.

    Science.gov (United States)

    Han, Jong-Min; Lee, Jin-Seok; Kim, Hyeong-Geug; Seol, In-Chan; Im, Hwi-Jin; Cho, Jung-Hyo; Son, Chang-Gue

    2015-09-15

    The medicinal plants Artemisia iwayomogi and Curcuma longa radix are both used to treat hyperlipidemia in traditional Korean and Chinese medicine. To evaluate the anti-hyperlipidemic effects of the 30% ethanol extracts of A. iwayomogi (AI), C. longa (CL), and the mixture of A. iwayomogi and C. longa (ACE), using a high-fat diet-induced hyperlipidemia model. Six of seven groups of C57BL/6N male mice (i.e., not including the naïve group) were fed a high-fat diet freely for 10 weeks. Of these six groups, five (i.e., not including the control group) were administered a high-fat diet supplemented with AI (100mg/kg), CL (100mg/kg), ACE (50 or 100mg/kg), or Lipitor (20mg/kg). Serum lipid profiles, obesity-related markers, hepatic steatosis, hepatic gene expression, and oxidative stress markers were analyzed. AI, CL, and ACE were associated with significant effects on serum lipid profiles (total cholesterol [TC] and triglyceride), body, liver and peritoneal adipose tissue weights, hepatic lipid accumulation, and oxidative stress biomarkers. ACE at 100mg/kg was associated with significantly greater improvements in serum TC and triglyceride, hepatic triglyceride, epididymal adipocyte size, and oxidative stress biomarkers, compared with AI and CL. AI, CL and ACE normalized lipid synthesis-associated gene expression (peroxisome proliferator-activated receptor gamma, fatty acid synthase, sterol regulatory element-binding transcription factor-1c, and peroxisome proliferator-activated receptor alpha). ACE exhibits anti-hyperlipidemia properties and is associated with partially synergistic effects compared with AI or CL alone. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin.

    Directory of Open Access Journals (Sweden)

    Xilin Sun

    Full Text Available Our previous studies revealed molecular alterations of tumor vessels, varying from immature to mature alterations, resulting from Abraxane, and demonstrated that the integrin-specific PET tracer 18F-FPPRGD2 can be used to noninvasively monitor such changes. However, changes in the tumor vasculature at functional levels such as perfusion and permeability are also important for monitoring Abraxane treatment outcomes in patients with cancer. The purpose of this study is to further investigate the vascular response during Abraxane therapy and the effectiveness of its synergistic interaction with cisplatin using Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI. Thirty MDA-MB-435 tumor mice were randomized into three groups: PBS control (C group, Abraxane only (A group, and sequential treatment with Abraxane followed by cisplatin (A-P group. Tumor volume was monitored based on caliper measurements. A DCE-MRI protocol was performed at baseline and day 3. The Ktrans, Kep and Ve were calculated and compared with CD31, α-SMA, and Ki67 histology data. Sequential treatment with Abraxane followed by cisplatin produced a significantly greater inhibition of tumor growth during the three weeks of the observation period. Decreases in Ktrans and Kep for the A and A-P groups were observed on day 3. Immunohistological staining suggested vascular remodeling during the Abraxane therapy. The changes in Ktrans and Kep values were correlated with alterations in the permeability of the tumor vasculature induced by the Abraxane treatment. In conclusion, Abraxane-mediated permeability variations in tumor vasculature can be quantitatively visualized by DCE-MRI, making this a useful method for studying the effects of early cancer treatment, especially the early vascular response. Vascular remodeling by Abraxane improves the efficiency of cisplatin delivery and thus results in a favorable treatment outcome.

  18. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  19. Radiation-induced cell damage

    International Nuclear Information System (INIS)

    Felix, W.D.; Schneiderman, M.H.

    1976-01-01

    The addition of irradiated crystals of galactose to Chinese hamster ovary cells resulted in mitotic delay, whereas exposure to nonirradiated crystals resulted in no detectable delay. The inference from this preliminary data is that free radicals or other transient irradiation products have reacted with external cellular components

  20. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  1. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    Science.gov (United States)

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  2. Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro.

    Science.gov (United States)

    Tang, Wei; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Zhang, Jing; Cao, Bing

    2009-12-01

    Sonodynamic therapy employs a combination of ultrasound and a sonosensitizer to enhance the cytotoxic effect of ultrasound and promote apoptosis. However, the mechanism underlying the synergistic effect of ultrasound and hematoporphyrin is still unclear. In this study, we investigated mechanism of the induction of apoptosis by sonodynamic therapy in Sarcoma 180 cells. The cell suspension was treated by 1.75-MHz focused continuous ultrasound at an acoustic power (I(SATA)) of 1.4+/-0.07 W/cm(2) for 3 min in the absence or presence of 20 microg/ml hematoporphyrin. The proportion of apoptotic cells was determined by flow cytometry. We then analyzed the reactive oxygen species generation and localization by confocal microscopy. Western blotting and reverse transcriptase-polymerase chain reaction were used to analyze the expression of caspase-8, caspase-9, poly(ADP)-ribose polymerase, and nuclear factor-kappaB. The findings of our study indicate that ultrasound treatment induced the activation of nuclear factor-kappaB as an early stress response. When cells were pretreated with hematoporphyrin, the initial response to the therapy was the formation of (1)O(2) in the mitochondria. Our results primarily demonstrate that the mechanisms of induction of apoptosis by ultrasound and hematoporphyrin-sonodynamic therapies are very different. Our findings can provide a basis for explaining the synergistic effect of ultrasound and hematoporphyrin.

  3. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  4. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    Science.gov (United States)

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  5. TWEAK induces liver progenitor cell proliferation

    Science.gov (United States)

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  6. Role of ACNU-induced cell cycle perturbations in enhancing effect on radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Naoto (Niigata Univ. (Japan). Brain Research Inst.)

    1992-05-01

    The cell cycle perturbations induced by ACNU and their role in enhancing effect on radiotherapy were studied using C[sub 6] rat glioma cells. The cell cycle perturbations were analyzed with flow cytometry from 3 to 72 hours after ACNU treatment. The major effect of ACNU on cell cycle progression was G[sub 2]M accumulation. Alteration of the DNA histograms after exposure to ACNU (10, 25 [mu]g/ml) showed common features; the G[sub 2]M accumulation increased to a maximum at 24 hr, remained by 30 hr, then decreased gradually. From these analyses, the temporal course of accumulation to G[sub 2]M phase of cell cycle in the presence of ACNU (10, 25 [mu]g/ml) was demonstrated. To examine whether the G[sub 2]M accumulation induced by ACNU is responsible for the potentiation of irradiation, the following study was performed. Cells were irradiated (6 Gy) at various time intervals after ACNU treatment (25 [mu]g/ml, 1 hr), and posttreatment survival was assessed by colony forming assay. All survival values obtained from the combination treatment schedules were normalized for the ACNU cell kill and then compared with the survival value obtained after irradiation alone. It appeared that combined treatment had a similar synergistic effect in all combination schedules. From these studies, it was concluded that the G[sub 2]M accumulation induced by ACNU would not be the partial synchronization as the mechanism responsible for the potentiation of irradiation. (author).

  7. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-07-01

    Full Text Available Xi Liu,1–4 Yan Liu,1–4 Pengcheng Zhang,1–4 Xiaodong Jin,1–3 Xiaogang Zheng,1–4 Fei Ye,1–4 Weiqiang Chen,1–3 Qiang Li1–3 1Institute of Modern Physics, 2Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, 3Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 4School of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract: Reductive drug-functionalized gold nanoparticles (AuNPs have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ moiety, and then thioctyl TPZ (TPZs-modified AuNPs (TPZs-AuNPs were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. Keywords: AuNPs, radiation enhancement, synergistic effect, human hepatoma cells, hydroxyl radical production

  8. Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells.

    Science.gov (United States)

    Mukherjee, Sumit; Baidoo, Juliet N E; Sampat, Samay; Mancuso, Andrew; David, Lovena; Cohen, Leah S; Zhou, Shuiqin; Banerjee, Probal

    2018-01-18

    Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM): 32:8:100 (termed 32 μM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.

  9. Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM and GBM Stem Cells

    Directory of Open Access Journals (Sweden)

    Sumit Mukherjee

    2018-01-01

    Full Text Available Glioblastoma (GBM is a deadly brain tumor with a current mean survival of 12–15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E from green tea and resveratrol (R from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM: 32:8:100 (termed 32 μM+ TriCurin. We have now prepared liposomal TriCurin (TrLp and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.

  10. Induced pluripotent stem cells for regenerative medicine.

    Science.gov (United States)

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  11. Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension

    DEFF Research Database (Denmark)

    Krabbe, Christina; Courtois, Elise; Jensen, Pia

    2009-01-01

    Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic different......Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic...... days at 20% oxygen, hVMbcl-x(L) cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 +/- 0.8% to 17.2 +/- 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q...

  12. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    Tease, C.

    1989-01-01

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  13. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  14. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  15. Induced DNA repair pathway in mammalian cells

    International Nuclear Information System (INIS)

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 μM cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells

  16. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development

    KAUST Repository

    Jaiswal, Hemant; Kaushik, Monika; Sougrat, Rachid; Gupta, Monica; Dey, Anup; Verma, Rohit; Ozato, Keiko; Tailor, Prafullakumar B.

    2013-01-01

    model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40

  17. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  18. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  19. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  20. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  1. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Mu Dezhi

    2010-11-01

    Full Text Available Abstract Background Glucocorticoid (GC resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL. In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide (MTT assay. Fluorescence-activated cell sorting (FACS analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR, the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting

  2. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density

  3. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    Science.gov (United States)

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. MAPK/ERK and Wnt/β-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    International Nuclear Information System (INIS)

    Jin, Caixia; Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong; Gerber, David A.

    2011-01-01

    Highlights: → Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1 + HPC proliferation and colony formation. → Activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. → Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1 + HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1 + HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  6. MAPK/ERK and Wnt/{beta}-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Caixia [Department of Surgery, University of North Carolina at Chapel Hill (United States); Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan 750004 (China); Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong [Department of Surgery, University of North Carolina at Chapel Hill (United States); Gerber, David A., E-mail: david_gerber@med.unc.edu [Department of Surgery, University of North Carolina at Chapel Hill (United States); Lineberger Cancer Center, University of North Carolina at Chapel Hill (United States)

    2011-06-17

    Highlights: {yields} Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1{sup +} HPC proliferation and colony formation. {yields} Activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. {yields} Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1{sup +} HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1{sup +} HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  7. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  8. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction.

    Science.gov (United States)

    Huang, Weicheng; Wang, Jinxin; Bian, Lang; Zhao, Chaoyue; Liu, Danqing; Guo, Chongshen; Yang, Bin; Cao, Wenwu

    2018-06-27

    A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

  9. Menstruum induces changes in mesothelial cell morphology.

    Science.gov (United States)

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal

  10. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  11. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  12. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  13. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, Hironori; Horyozaki, Akiko; Maeda, Masatomo, E-mail: mmaeda@nupals.ac.jp

    2016-09-09

    Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis under growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown. - Highlights: • Anisomycin induces proteolysis of GATA-6 in DLD-1 cells. • Anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest. • Anisomycin suppresses the growth of spheroids of DLD-1, and enhances the effect of 5-FU.

  14. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Directory of Open Access Journals (Sweden)

    Avik Acharya Chowdhury

    Full Text Available BACKGROUND: Hydroxychavicol (HCH, a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS. The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4, non-leukemic (A549, MIA-PaCa2, PC-3, HepG2 cancer cell lines and normal cell lines (NIH3T3, Vero was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM after staining with annexin V-FITC/propidium iodide (PI, detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF by confocal microscopy. Intracellular reduced glutathione (GSH was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM were used as probes to measure intracellular increase in ROS and nitric oxide (NO levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the

  15. Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells.

    Science.gov (United States)

    Tang, Jinglong; Zhou, Huige; Liu, Jiaming; Liu, Jing; Li, Wanqi; Wang, Yuqing; Hu, Fan; Huo, Qing; Li, Jiayang; Liu, Ying; Chen, Chunying

    2017-07-19

    Cancer stem cells (CSCs) have been identified as a new target for therapy in diverse cancers. Traditional therapies usually kill the bulk of cancer cells, but are often unable to effectively eliminate CSCs, which may lead to drug resistance and cancer relapse. Herein, we propose a novel strategy: fabricating multifunctional magnetic Fe 3 O 4 @PPr@HA hybrid nanoparticles and loading it with the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycinet-butylester (DAPT) to eliminate CSCs. Hyaluronic acid ligands greatly enhance the accumulation of the hybrid nanoparticles in the tumor site and in the CSCs. Both hyaluronase in the tumor microenvironment and the magnetic hyperthermia effect of the inner magnetic core can accelerate the release of DAPT. This controlled release of DAPT in the tumor site further enhances the ability of the combination of chemo- and magnetohyperthermia therapy to eliminate cancer stem cells. With the help of polypyrrole-mediated photoacoustic and Fe 3 O 4 -mediated magnetic resonance imaging, the drug release can be precisely monitored in vivo. This versatile nanoplatform enables effective elimination of the cancer stem cells and monitoring of the drugs.

  16. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  17. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Energy Technology Data Exchange (ETDEWEB)

    Khatami, Mahin [Inflammation and Cancer Biology, National Cancer Institute (Ret), the National Institutes of Health, Bethesda, MD 20817 (United States)

    2014-01-27

    dysfunction in the direction of tumorigenesis. Activated MFs (TAMs or M2) and Eos that are recruited by tissues (e.g., conjunctiva or perhaps lung airways) whose principal resident immune cells are MCs and lymphocytes are suggested to play crucial synergistic roles in enhancing growth promoting capacities of host toward tumorigenesis. Under oxidative stress, M-CSF may produce signals that are cumulative/synergistic with host mediators (e.g., low levels of histamine), facilitating tumor-directed expression of decoy receptors and immune suppressive factors (e.g., dTNFR, IL-5, IL-10, TGF-β, PGE2). M-CSF, possessing superior sensitivity and specificity, compared with conventional markers (e.g., CA-125, CA-19-9) is potentially a suitable biomarker for cancer diagnosis and technology development. Systematic monitoring of interactions between resident and recruited cells should provide key information not only about early events in loss of immune surveillance, but it would help making informed decisions for balancing the inherent tumoricidal (Yin) and tumorigenic (Yang) properties of immune system and effective preventive and therapeutic approaches and accurate risk assessment toward improvement of public health.

  18. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs and Eosinophils (Eos with Host Mast Cells (MCs and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Directory of Open Access Journals (Sweden)

    Mahin Khatami

    2014-01-01

    dysfunction in the direction of tumorigenesis. Activated MFs (TAMs or M2 and Eos that are recruited by tissues (e.g., conjunctiva or perhaps lung airways whose principal resident immune cells are MCs and lymphocytes are suggested to play crucial synergistic roles in enhancing growth promoting capacities of host toward tumorigenesis. Under oxidative stress, M-CSF may produce signals that are cumulative/synergistic with host mediators (e.g., low levels of histamine, facilitating tumor-directed expression of decoy receptors and immune suppressive factors (e.g., dTNFR, IL-5, IL-10, TGF-b, PGE2. M-CSF, possessing superior sensitivity and specificity, compared with conventional markers (e.g., CA-125, CA-19-9 is potentially a suitable biomarker for cancer diagnosis and technology development. Systematic monitoring of interactions between resident and recruited cells should provide key information not only about early events in loss of immune surveillance, but it would help making informed decisions for balancing the inherent tumoricidal (Yin and tumorigenic (Yang properties of immune system and effective preventive and therapeutic approaches and accurate risk assessment toward improvement of public health.

  19. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    International Nuclear Information System (INIS)

    Khatami, Mahin

    2014-01-01

    dysfunction in the direction of tumorigenesis. Activated MFs (TAMs or M2) and Eos that are recruited by tissues (e.g., conjunctiva or perhaps lung airways) whose principal resident immune cells are MCs and lymphocytes are suggested to play crucial synergistic roles in enhancing growth promoting capacities of host toward tumorigenesis. Under oxidative stress, M-CSF may produce signals that are cumulative/synergistic with host mediators (e.g., low levels of histamine), facilitating tumor-directed expression of decoy receptors and immune suppressive factors (e.g., dTNFR, IL-5, IL-10, TGF-β, PGE2). M-CSF, possessing superior sensitivity and specificity, compared with conventional markers (e.g., CA-125, CA-19-9) is potentially a suitable biomarker for cancer diagnosis and technology development. Systematic monitoring of interactions between resident and recruited cells should provide key information not only about early events in loss of immune surveillance, but it would help making informed decisions for balancing the inherent tumoricidal (Yin) and tumorigenic (Yang) properties of immune system and effective preventive and therapeutic approaches and accurate risk assessment toward improvement of public health

  20. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    Science.gov (United States)

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  1. PKI-587 and sorafenib targeting PI3K/AKT/mTOR and Ras/Raf/MAPK pathways synergistically inhibit HCC cell proliferation.

    Science.gov (United States)

    Gedaly, Roberto; Angulo, Paul; Hundley, Jonathan; Daily, Michael F; Chen, Changguo; Evers, B Mark

    2012-08-01

    Deregulated Ras/Raf/MAPK and PI3K/AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study aimed to test the inhibitory effects of PKI-587 and sorafenib as single agents or in combination on HCC (Huh7 cell line) proliferation. (3)H-thymidine incorporation and MTT assay were used to assess Huh7 cell proliferation. Phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways was detected by Western blot. We found that PKI-587 is a more potent PI3K/mTOR inhibitor than PI-103. Combination of PKI-587 and sorafenib was a more effective inhibitor of Huh7 proliferation than the combination of PI-103 and sorafenib. Combination of PKI-587 and sorafenib synergistically inhibited epidermal growth factor (EGF)-stimulated Huh7 proliferation compared with monodrug therapy. EGF increased phosphorylation of Ras/Raf downstream signaling proteins MEK and ERK; EGF-stimulated activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased AKT (Ser473) phosphorylation. EGF-stimulated AKT (ser473) activation was inhibited by PKI-587. PKI-587 is a potent inhibitor of AKT (Ser473), mTOR (Ser2448), and S6K (Thr389) phosphorylation; in contrast, rapamycin stimulated mTOR complex 2 substrate AKT(Ser473) phosphorylation although it inhibited mTOR complex 1 substrate S6K phosphorylation. PKI-587, as a single agent, stimulated MEK and ERK phosphorylation. However, when PKI-587 and sorafenib were used in combination, they inhibited all the tested kinases in the Ras/Raf /MAPK and PI3K/AKT/mTOR pathways. The combination of PKI-587 and sorafenib has the advantage over monodrug therapy on inhibition of HCC cell proliferation by blocking both PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Schinus terebinthifolius Raddi extract and linoleic acid from Passiflora edulis synergistically decrease melanin synthesis in B16 cells and reconstituted epidermis.

    Science.gov (United States)

    Jorge, A T S; Arroteia, K F; Santos, I A; Andres, E; Medina, S P H; Ferrari, C R; Lourenço, C B; Biaggio, R M T T; Moreira, P L

    2012-10-01

    Several treatments for skin whitening are available today, but few of them are completely adequate, especially owing to the carcinogenic potential attributed to classical drugs like hydroquinone, arbutin and kojic acid. To provide an alternative and safer technology for whitening, we developed two botanical compounds originated from Brazilian biodiversity, an extract of Schinus terebinthifolius Raddi and a linoleic acid fraction isolated from Passiflora edulis oil. The whitening effect of these compounds was assessed using biochemical assays and in vitro models including cellular assays and equivalent skin. The results showed that S. terebinthifolius Raddi extract is able to reduce the tyrosinase activity in vitro, and the combination of this extract with linoleic acid is able to decrease the level of melanin produced by B16 cells cultured with melanocyte-stimulating hormone. Furthermore, melanin was also reduced in human reconstituted epidermis (containing melanocytes) treated with the compounds. The combination of the compounds may provide a synergistic positive whitening effect rather than their isolated use. Finally, we demonstrated that the performance of these mixed compounds is comparable to classical molecules used for skin whitening, as kojic acid. This new natural mixture could be considered an alternative therapeutic agent for treating hyperpigmentation and an effective component in whitening cosmetics. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Dose response of micronuclei induced by combination radiation of α-particles and γ-rays in human lymphoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ruiping; He, Mingyuan; Dong, Chen; Xie, Yuexia; Ye, Shuang; Yuan, Dexiao [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China)

    2013-01-15

    Highlights: ► α-Particle induced MN had a biphasic dose–response followed by a bystander model. ► MN dose–response of α- and γ-combination IR was similar to that of α-particle. ► α-Particles followed by γ-rays yielded a synergistic effect on MN induction. ► Low dose γ-rays triggered antagonistic and adaptive responses against α-particle. - Abstract: Combination radiation is a real situation of both nuclear accident exposure and space radiation environment, but its biological dosimetry is still not established. This study investigated the dose–response of micronuclei (MN) induction in lymphocyte by irradiating HMy2.CIR lymphoblast cells with α-particles, γ-rays, and their combinations. Results showed that the dose–response of MN induced by γ-rays was well-fitted with the linear-quadratic model. But for α-particle irradiation, the MN induction had a biphasic phenomenon containing a low dose hypersensitivity characteristic and its dose response could be well-stimulated with a state vector model where radiation-induced bystander effect (RIBE) was involved. For the combination exposure, the dose response of MN was similar to that of α-irradiation. However, the yield of MN was closely related to the sequence of irradiations. When the cells were irradiated with α-particles at first and then γ-rays, a synergistic effect of MN induction was observed. But when the cells were irradiated with γ-rays followed by α-particles, an antagonistic effect of MN was observed in the low dose range although this combination radiation also yielded a synergistic effect at high doses. When the interval between two irradiations was extended to 4 h, a cross-adaptive response against the other irradiation was induced by a low dose of γ-rays but not α-particles.

  4. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-κB pathway in human epidermoid carcinoma A431 cells

    International Nuclear Information System (INIS)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-01-01

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm 2 ) and resveratrol (60 μM) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-κB) pathway by blocking phosphorylation of serine 536 and inactivating NF-κB and subsequent degradation of IκBα, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  5. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Ray, Ratan Singh; Hans, Rajendra K. [Photobiology Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Prasad, Sahdeo [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Shukla, Yogeshwer, E-mail: yogeshwer_shukla@hotmail.com [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India)

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  6. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Michael G Liska

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB cells with granulocyte-colony stimulating factor (G-CSF in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  7. Mitogenic Activity of a Water-Soluble Adjuvant (Bu-WSA) Obtained from Bacterionema matruchotii: IV. Synergistic Effects of Bu-WSA on Concanavalin A-Induced Proliferative Response of Human Peripheral Blood Lymphocytes.

    Science.gov (United States)

    Nitta, Toshimasa; Okumura, Seiichi; Tsushi, Masao; Nakano, Masayasu

    1982-07-01

    Butanol-extracted water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was cultured with peripheral blood mononuclear cells (PBM) in the presence of sub- and/or supra-optimal mitogenic concentrations of concanavalin A (Con A). The addition of Bu-WSA resulted in increased tritiated thymidine incorporation above that produced by Con A alone. Bu-WSA by itself is not mitogenic for PBM and in fact produced a decrease in thymidine uptake compared to the control. We investigated the response of subpopulation(s) of PBM to Bu-WSA, Con A and a mixture of Bu-WSA and Con A. Separation of PBM into purified T cells, B cells and macrophages showed that cell-cell cooperation of T cells with B cells or macrophages is necessary for the observed synergistic effect of Bu-WSA with Con A. A marked increase in thymidine incorporation by the mixture of T and B cell populations occurred, while only a small amount of thymidine was incorporated when the B cell population was absent. Mitomycin treatment revealed that the response could be ascribed to the T-cell response with a B-cell helper effect. Moreover, Con A and Bu-WSA appeared to act on the same T cell population. This model may provide unique information about the activation of human peripheral blood T cells compared with the activation of these cells by other mitogens. © owned by Center for Academic Publications Japan (Publisher).

  8. Mitogenic activity of a water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii. IV. Synergistic effects of Bu-WSA on Concanavalin A-induced proliferative response of human peripheral blood lymphocytes.

    Science.gov (United States)

    Nitta, T; Okumura, S; Tsushi, M; Nakano, M

    1982-01-01

    Butanol-extracted water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was cultured with peripheral blood mononuclear cells (PBM) in the presence of sub- and/or supra-optimal mitogenic concentrations of concanavalin A (Con A). The addition of Bu-WSA resulted in increased tritiated thymidine incorporation above that produced by Con A alone. Bu-WSA by itself is not mitogenic for PBM and in fact produced a decrease in thymidine uptake compared to the control. We investigated the response of subpopulation(s) of PBM to Bu-WSA, Con A and a mixture of Bu-WSA and Con A. Separation of PBM into purified T cells, B cells and macrophages showed that cell-cell cooperation of T cells with B cells or macrophages is necessary for the observed synergistic effect of Bu-WSA with Con A. A marked increase in thymidine incorporation by the mixture of T and B cell populations occurred, while only a small amount of thymidine was incorporated when the B cell population was absent. Mitomycin treatment revealed that the response could be ascribed to the T-cell response with a B-cell helper effect. Moreover, Con A and Bu-WSA appeared to act on the same T cell population. This model may provide unique information about the activation of human peripheral blood T cells compared with the activation of these cells by other mitogens.

  9. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  10. Paraquat-induced radiosensitization of mammalian cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Fujikura, Toshio; Hiraoka, Toshio; Tenou, Hiromi.

    1983-06-01

    The herbicide, paraquat (methyl viologen, 1-1' dimethy1-4, 4'-bipyridinium dichloride), stimulates the production of superoxide anion (O 2 sup(-.)) in aerobic cells and therefore mimics some effects of ionizing radiation. In addition, concentrations of cellular glutathione are reduced by reaction with O 2 sup(-.). It is reported here that paraquat, toxic in its own right to aerobic cells, acts as a radiosensitizer when cells are exposed to nontoxic concentrations of the drug prior to and during irradiation. The radiomimetic effect of paraquat, alone and in combination with X-rays, was examined. Paraquat affects aerated cells (hamster lung V79 cells) in a dose-dependent manner. Doses in excess of 1 mM for two hours cause significant cell killing. In combination with radiation, sublethal doses of paraquat, given for two hours prior to irradiation, enhance the lethal effects of radiation. However, if cells are exposed to the same concentration of paraquat following irradiation, no additional lethal effect is observed. Paraquat is a useful tool to study the effects of O 2 sup(-.) and may lead to better understanding of the mechanisms of radiation-induced energy deposition in cells. (author)

  11. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway.

    Science.gov (United States)

    Lee, Jisun; Lee, Seul; Kim, Sun-Lim; Choi, Ji Won; Seo, Jeong Yeon; Choi, Doo Jin; Park, Yong Il

    2014-12-05

    Despite recent advances in prostate cancer diagnostics and therapeutics, the overall survival rate still remains low. This study was aimed to assess potential anti-cancer activity of maysin, a major flavonoid of corn silk (CS, Zea mays L.), in androgen-independent human prostate cancer cells (PC-3). Maysin was isolated from CS of Kwangpyeongok, a Korean hybrid corn, via methanol extraction and preparative C18 reverse phase column chromatography. Maysin cytotoxicity was determined by either monitoring cell viability in various cancer cell lines by MTT assay or morphological changes. Apoptotic cell death was assessed by annexin V-FITC/PI double staining, depolarization of mitochondrial membrane potential (MMP), expression levels of Bcl-2 and pro-caspase-3 and by terminal transferase mediated dUTP-fluorescein nick end labeling (TUNEL) staining. Underlying mechanism in maysin-induced apoptosis of PC-3 cells was explored by evaluating its effects on Akt and ERK pathway. Maysin dose-dependently reduced the PC-3 cell viability, with an 87% reduction at 200 μg/ml. Maysin treatment significantly induced apoptotic cell death, DNA fragmentation, depolarization of MMP, and reduction in Bcl-2 and pro-caspase-3 expression levels. Maysin also significantly attenuated phosphorylation of Akt and ERK. A combined treatment with maysin and other known anti-cancer agents, including 5-FU, etoposide, cisplatin, or camptothecin, synergistically enhanced PC-3 cell death. These results suggested for the first time that maysin inhibits the PC-3 cancer cell growth via stimulation of mitochondria-dependent apoptotic cell death and may have a strong therapeutic potential for the treatment of either chemo-resistant or androgen-independent human prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Sickle cell-induced ischemic colitis.

    Science.gov (United States)

    Stewart, Camille L; Ménard, Geraldine E

    2009-07-01

    Sickle cell-induced ischemic colitis is a rare yet potentially fatal complication of sickle cell anemia. Frequent pain crises with heavy analgesia may obscure and prolong this important diagnosis. Our patient was a 29-year-old female with sickle cell disease who was admitted with left lower quadrant abdominal pain. A diagnostic workup, including chemistries, complete blood count, blood cultures, chest x-ray, computerized tomography scanning, and colonoscopy, was performed to identify the etiology of her symptoms. This case highlights the importance of differentiating simple pain crisis from more serious and life-threatening ischemic bowel. A review of the literature compares this case to others reported and gives a method for diagnosing and treating this complication of sickle cell disease.

  13. Ionizing radiation-induced cell death

    International Nuclear Information System (INIS)

    Szumiel, I.

    1994-01-01

    Selected aspects of radiation-induced cell death, connected with signal transduction pathways are reviewed. Cell death is defined as insufficiency of the cellular signal transducing system to maintain the cell's physiological functions. The insufficiency may be due to impaired signal reception and/or transduction, lack or erroneous transcription activation, and eventual cellular ''misexpression'' of the signal. The molecular basis of this insufficiency would be damage to genomic (but also other cellular) structures and closing of specific signalling pathways or opening of others (like those leading to apoptosis). I describe experimental data that suggest an important role of RAS/NFI and p53/p105 Rb proteins in cell cycle control-coupled responses to DNA damage. (Author)

  14. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Shie, Ming-You [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); School of Dentistry, China Medical University, Taichung City, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan (China); Chiang, Wei-Hung [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Chen, I-Wen Peter [Department of Applied Science, National Taitung University, Taitung City, Taiwan (China); Liu, Wen-Yi [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Department of Laboratory Science and Technology, China Medical University, Taichung City, Taiwan (China); Chen, Yi-Wen, E-mail: evinchen@mail.cmu.edu.tw [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan (China)

    2017-04-01

    Recent exciting findings of the biological interactions of graphene materials have shed light on potential biomedical applications of graphene-containing composites. Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of biocomposites. In the present study, various ratios of graphene (0.25 wt%, 0.5 wt% and 1.0 wt%) were reinforced into calcium silicate (CS) for bone graft application. Results show that the graphene was embedded in the composites homogeneously. Adding 1 wt% graphene into CS increased the young's modulus by ~ 47.1%. The formation of bone-like apatite on a range of composites with graphene weight percentages ranging from 0 to 1 has been investigated in simulated body fluid. The presence of a bone-like apatite layer on the composites surface after immersion in simulated body fluid was considered by scanning electron microscopy. In vitro cytocompatibility of the graphene-contained CS composites was evaluated using human marrow stem cells (hMSCs). The proliferation and alkaline phosphatase, osteopontin and osteocalcin osteogenesis-related protein expression of the hMSCs on the 1 wt% graphene-contained specimens showed better results than on the pure CS. In addition, the angiogenesis-related protein (vWF and ang-1) secretion of cells was significantly stimulated when the graphene concentration in the composites was increased. These results suggest that graphene-contained CS bone graft are promising materials for bone tissue engineering applications. - Highlights: • G100 increased the young’s modulus by ∼ 47.1% than pure calcium silicate (CS). • G100 showed better results of proliferation and osteogenesis-related protein expression of the hMSCs. • Angiogenesis-related protein secretion of cells was significantly stimulated when the graphene concentration increased.

  15. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites

    International Nuclear Information System (INIS)

    Shie, Ming-You; Chiang, Wei-Hung; Chen, I-Wen Peter; Liu, Wen-Yi; Chen, Yi-Wen

    2017-01-01

    Recent exciting findings of the biological interactions of graphene materials have shed light on potential biomedical applications of graphene-containing composites. Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of biocomposites. In the present study, various ratios of graphene (0.25 wt%, 0.5 wt% and 1.0 wt%) were reinforced into calcium silicate (CS) for bone graft application. Results show that the graphene was embedded in the composites homogeneously. Adding 1 wt% graphene into CS increased the young's modulus by ~ 47.1%. The formation of bone-like apatite on a range of composites with graphene weight percentages ranging from 0 to 1 has been investigated in simulated body fluid. The presence of a bone-like apatite layer on the composites surface after immersion in simulated body fluid was considered by scanning electron microscopy. In vitro cytocompatibility of the graphene-contained CS composites was evaluated using human marrow stem cells (hMSCs). The proliferation and alkaline phosphatase, osteopontin and osteocalcin osteogenesis-related protein expression of the hMSCs on the 1 wt% graphene-contained specimens showed better results than on the pure CS. In addition, the angiogenesis-related protein (vWF and ang-1) secretion of cells was significantly stimulated when the graphene concentration in the composites was increased. These results suggest that graphene-contained CS bone graft are promising materials for bone tissue engineering applications. - Highlights: • G100 increased the young’s modulus by ∼ 47.1% than pure calcium silicate (CS). • G100 showed better results of proliferation and osteogenesis-related protein expression of the hMSCs. • Angiogenesis-related protein secretion of cells was significantly stimulated when the graphene concentration increased.

  16. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Chuang

    Full Text Available TP53 is the most commonly mutated gene in head and neck cancer (HNSCC, with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis, a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1 inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  17. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Science.gov (United States)

    Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N; Skinner, Heath D

    2014-01-01

    TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  18. Thalidomide induces apoptosis in undifferentiated human induced pluripotent stem cells.

    Science.gov (United States)

    Tachikawa, Saoko; Nishimura, Toshinobu; Nakauchi, Hiromitsu; Ohnuma, Kiyoshi

    2017-10-01

    Thalidomide, which was formerly available commercially to control the symptoms of morning sickness, is a strong teratogen that causes fetal abnormalities. However, the mechanism of thalidomide teratogenicity is not fully understood; thalidomide toxicity is not apparent in rodents, and the use of human embryos is ethically and technically untenable. In this study, we designed an experimental system featuring human-induced pluripotent stem cells (hiPSCs) to investigate the effects of thalidomide. These cells exhibit the same characteristics as those of epiblasts originating from implanted fertilized ova, which give rise to the fetus. Therefore, theoretically, thalidomide exposure during hiPSC differentiation is equivalent to that in the human fetus. We examined the effects of thalidomide on undifferentiated hiPSCs and early-differentiated hiPSCs cultured in media containing bone morphogenetic protein-4, which correspond, respectively, to epiblast (future fetus) and trophoblast (future extra-embryonic tissue). We found that only the number of undifferentiated cells was reduced. In undifferentiated cells, application of thalidomide increased the number of apoptotic and dead cells at day 2 but not day 4. Application of thalidomide did not affect the cell cycle. Furthermore, immunostaining and flow cytometric analysis revealed that thalidomide exposure had no effect on the expression of specific markers of undifferentiated and early trophectodermal differentiated cells. These results suggest that the effect of thalidomide was successfully detected in our experimental system and that thalidomide eliminated a subpopulation of undifferentiated hiPSCs. This study may help to elucidate the mechanisms underlying thalidomide teratogenicity and reveal potential strategies for safely prescribing this drug to pregnant women.

  19. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways...

  20. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  1. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Treatment of advanced, recurrent, resistant to previous treatments basal and squamous cell skin carcinomas with a synergistic formulation of interferons. Open, prospective study

    Directory of Open Access Journals (Sweden)

    Lopez-Saura Pedro

    2009-07-01

    Full Text Available Abstract Background Aggressive non-melanoma skin cancer (deeply infiltrating, recurrent, and morphea form lesions are therapeutically challenging because they require considerable tissue loss and may demand radical disfiguring surgery. Interferons (IFN may provide a non-surgical approach to the management of these tumors. The aim of this work was to evaluate the effect of a formulation containing IFNs-α and -γ in synergistic proportions on patients with recurrent, advanced basal cell (BCC or squamous cell skin carcinomas (SCSC. Methods Patients with extensive, recurrent, resistant to other procedures BCC or SCSC received the IFN formulation peri- and intralesionally, three times per week for 3 weeks. They had been previously treated with surgery and/or radiotherapy or chemotherapy. Thirteen weeks after the end of treatment, the original lesion sites were examined for histological evidence of remaining tumor. Results Sixteen elder (median 70 years-old patients were included. They beared 12 BCC and 4 SCSC ranging from 1.5 to 12.5 cm in the longest dimension. At the end of treatment 47% CR (complete tumor elimination, 40% PR (>30% tumor reduction, and 13% stable disease were obtained. None of the patients relapsed during the treatment period. The median duration of the response was 38 months. Only one patient with complete response had relapsed until today. Principal adverse reactions were influenza-like symptoms well known to occur with interferon therapy, which were well tolerated. Conclusion The peri- and intralesional combination of IFNs-α and -γ was safe and showed effect for the treatment of advanced, recurrent and resistant to previous treatments of BCC and SCSC in elder patients. This is the first report of such treatment in patients with advance non-melanoma skin cancer. The encouraging result justifies further confirmatory trials. Trial registration Current Controlled Trials RPCEC00000052.

  3. Treatment of advanced, recurrent, resistant to previous treatments basal and squamous cell skin carcinomas with a synergistic formulation of interferons. Open, prospective study

    International Nuclear Information System (INIS)

    Anasagasti-Angulo, Lorenzo; Garcia-Vega, Yanelda; Barcelona-Perez, Silvia; Lopez-Saura, Pedro; Bello-Rivero, Iraldo

    2009-01-01

    Aggressive non-melanoma skin cancer (deeply infiltrating, recurrent, and morphea form lesions) are therapeutically challenging because they require considerable tissue loss and may demand radical disfiguring surgery. Interferons (IFN) may provide a non-surgical approach to the management of these tumors. The aim of this work was to evaluate the effect of a formulation containing IFNs-α and -γ in synergistic proportions on patients with recurrent, advanced basal cell (BCC) or squamous cell skin carcinomas (SCSC). Patients with extensive, recurrent, resistant to other procedures BCC or SCSC received the IFN formulation peri- and intralesionally, three times per week for 3 weeks. They had been previously treated with surgery and/or radiotherapy or chemotherapy. Thirteen weeks after the end of treatment, the original lesion sites were examined for histological evidence of remaining tumor. Sixteen elder (median 70 years-old) patients were included. They beared 12 BCC and 4 SCSC ranging from 1.5 to 12.5 cm in the longest dimension. At the end of treatment 47% CR (complete tumor elimination), 40% PR (>30% tumor reduction), and 13% stable disease were obtained. None of the patients relapsed during the treatment period. The median duration of the response was 38 months. Only one patient with complete response had relapsed until today. Principal adverse reactions were influenza-like symptoms well known to occur with interferon therapy, which were well tolerated. The peri- and intralesional combination of IFNs-α and -γ was safe and showed effect for the treatment of advanced, recurrent and resistant to previous treatments of BCC and SCSC in elder patients. This is the first report of such treatment in patients with advance non-melanoma skin cancer. The encouraging result justifies further confirmatory trials. Current Controlled Trials RPCEC00000052

  4. Induced pluripotent stem cells for retinal degenerative diseases: a ...

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... anisms of these diseases is still very limited and no radical drugs are available. Induced .... Induced pluripotent stem cells are ES-like pluripotent cells capable of .... lation to test whether immunorejection with the latter is in-.

  5. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity.

    Science.gov (United States)

    Kim, Eun Young; Rajasekaran, Ganesan; Shin, Song Yub

    2017-08-18

    KR-12-a5 is a 12-meric α-helical antimicrobial peptide (AMP) with dual antimicrobial and anti-inflammatory activities designed from human cathelicidin LL-37. We designed and synthesized a series of d-amino acid-substituted analogs of KR-12-a5 with the aim of developing novel α-helical AMPs that possess higher cell selectivity than KR-12-a5, while maintaining the anti-inflammatory activity. d-amino acid incorporation into KR-12-a5 induced a significant improvement in the cell selectivity by 2.6- to 13.6-fold as compared to KR-12-a5, while maintaining the anti-inflammatory activity. Among the three analogs, KR-12-a5 (6- D L) with d-amino acid in the polar-nonpolar interface (Leu 6 ) showed the highest cell selectivity (therapeutic index: 61.2). Similar to LL-37, KR-12-a5 and its analogs significantly inhibited the expression and secretion of NO, TNF-α, IL-6 and MCP-1 from LPS-stimulated RAW264.7 cells. KR-12-a5 and its analogs showed a more potent antimicrobial activity against antibiotic-resistant bacteria, including clinically isolated MRSA, MDRPA, and VREF than LL-37 and melittin. Furthermore, compared to LL-37, KR-12-a5 and its analogs showed greater synergistic effects with conventional antibiotics, such as chloramphenicol, ciprofloxacin, and oxacillin against MDRPA; KR-12-a5 and its analogs had a FICI range between 0.25 and 0.5, and LL-37 had a range between 0.75 and 1.5. KR-12-a5 and its analogs were found to be more effective anti-biofilm agents against MDRPA than LL-37. In addition, KR-12-a5 and its analogs maintained antimicrobial activity in physiological salts and human serum. SYTOX Green uptake and membrane depolarization studies revealed that KR-12-a5 and its analogs kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that KR-12-a5 and its analogs can be developed further as novel antimicrobial/anti-inflammatory agents to treat antibiotic-resistant infections. Copyright

  6. Methylseleninic acid (MSA) inhibits 17β-estradiol-induced cell growth in breast cancer T47D cells via enhancement of the antioxidative thioredoxin/ thioredoxin reductase system.

    Science.gov (United States)

    Okuno, Tomofumi; Miura, Kiyoshi; Sakazaki, Fumitoshi; Nakamuro, Katsuhiko; Ueno, Hitoshi

    2012-01-01

    The purpose of this study was to clarify the cell growth inhibitory mechanism of human breast cancer cells caused by selenium (Se) compounds. In the presence of 17β-estradiol (E(2)) at physiological concentrations, growth of estrogen receptor α (ERα)-positive T47D cells was markedly inhibited by 1 × 10(-6) mol/L methylseleninic acid (MSA) with no Se related toxicity.Under conditions where cell growth was inhibited, MSA decreased ERα mRNA levels and subsequent protein levels; further decreasing expression of estrogen-responsive finger protein (Efp) which is a target gene product of ERα and promotes G2/M progression of the cell cycle. Therefore, the decline in Efp expression is presumed to be involved in G2 arrest. Coincidentally, the antioxidative thioredoxin/ thioredoxin reductase (Trx/TrxR) system in cells was enhanced by the synergistic action of E(2) and MSA. It has been reported that ROS-induced oxidative stress enhanced ERα expression. E(2) increased production of intracellular ROS in T47D cells. Meanwhile, MSA significantly decreased E(2)-induced ROS accumulation. From these results, activation of the Trx/TrxR system induced by the coexistence of MSA and E(2) suppresses oxidative stress and decreases expression of ERα, and finally induces the growth arrest of T47D cells through disruption of ERα signaling.

  7. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism.

    Science.gov (United States)

    Rotin, Lianne E; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L; Minden, Mark D; Slassi, Malik; Schimmer, Aaron D

    2016-01-19

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.

  8. UV-Induced Cell Death in Plants

    Science.gov (United States)

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  9. Cell shape changes induced by cationic anesthetics

    Science.gov (United States)

    1976-01-01

    The effects of local anesthetics on cultivated macrophages were studied in living preparations and recorded in still pictures and time-lapse cine-micrographs. Exposure to 12mM lidocaine or 1.5 mM tetracaine resulted in rounding in 10-15 min. Rounding was characterized by cell contraction, marked increase in retraction fibrils, withdrawal of cell processes, and, in late stages, pulsation-like activity and zeiosis. Cells showed appreciable membrane activity as they rounded. Respreading was complete within 15 min of perfusion in drug-free medium and entailed a marked increase in surface motility over control periods. As many as eight successive cycles of rounding and spreading were obtained with lidocaine without evidence of cell damage. The effects of anesthetics were similar to those observed with EDTA, but ethylene- glycol-bis(beta-aminoethylether)-N, N'-tetraacetic acid-Mg was ineffective. Rounding was also induced by benzocaine, an anesthetic nearly uncharged at pH 7.0. Quaternary (nondischargeable) compounds were of low activity, presumably because they are slow permeants. Lidocaine induced rounding at 10 degrees C and above but was less effective at 5 degrees C and ineffective at 0 degrees C. Rounding by the anesthetic was also obtained in media depleted or Na or enriched with 10 mM Ca or Mg. The latter finding, together with the failure of tetrodotoxin to induce rounding, suggests that the anesthetic effect is unrelated to inhibition of sodium conductance. It is possible that the drugs influence divalent ion fluxes or some component of the contractile cells' machinery, but a metabolic target of action cannot yet be excluded. PMID:814194

  10. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133 + Cells

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: The use of drugs with the ability to induce production of fetal hemoglobin as a novel therapeutic approach in treating β-Hemoglobinopathies is considered. γ-globin gene expression inducer drugs including sodium butyrate and thalidomide can reduce additional α-globin chains accumulation in erythroid precursors. Materials and Methods: In this experimental study, MACS kit was used to isolate CD133+ cells of umbilical cord blood. Further, the effect of two drugs of thalidomide and sodium butyrate were separately and combined studied on the induction of quantitative expression of β-globin and γ-globin genes in erythroid precursor cells derived from CD133+ stem cells in-vitro. For this purpose, the technique SYBR green Real-time PCR was used.Results: Flow cytometry results showed that approximately 95% of purified cells were CD133+. Real-time PCR results also showed the increased levels of γ-globin mRNA in the cell groups treated with thalidomide, sodium butyrate and combination of drugs as 2.6 and 1.2 and 3.5 times respectively, and for β-globin gene, it is respectively 1.4 and 1.3 and 1.6 times compared with the control group (p<0.05.Conclusion: The study results showed that the mentioned drug combination can act as a pharmaceutical composition affecting the induction of fetal hemoglobin expression in erythroid precursor cells derived from CD133 + cells.

  11. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate

    Directory of Open Access Journals (Sweden)

    Ju-Ri Sim

    2018-01-01

    Full Text Available Short-chain fatty acids (SCFAs, such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP. Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.

  12. Vorinostat synergizes with ridaforolimus and abrogates the ridaforolimus-induced activation of AKT in synovial sarcoma cells.

    Science.gov (United States)

    Morgan, Sherif S; Cranmer, Lee D

    2014-11-18

    Curative treatments for patients with metastatic synovial sarcoma (SS) do not exist, and such patients have a poor prognosis. We explored combinations of molecularly-targeted and cytotoxic agents to identify synergistic treatment combinations in SS cells. Two SS cell lines (HS-SY-II and SYO-I) were treated with single agents or combinations of molecularly targeted therapies (HDAC inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and cytotoxic agents. After 72 hours, cell viability was measured using the MTS cell proliferation assay. Combination Indices (CI) were calculated to determine whether each combination was synergistic, additive, or antagonistic. Western Blot analysis assessed alterations in total and phospho-AKT protein levels in response to drug treatment. We determined the single-agent IC50 for ridaforolimus, vorinostat, doxorubicin, and melphalan in HS-SY-II and SYO-I. Synergism was apparent in cells co-treated with ridaforolimus and vorinostat: CI was 0.28 and 0.63 in HS-SY-II and SYO-I, respectively. Ridaforolimus/doxorubicin and ridaforolimus/melphalan exhibited synergism in both cell lines. An additive effect was observed with combination of vorinostat/doxorubicin in both cell lines. Vorinostat/melphalan was synergistic in HS-SY-II and additive in SYO-I. Western blot analysis demonstrated that ridaforolimus increased pAKT-ser473 levels; this effect was abrogated by vorinostat co-treatment. The combination of ridaforolimus and vorinostat demonstrates in vitro synergism in SS. Addition of vorinostat abrogated ridaforolimus-induced AKT activation. Since AKT activation is a possible mechanism of resistance to mTOR inhibitors, adding vorinostat (or another HDAC inhibitor) may be a route to circumvent AKT-mediated resistance to mTOR inhibitors.

  13. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent.

    Science.gov (United States)

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2007-01-01

    Anethole shows synergistic effects on the antifungal activities of phytochemicals including polygodial and (2E)-undecenal against Saccharomyces cerevisiae and Candida albicans. It was found that a fungistatic dodecanol combined with a sublethal amount of anethole showed a fungicidal activity against S. cerevisiae. The MIC of dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control, indicating that the effect of dodecanol on this yeast was classified as sublethal damage. On the other hand, anethole completely restricted the recovery of cell viability. Therefore the expression of the synergistic effect was probably due to a blockade of the recovery process from dodecanol-induced stress.

  15. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells.

    Science.gov (United States)

    Massumi, Mohammad; Hoveizi, Elham; Baktash, Parvaneh; Hooti, Abdollah; Ghazizadeh, Leili; Nadri, Samad; Pourasgari, Farzaneh; Hajarizadeh, Athena; Soleimani, Masoud; Nabiuni, Mohammad; Khorramizadeh, Mohammad R

    2014-03-10

    Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-κB and Akt pathways

    International Nuclear Information System (INIS)

    Wang Xia; Chen Wenshu; Lin Yong

    2007-01-01

    Blockage of either nuclear factor-κB (NF-κB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-κB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-κB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-κB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-κB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-κB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-κB and Akt, which may be applied in lung cancer therapy

  17. The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II.

    Science.gov (United States)

    Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan

    2017-07-01

    Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.

  18. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin

    2015-07-14

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS-containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization. In situ measurement shows that polystyrene (PS) and diiodooctane (DIO) additives promote donor crystallite formation synergistically, on different time scales, and through different mechanisms. PS-rich films retain solvent, promoting phase separation early in the casting process. Meanwhile, the low vapor pressure of DIO extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase after casting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ES-cell derived hematopoietic cells induce transplantation tolerance.

    Directory of Open Access Journals (Sweden)

    Sabrina Bonde

    Full Text Available BACKGROUND: Bone marrow cells induce stable mixed chimerism under appropriate conditioning of the host, mediating the induction of transplantation tolerance. However, their strong immunogenicity precludes routine use in clinical transplantation due to the need for harsh preconditioning and the requirement for toxic immunosuppression to prevent rejection and graft-versus-host disease. Alternatively, embryonic stem (ES cells have emerged as a potential source of less immunogenic hematopoietic progenitor cells (HPCs. Up till now, however, it has been difficult to generate stable hematopoietic cells from ES cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we derived CD45(+ HPCs from HOXB4-transduced ES cells and showed that they poorly express MHC antigens. This property allowed their long-term engraftment in sublethally irradiated recipients across MHC barriers without the need for immunosuppressive agents. Although donor cells declined in peripheral blood over 2 months, low level chimerism was maintained in the bone marrow of these mice over 100 days. More importantly, chimeric animals were protected from rejection of donor-type cardiac allografts. CONCLUSIONS: Our data show, for the first time, the efficacy of ES-derived CD45(+ HPCs to engraft in allogenic recipients without the use of immunosuppressive agents, there by protecting cardiac allografts from rejection.

  20. Oocyte-like cells induced from mouse spermatogonial stem cells.

    Science.gov (United States)

    Wang, Lu; Cao, Jinping; Ji, Ping; Zhang, Di; Ma, Lianghong; Dym, Martin; Yu, Zhuo; Feng, Lixin

    2012-08-06

    During normal development primordial germ cells (PGCs) derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG) cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs) can also revert back to pluripotency as embryonic stem (ES)-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs) were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and gave rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.

  1. Oocyte-like cells induced from mouse spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2012-08-01

    Full Text Available Abstract Background During normal development primordial germ cells (PGCs derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs can also revert back to pluripotency as embryonic stem (ES-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. Results We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and gave rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. Conclusions Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.

  2. Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat(ITF2357on Human Glioblastoma Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesca Angeletti

    2016-10-01

    Full Text Available Increasing evidence highlighted the role of cancer stem cells (CSCs in the development of tumor resistance to therapy, particularly in glioblastoma (GBM. Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS, a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells.Analysing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies.

  3. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Azhar R Hussain

    Full Text Available BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL. In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene, a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS. Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  4. TCR-independent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL-1 families.

    Directory of Open Access Journals (Sweden)

    Yun Kyung Lee

    Full Text Available The development of Th17 cells is accompanied by the acquisition of responsiveness to both IL-12 and IL-23, cytokines with established roles in the development and/or function of Th1 and Th17 cells, respectively. IL-12 signaling promotes antigen-dependent Th1 differentiation but, in combination with IL-18, allows the antigen-independent perpetuation of Th1 responses. On the other hand, while IL-23 is dispensable for initial commitment to the Th17 lineage, it promotes the pathogenic function of the Th17 cells. In this study, we have examined the overlap between Th1 and Th17 cells in their responsiveness to common pro-inflammatory cytokines and how this affects the antigen-independent cytokine responses of Th17 cells. We found that in addition to the IL-1 receptor, developing Th17 cells also up-regulate the IL-18 receptor. Consequently, in the presence of IL-1β or IL-18, and in the absence of TCR activation, Th17 cells produce Th17 lineage cytokines in a STAT3-dependent manner when stimulated with IL-23, and IFN© via a STAT4-dependent mechanism when stimulated with IL-12. Thus, building on previous findings of antigen-induced plasticity of Th17 cells, our results indicate that this potential of Th17 cells extends to their cytokine-dependent antigen-independent responses. Collectively, our data suggest a model whereby signaling via either IL-1β or IL-18 allows for bystander responses of Th17 cells to pathogens or pathogen products that differentially activate innate cell production of IL-12 or IL-23.

  5. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-05

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  8. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    OpenAIRE

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Bj?rklund, Ann-Charlotte; Zhivotovsky, Boris; Grand?r, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencin...

  9. Cell kinetic studies on radiation induced leukemogenesis

    International Nuclear Information System (INIS)

    Nakao, Isamu; Suzuki, Gen; Imai, Yasufumi; Kawase, Yoshiko; Nose, Masako; Hirashima, Kunitake; Bessho, Masami

    1989-01-01

    The purpose of this study was threefold: (1) to determine the clonal origin of radiation-induced thymic lymphoma in mice with cellular mosaicism for phosphoglycerate kinase; (2) to determine the incidence and latent period of myeloid leukemia and thymic lymphoma induced by whole-body exposure to median doses (3.0 Gy or less) in RFM/MsNrs-2 mice; and (3) to examine the influence of human recombinant interleukin-2 (hrIL-2). Thymic lymphoma was of a single cell origin. The incidence of radiation-induced myeloid leukemia and thymic lymphoma in RFM mice increased in a dose dependent fashion. Mean latent periods of both myeloid leukemia and thymic lymphoma after irradiation became shorter in proportion to radiation doses. When hrIL-2 was injected to RFM mice receiving 3.0 Gy, mean survivals were shorter in thymoma-bearing mice than the control mice. This suggested that hrIL-2 shortens the promotion step of thymoma. Administration of hrIL-2 failed to alter the incidence of myeloid leukemia or the mean survival of mice having myeloid leukemia, indicating that the protocol of hrIL-2 administration was not so sufficient as to alter the myeloid leukemogenesis. (Namekawa, K)

  10. Nimesulide acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3

    International Nuclear Information System (INIS)

    Hong, Sung Hee; Kim, Byeong Mo; Maeng, Kyung Ah

    2009-01-01

    Radiotherapy is important in the treatment of non-small cell lung cancer, but very few malignancies have been cured using single modalities of radiotherapy. Therefore, molecules that can target specific pathophysiological or molecular pathways have been investigated for use as radiation sensitizers. Cyclooxygenase (COX)-2 inhibitors have been shown to enhance the radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms by which COX-2-selective non-steroidal anti-inflammatory drugs (NSAIDs) enhance the radioresponse of tumor cells. In some types of cancer, radiation is thought to work by inducing apoptosis, and effective anticancer radiotherapy is frequently associated with increased levels of apoptosis markers in vitro and in vivo

  11. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhang

    2016-10-01

    Full Text Available Metronidazole (MNZ is an effective agent that has been employed to eradicate Helicobacter pylori (H. pylori. The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC, plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1-N-phenyl-naphthylamine (NPN and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori. Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori, and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  12. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Jong, Edwin de; Langendijk, Johannes A.; Kampinga, Harm H.; Coppes, Robert P.

    2010-01-01

    Radiation-induced fibrosis is a severe side effect of radiotherapy. TGF-β and radiation synergistically induce expression of the profibrotic PAI-1 gene and this cooperation potentially involves p53. Here, we demonstrate that p53 is both indispensable and sufficient for the radiation effect inducing synergistic activation of PAI-1 by radiation and TGF-β.

  13. Synergistic effect of Elephantopus scaber L and Sauropus ...

    African Journals Online (AJOL)

    Synergistic effect of Elephantopus scaber L and Sauropus androgynus L ... Hematopoietic cells were isolated from bone marrow at 12 days post-infection. Prolactin ... breast milk after birth [2]. .... hosts as a natural means of protection against.

  14. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling.

    Science.gov (United States)

    Razmi, Mahdieh; Rabbani-Chadegani, Azra; Hashemi-Niasari, Fatemeh; Ghadam, Parinaz

    2018-07-01

    The clinical use of potent anticancer drug mitomycin C (MMC) has limited due to side effects and resistance of cancer cells. The aim of this study was to investigate whether lithium chloride (LiCl), as a mood stabilizer, can affect the sensitivity of MDA-MB-231 breast cancer cells to mitomycin C. The cells were exposed to various concentrations of mitomycin C alone and combined with LiCl and the viability determined by trypan blue and MTT assays. Proteins were analyzed by western blot and mRNA expression of HMGB1 MMP9 and Bcl-2 were analyzed by RT-PCR. Flow cytometry was used to determine the cell cycle arrest and percent of apoptotic and necrotic cells. Concentration of Bax assessed by ELISA. Exposure of the cells to mitomycin C revealed IC 50 value of 20 μM, whereas pretreatment of the cells with LiCl induced synergistic cytotoxicity and IC 50 value declined to 5 μM. LiCl combined with mitomycin C significantly down-regulated HMGB1, MMP9 and Bcl-2 gene expression but significantly increased the level of Bax protein. In addition, the content of HMGB1 in the nuclei decreased and pretreatment with LiCl reduced the content of HMGB1 release induced by MMC. LiCl increased mitomycin C-induced cell shrinkage and PARP fragmentation suggesting induction of apoptosis in these cells. LiCl prevented mitomycin C-induced necrosis and changed the cell death arrest at G2/M-phase. Taking all together, it is suggested that LiCl efficiently enhances mitomycin C-induced apoptosis and HMGB1, Bax and Bcl-2 expression may play a major role in this process, the findings that provide a new therapeutic strategy for LiCl in combination with mitomycin C. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Synergistic effect of ellagic acid and certain trace element on some biochemical disorders induced by gamma-irradiation in male albino rats

    International Nuclear Information System (INIS)

    Mekkawy, M. H. A.

    2013-01-01

    Ionizing radiation has been found to produce deleterious effects on the biological system. The cellular damage induced by ionizing radiation is predominantly mediated through generation of ROS which when present in excess can react with certain components of the cell and cause serious system damage to various organs, tissues, cellular and subcellular structures (Ward, 1988; Nelson, 2003). Under normal conditions, there is a balance between the generation of ROS and the cellular antioxidant system. Antioxidant enzymes are part of this system responsible for removal and detoxification of free radicals and their products formed by ionizing radiation (Kilciksiz et al., 2008). Most of these enzymes are affected by trace elements which act as essential activators or cofactors for them to exert their action. So, any disturbances in trace elements level post-irradiation will in turn affect the level of these enzymes (Sorenson, 2002). Essential trace elements of the human body include zinc, copper, selenium, chromium, cobalt, iodine, manganese and molybdenum although these elements account for only 0.02 % of the total body weight they play significant roles, e.g. as active centers of enzymes or as trace bioactive substances (Kodama, 1996). They involved in many biochemical processes supporting life; the most important of these processes are cellular respiration, cellular utilization of oxygen, DNA and RNA reproduction, maintenance of cell membrane integrity, and sequestration of free radicals so they act as antioxidant (Chan et al., 1998). Polyphenols are a broad family of natural compounds widely found in plant foods, they are nutritionally important for their antioxidant activities and protective functions against disease risk caused by oxidative stress. Recent studies have shown that some phenolic compounds have antiinflammatory, anticancer, anti carcinogenic or antimutagenic activities (Maciel et al., 2011). Ellagic acid is a naturally occurring polyphenolic compound

  16. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis.

    Science.gov (United States)

    Nunes, Carla; Barbosa, Rui M; Almeida, Leonor; Laranjinha, João

    2011-09-01

    The molecular mechanisms inherent to cell death associated with Parkinson's disease are not clearly understood. Diverse pathways, sequence of events and models have been explored in several studies. Recently, we have proposed an integrative mechanism, encompassing the interaction of nitric oxide (•NO) and a major dopamine metabolite, dihydroxyphenylacetic (DOPAC), leading to a synergistic mitochondrial dysfunction and cell death that may be operative in PD. In this study, we have studied the sequence of events underlying the mechanisms of cell death in PC12 cells exposed to •NO and DOPAC in terms of: a) free radical production; b) modulation by glutathione (GSH); c) energetic status and d) outer membrane mitochondria permeability. Using Electron Paramagnetic Resonance (EPR) it is shown the early production of oxygen free radicals followed by a depletion of GSH reflected by an increase of GSSG/GSH ratio in the cells treated with the mixture of •NO/DOPAC, as compared with the cells individually exposed to each of the stimulus. Glutathione ethyl ester (GSH-EE) and N-acetylcysteine (NAC) may rescue cells from death, increasing GSH content and preventing ATP loss in cells treated with the mixture DOPAC/•NO but failed to exert similar effects in the cells challenged only with •NO. The depletion of GSH is accompanied by a decreased activity of mitochondrial complex I. At a later stage, the concerted action of DOPAC and •NO include a rise in the ratio Bax/Bcl-2, an observation not evident when cells were exposed only to •NO. The results support a free radical-induced pathway leading to cell death involving the concerted action of DOPAC and •NO and the critical role of GSH in maintaining a functional mitochondria. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Mechanisms of Betulinic acid‐induced cell death

    NARCIS (Netherlands)

    Potze, L.

    2015-01-01

    The scope of this thesis was to investigate the mechanisms by which BetA induces cell death in cancer cells in more detail. At the start of the studies described in this thesis several questions urgently needed an answer. Although BetA induces cell death via apoptosis, when blocking this form of

  18. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsrud, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Solhaug, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Dendelé, B. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Sandberg, W.J. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Ivanova, L. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Kocbach Bølling, A. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Lagadic-Gossmann, D. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Refsnes, M.; Becher, R. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Eriksen, G. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Holme, J.A., E-mail: jorn.holme@fhi.no [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  19. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    International Nuclear Information System (INIS)

    Gammelsrud, A.; Solhaug, A.; Dendelé, B.; Sandberg, W.J.; Ivanova, L.; Kocbach Bølling, A.; Lagadic-Gossmann, D.; Refsnes, M.; Becher, R.; Eriksen, G.; Holme, J.A.

    2012-01-01

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  20. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    Full Text Available Yu-Jen Chen,1–4 Li-Wen Fang,5 Wen-Chi Su,6,7 Wen-Yi Hsu,1 Kai-Chien Yang,1 Huey-Lan Huang8 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Nutrition, I-Shou University, Kaohsiung, 6Research Center for Emerging Viruses, China Medical University Hospital, 7Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 8Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China Abstract: Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML, chronic myeloid leukemia (CML, and acute lymphoblastic leukemia (ALL cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of

  1. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  2. Actinomycin D synergistically enhances the cytotoxicity of CDDP on KB cells by activating P53 via decreasing P53-MDM2 complex.

    Science.gov (United States)

    Wang, Lin; Pang, Xiao-Cong; Yu, Zi-Ru; Yang, Sheng-Qian; Liu, Ai-Lin; Wang, Jin-Hua; Du, Guan-Hua

    2017-06-01

    The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.

  3. Synergistic role of 5-azacytidine and ascorbic acid in directing cardiosphere derived cells to cardiomyocytes in vitro by downregulating Wnt signaling pathway via phosphorylation of β-catenin.

    Directory of Open Access Journals (Sweden)

    Reddy Sailaja Mundre

    Full Text Available Cardiosphere derived cells (CDCs represent a valuable source in stem cell based therapy for cardiovascular diseases, yet poor differentiation rate hinders the transplantation efficiency. The aim of this study is to check the ability of 5-Azacytidine (Aza alone and in combination with ascorbic acid (Aza+AA in delineating CDCs to cardiomyogenesis and the underlying Wnt signaling mechanism in induced differentiation.CDCs were treated with Aza and Aza+AA for a period of 14 days to examine the expression of cardiac specific markers and Wnt downstream regulators by immunofluorescence, real time PCR and western blot.Results revealed that Aza+AA induced efficient commitment of CDCs to cardiomyogenic lineage. Immunofluorescence analysis showed significant augment for Nkx 2.5, GATA 4 and α-Sarcomeric actinin markers in Aza+AA group than control group (p = 0.0118, p = 0.009 and p = 0.0091, respectively. Relative upregulation of cardiac markers, Nkx 2.5 (p = 0.0156, GATA 4 (p = 0.0087 and down regulation of Wnt markers, β-catenin (p = 0.0107 and Cyclin D1 (p = 0. 0116 in Aza+AA group was revealed by RNA expression analysis. Moreover, the Aza+AA induced prominent expression of GATA 4, α-Sarcomeric actinin and phospho β-catenin while non phospho β-catenin and Cyclin D1 expression was significantly suppressed as displayed in protein expression analysis. Generation of spontaneous beating in Aza+AA treated CDCs further reinforced that Aza+AA accelerates the cardiomyogenic potential of CDCs.Combined treatment of Aza along with AA implicit in inducing cardiomyogenic potential of CDCs and is associated with down regulating Wnt signaling pathway. Altogether, CDCs represent a valuable tool for the treatment of cardiovascular disorders.

  4. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  5. Effects of 2,4-D and DCP on the DHT-induced androgenic action in human prostate cancer cells.

    Science.gov (United States)

    Kim, Hyun-Jung; Park, Young In; Dong, Mi-Sook

    2005-11-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (DCP) are used extensively in agriculture as herbicides, and are suspected of potential endocrine disruptor activity. In a previous study, we showed that these compounds exhibited synergistic androgenic effects by co-treatment with testosterone in the Hershberger assay. To elucidate the mechanisms of the synergistic effects of these compounds on the androgenicity of testosterone, the androgenic action of 2,4-D and DCP was characterized using a mammalian detection system in prostate cancer cell lines. In in vitro assay systems, while 2,4-D or DCP alone did not show androgenic activity, 2,4-D or DCP with 5alpha-dihydroxytestosterone (DHT) exhibited synergistic androgenic activities. Co-treatment of 10 nM 2,4-D or DCP with 10 nM DHT was shown to stimulate the cell proliferation by 1.6-fold, compared to 10 nM DHT alone. In addition, in transient transfection assays, androgen-induced transactivation was also increased to a maximum of 32-fold or 1.28-fold by co-treatment of 2,4-D or DCP with DHT, respectively. However, 2,4-D and DCP exerted no effects on either mRNA or protein levels of AR. In a competitive AR binding assay, 2,4-D and DCP inhibited androgen binding to AR, up to 50% at concentrations of approximately 0.5 microM for both compounds. The nuclear translocation of green fluorescent protein-AR fusion protein in the presence of DHT was promoted as the result of the addition of 2,4-D and DCP. Collectively, these results that 2,4-D and DCP enhanced DHT-induced AR transcriptional activity might be attributable, at least in part, to the promotion of AR nuclear translocation.

  6. Investigation of antioxidant interactions between Radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The medicinal plants of Huang-qi (Radix Astragali and Sheng-ma (Cimicifuga foetida demonstrate significantly better antioxidant effects when used in combination than when used alone. However, the bioactive components and interactional mechanism underlying this synergistic action are still not well understood. In the present study, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay was employed to investigate the antioxidant capacity of single herbs and their combination with the purpose of screening synergistic antioxidant compounds from them. Chromatographic isolation was performed on silica gel, Sephadex LH-20 columns and HPLC, and consequently to yield formononetin, calycosin, ferulic acid and isoferulic acid, which were identified by their retention time, UV λmax, MS and MS/MS data. The combination of isoferulic acid and calycosin at a dose ratio of 1∶1 resulted in significant synergy in scavenging DPPH radicals and ferric reducing antioxidant power (FRAP assay. Furthermore, the protective effects of these four potential synergistic compounds were examined using H2O2-induced HepG2 Cells bioassay. Results revealed that the similar synergy was observed in the combination of isoferulic acid and calycosin. These findings might provide some theoretical basis for the purported synergistic efficiency of Huang-qi and Sheng-ma as functional foods, dietary supplements and medicinal drugs.

  7. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    Science.gov (United States)

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  8. D2O-induced cell excitation

    International Nuclear Information System (INIS)

    Andjus, P.R.; Vucelic, D.

    1990-01-01

    The effects of deuterium oxide (D 2 O) on giant internodal cells of the fresh water alga Chara gymnophylla, were investigated. D 2 O causes membrane excitation followed by potassium leakage. The primary effect consists of an almost instantaneous membrane depolarization resembling an action potential with incomplete repolarization. A hypothesis was proposed which deals with an osmotic stress effect of D 2 O on membrane ion channels followed by the suppression of the electrogenic pump activity. The initial changes (potential spike and rapid K+ efflux) may represent the previously undetected link between the D 2 O-induced temporary arrest of protoplasmic streaming and the early events triggered at the plasma membrane level as the primary site of D 2 O action

  9. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...