WorldWideScience

Sample records for synergistic growth inhibitory

  1. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29.

    Science.gov (United States)

    Du, Boyu; Jiang, Liping; Xia, Quan; Zhong, Laifu

    2006-01-01

    The synergistic effect of combination treatment with COX-2 inhibitors and chemotherapy may be another promising therapy regimen in the future treatment of colorectal cancer. Curcumin, a major yellow pigment in turmeric which is used widely all over the world, inhibits the growth of human colon cancer cell line HT-29 significantly and specifically inhibits the expression of COX-2 protein. However, the worldwide exposure of populations to curcumin raised the question of whether this agent would enhance or inhibit the effects of chemotherapy. In this report, we evaluated the growth-inhibitory effect of curcumin and a traditional chemotherapy agent, 5-FU, against the proliferation of a human colon cancer cell line (HT-29). The combination effect was quantitatively determined using the method of median-effect principle and the combination index. The inhibition of COX-2 expression after treatment with the curcumin-5-FU combination was also evaluated by Western blot analysis. The IC(50) value in the HT-29 cells for curcumin was 15.9 +/- 1.96 microM and for 5-FU it was 17.3 +/- 1.85 microM. When curcumin and 5-FU were used concurrently, synergistic inhibition of growth was quantitatively demonstrated. The level of COX-2 protein expression was reduced almost 6-fold after the combination treatment. Our results demonstrate synergism between curcumin and 5-FU at higher doses against the human colon cancer cell line HT-29. This synergism was associated with the decreased expression of COX-2 protein. Copyright 2006 S. Karger AG, Basel.

  2. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth.

    Science.gov (United States)

    Cheng, You-Shuang; Peng, Yin-Bo; Yao, Min; Teng, Ji-Ping; Ni, Da; Zhu, Zhi-Jun; Zhuang, Bu-Feng; Yang, Zhi-Yin

    2017-06-03

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model. We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm 2 ) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Synergistic inhibitory effect of citral with selected phenolics against Zygosaccharomyces bailii.

    Science.gov (United States)

    Rivera-Carriles, Karla; Argaiz, Alvaro; Palou, Enrique; López-Malo, Aurelio

    2005-03-01

    Antifungal susceptibilities of Zygosaccharomyces bailii to individual and binary mixtures of citral with selected phenolics were evaluated to identify synergistic combinations. Individual effects of citral, vanillin, thymol, carvacrol, and eugenol concentrations and combined effects of citral with the other phenolic compounds on the growth of Z. bailii were evaluated in potato dextrose agar, adjusted with sucrose to a water activity of 0.99 or 0.95, and hydrochloric acid to pH 4.5 or 3.5. MICs for individual and binary antimicrobial mixtures were identified and then transformed to fractional inhibitory concentrations. Inhibitory concentrations of citral and vanillin were higher than 650 ppm, whereas for thymol, eugenol, and carvacrol, concentrations were lower than 250 ppm for several of the studied water activity-pH conditions. Combining citral with the other phenolic compounds, fractional inhibitory concentration (FIC) and FIC(Index) varied from 0.216 to 0.582. FIC(Index) demonstrated synergistic effects on Z. bailii inhibition when citral was used in combination with vanillin, thymol, carvacrol, or eugenol. Therefore, the relative amount of antimicrobials could be greatly reduced.

  4. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    TPC-1 is a highly proliferative thyroid papillary carcinoma-derived cell line. These cells express the RET/PTC1 fusion protein, whose isoforms are characterized in this work. The bacterial alkaloid staurosporine and the plant extract rotenone are death-inducing drugs that have an inhibitory synergistic effect on the growth of ...

  5. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    Science.gov (United States)

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  6. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hai-Shan Peng

    Full Text Available OBJECTIVES: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS: Hepatoma cell lines (BEL-7402 and SK-Hep1 were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS: Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS: We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression

  7. Comparative phytochemical and growth inhibitory studies on the leaf ...

    African Journals Online (AJOL)

    Comparative phytochemical and growth inhibitory studies on the leaf and root bark extracts of securinega Virosa (roxb ex. Willd) baill ... The growth inhibitory tests were carried out between 1-30 mg/ in a period of 24-96 h while the phytochemical screening was carried out on the plant parts using standard methods. At 24 h ...

  8. Synergistic Cancer Growth-Inhibitory Effect of Emodin and Low ...

    African Journals Online (AJOL)

    novel agents that can be combined with cisplatin to increase the therapeutic efficacy and decrease side effects. ... natural compound extracted from various Rheum medicinal plant species, with cisplatin on human ... Biological Products Co, Ltd, China), Minimum. Essential Medium (MEM, Invitrogen Corp.,. Carlsbad, CA ...

  9. In vitro growth-inhibitory activity of Calophyllum inophyllum ethanol ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro growth-inhibitory effect of Calophyllum inophyllum, a medicinal plant traditionally used to cure gastrointestinal disorders caused by diarrhoea-causing bacteria. Methods: The minimum inhibitory concentration (MIC) of C. inophyllum ethanol leaf extract was determined against six ...

  10. Growth inhibitory, apoptotic and anti-inflammatory activities ...

    Indian Academy of Sciences (India)

    mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound. [Ravanan P, Singh SK, Subba Rao GSR and Kondaiah P 2011 Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J. Biosci. 36 297–307] DOI ...

  11. Inhibitory effects of monoterpenes on seed germination and seedling growth.

    Science.gov (United States)

    Kordali, Saban; Cakir, Ahmet; Sutay, Sunay

    2007-01-01

    Monoterpenes, the chemical constituents of essential oils found in plants, are known biologically active compounds. The present study was conducted to investigate the inhibitory effects of 30 monoterpenes including monoterpene hydrocarbons and oxygenated monoterpenes on seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus under laboratory conditions. The monoterpenes were applied at contents of 10 and 20 microl for liquid compounds and 10 and 20 microg for solid compounds. The results show that most of the monoterpenes significantly inhibited seed germination and seedling growth of the tested plants. Oxygenated monoterpenes including beta-citronellol, nerol and terpinen-4-ol completely inhibited seed germination and seedling growth of all tested plants. Their inhibitory effects were also stronger than that of the herbicide 2,4-D. In general, monoterpenes were less effective against seed germination and seedling growth of C. album as compared with R. crispus and A. retroflexus. Phytotoxic effects of monoterpene hydrocarbons were found to be lower than those of oxygenated monoterpenes. The alcohol derivatives of oxygenated monoterpenes were also found to be more phytotoxic as compared with their acetate derivatives. Based on the present results, it can be concluded that the oxygenated monoterpenes can be used as potential bio-herbicides.

  12. Growth inhibitory properties of lactose fatty acid esters

    Directory of Open Access Journals (Sweden)

    Seung-Min Lee

    2017-11-01

    Full Text Available Sugar esters are biodegradable, nonionic surfactants which have microbial inhibitory properties. The influence of the fatty acid chain length on the microbial inhibitory properties of lactose esters was investigated in this study. Specifically, lactose monooctanoate (LMO, lactose monodecanoate (LMD, lactose monolaurate (LML and lactose monomyristate (LMM were synthesized and dissolved in both dimethyl sulfoxide (DMSO and ethanol. Minimum inhibitory concentrations (MIC and minimum bactericidal concentrations (MBC were determined in growth media. LML was the most effective ester, exhibiting MIC values of <0.05 to <5 mg/ml for each Gram-positive bacteria tested (Bacillus cereus, Mycobacterium KMS, Streptococcus suis, Listeria monocytogenes, Enterococcus faecalis, and Streptococcus mutans and MBC values of <3 to <5 mg/ml for B. cereus, M. KMS, S. suis, and L. monocytogenes. LMD showed MIC and MBC values of <1 to <5 mg/ml for B. cereus, M. KMS, S. suis, L. monocytogenes, and E. faecalis, with greater inhibition when dissolved in ethanol. LMM showed MIC and MBC values of <1 to <5 mg/ml for B. cereus, M. KMS, and S. suis. LMO was the least effective showing a MBC value of <5 mg/ml for only B. cereus, though MIC values for S. suis and L. monocytogenes were observed when dissolved in DMSO. B. cereus and S. suis were the most susceptible to the lactose esters tested, while S. mutans and E. faecalis were the most resilient and no esters were effective on Escherichia coli O157:H7. This research showed that lactose esters esterified with decanoic and lauric acids exhibited greater microbial inhibitory properties than lactose esters of octanoate and myristate against Gram-positive bacteria.

  13. Effect of O-methylated and glucuronosylated flavonoids from Tamarix gallica on α-glucosidase inhibitory activity: structure-activity relationship and synergistic potential.

    Science.gov (United States)

    Ben Hmidene, Asma; Smaoui, Abderrazak; Abdelly, Chedly; Isoda, Hiroko; Shigemori, Hideyuki

    2017-03-01

    O-Methylated and glucuronosylated flavonoids were isolated from Tamarix gallica as α-glucosidase inhibitors. Structure-activity relationship of these flavonoids suggests that catechol moiety and glucuronic acid at C-3 are factors in the increase in α-glucosidase inhibitory activity. Furthermore, rhamnetin, tamarixetin, rhamnazin, KGlcA, KGlcA-Me, QGlcA, and QGlcA-Me exhibit synergistic potential when applied with a very low concentration of acarbose to α-glucosidase from rat intestine.

  14. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    Science.gov (United States)

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  15. Synergistic effects of some plant growth regulators on in vitro shoot ...

    African Journals Online (AJOL)

    The synergistic effects of some plant growth regulators was investigated upon shoot proliferation and growth of korarima (Aframomum corrorima (Braun) Jansen), an important culinary and medicinal plant species native to Ethiopia. Cultures were initiated from axillary bud explants of rhizome using Murashige and Skoog ...

  16. Inhibitory Effect of Natural Phenolic Compounds on Aspergillus parasiticus Growth

    Directory of Open Access Journals (Sweden)

    Romina P. Pizzolitto

    2015-01-01

    Full Text Available Considering the impact of Aspergillus species on crops, it appears to be highly desirable to apply strategies to prevent their growth, as well as to eliminate or reduce their presence in food products. For this reason, the aims of this investigation were to evaluate the effects of ten natural phenolic compounds on the Aspergillus parasiticus growth and to determine which physicochemical properties are involved in the antifungal activity. According to the results of minimum inhibitory concentration (MIC values of the individual compounds, isoeugenol, carvacrol, and thymol were the most active phenolic components (1.26 mM, 1.47 mM, and 1.50 mM, resp., followed by eugenol (2.23 mM. On the other hand, creosol, p-cresol, o-cresol, m-cresol, vanillin, and phenol had no effects on fungal development. Logarithm of the octanol/water partition coefficient (log P, refractivity index (RI, and molar volume (MV were demonstrated to be the descriptors that best explained the antifungal activity correlated to lipophilicity, reactivity of the components, and steric aspect. These findings make an important contribution to the search for new compounds with antifungal activity.

  17. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  18. Chemical Composition, Antibacterial Activity, and Synergistic Effects with Conventional Antibiotics and Nitric Oxide Production Inhibitory Activity of Essential Oil from Geophila repens (L. I.M. Johnst

    Directory of Open Access Journals (Sweden)

    Huijuanzi Rao

    2017-09-01

    Full Text Available Geophila repens (L. I.M. Johnst, a perennial herb, belongs to the Rubiaceae family. In this study, we identified the chemical composition of the Geophila repens essential oil (GR-EO for the first time. Totally, seventy-seven compounds were identified according to GC and GC-MS, which represent 98.0% of the oil. And the major components of GR-EO were β-caryophyllene (23.3%, β-elemene (8.0%, farnesyl butanoate (7.4%, myrcene (3.5%, and trans-nerolidol (3.3%. Then we evaluated the antibacterial activities of GR-EO and the synergistic effects of GR-EO in combination with commercial antibiotics using the microdilution and Checkerboard method. The results demonstrated that GR-EO possessed an excellent broad spectrum antibacterial activity, especially against Pseudomonas aeruginosa and Bacillus subtilis. It also showed that the combined application of GR-EO with antibiotics led to synergistic effects in most cases. And the most prominent synergistic effect was noticed when GR-EO was in combination with Streptomycin and tested against Escherichia coli (fractional inhibitory concentration indices (FICI of 0.13. Additionally, the results of a Griess assay revealed that GR-EO exhibited a potent inhibitory effect on NO production in lipopolysaccharide (LPS-activated RAW 264.7 (murine macrophage cells. In conclusion, the combination of GR-EO and the commercial antibiotics has significant potential for the development of new antimicrobial treatment and reduction of drug resistance.

  19. Review of Growth Inhibitory Peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis.

    Science.gov (United States)

    Muehlemann, M; Miller, K D; Dauphinee, M; Mizejewski, G J

    2005-09-01

    This review surveys the biological activities of an alpha-fetoprotein (AFP) derived peptide termed the Growth Inhibitory Peptide (GIP), which is a synthetic 34 amino acid segment produced from the full length 590 amino acid AFP molecule. The GIP has been shown to be growth-suppressive in both fetal and tumor cells but not in adult terminally-differentiated cells. The mechanism of action of this peptide has not been fully elucidated; however, GIP is highly interactive at the plasma membrane surface in cellular events such as endocytosis, cell contact inhibition and cytoskeleton-induced cell shape changes. The GIP was shown to be growth-suppressive in nine human tumor types and to suppress the spread of tumor infiltrates and metastases in human and mouse mammary cancers. The AFP-derived peptide and its subfragments were also shown to inhibit tumor cell adhesion to extracellular matrix (ECM) proteins and to block platelet aggregation; thus it was expected that the GIP would inhibit cell spreading/migration and metastatic infiltration into host tissues such as lung and pancreas. It was further found that the cyclic versus linear configuration of GIP determined its biological and anti-cancer efficacy. Genbank amino acid sequence identities with a variety of integrin alpha/beta chain proteins supported the GIP's linkage to inhibition of tumor cell adhesion and platelet aggregation. The combined properties of tumor growth suppression, prevention of tumor cell-to-ECM adhesion, and inhibition of platelet aggregation indicate that tumor-to-platelet interactions present promising targets for GIP as an anti-metastatic agent. Finally, based on cholinergic studies, it was proposed that GIP could influence the enzymatic activity of membrane acetylcholinesterases during tumor growth and metastasis. It was concluded that the GIP derived from full-length AFP represents a growth inhibitory motif possessing instrinsic properties that allow it to interfere in cell surface events such

  20. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    DEFF Research Database (Denmark)

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...

  1. Synergistic inhibitory effects of deferasirox in combination with decitabine on leukemia cell lines SKM-1, THP-1, and K-562.

    Science.gov (United States)

    Li, Nianyi; Chen, Qinfen; Gu, Jingwen; Li, Shuang; Zhao, Guangjie; Wang, Wei; Wang, Zhicheng; Wang, Xiaoqin

    2017-05-30

    A multi-center study from the French Myelodysplastic Syndrome (MDS) Group confirmed that iron chelation therapy is an independent prognostic factor that can increase the survival rate of patients who are suffering from transfusion-dependent low-risk MDS. In this study, we aimed to explore this clinical phenomena in vitro, by exploring the synergistic effect of the iron chelator Deferasirox (DFX) and the DNA methyl transferase inhibitor Decitabine (DAC) in the leukemia cell lines SKM-1, THP-1, and K-562. Treatment with both DFX or DAC promoted apoptosis, induced cell cycle arrest, and inhibited proliferation in all three of these cell lines. The combination of DFX and DAC was much greater than the effect of using either drug alone. DFX showed a synergistic effect with DAC on cell apoptosis in all three cell lines and on cell cycle arrest at the G0/G1 phase in K-562 cells. DFX decreased the ROS levels to varying degrees. In contrast, DAC increased ROS levels and an increase in ROS was also noted when the two drugs were used in combination. Treatment of cells with DAC induced re-expression of ABAT, APAF-1, FADD, HJV, and SMPD3, presumably through demethylation. However the combination of DAC and DFX just had strong synergistic effect on the re-expression of HJV.

  2. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2013-09-01

    A reaction mechanism having molecular growth up to benzene for hydrocarbon fuels with up to four carbon-atoms was extended to include the formation and growth of polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). The new mechanism was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms in the literature, the newly developed mechanism showed an appreciable improvement in the predicted profiles of PAHs. The new mechanism was also used to simulate PAH formation in counterflow diffusion flames of ethylene to study the effects of mixing propane and benzene in the fuel stream. In the ethylene-propane flames, existing experimental results showed a synergistic effect in PAH concentrations, i.e. PAH concentrations first increased and then decreased with increasing propane mixing. This PAH behavior was successfully captured by the new mechanism. The synergistic effect was predicted to be more pronounced for larger PAH molecules as compared to the smaller ones, which is in agreement with experimental observations. In the experimental study in which the fuel stream of ethylene-propane flames was doped with benzene, a synergistic effect was mitigated for benzene, but was observed for large PAHs. This effect was also predicted in the computed PAH profiles for these flames. To explain these responses of PAHs in the flames of mixture fuels, a pathway analysis has been conducted, which show that several resonantly stabilized species as well as C4H4 and H atom contribute to the enhanced synergistic behaviors of larger PAHs as compared to the small ones in the flames of mixture fuels. © 2013 The Combustion Institute.

  3. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins

    NARCIS (Netherlands)

    Bernards, R.A.; Beijersbergen, R.L.

    1996-01-01

    The retinoblastoma family of growth-inhibitory proteins act by binding and inhibiting several proteins with growth-stimulatory activity, the most prominent of which is the cellular transcription factor E2F. In higher organisms, progression through the cell division cycle is accompanied by the

  4. Synergistic Impact of d-δ-Tocotrienol and Geranylgeraniol on the Growth and HMG CoA Reductase of Human DU145 Prostate Carcinoma Cells.

    Science.gov (United States)

    Yeganehjoo, Hoda; DeBose-Boyd, Russell; McFarlin, Brian K; Mo, Huanbiao

    2017-01-01

    The growth-suppressive effect of d-δ-tocotrienol and geranylgeraniol is at least partially attributed to their impact on 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway that provides essential intermediates for the posttranslational modification of growth-related proteins including RAS. We hypothesize that these agents synergistically impact cell growth based on their complementary mechanisms of action with HMG CoA reductase. d-δ-tocotrienol (0-40 µmol/L; half maximal inhibitory concentration [IC 50 ] = 15 µmol/L) and geranylgeraniol (0-100 µmol/L; IC 50 = 60 µmol/L) each induced concentration-dependent suppression of the growth of human DU145 prostate carcinoma cells. Blends of the two agents synergistically suppressed the growth of DU145 cells, with combination index values ranging 0.67-0.75. While 7.5 µmol/L d-δ-tocotrienol and 30 µmol/L geranylgeraniol individually had no impact on cell cycle distribution in DU145 cells, a blend of the agents induced cell cycle arrest at the G1 phase. The synergistic downregulation of the expression of HMG CoA reductase by 7.5 µmol/L d-δ-tocotrienol and 30 µmol/L geranylgeraniol was accompanied by a reduction in membrane K-RAS protein. Our finding supports the cancer chemopreventive action of plant-based diets and their isoprenoid constituents. Properly formulated isoprenoids and derivatives may provide novel approaches in prostate cancer prevention and therapy.

  5. Synergistic Effect of TPD7 and Berberine against Leukemia Jurkat Cell Growth through Regulating Ephrin-B2 Signaling.

    Science.gov (United States)

    Ma, Weina; Zhu, Man; Yang, Liu; Yang, Tianfeng; Zhang, Yanmin

    2017-09-01

    TPD7, a novel biphenyl urea taspine derivative, and berberine have presented inhibition on VEGFR2 that can be regulated by ephrin-B2 reverse signaling through interactions with the PDZ domain. The purpose of this study is to investigate the inhibitory effect of the combination of TPD7 and berberine (TAB) on T-cell acute lymphoblastic leukemia cell growth. TPD7 and berberine together synergistically inhibited the proliferation of Jurkat cells. Also, the combination of TAB induced G 1 -phase cell-cycle arrest by downregulating the level of cyclin D1, cyclin E, and CDC2. Furthermore, the combination of TAB significantly enhanced apoptosis in Jurkat cells, and the apoptosis most likely resulted from the modulation of the level of Bcl-2 family members. Most importantly, the concomitant treatment simultaneously regulated the ephrin-B2 and VEGFR2 signaling, as well as modulated the MEK/ERK and PTEN/PI3K/AKT/mTOR signaling. Therefore, the combination treatment of TAB may be a promising therapeutic method in treating T-cell acute lymphoblastic leukemia. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Synergistic cancer growth-inhibitory effect of emodin and low-dose ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-cancer activity of emodin and its combination with low-dose cisplatin against human gastric cancer (SNU-5), including their effects on cell cycle phase distribution, apoptosis and cancer cell morphology. Methods: The anti-cancer activity of emodin, cisplatin and their combination against ...

  7. Inhibitory effects of silver zeolite on in vitro growth of fish egg pathogen, Saprolegnia sp.

    Directory of Open Access Journals (Sweden)

    Seyed Ali Johari

    2014-05-01

    Full Text Available Objective: To investigate the effects of powdered silver zeolite (SZ on the in vitro growth of the fish pathogen Saprolegnia sp. Methods: The antifungal activity of SZ was evaluated by determining the minimum inhibitory concentrations using two-fold serial dilutions of powdered SZ in a glucose yeast extract agar at 22 °C. The growth of Saprolegnia sp. on the SZ agar treatments was compared to that on SZ-free agar controls. Results: The results showed that SZ had an inhibitory effect on the in vitro growth of the tested fungi. The minimum inhibitory concentration of SZ for Saprolegnia sp. was also calculated at 600 mg/L, which is equal to 0.06 percent. Conclusions: SZ is a potential good candidate to replace teratogenic and toxic agents, such as malachite green in aquaculture systems.

  8. Growth inhibitory effects of quercetin on bladder cancer cell.

    Science.gov (United States)

    Ma, Li; Feugang, Jean Magloire; Konarski, Patricia; Wang, Jian; Lu, Jianzhong; Fu, Shengjun; Ma, Baoliang; Tian, Binqiang; Zou, Changping; Wang, Zhingping

    2006-09-01

    Quercetin, a flavonoid found in many fruits and vegetables, belongs to an extensive class of polyphenolic compounds. Previous studies reported that quercetin inhibits the proliferation of various cancer cells and tumor growth in animal models. We investigated the growth inhibition and colony formation of quercetin on three bladder cancer cells (EJ, J82 and T24). The expression of tumor suppressor genes and oncogenes such as P53, Survivin, PTEN, as well as the methylation status of these genes was also evaluated. We observed that quercetin induced apoptosis in bladder cancer cells in a time- and dose-dependent manner. Quercetin (100 micromolars) significantly inhibited EJ, T24 and J82 cell growth accompanied by an increase in the G0/G1 phase. In all cell lines, quercetin decreased the expression of mutant P53 and Survivin proteins. However, there was no change in the level of PTEN protein. Moreover, the DNA methylation levels of the estrogen receptor (Er-beta), P16INK4a and RASSF1A were strongly decreased (from 35 to 70%) in the quercetin-treated group compared to the control. In conclusion, our study suggested that quercetin inhibits growth, colony formation and hypermethylation of bladder cancer cell lines. Quercetin-induced apoptosis might be associated with a decrease in mutant P53 and Survivin proteins.

  9. Inhibitory effect of Lycopene against the growth of human gastric ...

    African Journals Online (AJOL)

    Background The aim of this study was to investigate the anti-proliferative effect of Lycopene on HGC-27 cells. Materials and methods HGC-27 cells were treated with varying concentration lycopene for 24, 48, 72 h. The cell growth inhibition was analyzed by MTT. Western blotting was used to indicate changes in the levels of ...

  10. Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal activity of green biosynthesized magnetic Fe3O4nanoparticles using the aqueous extract of corn (Zea mays L.) ear leaves.

    Science.gov (United States)

    Patra, Jayanta Kumar; Ali, Md Sarafat; Oh, In-Gyung; Baek, Kwang-Hyun

    2017-03-01

    Herein, Fe 3 O 4 nanoparticles synthesized using aqueous extract of corn ear leaves were investigated for proteasome inhibitory activity, antioxidant activity, synergistic antibacterial, and anticandidal potential. The UV-Vis spectrum displayed an absorption band at 355 nm that indicated the formation of nano-sized Fe 3 O 4 particles. Vibrating sample magnetometer analysis revealed its superparamagnetic nature. Fe 3 O 4 nanoparticles exhibited strong proteasome inhibitory potential and antioxidant activity and exerted strong synergistic antibacterial and anticandidal activity. Its significant proteasome inhibitory potential could be useful in cancer treatment and drug delivery. Furthermore, strong antioxidant, antibacterial, and anticandidal activity make them a promising candidate for biomedical and pharmaceutical applications.

  11. Osteogenic potential and synergistic effects of growth factors delivered from a bionic composite system.

    Science.gov (United States)

    Chen, Tao; Gomez, Alan W; Zuo, Yi; Li, Xiang; Zhang, Zhen; Li, Yubao; Hu, Jing; Li, Jihua

    2016-03-01

    Previous research has raised substantial controversy over the synergistic effects of exogenous growth factors, BMP-2 and bFGF, when used together for the treatment of bony defects. Thus, this study evaluated the effects of BMP-2 and bFGF at specified dose ratio composited with n-HA/PU40, a porous scaffold material, for repairing femoral defect in rats. Four weeks after implantation of this composite system, tissue specimens were collected for histological, immunohistochemical examinations, and µ-CT scanning. The results showed that the group DUAL/BMSCs with both the factors had better effect on repairing bone defects than the other four groups in terms of new bone formation and bone-scaffold bonding, suggesting crosstalk between these growth factors during early bone regeneration. This work demonstrates that provided that there is effective contact between cells and active proteins in the defect area, the controlled release of bFGF and BMP-2 have positive synergistic effects on early bone formation in the defect area. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 659-668, 2016. © 2015 Wiley Periodicals, Inc.

  12. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Preferential binding of growth inhibitory prostaglandins by the target protein of a carcinogen

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.H.; Sorof, S. (Fox Chase Cancer Center, Philadelphia, PA (United States))

    1990-12-01

    Liver fatty acid binding protein (L-FABP) is the principal target protein of the hepatic carcinogen N-(2-fluorenyl)acetamide (2-acetylaminofluorene) in rat liver. In addition, the cyclopentenone prostaglandins (PG), PGA, PGJ{sub 2}, and {Delta}{sup 12}-PGJ{sub 2}, inhibit the growth of many cell types in vitro. This report describes the preferential binding of the growth inhibitory prostaglandins by L-FABP and the reversible inhibition of thymidine incorporation into DNA by PGA{sub 2} and {Delta}{sup 12}-PGJ{sub 2} in primary cultures of purified rat hepatocytes. As a model ligand, ({sup 3}H)PGA{sub 1} bound to L-FABP specifically, reversibly, rapidly, and with high affinity. Its dissociation constants were 134 nM (high affinity) and 3.6 {mu}M (low affinity). The high-affinity finding of ({sup 3}H)PGA{sup 1} correlated with their growth inhibitory activities reported previously and here. The in vitro actions of L-FABP are compatible with those of a specific and dissociable carrier of growth inhibitory prostaglandins in rat hepatocytes and suggest that the carcinogen may usurp the cellular machinery of the growth inhibitory prostaglandins.

  14. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    2010-11-01

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  15. Inhibitory effects of pepstatin A and mefloquine on the growth of Babesia parasites.

    Science.gov (United States)

    Munkhjargal, Tserendorj; AbouLaila, Mahmoud; Terkawi, Mohamad Alaa; Sivakumar, Thillaiampalam; Ichikawa, Madoka; Davaasuren, Batdorj; Nyamjargal, Tserendorj; Yokoyama, Naoaki; Igarashi, Ikuo

    2012-10-01

    We evaluated the inhibitory effects of pepstatin A and mefloquine on the in vitro and in vivo growths of Babesia parasites. The in vitro growth of Babesia bovis, B. bigemina, B. caballi, and B. equi was significantly inhibited (P mefloquine (50% inhibitory concentrations = 59.7, 56.7, 20.7, and 4 μM, respectively). Furthermore, both reagents either alone at a concentration of 5 mg/kg or in combinations (2.5/2.5 and 5/5 mg/kg) for 10 days significantly inhibited the in vivo growth of B. microti in mice. Mefloquine treatment was highly effective and the combination treatments were less effective than other treatments. Therefore, mefloquine may antagonize the actions of pepstatin A against babesiosis and aspartic proteases may play an important role in the asexual growth cycle of Babesia parasites.

  16. Inhibitory Effect of Gamma-Irradiated Chitosan on the Growth of Denitrifiers

    Directory of Open Access Journals (Sweden)

    Javier Vilcáez

    2009-01-01

    Full Text Available In order to find an environmentally benign substitute to hazardous inhibitory agents, the inhibitory effect of -irradiated chitosans against a mixed culture of denitrifying bacteria was experimentally evaluated. Unlike other studies using pure aerobic cultures, the observed effect was not a complete inhibition but a transient inhibition reflected by prolonged lag phases and reduced growth rates. Raw chitosan under acid conditions (pH 6.3 exerted the strongest inhibition followed by the 100 kGy and 500 kGy irradiated chitosans, respectively. Therefore, because the molecular weight of chitosan decreases with the degree of -irradiation, the inhibitory properties of chitosan due to its high molecular weight were more relevant than the inhibitory properties gained due to the modification of the surface charge and/or chemical structure by -irradiation. High dosage of -irradiated appeared to increase the growth of mixed denitrifying bacteria in acid pH media. However, in neutral pH media, high dosage of -irradiation appeared to enhance the inhibitory effect of chitosan.

  17. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Satbir Thakur

    Full Text Available Inhibitor of Growth (ING proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3 and target histone acetyl transferase (HAT and histone deacetylase (HDAC complexes to chromatin.Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat or a different epigenetic mechanism such as 5-azacytidine (5azaC, which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP. ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo.These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.

  18. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  19. A metabolite of nobiletin, 4'-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis.

    Science.gov (United States)

    Wu, Xian; Song, Mingyue; Qiu, Peiju; Li, Fang; Wang, Minqi; Zheng, Jinkai; Wang, Qi; Xu, Fei; Xiao, Hang

    2018-01-24

    Combining different chemopreventive agents is a promising strategy to reduce cancer incidence and mortality due to potential synergistic interactions between these agents. Previously, we demonstrated that oral administration of nobiletin (NBT, a citrus flavonoid) at 0.05% (w/w, in diet) together with atorvastatin (ATST, a lipid-lowering drug) at 0.02% (w/w, in diet) produced much stronger inhibition against colon carcinogenesis in rats in comparison with that produced by NBT (at 0.1% w/w in diet) or ATST (at 0.04% w/w in diet) alone at higher doses. To further elucidate the mechanism of this promising synergy between NBT and ATST, herein, we measured the levels of NBT, its major metabolites and ATST in the colonic tissue of rats fed NBT (0.05% w/w, in diet) + ATST (0.02% w/w, in diet), and determined the mode of interaction between the major NBT metabolite and ATST in inhibiting colon cancer cell growth. HPLC-MS analysis showed that 4'-demethylnobiletin (4DN) is the most abundant metabolite of NBT with a level about 5-fold as high as that of NBT in the colonic tissue, which indicated the potential significance of 4DN in mediating the biological effects of NBT in the colon. We found that co-treatments of 4DN/ATST at 2 : 1 concentration ratio produced much stronger growth inhibitory effects on human colon cancer HT-29 cells than 4DN or ATST alone, and isobologram analysis confirmed that this enhanced inhibitory effect by the 4DN/ATST combination was highly synergistic. The co-treatment of 4DN/ATST led to G0/G1 cell cycle arrest and induced extensive apoptosis in HT-29 cells. Furthermore, the 4DN/ATST co-treatment profoundly modulated key signaling proteins related to the regulation of the cell cycle and apoptosis. Our results demonstrated a strong synergy produced by the 4DN/ATST co-treatment in inhibiting colon cancer cell growth, which provided a novel mechanism by which NBT/ATST in combination synergistically inhibit colon carcinogenesis.

  20. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens.

    Science.gov (United States)

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.

  1. Inhibitory effects of Ajowan (Trachyspermum ammi) ethanolic extract on A. ochraceus growth and ochratoxin production

    OpenAIRE

    MURTHY, Pushpa Srinivas; BORSE, Babasaheb Bhaskarrao; KHANUM, Hafeeza; SRINIVAS, Pullabhatla

    2009-01-01

    Ajowan is an aromatic seed spice that has a medicinal value. In this paper Ajowan Ethanolic Extract (AEE), which was prepared from Ajowan seeds, was assessed for antibacterial and antifungal activity against selected pathogenic bacteria and fungi by agar well diffusion assay. AEE exhibited considerable inhibitory effects against all the organisms tested. Emphasis of the study was on the affect of AEE on the mycelial growth and spore germination of toxigenic fungi A. ochraceus. Cultures were i...

  2. Growth-Inhibitory and Immunomodulatory Activities of Wild Mushrooms from North-Central British Columbia (Canada).

    Science.gov (United States)

    Smith, Aaron; Javed, Sumreen; Barad, Ankush; Myhre, Vicky; Li, Wai Ming; Reimer, Kerry; Massicotte, Hugues B; Tackaberry, Linda E; Payne, Geoffrey W; Egger, Keith N; Lee, Chow H

    2017-01-01

    Wild mushrooms, especially from North America, have not been systematically explored for their medicinal properties. Here we report screening for the growth-inhibitory and immunomodulatory activities of 12 species collected from multiple locations in north-central British Columbia, Canada. Mushrooms were characterized using morphology and DNA sequencing, followed by chemical extraction into 4 fractions using 80% ethanol, 50% methanol, water, and 5% sodium hydroxide. Growth-inhibitory, immunostimulatory, and anti-inflammatory activities of 5 mushrooms (Leucocybe connata, Trichaptum abietinum, Hydnellum sp., Gyromitra esculenta, and Hericium coralloides) are reported here, to our knowledge for the first time. Growth-inhibitory effects were assessed using the cytotoxic MTT assay. Immunostimulatory activity was assessed by tumor necrosis factor-α production in Raw 264.7 macrophages, whereas anti-inflammatory activity was assessed based on the inhibition of lipopolysaccharide-induced tumor necrosis factor-α production. The ethanol and aqueous extracts of Hydnellum sp. were potent growth inhibitors, with a half-maximal inhibitory concentration of 0.6 mg/mL. All 5 fungi displayed strong immunostimulatory activity, whereas only L. connata and T. abietinum showed strong anti-inflammatory activity. For the 7 other fungi investigated, which included well-known medicinal species such as Inonotus obliquus, Phellinus igniarius, and Ganoderma applanatum, the remarkable similarities in the biological activities reported here, and by others for specimens collected elsewhere, suggest that mushrooms can produce similar metabolites regardless of their habitat or ecosystem. This is to our knowledge the first study to explore wild mushrooms from British Columbia for biological activities that are relevant to cancer, and the results provide an initial framework for the selection of mushroom species with the potential for discovery of novel anticancer compounds.

  3. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells.

    Science.gov (United States)

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-06-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER(-) Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC(50) of 3.2microg/ml (5microM) compared to 7.2microg/ml (12.1microM) for the parent compound 7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (beta-d-xylopyranoside), with an IC(50) equal to 5.7microg/ml (8.4microM), exhibited activity comparable to cimigenol 3-O-beta-d-xyloside. MCF7 (ER(+)Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER(+)Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and

  4. Differential Inhibitory Activities of Four Plant Essential Oils on In Vitro Growth of Fusarium oxysporum f. sp. fragariae Causing Fusarium Wilt in Strawberry Plants

    Directory of Open Access Journals (Sweden)

    Jin Young Park

    2017-12-01

    Full Text Available The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.

  5. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    International Nuclear Information System (INIS)

    Layman, D.L.; Diedrich, D.L.

    1987-01-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by 3 H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in 3 H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin

  6. [Inhibitory effects and chemical basis of Eucalyptus orelliana wood meals on the growth of Alexandrium tamarense].

    Science.gov (United States)

    Yang, Wei-dong; Liu, Yu-rong; Liu, Jie-sheng; Liu, Zheng

    2008-08-01

    To provide information on the screen of newly and efficient algaecides in controlling harmful algal blooms (HABs), the effects of wood meals from Eucalyptus torelliana, Eucalyptus urophylla, Eucalyptus exserta on the growth of Alexandrium tamarense were observed and the chemical basis of the antialgal effect was discussed. The results show that the inhibitory activities of the three wood meals are different, and E. torelliana wood meals have the highest inhibitory activity. There are little differences in antialgal action between asepsis and rude wood meals, suggesting that some antialgal compounds from wood meals may be responsible for the inhibition and that microorganisms from wood meals have little effect on the inhibition. The acetone-water extract from E. torelliana wood meals is shown to have stronger inhibition on A. tamarense than that from ethyl acetate, water and methanol extracts. The acetone-water extract from E. torelliana wood meals was further divided into extract A, B, C and D and the inhibitory activities were compared. The extract D is shown to have highest inhibitory activity. 3 mg/L of the extract appears 81% inhibition rate to A. tamarense in the 3rd day. GC-MS show that extract D contains mostly ketones such as 4-hydroxy-3,5,6-trimethyl-4-(3-oxo-1-butenyl)-2-cyclohexen-1-one and 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone. These results suggest that wood meals from E. torelliana had certain inhibitory effect on A. tamarense, and that ketones may be responsible for the inhibition.

  7. HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency

    Directory of Open Access Journals (Sweden)

    Majid Aliabadi

    2013-01-01

    Full Text Available This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy propyl-3-trimethylammonium chitosan chloride (HTCC and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt with different chemical ratios was successfully synthesized, and their characteristics have been verified by XRD and FTIR analyses. Produced samples have been evaluated in terms of antibacterial efficiency and biocompatibility (cell culture test. Antibacterial efficiency of synthesized HTCC/Mt samples has been confirmed against both gram negative bacteria (Escherichia coli and gram positive bacteria (Staphylococcus aureus. The results disclosed that the antibacterial efficiency of HTCC-modified montmorillonite was unexpectedly even more than HTCC. This excellent synergistic effect has been referred to entrapping bacteria between the intercalated structures of HTCC-modified montmorillonite. Then HTCC on clay layers can seriously attack and damage the entrapped bacteria. An extraordinary biocompatibility, cell attachment, and cell growth even more than tissue culture polystyrene (TCPS have been recorded in the case of this novel kind of modified clay. Due to existing concerns about serious and chronic infections after implant placement, this natural-based bioactive and antibacterial modified clay can be used in electrospun nanofibers and other polymeric implants with promising mechanical properties for tissue engineering applications.

  8. Additive and Synergistic Impacts of Fishing and Warming on the Growth of a Temperate Marine Fish

    Science.gov (United States)

    Morrongiello, J.

    2016-02-01

    Fishing and climate change are having profound impacts on the trajectory and variability of marine populations. However, despite the wealth of work undertaken in marine environments on the causes of longer-term biological change, the effects of these two drivers have traditionally been considered in isolation or just additively. Such an approach obviously overlooks the potential for significant synergistic or antagonistic interactions between fishing and climate to occur. Indeed, it is increasingly becoming acknowledged that the direction and magnitude of biological responses to natural environmental variation and climate change can be mediated by other anthropogenic disturbances such as fishing, and vice versa. Somatic growth is an ideal candidate with which to explore the impacts of fishing and environmental variability due to its strong biological relevance and its heightened sensitivity to natural and anthropogenic drivers. I developed 19-year growth biochronologies (1980-1999) for three south-east Australian populations of a site-attached temperate reef fish, purple wrasse (Notolabrus fucicola) using individual-based growth information naturally archived in otoliths. A commercial wrasse fishery began in the early 1990s; before this there was negligible recreational or commercial fishing. The growth of older fish was proportionally higher and that of the youngest fish proportionally lower after the onset of commercial fishing; 2-year olds grew 7.4% slower, but 5-year-olds grew 10.3% and 10-year-olds 26% faster in the latter period. These results are consistent with a density dependent response to harvesting. Average growth rates across all ages increased by 6.6%.oC-1, reflecting either a direct or indirect temperature effect in this global marine 'hotspot'. Finally, the distribution of individual thermal reaction norms significantly changed post fishing, showing that fishing and temperature can have a synergetic impact on marine populations via within

  9. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro

    International Nuclear Information System (INIS)

    Cardillo, Thomas M; Trisal, Preeti; Arrojo, Roberto; Goldenberg, David M; Chang, Chien-Hsing

    2013-01-01

    Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway. Clinically, there is an association of IGF-I receptor (IGF-IR) expression in RCC and poor long-term patient survival. We have developed a humanized anti-IGF-IR monoclonal antibody, hR1, which binds to RCC, resulting in effective down-regulation of IGF-IR and moderate inhibition of cell proliferation in vitro. In this work, we evaluate the anti-tumor activity of two novel IGF-1R-targeting agents against renal cell carcinoma given alone or in combination with an mTOR inhibitor. hR1 was linked by the DOCK-AND-LOCK™ (DNL™) method to four Fabs of hR1, generating Hex-hR1, or to four molecules of interferon-α2b, generating 1R-2b. Eight human RCC cell lines were screened for IGF-1R expression and sensitivity to treatment with hR1 in vitro. Synergy with an mTOR inhibitor, temsirolimus, was tested in a cell line (ACHN) with low sensitivity to hR1. Hex-hR1 induced the down-regulation of IGF-IR at 10-fold lower concentrations compared to the parental hR1. Sensitivity to growth inhibition mediated by hR1 and Hex-hR1 treatments correlated with IGF-1R expression (higher expression was more sensitive). The potency of 1R-2b to inhibit the in vitro growth of RCC was also demonstrated in two human cell lines, ACHN and 786-O, with EC 50 –values of 63 and 48 pM, respectively. When combined with temsirolimus, a synergistic growth-inhibition with hR1, Hex-hR1, and 1R-2b was observed in ACHN cells at concentrations as low as 10 nM for hR1, 1 nM for Hex-hR1, and 2.6 nM for 1R-2b. Both Hex-hR1

  10. Inhibitory effect of snake venom toxin on NF-κB activity prevents human cervical cancer cell growth via increase of death receptor 3 and 5 expression.

    Science.gov (United States)

    Lee, Hye Lim; Park, Mi Hee; Hong, Ji Eun; Kim, Dae Hwan; Kim, Ji Young; Seo, Hyen Ok; Han, Sang-Bae; Yoon, Joo Hee; Lee, Won Hyoung; Song, Ho Sueb; Lee, Ji In; Lee, Ung Soo; Song, Min Jong; Hong, Jin Tae

    2016-02-01

    We previously found that snake venom toxin inhibits nuclear factor kappa B (NF-κB) activity in several cancer cells. NF-κB is implicated in cancer cell growth and chemoresistance. In our present study, we investigated whether snake venom toxin (SVT) inhibits NF-κB, thereby preventing human cervical cancer cell growth (Ca Ski and C33A). SVT (0-12 μg/ml) inhibited the growth of cervical cancer cells by the induction of apoptotic cell death. These inhibitory effects were associated with the inhibition of NF-κB activity. However, SVT dose dependently increased the expression of death receptors (DRs): DR3, DR5 and DR downstream pro-apoptotic proteins. Exploration of NF-κB inhibitor (Phenylarsine oxide, 0.1 μM) synergistically further increased SVT-induced DR3 and DR5 expressions accompanied with further inhibition of cancer cells growth. Moreover, deletion of DR3 and DR5 by small interfering RNA significantly abolished SVT-induced cell growth inhibitory effects, as well as NF-κB inactivation. Using TNF-related apoptosis-inducing ligand resistance cancer cells (A549 and MCF-7), we also found that SVT enhanced the susceptibility of chemoresistance of these cancer cells through down-regulation of NF-κB, but up-regulation of DR3 and DR5. In vivo study also showed that SVT (0.5 and 1 mg/kg) inhibited tumor growth accompanied with inactivation of NF-κB. Thus, our present study indicates that SVT could be applicable as an anticancer agent for cervical cancer, or as an adjuvant agent for chemoresistant cancer cells.

  11. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  12. Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides

    CSIR Research Space (South Africa)

    Panayides, Jenny-Lee

    2016-06-01

    Full Text Available & Medicinal Chemistry 24 (2016) 2716–2724 Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides Jenny-Lee Panayides a,b, Véronique Mathieu c, Laetitia Moreno Y. Banuls c, Helen Apostolellis d, Nurit Dahan...-Farkas d, Hajierah Davids d,e , Leonie Harmse d , M. E. Christine Rey f , Ivan R. Green g, Stephen C. Pelly g, Robert Kiss c, Alexander Kornienko h, Willem A. L. van Otterlo a,g,⇑ a Molecular Sciences Institute, School of Chemistry, University...

  13. Synergistic Effects of Natural Medicinal Plant Extracts on Growth Inhibition of Carcinoma (KB) Cells under Oxidative Stress

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Ju, Eun Mi; Kim, Jin Kyu

    2000-01-01

    Medicinal plants with synergistic effects on growth inhibition of cancer cells under oxidative stress were screened in this study. Methanol extracts from 51 natural medicinal plants, which were reported to have anticancer effect on hepatoma, stomach cancer or colon cancers which are frequently found in Korean, were prepared and screened for their synergistic activity on growth inhibition of cancer cells under chemically-induced oxidative stress by using MTT assay. Twenty seven samples showed synergistic activity on the growth inhibition in various extent under chemically-induced oxidative stress. Among those samples, eleven samples, such as Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffiusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, Cridium officinale, showed decrease in IC 50 values more than 50%, other 16 samples showed decrease in IC 50 values between 50-25%, compared with the value acquired when medicinal plant sample was used alone. Among those 11 samples, extract of Catalpa ovata showed the highest activity. IC 50 values were decrease to 61% and 28% when carcinoma cells were treated with Catalpa ovata extract in combination of 75 and 100 μM of hydrogen peroxide, respectively

  14. Inhibitory effect of select nitrocompounds on growth and survivability of Listeria monocytogenes in vitro.

    Science.gov (United States)

    Dimitrijevic, M; Anderson, R C; Callaway, T R; Jung, Y S; Harvey, R B; Ricke, S C; Nisbet, D J

    2006-05-01

    We report the effects of 2-nitro-1-propanol (2NPOH), 2-nitroethanol (2NEOH), and nitroethane (NE) on growth and survivability of Listeria monocytogenes. In all cases, inhibition was greatest with 2NPOH and least with NE. For example, specific growth rates of L. monocytogenes strain 18 declined (P nitrocompound was 0.62 +/- 0.02 h(-1). Specific growth rates of L. monocytogenes Scott A decreased (P < 0.05) 67, 45, and 11%, respectively, from controls (0.67 +/- 0.02 h(-1)) when cultured similarly. Specific growth rates for L. monocytogenes strain 18 incubated similarly except at 30 degrees C were reduced (P < 0.05) 76, 60, and 30%, respectively, and were reduced (P < 0.05) 78, 23, and 23% during anaerobic culture at 30 degrees C in brain heart infusion broth containing 15 mM 2NPOH, 2NEOH, or NE (control rates ranged from 0.37 +/- 0.07 to 0.74 +/- 0.05 h(-1)). Survivability of L. monocytogenes strain 18 was reduced (P < 0.05) during aerobic storage (4 months at 4 degrees C) in brain heart infusion broth containing 2NPOH or 2NEOH (by 7.8 and 1.9 log units, respectively) but not NE. The inhibitory effect of 2NPOH was approximately 20% greater during growth at pH 7.0 than at pH 5.6 or 8.0. These results demonstrate the differential inhibitory activity of 2NPOH, 2NEOH, and NE against L. monocytogenes in vitro.

  15. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  16. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  17. Is There a Positive Synergistic Effect of Biochar and Compost Soil Amendments on Plant Growth and Physiological Performance?

    Directory of Open Access Journals (Sweden)

    M. Lukas Seehausen

    2017-02-01

    Full Text Available The combination of biochar (BC with compost has been suggested to be a promising strategy to promote plant growth and performance, but although “synergistic” effects have been stated to occur, full-factorial experiments are few, and explicit tests for synergism are lacking. We tested the hypothesis that a combination of BC and spent mushroom substrate (SMS has a positive synergistic effect on plant growth and physiological performance in a nutrient-limited growing media. A greenhouse experiment with a full factorial design was conducted using mixed-wood BC (3.0 kg·m−2 and SMS (1.5 kg·m−2 (the combination was not co-composted as organic soil amendments for the annual Abutilon theophrasti and the perennial Salix purpurea. Several measurements related to plant growth and physiological performance were taken throughout the experiment. Contrary to the hypothesis, we found that the combination of BC + SMS had neutral or antagonistic interactive effects on many plant growth traits. Antagonistic effects were found on maximum leaf area, above- and belowground biomass, reproductive allocation, maximum plant height, chlorophyll fluorescence, and stomatal conductance of A. theophrasti. The effect on S. purpurea was mostly neutral. We conclude that the generalization that BC and compost have synergistic effects on plant performance is not supported.

  18. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  19. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29.

    Science.gov (United States)

    Chen, Zhung-Yuan; Hsieh, You-Miin; Huang, Chun-Chih; Tsai, Cheng-Chih

    2017-01-10

    This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (10⁸ cfu/mL) and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups ( p strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (10⁸ cfu/mL) demonstrated a significant increase in lactate dehydrogenase (LDH) activity ( p strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  20. Pyranoxanthones: Synthesis, growth inhibitory activity on human tumor cell lines and determination of their lipophilicity in two membrane models

    DEFF Research Database (Denmark)

    Goncalves de Azavedo, Carlos M. B. P.; Afonso, C. M.; Soares, J. X.

    2013-01-01

    The benzopyran and dihydrobenzopyran moieties can be considered as "privileged motifs" in drug discovery being good platforms for the search of new bioactive compounds. These moieties are commonly found fused to the xanthonic scaffold belonging to the biologically important family of the generally...... hard to be established. Accordingly, with the aim of rationalizing the importance of the fused ring orientation and oxygenation pattern in pyranoxanthones, this study describes the synthesis of 14 new pyranoxanthones and evaluation of their cell growth inhibitory activity in four human tumor cell lines...... as particularly promising, presenting a potent cell growth inhibitory activity and suitable drug-like lipophilicity....

  1. Plasminogen activator inhibitor 1: Mechanisms of its synergistic regulation by growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoling [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    My research is on the synergistic regulation of PAI-1 by EGF and TGF-β. The mechanism of synergistic regulation of PAI-1 by EGF and TGF-β are addressed. Methods are described for effective identification of RNA accessible sites for antisense oligodexoxynucleotides (ODNs) and siRNA. In this study effective AS-ODN sequences for both Lcn2 and Bcl2 were identified by in vitro tiled microarray studies. Our results suggest that hybridization of ODN arrays to a target mRNA under physiological conditions might be used as a rapid and reliable in vitro method to accurately identify targets on mRNA molecules for effective antisense and potential siRNA activity in vivo.

  2. Mechanism of Synergistic Inhibition of Listeria monocytogenes Growth by Lactic Acid, Monolaurin, and Nisin▿

    OpenAIRE

    Tokarskyy, Oleksandr; Marshall, Douglas L.

    2008-01-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P < 0.05) than any single or paired combination effect, which demonstrates a synergistic interaction among the antimicrobials. Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the ...

  3. Secondary metabolites from Glycine soja and their growth inhibitory effect against Spodoptera litura.

    Science.gov (United States)

    Zhou, Yan-Ying; Luo, Shi-Hong; Yi, Ting-Shuang; Li, Chun-Huan; Luo, Qian; Hua, Juan; Liu, Yan; Li, Sheng-Hong

    2011-06-08

    The wild soybean (Glycine soja Sieb. et Zucc) has been reported to be relatively resistant to insect and pathogenic pests. However, the responsible secondary metabolites in the aerial part of this important plant are largely unknown. From the aerial part of G. soja, 13 compounds were isolated and identified, including seven isoflavonoids (1-7), a cyclitol (8), two sterol derivatives (9 and 10), and three triterpenoids (11-13). Compound 7 is a new isoflavonoid, and compounds 9 and 10 are reported as natural products for the first time. The growth inhibitory activity of 1, 3, 4, and 8 against the larvae of Spodoptera litura was investigated. The most abundant isoflavonoid in the aerial part of G. soja, daidzein (1), which could not be metabolized by S. litura, was found to inhibit the insect larvae growth significantly in 3 days after feeding diets containing the compound. Compounds 3, 4, and 8, which could be partially or completely metabolized, were inactive. Our results suggested that the isoflavonoid daidzein (1) might function as a constitutive defense component in G. soja against insect pests.

  4. Citrus pectin: characterization and inhibitory effect on fibroblast growth factor-receptor interaction.

    Science.gov (United States)

    Liu, Y; Ahmad, H; Luo, Y; Gardiner, D T; Gunasekera, R S; McKeehan, W L; Patil, B S

    2001-06-01

    This study was undertaken to characterize the pectin from four citrus species and to determine their in vitro inhibitory activities on the binding of fibroblast growth factor (FGF) to the FGF receptor (FGFR). Pectin from various parts of lemon, grapefruit, tangerine, and orange were isolated and characterized. Tangerine had the highest pectin content among the four citrus species. Segment membrane contained as much as or more pectin than flavedo/albedo. Anhydrogalacturonic content was highest in pectin from segment membrane of tangerine and flavedo/albedo of grapefruit. Lemon pectin contained the highest methoxyl content (MC), and grapefruit contained the largest proportion of lower molecular weight (lemon was the most potent inhibitor. The inhibition activity was significantly correlated with sugar content, MC, and size of pectin. Kinetic studies revealed a competitive nature of pectin inhibition with the heparin, a crucial component of the FGF signal transduction process. The observation that the heparin-dependent biological activity of FGF signal transduction is antagonized by citrus pectin should be further investigated for the use of these pectins as anti-growth factor agents for potential health benefits.

  5. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yosr BenRedjem Romdhane

    2016-01-01

    Full Text Available Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs and prenylated hydroquinones (PHQs. Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources.

  6. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29

    Directory of Open Access Journals (Sweden)

    Zhung-Yuan Chen

    2017-01-01

    Full Text Available This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (109 cfu/mL and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups (p < 0.05, which therefore led to the inference that the BCRC17010 strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (109 cfu/mL demonstrated a significant increase in lactate dehydrogenase (LDH activity (p < 0.05, causing harm to the HT-29 cell membrane; further, after an 8-h co-culture with the HT-29 cells, it induced the secretion of nitric oxide (NO from the HT-29 cells. Some lactic acid bacteria (LAB strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  7. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  8. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  9. Identification of ubiquitin in bovine milk and its growth inhibitory effects on human cancer cell lines.

    Science.gov (United States)

    Freiburghaus, C; Welinder, C; Tjörnstad, U; Lindmark-Månsson, H; Paulsson, M; Oredsson, S

    2010-08-01

    Bovine milk is associated with improved health and reduced risk of several diseases, among them cancer. Milk is a complex mixture of known and unknown components. The components and the mechanisms that contribute to the cancer-preventive effects are largely unknown. We set out to find new peptides in milk and identified ubiquitin (Ub) using matrix-assisted laser desorption ionization-time of flight mass spectrometry and Western blot. Using quantitative Western blot, we estimated the Ub concentration to be about 0.003 micromol/L in milk. We then decided to investigate the effect of treating human colon cancer CaCo-2 cells with Ub, using higher concentrations than in milk. CaCo-2 cells treated with 0.02 to 2.0 micromol/L Ub showed significantly decreased proliferation compared with untreated control cells. A higher growth inhibitory effect than in CaCo-2 cells was found in the neuroblastoma cell line SH-SY5Y treated with 0.02 to 0.2 micromol/L Ub. A bromodeoxyuridine DNA flow cytometric method was used to study cell cycle kinetics in Ub-treated CaCo-2 cells. The data point toward a prolongation of the G(1) phase. The levels of several cell cycle regulatory proteins were affected. Our data point to Ub possibly being one of the components in milk reducing the risk of cancer. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Down-regulation of T-STAR, a growth inhibitory protein, after SV40-mediated immortalization.

    Science.gov (United States)

    Kool, J; van Zaane, W; van der Eb, A J; Terleth, C

    2001-11-01

    Normal human cells can undergo a limited number of divisions, whereas transformed cells may have an extended life span and can give rise to immortal cells. To isolate genes involved in the immortalization process, gene expression in SV40-transformed preimmortal human fibroblasts was compared with expression in SV40-transformed immortalized fibroblasts using an mRNA differential display. We found that the growth-inhibitory protein testis-signal transduction and activation of RNA (T-STAR) a homologue of cell-cycle regulator Sam68, is strongly down-regulated in immortalized cells. Overexpression of T-STAR in the SV40-transformed immortalized cells resulted in a strong reduction of colony formation, whereas deletion of the RNA-binding domain of T-STAR abrogated this effect. Down-regulation of testis-signal transduction and activation of RNA (T-STAR) expression is found only in immortal cells isolated after a proliferative crisis accompanied with massive cell death. The strict correlation of down-regulation of T-STAR expression only in those immortal cells that arose after a clear proliferative crisis suggests that the loss of T-STAR might be necessary to bypass crisis.

  11. Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora

    Directory of Open Access Journals (Sweden)

    Kifayat Ullah Khan

    2017-02-01

    Full Text Available The current study was conducted to determine the synergistic effects of dietary nano selenium (Nano Se and vitamin C on growth, feeding, and physiological parameters of juvenile mahseer, Tor putitora. L-ascorbyl-2-polyphosphate (APP was used as a source of vitamin C. Four semi-purified experimental diets were prepared. A basal diet kept without the supplementation of any micronutrient and the other three diets were formulated such that three different levels of APP (100, 200, and 300 mg kg−1 were used in combination with a pre-determined dose of Nano Se (0.68 mg kg−1. The results showed that both the micronutrients positively synergized the effects of each other. APP at the rate of 300 mg kg−1 showed strong interaction with Nano Se. The APP300 + Nano Se0.68 mg kg−1 diet supplemented diet significantly decreased (P< 0.05 the feed conversion ratio (FCR while significantly increased (P< 0.05 the weight gain percentage (WG%, feed conversion efficiency (FCE%, specific growth rate (SGR, and serum growth hormone (GH concentration. Similarly, the physiological parameters such as red blood cells count (RBCs, hemoglobin level (Hb, hematocrit value (Hct, and serum lysozyme activity were also significantly increased in group of fish fed diet supplemented with APP100 mg kg−1 in combination with Nano Se0.68 mg kg−1 as compared to the control group. The present results clearly indicated the beneficent synergistic effects of Nano Se and APP in mahseer fish. Moreover, the current finding also supported our hypothesis that Nano Se and APP potentiate positively the effect of each other when both the micronutrients are supplemented together in the same fish feed.

  12. Inhibitory Mechanism of the Outer Membrane Growth of Chronic Subdural Hematomas.

    Science.gov (United States)

    Osuka, Koji; Watanabe, Yasuo; Usuda, Nobuteru; Aoyama, Masahiro; Iwami, Kenichiro; Takeuchi, Mikinobu; Watabe, Takeya; Takayasu, Masakazu

    2017-06-01

    We previously demonstrated that the inflammatory cytokine interleukin-6 (IL-6) activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway in fibroblasts within the outer membranes of chronic subdural hematomas (CSDHs), and the activation of this pathway may induce CSDH outer membrane growth. The inhibitory system for this signal transduction pathway is unknown. CSDH fluids were obtained from 10 patients during trepanation surgery as the case group, and cerebrospinal fluid (CSF) samples were obtained from seven patients suffering from subarachnoid hemorrhage (SAH) on Day 1 as the control group. The concentrations of IL-6, soluble IL-6 receptor (sIL-6R), and soluble gp130 (sgp130) in CSDH fluid and CSF were measured using enzyme immunoassay kits. The co-localization of IL-6 and sgp130 in CSDH fluid was examined by immunoprecipitation. The expression levels of STAT3, JAK2, suppressor of cytokine signaling 3 (SOCS3), and protein inhibitor of activated Stat3 (PIAS3) in the outer membranes of CSDHs were examined by immunostaining. Soluble IL-6R and sgp130 concentrations in CSDH fluid were significantly higher than those in CSF after SAH. Sgp130 and IL-6 were co-immunoprecipitated from CSDH fluid. Immunostaining revealed STAT3, JAK2, SOCS3, and PIAS3 expression in fibroblasts located in the outer membranes of CSDHs. Soluble gp130 binds to IL-6/sIL-6R and acts as an antagonist of the JAK/STAT signaling pathway. SOCS3 also binds to JAK and inhibits its signaling pathway. In addition, PIAS3 regulates STAT3 activation. These factors might down-regulate the IL-6/JAK/STAT signaling pathway in fibroblasts within CSDH outer membranes. Therefore, these molecules may be novel therapeutic targets for the inhibition of CSDH growth.

  13. Synergistic effects of acyclic retinoid and OSI-461 on growth inhibition and gene expression in human hepatoma cells.

    Science.gov (United States)

    Shimizu, Masahito; Suzui, Masumi; Deguchi, Atsuko; Lim, Jin T E; Xiao, Danhua; Hayes, Julia H; Papadopoulos, Kyriakos P; Weinstein, I Bernard

    2004-10-01

    Hepatoma is one of the most frequently occurring cancers worldwide. However, effective chemotherapeutic agents for this disease have not been developed. Acyclic retinoid, a novel synthetic retinoid, can reduce the incidence of postsurgical recurrence of hepatoma and improve the survival rate. OSI-461, a potent derivative of exisulind, can increase intracellular levels of cyclic GMP, which leads to activation of protein kinase G and induction of apoptosis in cancer cells. In the present study, we examined the combined effects of acyclic retinoid plus OSI-461 in the HepG2 human hepatoma cell line. We found that the combination of as little as 1.0 micromol/L acyclic retinoid and 0.01 micromol/L OSI-461 exerted synergistic inhibition of the growth of HepG2 cells. Combined treatment with low concentrations of these two agents also acted synergistically to induce apoptosis in HepG2 cells through induction of Bax and Apaf-1, reduction of Bcl-2 and Bcl-xL, and activation of caspase-3, -8, and -9. OSI-461 enhanced the G0-G1 arrest caused by acyclic retinoid, and the combination of these agents caused a synergistic decrease in the levels of expression of cyclin D1 protein and mRNA, inhibited cyclin D1 promoter activity, decreased the level of hyperphosphorylated forms of the Rb protein, induced increased cellular levels of the p21(CIP1) protein and mRNA, and stimulated p21(CIP1) promoter activity. Moreover, OSI-461 enhanced the ability of acyclic retinoid to induce increased cellular levels of retinoic acid receptor beta and to stimulate retinoic acid response element-chloramphenicol acetyltransferase activity. A hypothetical model involving concerted effects on p21(CIP1) and retinoic acid receptor beta expression is proposed to explain these synergistic effects. Our results suggest that the combination of acyclic retinoid plus OSI-461 might be an effective regimen for the chemoprevention and chemotherapy of human hepatoma and possibly other malignancies.

  14. Antifeedant, insecticidal and growth inhibitory activities of selected plant oils on black cutworm, Agrotis ipsilon (Hufnagel (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Alagarmalai Jeyasankar

    2012-05-01

    Full Text Available Objective: To evaluate antifeedant, insecticidal and insect growth inhibitory activities of eucalyptus oil (Eucalyptus globules and gaultheria oil (Gaultheria procumbens L. against black cutworm, Agrotis ipsilon. Methods: Antifeedant, insecticidal and growth inhibitory activities of eucalyptus oil and gaultheria oil were tested against black cutworm, A. ipsilon. Results: Significant antifeedant activity was found in eucalyptus oil (96.24% where as the highest insecticidal activity was noticed in gaultheria oil (86.92%. Percentages of deformities were highest on gaultheria oil treated larvae and percentage of adult emergence was deteriorated also by gaultheria oil. Conclusions: These plants oil has potential to serve as an alternative eco-friendly control of insect pest.

  15. Growth inhibitory activity for cancer cell lines of lapachol and its natural and semi-synthetic derivatives.

    Science.gov (United States)

    Fiorito, Serena; Epifano, Francesco; Bruyère, Céline; Mathieu, Véronique; Kiss, Robert; Genovese, Salvatore

    2014-01-15

    A series of 17 selected natural and semisynthetic 1,4-naphthoquinones were synthesized, and their growth inhibitory activity was evaluated in vitro. The compounds were tested on six human cancer cell lines using the MTT colorimetric assay. The data revealed that of the chemicals under study only lapachol, its acetate and 3-geranyllawsone displayed the highest activity, recording mean IC50 values ranging from 15 to 22 μM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    International Nuclear Information System (INIS)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook; Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung

    2004-01-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth

  17. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  18. Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations

    Directory of Open Access Journals (Sweden)

    Ludovica Ciuffreda

    2009-08-01

    Full Text Available The Raf/MEK/ERK pathway is an importantmediator of tumor cell proliferation and angiogenesis. Here, weinvestigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC50 in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G1-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27KIP1 and apoptosis (Bcl-2 and survivin regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma.

  19. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  20. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria.

    Science.gov (United States)

    García-Ruiz, Almudena; Moreno-Arribas, M Victoria; Martín-Álvarez, Pedro J; Bartolomé, Begoña

    2011-02-28

    This paper reports a comparative study of the inhibitory potential of 18 phenolic compounds, including hydroxybenzoic acids and their derivatives, hydroxycinnamic acids, phenolic alcohols and other related compounds, stilbenes, flavan-3-ols and flavonols, on different lactic acid bacteria (LAB) strains of the species Oenococcus oeni, Lactobacillus hilgardii and Pediococcus pentosaceus isolated from wine. In general, flavonols and stilbenes showed the greatest inhibitory effects (lowest IC₅₀ values) on the growth of the strains tested (0.160-0.854 for flavonols and 0.307-0.855 g/L for stilbenes). Hydroxycinnamic acids (IC₅₀ > 0.470 g/L) and hydroxybenzoic acids and esters (IC₅₀ >1 g/L) exhibited medium inhibitory effect, and phenolic alcohols (IC₅₀ > 2 g/L) and flavanol-3-ols (negligible effect) showed the lowest effect on the growth of the LAB strains studied. In comparison to the antimicrobial additives used in winemaking, IC₅₀ values of most phenolic compounds were higher than those of potassium metabisulphite for O. oeni strains (e.g., around 4-fold higher for quercetin than for potassium metabisulphite), but lower for L. hilgardii and P. pentosaceus strains (e.g., around 2-fold lower for quercetin). Lysozyme IC₅₀ values were negligible for L. hilgardii and P. pentosaceus, and were higher than those corresponding to most of the phenolic compounds tested for O. oeni strains, indicating that lysozyme was less toxic for LAB than the phenolic compounds in wine. Scanning electron microscopy confirmed damage of the cell membrane integrity as a consequence of the incubation with antimicrobial agents. These results contribute to the understanding of the inhibitory action of wine phenolics on the progress of malolactic fermentation, and also to the development of new alternatives to the use of sulphites in enology. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells.

    Science.gov (United States)

    Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S

    2013-09-11

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.

  2. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene.

    Science.gov (United States)

    Aravinthan, Adithan; Arkatkar, Ambika; Juwarkar, Asha A; Doble, Mukesh

    2016-01-01

    This study investigated biodegradation of physically pretreated polypropylene (PP) by using two different combinations of microorganisms, namely, Bacillus flexus + Pseudomonas azotoformans(B1) and B. flexus + B. subtilis(B2), for a period of 12 months. The growth rate of (B1) was found to be high throughout the study period, and reached a maximum of 1 × 10(14) colony-forming units (CFU)/mL. At the end of the experiment, the polymers become hydrophilic. Carbonyl indices showed that ultraviolet (UV)-treated polymers started degrading faster than the thermally treated PP. The thermogravimetric analysis also revealed that UV-treated PP exposed to the B. flexus + P. azotoformans combination for 1 year exhibited maximum degradation (22.7%). The gravimetric weight loss method showed 1.95% weight loss followed by 1.45% with B. flexus + B. subtilis. The changes in the carbonyl indices of the polymer through Fourier-transform infrared (FTIR) analysis also support the degradation.

  3. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans.

    Science.gov (United States)

    Manoharan, Ranjith Kumar; Lee, Jin-Hyung; Kim, Yong-Guy; Kim, Soon-Il; Lee, Jintae

    2017-02-01

    Candida albicans is one of the most common fungal pathogens, and causes systemic and invasive infections in humans. C. albicans biofilms are composed of yeast and hyphal and pseudohyphal elements, and the transition of yeast to the hyphal stage could be a virulence factor. In this study, diverse essential oils were initially investigated for anti-biofilm activity against C. albicans strains, and cascarilla bark oil and helichrysum oil and their components α-longipinene (a major constituent of both) and linalool were found to markedly inhibit biofilm formation without affecting planktonic cell growth. Moreover, α-longipinene and linalool were found to synergistically reduce biofilm formation. Notably, treatments with cascarilla bark oil, helichrysum oil, α-longipinene, or linalool clearly inhibited hyphal formation, and this appeared to be largely responsible for their anti-biofilm effect. Furthermore, the two essential oils, α-longipinene and linalool, reduced C. albicans virulence in Caenorhabditis elegans.

  4. Potential synergistic effects of human placental extract and minoxidil on hair growth-promoting activity in C57BL/6J mice.

    Science.gov (United States)

    Kwon, T-R; Oh, C T; Park, H M; Han, H J; Ji, H J; Kim, B J

    2015-08-01

    Human placenta extract (HPE) has been used to alleviate tiredness and promote wound healing, and for its antiageing functions; however, it has not yet been studied for its effects on hair growth. In the present study, we evaluated the in vitro effect of HPE on hair growth by observing its actions on human dermal papilla cells (DPCs). To define how HPE promotes induction of anagen hair growth during the telogen phase, and to understand the synergistic molecular mechanisms of HPE and minoxidil (MXD) actions on hair growth. We examined the effects of HPE and MXD on C57BL6/J mice using haematoxylin and eosin staining, quantitative histomorphometry, hair growth scoring, immunohistochemistry and immunofluorescence on the dorsal skins of C57BL/6J mice. We found that HPE synergistically augmented the effects of MXD, a promoter of hair growth. In particular, histomorphometric analysis data indicated that subcutaneous injection of HPE induced an earlier anagen phase and prolonged the anagen phase. It also stimulated increases in both the number and size of hair follicles in groups treated with HPE alone and HPE + MXD. From our data, we conclude that HPE increases β-catenin and Wnt3a expression levels. Overall, our findings suggest that HPE in combination with MXD has hair growth-promoting activity and is a potential novel therapeutic treatment for alopecia or baldness in humans. © 2015 British Association of Dermatologists.

  5. The Inhibitory Effects of 2 Commercial Probiotic Strains on the Growth of Staphylococcus aureus and Gene Expression of Enterotoxin A

    Directory of Open Access Journals (Sweden)

    Mahnoosh Parsaeimehr

    2017-08-01

    Full Text Available Background: Food-borne intoxications are current problems in human society and most of them are caused by the enterotoxins of Staphylococcus aureus. Staphylococcal enterotoxin A (SEA is the most frequently responsible for staphylococcal food poisoning outbreaks. From a food safety and human health point of view, lactic acid bacteria (LAB may provide a promising strategy to combat the pathogenic bacteria, particularly S. aureus. Objective: The objective of this study was to evaluate the inhibitory activity of two commercial lactobacillus strains on growth and enterotoxin A production by S. aureus. Moreover, the inhibitory effect of these strains on gene expression of enterotoxin type A was assessed using real-time Polymerase chain reaction (PCR. Materials and Methods: In this study the inhibitory effect of two commercial probiotic strains, Lactobacillus acidophilus (LA5 and Lactobacillus casei 01 on the growth and enterotoxin production of S. aureus was evaluated at 25 and 35°C. The gene expression of SEA of S. aureus was also evaluated by real time (RT PCR technique. Results: The lactobacillus strains decreased the bacterial count at both temperatures compared with the control group. This reduced effect was greater at 25°C (3 log/CFU than 35°C (2 log/CFU. The production of SEA, SEC and SEE was inhibited by the lactobacillus strains. Furthermore, the gene expression of SEA was significantly suppressed in S. aureus co cultured with studied lactobacillus strains and the greatest down-regulation of sea (10.31 fold was observed in co-incubation of S. aureus with LC01 at 25°C. Conclusion: This research raises important implications for the potential use of LAB as a natural preservative in foodstuffs by correct microbial ecology of the environment and a new approach for biocontrol of S. aureus.

  6. Inhibition of BCL2 expression and activity increases H460 sensitivity to the growth inhibitory effects of polyphenon E.

    Science.gov (United States)

    Borgovan, Theodor; Bellistri, John-Paul S; Slack, Kristen N; Kopelovich, Levy; Desai, Manisha; Joe, Andrew K

    2009-01-01

    The anti-cancer properties of the green tea-derived mixture Polyphenon E (Poly E) have been demonstrated in a variety of cell culture and animal models. We recently discovered that the H460 lung cancer cell line is markedly resistant to the growth inhibitory effects of Poly E compared with SW480 colon and Flo-1 esophageal cancer cells. We investigated the mechanism of H460 resistance by comparing gene expression profiles of Poly E-sensitive and -resistant cells. Unsupervised hierarchical clustering revealed that Poly E-sensitive cells clustered separately from Poly E-resistant cells, and 6,242 genes were differentially expressed between the two groups at the 0.01 level of significance. We discovered that BCL2 gene and protein expression were significantly higher in H460 cells compared with SW480 and Flo-1 cells (10.60-fold higher gene expression; P < 0.0001). Inhibition of BCL2 expression and activity, using siRNA and the small molecule inhibitor HA14-1 respectively, restored sensitivity to Poly E and induced BCL2-related apoptosis by decreasing mitochondrial membrane potential and inducing PARP cleavage. Our results suggest that increased BCL2 expression may contribute to H460 resistance to the growth inhibitory effects of Poly E. If validated in additional laboratory and clinical models, BCL2 could ultimately be used as a marker of Poly E resistance.

  7. Direct Growth of CuO Nanorods on Graphitic Carbon Nitride with Synergistic Effect on Thermal Decomposition of Ammonium Perchlorate

    Directory of Open Access Journals (Sweden)

    Linghua Tan

    2017-05-01

    Full Text Available Novel graphitic carbon nitride/CuO (g-C3N4/CuO nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C3N4, CuO nanorods (length 200–300 nm, diameter 5–10 nm were directly grown on g-C3N4, forming a g-C3N4/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS. Finally, thermal decomposition of ammonium perchlorate (AP in the absence and presence of the prepared g-C3N4/CuO nanocomposite was examined by differential thermal analysis (DTA, and thermal gravimetric analysis (TGA. The g-C3N4/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C3N4/20 wt % CuO, the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C3N4 by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C3N4-based nanocomposite.

  8. Direct Growth of CuO Nanorods on Graphitic Carbon Nitride with Synergistic Effect on Thermal Decomposition of Ammonium Perchlorate

    Science.gov (United States)

    Tan, Linghua; Xu, Jianhua; Li, Shiying; Li, Dongnan; Dai, Yuming; Kou, Bo; Chen, Yu

    2017-01-01

    Novel graphitic carbon nitride/CuO (g-C3N4/CuO) nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C3N4, CuO nanorods (length 200–300 nm, diameter 5–10 nm) were directly grown on g-C3N4, forming a g-C3N4/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition of ammonium perchlorate (AP) in the absence and presence of the prepared g-C3N4/CuO nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric analysis (TGA). The g-C3N4/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C3N4/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C3N4 by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C3N4-based nanocomposite. PMID:28772844

  9. Direct Growth of CuO Nanorods on Graphitic Carbon Nitride with Synergistic Effect on Thermal Decomposition of Ammonium Perchlorate.

    Science.gov (United States)

    Tan, Linghua; Xu, Jianhua; Li, Shiying; Li, Dongnan; Dai, Yuming; Kou, Bo; Chen, Yu

    2017-05-02

    Novel graphitic carbon nitride/CuO (g-C₃N₄/CuO) nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C₃N₄, CuO nanorods (length 200-300 nm, diameter 5-10 nm) were directly grown on g-C₃N₄, forming a g-C₃N₄/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition of ammonium perchlorate (AP) in the absence and presence of the prepared g-C₃N₄/CuO nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric analysis (TGA). The g-C₃N₄/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C₃N₄/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C₃N₄ by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C₃N₄-based nanocomposite.

  10. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth.

    Science.gov (United States)

    Wang, Zhujun; Zhang, Xuewu

    2016-02-01

    In this study, the whole proteins of Spirulina (Arthrospira) platensis were extracted, hydrolysis with three proteases (trypsin, alcalase and papain) was performed, and gel filtration chromatography was employed to separate hydrolysates. Totally, 15 polypeptides were isolated, which showed anti-proliferation activities on five cancer cells (HepG-2, MCF-7, SGC-7901, A549 and HT-29), with the IC50 values between <31.25 and 336.57 μg mL(-1). Moreover, a new peptide YGFVMPRSGLWFR was identified from papain-digested hydrolysates. It also exhibited inhibitory activities on cancer cells, and the best activity was observed on A549 cancer cells (IC50 values 104.05 μg mL(-1)). In other words, these polypeptides exhibited anti-proliferation activities on cancer cells, and low toxicity or stimulatory activity on normal cells, suggesting that they are promising ingredients in food and pharmaceutical applications.

  11. Physicochemical Basis for the Inhibitory Effects of Organic and Inorganic Salts on the Growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum▿

    OpenAIRE

    Yaganza, Elian-Simplice; Tweddell, Russell J.; Arul, Joseph

    2008-01-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions.

  12. Physicochemical basis for the inhibitory effects of organic and inorganic salts on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum.

    Science.gov (United States)

    Yaganza, Elian-Simplice; Tweddell, Russell J; Arul, Joseph

    2009-03-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions.

  13. Physicochemical Basis for the Inhibitory Effects of Organic and Inorganic Salts on the Growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum▿

    Science.gov (United States)

    Yaganza, Elian-Simplice; Tweddell, Russell J.; Arul, Joseph

    2009-01-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions. PMID:19114504

  14. Antifungal Effects of Zataria multiflora Essential Oil on the Inhibitory Growth of some Postharvest Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Mahboobeh NASSERI

    2015-12-01

    Full Text Available The present study aimed to determine minimum inhibitory concentration and minimum fungicidal concentration of the essential oil of Zataria multiflora to control Alternaria solani, Rhizoctonia solani, Rhizopus stolonifer, Aspergillus flavus, Aspergillus ochraceus and Aspergillus niger. The essential oil of Zataria multiflora was tested in vitro on PDA (malt extract agar medium with eight concentrations: 0, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 ppm. This investigation followed the completely randomized design (CRD with three replications. GC-MS evaluations of the essential oil revealed that thymol (35%, carvacrol (34%, cymene-p (9.89%, gamma-terpinene (5.88% and alpha-pinene (4.22% were the main compounds of Zataria multiflora oil. The results showed that the essential oil of Zataria multiflora has antifungal activity; the lowest inhibition (75% was observed in the A. niger, while the highest inhibition (95.3% was observed in A. solani. Minimum inhibitory concentration for A. solani, R. solani, R. stolonifer, A. flavus, A. ochraceus and A. niger was 200, 200, 200, 300, 300 and 200 ppm respectively. In addition, the present results showed that minimum fungicidal concentration (MFC for A. solani, R. solani, R .stolonifer, A. niger and A.ochraceus was 600, 400, 300, 900 and 700 ppm respectively and none of the tested concentrations were fatal for A. flavus. A. solani and R. solani showed a strong sensitivity to Zataria multiflora essential oil at all concentrations. Findings of the current study suggest that essential oils of Zataria multiflora could be used for control of postharvest phytopathogenic fungi on fruits or vegetables.

  15. Growth Inhibitory Effects of Adhatoda vasica and Its Potential at Reducing Listeria monocytogenes in Chicken Meat

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2017-07-01

    Full Text Available The inhibitory effects of Adhatoda vasica ethanolic leaf extract (AVELE against Listeria monocytogenes were examined to assess its potential to preserve minimally processed meat products safely. The total phenolic, flavonoid, and alkaloid levels in AVELE were 10.09 ± 4.52 mg of gallic acid equivalents (GAE/g, 22.43 ± 1.62 mg of quercetin equivalents/g, and 19.43 ± 3.90 mg/g, respectively. AVELE (1, 5, 10, or 20% had considerable antibacterial effects against L. monocytogenes NCIM 24563 in terms of the inhibitory zones (7.4–13.6 mm, MIC (100 mg/mL or 10% formulated solution, reduced cell viability, potassium ion efflux, and the release of 260-nm absorbing materials and extracellular ATP. AVELE was used as a rinse solution (5, 10, and 20% for raw chicken breast meat. A 20% rinsing solution applied for 60 min inhibited the L. monocytogenes NCIM 24563 counts significantly on raw chicken breast meat. Moreover, L. monocytogenes NCIM 24563 did not grow in the meat sample when the rinse time was increased to 90 min at the same concentration. L. monocytogenes showed a greater reduction to ~3 CFU/g after rinsing with a 10 and 20% AVELE solution for 30 min than with a 5% AVELE solution. The rinsing processes with AVELE produced the final cooked chicken products with higher sensory attribute scores, such as taste, juiciness, and tenderness, compared to the control group along with a decrease in microbial contamination. Chicken meat rinsed with AVELE (rinsing time of 90 min showed better sensory attribute scores of juiciness and tenderness, as well as the overall sensory quality compared to the untreated group. This research highlights the effectiveness of AVELE against L. monocytogenes NCIM 24563, suggesting that AVELE can be used as an effective antimicrobial marinade and/or a rinse for meat preservation.

  16. Method for Bacterial Growth and Ammonia Production and Effect of Inhibitory Substances in Disposable Absorbent Hygiene Products.

    Science.gov (United States)

    Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter

    The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P bacterial growth rates, in most cases, both at 6 and 12 hours. The effect was most pronounced at pH 4.5. Chlorhexidine had significant (P bacterial growth and ammonia production. This technique, we describe, provides a pragmatic method for assessing the odor-inhibiting capacity of specific incontinence products.

  17. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    Science.gov (United States)

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Coupling of online control and inhibitory systems in children with atypical motor development: A growth curve modelling study.

    Science.gov (United States)

    Ruddock, Scott; Caeyenberghs, Karen; Piek, Jan; Sugden, David; Hyde, Christian; Morris, Sue; Rigoli, Daniela; Steenbergen, Bert; Wilson, Peter

    2016-11-01

    Previous research indicates that children with Developmental Coordination Disorder (DCD) show deficits performing online corrections, an issue exacerbated by adding inhibitory constraints; however, cross-sectional data suggests that these deficits may reduce with age. Using a longitudinal design, the aim of the study presented here was to model the coupling that occurs between inhibitory systems and (predictive) online control in typically developing children (TDC) and in those with Developmental Coordination Disorder (DCD) over an extended period of time, using a framework of interactive specialization. We predicted that TDC would show a non-linear growth pattern, consistent with re-organisation in the coupling during the middle childhood period, while DCD would display a developmental lag. A group of 196 children (111 girls and 85 boys) aged between 6 and 12years participated in the study. Children were classified as DCD according to research criteria. Using a cohort sequential design, both TDC and DCD groups were divided into age cohorts. Predictive (online) control was defined operationally by performance on a Double-Jump Reaching Task (DJRT), which was assessed at 6-month intervals over two years (5 time points in total). Inhibitory control was examined using an anti-jump condition of the DJRT paradigm whereby children were instructed to touch a target location in the hemispace opposite a cued location. For the TDC group, model comparison using growth curve analysis revealed that a quadratic trend was the most appropriate fit with evidence of rapid improvement in anti-reach performance up until middle childhood (around 8-9years of age), followed by a more gradual rate of improvement into late childhood and early adolescence. This pattern was evident on both chronometric and kinematic measures. In contrast, for children with DCD, a linear function provided the best to fit on the key metrics, with a slower rate of improvement than controls. We conclude that

  19. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...

  20. Inhibitory effects of Iranian Thymus vulgaris extracts on in vitro growth of Entamoeba histolytica.

    Science.gov (United States)

    Behnia, Maryam; Haghighi, Ali; Komeylizadeh, Hossein; Tabaei, Seyyed-Javadi Seyyed; Abadi, Alireza

    2008-09-01

    One of the most common drugs used against a wide variety of anaerobic protozoan parasites is metronidazole. However, this drug is mutagenic for bacteria and is a potent carcinogen for rodents. Thymus vulgaris is used for cough suppression and relief of dyspepsia. Also it has antibacterial and antifungal properties. The aim of this study was to investigate antiamebic effect of Thymus vulgaris against Entamoeba histolytica in comparison with metronidazole. One hundred gram air-dried T. vulgaris plant was obtained and macerated at 25 degrees C for 14 days using n-hexane and a mixture of ethanol and water. For essential oil isolation T. vulgaris was subjected to hydrodistillation using a clevenger-type apparatus for 3 hr. E. histolytica, HM-1: IMSS strain was used in all experiments. It was found that the minimal inhibitory concentration (MIC) for T. vulgaris hydroalcoholic, hexanic extracts, and the essential oil after 24 hr was 4 mg/mL, 4 mg/mL, and 0.7 mg/mL, respectively. After 48 hr the MIC for T. vulgaris hydroalcoholic and hexanic extracts was 3 and 3 mg/mL, respectively. Therefore, it can be concluded that the Iranian T. vulgaris is effective against the trophozoites of E. histolytica.

  1. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

    Science.gov (United States)

    Hsu, Chih-Chieh; Lai, Wen-Lin; Chuang, Kuei-Chin; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2013-07-01

    Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.

  2. Inhibitory effects of seaweed extracts on the growth of the vaginal bacterium Gardnerella vaginalis.

    Science.gov (United States)

    Ha, Yu-Mi; Choi, Jae-Suk; Lee, Bo-Bae; Moon, Hye Eun; Cho, Kwang Keun; Choi, In Soon

    2014-05-01

    Of 44 species of seaweed screened for potential anti-Gardnerella vaginalis activity, 27 (61.4%) showed antimicrobial activity by the agar disk-diffusion method. Among them, the strongest activities against the pathogen were exhibited by Chlorophyta, with Ulva pertusa producing an 11.3-mm zone of inhibition at 5 mg disk⁻¹. The MIC values of U. pertusa extracts against both G. vaginalis KCTC 5096 and KCTC 5097, the main cause of vaginosis, were 312 μg ml⁻¹, while the MIC values against both Candida albicans KCTC 7270 and KCTC 7965, the main cause of candidiasis, were 2.5 mg ml⁻¹. Against Lactobacillus gasseri KCTC 3173 and Lactobacillus jensenii KCTC 5194, members of the normal vaginal microflora, no inhibitory effect was seen even at 10 mg ml⁻¹. To identify the primary active compounds, a U. pertusa powder was successively fractionated according to polarity, and the main active agents against G. vaginalis KCTC 5096 were determined to be nitrogenous compounds (156 μg ml⁻¹ of the MIC value). According to these results, it was suggested that extracts of the seaweed U. pertusa are valuable for the development of natural therapeutic agents for treating women with bacterial vaginosis.

  3. The inhibitory effect of tropolone and hinokitiol on the mycelium growth of Phoma narcissi in vitro

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2012-12-01

    Full Text Available Tropolone and hinokitiol (β-thujaplicin that are present in heartwood of several Cupressaceae trees are known for their antibacterial, antifungal and insecticidal properties. In the present studies it was showed that tropolone and hinokitiol greatly inhibited in vitro, on PDA medium, the mycelium growth of Phoma narcissi, a pathogen of Hippeastrum and other species of family Amaryllidaceae. Total inhibition of the mycelium growth of Phoma narcissi took place at a tropolone concentration of 6.0 µg·cm-3 and at a hinokitiol concentration of 50.0 µg·cm-3. Fungicidal doses of tropolone and hinokitiol for the mycelium growth of Phoma narcissi were also documented. The results presented in this paper are discussed with data available in literature on the antifungal action of tropolone and hinokitiol on other species of pathogenic fungi.

  4. Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type β

    International Nuclear Information System (INIS)

    Brown, K.D.; Holley, R.W.

    1987-01-01

    A cell growth inhibitor (GI), purified from BSC-1 cell-conditioned medium, has little if any effect on DNA synthesis when added alone to monolayer cultures of quiescent Swiss mouse 3T3 cells in serum-free medium. However, the inhibitor, which is closely related to transforming growth factor type β (TGF-β), exhibits a pronounced synergistic stimulation of DNA synthesis in combination with certain peptide (bombesin, vasopressin) or polypeptide (platelet-derived growth factor) mitogens. 125 I-EGF binding was measured and the efflux of 45 Ca 2+ was measured in response to mitogen stimulation. A similar synergistic response has been demonstrated for TGF-β purified from human platelets. In the presence of 3 nM bombesin, a half-maximal stimulation of DNA synthesis was obtained at a GI concentration of approximately 60 pg/ml, with a maximal response at approximately 600 pg/ml. The synergistic interactions demonstrated by GI or TGF-β in stimulating Swiss 3T3 cells closely resemble those previously shown for insulin, and the authors have observed that GI does not synergize with insulin to stimulate DNA synthesis in these cells. Like insulin, and in contrast to bombesin, vasopressin, and platelet-derived growth factor, GI does not activate cellular inositolphospholipid hydrolysis, calcium mobilization, or cross-regulation of epidermal growth factor receptor affinity. These results raise the possibility that the biochemical pathways activated by GI/TGF-β and insulin converge at a post-receptor stage

  5. Phorbol ester potentiates the growth inhibitory effects of troglitazone via up-regulation of PPARγ in A549 cells

    International Nuclear Information System (INIS)

    Kim, Hyo Jung; Woo, Im Sun; Kang, Eun Sil; Eun, So Young; Kim, Gil Hyeong; Ham, Sun Ah; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Kim, Jin-Hoi; Lee, Hoon Taek; Seo, Han Geuk

    2006-01-01

    The activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been shown to induce growth arrest and differentiation of various cancer cells. In the current study, we investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the expression of PPARγ and proliferation of A549 cells. TPA elicited a dose- and time-dependent increase in PPARγ mRNA and protein levels. PPARγ expression in response to TPA was attenuated by pretreatment with bisindolylmaleimide I, N-acetyl-L-cysteine (NAC) and PD98059. TPA-induced protein kinase C (PKC) activation was linked to the generation of reactive oxygen species (ROS), both of which were indispensable for PPARγ expression in A549 cells. Pretreatment with bisindolylmaleimide I or NAC blocked TPA-induced phosphorylation of extracellular signal-regulated kinase (ERK), suggesting that ERK-mediated signaling is also involved in the induction of PPARγ. Furthermore, the growth inhibitory effect of troglitazone was significantly potentiated by prolonged incubation with TPA and was attenuated in the presence of GW9662, a specific inhibitor of PPARγ. These effects were associated with an induction of cell cycle arrest at G /G 1 phase, which was accompanied by the induction of p21 Waf1/Cip1 expression and decreased cyclin D1 expression. Taken together, these observations indicate that TPA synergizes with PPARγ ligand to inhibit cell growth through up-regulation of PPARγ expression

  6. Inhibitory concentration and minimum contact time of Gambier extract (Uncaria gambier Roxb to growth of Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Hafsah Katu

    2016-06-01

    Full Text Available Enterococcus faecalis (E. faecalis was gram-positive bacteria commonly founded in endodontics retreatment cases. Gambier extracts,  type of dried sap from the leaves and young stems of gambier plants (Uncaria Gambir Roxb, contains cathecins, are efficacious antibacterial with minimal side effects. The aim of this study is to determine the inhibitory concentration and minimal time contact gambier extracts on the growth of the bacteria E.faecalis. Laboratory experiments, conducted on 30th May – 16th June 2011 in the Laboratory of Pharmacognosy-Phytochemicals Faculty of Pharmacy and Laboratory of  Microbiology, Faculty of Medicine, Hasanuddin University. Six hundred grams gambier which has been crushed, extracted with reflux and rotavapor method. Minimal inhibition concentration is determined with 5 ml of 5.25% NaCl as a positive control and saline sterile water as negative control. Antibacterial activity is determined based on the time of contact and inhibition zone diameter. Statistical analysis SPSS version 16.0 for windows with One way ANOVA and LSD tests (p<0.05. Statistical analysis showed 1% concentration and 24 hours time contact effectively inhibits the growth of bacteria E. faecalis. Gambier extracts effectively inhibits the growth of bacteria E. faecalis.

  7. Inhibitory Mechanism of Robiotic Bacteria on The Growth of Vibrio harveyi in Tiger Shrimp (Penaeus monodon Larvae

    Directory of Open Access Journals (Sweden)

    . Widanarni

    2008-07-01

    Full Text Available Three probiotics named SKT-b, 1Ub, and Ua had inhibitory activity against the growth of Vibrio harveyi. These strains were mutated by rifampicin resistant. The inhibitory effect of SKT-b,1Ub, and Ua on the growth of V. harveyi was investigated by concomitant incubation of the two bacteria in a culture shrimp larvae. Colony forming unit of V. harveyi, probiotic and total of bacteria in dead, live larvae and water culture was monitored, and survival rate of larvae was investigated. Shrimp inoculated probiotic previously had survival rate higher than control (without probiotic. Number of V. harveyi in treatment without probiotic inoculation also higher compared to treatment with probiotic inoculation in dead, live larvae and water culture.  It demonstrated possible inhibition of probiotic bacteria on V. harveyi through competition for adherence sites or nutrition source. Partial sequencing of 16S-rRNA gene showed that 1Ub was similar to Pseudoalteromonas piscicida, whereas SKT-b and Ua were similar to Vibrio alginolyticus. Keywords: probiotic bacteria, inhibitory mechanism, V. harveyi, tiger shrimp   ABSTRAK Tiga isolat bakteri probiotik yaitu 1Ub, SKT-b dan Ua telah diuji memiliki aktivitas penghambatan terhadap pertumbuhan V. harveyi secara in vitro. Ketiga isolat ini kemudian diberi penanda resisten rifampisin (RfR melalui mutasi spontan untuk mempelajari mekanisme penghambatannya pada larva udang windu.  Efek penghambatan dari 1Ub, SKT-b dan Ua terhadap pertumbuhan V. harveyi diamati melalui pemberian secara bersamaan antara bakteri probiotik dan V. harveyi tersebut dalam air pemeliharaan larva udang.  Jumlah sel bakteri probiotik, V. harveyi dan total bakteri baik pada larva mati, larva hidup dan air pemeliharaan diamati dan kelangsungan hidup larva dihitung.  Nilai kelangsungan hidup udang pada perlakuan yang diinokulasi bakteri probiotik lebih tinggi daripada kontrol (tanpa penambahan bakteri probiotik. Jumlah sel V. harveyi pada

  8. Growth inhibitory effect of extracts from Reynoutria sp. plants against Spodoptera littoralis larvae

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Vrchotová, Naděžda; Šerá, Božena

    2008-01-01

    Roč. 42, - (2008), s. 573-584 ISSN 1405-3195 R&D Projects: GA MŠk OC D28.001 Institutional research plan: CEZ:AV0Z60870520 Keywords : Reynoutria * Spodoptera littoralis * growth inhibition * botanical insecticides * toxicity test * plant extracts Subject RIV: EH - Ecology, Behaviour Impact factor: 0.232, year: 2008

  9. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  10. Inhibitory effect of curcumin in human endometriosis endometrial cells via downregulation of vascular endothelial growth factor.

    Science.gov (United States)

    Cao, Hong; Wei, Yu-Xi; Zhou, Qi; Zhang, Ying; Guo, Xiao-Peng; Zhang, Jun

    2017-10-01

    Endometriosis, which affects up to 10% of women of reproductive age, is defined as endometrial-like gland and stroma tissue growths outside the uterine cavity. Despite increasing research efforts, there are no current effective treatment methods for this disease, therefore investigations for therapeutic strategies are of primary concern. In preliminary work, the authors demonstrated that curcumin inhibits endometriosis in vivo. The present in vitro study aimed to investigate the association between endometriotic stromal cells and curcumin and to clarify the underlying mechanism of action. A total of 14 patients with endometriosis were enrolled in the present study. The purity of endometrial stromal cell cultures was proven by standard immunofluorescent staining of vimentin. The cell proliferation and curcumin effects on endometrial stromal cells were assessed by the MTT assay and Hematoxylin and Eosin staining. For cell cycle analysis, phase distribution was detected by flow cytometry. Vascular endothelial growth factor (VEGF) protein expression was examined using immunohistochemistry staining. Apoptosis was assessed using Annexin V‑fluorescein isothiocyanate staining. The results indicated that the treatment of curcumin decreased human ectopic and eutopic stromal cell growth. Following treatment with curcumin, human endometriotic stromal cells demonstrated an increased percentage of G1‑phase cells and decreased percentages of S‑phase cells, particularly in the group treated with 50 µmol/l curcumin. Treatment with curcumin additionally decreased expression of VEGF. The data provide evidence that curcumin reduces cell survival in human endometriotic stromal cells, and this may be mediated via downregulation of the VEGF signaling pathway.

  11. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract

    Science.gov (United States)

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-01-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL−1; (iii) 3 mg⋅mL−1; and (iv) 6 mg⋅mL−1. The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×106 to 1.78×106 viable cell counts (CFU)⋅mL−1. SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity. PMID:24406634

  12. Luteolin and its inhibitory effect on tumor growth in systemic malignancies

    International Nuclear Information System (INIS)

    Kapoor, Shailendra

    2013-01-01

    Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ERα expression and causes inhibition of IGF-1 mediated PI3K–Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducing factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent. - Highlights: ► Luteolin and tumor growth in breast carcinomas. ► Luteolin and pulmonary cancer. ► Luteolin and colon cancer

  13. Biosynthesis of Silver Nanoparticles Using Carum carvi Extract and its Inhibitory Effect on Growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Nasiri

    2016-08-01

    Full Text Available Background Biological synthesis of nanoparticles has emerged as a promising field of biotechnology. Various biological systems including fungi, yeasts, bacteria, and plants have been used for biosynthesis of nanoparticles. Silver nanoparticles have unique properties that make them ideal for various medical and industrial applications. Owing to high levels of organic reducing agents and ease of manipulation, plant extracts are widely used for biological generation of various types of metal nanoparticles. Objectives The objective of the present study was to evaluate efficacy of Carum carvi extract in biosynthesis of silver nanoparticles and to investigate antifungal effects of the biosynthesized nanoparticles. Methods Silver nanoparticles were synthesized by addition of silver nitrate solution into fresh extract of C. carvi. Characterization of the synthesized silver nanoparticles was performed by transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive spectrometry (EDS, and X-ray diffraction analysis (XRD. Inhibitory effect of silver nanoparticles on Candida albicans growth was evaluated by serial microdilution method. Results The results revealed the formation of spherical silver nanoparticles with an average size of 10 nm. Moreover, concentration of SNPs in a 25 mL sample containing both SNPs and plant extract biomass was 2.934 mg/L on average. Serial microdilution test showed that SNPs at the concentration of 50 μg/mL can inhibit growth of the pathogen. Conclusions The present study extends the existing literature about green synthesis of nanoparticles using plant tissues and extracts.

  14. Inhibitory effects of medical plants on the Candida albicans and bacterial growth in the oral cavity

    Directory of Open Access Journals (Sweden)

    Tambur Zoran Z.

    2017-01-01

    Full Text Available In this mini-review, the authors discuss the effects of ethanol extracts, essential oils and cytotoxicity of some medicinal plants and their compounds used in ethno-medicine in different geographic regions worldwide, including Serbia, on the growth, mul­tiplication and pathogenicity of Candida albicans and bacteria that play the main role in the balance of the oral ecosystem. Various medicinal plants, such as Rosmarinus officinalis (Fam. Lamiaceae, Artemisia dracunculus, Artemisia absinthium (Fam. Asteraceae, exist in different geographic regions and continents, as well as in the Balkan region, and among them there are some indigenous species like Hypericum perforatum L. (Fam. Hypericaceae, Urtica dioica L. (U. dioica (Fam. Urticaceae, Achillea millefolium L. (Fam. Asteraceae, Matricaria chamomilla L. (Fam. Asteraceae, Sambucus nigra L. (Fam. Caprifoliaceae, and Thymus serpyllum L. (Fam. Lamiaceae with impressive antimicrobial activity against microorganisms originating from the oral cavity. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 34021

  15. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production.

    Directory of Open Access Journals (Sweden)

    Huijuan Hua

    Full Text Available Ochratoxin A (OTA is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150-250 µL/L with fumigation and 250-500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥ 100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥ 75 µg/mL and ≥ 150 µg/mL respectively, while natural cinnamaldehyde couldn't fully inhibit OTA production at ≤ 200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.

  16. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Yamauchi, Koji; Kobayashi, Tetsuo; Yaeshima, Tomoko; Iwatsuki, Keiji; Yoshie, Hiromasa

    2009-08-01

    Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with >or=130 microg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and >or=6 microg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (>or=8 microg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.

  17. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    Science.gov (United States)

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Synergistic effect of Nisin and Cuminum cyminum L. essential oil on the growth of Streptococcus iniae in fillets of rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    M Ghaeni

    2013-05-01

    Full Text Available Streptococcus iniae is an emerging zoonotic pathogen that represents a threat to the aquaculture industry worldwide and poses a risk to humans’ health. The aim this study, was to evaluate the effect of cumin (Cuminum cyminum essential oil and nisin on the growth of S. iniae. For this purpose, the fillets of rainbow trout (Oncorhynchus mykiss were inoculated with 103 of S. iniae and afterwards were treated with the different concentrations of cumin essential oil (0, 0.005, 0.135 and 0.405% as well as nisin (0, 0.25 and 0.75 µg/ml. The samples were stored at 4 and 10 ºC for 15 days. Results revealed that in the samples stored at 4 °C the solo application of each of nisin and cumin essential oil could inhibit the growth of S. iniae until day 9; meanwhile, in combining form the inhibition of bacterial growth was occurred for 3 days. In the samples stored at 10 ºC, nisin and cumin essential oil hindered the bacterial growth for 3 and 6 days, respectively. Moreover, combination of the two materials inhibited the bacterial growth until day 6. The highest synergistic effect was observed in 0.405% of cumin essential oil and 0.75 µg/ml of nisin at 4 ºC. However, at 10 ºC, 0.135 and 0.405% of cumin essential oil together with 0.75 µg/ml of nisin had the highest synergistic effect. As a significant (P

  19. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells

    Science.gov (United States)

    Kwak, Youngeun

    2015-01-01

    BACKGROUND/OBJECTIVES Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo. PMID:25671062

  20. Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods.

    Science.gov (United States)

    Ju, Jian; Xu, Xiaomiao; Xie, Yunfei; Guo, Yahui; Cheng, Yuliang; Qian, He; Yao, Weirong

    2018-02-01

    This study evaluated the minimum inhibition concentration (MIC) and minimum lethal concentration (MLC) of cinnamon and clove essential oils against mold growth on green bean cake and finger citron crisp cake, and also examined the effects of these two essential oils and their application methods on the shelf life of the baked products in normal and vacuum packages by accelerated storage test. The results showed that the MIC of cinnamon and clove essential oils against molds were 0.21-0.83 and 0.21-1.67μL/mL, respectively and the MLC were 0.42-0.83 and 0.83-1.67μL/mL, respectively. In normal package cinnamon and clove essential oils could prolong the shelf life of green bean cake 9-10 and 3-4days, respectively and could prolong the shelf life of finger citron crisp cake 5-6 and 2-3days, respectively. And in vacuum package they were 15-16, 8-9, 10-12 and 7-9days, respectively in turn. Copyright © 2017. Published by Elsevier Ltd.

  1. Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyphal growth.

    Science.gov (United States)

    Araújo, Maria José Abigail Mendes; Bosco, Sandra de Moraes Gimenes; Sforcin, José Maurício

    Propolis and geopropolis are resinous products of bees showing antimicrobial effects. There is no data concerning their action against Pythium insidiosum - the causative agent of pythiosis, a pyogranulomatous disease of the subcutaneous tissue that affects mostly horses, dogs and humans. Fragments of 15 isolates of P. insidiodum were incubated with propolis and geopropolis extracts and evaluated for up to seven days to detect the minimal fungicidal concentration (MFC). Propolis inhibited three isolates at 1.0mgmL -1 after 24h and all other isolates at 3.4mgmL -1 . Geopropolis led to more variable results, exerting predominantly a fungistatic action than a fungicidal one. Propolis was more efficient than geopropolis in inhibiting P. insidiosum since lower concentrations led to no growth after 24h. This effect may be due to propolis chemical composition, which has more active compounds than geopropolis. Propolis seemed to be a good candidate for in vivo studies, since treatment with conventional antifungal compounds is difficult in most of the cases, requiring extensive surgical debridement. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. The Inhibitory Effect of Ellagic Acid on Cell Growth of Ovarian Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yuan-Chiang Chung

    2013-01-01

    Full Text Available Ellagic acid (EA is able to inhibit the growth of several cancer cells; however, its effect on human ovarian carcinoma cells has not yet been investigated. Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100 μM and assessed for viability, cell cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax : Bcl-2 ratio and restored anoikis in both cell lines. The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma.

  3. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  4. Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyphal growth

    Directory of Open Access Journals (Sweden)

    Maria José Abigail Mendes Araújo

    Full Text Available Abstract Propolis and geopropolis are resinous products of bees showing antimicrobial effects. There is no data concerning their action against Pythium insidiosum - the causative agent of pythiosis, a pyogranulomatous disease of the subcutaneous tissue that affects mostly horses, dogs and humans. Fragments of 15 isolates of P. insidiodum were incubated with propolis and geopropolis extracts and evaluated for up to seven days to detect the minimal fungicidal concentration (MFC. Propolis inhibited three isolates at 1.0 mg mL-1 after 24 h and all other isolates at 3.4 mg mL-1. Geopropolis led to more variable results, exerting predominantly a fungistatic action than a fungicidal one. Propolis was more efficient than geopropolis in inhibiting P. insidiosum since lower concentrations led to no growth after 24 h. This effect may be due to propolis chemical composition, which has more active compounds than geopropolis. Propolis seemed to be a good candidate for in vivo studies, since treatment with conventional antifungal compounds is difficult in most of the cases, requiring extensive surgical debridement.

  5. Cyclin D1 Expression and the Inhibitory Effect of Celecoxib on Ovarian Tumor Growth in Vivo

    Directory of Open Access Journals (Sweden)

    Ling-Yun Zhai

    2010-10-01

    Full Text Available The report aims to investigate the relationship between the expression of cyclin D1 and Cyclooxgenase-2 (COX-2, thus to explore the molecular mechanisms of the antitumor efficacy of Celecoxib, a COX-2 inhibitor. Human ovarian SKOV-3 carcinoma cell xenograft-bearing mice were treated with Celecoxib by infusing gaster (i.g. twice/day for 21 days. The mRNA levels of COX-2 and cyclin D1 were determined by RT-PCR. The expression of cyclin D1 at the protein level was detected by immunohistochemistry, while COX-2 protein expression was determined by Western blot. A high-dose of Celecoxib (100 mg/kg significantly inhibited tumor growth (P < 0.05, and the expression of cyclin D1 was reduced by 61%. Celecoxib decreased the proliferation cell index by 40% (P < 0.001 and increased apoptotic index by 52% (P < 0.05 in high-dose Celecoxib treated group. Our results suggest that the antitumor efficacy of Celecoxib against ovarian cancer in mice may in part be mediated through suppression of cyclin D1, which may contribute to its ability to suppress proliferation.

  6. The Antifungal Inhibitory Concentration Effectiveness Test From Ethanol Seed Arabica Coffee (Coffea arabica) Extract Against The Growth Of Candida albicans Patient Isolate With In Vitro Method

    Science.gov (United States)

    Satria Rakatama, Adam; Pramono, Andri; Yulianti, Retno

    2018-03-01

    Candida albicans are the most frequent cause of Vulvovaginalis Candidiasis infection. Its treatment using antifungal drugs, are oftenly caused side effects. The reduction of C.albicans growth and the reduction of antifungal drugs side effect, were our main purposed. Our study objective is determine the effectiveness of inhibitory power of arabica coffee seed ethanol extract on the growth of C.albicans patient isolates. The type of this research is experimental research. Kirby-bauer method with the Saboraud Dextrose Agar (SDA) media was used in this experiment. Inhibitory zone was observed around the disc, to determine the inhibitory power. The results showed that the inhibitory zone was formed on arabica coffee seed ethanol extract on 10%, 20%, 40%, and 80% concentration. Kruskal-Wallis test results (palbicans patient isolates were smaller compared with C.albicans ATCC 90028 as gold standard. This showed that the virulence of C.albicans from patients isolates were higher. We concluded that arabica coffee seed ethanol extract could inhibiting the growth of C.albicans patient isolates. Optimization of coffee seed ethanol extract to obtain maximum active ingredients still needs to be done. This knowledge is expected to be used for the beginning manufacturer antifungal drug from natural product.

  7. Inhibitory effect of chromogenic culture media on the growth of Rhodotorula: relevance to the diagnosis of Rhodotorula spp. infections.

    Science.gov (United States)

    Bellanger, Anne-Pauline; Grenouillet, Frédéric; François, Nadine; Skana, Florence; Millon, Laurence

    2013-11-01

    With the increasing incidence and diverse etiologies of fungal infections, chromogenic yeast culture media are increasingly used for routine diagnosis. Rhodotorula species, which are characterized by the production of carotenoid pigments, are considered as emerging opportunistic pathogens. We recently diagnosed two fungemia due to Rhodotorula spp. and noticed that in both cases, the yeast failed to grow in subculture on the chromogenic yeast culture medium. This study was thus undertaken to investigate more thoroughly the ability (or inability) of Rhodotorula species to grow on different commercially available chromogenic media for yeast. Eighteen Rhodotorula spp. were checked for their ability to grow on four chromogenic yeast culture media: CHROMagar Candida (BD), Candi 4 Select (Biorad), Brilliance Candida (Oxoid), and Candida ID 2 (BioMerieux). All the Rhodotorula spp. strains grew on Brilliance and Candida ID 2, while only six isolates grew on Candi 4, and seven on CHROMagar. Two chromogenic yeast culture media showed a significant inhibitory effect on the growth of Rhodotorula species. As all Rhodotorula species are resistant to echinocandins and fluconazole, it is essential to isolate and identify these yeast quickly to initiate appropriate amphotericin B antifungal treatment as early as possible. The choice of media for routine use should take into account the ability of different media to allow all emerging fungal pathogens to grow. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  8. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mojtaba Panjehpour

    2010-01-01

    Full Text Available Background: Cadmium chloride is an important occupational and environmental pollutant. However, it can also be anti-carcinogenic under certain conditions. Copper, an essential trace element, has the ability to generate reactive oxygen species and induce cell apoptosis. This study was aimed to determine the growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. Methods: By using MTT cell viability test, treatment of monolayer cell cultures with different metal concentrations (1-1000 μM showed a significant dose dependent decrease (p < 0.05 of viable cells in different times. Results: A considerable cytotoxicity was observed for CdCl2 at 200 μM and 1 μM after 48 and 72 hours incubations, respectively. The highest concentration of CuCl2 (1000 μM had little cytotoxic effects after 48 hours incubation period, but 1 μM of CuCl2 revealed a considerable cytotoxicity after 72 hours. The maximum synergic cytotoxic effect was observed at 0.5 μM of both metals. Conclusions: The results of the present study indicate that cytotoxic effect of CuCl2 is somehow lesser than that of CdCl2. This may be due to vital role of copper which is not known for cadmium so far.

  9. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    Directory of Open Access Journals (Sweden)

    Sejal Desai

    Full Text Available Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2 and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper

  10. Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract

    Science.gov (United States)

    Gundala, Sushma R.; Mukkavilli, Rao; Yang, Chunhua; Aneja, Ritu

    2014-01-01

    Phytochemical complexity of plant foods confers health-promoting benefits including chemopreventive and anticancer effects. Isolating single constituents from complex foods may render them inactive, emphasizing the importance of preserving the natural composition of whole extracts. Recently, we demonstrated in vitro synergy among the most abundant bioactive constituents of ginger extract (GE), viz., 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S). However, no study has yet examined the in vivo collaboration among ginger phytochemicals or evaluated the importance, if any, of the natural ‘milieu’ preserved in whole extract. Here, we comparatively evaluated in vivo efficacy of GE with an artificial quasi-mixture (Mix) formulated by combining four most active ginger constituents at concentrations equivalent to those present in whole extract. Orally fed GE showed 2.4-fold higher tumor growth-inhibitory efficacy than Mix in human prostate tumor xenografts. Pharmacokinetic evaluations and bioavailability measurements addressed the efficacy differences between GE and Mix. Plasma concentration-time profiles revealed multiple peaking phenomenon for ginger constituents when they were fed as GE as opposed to Mix, indicating enterohepatic recirculation. Bioavailability of 6G, 8G, 10G and 6S was 1.6-, 1.1-, 2.5- and 3.4-fold higher, respectively, when dosed with GE compared with Mix. In addition, gingerol glucuronides were detected in feces upon intravenous administration confirming hepatobiliary elimination. These data ascribe the superior in vivo efficacy of GE to higher area under the concentration time curves, greater residence time and enhanced bioavailability, of ginger phytochemicals, when fed as a natural extract compared with artificial Mix, emphasizing the usefulness of consuming whole foods over single agents. PMID:24431413

  11. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L. var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines.

    Science.gov (United States)

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Yousefi, Bahman; Abdollahpour Alitappeh, Meghdad; Khori, Vahid

    2014-12-01

    Punica granatum L. var. granatum (Pomegranate), an herbaceous plant found in Iran, The aim of this study was to investigate the cytotoxic effects, induction of apoptosis, and the mechanism of cell death of ethanol extract from Punica granatum L. var. spinosa on the mouse fibrosarcoma cell line, WEHI-164. Various parts of the herbs were extracted from fruit using ethanol as the solvent, and the cytotoxicity and cell viability of the ethanolic extract were determined by the MTT assay. To determine whether necrosis or apoptosis is the predominant cause of cell death, cell death detection was performed using the ELISA method. The induction of apoptosis was confirmed using the terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) assay. Moreover, a sensitive immunoblotting technique was used to examine the production of Caspase-3 and Bcl2 proteins. Our findings suggested that the ethalonic extract of Punica granatum L. var. spinosa altered cell morphology, decreased cell viability, suppressed cell proliferation and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 229.024μg/ml), when compared to a chemotherapeutic anticancer drug, Toxol (Vesper Pharmaceuticals), with increased nucleosome production from apoptotic cells. Induction of apoptosis by the plant extract was proved by the decrease of pro-Caspase-3 and Bcl2 proteins and quantitatively confirmed by Immunoblotting analysis. The results obtained from the present study have demonstrated the growth-inhibitory effect of Ethanol Extracts from Punica granatum L. var. spinosa, and clearly showed that apoptosis was the major mechanism of in-vitro cell death induced by the extract.

  12. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis.

    Science.gov (United States)

    Wu, Xian; Song, Mingyue; Qiu, Peiju; Rakariyatham, Kanyasiri; Li, Fang; Gao, Zili; Cai, Xiaokun; Wang, Minqi; Xu, Fei; Zheng, Jinkai; Xiao, Hang

    2017-04-01

    Different cancer chemopreventive agents may act synergistically and their combination may produce enhanced protective effects against carcinogenesis than each individual agent alone. Herein, we investigated the chemopreventive effects of nobiletin (NBT, a citrus polymethoxyflavone) and atorvastatin (ATST, a lipid-lowering drug) in colon cancer cells/macrophages and an azoxymethane (AOM)-induced colon carcinogenesis rat model. The results demonstrated that co-treatments of NBT/ATST produced enhanced growth inhibitory and anti-inflammatory effects on the colon cancer cells and macrophages, respectively. Isobologram analysis confirmed that these interactions between NBT and ATST were synergistic. NBT/ATST co-treatment also synergistically induced extensive cell cycle arrest and apoptosis in colon cancer cells. Oral administration of NBT (0.1%, w/w in diet) or ATST (0.04%, w/w in diet) significantly decreased colonic tumor incidence and multiplicity in AOM-treated rats. Most importantly, co-treatment of NBT/ATST at their half doses (0.05% NBT + 0.02% ATST, w/w in diet) resulted in even stronger inhibitory effects on colonic tumor incidence and multiplicity than did NBT or ATST alone at higher doses. Statistical analysis confirmed that the enhanced chemopreventive activities against colon carcinogenesis in rats by the NBT/ATST combination were highly synergistic. Our results further demonstrated that NBT/ATST co-treatment profoundly modulated key cellular signaling regulators associated with inflammation, cell proliferation, cell cycle progression, apoptosis, angiogenesis and metastasis in the colon of AOM-treated rats. In conclusion, for the first time, our results demonstrated a strong synergy in inhibiting colon carcinogenesis produced by the co-treatment of NBT and ATST, which provided a scientific basis for using NBT in combination with ATST for colon cancer chemoprevention in humans. © The Author 2017. Published by Oxford University Press. All rights reserved

  13. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells

    International Nuclear Information System (INIS)

    Camirand, Anne; Zakikhani, Mahvash; Young, Fiona; Pollak, Michael

    2005-01-01

    Gefitinib (Iressa, ZD 1839, AstraZeneca) blocks the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and inhibits proliferation of several human cancer cell types including breast cancer. Phase II clinical trials with gefitinib monotherapy showed an objective response of 9 to 19% in non-small-cell lung cancer patients and less than 10% for breast cancer, and phase III results have indicated no benefit of gefitinib in combination with chemotherapy over chemotherapy alone. In order to improve the antineoplastic activity of gefitinib, we investigated the effects of blocking the signalling of the insulin-like growth factor 1 receptor (IGF-1R), a tyrosine kinase with a crucial role in malignancy that is coexpressed with EGFR in most human primary breast carcinomas. AG1024 (an inhibitor of IGF-1R) was used with gefitinib for treatment of MDA468, MDA231, SK-BR-3, and MCF-7 breast cancer lines, which express similar levels of IGF-1R but varying levels of EGFR. Proliferation assays, apoptosis induction studies, and Western blot analyses were conducted with cells treated with AG1024 and gefitinib as single agents and in combination. Gefitinib and AG1024 reduced proliferation in all lines when used as single agents, and when used in combination revealed an additive-to-synergistic effect on cell growth inhibition. Flow cytometry measurements of cells stained with annexin V-propidium iodide and cells stained for caspase-3 activation indicated that adding an IGF-1R-targeting strategy to gefitinib results in higher levels of apoptosis than are achieved with gefitinib alone. Gefitinib either reduced or completely inhibited p42/p44 Erk kinase phosphorylation, depending on the cell line, while Akt phosphorylation was reduced by a combination of the two agents. Overexpression of IGF-1R in SK-BR-3 cells was sufficient to cause a marked enhancement in gefitinib resistance. These results indicate that IGF-1R signaling reduces the antiproliferative effects of

  14. Coupling of online control and inhibitory systems in children with atypical motor development: A growth curve modelling study

    NARCIS (Netherlands)

    Ruddock, S.; Caeyenberghs, K.; Piek, J.P.; Sugden, D.A.; Hyde, C.; Morris, S.L.; Rigoli, D.; Steenbergen, B.; Wilson, P.H.

    2016-01-01

    Introduction: Previous research indicates that children with Developmental Coordination Disorder (DCD) show deficits performing online corrections, an issue exacerbated by adding inhibitory constraints; however, cross-sectional data suggests that these deficits may reduce with age. Using a

  15. Coupling of online control and inhibitory systems in children with atypical motor development: A growth curve modelling study

    NARCIS (Netherlands)

    Ruddock, S.; Caeyenberghs, K.; Piek, J.; Sugden, D.A.; Hyde, C.; Morris, S.; Rigoli, D.; Steenbergen, B.; Wilson, P.

    2016-01-01

    INTRODUCTION: Previous research indicates that children with Developmental Coordination Disorder (DCD) show deficits performing online corrections, an issue exacerbated by adding inhibitory constraints; however, cross-sectional data suggests that these deficits may reduce with age. Using a

  16. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Bajguz, Andrzej; Piotrowska-Niczyporuk, Alicja

    2013-10-01

    The relationships between brassinosteroids (BRs) (brassinolide, BL; 24-epiBL; 28-homoBL; castasterone, CS; 24-epiCS; 28-homoCS) and auxins (indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-propionic acid, IPA) in the regulation of cell number, phytohormone level and metabolism in green alga Chlorella vulgaris were investigated. Exogenously applied auxins had the highest biological activity in algal cells at 50 μM. Among the auxins, IAA was characterized by the highest activity, while IBA - by the lowest. BRs at 0.01 μM were characterized by the highest biological activity in relation to auxin-treated and untreated cultures of C. vulgaris. The application of 50 μM IAA stimulated the level of all detected endogenous BRs in C. vulgaris cells. The stimulatory effect of BRs in green algae was arranged in the following order: BL > 24-epiBL > 28-homoBL > CS > 24-epiCS > 28-homoCS. Auxins cooperated synergistically with BRs stimulating algal cell proliferation and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for the mixture of BL with IAA, whereas the lowest in the culture treated with both 28-homoCS and IBA. However, regardless of the applied mixture of BRs with auxins, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone. Obtained results confirm that both groups of plant hormones cooperate synergistically in the control of growth and metabolism of unicellular green alga C. vulgaris. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Antje M. Richter

    2016-02-01

    Full Text Available Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF. Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005. RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005. Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis

  18. Occurrence of aflatoxins in mahua (Madhuca indica Gmel.) seeds: synergistic effect of plant extracts on inhibition of Aspergillus flavus growth and aflatoxin production.

    Science.gov (United States)

    Sidhu, O P; Chandra, Harish; Behl, H M

    2009-04-01

    Occurrence of aflatoxin in Madhuca indica Gmel. seeds was determined by competitive ELISA. Eighty percent of mahua seed samples were found to be contaminated with aflatoxin. Total aflatoxin content ranged from 115.35 to 400.54ppb whereas the concentration of AFB(1) was in the range of 86.43 to 382.45ppb. Mahua oil was extracted by cold press expeller and analysed for contamination of aflatoxin in both the oil and cake samples. Total aflatoxin and aflatoxin B(1) were 220.66 and 201.57ppb in oil as compared to that in cake samples where it was 87.55 and 74.35ppb, respectively. Various individual and combined plant extracts were evaluated for their efficacy against growth of Aspergillus flavus and aflatoxin production in vitro. Combination of botanicals were found to be more effective in controlling fungal growth and aflatoxin production than individual extracts. Results of the present study suggests that synergistic effect of plant extracts can be used for control of fungal growth and aflatoxin production. These natural plant products may successfully replace synthetic chemicals and provide an alternative method to protect mahua as well as other agricultural commodities of nutritional significance from toxigenic fungi such as A. flavus and aflatoxin production.

  19. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil.

    Science.gov (United States)

    Abd-Alla, Mohamed Hemida; El-Enany, Abdel-Wahab Elsadek; Nafady, Nivien Allam; Khalaf, David Mamdouh; Morsy, Fatthy Mohamed

    2014-01-20

    Egyptian soils are generally characterized by slightly alkaline to alkaline pH values (7.5-8.7) which are mainly due to its dry environment. In arid and semi-arid regions, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. Alkaline soils have fertility problems due to poor physical properties which adversely affect the growth and the yield of crops. Therefore, this study was devoted to investigating the synergistic interaction of Rhizobium and arbuscular mycorrhizal fungi for improving growth of faba bean grown in alkaline soil. A total of 20 rhizobial isolates and 4 species of arbuscular mycorrhizal fungi (AMF) were isolated. The rhizobial isolates were investigated for their ability to grow under alkaline stress. Out of 20 isolates 3 isolates were selected as tolerant isolates. These 3 rhizobial isolates were identified on the bases of the sequences of the gene encoding 16S rRNA and designated as Rhizobium sp. Egypt 16 (HM622137), Rhizobium sp. Egypt 27 (HM622138) and Rhizobium leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The best alkaline tolerant was R. leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The effect of R. leguminosarum bv. viciae STDF-Egypt 19 and mixture of AMF (Acaulospora laevis, Glomus geosporum, Glomus mosseae and Scutellospora armeniaca) both individually and in combination on nodulation, nitrogen fixation and growth of Vicia faba under alkalinity stress were assessed. A significant increase over control in number and mass of nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was recorded in dual inoculated plants than plants with individual inoculation. The enhancement of nitrogen fixation of faba bean could be attributed to AMF facilitating the mobilization of certain elements such as P, Fe, K and other minerals that involve in synthesis of nitrogenase and leghaemoglobin. Thus it is

  20. Concurrently inhibitory and allelopathic effects of allelochemicals secreted by Myriophyllum spicatum on growth of blue-green algae; Hozakinofusamo ga hoshutsushita areropashi busshitsu no aisorui ni taisuru fukugo sayo oyobi areropashi koka no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, S.; Inoue, Y.; Hosomi, M.; Murakami, A. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1998-10-10

    This paper describes effects of allelochemicals secreted by Myriophyllum spicatum on growth of blue-green algae. In order to propose an effective growth inhibitory method of blue-green algae with less impact on the ecosystem, biological interaction (allelopathy) between large aquatic plants and algae was investigated. Pyrogallic acid, gallic acid, catechin and ellagic acid secreted by M. spicatum provided growth inhibitory effects of blue-green algae (Microcyctis aeruginosa), individually. Complex interaction and allelopathic contribution of these four polyphenols were evaluated. By comparing the actual effects with the expected values, synergetic growth inhibitory effects were recognized by adding four polyphenols at the same time. Furthermore, growth inhibitory effects were evaluated for actual culture solution of M. spicatum and simulated culture solution made by four polyphenols. As a result, it was found that these four polyphenols relate to allelopathy of M. spicatum. 25 refs., 6 figs., 4 tabs.

  1. Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53.

    Directory of Open Access Journals (Sweden)

    Jasmine George

    Full Text Available Cancer chemoprevention by natural dietary agents has received considerable importance because of their cost-effectiveness and wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP in suppressing two-stage mouse skin carcinogenesis induced by DMBA and TPA. Resveratrol/BTP alone treatment decreased tumor incidence by ∼67% and ∼75%, while combination of both at low doses synergistically decreased tumor incidence even more significantly by ∼89% (p<0.01. This combination also significantly regressed tumor volume and number (p<0.01. Mechanistic studies revealed that this combinatorial inhibition was associated with decreased expression of phosphorylated mitogen-activated protein kinase family proteins: extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, p38 and increased in total p53 and phospho p53 (Ser 15 in skin tissue/tumor. Treatment with combinations of resveratrol and BTP also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, our results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer. This promising combination should be examined in therapeutic trials of skin and possibly other cancers.

  2. Synergistic Effect of Simvastatin Plus Radiation in Gastric Cancer and Colorectal Cancer: Implications of BIRC5 and Connective Tissue Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Taekyu [Division of Hematology-Oncology, Department of Internal Medicine, VHS Medical Center, Seoul (Korea, Republic of); Lee, Inkyoung [Biomedical Research Institute, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jungmin [Changduk Girls' High School, Seoul (Korea, Republic of); Kang, Won Ki, E-mail: wonki.kang@samsung.com [Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-10-01

    Purpose: We investigated the synergistic effect of simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor plus radiation therapy, on the proliferation and survival of gastric cancer (GC) and colorectal cancer (CRC) cells. We also studied several genes involved in the simvastatin/radiation-induced effects. Methods and Materials: Gastric cancer (AGS, SNU601, MKN1, and MKN28) and CRC (CoLo320, SW48, HT29, and HCT8) cell lines were treated with 0.2 μM simvastatin alone, or in combination with 0 to 4 Gy of radiation, and subjected to clonogenic survival and proliferation assays in vitro. To assess the molecular mechanism of the combination treatment, we performed microarray analysis, immunoblot assays, small interfering RNA knockdown experiments, and plasmid rescue assays. The antitumoral effects of simvastatin and radiation were evaluated in vivo using xenograft models. Results: The combination therapy of simvastatin plus radiation inhibited basal clonogenic survival and proliferation of GC and CRC cells in vitro. Simvastatin suppressed the expression of BIRC5 and CTGF genes in these cancer cells. In vivo, the combined treatment with simvastatin and radiation significantly reduced the growth of xenograft tumors compared with treatment with radiation alone. Conclusion: We suggest that simvastatin has a synergistic effect with radiation on GC and CRC through the induction of apoptosis, which may be mediated by a simultaneous inhibition of BIRC5 and CTGF expression. A clinical trial of simvastatin in combination with radiation in patients with GC or CRC is warranted.

  3. The Evaluation of Synergistic Effect of Hippophae rhamnoides and Vitamin E on Growth Performance and Oxidative Stress at Oreochromis niloticus - Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Alina Antache

    2014-10-01

    Full Text Available The aim of this research is to evaluate the influence of sea buckthorn (Hippophae rhamnoides and vitamin E on growth performance indicators and oxidative stress at Nile tilapia juvenile, reared in a recirculating aquaculture system. The experiment was conducted six weeks, in triplicate. The experimental variants were: V1 – control, V2 – 1% sea buckthorn / kg feed, V3 – 500mg vitamin E / kg feed and V4 – 1% sea buckthorn supplemented with 500 mg vitamin E / kg feed. During the experiment was performed an intermediary biometric measurement. Oxidative stress analysis consisted in determination of lipid peroxidation (MDA-malondialdehide and total antioxidant capacity (TAC from liver, tissue and gut. Results showed a good evolution of GR, FCR and SGR, during the experiment, in V4 – in which feed was supplemented with sea buckthorn and vitamin E. Based on the results obtained in variant V4, in liver and tissue, the oxidative stress was reduced. Regarding MDA and TAC, between experimental variants, were registered significant differences (p<0.05 at the level of tissue and gut. In conclusion, the research shows that sea buckthorn (1%/kg feed in combination with Vitamin E (500mg/kg feed has a synergistic effect on growth performance indicators and oxidative stress, at Oreochromis niloticus juvenile.

  4. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression.

    Science.gov (United States)

    Jaksevicius, Andrius; Carew, Mark; Mistry, Calli; Modjtahedi, Helmout; Opara, Elizabeth I

    2017-09-21

    It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells' cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7's cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential.

  5. Tumor growth-inhibitory effect of an angiotensin-converting enzyme inhibitor (captopril) in a lung cancer xenograft model analyzed using 18F-FDG-PET/CT.

    Science.gov (United States)

    Nakaya, Koji; Otsuka, Hideki; Kondo, Kazuya; Otani, Tamaki; Nagata, Motoi

    2016-02-01

    We administered an angiotensin-converting enzyme inhibitor (captopril) to mice implanted with a human lung adenocarcinoma epithelial cell line (A549 cells) and investigated the tumor growth-inhibitory effect of captopril from the viewpoint of glucose metabolism using (18)F-fluorodeoxyglucose ((18)F-FDG)-PET/CT. Subcutaneous implantation of A549 cells (1.9×10(6) cells) was carried out in the lower right flank of mice. Fifteen days after the transplantation of A549 cells, mice (six in each group) were treated with captopril (3.0 mg/mouse) or saline (1000 μl/mouse) for 5 days. We performed (18)F-FDG-PET/CT imaging of the mice before and after the treatment and evaluated the degree of (18)F-FDG accumulation in tumors. In both groups (the captopril-administrated and control groups), values for the metabolic tumor volume (MTV), maximum standardized uptake value, total lesion glycolysis, and tumor volume after treatment had a tendency to increase. However, tumor growth was suppressed in the captopril-administrated group compared with the control group. In terms of the growth rate, the MTV and tumor volume were significantly different (Pcaptopril exerted a potential tumor growth-inhibitory effect; this was because the captopril-administrated group showed low values of MTV, maximum standardized uptake value, total lesion glycolysis, and tumor volume in comparison with the control group.

  6. Growth Behavior of E. coli, Enterococcus and Staphylococcus Species in the Presence and Absence of Sub-inhibitory Antibiotic Concentrations: Consequences for Interpretation of Culture-Based Data.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2016-11-01

    Culture-based approaches are used to monitor, e.g., drinking water or bathing water quality and to investigate species diversity and antibiotic resistance levels in environmental samples. For health risk assessment, it is important to know whether the growing cultures display the actual abundance of, e.g., clinically relevant antibiotic resistance phenotypes such as vancomycin-resistant Enterococcus faecium/Enterococcus faecalis (VRE) or methicillin-resistant Staphylococcus aureus. In addition, it is important to know whether sub-inhibitory antibiotic concentrations, which are present in surface waters, favor the growth of antibiotic-resistant strains. Therefore, clinically relevant bacteria were isolated from different water sources and the growth behavior of 58 Escherichia coli, 71 Enterococcus, and 120 Staphylococcus isolates, belonging to different species and revealing different antibiotic resistance patterns, was studied with respect to "environmental" antibiotic concentrations. The finding that VRE could only be detected after specific enrichment can be explained by their slow growth compared to non-resistant strains. Interpreting their absence in standardized culture-based methods as nonexistent might be a fallacy. Sub-inhibitory antibiotic concentrations that were detected in sewage and receiving river water did not specifically promote antibiotic-resistant strains. Generally, those antibiotics that influenced cell metabolism directly led to slightly reduced growth rates and less than maximal optical densities after 48 h of incubation.

  7. Survival and synergistic growth of mixed cultures of bifidobacteria and lactobacilli combined with prebiotic oligosaccharides in a gastrointestinal tract simulator

    Directory of Open Access Journals (Sweden)

    Signe Adamberg

    2014-07-01

    Full Text Available Background: Probiotics, especially in combination with non-digestible oligosaccharides, may balance the gut microflora while multistrain preparations may express an improved functionality over single strain cultures. In vitro gastrointestinal models enable to test survival and growth dynamics of mixed strain probiotics in a controlled, replicable manner. Methods: The robustness and compatibility of multistrain probiotics composed of bifidobacteria and lactobacilli combined with mixed prebiotics (galacto-, fructo- and xylo-oligosaccharides or galactooligosaccharides and soluble starch were studied using a dynamic gastrointestinal tract simulator (GITS. The exposure to acid and bile of the upper gastrointestinal tract was followed by dilution with a continuous decrease of the dilution rate (de-celerostat to simulate the descending nutrient availability of the large intestine. The bacterial numbers and metabolic products were analyzed and the growth parameters determined. Results: The most acid- and bile-resistant strains were Lactobacillus plantarum F44 and L. paracasei F8. Bifidobacterium breve 46 had the highest specific growth rate and, although sensitive to bile exposure, recovered during the dilution phase in most experiments. B. breve 46, L. plantarum F44, and L. paracasei F8 were selected as the most promising strains for further studies. Conclusions: De-celerostat cultivation can be applied to study the mixed bacterial cultures under defined conditions of decreasing nutrient availability to select a compatible set of strains.

  8. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Sun, Ding [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Department of Hepatobiliary Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Zhu, Qing-Feng [The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD, 21205 (United States); Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 (China); Yang, Xin-Rong [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Gao, Ya-Bo [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032 (China); Tang, Wei-Guo [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Fan, Jia [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 (China); Maitra, Anirban [The Sol Goldman Pancreatic Cancer Research Center, Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States); and others

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • NanoCurcumin and

  9. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hu, Bo; Sun, Ding; Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang; Zhu, Qing-Feng; Yang, Xin-Rong; Gao, Ya-Bo; Tang, Wei-Guo; Fan, Jia; Maitra, Anirban

    2015-01-01

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • NanoCurcumin and

  10. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.)

    OpenAIRE

    Agbodjato, Nad?ge A.; Noumavo, Pac?me A.; Adjanohoun, Adolphe; Agbessi, L?once; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the...

  11. The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic accelerator in vitro.

    Science.gov (United States)

    Liu, C-H; Huang, T-H; Hung, C-J; Lai, W-Y; Kao, C-T; Shie, M-Y

    2014-09-01

    To examine the effects of mineral trioxide aggregate (MTA)/fibroblast growth factor-2 (FGF-2) on material properties and in vitro human dental pulp cell (hDPCs) behaviour. The setting time and diametral tensile strength (DTS) of MTA and MTA/FGF-2 were measured. The structure of specimens before and after soaking in DMEM was examined under a scanning electron microscope. Alamar Blue was used for evaluating hDPCs proliferation. An enzyme-linked immunosorbent assay was employed to determine ALP and osteocalcin (OC) expression in hDPCs cultured on cements. The effect of small interfering RNA (siRNA) transfection targeting fibroblast growth factor receptor (FGFR) was also evaluated. One-way analysis of variance was used to evaluate the significance of the differences between the mean values. Setting time and DTS data were not found to be significant (P > 0.05) between MTA with and without FGF-2. Cell proliferation and differentiation increased significantly (P MTA. After siRNA transfection with FGFR, the proliferation and differentiation behaviour of the hDPCs appreciably decreased when cultured on an MTA/FGF-2 composite. In contrast, no significant amounts (P > 0.05) of ALP and OC were secreted by hDPCs seeded on MTA. Mineral trioxide aggregate with FGF-2 content enhanced the higher expression of hDPCs proliferation and osteogenic differentiation as compared to pure MTA cement. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo.

    Science.gov (United States)

    Sandholm, Jouko; Lehtimäki, Jaakko; Ishizu, Tamiko; Velu, Sadanandan E; Clark, Jeremy; Härkönen, Pirkko; Jukkola-Vuorinen, Arja; Schrey, Aleksi; Harris, Kevin W; Tuomela, Johanna M; Selander, Katri S

    2016-12-27

    Bisphosphonates are standard treatments for bone metastases. When given in the adjuvant setting, they reduce breast cancer mortality and recurrence in bone but only among post-menopausal patients. Optimal drug use would require biomarker-based patient selection. Such biomarkers are not yet in clinical use. Based on the similarities in inflammatory responses to bisphosphonates and Toll-like receptor (TLR) agonists, we hypothesized that TLR9 expression may affect bisphosphonate responses in cells. We compared bisphosphonate effects in breast cancer cell lines with low or high TLR9 expression. We discovered that cells with decreased TLR9 expression are significantly more sensitive to the growth-inhibitory effects of bisphosphonates in vitro and in vivo. Furthermore, cancer growth-promoting effects seen with some bisphosphonates in some control shRNA cells were not detected in TLR9 shRNA cells. These differences were not associated with inhibition of Rap1A prenylation or p38 phosphorylation, which are known markers for bisphosphonate activity. However, TLR9 shRNA cells exhibited increased sensitivity to ApppI, a metabolite that accumulates in cells after bisphosphonate treatment. We conclude that decreased TLR9-expression sensitizes breast cancer cells to the growth inhibitory effects of bisphosphonates. Our results suggest that TLR9 should be studied as a potential biomarker for adjuvant bisphosphonate sensitivity among breast cancer patients.

  13. Evaluation of inhibitory effects of Chlorella vulgaris extract on growth, proliferation and biofilm formation by Streptococcus mutans and evaluation of its toxicity

    Directory of Open Access Journals (Sweden)

    2015-11-01

    Full Text Available Background & Objectives: Dental caries is the most important disease caused by some bacteria specially Streptococcus Mutans from Viridans family. The aim of this study is to evaluate the inhibitory effect of Chlorella vulgaris extract on growth, proliferation, and biofilm formation of Streptococcus mutans. Materials & Methods: Microalgae Chlorella vulgaris was extracted via maceration using chloroform, methanol, and acetone (2/1/1 as solvents. The antibacterial activities were evaluated through methods such as disk diffusion, well diffusion, minimal inhibitory concentration (MIC, and minimal bactericidal concentration (MBC; besides, the anti-biofilm formation of Chlorella vulgaris extract was indicated. In the present study, a method utilizing brine shrimp lethality was used to screen the toxicity of Chlorella vulgaris extract, and the mortality of brine shrimps was counted by Magnifying glass in a 24-hour period. Results: The results of disc diffusion and well diffusion of Chlorella vulgaris extract revealed the averages of 16.5 and 23 mm zones of inhibition in Mueller-Hinton agar, respectively. The minimal inhibitory concentration was 25 mg/ml and the minimal bactericidal concentration was 50 mg/ml. The anti-biofilm formation concentration of Chlorella vulgaris extract was 50 mg/ml, and the concentration of brine shrimp toxicity was100 mg/ml. Conclusion: The present study showed that Chlorella vulgaris extract has more significant antimicrobial properties than ampicillin and is able to eliminate Streptococcus mutans biofilm.

  14. Synergistic suppression effect on tumor growth of ovarian cancer by combining cisplatin with a manganese superoxide dismutase-armed oncolytic adenovirus.

    Science.gov (United States)

    Wang, Shibing; Shu, Jing; Chen, Li; Chen, Xiaopan; Zhao, Jianhong; Li, Shuangshuang; Mou, Xiaozhou; Tong, Xiangmin

    2016-01-01

    Gene therapy on the basis of oncolytic adenovirus is a novel approach for human cancer therapeutics. We aim to investigate whether it will synergistically reinforce their antiovarian cancer activities when the combined use of ZD55-manganese superoxide dismutase (MnSOD) and cisplatin was performed. The experiments in vitro showed that ZD55-MnSOD enhances cisplatin-induced apoptosis and causes remarkable ovarian cancer cell death. Apoptosis induction by treatment with ZD55-MnSOD and/or cisplatin was detected in SKOV-3 by apoptotic cell staining, flow cytometry, and western blot analysis. In addition, the cytotoxicity caused by ZD55-MnSOD to normal cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and western blot analysis. Animal experiment further confirmed that combination of ZD55-MnSOD and cisplatin achieved significant inhibition of SKOV-3 ovarian tumor xenografted growth. In summary, we have demonstrated that ZD55-MnSOD can sensitize human ovarian cancer cells to cisplatin-induced cell death and apoptosis in vitro and in vivo. These findings indicate that the combined treatment with ZD55-MnSOD and cisplatin could represent a rational approach for antiovarian cancer therapy.

  15. Short Communication Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Zafar-ul-Hye

    2013-05-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR containing ACC-deaminase in combination with rhizobia can improve the growth and nodulation in plants by suppressing the endogenous level of ethylene. In the present study, ten strains, each of PGPR and rhizobia from the previously screened cultures were tested for their effect as co-inoculants on growth and nodulation of lentil in growth pouches under axenic conditions. Results showed that most of the combinations improved the lentil growth as compared to the un-inoculated control. Maximum increase in shoot length (1.87 fold, root length (1.97 fold and total biomass (1.98 fold over the un-inoculated control was observed in the treatment where the lentil seedlings were inoculated with the combination Z24P10. Co-inoculation also improved the nodulation in lentil and the maximum number of nodules plant-1 (24 nodules were observed in the combination Z22P10. However, there was no nodulation in few combinations. It is concluded that the co-inoculation with rhizobia and PGPR containing ACC-deaminase has improved the growth and nodulation in lentil under axenic conditions and the selected combinations may be evaluated in pot and field trials

  16. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  17. Phytochemical compositions of extract from peel of hawthorn fruit, and its antioxidant capacity, cell growth inhibition, and acetylcholinesterase inhibitory activity.

    Science.gov (United States)

    Wu, Panpan; Li, Fajie; Zhang, Jianyong; Yang, Bin; Ji, Zhaojie; Chen, Weidong

    2017-03-11

    Hawthorn fruit (HF) is a well-known traditional medicine in China with the effects of improving digestion and regulating qi-flowing for removing blood stasis. Modern pharmacological experiments showed that HF extract has various pharmaceutical properties and flavonoids are considered as the main bioactive compounds. In this paper, Diaion HP-20 adsorption chromatography was used to enrich flavonoids in PHF, and the phytochemical composition of EPHF was analyzed by high performance liquid chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS). In addition, EPHF's antioxidant capacity, acetylcholinesterase (AChE) inhibitory activity and cytotoxic activity were evaluated. EPHF was obtained by Diaion HP-20 adsorption chromatography. Phytochemical composition of EPHF was analyzed qualitatively and quantitatively using HPLC and LC-MS. Radical scavenging capacity of EPHF was estimated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay and oxygen radical absorbance capacity (ORAC) assay. The AChE inhibitory activity of EPHF was evaluated by Ellman method. Cytotoxic activity of EPHF was assessed by means of MTT assay. Eight kinds of components were identified, in which ideain with the value of 179.4 mg/g was identified to be present in the highest level in EPHF, followed by (-)-epicatechin, chlorogenic acid, cyanidin 3-arabinoside, hyperoside and isoquercitrin at the concentrations of 40.9, 10.0, 1.4, 0.4 and 0.2 mg/g, respectively. The contents of these compounds in EPHF were much higher than those in PHF and HF. In addition, EPHF exhibited strong antioxidant and AChE inhibitory activity (ORAC value: 11.65 ± 2.37 μM Trolox equivalents (TE)/mg, DPPH IC 50 value: 6.72 μg/mL, anti-AChE activity IC 50 value: 11.72 μg/mL) compared with PHF and HF. Moreover, EPHF exhibited high levels of cytotoxicity on MCF-7 and SKOV-3 human tumour cell lines in a dose-dependent manner with the IC 50 of 2.76 and 80.11 μg/mL, respectively. Macroporous resin

  18. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.).

    Science.gov (United States)

    Agbodjato, Nadège A; Noumavo, Pacôme A; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production.

  19. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  20. MODELING THE INHIBITORY EFFECT OF 1,2-EPOXYOCTANE ON THE GROWTH-KINETICS OF PSEUDOMONAS-OLEOVORANS

    NARCIS (Netherlands)

    VANDERMEER, AB; MIEDEMA, WA; LUYBEN, KCAM; BEENACKERS, AACM

    1993-01-01

    During the production of 1,2-epoxyoctane from 1-octene by Pseudomonas oleovorans cells, both cell growth and epoxide production are inhibited by the product. To investigate this product inhibition the kinetics of cell growth were investigated as a function of epoxide concentration, in both a batch

  1. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Nadège A. Agbodjato

    2016-01-01

    Full Text Available This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84% and germinated seed weight (31.39% whereas chitosan-P. putida has increased the shoot weight (65.67%. For the growth test, the maximal heights (17.66% were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%, aerial (84.66%, and underground biomass (108.77% production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production.

  2. 1,25-dihydroxyvitamin D(3) and PI3K/AKT inhibitors synergistically inhibit growth and induce senescence in prostate cancer cells.

    Science.gov (United States)

    Axanova, Linara S; Chen, Yong Q; McCoy, Thomas; Sui, Guangchao; Cramer, Scott D

    2010-11-01

    1-Alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits proliferation of multiple cancer cell types including prostate cells and upregulates p21 and/or p27, while loss of Pten and PI3K/AKT activation stimulates survival and downregulates p21 and p27. We hypothesized that inhibition of the PI3K/AKT pathway synergizes with the antiproliferative signaling of 1,25(OH)(2)D(3). Viability, cell cycle and senescence of cells were evaluated upon combinational treatment with 1,25(OH)(2)D(3) and pharmacological PI3K/AKT inhibitors. Pharmacological inhibitors of PI3K or Akt and 1,25(OH)(2)D(3) synergistically inhibited growth of DU145, LNCaP, primary human prostate cancer cell strains and Pten null mouse prostatic epithelial cells (MPEC). The inhibitors used included API-2 (Triciribine) and GSK690693 which are currently in clinical trials for treatment of cancer. A novel mechanism for antiproliferative effects of 1,25(OH)(2)D(3) in prostate cells, induction of senescence, was discovered. Combination of 1,25(OH)(2)D(3) and AKT inhibitor cooperated to induce G(1) arrest, senescence, and p21 levels in prostate cancer cells. As AKT is commonly activated by PTEN loss, we evaluated the role of Pten in responsiveness to 1,25(OH)(2)D(3) using shRNA knockdown and by in vitro knockout of Pten. MPEC that lost Pten expression remained sensitive to the antiproliferative action of 1,25(OH)(2)D(3), and showed higher degree of synergism between AKT inhibitor and 1,25(OH)(2)D(3) compared to Pten-expressing counterparts. These findings provide the rationale for the development of therapies utilizing 1,25(OH)(2)D(3) or its analogs combined with inhibition of PI3K/AKT for the treatment of prostate cancer.

  3. 1,25-Dihydroxyvitamin D3 and PI3K/AKT Inhibitors Synergistically Inhibit Growth and Induce Senescence in Prostate Cancer Cells

    Science.gov (United States)

    Axanova, Linara S.; Chen, Yong Q.; McCoy, Thomas; Sui, Guangchao; Cramer, Scott D.

    2011-01-01

    BACKGROUND 1-Alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits proliferation of multiple cancer cell types including prostate cells and upregulates p21 and/or p27, while loss of Pten and PI3K/AKT activation stimulates survival and down regulates p21 and p27. We hypothesized that inhibition of the PI3K/AKT pathway synergizes with the antiproliferative signaling of 1,25(OH)2D3. METHODS Viability, cell cycle and senescence of cells were evaluated upon combinational treatment with 1,25(OH)2D3 and pharmacological PI3K/AKT inhibitors. RESULTS Pharmacological inhibitors of PI3K or Akt and 1,25(OH)2D3 synergistically inhibited growth of DU145, LNCaP, primary human prostate cancer cell strains and Pten null mouse prostatic epithelial cells (MPEC). The inhibitors used included API-2 (Triciribine) and GSK690693 which are currently in clinical trials for treatment of cancer. A novel mechanism for antiproliferative effects of 1,25(OH)2D3 in prostate cells, induction of senescence, was discovered. Combination of 1,25(OH)2D3 and AKT inhibitor cooperated to induce G1 arrest, senescence, and p21 levels in prostate cancer cells. As AKT is commonly activated by PTEN loss, we evaluated the role of Pten in responsiveness to 1,25(OH)2D3 using shRNA knockdown and by in vitro knockout of Pten. MPEC that lost Pten expression remained sensitive to the antiproliferative action of 1,25(OH)2D3, and showed higher degree of synergism between AKT inhibitor and 1,25(OH)2D3 compared to Pten-expressing counterparts. CONCLUSIONS These findings provide the rationale for the development of therapies utilizing 1,25(OH)2D3 or its analogs combined with inhibition of PI3K/AKT for the treatment of prostate cancer. PMID:20583132

  4. Synergistic suppression effect on tumor growth of ovarian cancer by combining cisplatin with a manganese superoxide dismutase-armed oncolytic adenovirus

    Directory of Open Access Journals (Sweden)

    Wang S

    2016-10-01

    Full Text Available Shibing Wang,1,2,* Jing Shu,3,* Li Chen,4 Xiaopan Chen,3 Jianhong Zhao,4 Shuangshuang Li,1,2 Xiaozhou Mou,1,2 Xiangmin Tong1,2 1Clinical Research Institute, Zhejiang Provincial People’s Hospital, 2Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, 3Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, 4Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Gene therapy on the basis of oncolytic adenovirus is a novel approach for human cancer therapeutics. We aim to investigate whether it will synergistically reinforce their antiovarian cancer activities when the combined use of ZD55-manganese superoxide dismutase (MnSOD and cisplatin was performed. The experiments in vitro showed that ZD55-MnSOD enhances cisplatin-induced apoptosis and causes remarkable ovarian cancer cell death. Apoptosis induction by treatment with ZD55-MnSOD and/or cisplatin was detected in SKOV-3 by apoptotic cell staining, flow cytometry, and western blot analysis. In addition, the cytotoxicity caused by ZD55-MnSOD to normal cells was examined by the 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide assay and western blot analysis. Animal experiment further confirmed that combination of ZD55-MnSOD and cisplatin achieved significant inhibition of SKOV-3 ovarian tumor xenografted growth. In summary, we have demonstrated that ZD55-MnSOD can sensitize human ovarian cancer cells to cisplatin-induced cell death and apoptosis in vitro and in vivo. These findings indicate that the combined treatment with ZD55-MnSOD and cisplatin could represent a rational approach for antiovarian cancer therapy. Keywords: oncolytic adenovirus, MnSOD, cisplatin, ovarian cancer

  5. Antifungal Effects of Zataria multiflora Essential Oil on the Inhibitory Growth of some Postharvest Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Mahboobeh NASSERI

    2015-12-01

    Full Text Available The present study aimed to determine minimum inhibitory concentration and minimum fungicidal concentration of the essential oil of Zataria multiflora to control Alternaria solani, Rhizoctonia solani, Rhizopus stolonifer, Aspergillus flavus, Aspergillus ochraceus and Aspergillus niger. The essential oil of Zataria multiflora was tested in vitro on PDA (malt extract agar medium with eight concentrations: 0, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 ppm. This investigation followed the completely randomized design (CRD with three replications. GC-MS evaluations of the essential oil revealed that thymol (35%, carvacrol (34%, cymene-p (9.89%, gamma-terpinene (5.88% and alpha-pinene (4.22% were the main compounds of Zataria multiflora oil. The results showed that the essential oil of Zataria multiflora has antifungal activity; the lowest inhibition (75% was observed in the A. niger, while the highest inhibition (95.3% was observed in A. solani. Minimum inhibitory concentration for A. solani, R. solani, R. stolonifer, A. flavus, A. ochraceus and A. niger was 200, 200, 200, 300, 300 and 200 ppm respectively. In addition, the present results showed that minimum fungicidal concentration (MFC for A. solani, R. solani, R .stolonifer, A. niger and A.ochraceus was 600, 400, 300, 900 and 700 ppm respectively and none of the tested concentrations were fatal for A. flavus. A. solani and R. solani showed a strong sensitivity to Zataria multiflora essential oil at all concentrations. Findings of the current study suggest that essential oils of Zataria multiflora could be used for control of postharvest phytopathogenic fungi on fruits or vegetables.

  6. Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling.

    Science.gov (United States)

    Farquharson, Colin; Ahmed, S Faisal

    2013-04-01

    Linear bone growth is widely recognized to be adversely affected in children with chronic kidney disease (CKD) and other chronic inflammatory disorders. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway is anabolic to the skeleton and inflammatory cytokines compromise bone growth through a number of different mechanisms, which include interference with the systemic as well as the tissue-level GH/IGF-1 axis. Despite attempts to promote growth and control disease, there are an increasing number of reports of the persistence of poor growth in a substantial proportion of patients receiving rhGH and/or drugs that block cytokine action. Thus, there is an urgent need to consider better and alternative forms of therapy that are directed specifically at the mechanism of the insult which leads to abnormal bone health. Suppressor of cytokine signaling 2 (SOCS2) expression is increased in inflammatory conditions including CKD, and is a recognized inhibitor of GH signaling. Therefore, in this review, we will focus on the premise that SOCS2 signaling represents a critical pathway in growth plate chondrocytes through which pro-inflammatory cytokines alter both GH/IGF-1 signaling and cellular function.

  7. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    International Nuclear Information System (INIS)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E 2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G 0 /G 1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E 2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  8. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    Science.gov (United States)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  9. Inhibitory effect of pomegranate (Punica granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Pagliarulo, Caterina; De Vito, Valentina; Picariello, Gianluca; Colicchio, Roberta; Pastore, Gabiria; Salvatore, Paola; Volpe, Maria Grazia

    2016-01-01

    In the present study major polyphenols of pomegranate arils and peel by-products were extracted in 50% (v/v) aqueous ethanol, characterized and used in microbiological assays in order to test antimicrobial activity against clinically isolated human pathogenic microorganisms. Total concentration of polyphenols and in vitro antioxidant properties were determined by the Folin-Ciocalteu and DPPH methods, respectively. The most abundant bioactive molecules, including anthocyanins, catechins, tannins, gallic and ellagic acids were identified by RP-HPLC-DAD, also coupled to off-line matrix assisted laser desorption/ionization (MALDI-TOF) mass spectrometry (MS). The inhibitory spectrum of extracts against test microorganisms was assessed by the agar well-diffusion method. Data herein indicated that both pomegranate aril and peel extracts have an effective antimicrobial activity, as evidenced by the inhibitory effect on the bacterial growth of two important human pathogens, including Staphylococcus aureus and Escherichia coli, which are often involved in foodborne illness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk.

    Science.gov (United States)

    Gútiez, Loreto; Gómez-Sala, Beatriz; Recio, Isidra; del Campo, Rosa; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2013-08-16

    Enterococcus faecalis isolates from food and environmental origin were evaluated for their angiotensin-converting enzyme (ACE)-inhibitory activity (ACE-IA) after growth in bovine skim milk (BSM). Most (90% active) but not all (10% inactive) E. faecalis strains produced BSM-derived hydrolysates with high ACE-IA. Known ACE-inhibitory peptides (ACE-IP) and an antioxidant peptide were identified in the E. faecalis hydrolysates by reversed-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS). Antimicrobial activity against Pediococcus damnosus CECT4797 and Listeria ivanovii CECT913 was also observed in the E. faecalis hydrolysates. The incidence of virulence factors in the E. faecalis strains with ACE-IA and producers of ACE-IP was variable but less virulence factors were observed in the food and environmental strains than in the clinical reference strains. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) based analysis demonstrated that food and environmental E. faecalis strains were genetically different from those of clinical origin. When evaluated, most E. faecalis strains of clinical origin also originated BSM-derived hydrolysates with high ACE-IA due to the production of ACE-IP. Accordingly, the results of this work suggest that most E. faecalis strains of food, environmental and clinical origin produce BSM-derived bioactive peptides with human health connotations and potential biotechnological applications. © 2013 Elsevier B.V. All rights reserved.

  11. Inhibitory action of some essential oils and phytochemicals on the growth of various moulds isolated from foods

    Directory of Open Access Journals (Sweden)

    Evandro Leite de Souza

    2005-03-01

    Full Text Available The aim of this study was to determine the sensitivity profile of mould strains isolated from foods to some essential oils and phytochemicals. The assayed mould strains were: Fusarium spp., Rhizopus spp., Aspergillus flavus, A. niger and Penicillium spp. According to results, Lippia alba N.E. Brown, Peumus boldus Molina, Lippia microphylla Phil., Citrus limon Risso and Cymbopogon citratus Stapf. essential oil and the phytochemicals citral, eugenol and mircene showed prominent antimould activity. Among the products that evidenced antimould activity, citral and eugenol showed the lowest minimum inhibitory concentrations, which was 1% and 4%, respectively, for the most of the tested mould strains.O objetivo deste estudo foi determinar o perfil de sensibilidade de cepas de fungos filamentosos isolados de alimento a alguns óleos essenciais e fitoconstituintes. As cepas fúngicas utilizadas nos ensaios antimicrobianos foram: Fusarium spp., Rhizopus spp., Aspergillus flavus, A. niger e Penicillium spp. De acordo com os resultados obtidos, os óleos essenciais de L. Alba N.R. Brown, P. boldus Molina, L. microphylla Phill, C. limon Risso e C. citratus Stapf. e os fitoconstituintes citral, eugenol e mirceno mostraram destacada atividade antifúngica. Dentre os produtos que apresentaram atividade antifúngica, o citral e eugenol mostraram as menores CIM's, as quais foram 1% e 4%, respectivamente, para a maioria das cepas fúngicas testadas.

  12. Gc, gc-ms analysis of lipophilic fractions of aerial parts of fagonia indica burm.f. showing growth inhibitory effect on ht 29 colorectal cancer cells

    International Nuclear Information System (INIS)

    Farheen, R.; Mahmood, I.

    2016-01-01

    Fagonia indica Burm.f. is a small genus of herbs and under shrubs. The plant contains potentially active substances and has been used traditionally for the treatment of many illnesses including cancer. Many polar compounds have been reported from this plant but its non-polar constituents have only been rarely studied. In the present studies these constituents of aerial parts of Fagonia indica Burm.f. and its sub fractions showing growth inhibitory effect on HT 29 colorectal cancer cells were analyzed using flame ionization detector (GC-FID) and GC-EIMS analysis. The present studies exhibited the presence of free fatty acids and their esters along with structurally diverse constituents including triterpene, heterocyclic organic compound, aromatics, hydrocarbons, alcohols, lactone and sterols which may be responsible for this activity. The results suggest that the non-polar constituents of F. indica bear a potential of further studies. (author)

  13. Silica ecosystem for synergistic biotransformation

    OpenAIRE

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-01-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues...

  14. Growth inhibitory and apoptosis-inducing effects of allergen-free Rhus verniciflua Stokes extract on A549 human lung cancer cells.

    Science.gov (United States)

    Jang, Ik-Soon; Park, Jae-Woo; Jo, Eun-Bi; Cho, Chong-Kwan; Lee, Yeon-Weol; Yoo, Hwa-Seung; Park, Junsoo; Kim, Jihye; Jang, Byeong-Churl; Choi, Jong-Soon

    2016-11-01

    Evidence suggests that Rhus verniciflua Stokes (RVS) or its extract has the potential to be used for the treatment of inflammatory and neoplastic diseases. However, direct use of RVS or its extract as a herbal medicine has been limited due to the presence of urushiol, an allergenic toxin. In the present study, we prepared an extract of the allergen‑removed RVS (aRVS) based on a traditional method and investigated its inhibitory effect on the growth of various types of human cancer cells, including lung (A549), breast (MCF-7) and prostate (DU-145) cancer cell lines. Notably, among the cell lines tested, treatment with the aRVS extract strongly inhibited proliferation of the A549 cells at a 0.5 mg/ml concentration for 24 h that was not cytotoxic to normal human dermal fibroblasts. Furthermore, aRVS extract treatment largely reduced the survival and induced apoptosis of the A549 cells. At the mechanistic levels, treatment with the aRVS extract led to the downregulation of Bcl-2 and Mcl-1 proteins, the activation of caspase-9/-3 proteins, an increase in cytosolic cytochrome c levels, the upregulation of Bax protein, an increase in phosphorylated p53 protein but a decrease in phosphorylated S6 protein in the A549 cells. Importantly, treatment with z-VAD‑fmk, a pan-caspase inhibitor attenuated aRVS extract-induced apoptosis in the A549 cells. These results demonstrate firstly that aRVS extract has growth inhibitory and apoptosis-inducing effects on A549 human lung cancer cells through modulation of the expression levels and/or activities of caspases, Bcl-2, Mcl-1, Bax, p53 and S6.

  15. Luzindole but not 4-phenyl-2- propionamidotetralin (4P-PDOT) diminishes the inhibitory effect of melatonin on murine Colon 38 cancer growth in vitro.

    Science.gov (United States)

    Winczyk, Katarzyna; Fuss-Chmielewska, Julita; Lawnicka, Hanna; Pawlikowski, Marek; Karasek, Michal

    2009-01-01

    Our earlier studies have shown that MLT exerts the inhibitory effect on murine cancer via membrane and nuclear receptors. We have found that the antagonist of MT1 receptors does not diminish the antiproliferative effect of MLT on Colon 38 cells, and the contribution of MT2 receptors has been suggested to be responsible. Therefore, in the present study we have examined the influence of the 4-phenyl-2-propionamidotetralin (4P-PDOT), which is a selective antagonist of MT2 membrane receptor, and luzindole - an antagonist of both membrane receptors, on an oncostatic action of MLT. The murine cancer cell line Colon 38 was used in the experiments. In 48 hrs cell culture the effects of MLT, 4P-PDOT and luzindole administered alone and MLT applied jointly with either 4P-PDOT or luzindole were examined. The growth of cancer cells was assessed using the modified colorimetric Mosmann method. Melatonin at both examined concentrations (10-7, 10-9 M) significantly decreased the viability of cancer cells. The selective antagonist of MT2 membrane receptor, namely 4P-PDOT and luzindole applied separately did not have an effect on the growth of Colon 38 cells. The addition of 4P-PDOT to MLT did not change the inhibitory effect of MLT, whereas luzindole given together with MLT diminished, but failed to block totally, the oncostatic properties of MLT. The obtained data and our previous studies conducted on Colon 38 cancer indicate that membrane melatonin receptors are not indispensable to the oncostatic action of melatonin and thus other pathways such as nuclear signaling and receptor-independent mechanism may be also involved.

  16. Screening of metabolites secondary compounds in extract of moringa fruit and determination of inhibitory effect on growth of the fungus Candida albicans

    Science.gov (United States)

    Nuryanti, Siti; Puspitasari, Dwi Juli

    2017-08-01

    Moringa (Moringa oleifera Lamk) is a nutritious plant that can cure various diseases. Parts of this plant like leave, root, flower, and fruit can be used as a traditional medicine. The research about screening of secondary metabolites in moringa extracts and the determination of their inhibitory effect on growth of the fungus Candida albicans have been done. This research was conducted by extracting the moringa fruit with various solvent with different polarity namely hexane, distilled water and ethanol. The fungal inhibition test was done by well-difuse method. Suspensions of Candida albicans was standardized by 0.5 Mc Farland standard. The results showed that the extracts of Moringa with distilled water provided the greatest inhibition on the growth of the fungus Candida albicans compared to moringa fruit extracted by ethanol and hexane. The percentages inhibition of Moringa extracts on the growth of the Candida albicans with distilled water, ethanol and hexane solvents were 89.90%, 57.90% and 8.97% respectively. Phytochemical screening test showed that the moringa fruit contain alkaloids, flavonoids and steroids.

  17. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    The identification of JAK2 as a growth hormone (GH) receptor-associated, GH-activated tyrosine kinase has established tyrosyl phosphorylation as a signaling mechanism for GH. In the present study, GH is shown to stimulate tyrosyl phosphorylation of insulin receptor substrate 1 (IRS-1), the princi...... characterized insulin-like metabolic effects of GH observed in a variety of cell types....

  18. Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice

    International Nuclear Information System (INIS)

    Liu, Tai-Guo; Huang, Ying; Cui, Dan-Dan; Huang, Xiao-Bing; Mao, Shu-Hua; Ji, Ling-Ling; Song, Hai-Bo; Yi, Cheng

    2009-01-01

    Ginsenoside Rg3, a saponin extracted from ginseng, inhibits angiogenesis. The combination of low-dose chemotherapy and anti-angiogenic inhibitors suppresses growth of experimental tumors more effectively than conventional therapy or anti-angiogenic agent alone. The present study was designed to evaluate the efficacy of low-dose gemcitabine combined with ginsenoside Rg3 on angiogenesis and growth of established Lewis lung carcinoma in mice. C57L/6 mice implanted with Lewis lung carcinoma were randomized into the control, ginsenoside Rg3, gemcitabine and combination group. The quality of life and survival of mice were recorded. Tumor volume, inhibitive rate and necrosis rate were estimated. Necrosis of tumor and signals of blood flow as well as dynamic parameters of arterial blood flow in tumors such as peak systolic velocity (PSV) and resistive index (RI) were detected by color Doppler ultrasound. In addition, expression of vascular endothelial cell growth factor (VEGF) and CD31 were observed by immunohistochemstry, and microvessel density (MVD) of the tumor tissues was assessed by CD31 immunohistochemical analysis. Quality of life of mice in the ginsenoside Rg3 and combination group were better than in the control and gemcitabine group. Combined therapy with ginsenoside Rg3 and gemcitabine not only enhanced efficacy on suppression of tumor growth and prolongation of the survival, but also increased necrosis rate of tumor significantly. In addition, the combination treatment could obviously decrease VEGF expression and MVD as well as signals of blood flow and PSV in tumors. Ginsenoside Rg3 combined with gemcitabine may significantly inhibit angiogenesis and growth of lung cancer and improve survival and quality of life of tumor-bearing mice. The combination of chemotherapy and anti-angiogenic drugs may be an innovative and promising therapeutic strategy in the experimental treatment of human lung cancer

  19. Growth inhibitory effect of the Src inhibitor dasatinib in combination with anticancer agents on uterine cervical adenocarcinoma cells.

    Science.gov (United States)

    Takiguchi, Eri; Nishimura, Masato; Mineda, Ayuka; Kawakita, Takako; Abe, Akiko; Irahara, Minoru

    2017-11-01

    Uterine cervical adenocarcinoma has a poor clinical prognosis when compared with squamous cell carcinoma. Therefore, the development of new treatment strategies for uterine cervical adenocarcinoma is necessary. Src is a proto-oncogene that is important in cancer progression. Dasatinib is a Src inhibitor that has been reported to be effective when used in combination with anticancer drugs. The present study aimed to confirm Src expression in human cervical adenocarcinoma cell lines and to determine the mechanism underlying the inhibitory effect of dasatinib on Src signaling in vitro . Western blot analysis was performed to investigate Src expression in cervical adenocarcinoma cell lines (HeLa and TCO-2 cells). The cells were cultured for 48 h with the addition of different concentrations of anticancer drugs (paclitaxel or oxaliplatin). Viable cell count was measured using a colorimetric (WST-1) assay. The concentrations of anticancer agents were fixed according to the results obtained, and the same experiments were performed using the drugs in combination with dasatinib at various concentrations to determine the concentrations that significantly affected the number of viable cells. The presence or absence of apoptosis was investigated using a caspase-3/7 assay. Signal transduction in each cell line was examined using western blotting. Src was activated in the two cell lines, and cell proliferation was significantly suppressed by each anticancer drug in combination with 10 µM dasatinib. Caspase-3/7 activity was also increased and Src signaling was suppressed by each anticancer drug in combination with dasatinib. In conclusion, Src is overexpressed in cervical adenocarcinoma cell lines, and dasatinib inhibits intracellular Src signaling and causes apoptosis. The results of the present study suggest that Src may be targeted in novel therapeutic strategies for cervical adenocarcinoma.

  20. Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth

    Science.gov (United States)

    Pan, Honghui; Han, Yuanyuan; Huang, Jiguo; Yu, Xiongtao; Jiao, Chunwei; Yang, Xiaobing; Dhaliwal, Preet; Xie, Yizhen; Yang, Burton B.

    2015-01-01

    Medicinal mushrooms in recent years have been the subject of many experiments searching for anticancer properties. We previously screened thirteen mushrooms for their potential in inhibiting tumor growth, and found that the water extract of Amauroderma rude exerted the highest activity. Previous studies have shown that the polysaccharides contained in the water extract were responsible for the anticancer properties. This study was designed to explore the potential effects of the polysaccharides on immune regulation and tumor growth. Using the crude Amauroderma rude extract, in vitro experiments showed that the capacities of spleen lymphocytes, macrophages, and natural killer cells were all increased. In vivo experiments showed that the extract increased macrophage metabolism, lymphocyte proliferation, and antibody production. In addition, the partially purified product stimulated the secretion of cytokines in vitro, and in vivo. Overall, the extract decreased tumor growth rates. Lastly, the active compound was purified and identified as polysaccharide F212. Most importantly, the purified polysaccharide had the highest activity in increasing lymphocyte proliferation. In summary, this molecule may serve as a lead compound for drug development. PMID:26219260

  1. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    Science.gov (United States)

    Mossini, Simone Aparecida Galerani; Ferreira, Francine Maery Dias; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski Junior, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α-turmerone (23.5%) and β-turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants. PMID:24367241

  2. The inhibitory effects of Curcuma longa L. essential oil and curcumin on Aspergillus flavus link growth and morphology.

    Science.gov (United States)

    Dias Ferreira, Flávio; Mossini, Simone Aparecida Galerani; Dias Ferreira, Francine Maery; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α -turmerone (23.5%) and β -turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01-0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.

  3. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    Directory of Open Access Journals (Sweden)

    Flávio Dias Ferreira

    2013-01-01

    Full Text Available The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%, α-turmerone (23.5% and β-turmerone (22.7%. The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.

  4. [Effects of inhibitory activity on mycelial growth of Candida albicans and therapy for murine oral candidiasis by the combined use of terpinen-4-ol and a middle-chain fatty acid, capric acid].

    Science.gov (United States)

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae; Takahashi, Miki; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The combined effect of terpinen-4-ol, the main component of tea tree oil, and capric acid against mycelial growth of Candida albicans and murine oral candidiasis was evaluated in vitro and in vivo. Mycelial growth of C. albicans was estimated by the Cristal violet method. Combination of these compounds revealed a potent synergistic inhibition of growth. Therapeutic efficacy of the combination was evaluated microbiologically in murine oral candidiasis, and its application of the compounds clearly demonstrated therapeutic activity. Based on these results, the combined agent of terpinen-4-ol and capric acid was discussed as a possible candidate for oral candidiasis therapy.

  5. Inhibitory effect of polyunsaturated aldehydes (PUAs) on the growth of the toxic benthic dinoflagellate Ostreopsis cf. ovata.

    Science.gov (United States)

    Pichierri, Salvatore; Pezzolesi, Laura; Vanucci, Silvana; Totti, Cecilia; Pistocchi, Rossella

    2016-10-01

    Diatoms have been shown to produce and release a wide range of secondary metabolites that mediate interactions between individuals of different species. Among these compounds, different types of fatty acid derived long-chained polyunsaturated aldehydes (PUAs) have been related to multiple functions such as intra- or interspecific signals and adverse effect on the reproduction of marine organisms. Several studies have reported changes on growth, cell membrane permeability, flow cytometric properties and cell morphology in phytoplankton organisms exposed to PUAs, but little information is available on the effect of these compounds on benthic microalgae. Ostreopsis cf. ovata is a toxic benthic dinoflagellate which causes massive blooms along the Mediterranean coasts typically during the late summer period. In this study the effects of three toxic PUAs known to be produced by several algae (2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal) on the growth, cytological features and cell morphology of O. cf. ovata were investigated. Our results show a clear decrease of O. cf. ovata growth with longer-chain molecules than with shorter-chain ones, confirmed also by EC50 values calculated at 48h for 2E,4E-decadienal and 2E,4E-octadienal (6.6±1.5, 17.9±2.6μmolL(-1) respectively) and at 72h for 2E,4E-heptadienal (18.4±0.7μmolL(-1)). Moreover, morphological analysis highlighted up to 79% of abnormal forms of O. cf. ovata at the highest concentrations of 2E,4E-decadienal tested (9, 18 and 36μmolL(-1)), a gradual DNA degradation and an increase of lipid droplets with all tested PUAs. Further studies are needed to better clarify the interactions between diatoms and O. cf. ovata, especially on bloom-forming dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Growth inhibitory effects of kimchi (Korean traditional fermented vegetable product) against Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus.

    Science.gov (United States)

    Kim, Yong-Suk; Zheng, Zian-Bin; Shin, Dong-Hwa

    2008-02-01

    Kimchi is a unique Korean traditional vegetable product that is fermented by lactic acid bacteria (LAB) and is mainly consumed as a side dish with boiled rice. Its main ingredients are brined Chinese cabbage, red pepper powder, and fermented fish sauce, and these are combined with many spices such as garlic, green onion, ginger, and some seaweed. The relationship between the concentration of LAB or the pH and the growth of three gram-positive foodborne pathogens (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) was evaluated. Heat treatment (HT; 85 degrees C for 15 min) or neutralization treatment (NT; pH 7.0) was conducted on day 0 (0-D group) and day 3 (3-D group) of incubation. The pH in the control group and the NT group dropped sharply to 4.12 to 4.30 after 2 days of incubation and slightly decreased thereafter, whereas the pH in the control group and HT group stayed at 7.0 during incubation. LAB were not detected in the HT kimchi during incubation. B. cereus in the NT-0-D, NT-3-D, and HT-3-D groups was reduced by 1.5 to 3.1 log CFU/ml but increased slightly in the HT-0-D group. L. monocytogenes in HT-3-D and NT-3-D groups disappeared after 5 days of incubation, and S. aureus in the NT-0-D group disappeared after 4 days. These findings indicate that growth of all the foodborne pathogens was inhibited by NT-0-D, HT-3-D, and NT-3-D, but B. cereus was not inhibited by HT-0-D. Thus, growth of LAB in kimchi is an important factor in the control of foodborne pathogens.

  7. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Directory of Open Access Journals (Sweden)

    Halima Rakhila

    Full Text Available Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2, cell adhesion (αv and β3 integrins, survival (B-cell lymphoma-2 and angiogenic (vascular endothelial cell growth factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  8. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Science.gov (United States)

    Rakhila, Halima; Girard, Karine; Leboeuf, Mathieu; Lemyre, Madeleine; Akoum, Ali

    2014-01-01

    Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  9. THE INHIBITORY EFFECT OF ESSENTIAL OILS ON THE GROWTH OF GENUS PENICILLIUM ISOLATED FROM PEANUTS BY CONTACT VAPOR

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2015-02-01

    Full Text Available The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs. We used concretely thyme, clove, basil, jasmine and rosemary EOs by vapor contact against the fungal species, namely Penicillium citrinum (P1 – P2, P. crustosum (P3 – P4 and P. expansum (P5 – P6 and their ability to affect production of mycotoxins. Each fungus was inoculated in the center on Czapek Yeast Autolysate Agar (CYA dishes. Dishes were tightly sealed with parafilm and incubated for fourteen days at 25 ± 1 °C (three replicates were used for each treatment. Volatile phase effect of 50 μl of the essential oils was found to inhibit on growth of Penicillium spp.. Fungicidal and fungistatic concentracions (MFC were determined by microathmosphere method. Complete growth inhibition of the isolates by EOs of thyme and clove was observed. The most sensitive isolate was P. crustosum (P4 (P < 0.05 The essential oils (EOs of basil and rosemary had antifungal effect on growth of P. citrinum (P1 – P2 after 3 day of the incubation at concentration 100 % of EOs. The most resistant isolates were P. expansum (P5 – P6. Growth of these isolates was inhibited by thyme and clove EOs (100 %, like each other tested isolates, but with effective MFC concentration of 30 % (30/70; v/v after all days of cultivation. Data were evaluated statistically by 95.0 % Tukey HSD test. In this stud, we also tested potential effect of EOs to affect production of mycotoxins of tested Penicillium isolates which are potential toxigenic fungi. After 14 days of incubation with EOs (100 % with control sets, they were screened for a production of mycotoxins by TLC chromatography. Oils exhibited a various spectrum of fungal toxicity inhibit all tested species except the jasmine EO. The present study demonstrated the potential food preservative ability of the thyme, clove, basil, jasmine and rosemary EOs. The jasmine EO has none antifungal or anti – toxic activity.

  10. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line

    Science.gov (United States)

    Hudson, E Ann; Howells, Lynne M; Gallacher-Horley, Barbara; Fox, Louise H; Gescher, Andreas; Manson, Margaret M

    2003-01-01

    Background Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC) activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO) has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C) has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. Methods Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO2 from 14C-labelled substrate, and polyamine levels were measured by HPLC. Results I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G2/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. Conclusion While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative effect, although accumulation

  11. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line

    Directory of Open Access Journals (Sweden)

    Gescher Andreas

    2003-01-01

    Full Text Available Abstract Background Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. Methods Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO2 from 14C-labelled substrate, and polyamine levels were measured by HPLC. Results I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G2/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. Conclusion While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative

  12. Inhibitory activities of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in testosterone-treated mice.

    Science.gov (United States)

    Zhang, Bei; Zhang, Rong-weng; Yin, Xi-quan; Lao, Zi-zhao; Zhang, Zhe; Wu, Qing-guang; Yu, Liang-wen; Lai, Xiao-ping; Wan, Yu-hua; Li, Geng

    2016-01-11

    Many traditional Chinese medicines (TCM) have been used for hundreds of years for hair blackening and hair nourishing, and now many of them are commonly used in Chinese herbal shampoo to nourish the hair and promote hair growth. The present study was performed to screen 5α-reductase (5αR) inhibitors from traditional Chinese medicines, evaluate its hair growth promoting activity in vivo, and further investigate its effects on androgen metabolism and the expression of 5αR II in hair follicles. Nine TCM which were dried, ground and extracted by maceration with 75% ethanol or distilled water were used for screening 5αR inhibitors, and enzymes were extracted from the rat epididymis. The leaves of Platycladus orientalis (L.) Franco was used to evaluate the in vivo anti-androgenic activity. Skin color was observed daily and the hair re-growth was assessed by assigning the hair growth score. The longitudinal sections of hair follicles were used for observing follicle morphology, classifying of distinct stages of hair follicle morphogenesis and calculate the average score. The transverse sections were used for determination of hair follicle counts. Testosterone (T), Dihydrotestosterone (DHT) and Estradiol (E2) levels in serum and skin tissue were detected by ELISA kits. The immunofluorescence assay was used to detect the influence of CP-ext on 5αR expression in dorsal skin. We found the extract of Ganoderma lucidum (GL-ext), Polygonum multiflori (PM-ext), Cacumen platycladi (CP-ext) and Cynomorium songaricum (CS-ext) showed stronger 5αR inhibitory activity. CP-ext (5mg and 2mg/mouse/day) could significantly shorten the time of the dorsal skin darkening and got longhaired (Phair re-growth promoting activity. Furthermore the histological data of hair follicles in each group showed that CP-ext could promote the growth of hair follicle and slowed down hair follicles enter the telogen. What's more CP-ext significantly reduced DHT levels and down-regulated the expression of

  13. [Downregulation of HER2 by adenovirus-mediated RNA interference and its inhibitory effect on growth of SKBR3 breast cancer cell].

    Science.gov (United States)

    Cheng, Lian-sheng; Zha, Zhao; Xi, Jia-jia; Jiang, Bing; Liu, Jing; Yao, Xue-biao

    2007-08-01

    To explore the possibility of RNA interference (RNAi)-based gene therapy against HER2-overexpressing tumors using adenovirus-mediated vector. A plasmid named pHER2-GFP containing HER2 and green fluorescent protein (GFP) fusion was constructed and cotransfected into CHO-K1 cells respectively with nine small interference RNA (siRNA)-expressing plasmids targeting different regions of HER2. The siRNA-expressing plasmids with best interference effect were screened out and then used to identify the gene silence effect in HER2-overexpressing SKBR3 breast cancer cells. Subsequently, the siRNA-expressing cassettes were subcloned into adenoviral vectors. Downregulation of HER2 by adenovirus-mediated RNAi and its effect on SKBR3 cell proliferation were identified again. Two siRNA-expressing plasmids with best interference effect were screened out and HER2 was also efficiently downregulated in SKBR3 cells infected with the adenovirus containing these siRNA-expressing cassettes. Downregulation of HER2 resulted in the increase of cells in G1 phase and the induction of apoptosis. Furthermore, infection of adenovirus inhibited SKBR3 cell growth, which was confirmed by MTT and cell long-term proliferation assays. The adenovirus-mediated RNAi could downregulate the HER2 expression efficiently and exert an inhibitory effect on growth of HER2-overexpressing breast cancer cell.

  14. Improved microwave-mediated synthesis of 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids and their larvicidal and fungal growth inhibitory properties.

    Science.gov (United States)

    Neves Filho, Ricardo Antonio Wanderley; da Silva, Cecília Aguiar; da Silva, Clécia Sipriano Borges; Brustein, Vanessa Passos; do Amaral Ferraz Navarro, Daniela Maria; dos Santos, Fábio André Brayner; Alves, Luiz Carlos; dos Santos Cavalcanti, Marília Gabriela; Srivastava, Rajendra Mohan; das Graças Carneiro-Da-Cunha, Maria

    2009-08-01

    The synthesis of 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids from arylamidoximes and succinic anhydride under focused microwave irradiation conditions is described. The new synthetic method furnished the desired products in 2-3 min and good yields. Furthermore, the previously complicated purification procedure has been simplified in a manner which is quick, eco-friendly and cost-effective. Larvicidal bioassay and fungal growth inhibitory tests were performed using several 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids. These acids presented strong larvicidal activity against L4 larvae of Aedes aegypti. The results suggest that larvicidal activity might be correlated with the presence of electron-withdrawing substituents in the para position of the phenyl ring except the fluorine atom. The alterations observed in the larvae spiracular valves of the siphon and anal papillae by 1,2,4-oxadiazoles in the larvicidal bioassay are responsible for larvae's death. Furthermore, all acids inhibited the fungal growth of five different types of fungi, viz., Fusarium solani, F. oxysporum, F. moniliforme, F. decemcellulare and F. lateritium in a preliminary evaluation. Both of these activities are being disclosed for the first time for 1,2,4-oxadiazole-5-yl ring linked at C-3 of propionic acid.

  15. Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth

    Directory of Open Access Journals (Sweden)

    Camila M. O. Azeredo

    Full Text Available We analyzed the effect of the combination of citral, eugenol and thymol, respectively the main constituents of essential oils of Cympobogon citratus (DC Stapf, Poaceae (lemon grass, Syzygium aromaticum(L. Merr. & L.M. Perry, Myrtaceae (clove and Thymus vulgarisL., Lamiaceae (thyme, on the proliferation of the trypanosomatids Crithidia fasciculataand Trypanosoma cruzi.The constituents were initially added individually at different concentrations to C. fasciculatacultures to estimate the IC50/24h. Concentrations in a triple combination were about 2 times and 16.5 times lower against C. fasciculata and T. cruzi, respectively, as compared to isolated compounds. Incubation of C. fasciculatawith the trypanocydal agent benznidazole did not affect parasite growth at concentrations up to 500 µg/ml, but the IC50 of this drug against T. cruziwas 15.8 µg/ml, a value about 2-5 times higher than that of constituents in the triple combination. Analysis of treated C. fasciculata by scanning electron microscopy showed rounding of the cell body. Our data show that combination of essential oil constituents resulted in increased inhibitory activity on growth of both non-pathogenic and pathogenic trypanosomatid species and indicate that the non-patogenic C. fasciculata may represent a resistant model for drug screening in trypanosomatids.

  16. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo.

    Science.gov (United States)

    Park, Catherine C; Zhang, Hui; Pallavicini, Maria; Gray, Joe W; Baehner, Frederick; Park, Chong J; Bissell, Mina J

    2006-02-01

    Current therapeutic approaches to cancer are designed to target molecules that contribute to malignant behavior but leave normal tissues intact. beta(1) integrin is a candidate target well known for mediating cell-extracellular matrix (ECM) interactions that influence diverse cellular functions; its aberrant expression has been implicated in breast cancer progression and resistance to cytotoxic therapy. The addition of beta(1) integrin inhibitory agents to breast cancer cells at a single-cell stage in a laminin-rich ECM (three-dimensional lrECM) culture was shown to down-modulate beta(1) integrin signaling, resulting in malignant reversion. To investigate beta(1) integrin as a therapeutic target, we modified the three-dimensional lrECM protocol to approximate the clinical situation: before treatment, we allowed nonmalignant cells to form organized acinar structures and malignant cells to form tumor-like colonies. We then tested the ability of beta(1) integrin inhibitory antibody, AIIB2, to inhibit tumor cell growth in several breast cancer cell lines (T4-2, MDA-MB-231, BT474, SKBR3, and MCF-7) and one nonmalignant cell line (S-1). We show that beta(1) integrin inhibition resulted in a significant loss of cancer cells, associated with a decrease in proliferation and increase in apoptosis, and a global change in the composition of residual colonies. In contrast, nonmalignant cells that formed tissue-like structures remained resistant. Moreover, these cancer cell-specific antiproliferative and proapoptotic effects were confirmed in vivo with no discernible toxicity to animals. Our findings indicate that beta(1) integrin is a promising therapeutic target, and that the three-dimensional lrECM culture assay can be used to effectively distinguish malignant and normal tissue response to therapy.

  17. Effects of Pleurotus eryngii polysaccharides on bacterial growth, texture properties, proteolytic capacity, and angiotensin-I-converting enzyme-inhibitory activities of fermented milk.

    Science.gov (United States)

    Li, Siqian; Shah, Nagendra P

    2015-05-01

    Pleurotus eryngii is one of the most favored oyster mushrooms and contains various beneficial bioactive compounds. Polysaccharide extracted from P. eryngii (PEPS) was added as a natural-source ingredient to milk before fermentation, and the effects of additional PEPS on fermented milk were investigated in this study. The PEPS were extracted and added to reconstituted skim milk (12%, wt/vol) at 0.5, 0.25, and 0.125% (wt/vol) and fermented by a non-exopolysaccharide-producing strain, Streptococcus thermophilus Australian Starter Culture Collection (ASCC) 1303 (ST 1303), or an exopolysaccharide-producing Strep. thermophilus ASCC 1275 (ST 1275). Bacterial growth, texture properties, microstructure, proteolytic capacity, and angiotensin-I-converting enzyme-inhibitory activities of fermented milk (FM) were determined during refrigerated storage at 4°C for 21d. Viable counts of starter bacteria in FM with 0.5% PEPS added were the highest. Changes in pH were consistent with changes in titratable acidities for all samples. The FM samples with added PEPS showed denser protein aggregates containing larger serum pores in confocal micrographs compared with those without PEPS at d 0 and 21during refrigerated storage. The values for spontaneous whey separation of FM with added PEPS were significantly higher than those of FM fermented by ST 1303 or ST 1275 without PEPS. The proteolytic activities of ST 1303 of FM with added PEPS were higher than those of FM fermented by ST 1303 without PEPS. The FM with added 0.125% PEPS had similar angiotensin-I-converting enzyme-inhibitory activity to that fermented by ST 1303 without PEPS; both were higher than those of other samples during refrigerated storage. Firmness and gumminess values of FM with added PEPS were higher than those of FM fermented by ST 1303 or ST 1275 without PEPS. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. The inhibitory activity of a peptide derivative against the growth of simian immunodeficiency virus in C8166 cells.

    Science.gov (United States)

    Martin, J A; Mobberley, M A; Redshaw, S; Burke, A; Tyms, A S; Ryder, T A

    1991-04-15

    The peptide derivative Ro 31-8959 is a potent and selective inhibitor of the aspartic proteinases encoded by HIV-1 and HIV-2 and it arrests the growth of both viruses in cell culture. We have demonstrated similar effects against the simian immunodeficiency virus SIVmac251 in the human T-cell line, C8166 (ED50 = 6nM) with a therapeutic index of 4,500. The antiviral activity of Ro 31-8959 was 250 and 22 times greater than that of ddI and ddC, respectively. The mode of action was confirmed by accumulation of the polyprotein p55 with concomitant reduction of the cleavage product, p27, and by the production of immature virions.

  19. The Growth Inhibitory Potential and Antimetastatic Effect of Camel Urine on Breast Cancer Cells In Vitro and In Vivo.

    Science.gov (United States)

    Romli, Firdaus; Abu, Nadiah; Khorshid, Faten A; Syed Najmuddin, Syed Umar Faruq; Keong, Yeap Swee; Mohamad, Nurul Elyani; Hamid, Muhajir; Alitheen, Noorjahan Banu; Nik Abd Rahman, Nik Mohd Afizan

    2017-12-01

    Although it may sound unpleasant, camel urine has been consumed extensively for years in the Middle East as it is believed to be able to treat a wide range of diseases such as fever, cold, or even cancer. People usually take it by mixing small drops with camel milk or take it directly. The project aims to study the effects of camel urine in inhibiting the growth potential and metastatic ability of 4T1 cancer cell line in vitro and in vivo. Based on the MTT result, the cytotoxicity of camel urine against 4T1 cell was established, and it was dose-dependent. Additionally, the antimetastatic potential of camel urine was tested by running several assays such as scratch assay, migration and invasion assay, and mouse aortic ring assay with promising results in the ability of camel urine to inhibit metastatic process of the 4T1 cells. In order to fully establish camel urine's potential, an in vivo study was carried out by treating mice inoculated with 4T1 cells with 2 different doses of camel urine. By the end of the treatment period, the tumor in both treated groups had reduced in size as compared to the control group. Additional assays such as the TUNEL assay, immunophenotyping, cytokine level detection assay, clonogenic assay, and proteome profiler demonstrated the capability of camel urine to reduce and inhibit the metastatic potential of 4T1 cells in vivo. To sum up, further study of anticancer properties of camel urine is justified, as evidenced through the in vitro and in vivo studies carried out. Better results were obtained at higher concentration of camel urine used in vivo. Apart from that, this project has laid out the mechanisms employed by the substance to inhibit the growth and the metastatic process of the 4T1 cell.

  20. Intensification of the inhibitory effect of X-rays on the growth of Ehrlich ascites tumor cells in monolayer culture by quinacrine (atebrine) or chloroquine (resochine)

    International Nuclear Information System (INIS)

    Biller, H.; Pfab, R.; Hess, F.; Schachtschabel, D.O.; Leising, H.B.

    1980-01-01

    Monolayers of Ehrlich ascites tumor cells in their logarithmic phase of growth were exposed to a single X-ray dose of 1 to 16 Gy. Following exposure, the monolayers were cultured for several days or weeks with or without an addition of 4 x to 6 x 10 -6 M of quinacrine (atebrine) or 3.3 x 10 -5 to 1 x 10 -4 M of chloroquine. Proliferation activity was controlled by the daily microscopical count of representative areas out of the total population. A significant delay resulted from exposure to 4 Gy (particularly during the 1st day), while sole irradiation with 1 or 2 Gy did not much influence the proliferation of the cells. An 8-Gy dose and to a larger extent 16 Gy led to a fall of the cell number down to 20% (8 Gy) or around 10% (16 Gy) of the initial value between the 7th and the 10th day. The cells subsequently multiplied with nearly the growth rate of controls. The inhibitory effect on cells proliferation produced by an exposure to X-rays was distinctly intensified by means of incubation with continuously replaced quinacrine or chloroquine containing culture media. Treatment with 1 x 10 -4 mol chloroquine thus brought about a more pronounced inhibition after pre-irradiation with a single dose of 2 or 8 Gy. If 4 x 10 -6 or 6 x 10 -6 M of quinacrine were added to cultures pretreated with 4 Gy, a more intense inhibition of growth resulted therefrom than from sole treatment with either quinacrine or X-rays. Incubation of cultures pretreated with 8 Gy in the presence of 6 x 10 -6 M quinacrine led to the death of all the cells within 8 days. Quinacrine and chloroquine effects on cells previously exposed to X-rays are discussed in view of the well-known effects these agents exert by inhibiting enzymatic repair processes of DNA damage. (orig.) [de

  1. Inhibitory effect of gamma radiation and Nigella sativa seeds oil on growth, spore germination and toxin production of fungi

    Science.gov (United States)

    Zeinab, E. M. EL-Bazza; Hala, A. Farrag; Mohie, E. D. Z. EL-Fouly; Seham, Y. M. EL-Tablawy

    2001-02-01

    Twenty samples of Nigella sativa seeds (Black cumin) were purchased from different localities in Egypt. The mold viable count ranged from 1.7×10 1 to 9.8×10 3 c.f.u. Sixty six molds were isolated belonging to six genera Aspergillus, Penicillium, Rhizopus, Mucor, Alternaria and Fusarium. Exposure of seeds samples to different radiation doses showed that a dose level of 6.0 kGy could be considered as a sufficient dose for decontamination of the tested samples. Seven radioresistant isolates were identified as Rhizopus oryzae, Rhizopus stolonifer, Penicillium chrysogenum and Penicillium corylophillum. All the herb samples were found to be free from aflatoxins B 1, B 2, G 1, G 2 and ochratoxin A. One mold isolate was identified as Aspergillus flavus could produce aflatoxin B 1 and G 1. None of the isolated radioresistant strains could produce mycotoxins. The water activities of seeds were slightly decreased by the storage time and the seeds needed to be stored at relative humidity not more than 85%. The addition of extract volatile and fixed oil from tested seeds to the medium stimulated the growth of isolated Aspergillus sp.

  2. Inhibitory effect of gamma radiation and Nigella sativa seeds oil on growth, spore germination and toxin production of fungi

    International Nuclear Information System (INIS)

    El-Bazza, Z.E.; Hala, A.F.; El-Fouly, M.E.Z.; El-Tablawy, S.Y.M.

    2001-01-01

    Twenty samples of Nigella sativa seeds (Black cumin) were purchased from different localities in Egypt. The mold viable count ranged from 1.7x10 1 to 9.8x10 3 c.f.u. Sixty six molds were isolated belonging to six genera Aspergillus, Penicillium, Rhizopus, Mucor, Alternaria and Fusarium. Exposure of seeds samples to different radiation doses showed that a dose level of 6.0 kGy could be considered as a sufficient dose for decontamination of the tested samples. Seven radioresistant isolates were identified as Rhizopus oryzae, Rhizopus stolonifer, Penicillium chrysogenum and Penicillium corylophillum. All the herb samples were found to be free from aflatoxins B 1 , B 2 , G 1 , G 2 and ochratoxin A. One mold isolate was identified as Aspergillus flavus could produce aflatoxin B 1 and G 1 . None of the isolated radioresistant strains could produce mycotoxins. The water activities of seeds were slightly decreased by the storage time and the seeds needed to be stored at relative humidity not more than 85%. The addition of extract volatile and fixed oil from tested seeds to the medium stimulated the growth of isolated Aspergillus sp. (author)

  3. Inhibitory effect of gamma radiation and Nigella sativa seeds oil on growth, spore germination and toxin production of fungi

    Energy Technology Data Exchange (ETDEWEB)

    El-Bazza, Z.E.; Hala, A.F. E-mail: hfarragmassoud@hotmail.com; El-Fouly, M.E.Z.; El-Tablawy, S.Y.M

    2001-02-01

    Twenty samples of Nigella sativa seeds (Black cumin) were purchased from different localities in Egypt. The mold viable count ranged from 1.7x10{sup 1} to 9.8x10{sup 3} c.f.u. Sixty six molds were isolated belonging to six genera Aspergillus, Penicillium, Rhizopus, Mucor, Alternaria and Fusarium. Exposure of seeds samples to different radiation doses showed that a dose level of 6.0 kGy could be considered as a sufficient dose for decontamination of the tested samples. Seven radioresistant isolates were identified as Rhizopus oryzae, Rhizopus stolonifer, Penicillium chrysogenum and Penicillium corylophillum. All the herb samples were found to be free from aflatoxins B{sub 1}, B{sub 2}, G{sub 1}, G{sub 2} and ochratoxin A. One mold isolate was identified as Aspergillus flavus could produce aflatoxin B{sub 1} and G{sub 1}. None of the isolated radioresistant strains could produce mycotoxins. The water activities of seeds were slightly decreased by the storage time and the seeds needed to be stored at relative humidity not more than 85%. The addition of extract volatile and fixed oil from tested seeds to the medium stimulated the growth of isolated Aspergillus sp. (author)

  4. Inhibitory effects of CP on the growth of human gastric adenocarcinoma BGC-823 tumours in nude mice.

    Science.gov (United States)

    Wang, Hai-Jun; Liu, Yu; Zhou, Bao-Jun; Zhang, Zhan-Xue; Li, Ai-Ying; An, Ran; Yue, Bin; Fan, Li-Qiao; Li, Yong

    2018-01-01

    Objective To investigate the potential antitumour effects of [2-(6-amino-purine-9-yl)-1-hydroxy-phosphine acyl ethyl] phosphonic acid (CP) against gastric adenocarcinoma. Methods Human BGC-823 xenotransplants were established in nude mice. Animals were randomly divided into control and CP groups, which were administered NaHCO 3 vehicle alone or CP dissolved in NaHCO 3 (200 µg/kg body weight) daily, respectively. Tumour volume was measured weekly for 6 weeks. Resected tumours were assayed for proliferative activity with anti-Ki-67 or anti-proliferating cell nuclear antigen (PCNA) antibodies. Cell apoptosis was examined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assays and with caspase-3 immunostaining. Proteins were measured by Western blotting. Results There was a significant reduction in tumour volume and a reduced percentage of Ki-67-positive or PCNA-positive cells in the CP group compared with the control group. The percentage of TUNEL-positive or caspase 3-positive cells significantly increased following CP treatment compared with the control group. Tumours from the CP group had higher levels of phosphorylated-extracellular signal-regulated kinase (p-ERK) and phosphorylated-AKT (p-AKT) compared with control tumours. Conclusion CP treatment inhibited tumour growth and induced tumour cell apoptosis in a nude mouse model of BGC-823 gastric adenocarcinoma. Activation of the AKT and ERK signalling pathways may mediate this antitumour activity.

  5. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L.

    Directory of Open Access Journals (Sweden)

    Nawasit Chotsaeng

    2017-10-01

    Full Text Available Seven allelochemicals, namely R-(+-limonene (A, vanillin (B, xanthoxyline (C, vanillic acid (D, linoleic acid (E, methyl linoleate (F, and (±-odorine (G, were investigated for their herbicidal activities on Chinese amaranth (Amaranthus tricolor L.. At 400 μM, xanthoxyline (C showed the greatest inhibitory activity on seed germination and seedling growth of the tested plant. Both vanillic acid (D and (±-odorine (G inhibited shoot growth, however, apart from xanthoxyline (C, only vanillic acid (D could inhibit root growth. Interestingly, R-(+-limonene (A lightly promoted root length. Other substances had no allelopathic effect on seed germination and seedling growth of the tested plant. To better understand and optimize the inhibitory effects of these natural herbicides, 21 samples of binary mixtures of these seven compounds were tested at 400 μM using 0.25% (v/v Tween® 80 as a control treatment. The results showed that binary mixtures of R-(+-limonene:xanthoxyline (A:C, vanillin:xanthoxyline (B:C, and xanthoxyline:linoleic acid (C:E exhibited strong allelopathic activities on germination and seedling growth of the tested plant, and the level of inhibition was close to the effect of xanthoxyline (C at 400 µM and was better than the effect of xanthoxyline (C at 200 µM. The inhibition was hypothesized to be from a synergistic interaction of each pair of alleochemicals. Mole ratios of each pair of allelochemicals ((A:C, (B:C, and (C:E were then evaluated, and the best ratios of the binary mixtures A:C, B:C and C:E were found to be 2:8, 2:8, and 4:6 respectively. These binary mixtures significantly inhibited germination and shoot and root growth of Chinese amaranth at low concentrations. The results reported here highlight a synergistic behavior of some allelochemicals which could be applied in the development of potential herbicides.

  6. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest

    International Nuclear Information System (INIS)

    Andries, Vanessa; Vandepoele, Karl; Staes, Katrien; Berx, Geert; Bogaert, Pieter; Van Isterdael, Gert; Ginneberge, Daisy; Parthoens, Eef; Vandenbussche, Jonathan; Gevaert, Kris; Roy, Frans van

    2015-01-01

    NBPF1 (Neuroblastoma Breakpoint Family, member 1) was originally identified in a neuroblastoma patient on the basis of its disruption by a chromosomal translocation t(1;17)(p36.2;q11.2). Considering this genetic defect and the frequent genomic alterations of the NBPF1 locus in several cancer types, we hypothesized that NBPF1 is a tumor suppressor. Decreased expression of NBPF1 in neuroblastoma cell lines with loss of 1p36 heterozygosity and the marked decrease of anchorage-independent clonal growth of DLD1 colorectal carcinoma cells with induced NBPF1 expression further suggest that NBPF1 functions as tumor suppressor. However, little is known about the mechanisms involved. Expression of NBPF was analyzed in human skin and human cervix by immunohistochemistry. The effects of NBPF1 on the cell cycle were evaluated by flow cytometry. We investigated by real-time quantitative RT-PCR the expression profile of a panel of genes important in cell cycle regulation. Protein levels of CDKN1A-encoded p21 CIP1/WAF1 were determined by western blotting and the importance of p53 was shown by immunofluorescence and by a loss-of-function approach. LC-MS/MS analysis was used to investigate the proteome of DLD1 colon cancer cells with induced NBPF1 expression. Possible biological interactions between the differentially regulated proteins were investigated with the Ingenuity Pathway Analysis tool. We show that NBPF is expressed in the non-proliferative suprabasal layers of squamous stratified epithelia of human skin and cervix. Forced expression of NBPF1 in HEK293T cells resulted in a G1 cell cycle arrest that was accompanied by upregulation of the cyclin-dependent kinase inhibitor p21 CIP1/WAF1 in a p53-dependent manner. Additionally, forced expression of NBPF1 in two p53-mutant neuroblastoma cell lines also resulted in a G1 cell cycle arrest and CDKN1A upregulation. However, CDKN1A upregulation by NBPF1 was not observed in the DLD1 cells, which demonstrates that NBPF1 exerts cell

  7. Polysaccharides from Epimedium koreanum Nakai with immunomodulatory activity and inhibitory effect on tumor growth in LLC-bearing mice.

    Science.gov (United States)

    Wang, Chengcheng; Feng, Liang; Su, Jiayan; Cui, Li; Dan Liu; Yan, Jun; Ding, Chuanlin; Tan, Xiaobin; Jia, Xiaobin

    2017-07-31

    , CD4 T-cell differentiation and increased INF-γ production stimulated by EPS-activated macrophages were observed in the research. Furthermore, EPS exhibited prominent antitumor activities through regulating host immune system function in LLC-bearing mice. Taken together, experimental findings suggested EPS could be regarded as a potential immune-stimulating modifier for cancer therapy. Our studies demonstrated the polysaccharide (180 × 10 4 Da) purified from Epimedium koreanum Nakai could promote maturation and Ag presentation function of DCs, increase the level of immunomodulatory cytokines and activate CD4 T-cell differentiation. Furthermore, it may inhibit the tumor growth in LLC-bearing mice through regulating host immune system function. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Characterization, Purification of Poncirin from Edible Citrus Ougan (Citrus reticulate cv. Suavissima) and Its Growth Inhibitory Effect on Human Gastric Cancer Cells SGC-7901

    Science.gov (United States)

    Zhu, Xiaoyan; Luo, Fenglei; Zheng, Yixiong; Zhang, Jiukai; Huang, Jianzhen; Sun, Chongde; Li, Xian; Chen, Kunsong

    2013-01-01

    Poncirin is a bitter flavanone glycoside with various biological activities. Poncirin was isolated from four different tissues (flavedo, albedo, segment membrane, and juice sac) of Ougan fruit (Citrus reticulate cv. Suavissima). The highest content of poncirin was found in the albedo of Ougan fruit (1.37 mg/g DW). High speed counter-current chromatography (HSCCC) combined with D101 resin chromatography was utilized for the separation and purification of poncirin from the albedo of Ougan fruit. After this two-step purification, poncirin purity increased from 0.14% to 96.56%. The chemical structure of the purified poncirin was identified by both HPLC-PDA and LC-MS. Poncirin showed a significant in vitro inhibitory effect on the growth of the human gastric cancer cells, SGC-7901, in a dose-dependent manner. Thus, poncirin from Ougan fruit, may be beneficial for gastric cancer prevention. The purification method demonstrated here will be useful for further studies on the pharmacological mechanism of poncirin activity, as well as for guiding the consumption of Ougan fruit. PMID:23615464

  9. Characterization, Purification of Poncirin from Edible Citrus Ougan (Citrus reticulate cv. Suavissima and Its Growth Inhibitory Effect on Human Gastric Cancer Cells SGC-7901

    Directory of Open Access Journals (Sweden)

    Xian Li

    2013-04-01

    Full Text Available Poncirin is a bitter flavanone glycoside with various biological activities. Poncirin was isolated from four different tissues (flavedo, albedo, segment membrane, and juice sac of Ougan fruit (Citrus reticulate cv. Suavissima. The highest content of poncirin was found in the albedo of Ougan fruit (1.37 mg/g DW. High speed counter-current chromatography (HSCCC combined with D101 resin chromatography was utilized for the separation and purification of poncirin from the albedo of Ougan fruit. After this two-step purification, poncirin purity increased from 0.14% to 96.56%. The chemical structure of the purified poncirin was identified by both HPLC-PDA and LC-MS. Poncirin showed a significant in vitro inhibitory effect on the growth of the human gastric cancer cells, SGC-7901, in a dose-dependent manner. Thus, poncirin from Ougan fruit, may be beneficial for gastric cancer prevention. The purification method demonstrated here will be useful for further studies on the pharmacological mechanism of poncirin activity, as well as for guiding the consumption of Ougan fruit.

  10. Studies on panax acetylenes: absolute structure of a new panax acetylene, and inhibitory effects of related acetylenes on the growth of L-1210 cells.

    Science.gov (United States)

    Satoh, Yoshio; Satoh, Mitsuru; Isobe, Kimiaki; Mohri, Kunihiko; Yoshida, Yuki; Fujimoto, Yasuo

    2007-04-01

    A new Panax acetylene, 3-oxo-PQ-1 (1), was isolated from Panax quinquefolium. The absolute configurations of 3-oxo-PQ-1 (1) and PQ-1 (2) were determined to be (9R,10R) and (3R,9R,10R), respectively, by synthesizing 1 and 2 starting from D-(-)-diethyl tartrate, and by synthesizing their stereoisomers from L-(+)-diethyl tartrate. The growth inhibitory effects of Panax acetylenes (1-8) and their stereoisomers against leukemia cells were tested. Unnatural acetylenes having the (3S)-configuration (2, 5, 6, 7, 8; IC(50)=0.01-0.1 microg/ml) were found to be approximately ten times more potent than natural acetylenes (IC(50)=0.1-1.0 microg/ml) with the (3R)-configuration. Potency differences due to the configuration at C-9 and C-10 were unrelated to this stereochemistry. The C(14)-polyacetylenes, PQ-8 (4) and its isomer (IC(50)=1.0-10.0 microg/ml), were found to exhibit weaker cytotoxicity than the C(17)-polyacetylenes.

  11. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Alexandra A. Popova

    2014-01-01

    Full Text Available In previous research, volatile organic compounds (VOCs emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans. VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions.

  12. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    International Nuclear Information System (INIS)

    Mohan, S.; Bautista, C.M.; Wergedal, J.; Baylink, D.J.

    1989-01-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C 4 reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodium dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of 125 I-labeled IGF-I or 125 I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells

  13. Melatonin blocks inhibitory effects of prolactin on photoperiodic induction of gain in body mass, testicular growth and feather regeneration in the migratory male redheaded bunting (Emberiza bruniceps

    Directory of Open Access Journals (Sweden)

    Rani Sangeeta

    2004-11-01

    Full Text Available Abstract Little is known about how hormones interact in the photoperiodic induction of seasonal responses in birds. In this study, two experiments determined if the treatment with melatonin altered inhibitory effects of prolactin on photoperiodic induction of seasonal responses in the Palearctic-Indian migratory male redheaded bunting Emberiza bruniceps. Each experiment employed three groups (N = 6–7 each of photosensitive birds that were held under 8 hours light: 16 hours darkness (8L:16D since early March. In the experiment 1, beginning in mid June 2001, birds were exposed to natural day lengths (NDL at 27 degree North (day length = ca.13.8 h, sunrise to sunset for 23 days. In the experiment 2, beginning in early April 2002, birds were exposed to 14L:10D for 22 days. Beginning on day 4 of NDL or day 1 of 14L:10D, they received 10 (experiment 1 or 13 (experiment 2 daily injections of both melatonin and prolactin (group 1 or prolactin alone (group 2 at a dose of 20 microgram per bird per day in 200 microliter of vehicle. Controls (group 3 received similar volume of vehicle. Thereafter, birds were left uninjected for the next 10 (experiment 1 or 9 days (experiment 2. All injections except those of melatonin were made at the zeitgeber time 10 (ZT 0 = time of sunrise, experiment 1; time of lights on, experiment 2; melatonin was injected at ZT 9.5 and thus 0.5 h before prolactin. Observations were recorded on changes in body mass, testicular growth and feather regeneration. Under NDL (experiment 1, testis growth in birds that received melatonin 0.5 h prior to prolactin (group 1 was significantly greater (P

  14. Identification of estrogen receptor dimer selective ligands reveals growth-inhibitory effects on cells that co-express ERα and ERβ.

    Directory of Open Access Journals (Sweden)

    Emily Powell

    Full Text Available Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ.

  15. Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension

    Directory of Open Access Journals (Sweden)

    K. Stefanantoni

    2015-03-01

    Full Text Available Pulmonary arterial hypertension (PAH can be idiopathic or secondary to autoimmune diseases, and it represents one of the most threatening complications of systemic sclerosis (SSc. Macrophage migration inhibitory factor (MIF is a pleiotropic cytokine with proinflammatory functions that appears to be involved in the pathogenesis of hypoxia-induced PH. In SSc patients, high serum levels of MIF have been associated with the development of ulcers and PAH. Stem cell growth factor β (SCGF β is a human growth factor that, together with MIF, is involved in the pathogenesis of chronic spinal cord injury. The aim of our study was to measure serum levels of MIF in patients with idiopathic and SSc-associated PAH. We enrolled 13 patients with idiopathic PAH and 15 with SSc-associated PAH. We also selected 14 SSc patients without PAH and 12 normal healthy controls, matched for sex and age. PAH was confirmed by right hearth catheterism (mPAP>25 mmHg. MIF and SCGF β levels were measured by ELISA. We found significantly higher circulating levels of MIF and of SCGF β in patients with idiopathic PAH (P=0.03 and P=0.004 and with PAH secondary to SSc (P=0.018 and P=0.023 compared to SSc patients without PAH. Higher levels of MIF were found in those patients with an higher New York Heart Association (NYHA class (P=0.03. We can hypothesize that MIF and SCGF β are able to play a role in PAH, both idiopathic or secondary, and in the future they may be evaluated as useful biomarkers and prognostic factors for this serious vascular disease.

  16. Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension.

    Science.gov (United States)

    Stefanantoni, K; Sciarra, I; Vasile, M; Badagliacca, R; Poscia, R; Pendolino, M; Alessandri, C; Vizza, C D; Valesini, G; Riccieri, V

    2015-03-31

    Pulmonary arterial hypertension (PAH) can be idiopathic or secondary to autoimmune diseases, and it represents one of the most threatening complications of systemic sclerosis (SSc). Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory functions that appears to be involved in the pathogenesis of hypoxia-induced PH. In SSc patients, high serum levels of MIF have been associated with the development of ulcers and PAH. Stem cell growth factor β (SCGF β) is a human growth factor that, together with MIF, is involved in the pathogenesis of chronic spinal cord injury. The aim of our study was to measure serum levels of MIF in patients with idiopathic and SSc-associated PAH. We enrolled 13 patients with idiopathic PAH and 15 with SSc-associated PAH. We also selected 14 SSc patients without PAH and 12 normal healthy controls, matched for sex and age. PAH was confirmed by right hearth catheterism (mPAP>25 mmHg). MIF and SCGF β levels were measured by ELISA. We found significantly higher circulating levels of MIF and of SCGF β in patients with idiopathic PAH (P=0.03 and P=0.004) and with PAH secondary to SSc (P=0.018 and P=0.023) compared to SSc patients without PAH. Higher levels of MIF were found in those patients with an higher New York Heart Association (NYHA) class (P=0.03). We can hypothesize that MIF and SCGF β are able to play a role in PAH, both idiopathic or secondary, and in the future they may be evaluated as useful biomarkers and prognostic factors for this serious vascular disease.

  17. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M

    2002-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGFs) are all important bone regulatory factors known to affect proliferation and differentiation of human bone-forming cells (osteoblasts). We have previously shown that TGF-beta1...... increased IGF-I and IGF-binding protein (IGFBP)-3 production in human bone marrow stromal (hMS) osteoblast progenitors and calcitriol stimulated IGFBP-3 and IGFBP-4 production. As interaction between signaling pathways of these factors has been reported, the present study aimed at examining the concerted...... actions on components of the IGF-system. We report that co-treatment with TGF-beta1 and calcitriol resulted in a synergistic increase in IGFBP-3 production, thereby suggesting that the effects of these factors on hMS osteoblast differentiation may involve the observed increase in IGFBP-3....

  18. [Synergistic Antitumor Effect of Amorphigenin Combined with Cisplatin in Human Lung Adenocarcinoma A549/DDP Cells].

    Science.gov (United States)

    Zhong, Hongzhen; Zuo, Yufang; Wu, Xin; Peng, Yan; He, Huiping; Yang, Jun; Guan, Chengnong; Xu, Zumin

    2016-12-20

    Amorphigenin, a rotenoid compouns, from seeds of Amorpha fruticosa, has been shown to possess anti-proliferation activities in several cancer cells. To explore the antitumor effects of amorphigenin on cisplatin-resistant human lung adenocarcinoma A549/DDP cells and explore the underlying mechanisms. CCK-8 assay was used to measure the proliferation of A549/DDP cells; Colony formation assay was used to measure the colony formation of A549/DDP cells; Flow cytometry assay was used to detect the apoptosis rates; Western blot analysis was used to explore the expression of apoptosis-related proteins (caspase-3 protein, PARP protein) and lung resistance protein (LRP). Our results demonstrated that amorphigenin could inhibit the proliferation of A549/DDP cells with a inhibition concentration of 50% cell growth (IC50) at 48 h of (2.19±0.92) μmol/L. Amorphigenin could inhibit the colony formation ability and induce apoptosis of A549/DDP cells; Furthermore, amorphigenin combined with cisplatin showed synergistic proliferation-inhibitory effect and apoptosis-promoting effect in A549/DDP cells; reduced the expression of LRP of A549/DDP cells. Amorphigenin remarkably inhibits the proliferation and induces apoptosis in A549/DDP cells. Combination of amorphigenin with cisplatin had the synergistic inhibitory effect on A549/DDP cells by downregulating the expression of LRP.
.

  19. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  20. Synergistic protective effects of escin and low‑dose glucocorticoids against vascular endothelial growth factor‑induced blood‑retinal barrier breakdown in retinal pigment epithelial and umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Fenglan; Man, Xuejing; Yu, Huajun; Liu, Limei; Li, Yuanbin

    2015-02-01

    Previous studies have shown that escin possesses glucocorticoid (GC)‑like anti‑edematous and anti‑inflammatory effects. The present study was designed to investigate whether escin exhibits synergistic protective effects against blood‑retinal barrier (BRB) breakdown when combined with GC in an in vitro monolayer BRB model, based on retinal pigment epithelial (RPE) cells and human umbilical vein endothelial cells (HUVECs). The results showed that low concentrations of escin and triamcinolone acetonide (TA) administered separately did not affect BRB trans‑endothelial (epithelium) resistance (TEER). However, when administered together, escin and TA significantly inhibited reduced BRB TEER following treatment with vascular endothelial growth factor (VEGF). Furthermore, low‑concentrations of escin and TA administered together significantly increased the expression levels of occludin and ZO‑1. This demonstrates that escin and GC have synergistic protective effects against BRB breakdown, and the molecular mechanisms may be related to the upregulation of occludin and ZO‑1 expression. The combination of escin with GC indicates a potential beneficial strategy for the treatment of breakdown of the BRB.

  1. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells.

    Science.gov (United States)

    Lu, Yuhong; Zi, Xiaolin; Pollak, Michael

    2004-01-20

    The clinical usefulness of trastuzumab (Herceptin; Genentech, San Francisco, CA) in breast cancer treatment is limited by the rapid development of resistance. We previously reported that IGF-I signaling confers resistance to the growth-inhibitory actions of trastuzumab in a model system, but the underlying molecular mechanism remains unknown. We used SKBR3/neo cells (expressing few IGF-I receptors) and SKBR3/IGF-IR cells (overexpressing IGF-I receptor) as our experimental model. IGF-I antagonized the trastuzumab-induced increase in the level of the Cdk inhibitor p27(Kip1). This resulted in decreased association of p27(Kip1) with Cdk2, restoration of Cdk2 activity and attenuation of cell-cycle arrest in G(1) phase, all of which had been induced by trastuzumab treatment in SKBR3/IGF-IR cells. We also found that the decrease in p27(Kip1) induced by IGF-I was accompanied by an increase in expression of Skp2, which is a ubiquitin ligase for p27(Kip1), and by increased Skp2 association with p27(Kip1). A specific proteasome inhibitor (LLnL) completely blocked the ability of IGF-I to reduce the p27(Kip1) protein level, while IGF-I increased p27(Kip1) ubiquitination. This suggests that the action of IGF-I in conferring resistance to trastuzumab involves targeting of p27(Kip1) to the ubiquitin/proteasome degradation machinery. Finally, specific inhibitors of MAPK and PI3K suggest that the IGF-I-mediated reduction in p27(Kip1) protein level by increased degradation predominantly involves the PI3K pathway. Our results provide an example of resistance to an antineoplastic therapy that targets one tyrosine kinase receptor by increased signal transduction through an alternative pathway in a complex regulatory network. Copyright 2003 Wiley-Liss, Inc.

  2. Inhibitory effects of brown algae extracts on histamine production in mackerel muscle via inhibition of growth and histidine decarboxylase activity of Morganella morganii.

    Science.gov (United States)

    Kim, Dong Hyun; Kim, Koth Bong Woo Ri; Cho, Ji Young; Ahn, Dong Hyun

    2014-04-01

    This study was performed to investigate the inhibitory effects of brown algae extracts on histamine production in mackerel muscle. First, antimicrobial activities of brown algae extracts against Morganella morganii were investigated using a disk diffusion method. An ethanol extract of Ecklonia cava (ECEE) exhibited strong antimicrobial activity. The minimum inhibitory concentration (MIC) of ECEE was 2 mg/ml. Furthermore, the brown algae extracts were examined for their ability to inhibit crude histidine decarboxylase (HDC) of M. morganii. The ethanol extract of Eisenia bicyclis (EBEE) and ECEE exhibited significant inhibitory activities (19.82% and 33.79%, respectively) at a concentration of 1 mg/ml. To obtain the phlorotannin dieckol, ECEE and EBEE were subjected to liquid-liquid extraction, silica gel column chromatography, and HPLC. Dieckol exhibited substantial inhibitory activity with an IC50 value of 0.61 mg/ml, and exhibited competitive inhibition. These extracts were also tested on mackerel muscle. The viable cell counts and histamine production in mackerel muscle inoculated with M. morganii treated with ≥2.5 MIC of ECEE (weight basis) were highly inhibited compared with the untreated sample. Furthermore, treatment of crude HDC-inoculated mackerel muscle with 0.5% ECEE and 0.5% EBEE (weight basis), which exhibited excellent inhibitory activities against crude HDC, reduced the overall histamine production by 46.29% and 56.89%, respectively, compared with the untreated sample. Thus, these inhibitory effects of ECEE and EBEE should be helpful in enhancing the safety of mackerel by suppressing histamine production in this fish species.

  3. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties

    Science.gov (United States)

    Zhang, Meng; Zhao, Jian; Li, Zhenjiang; Yu, Hongyuan; Wang, Yaqi; Meng, Alan; Li, Qingdang

    2016-11-01

    Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm and 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED).

  4. Fungal inhibitory lactic acid bacteria

    OpenAIRE

    Ström, Katrin

    2005-01-01

    Lactic acid bacteria (LAB) are microorganisms that have been used for centuries to prepare and improve storage of food and for ensiling of different crops for animal feed. This thesis explores the possibility of using LAB to inhibit growth of spoilage fungi in food and feed products. LAB isolates, collected from plant material or dairy products, were screened for antifungal activity in a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity wa...

  5. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  6. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer.

    Science.gov (United States)

    Jin, Xin; Yang, Qing; Zhang, Youwen

    2017-01-01

    To develop an alternative treatment for lung cancer, a combination of two potent chemotherapeutic agents - liposomal apigenin and tyroservatide - was developed. The therapeutic potential of this combination was investigated using A549 cells. Apigenin and tocopherol derivative-containing D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) liposomes might improve the delivery of apigenin to tumor cells, both in vitro and in vivo. Importantly, compared to either agent alone, the combination of apigenin TPGS liposomes and tyroservatide exhibited superior cytotoxicity, induced stronger G2 arrest, and suppressed A549 cancer cell invasion at a lower dose. The proapoptotic synergistic effects were also observed in A549 cells using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, flow cytometry, and Western blot analysis. More importantly, in vivo results showed that the combination of apigenin TPGS liposomes and tyroservatide exhibited tumor-growth inhibitory effects in A549 cell-bearing mice. In conclusion, our study showed that this combination therapy could serve as a promising synergistic therapeutic approach to improve outcomes in patients with lung cancer.

  7. Virosomes of hepatitis B virus envelope L proteins containing doxorubicin: synergistic enhancement of human liver-specific antitumor growth activity by radiotherapy.

    Science.gov (United States)

    Liu, Qiushi; Jung, Joohee; Somiya, Masaharu; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Shin, Seol Hwa; Jeong, Seong-Yun; Choi, Eun Kyung; Kuroda, Shun'ichi

    2015-01-01

    Bionanocapsules (BNCs) are hollow nanoparticles consisting of hepatitis B virus (HBV) envelope L proteins and have been shown to deliver drugs and genes specifically to human hepatic tissues by utilizing HBV-derived infection machinery. The complex of BNCs with liposomes (LPs), the BNC-LP complexes (a LP surrounded by BNCs in a rugged spherical form), could also become active targeting nanocarriers by the BNC function. In this study, under acidic conditions and high temperature, BNCs were found to fully fuse with LPs (smooth-surfaced spherical form), deploying L proteins with a membrane topology similar to that of BNCs (ie, virosomes displaying L proteins). Doxorubicin (DOX) was efficiently encapsulated via the remote loading method at 14.2%±1.0% of total lipid weight (mean ± SD, n=3), with a capsule size of 118.2±4.7 nm and a ζ-potential of -51.1±1.0 mV (mean ± SD, n=5). When mammalian cells were exposed to the virosomes, the virosomes showed strong cytotoxicity in human hepatic cells (target cells of BNCs), but not in human colon cancer cells (nontarget cells of BNCs), whereas LPs containing DOX and DOXOVES (structurally stabilized PEGylated LPs containing DOX) did not show strong cytotoxicity in either cell type. Furthermore, the virosomes preferentially delivered DOX to the nuclei of human hepatic cells. Xenograft mice harboring either target or nontarget cell-derived tumors were injected twice intravenously with the virosomes containing DOX at a low dose (2.3 mg/kg as DOX, 5 days interval). The growth of target cell-derived tumors was retarded effectively and specifically. Next, the combination of high dose (10.0 mg/kg as DOX, once) with tumor-specific radiotherapy (3 Gy, once after 2 hours) exhibited the most effective antitumor growth activity in mice harboring target cell-derived tumors. These results demonstrated that the HBV-based virosomes containing DOX could be an effective antitumor nanomedicine specific to human hepatic tissues, especially in

  8. Synergistic effect of fadrozole and insulin-like growth factor-I on female-to-male sex reversal and body weight of broiler chicks.

    Science.gov (United States)

    Mohammadrezaei, Mohammad; Toghyani, Majid; Gheisari, Abbasali; Toghyani, Mehdi; Eghbalsaied, Shahin

    2014-01-01

    The aim of this study was to investigate the effects of Fadrozole hydrochloride and recombinant human insulin-like growth factor I (rhIGF-I) on female-to-male sex reversal, hatching traits, and body weight of broiler chickens. On the third day of incubation, fertile eggs were randomly assigned to five experimental groups comprising (i) Fadrozole (0.1 mg/egg), (ii) rhIGF-I (100 ng/egg), (iii) Fadrozole (0.1 mg/egg) + rhIGF-I (100 ng/egg), (iv) vehicle injection (10 mM acetic acid and 0.1% BSA), and (v) non-injected eggs. Eggs in the rhIGF-I-injected groups showed the mode of hatching time at the 480th hour of incubation, 12 hours earlier compared to the other groups, with no statistically significant difference in mortality and hatchability. On Day 1 and 42 of production, 90% of genetically female chicks were masculinized using Fadrozole treatment, while 100% female-to-male phenotypic sex reversal was observed in the Fadrozole+rhIGF-I group. Fadrozole equalized the body weight of both genders, although rhIGF-I was effective on the body weight of male chicks only. Interestingly, combined rhIGF-I and Fadrozole could increase the body weight in both sexes compared to the individual injections (Pbody weight of masculinized chickens via Fadrozole could be equal to their genetically male counterparts, and (iv) the IGF-I effectiveness, specifically along with the application of aromatase inhibitors in female chicks, indicates that estrogen synthesis could be a stumbling block for the IGF-I action mechanism in female embryos.

  9. Synergistic activity of letrozole and sorafenib on breast cancer cells.

    Science.gov (United States)

    Bonelli, Mara A; Fumarola, Claudia; Alfieri, Roberta R; La Monica, Silvia; Cavazzoni, Andrea; Galetti, Maricla; Gatti, Rita; Belletti, Silvana; Harris, Adrian L; Fox, Stephen B; Evans, Dean B; Dowsett, Mitch; Martin, Lesley-Ann; Bottini, Alberto; Generali, Daniele; Petronini, Pier Giorgio

    2010-11-01

    Estrogens induce breast tumor cell proliferation by directly regulating gene expression via the estrogen receptor (ER) transcriptional activity and by affecting growth factor signaling pathways such as mitogen-activated protein kinase (MAPK) and AKT/mammalian target of rapamycin Complex1 (mTORC1) cascades. In this study we demonstrated the preclinical therapeutic efficacy of combining the aromatase inhibitor letrozole with the multi-kinase inhibitor sorafenib in aromatase-expressing breast cancer cell lines. Treatment with letrozole reduced testosterone-driven cell proliferation, by inhibiting the synthesis of estrogens. Sorafenib inhibited cell proliferation in a concentration-dependent manner; this effect was not dependent on sorafenib-mediated inhibition of Raf1, but involved the down-regulation of mTORC1 and its targets p70S6K and 4E-binding protein 1 (4E-BP1). At concentrations of 5-10 μM the growth-inhibitory effect of sorafenib was associated with the induction of apoptosis, as indicated by release of cytochrome c and Apoptosis-Inducing Factor into the cytosol, activation of caspase-9 and caspase-7, and PARP-1 cleavage. Combination of letrozole and sorafenib produced a synergistic inhibition of cell proliferation associated with an enhanced accumulation of cells in the G(0)/G(1) phase of the cell cycle and with a down-regulation of the cell cycle regulatory proteins c-myc, cyclin D1, and phospho-Rb. In addition, longer experiments (12 weeks) demonstrated that sorafenib may be effective in preventing the acquisition of resistance towards letrozole. Together, these results indicate that combination of letrozole and sorafenib might constitute a promising approach to the treatment of hormone-dependent breast cancer.

  10. Synergistic effect of fadrozole and insulin-like growth factor-I on female-to-male sex reversal and body weight of broiler chicks.

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadrezaei

    Full Text Available The aim of this study was to investigate the effects of Fadrozole hydrochloride and recombinant human insulin-like growth factor I (rhIGF-I on female-to-male sex reversal, hatching traits, and body weight of broiler chickens. On the third day of incubation, fertile eggs were randomly assigned to five experimental groups comprising (i Fadrozole (0.1 mg/egg, (ii rhIGF-I (100 ng/egg, (iii Fadrozole (0.1 mg/egg + rhIGF-I (100 ng/egg, (iv vehicle injection (10 mM acetic acid and 0.1% BSA, and (v non-injected eggs. Eggs in the rhIGF-I-injected groups showed the mode of hatching time at the 480th hour of incubation, 12 hours earlier compared to the other groups, with no statistically significant difference in mortality and hatchability. On Day 1 and 42 of production, 90% of genetically female chicks were masculinized using Fadrozole treatment, while 100% female-to-male phenotypic sex reversal was observed in the Fadrozole+rhIGF-I group. Fadrozole equalized the body weight of both genders, although rhIGF-I was effective on the body weight of male chicks only. Interestingly, combined rhIGF-I and Fadrozole could increase the body weight in both sexes compared to the individual injections (P<0.05. These findings revealed that (i IGF-I-treated chicken embryos were shown to be an effective option for overcoming the very long chicken deprivation period, (ii the simultaneous treatment with Fadrozole and IGF-I could maximize the female-to-male sex reversal chance, (iii the increase in the body weight of masculinized chickens via Fadrozole could be equal to their genetically male counterparts, and (iv the IGF-I effectiveness, specifically along with the application of aromatase inhibitors in female chicks, indicates that estrogen synthesis could be a stumbling block for the IGF-I action mechanism in female embryos.

  11. Synergistic effects of some essential oils against fungal spoilage on pear fruit.

    Science.gov (United States)

    Nikkhah, Mehdi; Hashemi, Maryam; Habibi Najafi, Mohammad B; Farhoosh, Reza

    2017-09-18

    The development of natural protective agents as alternatives to chemical fungicides is currently in the spotlight. In the present investigation, chemical composition and antifungal activities of thyme, cinnamon, rosemary and marjoram essential oils (EO), as well as synergism of their possible double and triple combinations were investigated. The compositions of the oils were determined by GC/MS. For determination of antifungal activity against Penicillium expansum and Botrytis cinerea, a broth microdilution method was used. The possible interactions of some essential oil combinations were performed by the two and three-dimensional checkerboard assay and isobologram construction. An in vivo antifungal assay was performed by artificial wounding of pear fruits. The maximum antifungal activity was demonstrated by thyme and cinnamon oils which displayed lower MIC values whereas rosemary and marjoram oils with MIC range between 2500 and 10,000μg/mL exhibited weak antifungal activities against tested fungi. In synergy testing, some double combinations (thyme/cinnamon, thyme/rosemary, cinnamon/rosemary) were found to be synergistic (FICi≤0.5). The triple combination of thyme, cinnamon and rosemary was synergistic for B. cinerea and P. expansum (FICi values of 0.5 and 0.375, respectively); while combination of cinnamon, marjoram and thyme exhibited additive and synergistic effect against P. expansum (FIC=0.625) and B. cinerea (FIC=0.375) respectively. The usage of a mathematical Gompertz model in relation to fungal kinetics, showed that the model could be used to predict growth curves (R 2 =0.993±0.05). For B. cinerea, Gompertz parameters for double and triple combination treatments showed significant increase in lag phase (1.92 and 2.92days, respectively) compared to single treatments. Increase lag time up to 2.82days (P<0.05) also observed in P. expansum treated by triple combination of EOs. Base on the results, the lowest maximum growth rate (0.37mm/day) was observed

  12. The Inhibitory Effects of Neem Oil against the Development of ...

    African Journals Online (AJOL)

    Although neem oil extract is widely used in Africa and Asia for the treatment and prevention of malaria, its inhibitory effect on the growth of malaria parasites in vivo has not been fully tested. In the present study, the inhibitory effects of neem oil extract against the growth of rodent malaria parasite in the mice were investigated ...

  13. Characterization of the growth-inhibitory and apoptosis-inducing activities of a triterpene saponin, securioside B against BAC1.2F5 macrophages

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2003-01-01

    Full Text Available Background: Since the growth state of macrophages in local pathological sites is considered a factor that regulates the processes of many disease, such as tumors, inflammation, and atherosclerosis, the substances that regulate macrophage growth or survival may be useful for disease control. We previously reported that securiosides A and B, novel triterpene saponins, exerted macrophage-oriented cytotoxicity in the presence of a L-cell-conditioned medium containing macrophage colony-stimulating factor (M-CSF, while the compounds did not exhibit an effect on macrophages in the absence of the growth-stimulating factors.

  14. Silica ecosystem for synergistic biotransformation

    Science.gov (United States)

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  15. Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human Cholangiocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Tae Won Kwak

    2013-01-01

    Full Text Available The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.

  16. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28, 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time...

  17. Inhibitory Effect of a γ-Tocopherol-Rich Mixture of Tocopherols on the Formation and Growth of LNCaP Prostate Tumors in Immunodeficient Mice

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xi, E-mail: xizheng@rci.rutgers.edu [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Cui, Xiao-Xing [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Khor, Tin Oo; Huang, Ying [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); DiPaola, Robert S; Goodin, Susan [Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Lee, Mao-Jung [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Yang, Chung S [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Kong, Ah-Ng [Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Allan H, Conney [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States)

    2011-09-28

    In the present study, we determined the effects of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) on the growth and apoptosis of cultured human prostate cancer LNCaP cells. We also determined the effects of dietary γ-TmT on the formation and growth of LNCaP tumors in immunodeficient mice. In the in vitro study, we found that the activity of γ-TmT was stronger than α-tocopherol for inhibiting the growth and stimulating apoptosis in LNCaP cells. In the animal study, treatment of severe combined immunodeficient (SCID) mice with dietary γ-TmT inhibited the formation and growth of LNCaP xenograft tumors in a dose-dependent manner. Mechanistic studies showed that γ-TmT administration inhibited proliferation as reflected by decreased mitosis and stimulated apoptosis as reflected by increased caspase-3 (active form) expression in LNCaP tumors. In addition, dietary administration of γ-TmT increased the levels of α-, γ- and δ- tocopherol in plasma, and increased levels of γ- and δ- tocopherol were also observed in the prostate and in tumors. The present study demonstrated that γ-TmT had strong anticancer activity both in vitro and in vivo. Additional studies are needed to determine the potential preventive effect of γ-TmT for prostate cancer in humans.

  18. 4-Amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) exerts in vitro growth inhibitory effects that are not only related to S-adenosylmethionine decarboxylase (SAMdc) inhibition

    NARCIS (Netherlands)

    Dorhout, B; Odink, MFG; deHoog, E; Kingma, AW; vanderVeer, E; Muskiet, FAJ

    1997-01-01

    The competitive S-adenosylmethionine decarboxylase (SAMdc; EC 4.1.1.50) inhibitor 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) inhibits growth more effectively than the irreversible SAMdc inhibitor 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (AbeAdo), while having similar

  19. Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method

    NARCIS (Netherlands)

    Pol, van der Edwin C.; Vaessen, Evelien; Weusthuis, Ruud A.; Eggink, Gerrit

    2016-01-01

    Sugars obtained from pretreated lignocellulose are interesting as substrate for the production of lactic acid in fermentation processes. However, by-products formed during pretreatment of lignocellulose can inhibit microbial growth. In this study, a small-scale rapid screening method was used to

  20. Inhibitory Effect of a γ-Tocopherol-Rich Mixture of Tocopherols on the Formation and Growth of LNCaP Prostate Tumors in Immunodeficient Mice

    International Nuclear Information System (INIS)

    Zheng, Xi; Cui, Xiao-Xing; Khor, Tin Oo; Huang, Ying; DiPaola, Robert S; Goodin, Susan; Lee, Mao-Jung; Yang, Chung S; Kong, Ah-Ng; Allan H, Conney

    2011-01-01

    In the present study, we determined the effects of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) on the growth and apoptosis of cultured human prostate cancer LNCaP cells. We also determined the effects of dietary γ-TmT on the formation and growth of LNCaP tumors in immunodeficient mice. In the in vitro study, we found that the activity of γ-TmT was stronger than α-tocopherol for inhibiting the growth and stimulating apoptosis in LNCaP cells. In the animal study, treatment of severe combined immunodeficient (SCID) mice with dietary γ-TmT inhibited the formation and growth of LNCaP xenograft tumors in a dose-dependent manner. Mechanistic studies showed that γ-TmT administration inhibited proliferation as reflected by decreased mitosis and stimulated apoptosis as reflected by increased caspase-3 (active form) expression in LNCaP tumors. In addition, dietary administration of γ-TmT increased the levels of α-, γ- and δ- tocopherol in plasma, and increased levels of γ- and δ- tocopherol were also observed in the prostate and in tumors. The present study demonstrated that γ-TmT had strong anticancer activity both in vitro and in vivo. Additional studies are needed to determine the potential preventive effect of γ-TmT for prostate cancer in humans

  1. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Yamashita, Ryo; Sato, Mitsuo; Kakumu, Tomohiko; Hase, Tetsunari; Yogo, Naoyuki; Maruyama, Eiichi; Sekido, Yoshitaka; Kondo, Masashi; Hasegawa, Yoshinori

    2015-01-01

    Both pro- and anti-oncogenic roles of miR-221 and miR-222 microRNAs are reported in several types of human cancers. A previous study suggested their oncogenic role in invasiveness in lung cancer, albeit only one cell line (H460) was used. To further evaluate involvement of miR-221 and miR-222 in lung cancer, we investigated the effects of miR-221 and miR-222 overexpression on six lung cancer cell lines, including H460, as well as one immortalized normal human bronchial epithelial cell line, HBEC4. miR-221 and miR-222 induced epithelial-to-mesenchymal transition (EMT)-like changes in a minority of HBEC4 cells but, unexpectedly, both the microRNAs rather suppressed their invasiveness. Consistent with the prior report, miR-221 and miR-222 promoted growth in H460; however, miR-221 suppressed growth in four other cell lines with no effects in one, and miR-222 suppressed growth in three cell lines but promoted growth in two. These are the first results to show tumor-suppressive effects of miR-221 and miR-222 in lung cancer cells, and we focused on clarifying the mechanisms. Cell cycle and apoptosis analyses revealed that growth suppression by miR-221 and miR-222 occurred through intra-S-phase arrest and/or apoptosis. Finally, lung cancer cell lines transfected with miR-221 or miR-222 became more sensitive to the S-phase targeting drugs, possibly due to an increased S-phase population. In conclusion, our data are the first to show tumor-suppressive effects of miR-221 and miR-222 on lung cancer, warranting testing their potential as therapeutics for the disease

  2. Synergistic combination of fluoro chalcone and doxorubicin on HeLa cervical cancer cells by inducing apoptosis

    Science.gov (United States)

    Arianingrum, Retno; Arty, Indyah Sulistyo; Atun, Sri

    2017-03-01

    Doxorubicin (Dox), a primary chemotherapeutic agent used for cancer treatment is known to have various side effect included multidrug resistance (MDR) phenomenon. Combination chemotherapy is one of some approaches to reduce Dox side effect. Chalcones have been reported to reduce the proliferation of many cancer cells. The research were conducted to investigate the cytotoxic activity and apoptosis induction of a chalcone derivate which is containing fluoro substituent [1 - (4" - fluorophenyl) -3 - (4' - hydroxy - 3' - methoxyphenyl) - 2 - propene - 1 -on] (FHM) and its combination with Dox on HeLa cells line. The observation of the cytotoxic activity was conducted using MTT [3 - (4, 5 - dimethyl thiazol - 2 - y1) - 2.5 - diphenyltetrazolium bromide] assay. Apoptosis induction was determined by flow cytometric. The changes of cell morphology were observed using phase contrast microscopy. The combination index (CI) was used to determine the effect of the combination. The study showed that FHM inhibited the HeLa cell growth with IC50 of 34 μM, while the IC50 of Dox was 1 μM. The combination had a higher inhibitory effect on cell growth compare to the single treatment of FHM and Dox. All of the combination doses under IC50 of FHM and Dox gave synergistic (CI: - 0.7) up to strong synergistic effect (CI: 0.l - 0.3). The synergistic effects of the combination were due to their ability to induce apoptosis in the HeLa cells. According to the result, FHM was potential to be developed as a co-chemotherapeutic agent with Dox for cervical cancer.

  3. Synergistic Moel of Organizational Structure.

    Science.gov (United States)

    Wolfe, Richard O.

    1985-01-01

    Defines the concept of the synergistic model of organizational structure. The primary components of the model are cooperative action and job integration, which have as a direct result the increased energy in staff members using the model. (MD)

  4. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    OpenAIRE

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad; Chapkin, Robert S.

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its m...

  5. Synergistic antibiotic combinations for colistin-resistant Klebsiella pneumoniae.

    Science.gov (United States)

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Damjanova, Ivelina; Szász, Máté; Kristóf, Katalin; Nagy, Károly; Szabó, Dóra

    2013-06-01

    In this study antibiotic combinations for multidrug-resistant Klebsiella pneumoniae strains were investigated. The study included a colistin-susceptible and a colistin-resistant KPC-2 producing K. pneumoniae ST258 strains isolated in 2008 and 2009 during an outbreak in Hungary. Antibiotic combinations were analyzed by checkerboard technique and fractional inhibitory concentration indices were calculated. The following antibiotics were tested: ceftazidime, cefotaxime, ceftriaxone, ampicillin, imipenem, ertapenem, amikacin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, rifampicin, polymyxin B and colistin. Combinations including 0.25 μg/ml colistin plus 1 μg/ml rifampicin, 0.25 μg/ml polymyxin B plus 1 μg/ml rifampicin, 1 μg/ml imipenem plus 2 μg/ml tobramycin, were found synergistic.These in vitro synergistic combinations suggest potential therapeutical options against infections caused by KPC-2 producing, multidrug-resistant K. pneumoniae ST258.

  6. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guang-Li; Ren, Nan-Qi; Wang, Ai-Jie; Guo, Wan-Qian; Xu, Ji-Fei; Liu, Bing-Feng [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    In the process of producing H{sub 2} from lignocellulosic materials, inhibitory compounds could be potentially formed during pre-treatment. This work experimentally investigated the effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Representative compounds presented in corn stover acid hydrolysate were added in various concentrations, individually or in various combinations and subsequently inhibitions on growth and H{sub 2} production were quantified. Acetate sodium was not inhibitory to T. thermosaccharolyticum W16, rather than it was stimulatory to the growth and H{sub 2} production. Alternatively, furfural, hydroxymethylfurfural (HMF), vanillin and syringaldehyde were potent inhibitors of growth and hydrogen production even though these compounds showed inhibitory effect depending on their concentrations. Synergistic inhibitory effects were exhibited in the introduction of combinations of inhibitors to the medium and in hydrolysate with concentrated inhibitors. Fermentation results from hydrolysates revealed that to increase the efficiency of this bioprocess from corn stover hydrolysate, the inhibitory compounds concentration must be reduced to the levels present in the raw hydrolysate. (author)

  7. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.

  8. Inhibitory effect ofPuerariae radixflavones on platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells via PI3K and ERK pathways.

    Science.gov (United States)

    Li, Hui; Luo, Kaijun; Hou, Juan

    2015-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) results in intimal thickening of the aorta, which may lead to arteriosclerosis. Therefore, VSMC antiproliferative agents may be efficient in the prevention and treatment of arteriosclerosis. Puerariae radix (PR) is the dried root of Pueraria lobata Ohwi or Pueraria thomsonii Benth. Flavones are the main components of PR and have been shown to have a protective effect on vascular disorders in traditional Chinese medicine treatments. However, the underlying molecular mechanism remains unclear. The aim of the present study was to explore the effect of PR flavone (PRF) on platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation. PDGF-BB (25 ng/ml) and different doses of PRF (10, 50, 100 and 200 ng/ml) were used to treat VSMCs. The results revealed that PRF notably inhibited the PDGF-BB-induced VSMC proliferation and induced a cell cycle arrest at growth 1 phase of the cell cycle. In addition, cell cycle-associated proteins, including cyclin D1, proliferating cell nuclear antigen and cyclin-dependent kinase 4, were found to be downregulated. Furthermore, PRF inhibited the PDGF-BB-stimulated downregulation of VSMC markers, including α-smooth muscle actin, desmin and smoothelin. PDGF-BB upregulated the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK), which are associated with cell proliferation; however, these were decreased following PRF treatment. These observations indicated that PRF had a suppressive effect on PDGF-BB-induced VSMC proliferation by inhibiting PI3K and ERK pathways.

  9. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...

  10. Determination of the Minimum Inhibitory Concentration of the Barberry Extract and the Dried Residue of Red Grape and Their Effects on the Growth Inhibition of Sausage Bacteria by Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Fatemeh Riazi

    2015-09-01

    Full Text Available Background and Objectives: With regard to the hazards of nitrite, application of natural preservatives in order to reduce the microbial load of meat and meat products is increasing. Owing to their anti-bacterial properties, red barberry and the dried residue of red grape could be suitable replacers for nitrite. Materials and Methods: Agar dilution method was employed in order to determine the minimum inhibitory concentration (MIC of the barberry extract and the dried residue of red grape. The anti-microbial effects of the barberry extract (0-600 mg/kg, the dried residue of red grape (0-2% and nitrite (30-90 mg/kg were investigated on the total viable counts of Clostridium perfringens, as well as on the psychrophilic bacteria after 30 days of storage at 4°C. Finally, the effects of the three independent variables in the optimal sample were examined on the growth of the inoculated C. perfringens. Results: The MIC of the barberry extract and the dried residue of red grape on Staphylococcus aureus was 3 and 6 (mg/ml, respectively. In the case of Escherichia coli, it was 4 and 7 (mg/ml, respectively. The barberry extract and nitrite reduced the growth of the living aerobic bacteria significantly. The spores of the inoculated C. perfringens had no growth in the optimum sample during storage. Conclusions: The barberry extract and the dried residue of red grape as natural preservatives, could partially substitute for nitrite in order to reduce the microbial load of sausage.

  11. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor.

    Science.gov (United States)

    Leibinger, Marco; Müller, Adrienne; Andreadaki, Anastasia; Hauk, Thomas G; Kirsch, Matthias; Fischer, Dietmar

    2009-11-11

    After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have been proposed to mediate the beneficial effects of LI. Here, we investigated the contribution of glial-derived ciliary neurotrophic factor (CNTF) to LI-mediated regeneration and neuroprotection using wild-type and CNTF-deficient mice. In wild-type mice, CNTF expression was strongly upregulated in retinal astrocytes, the JAK/STAT3 pathway was activated in RGCs, and RGCs were transformed into an active regenerative state after LI. Interestingly, retinal LIF expression was correlated with CNTF expression after LI. In CNTF-deficient mice, the neuroprotective and axon growth-promoting effects of LI were significantly reduced compared with wild-type animals, despite an observed compensatory upregulation of LIF expression in CNTF-deficient mice. The positive effects of LI and also zymosan were completely abolished in CNTF/LIF double knock-out mice, whereas LI-induced glial and macrophage activation was not compromised. In culture CNTF and LIF markedly stimulated neurite outgrowth of mature RGCs. These data confirm a key role for CNTF in directly mediating the neuroprotective and axon regenerative effects of inflammatory stimulation in the eye and identify LIF as an additional contributing factor.

  12. Facilitative and Inhibitory Effect of Litter on Seedling Emergence and Early Growth of Six Herbaceous Species in an Early Successional Old Field Ecosystem

    Science.gov (United States)

    Li, Qiang; Yu, Pujia; Chen, Xiaoying; Li, Guangdi; Zhou, Daowei; Zheng, Wei

    2014-01-01

    In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m−2, litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland. PMID:25110722

  13. Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells.

    Science.gov (United States)

    Sjuvarsson, Elena; Marquez, Victor E; Eriksson, Staffan

    2015-01-01

    Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase. dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK. dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed. List of abbreviations: ddC, 2', 3'-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2',3'-dideoxy-3'-thiacytidine, Lamivudine; CdA, 2-cloro-2'-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1-3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1-4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.

  14. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing.

    Science.gov (United States)

    Turk, Harmony F; Monk, Jennifer M; Fan, Yang-Yi; Callaway, Evelyn S; Weeks, Brad; Chapkin, Robert S

    2013-05-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid). Under wounding conditions, the suppression of EGFR activation was associated with a reduction in downstream activation of cytoskeletal remodeling proteins (PLCγ1, Rac1, and Cdc42). Subsequently, DHA and EPA reduced cell migration in response to wounding. Mice were fed a corn oil-, DHA-, or EPA-enriched diet prior to intestinal wounding (2.5% dextran sodium sulfate for 5 days followed by termination after 0, 3, or 6 days of recovery). Mortality was increased in EPA-fed mice and colonic histological injury scores were increased in EPA- and DHA-fed mice compared with corn oil-fed (control) mice. Although kinetics of colonic EGFR activation and downstream signaling (PLCγ1, Rac1, and Cdc42) were delayed by both n-3 PUFA, colonic repair was increased in EPA- relative to DHA-fed mice. These results indicate that, during the early response to intestinal wounding, DHA and EPA uniquely delay the activation of key wound-healing processes in the colon. This effect is mediated, at least in part, via suppression of EGFR-mediated signaling and downstream cytoskeletal remodeling.

  15. Gastric inhibitory polypeptide analogues

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2002-01-01

    Gastric inhibitory polypeptide (GIP, also called glucose-dependent insulinotropic polypeptide) and glucagon-like peptide-1 (GLP-1) are peptide hormones from the gut that enhance nutrient-stimulated insulin secretion (the 'incretin' effect). Judging from experiments in mice with targeted deletions...

  16. Experimental study of inhibitory effects of diallyl trisulfide on the growth of human osteosarcoma Saos-2 cells by downregulating expression of glucose-regulated protein 78

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2018-01-01

    silencing and cell proliferation (P<0.05 of DATS treatment.Conclusion: These results indicate that DATS inhibits the growth of human osteosarcoma Saos-2 cells by downregulating the expression of GRP78. Keywords: diallyl trisulfide, osteosarcoma, Saos-2, glucose-regulated protein 78

  17. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  18. Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics.

    Science.gov (United States)

    Lebel, Geneviève; Piché, Fanny; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2013-12-01

    Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n=18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53

    Science.gov (United States)

    Gefen, Nir; Binder, Vera; Zaliova, Marketa; Linka, Yvonne; Morrow, Michelle; Novosel, Astrid; Edry, Liat; Hertzberg, Libi; Shomron, Noam; Williams, Owen; Trka, Jan; Borkhardt, Arndt; Izraeli, Shai

    2009-01-01

    MicroRNAs (miRNAs) regulate the expression of multiple proteins in a dose dependent manner. We hypothesized that increased expression of miRNAs encoded on chromosome 21 (chr 21) contribute to the leukemogenic role of trisomy 21. The levels of chr 21 miRNAs were quantified by qRT-PCR in four types of childhood ALL characterized by either numerical (trisomy or tetrasomy) or structural abnormalities of chr 21. Suprisingly high expression of the hsa-mir-125b-2 cluster, consisting of three miRNAs, was identified in leukemias with the structural ETV6/RUNX1 abnormality and not in ALLs with trisomy 21. Manipulation of ETV6/RUNX1 expression and chromatin immunoprecipitation studies demonstrated that the high expression of the miRNA cluster is an event independent of the ETV6/RUNX1 fusion protein. Overexpression of hsa-mir-125b-2 conferred a survival advantage to Ba/F3 cells following IL-3 withdrawal or a broad spectrum of apoptotic stimuli through inhibition of caspase 3 activation. Conversely, knockdown of the endogenous miR-125b in the ETV6/RUNX1 leukemia cell line REH increased apoptosis after Doxorubicin and Staurosporine treatments. P53 protein levels were not altered by miR-125b. Together these results suggest that the expression of hsa-mir-125b-2 in ETV6/RUNX1 ALL provides survival advantage to growth inhibitory signals in a p53 independent manner. PMID:19890372

  20. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    Science.gov (United States)

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The fractional inhibitory concentration index of antimicrobial agents for bacteria and Mycoplasma isolated from the nasal swabs of cattle with respiratory diseases.

    Science.gov (United States)

    Katoh, T; Sakai, J; Itagaki, M; Watanabe, E; Watanabe, D; Ogata, Y

    1996-08-01

    We investigated the effect of thiamphenicol plus lincomycin (TP + LCM) and thiamphenicol plus tylosin (TP + TS) combinations using checker board method on the growth of Pasteurella (P.) multocida, P. haemolytica and Mycoplasma (M.) bovis by calculating the fractional inhibitory concentration index (FIC index). The results showed that the FIC indexes of the TP + LCM combination for P. multocida, P. haemolytica and M. bovis were 0.36 +/- 0.10, 0.72 +/- 0.09 and 0.81 +/- 0.18, respectively. The FIC indexes of the TP + TS combination for P. multocida, P. haemolytica, and M. bovis were 0.79 +/- 0.20, 0.66 +/- 0.11 and 0.32 +/- 0.14, respectively. Thus, these combinations are assumed to have a more synergistic or additive effect on bacteria growth than a single antimicrobial agent.

  2. Synergistic interaction of sumac and raspberry mixtures in their antioxidant capacities and selective cytotoxicity against cancerous cells.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan; Marcone, Massimo F

    2015-03-01

    Previous works on staghorn sumac (Rhus hirta) were mostly dedicated to its phytochemical profiles, antioxidant properties, and antidiabetic potentials. This study explored the potential of staghorn-sumac-derived functional ingredients for food and pharmacological applications. Sumac may have other biological functions, such as inhibitory effect on cancerous cells independent of its antioxidant properties. We characterized sumac and raspberry interactions, and their antioxidant capacities (ACs) and their inhibitory effect on both normal and cancerous cells. Mixing sumac and raspberry extracts yielded significantly higher ACs than the sum of sumac and raspberry as evaluated by three in vitro AC assays. However, the potential use of staghorn sumac as a natural source of dietary antioxidant supplement for oxidative-stress-related disorders might be challenged by its cytotoxicity in culturing normal cells. Remarkably, mixing sumac and raspberry showed maximal inhibition of the growth of both rat colon and human breast cancer cells with relatively low cytotoxicity toward normal rat colon and human breast epithelial cells, as compared with sumac or raspberry treatment alone. Sumac-derived products and their synergistic interactions with other food ingredients have great promise as functional food or nutraceutical products that would target cancer cells with minimal toxic effects to normal cells.

  3. Inhibitory effects of oxaliplatin in experimental radiation treatment of colorectal carcinoma: does oxaliplatin improve 5-fluorouracil-dependent radiosensitivity?

    International Nuclear Information System (INIS)

    Folkvord, Sigurd; Flatmark, Kjersti; Seierstad, Therese; Roe, Kathrine; Rasmussen, Heidi; Ree, Anne Hansen

    2008-01-01

    Background and purpose: New chemoradiotherapy regimens for rectal cancer with integration of oxaliplatin with 5-fluorouracil-based therapy are being actively investigated. However, only limited preclinical data are available on oxaliplatin as radiosensitizer in colorectal carcinoma. Materials and methods: A human colorectal carcinoma cell line (HT29) was exposed to ionizing radiation with or without oxaliplatin and/or 5-fluorouracil, upon which clonogenicity and cell cycle profiles were analyzed. HT29 xenografts were treated for two weeks with daily radiation and/or the oral 5-fluorouracil analog capecitabine with or without oxaliplatin once weekly, and tumor volumes were followed for up to 60 days. Results: Pretreatment of HT29 cells with oxaliplatin for 2 h, followed by radiation and a 48-h exposure to 5-fluorouracil, resulted in increased radiocytotoxicity, and combination index analysis indicated synergistic effects. Ionizing radiation and oxaliplatin induced cell cycle G 2 /M phase arrest in HT29 cells at distinctly different time points. Growth of HT29 xenografts was clearly inhibited by radiation. Capecitabine and oxaliplatin together significantly improved the inhibitory effect, but oxaliplatin did not add to the growth inhibitory response induced by radiation plus capecitabine. Conclusions: The combination of oxaliplatin and 5-fluorouracil sensitized colorectal carcinoma cells to ionizing radiation in vitro. In vivo, however, oxaliplatin did not convincingly improve the increased radiocytotoxicity conferred by capecitabine treatment. In the absence of conclusive clinical evidence, the integration of OXA into combined-modality treatment of rectal cancer must remain controversial

  4. A comparative study between inhibitory effect of L. lactis and nisin on important pathogenic bacteria in Iranian UF Feta cheese

    Directory of Open Access Journals (Sweden)

    Saeed Mirdamadi

    2015-02-01

    Full Text Available   Introduction : In the present study, the inhibitory effect of nisin-producing Lactococcus lactis during co-culture and pure standard nisin were assessed against selected foodborne pathogenes in growth medium and Iranian UF Feta cheese. In comparison L lactis, not only proves flavor but also plays a better role in microbial quality of Iranian UF Feta cheese as a model of fermented dairy products.   Materials and method s: L. lactis subsp. lactis as nisin producer strain, Listeria monocytogenes, Escherichia coli and Staphylococcus aureus as pathogenic strains were inoculated in Ultra-Filtered Feta cheese. Growth curve of bacterial strains were studied by colony count method in growth medium and UF Feta cheese separately and during co-culture with L. lactis. Nisin production was determined by agar diffusion assay method against susceptible test strain and confirmed by RP-HPLC analysis method.   Results : Counts of L. monocytogenes decreased in cheese sample containing L. lactis and standard nisin, to 103 CFU/g after 7 days and it reached to undetectable level within 2 weeks. S. aureus counts remained at its initial number, 105 CFU/g, after 7 days then decreased to 104 CFU/g on day 14 and it was not detectable on day 28. E. coli numbers increased in both treatments after 7 days and then decreased to 104 CFU/g after 28 days. Despite the increasing number of E. coli in growth medium containing nisin, due to the synergistic effect of nisin and other metabolites produced by Lactococcus lactis and starter cultures, the number of E. coli decreased with slow rate . Discussion and conclusion : The results showed, L. monocytogenes was inhibited by L. lactis before entering the logarithmic phase during co-culture. S. aureus was also inhibited during co-culture, but it showed less sensitivity in comparison with L. monocytogenes. However, the number of E. coli remained steady in co-culture with L. lactis. Also, we found that, in all cheese samples, E

  5. Synergistic combination dry powders for inhaled antimicrobial therapy

    Science.gov (United States)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  6. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    Science.gov (United States)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  7. Synergistic Effect of Forbesione From Garcinia hanburyi in Combination with 5-Fluorouracil on Cholangiocarcinoma

    Science.gov (United States)

    Boueroy, Parichart; Hahnvajanawong, Chariya; Boonmars, Thidarut; Saensa-ard, Sunitta; Wattanawongdon, Wareeporn; Kongsanthia, Charuphan; Salao, Kanin; Wongwajana, Suwin; Anantachoke, Natthinee; Reutrakul, Vichai

    2017-12-29

    Background: Chemotherapy for advanced cholangiocarcinoma (CCA) is largely ineffective; thus innovative combinations of chemotherapeutic agents and natural compounds represent a promising strategy. This study aimed to investigate the synergistic effects of forbesione combined with 5-fluorouracil (5-FU) in hamster cholangiocarcinoma (Ham-1) cells both in vitro and in vivo. The anti-tumor effects of 5-FU combined with forbesione in vitro were determined using the Sulforhodamine B (SRB) assay and the effects in vivo were assessed in transplanted Ham-1 allograph models. Using ethidium bromide/acridine orange (EB/AO) staining, the morphological changes of apoptotic cells was investigated. The expressions of apoptosis-related molecules after combined treatment with forbesione and 5-FU were determined using real-time RT-PCR and western blot analysis. Forbesione or 5-FU alone inhibited proliferation of Ham-1 cells in a dose-dependent manner and their combination showed a synergistic proliferation inhibitory effect in vitro. In vivo studies, forbesione in combination with 5-FU exhibited greater inhibition of the tumor in the hamster model compared with treatment using either drug alone. Forbesione combined with 5-FU exerted stronger apoptotic induction in Ham-1 cells than did single drug treatment. The combination of drugs strongly suppressed the expression of B-cell lymphoma 2 (Bcl-2) and procaspase-3 while enhancing the expression of p53, Bcl-2-associated X protein (Bax), apoptotic protease activating factor-1 (Apaf-1), caspase-9 and caspase-3, compared with single drug treatments. These results explained the decreased expression of cytokeratin 19 (CK19) positive cells and proliferation cell nuclear antigen (PCNA) positive cells in Ham-1 cell tumor tissues of the treated hamsters. There was no apparent systemic toxicity observed in the treated animals compared with the control groups. Forbesione combined with 5-FU strongly induced apoptosis in Ham-1 cells. The growth

  8. The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38- AML progenitor cells.

    Science.gov (United States)

    Herrmann, H; Kneidinger, M; Cerny-Reiterer, S; Rülicke, T; Willmann, M; Gleixner, K V; Blatt, K; Hörmann, G; Peter, B; Samorapoompichit, P; Pickl, W; Bharate, G Y; Mayerhofer, M; Sperr, W R; Maeda, H; Valent, P

    2012-01-01

    Heat shock protein 32 (Hsp32), also known as heme oxygenase 1 (HO-1), has recently been identified as a potential target in various hematologic malignancies. We provide evidence that Hsp32 is constitutively expressed in primary leukemic cells in patients with acute myeloid leukemia (AML) and in various AML cell lines (HL60, U937, KG1). Expression of Hsp32 mRNA was demonstrable by qPCR, and expression of the Hsp32 protein by immunocytochemistry and Western blotting. The stem cell-enriched CD34+/CD38+ and CD34+/CD38- fractions of AML cells were found to express Hsp32 mRNA in excess over normal CD34+ progenitor cells. Two Hsp32-targeting drugs, pegylated zinc-protoporphyrin (PEG-ZnPP) and styrene-maleic-acid-copolymer-micelle-encapsulated ZnPP (SMAZnPP), were found to inhibit cytokine-dependent and spontaneous proliferation in all 3 AML cell lines as well as in primary AML cells. Growth inhibitory effects of SMA-ZnPP and PEG-ZnPP were dose-dependent with IC50 values ranging between 1 and 20 μM, and were accompanied by apoptosis as evidenced by light- and electron microscopy, Tunel assay, and caspase-3 activation. Finally, we were able to demonstrate that SMA-ZnPP inhibits cytokine-dependent proliferation of CD34+/CD38+ and CD34+/CD38- AML progenitor cells in vitro in all patients as well as leukemiainitiation of AML stem cells in NOD-SCID IL-2Rγ(-/-) (NSG) mice in vivo. Together, our data suggest that Hsp32 plays an important role as a survival factor in leukemic stem cells and as a potential new target in AML.

  9. Growth factor transgenes interactively regulate articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  10. Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.

    Science.gov (United States)

    Wang, Jing; Li, Yun; Sun, Wei; Liu, Jing; Chen, Wenming

    2018-03-22

    This study aimed to investigate synergistic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) and heat-shock protein 90 (HSP90) inhibitor (geldanamycin derivative 17 -allylamino- 17-demethoxy -geldanamycin, 17-AAG) on the proliferation and apoptosis of multiple myeloma (MM) cells. MTT assays evaluated inhibitory effects of rmhTRAIL and 17-AAG in different concentrations and treatment durations on the proliferation of RPMI8226 and U266 cells. The half maximal inhibitory concentration was calculated using OriginPro7.5. Synergistic effects of rmhTRAIL and 17-AAG on apoptosis of MM cells were detected using flow cytometry at 24 and 48 h post-treatment. To evaluate synergistic effects of rmhTRAIL and 17-AAG, the Q-value was calculated using King's formula. rmhTRAIL exhibited significant inhibitory effects on the proliferation of RPMI8226 cells in a dose- and time-dependent manner (>50%), whereas U266 cells were not sensitive to rmhTRAIL (AAG inhibited the proliferation of RPMI8226 and U266 cells in a dose-dependent manner (>80%). Significant synergistic effects of rmhTRAIL and 17-AAG on the proliferation of RPMI8226 cells were revealed (Q-value > 1.15), whereas synergistic effects were not evident on the proliferation of U266 cells (Q-value AAG exhibited significant synergistic effects on apoptosis of RPMI8226 and U266 cells (Q-value > 1.15). The combined application of rmhTRAIL and 17-AAG revealed favorable synergistic effects in the treatment of MM.

  11. A study on the inhibitory effect of polysaccharides from Radix ...

    African Journals Online (AJOL)

    Different concentrations of polysaccharide extracts were selected, and MTT assay and flow cytometry (FCM) were used to investigate their growth-inhibitory and apoptosis-inducing effects on human breast cancer MCF-7 cell lines. Radix ranunculus ternati polysaccharides had varying degrees of effects on the growth of ...

  12. Antibacterial and Synergistic Activity Against β-Lactamase-Producing Nosocomial Bacteria by Bacteriocin of LAB Isolated From Lesser Known Traditionally Fermented Products of India

    Directory of Open Access Journals (Sweden)

    Koel Biswas

    2017-04-01

    Full Text Available There is an ever-growing need to control antibiotic-resistance owing to alarming resistance to commonly available antimicrobial agents for which contemporary and alternative approaches are being explored. The present study assessed the antibacterial activity of bacteriocins from lactic acid bacteria (LAB from lesser known traditionally fermented products of India for their synergistic potential with common antibiotics against clinical β-lactamases producing pathogens. A total of 84 isolates of LAB were screened for their antibacterial efficacy against Streptococcus pyogenes, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Bacillus cereus as well as against clinical pathogens harbouring β-lactamase genes such as blaCTX-M, blaVIM, blaIMP, blaSHV and blaNDM. Synergistic activity of bacteriocins were determined in combination with antibiotics namely, cefotaxime, polymyxin B, imipenem and tigecycline. Purified bacteriocins from Lactobacillus, Pediococcus and Enterococcus inhibited the growth of β-lactamase harbouring clinical pathogens which significantly higher inhibitions when compared with antibiotics alone. Minimum inhibitory concentration of the extracts ranged from 6.66 to 26.66 mg/ml and 10 to 33.33 mg/ml for Pediococcus pentosaceus LU11 and Lactobacillus plantarum LS6. The bacteriocinogenic activity of LAB opens scope for bioprospection of antibacterial components in the current struggle against increasing pandrug resistance and slowing down the expansion of multi-drug resistance.

  13. Interactions between Autophagy and Inhibitory Cytokines.

    Science.gov (United States)

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  14. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Amber Farooqui

    Full Text Available Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  15. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    that the plasmid host range can be greatly affected by the surrounding bacterial community. This needs to be taken into account as many antibiotic resistance and virulence determinants are plasmid-encoded, which can spread further and raise antibiotic-resistant bacteria in soil....... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...... interactions in this four-species biofilm model community. Manuscript 2 presents the further application of this developed approach on evaluating the synergistic/antagonistic interactions in multispecies biofilms composed of seven soil isolates. 63% of the four-species biofilms were found to interact...

  16. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    structured aggregation consisting of multiple species of bacteria whose function relies on a complex web of cooperative and/or competitive interactions between community members, indicating that research in “whole-entity” should not be based on the assembled results from “mono pieces”. As one of the best...... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...... interactions in this four-species biofilm model community. Manuscript 2 presents the further application of this developed approach on evaluating the synergistic/antagonistic interactions in multispecies biofilms composed of seven soil isolates. 63% of the four-species biofilms were found to interact...

  17. Developing an Agent-Based Drug Model to Investigate the Synergistic Effects of Drug Combinations.

    Science.gov (United States)

    Gao, Hongjie; Yin, Zuojing; Cao, Zhiwei; Zhang, Le

    2017-12-14

    The growth and survival of cancer cells are greatly related to their surrounding microenvironment. To understand the regulation under the impact of anti-cancer drugs and their synergistic effects, we have developed a multiscale agent-based model that can investigate the synergistic effects of drug combinations with three innovations. First, it explores the synergistic effects of drug combinations in a huge dose combinational space at the cell line level. Second, it can simulate the interaction between cells and their microenvironment. Third, it employs both local and global optimization algorithms to train the key parameters and validate the predictive power of the model by using experimental data. The research results indicate that our multicellular system can not only describe the interactions between the microenvironment and cells in detail, but also predict the synergistic effects of drug combinations.

  18. Protease-Sensitive Inhibitory Activity of Cell-free Supernatant of Lactobacillus crispatus 156 Synergizes with Ciprofloxacin, Moxifloxacin and Streptomycin Against Pseudomonas aeruginosa: An In Vitro Study.

    Science.gov (United States)

    Kaur, Sukhraj; Sharma, Preeti

    2015-06-01

    Ciprofloxacin and streptomycin are frequently prescribed for the treatment of medical conditions originating due to infection by Pseudomonas aeruginosa. However, fluoroquinolone administration has been linked to the outgrowth of Clostridium difficile pathogen, especially in immunocompromised patients. Secondly, frequent administration of antibiotics may lead to development of resistance in the pathogens. Thus, there is a need to explore innovative adjunct therapies to lower the therapeutic doses of the antibiotics. Herein, we evaluated the synergism, if any, between conventional antibiotics and the cell-free supernatant (CFS) of vaginal Lactobacillus crispatus 156 against P. aeruginosa MTCC 741. L. crispatus 156 was isolated from the human vaginal tract, and its CFS had broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative pathogens, including P. aeruginosa. The inhibitory substance present in the CFS completely lost its activity after treatment with proteinases and was resistant to temperatures up to 80 °C and pH ranging from 2 to 6. The cumulative production of the inhibitory substance in CFS was studied, and it showed that the secretion of the inhibitory substance was initiated in middle log phase of growth and peaked in late log phase. Further, CFS synergized the activities of ciprofloxacin, moxifloxacin, and streptomycin as evaluated in terms of checkerboard titrations. It lowered the minimum inhibitory concentration (MIC) of ciprofloxacin by almost 30 times and MIC of both moxifloxacin and streptomycin by 8 times. Interestingly, pepsin treatment of CFS caused the complete abrogation of its synergistic effect with all the three antibiotics. Thus, from the study, it can be concluded that probiotic-based alternative therapeutic regimen can be designed for the treatment of P. aeruginosa infections.

  19. Nanotechnology for Multimodal Synergistic Cancer Therapy.

    Science.gov (United States)

    Fan, Wenpei; Yung, Bryant; Huang, Peng; Chen, Xiaoyuan

    2017-11-22

    The complexity, diversity, and heterogeneity of tumors seriously undermine the therapeutic potential of treatment. Therefore, the current trend in clinical research has gradually shifted from a focus on monotherapy to combination therapy for enhanced treatment efficacy. More importantly, the cooperative enhancement interactions between several types of monotherapy contribute to the naissance of multimodal synergistic therapy, which results in remarkable superadditive (namely "1 + 1 > 2") effects, stronger than any single therapy or their theoretical combination. In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergistic therapy as well as the intensive exploration of the underlying synergistic mechanisms for explaining the significant improvements in synergistic therapeutic outcome. Furthermore, the featured applications of multimodal synergistic therapy in overcoming tumor multidrug resistance, hypoxia, and metastasis will also be discussed in detail, which may provide new ways for the efficient regression and even elimination of drug resistant, hypoxic solid, or distant metastatic tumors. Finally, some design tips for multifunctional nanomaterials and an outlook on the future development of multimodal synergistic therapy will be provided, highlighting key scientific issues and technical challenges and requiring remediation to accelerate clinical translation.

  20. Synergistic Antimycobacterial Actions of Knowltonia vesicatoria (L.f Sims

    Directory of Open Access Journals (Sweden)

    Antoinette Labuschagné

    2012-01-01

    Full Text Available Euclea natalensis A.DC., Knowltonia vesicatoria (L.f Sims, and Pelargonium sidoides DC. are South African plants traditionally used to treat tuberculosis. Extracts from these plants were used in combination with isoniazid (INH to investigate the possibility of synergy with respect to antimycobacterial activity. The ethanol extract of K. vesicatoria was subjected to fractionation to identify the active compounds. The activity of the Knowltonia extract remained superior to the fractions with a minimum inhibitory concentration (MIC of 625.0 μg/mL against Mycobacterium smegmatis and an MIC of 50.00 μg/mL against M. tuberculosis. The K. vesicatoria extract was tested against two different drug-resistant strains of M. tuberculosis, which resulted in an MIC of 50.00 μg/mL on both strains. The combination of K. vesicatoria with INH exhibited the best synergistic antimycobacterial activity with a fractional inhibitory concentration index of 0.25 (a combined concentration of 6.28 μg/mL. A fifty percent inhibitory concentration of this combination against U937 cells was 121.0 μg/mL. Two compounds, stigmasta-5,23-dien-3-ol (1 and 5-(hydroxymethylfuran-2(5H-one (2, were isolated from K. vesicatoria as the first report of isolation for both compounds from this plant and the first report of antimycobacterial activity. Compound (1 was active against drug-sensitive M. tuberculosis with an MIC of 50.00 μg/mL.

  1. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity

    Science.gov (United States)

    Moreno-Martinez, Elena; Vallieres, Cindy; Holland, Sara L.; Avery, Simon V.

    2015-01-01

    There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone. PMID:26573415

  2. Synergistic Antimicrobial Effect of Tribulus terrestris and Bitter Almond Extracts

    Directory of Open Access Journals (Sweden)

    Hamid Abtahi

    2014-12-01

    Full Text Available Background: The antimicrobial effects of the extracts of different kinds of plants have been demonstrated in several studies. However, no study has been conducted so far on the synergistic effects of two herbal extracts on their germicidal effects. In this study, in addition to antibacterial effects of the aqueous, methanol or ethanol extracts of Tribulus terrestris and bitter almond on some bacteria, the synergistic effects of the extracts of these two plants were also evaluated. Materials and Methods: In this experimental study, water, methanol and ethanol extracts of seeds were screened against some bacterial strains. Seeds were extracted by percolation method. Aliquots of the extracts at variable concentrations were then incubated with different bacterial strains, and the antimicrobial activities of the extracts from seeds were determined by MIC. Three antibiotics were used as reference compounds for antibacterial activities. Seeds extract inhibited significantly the growth of the tested bacterial strains. Results: The greatest synergistic effect of T. terrestris and bitter almond extracts is detected in methanol and aqueous extracts. Among the bacterial strains tested, Staphylococcus aureus was most susceptibility. Conclusion: The results showed the highest antibacterial effect in the combination of methanol extract of T. terrestris and the aqueous extract of the bitter almond.

  3. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process

    KAUST Repository

    Zhao, Huayan

    2017-03-10

    AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1

  4. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    Science.gov (United States)

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.

  5. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  6. SYNERGISTIC WOOD PRESERVATIVES FOR REPLACEMENT OF CCA

    Science.gov (United States)

    The objective of this project was to evaluate the potential synergistic combinations of environmentally-safe biocides as wood preservatives. These wood preservatives could be potential replacements for the heavy-metal based CCA.Didecyldimethylammonium chloride [DDAC] was...

  7. A synthetic NOD2 agonist, muramyl dipeptide (MDP)-Lys (L18) and IFN-β synergistically induce dendritic cell maturation with augmented IL-12 production and suppress melanoma growth.

    Science.gov (United States)

    Fujimura, Taku; Yamasaki, Kenshi; Hidaka, Takanori; Ito, Yumiko; Aiba, Setsuya

    2011-05-01

    A synthetic NOD2 agonist, muramyl dipeptide (MDP)-Lys (L18), mimics the bacterial peptidoglycan moiety and acts as a powerful adjuvant that induces cell-mediated immunity. To investigate the induction of antitumor immune response for malignant melanoma by IFN-β in combination with MDP-Lys (L18) (IFN-MDP-Lys (L18)). Human monocyte-derived DCs (MoDCs) are stimulated with IFN-MDP-Lys (L18) in vitro. We assess the expression of costimulatory molecules on MoDCs by FACS. Moreover, we investigate the induction of Th1 cytokines by real time PCR and ELISA. Further to confirm the anti tumor immune response of IFN-MDP-Lys (L18) therapy, we examine the growth of B16F10 melanoma in vivo. The stimulation of human MoDCs with IFN-MDP-Lys (L18) significantly augmented the production of IL-12p70, TNF-α, and IL-6 compared to that with MDP or that with IFN-β alone. IFN-MDP-Lys (L18) increased the expression of IL-12p35, IL-12p40, IL-10, TNF-α, IL-6 and IL-1β mRNA by MoDC using real-time PCR. The expression of CD83 and costimulatory molecules CD40, CD80, and CD86 was also augmented in MoDC treated with IFN-MDP-Lys (L18), which resulted in their augmented allogeneic T cell stimulation. In vivo, the administration of IFN-MDP-Lys (L18) significantly suppressed the growth of B16F10 melanoma, while the monotherapy of IFN-β or MDP-Lys (L18) did not significantly affect the tumor growth. These findings suggest that IFN-MDP-Lys (L18) can be a promising adjuvant therapy for malignant melanoma. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

    Directory of Open Access Journals (Sweden)

    Buljan Vlado A

    2014-12-01

    Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis.

  9. Immune inhibitory receptors in viral infection and cancer

    NARCIS (Netherlands)

    Karnam, G.

    2014-01-01

    We are protected from external and internal dangers by our immune system. Immune responses need to be balanced to prevent uncontrolled inflammation and/or autoimmunity. Cell growth inhibition, apoptosis, and down regulation of receptor signals are all part of the inhibitory tools used by the immune

  10. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  11. In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Stanojeic, D.; Comic, L.; Stefanovic, O.; Solujic Sukdolak, S.

    2010-07-01

    The aim of this study was to investigate the antibacterial activity of aqueous, ethanol and ethyl acetate extracts of the species Melissa officinalis L. and their in vitro synergistic action with preservatives, namely: sodium nitrite, sodium benzoate and potassium sorbate against selected food spoiling bacteria, for a potential use in food industry. Synergistic action was noticed in almost every combination between plant extracts and preservatives. This work showed that the active compounds from ethanol, ethyl acetate and aqueous extracts of Melissa officinalis L. significantly enhanced the effectiveness of tested preservatives. Synergism was established at plant extract and preservative concentrations corresponding to 1/4 and 1/8 minimal inhibitory concentration values, which indicated the possibility of avoiding the use of higher concentrations of tested preservatives. (Author) 25 refs.

  12. Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2018-01-01

    Full Text Available Abstract Background Bacterial infections have become more challenging to treat due to the emergence of multidrug-resistant pathogenic bacteria. Combined antibiotics prove to be a relatively effective method to control such resistant strains. This study aim to investigate synergistic activity of eugenol combined with colistin against a collection of clinical isolated Escherichia coli (E.coli strains, and to evaluate potential interaction. Methods Antimicrobial susceptibility, minimum inhibitory concentration (MIC and fractional inhibitory concentration index (FICI of the bacteria were determined by disk diffusion assay, broth microdilution method and checkerboard assay, respectively. The mcr-1 mRNA expression was measured by Real-time PCR. To predict possible interactions between eugenol and MCR-1, molecular docking assay was taken. Results For total fourteen strains including eight colistin-resistant strains, eugenol was determined with MIC values of 4 to 8 μg/mL. Checkerboard dilution test suggested that eugenol exhibited synergistic activity when combined with colistin (FICI ranging from 0.375 to 0.625. Comparison analysis of Real-time PCR showed that synergy could significantly down-regulate expression of mcr-1 gene. A metal ion coordination bond with catalytic zinc atom and a hydrogen bond with crucial amino acid residue Ser284 of MCR-1 were observed after molecular docking, indicating antibacterial activity and direct molecular interactions of eugenol with MCR-1 protein. Conclusions Our results demonstrated that eugenol exhibited synergistic effect with colistin and enhanced its antimicrobial activity. This might further contribute to the antibacterial actions against colistin-resistant E.coli strains. Graphical abstract Synergistic effect of eugenol with colistin against colistin-resistant Escherichia coli isolates.

  13. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria.

    Science.gov (United States)

    Hamoud, Razan; Reichling, Jürgen; Wink, Michael

    2015-02-01

    Drug combinations consisting of the DNA intercalating benzophenanthridine alkaloid sanguinarine, the chelator EDTA with the antibiotic streptomycin were tested against several Gram-positive and Gram-negative bacteria, including multi-resistant clinical isolates. Microdilution, checkerboard and time kill curve methods were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of combinations. Sanguinarine demonstrated a strong activity against Gram-positive and Gram-negative bacteria (minimum inhibitory concentrations, MIC = 0.5-128 μg/ml), while streptomycin was active against Gram-negative strains (MIC = 2-128 μg/ml). EDTA showed only bacteriostatic activity. Indifference to synergistic activity was seen in the two-drug combinations sanguinarine + EDTA and sanguinarine + streptomycin (fractional inhibitory concentration index = 0.1-1.5), while the three-drug combination of sanguinarine + EDTA + streptomycin showed synergistic activity against almost all the strains (except methicillin-resistant Staphylococcus aureus), as well as a strong reduction in the effective doses (dose reduction index = 2-16 times) of sanguinarine, EDTA and streptomycin. In time kill studies, a substantial synergistic interaction of the three-drug combination was detected against Escherichia coli and Klebsiella pneumoniae. The combination of drugs, which interfere with different molecular targets, can be an important strategy to combat multidrug resistant bacteria. © 2014 Royal Pharmaceutical Society.

  14. Inhibitory control in childhood stuttering

    NARCIS (Netherlands)

    Eggers, K.; de Nil, L.; Van den Bergh, B.R.H.

    2013-01-01

    Purpose The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method Participants were 30 children who

  15. Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors.

    Science.gov (United States)

    Asin-Milan, Odalis; Sylla, Mohamed; El-Far, Mohamed; Belanger-Jasmin, Geneviève; Haidara, Alpha; Blackburn, Julie; Chamberland, Annie; Tremblay, Cécile L

    2014-12-01

    Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Pre-clinical efficacy and synergistic potential of the MDM2-p53 antagonists, Nutlin-3 and RG7388, as single agents and in combined treatment with cisplatin in ovarian cancer

    Science.gov (United States)

    Zanjirband, Maryam; Edmondson, Richard J.; Lunec, John

    2016-01-01

    Ovarian cancer is the fifth leading cause of cancer-related female deaths. Due to serious side effects, relapse and resistance to standard chemotherapy, better and more targeted approaches are required. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies, non-genotoxic activation of wild-type p53 by small molecule inhibition of the MDM2-p53 binding interaction is a promising therapeutic strategy. Proof of concept was established with the cis-imidazoline Nutlin-3, leading to the development of RG7388 and other compounds currently in early phase clinical trials. This preclinical study evaluated the effect of Nutlin-3 and RG7388 as single agents and in combination with cisplatin in a panel of ovarian cancer cell lines. Median-drug-effect analysis showed Nutlin-3 or RG7388 combination with cisplatin was additive to, or synergistic in a p53-dependent manner, resulting in increased p53 activation, cell cycle arrest and apoptosis, associated with increased p21WAF1 protein and/or caspase-3/7 activity compared to cisplatin alone. Although MDM2 inhibition activated the expression of p53-dependent DNA repair genes, the growth inhibitory and pro-apoptotic effects of p53 dominated the response. These data indicate that combination treatment with MDM2 inhibitors and cisplatin has synergistic potential for the treatment of ovarian cancer, dependent on cell genotype. PMID:27223080

  17. Evaluación in vitro de la actividad inhibitoria de aceites esenciales de Lippia origanoides H.B.K. sobre el desarrollo micelial y la formación de esclerocios de Sclerotium cepivorum Berk. In vitro evaluation of the inhibitory activity of essential oils from Lippia origanoides H.B.K. on mycelial growth and sclerotial production of Sclerotium cepivorum Berk.

    Directory of Open Access Journals (Sweden)

    Daniel I Ospina

    2011-12-01

    Full Text Available Se evaluó la capacidad in vitro de aceites esenciales obtenidos de hojas y flores de diferentes muestras de Lippia origanoides cultivada en condiciones del Valle del Cauca, Colombia, para inhibir el crecimiento micelial y la formación de esclerocios de Sclerotium cepivorum, patógeno causante de la pudrición blanca en cebolla. Todos los aceites evaluados mostraron efecto inhibitorio tanto en el crecimiento micelial como en la formación de esclerocios, en concentraciones de 250 - 1350 µL/L. No obstante, aquellos obtenidos a partir del quimiotipo I presentaron el mayor poder inhibitorio en el crecimiento del micelio (concentración mínima inhibitoria, CMI = 120 µL/L y en la formación de esclerocios. Así, el quimiotipo I de L. origanoides puede ser utilizado potencialmente para el control de la pudrición blanca en cebolla.Essential oils obtained from leaves and flowers of different samples of Lippia origanoides cultivated under the environmental conditions of the Cauca Valley, Colombia, were tested in vitro against mycelial growth and sclerotial formation in Sclerotium cepivorum, the pathogen responsible for onion white rot. All the evaluated oils in concentrations ranging from 250 to 1350 µL/L exhibited inhibitory activity against both the mycelium and sclerotia of the pathogen. However, those corresponding to the chemotype I (minimum inhibitory concentration, MIC = 120 µL/L reached the strongest inhibition results regarding the evaluated pathogen structures. Hence, the chemotype I of L. organoides can be said to have potential inhibitory activity against onion white rot.

  18. Evaluation of Antimycobacterial and Synergistic Activity of Plants Selected Based on Cheminformatic Parameters

    Science.gov (United States)

    Rahgozar, Nafise; Bakhshi Khaniki, Gholamreza; Sardari, Soroush

    2018-03-07

    Drug resistance is a major public health problem and a threat to progress made in bovine tuberculosis care and control worldwide. This study aimed at evaluating anti-mycobacterial and synergistic activity of some medicinal plants that were selected by cheminformatics studies against Mycobacterium bovis. Considering the strong synergistic antimycobacterial action of oleanolic acid in combination with tuberculosis drugs, NCBI database was explored to find the compounds with over 80% similarity to oleanolic acid, called S1. Plants containing S1-type compounds were traced to and resulted in five plants, including Datura stramonium, Boswellia serrata Lavandula stoechas, Rosmarinus officinalis, and Thymus vulgaris, as experimental samples. Crude extracts were prepared by percolation using 80% ethanol or as the product of a pharmaceutical company. The extracts were screened against Mycobacterium bovis using broth microdilution method and Alamar Blue Assay. Extracts from these plants were used in combination with isoniazid and ethambutol to investigate the possibility of synergy with respect to antimycobacterial activity. The extracts from D. stramonium, B. serrata a, L. stoechas, R. officinalis, and T. Thymus vulgaris showed antimycobacterial activity of 375, 125, 250, 187.5, 500 µg/ml, respectively. The best synergistic results were for L. stoechas and D. stramonium in combination with ethambutol, the fractional inhibitory concentration index was 0.125 µg/ml for both. The observed antimycobacterial and synergistic activities are completely novel and obtained from targeted screening designed according to cheminformatics strategy. As for the synergistic action of the extracts, they can be used as a supplement in bTB treatment.

  19. Synergistic effects in plasma surface interactions

    International Nuclear Information System (INIS)

    Roberto, J.B.; Behrisch, R.

    1984-01-01

    The possible synergistic effects which can contribute to plasma surface interaction phenomena in fusion devices are reviewed. These effects include the influence of reactive ions, surface modification, temperature, radiation damage, and external forces and fields on erosion yields, hydrogen retention and release, and other surface processes. The important synergistic effects are described in terms of surface and edge conditions encountered in present fusion devices and expected in future reactors. Priority data needs include the chemical erosion of graphite at high particle fluxes, melt-layer stability under disruption-induced eddy current forces, the influence of bulk neutron damage on hydrogen retention, and an in-situ evaluation of synergistic effects in operating fusion devices

  20. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    Science.gov (United States)

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    Science.gov (United States)

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED 50 ∼0.15 μg mL -1 ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses.

    Science.gov (United States)

    Kang, Hyunju; Kim, Chonsaeng; Kim, Dong-eun; Song, Jae-Hyoung; Choi, Miri; Choi, Kwangman; Kang, Mingu; Lee, Kyungjin; Kim, Hae Soo; Shin, Jin Soo; Kim, Janghwan; Han, Sang-Bae; Lee, Mi-Young; Lee, Su Ui; Lee, Chong-Kyo; Kim, Meehyein; Ko, Hyun-Jeong; van Kuppeveld, Frank J M; Cho, Sungchan

    2015-12-01

    Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synergistic effects of ethnomedicinal plants of Apocynaceae family and antibiotics against clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Chusri, Sasitorn; Siriyong, Thanyaluck; Na-Phatthalung, Pinanong; Voravuthikunchai, Supayang Piyawan

    2014-06-01

    To investigate the efficacy of 17 ethnomedicinal plants belonging to Apocynaceae family used in combination with 16 conventional antibiotics against non-multidrug resistant-, multidrug resistant (MDR)-, and extensive drug resistant (XDR) Acinetobacter baumannii (A. baumannii). Antibacterial activity and resistance modifying ability of 272 combinations were determined by growth inhibition assays and further confirmed by time-kill assay. Among the combinations of the antibiotics with Apocynaceae ethanol extracts on this pathogen, 15 (5%) had synergistic effects, 23 (8%) had partial synergistic effects and 234 (86%) had no effects. Synergistic activity was observed mostly when the Apocynaceae extracts were combined with rifampicin or cefazolin. Interestingly, 10 out of 17 combinations between the extracts and rifampicin displayed synergistic or partial synergistic behaviors. Holarrhena antidysenterica extract was additionally tested to restore rifampicin activity against clinical isolates of MDR and XDR A. baumannii. With respect to total or partial synergy, 70% was XDR A. baumannii isolates and 66% was MDR A. baumannii isolates. Holarrhena antidysenterica extract clearly demonstrated the ability to restore rifampicin activity against both A. baumannii ATCC19606 and clinically isolated A. baumannii. Additional studies examining its active principles as well as mechanisms of actions such as the effects on efflux pumps and outer membrane permeability alterations are recommended. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Directory of Open Access Journals (Sweden)

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  5. SYNERGISTIC ANTIBACTERIAL EFFECT OF STEM BARK ...

    African Journals Online (AJOL)

    userpc

    ABSTRACT. The study was aimed at screening the stem bark extracts of Faidherbia albida and Psidium guajava for synergistic antibacterial effect against methicillin resistant Staphylococcus aureus (MRSA). The powdered plant materials were extracted with methanol using cold maceration technique and the extracts were ...

  6. Modelling synergistic effects of appetite regulating hormones

    DEFF Research Database (Denmark)

    Schmidt, Julie Berg; Ritz, Christian

    2016-01-01

    We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects...

  7. Synergistic Antimicrobial Activities Of Phytoestrogens In Crude ...

    African Journals Online (AJOL)

    Ethanolic, methanolic and aqueous extracts of both leaves were studied for their in-vitro synergistic antimicrobial activity against both Gram positive and Gram negative micro-organisms, and Yeast using Agar diffusion method. The GC-MS phytochemical screening of methanolic extract showed that the major compounds in ...

  8. Inhibitory effect of some phytochemicals in the growth of yeasts potentially causing opportunistic infections Efeito inibitório de alguns fitoconstituintes sobre o crescimento de leveduras potencialmente causadoras de infecções oportunistas

    Directory of Open Access Journals (Sweden)

    Igara O. Lima

    2005-06-01

    Full Text Available Opportunistic infections caused by yeasts have been characterized as emerging diseases all over the world and this has caused the search for new products capable of inhibiting the survival of their etiological agents. In this study the sensitivity of some yeast potentially causing infections to alpha-pinene, beta-pinene, citral and eugenol was evaluated. All phytochemicals showed inhibitory action on the assayed yeast strains: Candida. albicans, C. tropicalis, C. guilliermondii, C. stellatoidea, C. krusei, C. parapsilosis and Cryptococcus neoformans, presenting their MIC values in the range of 1 and 4%. The phytochemicals presented effectiveness to provide high fungicide effect in a short time. These data support the possible use of some phytochemicals as useful tools to control the occurrence of opportunistic infections caused by yeasts.Infecções oportunistas causadas por leveduras têm sido caracterizadas como doenças emergentes em todo o mundo e este fenômeno tem levado ao desenvolvimento de novos produtos capazes de inibir a sobrevivência de seus agentes etiológicos. Este estudo avaliou o perfil de sensibilidade de leveduras potencialmente causadoras de infecções oportunistas frente aos fitoconstituintes alfa-pineno, beta-pineno, citral e eugenol. Todos os fitoconstituintes mostraram ação inibitória sobre as leveduras ensaiadas, as quais foram Candida albicans, C. tropicalis, C. guilliermondii, C. stellatoidea, C. krusei, C. parapsilosis e Cryptococcus neoformans, tendo valores de CIM oscilando entre 1 e 4%. Os fitoconstituintes mostraram eficácia para provocar um alto efeito fungicida em curto tempo de ação. Estes dados subsidiam o possível uso de alguns fitoconstituintes como ferramentas úteis para controlar a ocorrência de infecções oportunistas causadas por leveduras.

  9. Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus

    Directory of Open Access Journals (Sweden)

    Karla Morán-Santibañez

    2016-01-01

    Full Text Available Sulfated polysaccharides (SPs extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation and low cytotoxicity (MTT assay at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp., which exhibited by far a higher inhibitory effect (96% syncytia reduction in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.. Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents.

  10. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  11. Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings.

    Science.gov (United States)

    Jiang, Huan-Xin; Tang, Ning; Zheng, Jin-Gui; Chen, Li-Song

    2009-08-01

    Little information is available on the amelioration of boron (B) on aluminum (Al)-induced photosynthesis inhibition. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 4 B levels (2.5, 10, 25 and 50 microM H3BO3) x 2 Al levels (0 and 1.2 mM AlCl3.6H2O). The objectives of this study were to determine how B alleviates Al-induced growth inhibition and to test the hypothesis that Al-induced photosynthesis inhibition can be alleviated by B via preventing Al from getting into shoots. B had little effect on plant growth, root, stem and leaf Al, leaf chlorophyll (Chl), CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Chl a fluorescence (OJIP) transient and related parameters without Al stress except that root, stem and leaf B increased with increasing B supply and that 50 muM B decreased slightly root dry weight. Al-treated roots, stems and leaves displayed a higher or similar B. B did not affect root Al under Al stress, but decreased stem and leaf Al level. Shoot growth is more sensitive to Al stress than root growth, CO2 assimilation, Chl, Rubisco, OJIP transient and most related parameters. Al-treated leaves showed decreased CO2 assimilation, but increased or similar intercellular CO2 concentration. Both initial and total Rubisco activity in Al-treated leaves decreased to a lesser extent than CO2 assimilation. Al decreased maximum quantum yield of primary photochemistry and total performance index, but increased minimum fluorescence, K-band, relative variable fluorescence at J- and I-steps. B could alleviate Al-induced increase or decrease for all these parameters. Generally speaking, the order of B effectiveness was 25 microM > 10 microM >or= 50 microM (excess B) > 2.5 microM. We propose that Al-induced photosynthesis inhibition was mainly caused by impaired photosynthetic electron transport chain, which may be associated with growth inhibition. B-induced amelioration of root inhibition was

  12. Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings

    Directory of Open Access Journals (Sweden)

    Tang Ning

    2009-08-01

    Full Text Available Abstract Background Little information is available on the amelioration of boron (B on aluminum (Al-induced photosynthesis inhibition. Sour pummelo (Citrus grandis seedlings were irrigated for 18 weeks with nutrient solution containing 4 B levels (2.5, 10, 25 and 50 μM H3BO3 × 2 Al levels (0 and 1.2 mM AlCl3·6H2O. The objectives of this study were to determine how B alleviates Al-induced growth inhibition and to test the hypothesis that Al-induced photosynthesis inhibition can be alleviated by B via preventing Al from getting into shoots. Results B had little effect on plant growth, root, stem and leaf Al, leaf chlorophyll (Chl, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Chl a fluorescence (OJIP transient and related parameters without Al stress except that root, stem and leaf B increased with increasing B supply and that 50 μM B decreased slightly root dry weight. Al-treated roots, stems and leaves displayed a higher or similar B. B did not affect root Al under Al stress, but decreased stem and leaf Al level. Shoot growth is more sensitive to Al stress than root growth, CO2 assimilation, Chl, Rubisco, OJIP transient and most related parameters. Al-treated leaves showed decreased CO2 assimilation, but increased or similar intercellular CO2 concentration. Both initial and total Rubisco activity in Al-treated leaves decreased to a lesser extent than CO2 assimilation. Al decreased maximum quantum yield of primary photochemistry and total performance index, but increased minimum fluorescence, K-band, relative variable fluorescence at J- and I-steps. B could alleviate Al-induced increase or decrease for all these parameters. Generally speaking, the order of B effectiveness was 25 μM > 10 μM ≥ 50 μM (excess B > 2.5 μM. Conclusion We propose that Al-induced photosynthesis inhibition was mainly caused by impaired photosynthetic electron transport chain, which may be associated with growth inhibition. B

  13. Alterations in growth and branching of Neurospora crassa caused by sub-inhibitory concentrations of antifungal agents Alteraciones de crecimiento y ramificación en Neurospora crassa provocadas por concentraciones subinhibitorias de agentes antimicóticos

    Directory of Open Access Journals (Sweden)

    R. C. Pereira

    2009-03-01

    Full Text Available Six antifungal agents at subinhibitory concentrations were used for investigating their ability to affect the growth and branching in Neurospora crassa. Among the antifungals herein used, the azole agent ketoconazole at 0.5 μg/ml inhibited radial growth more than fluconazole at 5.0 μg/ml while amphotericin B at 0.05 μg/ml was more effective than nystatin at 0.05 μg/ml. Morphological alterations in hyphae were observed in the presence of griseofulvin, ketoconazole and terbinafine at the established concentrations. The antifungal agents were more effective on vegetative growth than on conidial germination. Terbinafine markedly reduced growth unit length (GU by 54.89%, and caused mycelia to become hyperbranched. In all cases, there was a high correlation between hyphal length and number of tips (r > 0.9. All our results showed highly significant differences by ANOVA, (p Se investigó el efecto de seis agentes antimicóticos en concentraciones subinhibitorias sobre el crecimiento y la ramificación en Neurospora crassa. El agente azólico ketoconazol a la concentración de 0,5 μg/ml inhibió el crecimiento radial más que el fluconazol a 5,0 μg/ml, y la anfotericina B a 0,05 μg/ ml fue más eficiente que 0,05 μg/ml de nistatina, entre los agentes poliénicos usados. En presencia de griseofulvina, ketoconazol y terbinafina a las concentraciones establecidas se observaron alteraciones morfológicas en las hifas. Los agentes antimicóticos fueron más eficientes sobre el crecimiento vegetativo que sobre la germinación conidial. La terbinafina redujo marcadamente (54,89% la longitud de la unidad de crecimiento y provocó la hiperramificación del micelio. En todos los casos, existió gran correlación entre la longitud y el número de ápices de las hifas (r > 0,9. Todos los resultados mostraron diferencias altamente significativas de acuerdo con ANOVA (p < 0,001, α = 0,05. Considerando que el ápice de la hifa es la principal interfase entre

  14. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX. Copyright © 2016. Published by Elsevier GmbH.

  15. Synergistic antibaterial activity of medicinal plants essential oils with biogenic silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Fatemeh Oroojalian

    2017-10-01

    Full Text Available Objective(s: Development of a nanobiosystem by using plant essential oils with green synthesized silver nanoparticles that present synergistic antibacterial activity for overcoming antibiotic resistance in pathogenic bacteria. Material and Methods: Essential oils (EOs of Kelussia odoratissima and Teucrium polium extracted by hydrodistillation were analyzed by gas chromatography-mass spectrometry (GC-MS. Then leaf aqueous extract of K. odoratissima prepared and used for green synthesise of silver nanoparticles (SNPs.  The oils, and the colloidal preparations of silver nanoparticles, were then subjected to microdilution technique using ELISA reader to determine their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC on Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli O157: H7, Salmonella enterica and Pseudomonas aeruginosa. The type of interaction between EO and SNPs was also determined by calculating the fractional inhibitory concentration index and isibologram type. Results: GC-MS analysis of K. odoratissima EO showed (Z-ligustilide, (Z-3-butylidene-phthalide,  limonene and β-phellandren as main constiuents, while T. polium EO has β-caryophylene, germacrene D, γ-cadinene, (Z-nerolidol, camphor, β-pinene, α- camphene, linalool and α-humulene. T. polium EO has more potent antibacterial property at MIC of 0.16-1.25 mg/ml compared to K. odoratissima (MIC of 0.3-2.5 mg/ml. Silver nanoparticles showed a potent antibacterial property (MIC of 0.006-0.025 mg/ml, and its colloidal suspension with plant EOs revealed a pathogen-dependent synergistic and additive effect based on calculated fractional inhibitory concentration index (FICi.

  16. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...... the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes...

  17. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  18. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite.

    Science.gov (United States)

    Peichoto, María E; Tavares, Flávio L; Dekrey, Gregory; Mackessy, Stephen P

    2011-07-01

    Leishmania parasites of several species cause cutaneous and visceral disease to millions of people worldwide, and treatment for this vector-borne protozoan parasite typically involves administration of highly toxic antimonial drugs. Snake venoms are one of the most concentrated enzyme sources in nature, displaying a broad range of biological effects, and several drugs now used in humans were derived from venoms. In this study, we compared the effects of the venoms of the South American rear-fanged snakes Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV), and the North American rear-fanged snakes Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV), on the growth of Leishmania major, a causative agent of cutaneous leishmaniasis. Different concentrations of each venom were incubated with the log-phase promastigote stage of L. major. TblV showed significant anti-leishmanial activity (IC₅₀ of 108.6 μg/mL) at its highest concentrations; however, it induced parasite proliferation at intermediate concentrations. PpV was not very active in decreasing the parasitic growth, and a high final concentration (1.7 mg/mL) was necessary to inhibit proliferation by only 51.5% ± 3.6%. PbV, PooV and HttV, at final concentrations of 562, 524 and 438 μg/mL respectively, had no significant effect on L. major growth. The phospholipase A₂ of TblV (trimorphin) was isolated and assayed as for crude venom, and it also exhibited dose-dependent biphasic effects on the parasite culture, with potent cytotoxicity at higher concentrations (IC₅₀ of 0.25 μM; 3.6 μg/mL) and stimulation of proliferation at very low concentrations. Anti-leishmanial activity of TblV appears to be solely due to the action of trimorphin. This is the first report of anti-leishmanial activity of rear-fanged snake venoms, and these results suggest novel possibilities for discovering new protein-based drugs that might be used as possible agents

  19. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  20. Determining lower threshold concentrations for synergistic effects

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas

    2017-01-01

    which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus.......619±8.555μgL(-1)) and 0.122±0.0417μM (40.236±13.75μgL(-1)), respectively, in the 14-days tests. Testing synergy in relation to concentration addition provided the most conservative values. The threshold values for the vertical assessments in tests where the two could be compared were in general 1.2 to 4.......7 fold higher than the horizontal assessments. Using passive dosing rather than dilution series or spiking did not lower the threshold significantly. Below the threshold for synergy, slight antagony could often be observed. This is most likely due to induction of enzymes active in metabolization of alpha...

  1. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  2. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  3. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins.

    Science.gov (United States)

    de Oliveira, Kataryne Árabe Rimá; Berger, Lúcia Raquel Ramos; de Araújo, Samara Amorim; Câmara, Marcos Paz Saraiva; de Souza, Evandro Leite

    2017-09-01

    This study assessed the efficacy of chitosan (CHI) and Mentha piperita L. essential oil (MPEO) alone or in combination to control the mycelial growth of five different Colletotrichum species, C. asianum, C. dianesei, C. fructicola, C. tropicale and C. karstii, identified as potential anthracnose-causing agents in mango (Mangifera indica L.). The efficacy of coatings of CHI and MPEO mixtures in controlling the development of anthracnose in mango cultivar Tommy Atkins was evaluated. CHI (2.5, 5, 7.5 and 10 mg/mL) and MPEO (0.3, 0.6, 1.25, 2.5 and 5 μL/mL) alone effectively inhibited mycelial growth of all tested Colletotrichum strains in synthetic media. Mixtures of CHI (5 or 7.5 mg/mL) and MPEO (0.3, 0.6 or 1.25 μL/mL) strongly inhibited mycelial growth and showed additive or synergistic inhibitory effects on the tested Colletotrichum strains based on the Abbott index. The application of coatings of CHI (5 or 7.5 mg/mL) and MPEO (0.6 or 1.25 μL/mL) mixtures that presented synergistic interactions decreased anthracnose lesion severity in mango artificially contaminated with either of the tested Colletotrichum strains over 15 days of storage at 25 °C. The anthracnose lesion severity in mango coated with the mixtures of CHI and MPEO was similar or lower than those observed in mango treated with the synthetic fungicides thiophanate-methyl (10 μg a.i./mL) and difenoconazole (0.5 μg a.i./mL). The application of coatings containing low doses of CHI and MPEO may be an effective alternative for controlling the postharvest development of anthracnose in mango cultivar Tommy Atkins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  5. Monetary rewards modulate inhibitory control

    Directory of Open Access Journals (Sweden)

    Paula Marcela Herrera

    2014-05-01

    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  6. Determining lower threshold concentrations for synergistic effects.

    Science.gov (United States)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas; Nørgaard, Katrine Banke; Mayer, Philipp; Cedergreen, Nina

    2017-01-01

    Though only occurring rarely, synergistic interactions between chemicals in mixtures have long been a point of focus. Most studies analyzing synergistic interactions used unrealistically high chemical concentrations. The aim of the present study is to determine the threshold concentration below which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test using passive dosing for constant chemical exposure concentrations, and a 14-day test. Synergy was defined as occuring in mixtures where either EC 50 values decreased more than two-fold below what was predicted by concentration addition (horizontal assessment) or as mixtures where the fraction of immobile organisms increased more than two-fold above what was predicted by independent action (vertical assessment). All three tests confirmed the hypothesis of the existence of a lower azole threshold concentration below which no synergistic interaction was observed. The lower threshold concentration, however, decreased with increasing test duration from 0.026±0.013μM (9.794±4.897μgL -1 ), 0.425±0.089μM (145.435±30.46μgL -1 ) and 0.757±0.253μM (249.659±83.44μgL -1 ) for prochloraz, propiconazole and epoxiconazole in standard 48h toxicity tests to 0.015±0.004μM (5.651±1.507μgL -1 ), 0.145±0.025μM (49.619±8.555μgL -1 ) and 0.122±0.0417μM (40.236±13.75μgL -1 ), respectively, in the 14-days tests. Testing synergy in relation to concentration addition provided

  7. Inhibitory Control in Preschool Predicts Early Math Skills in First Grade: Evidence from an Ethnically Diverse Sample

    Science.gov (United States)

    Ng, Florrie Fei-Yin; Tamis-LeMonda, Catherine; Yoshikawa, Hirokazu; Sze, Irene Nga-Lam

    2015-01-01

    Preschoolers' inhibitory control and early math skills were concurrently and longitudinally examined in 255 Chinese, African American, Dominican, and Mexican 4-year-olds in the United States. Inhibitory control at age 4, assessed with a peg-tapping task, was associated with early math skills at age 4 and predicted growth in such skills from age 4…

  8. The Inhibitory Effect of 3β-Hydroxy-12-oleanen-27-oic Acid on Growth and Motility of Human Hepatoma HepG2 Cells through JNK and Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Juanjuan Wang

    2013-01-01

    Full Text Available 3β-Hydroxy-12-oleanen-27-oic acid (ATA was a main antitumor active triterpene from the rhizomes of Astilbe chinensis. In this study, we investigated its effects on growth, apoptosis, cell cycle, motility/invasion, and metatasis in human hepatoma HepG2 cells in vitro and antimetastasis of B16-F10 melanoma in mice in vivo, as well as its molecular mechanisms of action using a high-throughput Cancer Pathway Finder PCR Array. ATA could not only induce tumor cells into apoptosis through the activation of both extrinsic and intrinsic pathways, arrest HepG2 cells in G2/M phase, but also suppress the invasion and metastasis abilities of HepG2 cells and the lung metastasis of B16-F10 melanoma in mice. PCR array assay revealed that ATA upregulated 9 genes including CDKN1A, MDM2, CFLAR (CASPER, TNFRSF10B (DR5, c-Jun, IL-8, THBS1, SERPINB5 (maspin, and TNF and downregulated 8 genes such as CCNE1, AKT, ANGPT1, TEK, TGFBR1, MMP9, U-PA, and S100A4. These results indicate that ATA could exert antitumor effects through activating JNK/MAPK and suppressing AKT signal transduction pathways and that ATA might be a potent anticancer agent.

  9. Synergistic Effect of Elicitors in Enhancement of Ganoderic Acid Production: Optimization and Gene Expression Studies

    OpenAIRE

    Motaharehsadat Heydarian; Ashrafalsadat Hatamian-Zarmi; Ghassem Amoabediny; Fatemeh Yazdian; Ali Doryab

    2015-01-01

    AbstractGanoderma lucidum is one of the most well-known fungi, and has many applications in medicine. Ganoderic acid is among the valuable secondary metabolites of Ganoderma lucidum, and responsible for the inhibition of the tumor cell growth and cancer treatment. Application of ganoderic acid has been limited because of low yields of its production from Ganoderma lucidum. The present study aims to investigate the synergistic effect of elicitors including methyl jasmonate and aspirin on the p...

  10. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling

    OpenAIRE

    Heinemann, Anja; Cullinane, Carleen; De Paoli-Iseppi, Ricardo; Wilmott, James S.; Gunatilake, Dilini; Madore, Jason; Strbenac, Dario; Yang, Jean Y.; Gowrishankar, Kavitha; Tiffen, Jessamy C.; Prinjha, Rab K.; Smithers, Nicholas; McArthur, Grant A.; Hersey, Peter; Gallagher, Stuart J.

    2015-01-01

    Histone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells. Here we show that combining the HDAC inhibitor LBH589 and BET inhibitor I-BET151 synergistically i...

  11. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  12. A synergistic effect of artocarpanone from Artocarpus heterophyllus L. (Moraceae) on the antibacterial activity of selected antibiotics and cell membrane permeability.

    Science.gov (United States)

    Septama, Abdi Wira; Xiao, Jianbo; Panichayupakaranant, Pharkphoom

    2017-01-01

    Artocarpanone isolated from Artocarpus heterophyllus L. (Moraceae) exhibits antibacterial activity. The present study investigated synergistic activity between artocarpanone and tetracycline, ampicillin, and norfloxacin, respectively, against methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa , and Escherichia coli . A broth microdilution method was used for evaluating antibacterial susceptibility. Synergistic effects were identified using a checkerboard method, and a bacterial cell membrane disruption was investigated by assay of released 260 nm absorbing materials following bacteriolysis. Artocarpanone exhibited weak antibacterial activity against MRSA and P. aeruginosa with minimum inhibitory concentrations values of 125 and 500 μg/mL, respectively. However, the compound showed strong antibacterial activity against E. coli (7.8 μg/mL). The interaction between artocarpanone and all tested antibiotics revealed indifference and additive effects against P. aeruginosa and E. coli (fractional inhibitory concentration index [FICI] values of 0.75-1.25). The combination of artocarpanone (31.2 μg/mL) and norfloxacin (3.9 μg/mL) resulted in synergistic antibacterial activity against MRSA, with an FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time-kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, the combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. These findings suggest that artocarpanone may be used to enhance the antibacterial activity of norfloxacin against MRSA.

  13. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    International Nuclear Information System (INIS)

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr 15 and Cdc25cSer 216 . Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer 216 expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer 216 in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer 216 cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  14. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Cheng, Ho-Chen [Department of General Education, Chang Gung University of Science and Technology, CGUST, Taiwan (China); Wang, Ting-Chung [Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Center, Chiayi, Taiwan (China); Graduate Institute of Clinical Medical Sciences, Chang Gung University, Gueishan, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  15. Synergistic activity of troxacitabine (Troxatyl™ and gemcitabine in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Leblond Lorraine

    2007-07-01

    Full Text Available Abstract Background Gemcitabine, a deoxycytidine nucleoside analog, is the current standard chemotherapy used as first-line treatment for patients with locally advanced or metastatic cancer of the pancreas, and extends life survival by 5.7 months. Advanced pancreatic cancer thus remains a highly unmet medical need and new therapeutic agents are required for this patient population. Troxacitabine (Troxatyl™ is the first unnatural L-nucleoside analog to show potent preclinical antitumor activity and is currently under clinical investigation. Troxacitabine was recently evaluated as a first-line therapy in 54 patients with advanced adenocarcinoma of the pancreas and gave comparable overall results to those reported with gemcitabine in recently published randomized trials. Methods The human pancreatic adenocarcinoma cell lines, AsPC-1, Capan-2, MIA PaCa-2 and Panc-1, were exposed to troxacitabine or gemcitabine alone or in combination, for 72 h, and the effects on cell growth were determined by electronic particle counting. Synergistic efficacy was determined by the isobologram and combination-index methods of Chou and Talalay. Mechanistic studies addressed incorporation of troxacitabine into DNA and intracellular levels of troxacitabine and gemcitabine metabolites. For in vivo studies, we evaluated the effect of both drugs, alone and in combination, on the growth of established human pancreatic (AsPC-1 tumors implanted subcutaneously in nude mice. Statistical analysis was calculated by a one-way ANOVA with Dunnett as a post-test and the two-tailed unpaired t test using GraphPad prism software. Results Synergy, evaluated using the CalcuSyn Software, was observed in all four cell-lines at multiple drug concentrations resulting in combination indices under 0.7 at Fa of 0.5 (50% reduction of cell growth. The effects of drug exposures on troxacitabine and gemcitabine nucleotide pools were analyzed, and although gemcitabine reduced phosphorylation of

  16. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  17. White piedra: further evidence of a synergistic infection.

    Science.gov (United States)

    Youker, Summer R; Andreozzi, Robert J; Appelbaum, Peter C; Credito, Kim; Miller, Jeffrey J

    2003-10-01

    White piedra is a fungal infection of the hair shaft caused by Trichosporon beigelii. A synergistic coryneform bacterial infection is often present with T beigelii. White piedra, although not commonly reported to infect scalp hair in North America, is an important consideration in the differential diagnosis of scalp hair concretions. We report a case of white piedra of scalp hair with synergistic coryneform bacterial infection in two sisters, both US natives. Culture and light and electronmicroscopic evidence of the synergistic infection are presented.

  18. Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Daniela Massihnia

    2017-01-01

    Full Text Available Abstract Background There is increasing evidence of a constitutive activation of Akt in pancreatic ductal adenocarcinoma (PDAC, associated with poor prognosis and chemoresistance. Therefore, we evaluated the expression of phospho-Akt in PDAC tissues and cells, and investigated molecular mechanisms influencing the therapeutic potential of Akt inhibition in combination with gemcitabine. Methods Phospho-Akt expression was evaluated by immunohistochemistry in tissue microarrays (TMAs with specimens tissue from radically-resected patients (n = 100. Data were analyzed by Fisher and log-rank test. In vitro studies were performed in 14 PDAC cells, including seven primary cultures, characterized for their Akt1 mRNA and phospho-Akt/Akt levels by quantitative-RT-PCR and immunocytochemistry. Growth inhibitory effects of Akt inhibitors and gemcitabine were evaluated by SRB assay, whereas modulation of Akt and phospho-Akt was investigated by Western blotting and ELISA. Cell cycle perturbation, apoptosis-induction, and anti-migratory behaviors were studied by flow cytometry, AnnexinV, membrane potential, and migration assay, while pharmacological interaction with gemcitabine was determined with combination index (CI method. Results Immunohistochemistry of TMAs revealed a correlation between phospho-Akt expression and worse outcome, particularly in patients with the highest phospho-Akt levels, who had significantly shorter overall and progression-free-survival. Similar expression levels were detected in LPC028 primary cells, while LPC006 were characterized by low phospho-Akt. Remarkably, Akt inhibitors reduced cancer cell growth in monolayers and spheroids and synergistically enhanced the antiproliferative activity of gemcitabine in LPC028, while this combination was antagonistic in LPC006 cells. The synergistic effect was paralleled by a reduced expression of ribonucleotide reductase, potentially facilitating gemcitabine cytotoxicity. Inhibition of Akt

  19. Culture and neuroscience: additive or synergistic?

    Science.gov (United States)

    Dapretto, Mirella; Iacoboni, Marco

    2010-01-01

    The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings. PMID:20083533

  20. Synergistic drug combinations improve therapeutic selectivity

    Science.gov (United States)

    Lehàr, Joseph; Krueger, Andrew S.; Avery, William; Heilbut, Adrian M.; Johansen, Lisa M.; Price, E. Roydon; Rickles, Richard J.; Short, Glenn F.; Staunton, Jane E.; Jin, Xiaowei; Lee, Margaret S.; Zimmermann, Grant R.; Borisy, Alexis A.

    2009-01-01

    Prevailing drug discovery approaches focus on compounds with molecular selectivity, inhibiting disease-relevant targets over others in vitro. However in vivo, many such agents are not therapeutically selective, either because of undesirable activity at effective doses or because the biological system responds to compensate. In theory, drug combinations should permit increased control of such complex biology, but there is a common concern that therapeutic synergy will generally be mirrored by synergistic side-effects. Here we provide evidence, from 94,110 multi-dose combination experiments representing diverse disease areas and large scale flux balance simulations of inhibited bacterial metabolism, that multi-target synergies are more specific than single agent activities to particular cellular contexts. Using an anti-inflammatory combination, we show how multi-target synergy can achieve therapeutic selectivity in animals through differential target expression. Synergistic combinations can increase the number of selective therapies using the current pharmacopeia, and offer opportunities for more precise control of biological systems. PMID:19581876

  1. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Science.gov (United States)

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.

  2. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Morgan A Wambaugh

    2017-06-01

    combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.

  3. Inhibitory effect of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli and intestinal dysfunction.

    Science.gov (United States)

    Hong, Lei; Jing, Wu; Qing, Wang; Anxiang, Su; Mei, Xue; Qin, Liu; Qiuhui, Hu

    2017-04-19

    The inhibitory effects of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli (E. coli) in vitro and in vivo were investigated, as well as its function of improvement of intestinal health. The results of in vitro studies, such as minimal inhibitory concentration (MIC) analysis, agar disc diffusion test and growth curve analysis of E. coli, showed that ZBEO had an excellent inhibitory effect on the growth of E. coli, which may be related to the loss of the normal shape of the cell membranes and the leakage of intracellular constituents, on the basis of SEM observation and cell constituents' release assay. ZBEO also had an inhibitory effect on enteritis and intestinal dysfunction induced by infection of E. coli in vivo, and histopathological observation indicated that ZBEO could markedly ameliorate the structural destruction of intestinal tissues, which might be related to its inhibitory effect on the gene expression of inflammatory cytokines (TLR2, TLR4, TNF α and IL-8). In conclusion, ZBEO showed an excellent inhibitory effect on E. coli both in vitro and in vivo, suggesting the potential application of ZBEO as a kind of functional component having the effects of improving intestinal function and health.

  4. Inhibitory effects and mechanisms of Hydrilla verticillata (Linn.f.) Royle extracts on freshwater algae.

    Science.gov (United States)

    Zhang, T-T; He, M; Wu, A-P; Nie, L-W

    2012-03-01

    To pursue an effective way to control freshwater algae, four extracts from a submerged macrophyte Hydrilla verticillata (Linn.f.) Royle were tested to study its inhibitory effects on Anabaena flos-aquae FACHB-245 and Chlorella pyrenoidosa Chick FACHB-9. Extract with the highest inhibiting ability was further studied in order to reveal the inhibitory mechanism. The results demonstrated that H. verticillata extracts inhibited the growth of A. flos-aquae and C. pyrenoidosa, and methanol extract had the highest inhibiting ability. The mechanism underlying the algal growth inhibition involves the superoxide anion radical generation that induces the damage of cell wall and release of intracellular components.

  5. Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts

    Science.gov (United States)

    Kammalac Ngouana, Thierry; Jiatsa Mbouna, Cedric Derick; Toghueo Kuipou, Rufin Marie; Tchuente Tchuenmogne, Marthe Aimée; Menkem Zeuko’o, Elisabeth; Ngouana, Vincent; Mallié, Michèle; Bertout, Sebastien; Boyom, Fabrice Fekam

    2015-01-01

    Mycoses caused by Candida and Cryptococcus species, associated with the advent of antifungal drug resistance have emerged as major health problems. Improved control measures and innovative therapies are needed. This paper describes results from the screening of bio-guided fractionated extracts alone and combinations of Terminalia catappa, Terminalia mantaly and Monodora tenuifolia harvested in Cameroon. Crude ethanolic, hydro-ethanolic and aqueous extracts and bio-guided fractions were screened for antifungal activity against isolates of C. albicans, C. glabrata, C. parapsilosis and Cr. neoformans and the reference strain C. albicans NR-29450. Minimal inhibitory concentrations (MIC) were determined using a broth micro dilution method according to the Clinical & Laboratory Standards Institute (CLSI). Time kill kinetics of extracts alone and in combination were also evaluated. Extracts from T. mantaly stem bark were the most active with the best MIC values ranging from 0.04 mg/mL to 0.16 mg/mL. Synergistic interactions were observed with combinations of sub-fractions from M. tenuifolia, T. mantaly and T. catappa. Combination of sub-fractions from M. tenuifolia and T. mantaly (C36/C12) showed synergistic interaction and fungicidal effect against four out of five tested yeasts. These results support further investigation of medicinal plant extracts alone and in combination as starting points for the development of alternative antifungal therapy. PMID:28930209

  6. Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts.

    Science.gov (United States)

    Ngouana, Thierry Kammalac; Mbouna, Cedric Derick Jiatsa; Kuipou, Rufin Marie Toghueo; Tchuenmogne, Marthe Aimée Tchuente; Zeuko'o, Elisabeth Menkem; Ngouana, Vincent; Mallié, Michèle; Bertout, Sebastien; Boyom, Fabrice Fekam

    2015-08-26

    Mycoses caused by Candida and Cryptococcus species, associated with the advent of antifungal drug resistance have emerged as major health problems. Improved control measures and innovative therapies are needed. This paper describes results from the screening of bio-guided fractionated extracts alone and combinations of Terminalia catappa, Terminalia mantaly and Monodora tenuifolia harvested in Cameroon. Crude ethanolic, hydro-ethanolic and aqueous extracts and bio-guided fractions were screened for antifungal activity against isolates of C. albicans , C. glabrata , C. parapsilosis and Cr. neoformans and the reference strain C. albicans NR-29450. Minimal inhibitory concentrations (MIC) were determined using a broth micro dilution method according to the Clinical & Laboratory Standards Institute (CLSI). Time kill kinetics of extracts alone and in combination were also evaluated. Extracts from T. mantaly stem bark were the most active with the best MIC values ranging from 0.04 mg/mL to 0.16 mg/mL. Synergistic interactions were observed with combinations of sub-fractions from M. tenuifolia , T. mantaly and T. catappa. Combination of sub-fractions from M. tenuifolia and T. mantaly (C36/C12) showed synergistic interaction and fungicidal effect against four out of five tested yeasts. These results support further investigation of medicinal plant extracts alone and in combination as starting points for the development of alternative antifungal therapy.

  7. Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts

    Directory of Open Access Journals (Sweden)

    Thierry Kammalac Ngouana

    2015-08-01

    Full Text Available Mycoses caused by Candida and Cryptococcus species, associated with the advent of antifungal drug resistance have emerged as major health problems. Improved control measures and innovative therapies are needed. This paper describes results from the screening of bio-guided fractionated extracts alone and combinations of Terminalia catappa, Terminalia mantaly and Monodora tenuifolia harvested in Cameroon. Crude ethanolic, hydro-ethanolic and aqueous extracts and bio-guided fractions were screened for antifungal activity against isolates of C. albicans, C. glabrata, C. parapsilosis and Cr. neoformans and the reference strain C. albicans NR-29450. Minimal inhibitory concentrations (MIC were determined using a broth micro dilution method according to the Clinical & Laboratory Standards Institute (CLSI. Time kill kinetics of extracts alone and in combination were also evaluated. Extracts from T. mantaly stem bark were the most active with the best MIC values ranging from 0.04 mg/mL to 0.16 mg/mL. Synergistic interactions were observed with combinations of sub-fractions from M. tenuifolia, T. mantaly and T. catappa. Combination of sub-fractions from M. tenuifolia and T. mantaly (C36/C12 showed synergistic interaction and fungicidal effect against four out of five tested yeasts. These results support further investigation of medicinal plant extracts alone and in combination as starting points for the development of alternative antifungal therapy.

  8. Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans.

    Science.gov (United States)

    Canturk, Zerrin

    2018-01-01

    This study aimed to investigate the synergy between anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans and Candida glabrata, with the help of a quantitative checkerboard microdilution assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as a viability dye. Apoptotic effects of caspofungin and ferulic acid concentrations (alone and combined) were analyzed for C. albicans and C. glabrata based on annexin V-propidium iodide binding capacities using flow cytometric analysis. C. albicans showed a synergistic effect, represented by a fractional inhibitory concentration index of 0.5). Early and late apoptotic effects of caspofungin and ferulic acid concentrations (1 μg/mL and 1000 μg/mL) were calculated as 55.7% and 18.3%, respectively, while their necrotic effects were determined as 5.8% and 51.6%, respectively, using flow cytometric analyses. The apoptotic effects of the combination of caspofungin and ferulic acid at concentrations of 1 μg/mL and 1000 μg/mL on C. albicans and C. glabrata were 73.0% and 48.7%, respectively. Ferulic acid also demonstrated a synergistic effect in combination with caspofungin against C. albicans. Another possibility is to combine the existing anticandidal drug with phytochemicals to enhance the efficacy of anticandidal drug. Copyright © 2017. Published by Elsevier B.V.

  9. Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans

    Directory of Open Access Journals (Sweden)

    Zerrin Canturk

    2018-01-01

    Full Text Available This study aimed to investigate the synergy between anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans and Candida glabrata, with the help of a quantitative checkerboard microdilution assay using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT as a viability dye. Apoptotic effects of caspofungin and ferulic acid concentrations (alone and combined were analyzed for C. albicans and C. glabrata based on annexin V–propidium iodide binding capacities using flow cytometric analysis. C. albicans showed a synergistic effect, represented by a fractional inhibitory concentration index of 0.5. Early and late apoptotic effects of caspofungin and ferulic acid concentrations (1 μg/mL and 1000 μg/mL were calculated as 55.7% and 18.3%, respectively, while their necrotic effects were determined as 5.8% and 51.6%, respectively, using flow cytometric analyses. The apoptotic effects of the combination of caspofungin and ferulic acid at concentrations of 1 μg/mL and 1000 μg/mL on C. albicans and C. glabrata were 73.0% and 48.7%, respectively. Ferulic acid also demonstrated a synergistic effect in combination with caspofungin against C. albicans. Another possibility is to combine the existing anticandidal drug with phytochemicals to enhance the efficacy of anticandidal drug.

  10. Antibacterial and Drug Synergistic Activities of Mentha longifolia Essential Oil Against Shigella flexneri and Shigella sonnei

    Directory of Open Access Journals (Sweden)

    Maryam Makvandi

    2017-08-01

    Full Text Available Background: Microbial infections such as shigellosis are one of the major health challenges in Iran, especially in Khuzestan province in the south west of Iran. Objective: According to the importance of medicinal plants in the treatment of many infectious diseases, and as a valuable alternative for antibiotics, the aim of this research was to assess the antibacterial and drug synergistic activities of the essential oil from Mentha longifolia, a local plant, against Shigella flexneri and Shigella sonnei as the main causes of shigellosis. Materials and Methods: The M. longifolia essential oil was extracted from the leaves. The antibacterial activities of the essential oil against clinical and standard S. flexneri and S. sonnei strains were detected by the disk diffusion and micro-broth dilution methods. Results: The essential oil of M. longifolia had the most significant antibacterial activity against the clinical strain of S. flexneri. Minimum inhibitory concentration (MIC of 1024 with a concentration of 0.8 mg/mL of essential oil was detected in both the standard and clinical S. flexneri and S. sonnei strains. The essential oil of M. longifolia showed the highest synergistic effect on gentamicin and ampicillin in the clinical isolates of S. flexneri. Conclusion: The results of this study showed that the essential oil of M. longifolia alone or in combination with antimicrobial agents may be useful in the treatment of bacterial infections. In addition, M. longifolia may increase the effect of antibiotics and resolve other antibiotic resistance problems.

  11. Growth inhibitory, apoptotic and anti-inflammatory activities ...

    Indian Academy of Sciences (India)

    Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. ... India; Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore 632 014, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India ...

  12. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    African Journals Online (AJOL)

    (PARP) as well as downregulation of Bcl2 protein expression in BGC823 cells after 24 h treatment. Conclusion: Phloretin is a promising preventive and therapeutic agent for gastric ... Helicobacter pylori infection, smoking, and iodine deficiency [2]. Furthermore, smoked foods, salt- rich foods and pickled vegetables are ...

  13. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    African Journals Online (AJOL)

    Nuclear Magnetic Resonance (NMR), 13C-NMR and electrospray ionization tandem ... this effectively induced cleavage of anti-poly (ADP-ribose) polymerase (PARP) as well as downregulation of Bcl2 protein expression in BGC823 cells after 24 h ...

  14. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    African Journals Online (AJOL)

    Nuclear Magnetic ... Biotechnology, Inc. Anti-β-actin and Anti-poly ... apple polyphenol. The compound was obtained as a white powder, and t UV spectrum showed λmax at 285 nm; ESI-. MS yielded a quasi-molecular ion peak [M-H]- at m/z 273.2 ...

  15. Growth inhibitory, apoptotic and anti-inflammatory activities ...

    Indian Academy of Sciences (India)

    compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 μM. ... being used in phase I/II clinical trials as novel cancer ..... Colon carcinoma. 71.5±9. 0.35. 8. T84. Colon carcinoma. 65.5±0.5. 0.29. 9. MCF-7. Breast carcinoma. 61.4±11. 0.70. 10. HepG2. Hepato carcinoma. 86.6+3.

  16. In vitro growth-inhibitory activity of Calophyllum inophyllum ethanol ...

    African Journals Online (AJOL)

    Prague, Czech Republic, 2School of Agriculture and Food Technology, Faculty of Business and Economy, The University of the. South Pacific, Private Bag, Apia, Independent State of Samoa, .... authenticated by Tomas Kudera and a voucher specimen (no. 2404KBFR0) has been deposited in the herbarium of the ...

  17. Obesity and bipolar disorder: synergistic neurotoxic effects?

    Science.gov (United States)

    Liu, Celina S; Carvalho, André F; Mansur, Rodrigo B; McIntyre, Roger S

    2013-11-01

    Bipolar disorder (BD) is a disabling and chronic neuropsychiatric disorder that is typified by a complex illness presentation, episode recurrence and by its frequent association with psychiatric and medical comorbidities. Over the past decade, obesity has emerged as one of many comorbidities generating substantial concern in the BD population due to important prognostic implications. This comprehensive review details the bidirectional relationship between obesity and BD as evidenced by alterations in the structure and function of the central nervous system, in addition to greater depressive recurrence, cognitive dysfunction and risk of suicidality. Drawing on current research results, this article presents several putative mechanisms underlying the synergistic toxic effects and provides a framework for future treatment options for the obesity-BD comorbidity. There is a need for more large-scale prospective studies to investigate the bidirectional relationships between obesity and BD.

  18. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  19. Inhibitory effects of Ledebouria ovaltifolia (hyacithaceae) aqueous ...

    African Journals Online (AJOL)

    Inhibitory effects of Ledebouria ovaltifolia (hyacithaceae) aqueous root extract on contractile responses of Rat Vas deferens to K and adrenaline, pendular movement of isolated rabbit jejunum and acetic acid induced pain in Mice.

  20. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    African Journals Online (AJOL)

    Phytochemical screening and in vitro acetylcholinesterase inhibitory activity of seven plant extracts. Titilayo Johnson, Oduje A. Akinsanmi, Enoch J. Banbilbwa, Tijani A. Yahaya, Karima Abdulaziz, Kolade Omole ...

  1. Sphingomyelinase inhibitory and free radical scavenging potential ...

    African Journals Online (AJOL)

    Sphingomyelinase inhibitory and free radical scavenging potential of selected Nigerian medicinal plant extracts. FM Awah, PN Uzoegwu, P Ifeonu, JO Oyugi, J Rutherford, X Yao, F Fehrmann, KR Fowke, MO Eze ...

  2. INHIBITORY MOTOR SEIZURES: SEMIOLOGY AND THERAPY

    Directory of Open Access Journals (Sweden)

    K. Yu. Мukhin

    2013-01-01

    Full Text Available The article is devoted to rare and unique type of epileptic seizures – inhibitory motor seizures, characterized by the inability to execute a voluntary movement with preserved consciousness. The exact prevalence of this type of seizures is not known, but many cases are unrecognized or non-correctly diagnosed as Todd's paralysis. Therefore practical doctors should know the clinical and electroencephalographic characteristics of this type of seizures andtake them into account in the differential diagnoses . The authors presented a detailed review of the literature, including the historical data, etiology, pathogenesis and proposed mechanisms of formation of inhibitory motor seizures, clinical and EEG characteristics, therapeutic approaches. Antiepileptic drugs of choice used in the treatment of inhibitory motor seizures are valproic acid (preferably depakine chronosphere – original prolonged form of valproate. The authors also presented their observations of patients with inhibitory motor seizures.

  3. Exploiting Inhibitory Siglecs to Combat Food Allergies

    Science.gov (United States)

    2017-10-01

    CONTRACT NUMBER: W81XWH-16-1-0303 TITLE: Exploiting Inhibitory Siglecs to Combat Food Allergies PARTNERING INVESTIGATOR: Matthew Macauley, Ph.D...SUBTITLE Exploiting Inhibitory Siglecs to Combat Food Allergies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Michael...Furthermore, two novel transgenic mouse models were generated, one expresses human CD22 on B cells and the other expresses human CD33 on mast cells

  4. Biomolecular Network-Based Synergistic Drug Combination Discovery

    Directory of Open Access Journals (Sweden)

    Xiangyi Li

    2016-01-01

    Full Text Available Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing.

  5. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study.

    Science.gov (United States)

    Kuok, Chiu-Fai; Hoi, Sai-On; Hoi, Chi-Fai; Chan, Chi-Hong; Fong, Io-Hong; Ngok, Cheong-Kei; Meng, Li-Rong; Fong, Pedro

    2017-04-01

    Antibiotic resistance has become a serious global concern, and the discovery of antimicrobial herbal constituents may provide valuable solutions to overcome the problem. In this study, the effects of therapies combining antibiotics and four medicinal herbs on methicillin-resistant Staphylococcus aureus (MRSA) were investigated. Specifically, the synergistic effects of Magnolia officinalis, Verbena officinalis, Momordica charantia, and Daphne genkwa in combination with oxacillin or gentamicin against methicillin-resistant (ATCC43300) and methicillin-susceptible (ATCC25923) S. aureus were examined. In vitro susceptibility and synergistic testing were performed to measure the minimum inhibitory concentration and fractional inhibitory concentration (FIC) index of the antibiotics and medicinal herbs against MRSA and methicillin-susceptible S. aureus. To identify the active constituents in producing these synergistic effects, in silico molecular docking was used to investigate the binding affinities of 139 constituents of the four herbs to the two common MRSA inhibitory targets, penicillin binding proteins 2a (PBP2a) and 4 (PBP4). The physicochemical and absorption, distribution, metabolism, and excretion properties and drug safety profiles of these compounds were also analyzed. D. genkwa extract potentiated the antibacterial effects of oxacillin against MRSA, as indicated by an FIC index value of 0.375. M. officinalis and V. officinalis produced partial synergistic effects when combined with oxacillin, whereas M. charantia was found to have no beneficial effects in inhibiting MRSA. Overall, tiliroside, pinoresinol, magnatriol B, and momorcharaside B were predicted to be PBP2a or PBP4 inhibitors with good drug-like properties. This study identifies compounds that deserve further investigation with the aim of developing therapeutic agents to modulate the effect of antibiotics on MRSA. Impact statement Antibiotic resistant is a well-known threat to global health and

  6. Ocean warming and acidification synergistically increase coral mortality

    Science.gov (United States)

    Prada, F.; Caroselli, E.; Mengoli, S.; Brizi, L.; Fantazzini, P.; Capaccioni, B.; Pasquini, L.; Fabricius, K. E.; Dubinsky, Z.; Falini, G.; Goffredo, S.

    2017-01-01

    Organisms that accumulate calcium carbonate structures are particularly vulnerable to ocean warming (OW) and ocean acidification (OA), potentially reducing the socioeconomic benefits of ecosystems reliant on these taxa. Since rising atmospheric CO2 is responsible for global warming and increasing ocean acidity, to correctly predict how OW and OA will affect marine organisms, their possible interactive effects must be assessed. Here we investigate, in the field, the combined temperature (range: 16-26 °C) and acidification (range: pHTS 8.1-7.4) effects on mortality and growth of Mediterranean coral species transplanted, in different seasonal periods, along a natural pH gradient generated by a CO2 vent. We show a synergistic adverse effect on mortality rates (up to 60%), for solitary and colonial, symbiotic and asymbiotic corals, suggesting that high seawater temperatures may have increased their metabolic rates which, in conjunction with decreasing pH, could have led to rapid deterioration of cellular processes and performance. The net calcification rate of the symbiotic species was not affected by decreasing pH, regardless of temperature, while in the two asymbiotic species it was negatively affected by increasing acidification and temperature, suggesting that symbiotic corals may be more tolerant to increasing warming and acidifying conditions compared to asymbiotic ones.

  7. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, Clement; Fernandez, Manuel [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Requardt, Herwig [European Synchrotron Radiation Facility, Grenoble (France); Wion, Didier [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Vial, Jean-Claude [Université Joseph Fourier, Grenoble (France); Laboratoire Interdisciplinaire de Physique, St Martin d’Hères (France); Segebarth, Christoph; Sanden, Boudewijn van der, E-mail: boudewijn.vandersanden@ujf-grenoble.fr [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France)

    2013-09-01

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.

  8. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    International Nuclear Information System (INIS)

    Ricard, Clement; Fernandez, Manuel; Requardt, Herwig; Wion, Didier; Vial, Jean-Claude; Segebarth, Christoph; Sanden, Boudewijn van der

    2013-01-01

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion

  9. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains

    Directory of Open Access Journals (Sweden)

    Navaratnam Parasakthi

    2011-06-01

    Full Text Available Abstract Background There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin against reference strains of Staphylococcus aureus. Methods and Results The activity of the standard antibiotics and compounds on reference methicillin-sensitive and resistant strains of S. aureus were determined using the macrodilution broth method. The minimum inhibitory concentration (MIC of the compounds was compared with that of the standard antibiotics. The interaction between any two antimicrobial agents was estimated by calculating the fractional inhibitory concentration (FIC index of the combination. The various combinations of antibiotics and compounds reduced the MIC to a range of 0.05 to 50%. Conclusion Pentacyclic triterpenoids have shown anti-staphylococcal activities and although individually weaker than common antibiotics produced from bacteria and fungi, synergistically these compounds may use different mechanism of action or pathways to exert their antimicrobial effects, as implicated in the lowered MICs. Therefore, the use of current antibiotics could be maintained in their combination with plant-derived antibacterial agents as a therapeutic option in the treatment of S. aureus infections.

  10. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lee, Young-Seob; Kang, Ok-Hwa; Choi, Jang-Gi; Oh, You-Chang; Chae, Hee-Sung; Kim, Jong Hak; Park, Hyun; Sohn, Dong Hwan; Wang, Zheng-Tao; Kwon, Dong-Yeul

    2008-06-01

    The antimicrobial killing activity toward methicillin-resistant Staphylococcus aureus (MRSA) has been a serious emerging global issue. New effective antimicrobials and/or new approaches to settle this issue are urgently needed. The oriental herb, Alpinia officinarum, has been used in Korea for several hundreds of years to treat various infectious diseases. As it is well known, one of the active constituents of Alpinia officinarum is galangin. Against the 17 strains, the minimum inhibitory concentrations (MICs) of galangin (GAL) were in the range of 62.5 ~ 125 microg/ml, and the MICs of gentamicin (GEN) ranged from 1.9 microg/ml to 2,000 microg/ml. The fractional inhibitory concentrations (FICs) of GAL, in combination with GEN, against 3 test strains were 0.4, 3.9, and 250 microg/ml, and were all 15.62 microg/ml in GEN. The FIC index showed marked synergism in the value range of 0.19 to 0.25. By determining time-kill curves, also confirmed the low synergism of the GAL and GEN combination against 4 h, 8 h, 12 h, and 24 h cultured MRSA. The time-kill study results indicated a low synergistic effect against 3 test strains. Thus, the mixture of GAL and GEN could lead to the development of new combination antibiotics against MRSA infection.

  12. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  13. In Vitro Synergistic Effect of Psidium guineense (Swartz in Combination with Antimicrobial Agents against Methicillin-Resistant Staphylococcus aureus Strains

    Directory of Open Access Journals (Sweden)

    Tiago Gomes Fernandes

    2012-01-01

    Full Text Available The aim of this study was to evaluate the antimicrobial activity of aqueous extract of Psidium guineense Swartz (Araçá-do-campo and five antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, ciprofloxacin, and meropenem against twelve strains of Staphylococcus aureus with a resistant phenotype previously determined by the disk diffusion method. Four S. aureus strains showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between aqueous extract of P. guineense and antimicrobial agents, by the checkerboard method. The criteria used to evaluate the synergistic activity were defined by the fractional inhibitory concentration index (FICI. All S. aureus strains were susceptible to P. guineense as determined by the microdilution method. The combination of the P. guineense extract with the antimicrobial agents resulted in an eight-fold reduction in the MIC of these agents, which showed a FICI ranging from 0.125 to 0.5, suggesting a synergistic interaction against methicillin-resistant Staphylococcus aureus (MRSA strains. The combination of the aqueous extract of P. guineense with cefoxitin showed the lowest FICI values. This study demonstrated that the aqueous extract of P. guineense combined with beta lactamics antimicrobials, fluoroquinolones, and carbapenems, acts synergistically by inhibiting MRSA strains.

  14. Inhibitory Control of Synaptic and Behavioral Plasticity by Octopaminergic Signaling

    Science.gov (United States)

    Koon, Alex C.; Budnik, Vivian

    2012-01-01

    Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli. PMID:22553037

  15. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  16. Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases.

    Science.gov (United States)

    Civallero, Monica; Cosenza, Maria; Pozzi, Samantha; Sacchi, Stefano

    2017-11-28

    JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.

  17. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action.

    Science.gov (United States)

    Eumkeb, G; Siriwong, S; Thumanu, K

    2012-12-05

    The purpose of this research was to investigate whether luteolin has antibacterial and synergistic activity against amoxicillin-resistant Escherichia coli (AREC) when use singly and in combination with amoxicillin. The primarily mode of action is also investigated. The susceptibility assay (minimum inhibitory concentration and checkerboard determination) was carried out by the broth macrodilution method's in Müeller-Hinton medium. MIC and checkerboard determination were carried out after 20 h of incubation at 35°C by observing turbidity. The MICs of amoxicillin and luteolin against all AREC strains were >1000 and ≥ 200 μg/ml respectively. Synergistic activity were observed on amoxicillin plus luteolin against these strains. Viable count of this combination showed synergistic effect by reducing AREC cell numbers. The results indicated that this combination altered both outer and inner membrane permeabilisation. Enzyme assay showed that luteolin had an inhibitory activity against penicillinase. Fourier Transform-Infrared (FT-IR) spectroscopy exhibited that luteolin alone and when combined with amoxicillin caused increase in fatty acid and nucleic acid, but decrease in amide I of proteins in bacterial envelops compared with control. These results indicated that luteolin has the potential to reverse bacterial resistance to amoxicillin in AREC and may operate via three mechanisms: inhibition of proteins and peptidoglycan synthesis, inhibition of the activity of certain extended-spectrum β-lactamases and alteration of outer and inner membrane permeability. These findings offer the potential to develop a new generation of phytopharmaceuticals to treat AREC. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Ahmed Tafesh

    2011-01-01

    Full Text Available Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW. Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae. Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%, verbascoside (7.4%, and tyrosol (2.6%. The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria.

  19. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles

    Science.gov (United States)

    Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

    2014-07-01

    Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25 g/L ZnO nanoparticles (NPs) with 0.01 g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25 g/L ZnO NPs completely degraded 0.01 g/L thiram under simulated sunlight irradiation within 6 hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment.

  20. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli.

    Science.gov (United States)

    Eumkeb, G; Siriwong, S; Phitaktim, S; Rojtinnakorn, N; Sakdarat, S

    2012-01-01

    The smaller galangal is extracted, purified and identified the bioactive compounds. The purpose of this research was to investigate whether these isolated compounds have antibacterial and synergistic activity against amoxicillin-resistant Escherichia coli (AREC) when used singly and in combination with amoxicillin. The primarily mode of action is also studied. The galangin, kaempferide and kaempferide-3-O-β-d-glucoside were isolated. The minimum inhibitory concentrations(MIC) of amoxicillin and these flavonoids against AREC were between 500 and >1000 μg ml(-1). Synergistic activity was observed on combining amoxicillin with these flavonoids. The combinations of amoxicillin and these flavonoids exhibited a synergistic effect, reducing AREC cell numbers. Electron microscopy showed that these combinations damaged the ultrastructure of AREC cells. The results indicated that these combinations altered outer membrane permeability but not affecting cytoplasmic membrane. Enzyme assays showed that these flavonoids had an inhibitory activity against penicillinase. These results indicated that these flavonoids have the potential to reverse bacterial resistance to amoxicillin in AREC and may operate via three mechanisms: inhibition of peptidoglycan and ribosome synthesis, alteration of outer membrane permeability, and interaction with β-lactamases. These findings offer the potential to develop a new generation of phytopharmaceuticals to treat AREC. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development

    Science.gov (United States)

    Allen, Anna E.; MacMillan, David W. C.

    2012-01-01

    Synergistic catalysis is a synthetic strategy wherein both the nucleophile and the electrophile are simultaneously activated by two separate and distinct catalysts to afford a single chemical transformation. This powerful catalysis strategy leads to several benefits, specifically synergistic catalysis can (i) introduce new, previously unattainable chemical transformations, (ii) improve the efficiency of existing transformations, and (iii) create or improve catalytic enantioselectivity where stereocontrol was previously absent or challenging. This perspective aims to highlight these benefits using many of the successful examples of synergistic catalysis found in the literature. PMID:22518271

  2. Synergistic Smart Fuel For Microstructure Mediated Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-07-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using “radiation hardened” sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  3. Synergistic neurotrophic effects of piracetam and thiotriazoline

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  4. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Science.gov (United States)

    Nacev, Benjamin A; Liu, Jun O

    2011-01-01

    Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  5. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin A Nacev

    Full Text Available Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA, an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50 dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  6. Berberine and Evodiamine Act Synergistically Against Human Breast Cancer MCF-7 Cells by Inducing Cell Cycle Arrest and Apoptosis.

    Science.gov (United States)

    Du, Jia; Sun, Yang; Lu, Yi-Yu; Lau, Eric; Zhao, Ming; Zhou, Qian-Mei; Su, Shi-Bing

    2017-11-01

    The synergistic combinations of natural products have long been the basis of Traditional Chinese herbal Medicine formulas. In this study, we investigated the synergistic effects of a combination of berberine and evodiamine against human breast cancer MCF-7 cells in vitro and in vivo, and explored its mechanism. Cell survival was measured using the MTT assay. Apoptosis-related proteins were observed using western blot analysis. Apoptosis was detected with flow cytometric analysis and by Hoechst 33258 staining. Tumor xenografts were used in vivo. Compared to berberine or evodiamine treatments alone, the combination treatment of berberine (25 μM) and evodiamine (15 μM) synergistically inhibited the proliferation of MCF-7 cells in a time-dependent manner and resulted in the G 0 /G 1 phase accumulation of cells that exhibited increased expression levels of the CDK inhibitors p21 and p27 with a concomitant reduction in the expression levels of cell-cycle checkpoint proteins cyclin D1, cyclin E, CDK4, and CDK6. Furthermore, the combination treatment induced apoptosis that was accompanied by increased expression levels of p53 and Bax, reduced expression levels of Bcl-2, activation of caspase-7, and caspase-9, and the cleavage of PARP. The combination of berberine and evodiamine synergistically inhibited tumor growth in vivo in MCF-7 human breast cancer xenografts. Combination of berberine and evodiamine acts synergistically to suppress the proliferation of MCF-7 cells by inducing cell cycle arrest and apoptosis, illustrating the potential synergistic and combinatorial application of bioactive natural products. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. A prospective evaluation of synergistic effect of sulbactam and tazobactam combination with meropenem or colistin against multidrug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Mohammed Ali M.Marie

    2015-10-01

    Full Text Available The present study evaluates the synergistic effect of sulbactam/tazobactam in combination with meropenem or colistin against multidrug resistant (MDR Acinetobacter baumannii isolated from hospitalized patients from a tertiary care hospital in Saudi Arabia. During the study period, 54 multidrug and carbapenem-resistant isolates of A. baumannii isolates were collected from blood and respiratory samples of patients with ventilator-associated pneumonia or bacteremia. Microbroth checkerboard assay (CBA and E-test were performed to look for synergistic interface of sulbactam and tazobactam with meropenem or colistin. All 54 MDR isolates of A. baumannii were resistant to carbapenem. Minimum inhibitory concentration [50/90] value against sulbactam, tazobactam, meropenem, colistin was found to be 64/128, 64/128, 64/256, and 0.5/1.0 respectively. Synergy was detected in more isolates with CBA compared to E-test. All four combinations showed significant synergistic bactericidal activity. However, the combination with colistin showed greater synergistic effect than combination with meropenem. Antagonism was not detected with any of the combinations and any method, but indifference was seen in tazobactam and colistin combination alone. A significant bactericidal effect was seen with sulbactam combination with meropenem or colistin in both methods. A combination therapy can be a choice of treatment. As colistin is known to exhibit nephrotoxicity, the combination of sulbactam and meropenem might be considered as an alternative antibiotic treatment for such multi- and extremely resistant bacteria. Yet, sample size is small in our study, so further well-designed in vitro and clinical studies on large scale should confirm our findings.

  8. A prospective evaluation of synergistic effect of sulbactam and tazobactam combination with meropenem or colistin against multidrug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Marie, Mohammed Ali M; Krishnappa, Lakshmana Gowda; Alzahrani, Alhusain J; Mubaraki, Murad A; Alyousef, Abdullah A

    2015-10-14

    The present study evaluates the synergistic effect of sulbactam/tazobactam in combination with meropenem or colistin against multidrug resistant (MDR) Acinetobacter baumannii isolated from hospitalized patients from a tertiary care hospital in Saudi Arabia. During the study period, 54 multidrug and carbapenem-resistant isolates of A. baumannii isolates were collected from blood and respiratory samples of patients with ventilator-associated pneumonia or bacteremia. Microbroth checkerboard assay (CBA) and E-test were performed to look for synergistic interface of sulbactam and tazobactam with meropenem or colistin. All 54 MDR isolates of A. baumannii were resistant to carbapenem. Minimum inhibitory concentration [50/90] value against sulbactam, tazobactam, meropenem, colistin was found to be 64/128, 64/128, 64/256, and 0.5/1.0 respectively. Synergy was detected in more isolates with CBA compared to E-test. All four combinations showed significant synergistic bactericidal activity. However, the combination with colistin showed greater synergistic effect than combination with meropenem. Antagonism was not detected with any of the combinations and any method, but indifference was seen in tazobactam and colistin combination alone. A significant bactericidal effect was seen with sulbactam combination with meropenem or colistin in both methods. A combination therapy can be a choice of treatment. As colistin is known to exhibit nephrotoxicity, the combination of sulbactam and meropenem might be considered as an alternative antibiotic treatment for such multi- and extremely resistant bacteria. Yet, sample size is small in our study, so further well-designed in vitro and clinical studies on large scale should confirm our findings.

  9. Biochar As Plant Growth Promoter: Better Off Alone or Mixed with Organic Amendments?

    Directory of Open Access Journals (Sweden)

    Giuliano Bonanomi

    2017-09-01

    Full Text Available Biochar is nowadays largely used as a soil amendment and is commercialized worldwide. However, in temperate agro-ecosystems the beneficial effect of biochar on crop productivity is limited, with several studies reporting negative crop responses. In this work, we studied the effect of 10 biochar and 9 not pyrogenic organic amendments (NPOA, using pure and in all possible combinations on lettuce growth (Lactuca sativa. Organic materials were characterized by 13C-CPMAS NMR spectroscopy and elemental analysis (pH, EC, C, N, C/N and H/C ratios. Pure biochars and NPOAs have variable effects, ranging from inhibition to strong stimulation on lettuce growth. For NPOAs, major inhibitory effects were found with N poor materials characterized by high C/N and H/C ratio. Among pure biochars, instead, those having a low H/C ratio seem to be the best for promoting plant growth. When biochars and organic amendments were mixed, non-additive interactions, either synergistic or antagonistic, were prevalent. However, the mixture effect on plant growth was mainly dependent on the chemical quality of NPOAs, while biochar chemistry played a secondary role. Synergisms were prevalent when N rich and lignin poor materials were mixed with biochar. On the contrary, antagonistic interactions occurred when leaf litter or woody materials were mixed with biochar. Further research is needed to identify the mechanisms behind the observed non-additive effects and to develop biochar-organic amendment combinations that maximize plant productivity in different agricultural systems.

  10. Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus.

    Science.gov (United States)

    Oliva, Jose M; Ballesteros, Ignacio; Negro, M José; Manzanares, Paloma; Cabañas, Araceli; Ballesteros, Mercedes

    2004-01-01

    The inhibitory effects of various lignocellulose degradation products on glucose fermentation by the thermotolerant yeast Kluyveromyces marxianus were studied in batch cultures. The toxicity of the aromatic alcohol catechol and two aromatic aldehydes (4-hydroxybenzaldehyde and vanillin) was investigated in binary combinations. The aldehyde furfural that usually is present in relatively high concentration in hydrolyzates from pentose degradation was also tested. Experiments were conducted by combining agents at concentrations that individually caused 25% inhibition of growth. Compared to the relative toxicity of the individual compounds, combinations of furfural with catechol and 4-hydroxybenzaldehyde were additive (50% inhibition of growth). The other binary combinations assayed (catechol with 4-hydroxybenzaldehyde, and vanillin with catechol, furfural, or 4-hydroxybenzaldehyde) showed synergistic effect on toxicity and caused a 60-90% decrease in cell mass production. The presence of aldehydes in the fermentation medium strongly inhibited cell growth and ethanol production. Kluyveromyces marxianus reduces aldehydes to their corresponding alcohols to mitigate the toxicity of these compounds. The total reduction of aldehydes was needed to start ethanol production. Vanillin, in binary combination, was dramatically toxic and was the only compound for which inhibition could not be overcome by yeast strain assimilation, causing a 90% reduction in both cell growth and fermentation.

  11. Bilingual Contexts Modulate the Inhibitory Control Network

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-03-01

    Full Text Available The present functional magnetic resonance imaging (fMRI study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1 and Mandarin (L2, and moderately proficient in English (L3, performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3. After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.

  12. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Directory of Open Access Journals (Sweden)

    Balaji Petety V

    2010-05-01

    Full Text Available Abstract Background Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. Methods The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Results Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies

  13. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine.

    Science.gov (United States)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-05-19

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the alphabeta intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  14. Inhibitory effect of Cinnamomum zeylanicum Blume (Lauraceae essential oil and beta-pinene on the growth of dematiaceous moulds Efeito inibitório do óleo essencial de Cinnamomum zeylanicum Blume (Lauraceae e beta-pineno sobre o crescimento de fungos dematiáceos

    Directory of Open Access Journals (Sweden)

    Ana Carolina Pessoa Moreira

    2007-03-01

    Full Text Available Dematiaceous moulds are pathogen microorganisms able to act as etiological agents of mycoses with different degrees of severity. This study evaluated the effectiveness of Cinnamomum zeylanicum Blume essential oil and beta-pinene in inhibiting the growth of various strains of dematiaceous moulds (Alternaria brassicola, Cladosporium herbarium, C. resinae, C. cladosporioides, Chaetomum globosum, Curvularia sp., Fonsecaea compacta, Piedraia hortae. Antimicrobial assays were led by determining the Minimum Inhibitory Concentration-MIC using the solid medium diffusion procedure and observing the interference of the MIC values on the mould radial mycelial growth along 14 days. MIC values found to C. zeylanicum essential oil oscillated between 63 and 125 µL/mL. beta-pinene showed MIC value of 125 µL/mL for the most mould strains, however C. resinae and C. globosum were resistant to it in all assayed concentrations. MIC values found to C. zeylanicum essential oil and beta-pinene presented intense fungicidal effect noted by a total inhibition of the mycelial growth of C. cladosporioides and F. compacta along 14 days of exposure. These results showed the intense antimould potential of C. zeylanicum essential oil and beta-pinene which could be regarded in a rational use in pharmaceutical formulations used to treat some mycoses, particularly, those caused by dematiaceous moulds.Os fungos dematiáceos são microrganismos patogênicos capazes de agir como agentes etiológicos de micoses com diferentes graus de severidade. Este estudo avaliou a efetividade do óleo essencial de Cinnamomum zeylanicum Blume e beta-pineno em inibir o crescimento de várias cepas de fungos dematiáceos (Alternaria brassicola, Cladosporium herbarium, C. resinae, C. cladosporioides, Chaetomum globosum, Curvularia, Fonsecaea compacta, Piedraia hortae. Os ensaios antimicrobianos foram conduzidos através da determinação da Concentração Inibitória Mínima-CIM utilizando-se da t

  15. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions.

    Science.gov (United States)

    Jiang, Q; Stamatova, I; Kari, K; Meurman, J H

    2015-01-01

    Clinical studies have shown that probiotics positively affect oral health by decreasing gum bleeding and/or reducing salivary counts of certain oral pathogens. Our aim was to investigate the inhibitory effect of six probiotic lactobacilli against opportunistic oral Candida species. Sugar utilisation by both lactobacilli and Candida was also assessed. Agar overlay assay was utilised to study growth inhibition of Candida albicans, Candida glabrata and Candida krusei by Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Lactobacillus reuteri SD2112, Lactobacillus brevis CD2, Lactobacillus bulgaricus LB86 and L. bulgaricus LB Lact. The inhibitory effect was measured at pH 5.5, 6.4, and 7.2, respectively, and in the presence of five different carbohydrates in growth medium (glucose, fructose, lactose, sucrose, and sorbitol). Growth and final pH values were measured at two-hour time points to 24 h. L. rhamnosus GG showed the strongest inhibitory activity in fructose and glucose medium against C. albicans, followed by L. casei Shirota, L. reuteri SD2112 and L. brevis CD2. None of the lactobacilli tested affected the growth of C. krusei. Only L. rhamnosus GG produced slight inhibitory effect on C. glabrata. The lower pH values led to larger inhibition zones. Sugar fermentation profiles varied between the strains. L. casei Shirota grew in the presence of all sugars tested, whereas L. brevis CD2 could utilise only glucose and fructose. All Candida species metabolised the available sugars but the most rapid growth was observed with C. glabrata. The results suggest that commercially available probiotics differ in their inhibitory activity and carbohydrate utilisation; the above properties are modified by different pH values and sugars with more pronounced inhibition at lower pH.

  16. Inhibitory site of α-hairpinin peptide from tartary buckwheat has no effect on its antimicrobial activities.

    Science.gov (United States)

    Cui, Xiaodong; Du, Jingjing; Li, Jiao; Wang, Zhuanhua

    2018-03-02

    Antimicrobial peptides (AMPs) are known to play important roles in the innate host defense mechanisms of most living organisms. Protease inhibitors from plants potently inhibit the growth of a variety of pathogenic bacteria and fungi. Therefore, there are excellent candidates for the development of novel antimicrobial agents. In this study, an antimicrobial peptide derived from tartary buckwheat seeds (FtAMP) was obtained by gene cloning, expression and purification, which exhibited inhibitory activity toward trypsin. Furthermore, the relationship between the antimicrobial and inhibitory activities of FtAMP was investigated. Two mutants (FtAMP-R21A and FtAMP-R21F) were generated through site-directed mutagenesis. Inhibitory activity analysis showed that both FtAMP-R21A and FtAMP-R21F lost trypsin-inhibitory activity. However, FtAMP-R21A and FtAMP-R21F showed novel inhibitory activities against elastase and α-chymotrypsin, respectively, suggesting that Arg-21 in the inhibitory site loop is specific for the inhibitory activity of FtAMP against trypsin. Antimicrobial assays showed that all three peptides exhibited strong antifungal activity against Trichoderma koningii, Rhizopus sp., and Fusarium oxysporum. These results showed that the changes in FtAMP inhibitory site have no effect on their antifungal properties.

  17. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria Efeito inibitório de eugenol, beta-pineno e alfa-pineno sobre o crescimento de bactérias Gram-positivas potencialmente causadoras de endocardite infecciosa

    Directory of Open Access Journals (Sweden)

    Aristides Medeiros Leite

    2007-03-01

    Full Text Available This study was led with the purpose of evaluating the effectiveness of eugenol, beta-pinene and alpha-pinene in inhibiting the growth of potential infectious endocarditis causing gram-positive bacteria. The phytochemicals Minimum Inhibitory Concentration-MIC was determined by solid medium diffusion procedure, while the interference of the MIC values on the bacterial cell viability was performed by viable cells count. Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae and S. pyogenes strains were used as test microorganisms. The assayed phytochemicals showed effectiveness in inhibiting all assayed bacteria strains presenting MIC values between 2.5 and 40 µL/mL. Eugenol showed the lowest MIC values which were between 2.5 and 5 µL/mL for the most bacteria strains. MIC values found to the phytochemicals were able to inhibit the cell viability of S. aureus providing a total elimination of the bacteria inoculum in a maximum time of 24 hours of exposure. These data showed the interesting antibacterial property of the assayed phytochemicals and support their possible and rational use in the antimicrobial therapy.Este estudo foi conduzido com a proposta de avaliar a efetividade de eugenol, beta-pineno e alfa-pineno em inibir o crescimento de cepas de bactérias Gram-positivas potencialmente causadoras de endocardite infecciosa. A Concentração Inibitória Mínima-CIM dos fitoconstituintes foi determinada através do método de difusão em meio sólido, enquanto a interferência da CIM sobre a viabilidade celular bacteriana foi avaliada através da contagem de células viáveis. Cepas de Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae e S. pyogenes foram utilizadas como microrganismos teste nos ensaios antimicrobianos. Os fitoconstituintes ensaiados mostraram efetividade em inibir todas as cepas bacterianas utilizadas como microrganismos testes apresentando valores de CIM entre 2.5 e 40 µL/mL. Eugenol apresentou os menores

  18. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  19. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains.

    Science.gov (United States)

    Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn

    In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Synergistic effect of gefitinib and rofecoxib in mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Sacchi Ada

    2010-02-01

    Full Text Available Abstract Background Malignant mesothelioma (MM is an aggressive tumor that is resistant to conventional modes of treatment with chemotherapy, surgery or radiation. Research into the molecular pathways involved in the development of MM should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR and cyclooxygenase-2 (COX-2 are involved in the carcinogenesis of MM. Combination of COX-2 and EGFR inhibitors, therefore, could be an effective strategy for reducing cell growth in those lines expressing the two molecular markers. Results In order to verify the effect of COX-2 and EGFR inhibitors, five MM cell lines NCI-2452, MPP89, Ist-Mes-1, Ist-Mes-2 and MSTO-211 were characterized for COX-2 and EGFR and then treated with respective inhibitors (rofecoxib and gefitinib alone and in combination. Only MPP89, Ist-Mes-1 and Ist-Mes-2 were sensitive to rofecoxib and showed growth-inhibition upon gefitinib treatment. The combination of two drugs demonstrated synergistic effects on cell killing only in Ist-Mes-2, the cell line that was more sensitive to gefitinib and rofecoxib alone. Down-regulation of COX-2, EGFR, p-EGFR and up-regulation of p21 and p27 were found in Ist-Mes-2, after treatment with single agents and in combination. In contrast, association of two drugs resulted in antagonistic effect in Ist-Mes-1 and MPP89. In these cell lines after rofecoxib exposition, only an evident reduction of p-AKT was observed. No change in p-AKT in Ist-Mes-1 and MPP89 was observed after treatment with gefitinib alone and in combination with rofecoxib. Conclusions Gefitinib and rofecoxib exert cell type-specific effects that vary between different MM cells. Total EGFR expression and downstream signalling does not correlate with gefitinib sensitivity. These data suggest that the effect of gefitinib can be potentiated by rofecoxib in MM cell lines where AKT is not activated.

  1. Correlation between enzymes inhibitory effects and antioxidant ...

    African Journals Online (AJOL)

    ... and phytochemical content of fractions was investigated. The n-butanol fraction showed significant α-glucosidase and α-amylase inhibitory effects (IC50 values 15.1 and 39.42 μg/ml, respectively) along with the remarkable antioxidant activity when compared to the other fractions. High performance liquid chromatography ...

  2. Macrophage Migration Inhibitory Factor in Protozoan Infections

    Directory of Open Access Journals (Sweden)

    Marcelo T. Bozza

    2012-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.

  3. Novel peptides with tyrosinase inhibitory activity

    NARCIS (Netherlands)

    Schurink, M.; Berkel, van W.J.H.; Wichers, H.J.; Boeriu, C.G.

    2007-01-01

    Tyrosinase inhibition by peptides may find its application in food, cosmetics or medicine. In order to identify novel tyrosinase inhibitory peptides, protein-based peptide libraries made by SPOT synthesis were used to screen for peptides that show direct interaction with tyrosinase. One of the

  4. Phytochemistry and Inhibitory Activity of Chrozophora senegalensis ...

    African Journals Online (AJOL)

    Dried leaves of Chrozophora senegalensis were extracted with acetone and hexane respectively using percolation method. The crude leaf extracts were subjected to phytochemical screening for the presence of secondary metabolites using standard procedures. The inhibitory activities of the extracts were tested against ...

  5. Phenotypic characterisation and assessment of the inhibitory ...

    African Journals Online (AJOL)

    Fred

    Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human infant. Their inhibitory action was tested against some spoilage and pathogenic bacteria. Lactobacillus acidophilus isolated from milk was found to display a higher antagonistic effect with ...

  6. Inhibitory potential of nine mentha species against pathogenic bacteria strains

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmad, N.; Rashid, M.; Ikram, A. U.; Shinwari, Z. K.

    2015-01-01

    Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover most of the Mentha species showed zone of inhibition in the range of 10-20 mm. (author)

  7. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor.

    Science.gov (United States)

    Lu, Qian; Wang, Chong; Pan, Rong; Gao, Xinghua; Wei, Zhifeng; Xia, Yufeng; Dai, Yue

    2013-05-01

    Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. Copyright © 2012 Wiley Periodicals, Inc.

  8. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.

    Science.gov (United States)

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2016-01-01

    Antibacterial resistance has dramatically increased and resulted in serious health problems worldwide. One appealing strategy to overcome this resistance problem is the use of combinations of antibacterial compounds to increase their potency. The objective of this study is to determine the synergistic effects of artocarpin for ampicillin, norfloxacin, and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA) as well as the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. A broth microdilution method (1.95-250 µg/mL) was used to determine the minimum inhibitory concentration (MIC) of artocarpin and the antibiotics. Any synergistic effects were evaluated at their own MIC using the checkerboard method and a time-kill assay at 37 °C for 24 h. Artocarpin showed antibacterial activity against MRSA and E. coli with an MIC value of 62.5 µg/mL, and against P. aeruginosa with an MIC value of 250 µg/mL. The interaction of artocarpin with all tested antibiotics produced synergistic effects against MRSA with a fractional inhibitory concentration index (FICI) of 0.15-0.37. In addition, a combination of artocarpin and norfloxacin showed a synergistic effect against E. coli with an FICI value of 0.37, while the combinations of artocarpin and tetracycline as well as artocarpin and norfloxacin exhibited synergy interactions against P. aeruginosa with FICI values of 0.24 and 0.37, respectively. Time-kill assays indicated that artocarpin enhanced the antimicrobial activities of tetracycline, ampicillin, and norfloxacin against MRSA as well as Gram-negative bacteria.

  9. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse

    NARCIS (Netherlands)

    van den Brink, J.; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-01-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant

  10. Studies on The Synergistic Effect of Some Irradiated Essential Oils in Some Food Products

    International Nuclear Information System (INIS)

    Hanafy, M.A.A.

    2013-01-01

    Cumin, rosemary and thyme essential oils were gamma irradiated. Then, antibacterial and antioxidant activities were studied to measure the synergistic effect of their essential oils mixtures. 4, 6 and 4 kGy were the recommended doses for cumin, rosemary and thyme, respectively according to antimicrobial activity (agar well-diffusion) against S. typhimurium, S. aureus, B. cereus and E. coli. There were no changes in the physiochemical properties due to irradiation but, some changes occurred in the GC/MS analysis where, the amount of oxygenated compounds increased in cumin and thyme essential oils while, the oxygenated compounds decreased in rosemary essential oil. The mixture made from non-irradiated cumin (C 0 ) and rosemary (R 0 ) essential oils were showed the highest antimicrobial activity against E. coil and B. cereus at 50 μl. Mixtures made from non-irradiated cumin and thyme (T 0 ) essential oils showed the highest antimicrobial activity against B. cereus. Mixtures made form irradiated cumin at dose 4 kGy (C 4 ) and rosemary at dose 6 kGy (R 6 ) essential oils introduced promising antimicrobial activity as well as C 0 XR 0 mixture. Fraction inhibitory concentrations (FIC) were studied against selected four bacterial strains for measuring synergistic activity however, (FIC) represented indifference in all essential oils mixtures but, the C 0 X R 0 mixture against B. cereus (0.375) and E. coli (0.375) was synergy (below 0.5). Furthermore, the FIC shows addition in case of R 0 XT 0 , C 2 XR 6 , C 4 XR 6 and R 6 XT 4 against B. cereus. And in case of C 4 XR 6 against S. typhimurium. Preliminary experiment represented that 0.2, 0.4 and 0.1% were the acceptable odor in sunflower oil supplemented with rosemary, cumin and thyme essential oils, respectively.

  11. Synergistic effect of Glomus fasciculatum and Trichoderma ...

    African Journals Online (AJOL)

    Firdaus-e-Bareen

    2011-05-30

    May 30, 2011 ... The plants given both the fungus and mycorrhizal (F+M) treatment showed the maximum growth among all treatments. Plants given only ... directly link soil and roots and can be of great importance in heavy metal availability and toxicity to ... dried in metallic troughs under sunlight. Then it was crushed and.

  12. Synergistic effect of Glomus fasciculatum and Trichoderma ...

    African Journals Online (AJOL)

    The effect of two soil amendments of tannery sludge (10% and 20%) on growth and metal uptake of Helianthus annuus L. was studied under three treatments of rhizosphere and mycorrhizal fungi. Trichoderma pseudokoningii Rifai was used as rhizosphere fungal inoculum (F) and Glomus fasciculatum (Thax.) Gerd.

  13. Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria.

    Science.gov (United States)

    Kang, Mi-Sun; Oh, Jong-Suk; Lee, Hyun-Chul; Lim, Hoi-Soon; Lee, Seok-Woo; Yang, Kyu-Ho; Choi, Nam-Ki; Kim, Seon-Mi

    2011-04-01

    The interaction between Lactobacillus reuteri, a probiotic bacterium, and oral pathogenic bacteria have not been studied adequately. This study examined the effects of L. reuteri on the proliferation of periodontopathic bacteria including Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia, and on the formation of Streptococcus mutans biofilms. Human-derived L. reuteri strains (KCTC 3594 and KCTC 3678) and rat-derived L. reuteri KCTC 3679 were used. All strains exhibited significant inhibitory effects on the growth of periodontopathic bacteria and the formation of S. mutans biofilms. These antibacterial activities of L. reuteri were attributed to the production of organic acids, hydrogen peroxide, and a bacteriocin-like compound. Reuterin, an antimicrobial factor, was produced only by L. reuteri KCTC 3594. In addition, L. reuteri inhibited the production of methyl mercaptan by F. nucleatum and P. gingivalis. Overall, these results suggest that L. reuteri may be useful as a probiotic agent for improving oral health.

  14. Staphylococcus haemolyticus as a potential producer of biosurfactants with antimicrobial, anti-adhesive and synergistic properties.

    Science.gov (United States)

    Rossi, C C; Santos-Gandelman, J F; Barros, E M; Alvarez, V M; Laport, M S; Giambiagi-deMarval, M

    2016-09-01

    Staphylococcus haemolyticus is an opportunistic human pathogen that usually gains entry into the host tissue in association with medical device contamination. Biofilm formation is a key factor for the establishment of this bacterium and its arrangement and dynamics can be influenced by the synthesis of biosurfactants. Biosurfactants are structurally diverse amphiphilic molecules with versatile biotechnological applications, but information on their production by staphylococci is still scarce. In this work, two Staph. haemolyticus strains, showing high potential for biosurfactant production - as observed by four complementary methods - were investigated. Biosurfactant extracts were produced and studied for their capacity to inhibit the growth and biofilm formation by other bacterial human pathogens. The biosurfactant produced by the one of the strains inhibited the growth of most bacteria tested and subinhibitory concentrations of the biosurfactant were able to decrease biofilm formation and showed synergistic effects with tetracycline. Because these results were also positive when the biosurfactants were tested against the producing strains, it is likely that biosurfactant production by Staph. haemolyticus may be an unexplored virulence factor, important for competition and biofilm formation by the bacterium, in addition to the biotechnological potential. This work is the first to show the production of biosurfactants by Staphylococcus haemolyticus strains. Extracts showed antimicrobial, anti-adhesive and synergistic properties against a variety of relevant human pathogens, including the producing strains. In addition to the biotechnological potential, biosurfactants produced by Staph. haemolyticus are potentially undescribed virulence determinants in their producing strains. © 2016 The Society for Applied Microbiology.

  15. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  16. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-01-01

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis

  17. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm.

    Science.gov (United States)

    Yoo, Hyun-Jun; Jwa, Su-Kyung

    2018-04-01

    The biofilm of Streptococcus mutans is associated with induction of dental caries. Also, they produce glucan as an extracellular polysaccharide through glucosyltransferases and help the formation of cariogenic biofilm. β-caryophyllene has been used for therapeutic agent in traditional medicine and has antimicrobial activity. The purpose of this study was to investigate the effect of β-caryophyllene on S. mutans biofilm and the expression of biofilm-related factor. The susceptibility assay of S. mutans for β-caryophyllene was performed to investigate inhibitory concentration for S. mutans growth. To evaluated the effect of β-caryophyllene on S. mutans biofilm, β-caryophyllene was treated on S. mutans in the various concentrations before or after the biofilm formation. Live S. mutans in the biofilm was counted by inoculating on Mitis-salivarius agar plate, and S. mutans biofilm was analyzed by confocal laser scanning microscope after staining bacterial live/dead staining kit. Finally, the expression of glucosyltransferases of S. mutans was investigated by real-time RT-PCR after treating with β-caryophyllene at the non-killing concentration of S. mutans. The growth of S. mutans was inhibited by β-caryophyllene in above concentration of 0.078%, S. mutans biofilm was inhibited by β-caryophyllene in above 0.32%. Also, 2.5% of β-caryophyllene showed anti-biofilm activity for S. mutans biofilm. β-caryophyllene reduced the expression of gtf genes at a non-killing concentration for S. mutans. On the basis on these results, β-caryophyllene may have anti-biofilm activity and the inhibitory effect on biofilm related factor. β-caryophyllene may inhibit cariogenic biofilm and may be a candidate agent for prevention of dental caries. Copyright © 2018. Published by Elsevier Ltd.

  18. Growth modeling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol.

    Science.gov (United States)

    Ochoa-Velasco, Carlos E; Navarro-Cruz, Addí R; Vera-López, Obdulia; Palou, Enrique; Avila-Sosa, Raul

    2017-09-22

    The aim of this study was to evaluate the antifungal activity (in vitro) of thymol and carvacrol alone or in mixtures against Fusarium verticillioides and Rhizopus stolonifer, and to obtain primary growth models. Minimal inhibitory concentration (MIC) was evaluated with fungal radial growth with thymol or carvacrol concentrations (0-1600mg/l). Mixtures were evaluated using concentrations below MIC values. Radial growth curves were described by the modified Gompertz equation. MIC values of carvacrol were 200mg/l for both fungi. Meanwhile, MIC values of thymol were between 500 and 400mg/l for F. verticillioides and R. stolonifer, respectively. A synergistic effect below MIC concentrations for carvacrol (100mg/l) and thymol (100-375mg/l) was observed. Significant differences (p<0.05) between the Gompertz parameters for the antimicrobial concentrations and their tested mixtures established an inverse relationship between antimicrobial concentration and mycelial development of both fungi. Modified Gompertz parameters can be useful to determine fungistatic concentrations. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Mathematical description of synergistic interaction between radon and smoking

    International Nuclear Information System (INIS)

    Jin Kyu Kim; Petin, V.G.; Belkina, S.V.

    2007-01-01

    Complete text of publication follows. Background: A certain level of background exposure to ionizing radiation and natural or man-made chemicals is always present in the environment. Radon and its short-lived decay products are considered as important sources of public exposure to the natural radioactivity. It is well known from epidemiological and toxicological studies that synergistic interaction between smoking and radon occurs, which is especially important for high natural background areas. Objective: This study has been done to suggest a mathematical model to describe the synergistic interaction of radon with tobacco smoking, and to demonstrate the ability of the model to describe carcinogenic effects of the combined action. Methods: A simple mathematical model was formulated to describe and predict the synergistic interaction of radon with smoking. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arisen from the interaction of sublesions induced by the two factors under consideration. Results: The predictions of the model were verified by comparison with experimental data published by other researchers. The model appears to be appropriate and the predictions are valid. Conclusions: : The suggested mathematical model predicts the greatest level of synergistic effect and condition under which the maximum synergy is attained. The synergistic effect appeared to decline with any deviation from the optimal value of the ratio of carcinogenic effective damages produced by each agent alone.

  20. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  1. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  2. Synergistic combinations of five single drugs from Centella asiatica for neuronal differentiation.

    Science.gov (United States)

    Lin, Jinjin; Jiang, Hui; Ding, Xianting

    2017-01-01

    To identify alternatives of nerve growth factor, which could promote NF68 protein expression and contribute toward neuronal differentiation, five compounds namely: asiatic acid, madecassic, madecassoside, quercetin, and isoquercetin, obtained from Centella asiatica, were examined for their neuronal differentiation effects on PC12 cells. C. asiatica has been applied as an effective herbal medicine for the treatment of various diseases, including depression. According to a statistical design of experiments, both single compound and compound combinations were evaluated. A further statistical analysis indicated quantitative interactions between these five single compounds and led to the identification of the optimal drug combinations. Asiatic acid and madecassic appeared to show profound synergistic effects on neurofilaments expression in vitro. The optimized drug combinations were significantly more potent than single drugs and further investigation suggested that the optimal drug combination could be an analogue of nerve growth factor and could represent a potential treatment for neurodegenerative diseases.

  3. Inhibitory mechanisms of glabridin on tyrosinase

    Science.gov (United States)

    Chen, Jianmin; Yu, Xiaojing; Huang, Yufeng

    2016-11-01

    Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin could lead to a variety of skin disorders. Glabridin, an isoflavan, isolated from the root of Glycyrrhiza glabra Linn, has exhibited several pharmacological activities, including excellent inhibitory effects on tyrosinase. In this paper, the inhibitory kinetics of glabridin on tyrosinase and their binding mechanisms were determined using spectroscopic, zebrafish model and molecular docking techniques. The results indicate that glabridin reversibly inhibits tyrosinase in a noncompetitive manner through a multiphase kinetic process with the IC50 of 0.43 μmol/L. It has been shown that glabridin had a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting a stable glabridin-tyrosinase complex may be generated. The results of molecular docking suggest that glabridin did not directly bind to the active site of tyrosinase. Moreover, according to the results of zebrafish model system, glabridin shows no effects on melanin synthesis in zebrafish but presents toxicity to zebrafish embryo. The possible inhibitory mechanisms, which will help to design and search for tyrosinase inhibitors especially for glabridin analogues, were proposed.

  4. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    Science.gov (United States)

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  5. Inhibitory Activity of Artemisia spicigera Essential Oil Against Fungal Species Isolated From Minced Meat

    Directory of Open Access Journals (Sweden)

    Ghajarbeygi

    2015-11-01

    Full Text Available Background Meat is an important source of several nutrients. The capability top of fresh meat to rot, causing the group of studies food science, biological and chemical stability meat consideration. Objectives This study was conducted to examine the inhibitory effect of Artemisias spicigera essential oil against fungal species isolated from minced meat. Materials and Methods Two types of media dichloran 18% glycerol (DG18 agar and dichloran rosebengal chloramphenicol (DRBC agar were selected for the mycological analysis of the minced meat samples. To evaluate the antifungal activity of essential oils, the microdilution broth method based on the CLSI (M27A guideline was used. Results Artemisias spicigera essential oil has an inhibitory effect on the growth of fungi found in samples of minced meat. Aspergillus, Penicillium and Cladosporium were the most common genera on both medium types. Average Minimum Inhibitory Concentration 50 = 1.88 µL/mL and MIC90 = 2 µL/mL were reported. The genus of Mucor with MIC = 1.0 µL/mL was the most sensitive and Aspergilus versicolor was the most resistant species to the essential oil with MIC = 4 µL/mL. Conclusions The results of the present study show a favorable inhibitory effect of Artemisias spicigera essential oil on fungal growth, especially Aspergillus species. According to the results, antifungal components of Artemisias spicigera in different forms are used to prevent fungal pollution.

  6. Synergistic Anti-bacterial Effects of Phellinus baumii Ethyl Acetate Extracts and β-Lactam Antimicrobial Agents Against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Hong, Seung Bok; Rhee, Man Hee; Yun, Bong-Sik; Lim, Young Hoon; Song, Hyung Geun; Shin, Kyeong Seob

    2016-03-01

    The development of new drugs or alternative therapies effective against methicillin-resistant Staphylococcus aureus (MRSA) is of great importance, and various natural anti-MRSA products are good candidates for combination therapies. We evaluated the antibacterial activities of a Phellinus baumii ethyl acetate extract (PBEAE) and its synergistic effects with β-lactams against MRSA. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the PBEAE. The PBEAE synergistic effects were determined by evaluating the MICs of anti-staphylococcal antibiotic mixtures, with or without PBEAE. Anti-MRSA synergistic bactericidal effects of the PBEAE and β-lactams were assessed by time-killing assay. An ELISA was used to determine the effect of the PBEAE on penicillin binding protein (PBP)2a production. The MICs and MBCs of PBEAE against MRSA were 256-512 and 1,024-2,048 μg/mL, respectively. The PBEAE significantly reduced MICs of all β-lactams tested, including oxacillin, cefazolin, cefepime, and penicillin. However, the PBEAE had little or no effect on the activity of non-β-lactams. Time-killing assays showed that the synergistic effects of two β-lactams (oxacillin and cefazolin) with the PBEAE were bactericidal in nature (Δlog10 colony forming unit/mL at 24 hr: 2.34-2.87 and 2.10-3.04, respectively). The PBEAE induced a dose-dependent decrease in PBP2a production by MRSA, suggesting that the inhibition of PBP2a production was a major synergistic mechanism between the β-lactams and the PBEAE. PBEAE can enhance the efficacy of β-lactams for combined therapy in patients infected with MRSA.

  7. Azole Fungicides as Synergists in the Aquatic Environment

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen

    hazard.This PhD thesis evaluates the role of the so called azole fungicides as synergists in the aquaticenvironment through an assessment of the effect of sorption, time and azole concentration on theoccurrence and magnitude of synergistic interactions with pyrethroid insecticides towards...... the aquaticcrustacean Daphnia magna in both laboratory experiments and natural-like environments. In the PhDthesis, synergy is defined as happening in mixtures where either EC50 values decrease more than two-foldbelow the prediction by the model of Concentration Addition (horizontal assessment of synergy) or wherethe...... in stormwater runoff ordrain water and in the aquatic environment, the pesticides mainly occur in sorbed form. Sorption istraditionally considered to limit bioaccessibility and toxicity of hydrophobic compounds, hence,synergistic interactions may be limited in natural environments compared to laboratory studies...

  8. THE ANTIBACTERIAL EFFECT OF SOME MEDICINAL PLANTS (INULA VISCOSA, ANACYCLUS VALENTINUS AND THEIR SYNERGISTIC INTERACTION WITH ANTIBIOTIC DRUGS

    Directory of Open Access Journals (Sweden)

    K. Side Larbi

    2016-05-01

    Full Text Available With the emergence of multidrug-resistant organisms, combining medicinal plants with synthetic medicines against resistant bacteria becomes necessary. In this study, Synergism between plant extracts (methanolic extract and essential oils of Inula viscosa and Anacyclus valentinus and two commonly used antibiotics (gentamycin, oxacillin were investigated on three bacterian strains (E. coli, Bacillus subtilis, Staphylococcus aureus. In the first time, the antibacterial effect of extracts alone was tested against 7 strains by disc diffusion and microdilution methods. The minimum inhibitory concentrations of methanolic extracts ranged between 6.25 and 50mg/ml while that of the essential oils varied between 12.5 and 100µL/mL. Interactions extracts /antibiotics and extracts/extracts by checkboard. The results show that the synergistic effect of combinations plant extracts/antibiotics was more important than extracts/extracts.

  9. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    Science.gov (United States)

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  10. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... proteoglycan species in cellular signalling pathways are being determined. This review describes some of the recent advances in our understanding of the major transmembrane group of heparan sulfate proteoglycans, the syndecans, including evidence that they play an important role as accessory signalling...... molecules modulating integrin-based adhesion....

  11. Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Yuchen; Ming, Peng; Zhang, Qi; Liu, Tianxi; Jiang, Lei; Cheng, Qunfeng

    2016-04-13

    Ultrastrong bioinspired graphene-based fibers are designed and prepared via synergistic toughening of ionic and covalent bonding. The tensile strength reaches up to 842.6 MPa and is superior to all other reported graphene-based fibers. In addition, its electrical conductivity is as high as 292.4 S cm(-1). This bioinspired synergistic toughening strategy supplies new insight toward the construction of integrated high-performance graphene-based fibers in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  13. Synergistic Anticancer Effects of Silibinin and Chrysin in T47D Breast Cancer Cells

    Science.gov (United States)

    Javan Maasomi, Zahra; Pilehvar Soltanahmadi, Younes; Dadashpour, Mehdi; Alipour, Shahriar; Abolhasani, Somayeh; Zarghami, Nosratollah

    2017-05-01

    Objective: Breast cancer is one of the most significant causes of female cancer death worldwide. Although several chemotherapeutics have been developed to treat this type of cancer, issues remain such as low survival rates and high reoccurrence after chemotherapy and radiotherapy. To explore a chemopreventive approach to enhancing breast cancer treatment efficacy, the antiproliferative effects of a combination of chrysin and silibinin, two herbal substances, in T47D breast cancer cells were assessed. Materials and Methods: Cytotoxicity of the agents singly and in combination was evaluated by MTT assay. Also, qRT-PCR was used to measure the expression levels of hTERT and cyclin D1 genes after 48 h treatment. Results: Cell viability assays revealed that chrysin or silibinin alone inhibited proliferation in a dose and time-dependent manner, and combining the drugs synergistically induced growth inhibition in the breast cancer cell line. The precise nature of this interaction was further analyzed by the median-effect method, where the combination indices (CI) were T47D cell proliferation. qPCR results showed that the drug combination also synergistically down-regulated the mRNA levels of hTERT and cyclin D1 at all used concentrations compared with the drugs used alone after 48 h treatment (P ≤ 0.05). Conclusion: The data provide evidence that synergistic antiproliferative effects of Chrysin and Silibinin are linked to the down-regulation of cyclin D1 and hTERT genes, and suggest that their combination may have therapeutic value in treatment of breast cancer. Creative Commons Attribution License

  14. Crizotinib in Combination with Everolimus Synergistically Inhibits Proliferation of ALK-Positive Anaplastic Large Cell Lymphoma.

    Science.gov (United States)

    Xu, Wendan; Kim, Ji-Won; Jung, Woo June; Koh, Youngil; Yoon, Sung-Soo

    2017-06-19

    Anaplastic large cell lymphoma (ALCL) is a rare aggresive non-Hodgkin lymphoma, of which over 50% of cases have an aberrant NPM-ALK fusion protein. Both mTOR inhibitor everolimus and ALK inhibitor crizotinib have shown promising antitumor activity in ALK-positive cancer cell lines. However, their combined effect has not yet been investigated. We evaluated the anti-proliferative effects of everolimus and/or crizotinib in ALK-positive ALCL cell lines, Karpas 299 and SU-DHL-1, and lung adenocarcinoma cell line, NCI-H2228. We found that individually, both everolimus and crizotinib potently inhibited cell growth in a dose-dependent manner in both Karpas 299 and SU-DHL-1 cells. A combination of these agents synergistically inhibited proliferation in the two cell lines. Crizotinib down-regulated aberrant AKT and ERK phosphorylation induced by everolimus. Combination treatment also significantly increased G0/G1 cell-cycle arrest, DNA damage, and apoptosis compared with everolimus or crizotinib alone in ALK-positive ALCL cells. In the Karpas 299 xenograft model, the combination treatment exerted a stronger antitumor effect than monotherapies, without significant change in body weight. The synergistic effect of everolimus and crizotinib was also reproduced in the ALK-positive lung adenocarcinoma cell line NCI-H2228. The combination treatment abrogated PI3K/AKT and mTOR signaling pathways with little effect on the Ras/ERK pathway in NCI-H2228 cells. Crizotinib combined with everolimus synergistically inhibits proliferation of ALK-positive ALCL cells. Our results suggest that this novel combination is worthy of further clinical development in patients with ALK-positive ALCL.

  15. Supramolecular Chitosan Micro-Platelets Synergistically Enhance Anti-Candida albicans Activity of Amphotericin B Using an Immunocompetent Murine Model.

    Science.gov (United States)

    Grisin, Tiphany; Bories, Christian; Bombardi, Martina; Loiseau, Philippe M; Rouffiac, Valérie; Solgadi, Audrey; Mallet, Jean-Maurice; Ponchel, Gilles; Bouchemal, Kawthar

    2017-05-01

    The aim of this work is to design new chitosan conjugates able to self-organize in aqueous solution in the form of micrometer-size platelets. When mixed with amphotericin B deoxycholate (AmB-DOC), micro-platelets act as a drug booster allowing further improvement in AmB-DOC anti-Candida albicans activity. Micro-platelets were obtained by mixing oleoyl chitosan and α-cyclodextrin in water. The formulation is specifically-engineered for mucosal application by dispersing chitosan micro-platelets into thermosensitive pluronic ® F127 20 wt% hydrogel. The formulation completely cured C. albicans vaginal infection in mice and had a superior activity in comparison with AmB-DOC without addition of chitosan micro-platelets. In vitro studies showed that the platelets significantly enhance AmB-DOC antifungal activity since the IC 50 and the MIC 90 decrease 4.5 and 4.8-times. Calculation of fractional inhibitory concentration index (FICI = 0.198) showed that chitosan micro-platelets act in a synergistic way with AmB-DOC against C. albicans. No synergy is found between spherical nanoparticles composed poly(isobutylcyanoacrylate)/chitosan and AmB-DOC. These results demonstrate for the first time the ability of flattened chitosan micro-platelets to have synergistic activity with AmB-DOC against C. albicans candidiasis and highlight the importance of rheological and mucoadhesive behaviors of hydrogels in the efficacy of the treatment.

  16. Inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity by cimicifugoside, a triterpenoid from Cimicifuga simplex.

    Science.gov (United States)

    Yawata, Ayako; Matsuhashi, Yuko; Kato, Hanako; Uemura, Keiko; Kusano, Genjiro; Ito, Junko; Chikuma, Toshiyuki; Hojo, Hiroshi

    2009-11-05

    Cimicifugoside, a triterpenoid isolated from Cimicifuga simplex, which has been used as a traditional Chinese medicine due to its anti-inflammatory, analgesic or anti-pyretic action, was examined for inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity. Cimicifugoside inhibited uptake of uridine, thymidine and adenosine in human leukemia U937 cells with the low nanomolar IC(50) values, but did not affect that of uracil, leucine or 2-deoxyglucose at cimicifugenin (aglycon of cimicifugoside)>bugbanoside B>cimicifugenin A, O-methyl cimicifugenin and bugbanoside A. Cimicifugoside had less affinity for the binding site of nitrobenzylthioinosine (typical high-affinity inhibitor of equilibrative nucleoside transporter-1) in U937 cells, K562 cells and human erythrocyte membranes compared with the prototype nucleoside transport inhibitor dipyridamole. Cimicifugoside markedly potentiated methotrexate cytotoxicity in a culture of U937 cells and human carcinoma KB cells. Potentiation of methotrexate cytotoxicity by cimicifugoside analogs in U937 cells was in proportion to their inhibitory activity against uridine uptake. The present study demonstrates that cimicifugoside is a novel specific nucleoside transport inhibitor that displays synergistic potentiation of methotrexate cytotoxicity.

  17. Regeneration of Aplysia Bag Cell Neurons is Synergistically Enhanced by Substrate-Bound Hemolymph Proteins and Laminin

    Science.gov (United States)

    Hyland, Callen; Dufrense, Eric R.; Forscher, Paul

    2014-04-01

    We have investigated Aplysia hemolymph as a source of endogenous factors to promote regeneration of bag cell neurons. We describe a novel synergistic effect between substrate-bound hemolymph proteins and laminin. This combination increased outgrowth and branching relative to either laminin or hemolymph alone. Notably, the addition of hemolymph to laminin substrates accelerated growth cone migration rate over ten-fold. Our results indicate that the active factor is either a high molecular weight protein or protein complex and is not the respiratory protein hemocyanin. Substrate-bound factor(s) from central nervous system-conditioned media also had a synergistic effect with laminin, suggesting a possible cooperation between humoral proteins and nervous system extracellular matrix. Further molecular characterization of active factors and their cellular targets is warranted on account of the magnitude of the effects reported here and their potential relevance for nervous system repair.

  18. Drug Repurposing Approach Identifies a Synergistic Drug Combination of an Antifungal Agent and an Experimental Organometallic Drug for Melanoma Treatment.

    Science.gov (United States)

    Riedel, Tina; Demaria, Olivier; Zava, Olivier; Joncic, Ana; Gilliet, Michel; Dyson, Paul J

    2018-01-02

    By screening a drug library comprising FDA approved compounds, we discovered a potent interaction between the antifungal agent haloprogin and the experimental organometallic drug RAPTA-T, to synergistically induce cancer cell killing. The combination of these two small molecules, even at low doses, elicited an improved therapeutic response on tumor growth over either agent alone or the current treatment used in the clinic in the highly aggressive syngeneic B16F10 melanoma tumor model, where classical cytotoxic chemotherapeutic agents show little efficacy. The combination with the repurposed chemodrug haloprogin provides the basis for a new powerful treatment option for cutaneous melanoma. Importantly, because synergistic induction of tumor cell death is achieved with low individual drug doses, and cellular targets for RAPTA-T are different from those of classical chemotherapeutic drugs, a therapeutic strategy based on this approach could avoid toxicities and potentially resistance mechanisms, and could even inhibit metastatic progression.

  19. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders

    Science.gov (United States)

    Fine, Rebecca; Zhang, Jie; Stevens, Hanna E.

    2014-01-01

    Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the brain is directly and persistently affected by prenatal stress. This review synthesizes research that elucidates how this early, developmental risk factor impacts inhibitory neurons and how these findings intersect with research on risk factors and inhibitory neuron pathophysiology in schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on inhibitory neurons, particularly developmental mechanisms, may elucidate further the pathophysiology of these disorders. PMID:24751963

  20. Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas Aeruginosa Infection in Endocarditis and Reduces Virulence.

    Science.gov (United States)

    Oechslin, Frank; Piccardi, Philippe; Mancini, Stefano; Gabard, Jérôme; Moreillon, Philippe; Entenza, José M; Resch, Gregory; Que, Yok-Ai

    2017-03-01

    Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection. In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined. In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P 6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation). Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  1. Effect of Eugenol against Streptococcus agalactiae and Synergistic Interaction with Biologically Produced Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Renata Perugini Biasi-Garbin

    2015-01-01

    Full Text Available Streptococcus agalactiae (group B streptococci (GBS is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio. Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections.

  2. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  3. Inhibitory Effect of Lactobacillus reuteri on Some Pathogenic Bacteria Isolated From Women With Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Eslami

    2014-08-01

    cause bacterial vaginosis. The results of this study confirmed the inhibitory effect of probiotics on pathogens growth that cause bacterial vaginosis, which can be considered in the prevention and treatment of bacterial vaginosis in further investigations.

  4. Leukemia inhibitory factor and its role in physiologic and pathological processes

    OpenAIRE

    Grégory Alfonso García; Ómar Mejía; Ananías García Cardona; Dianney Clavijo Grimaldi; Jimmy Muñoz; Sergio Hernández

    2006-01-01

    Leukemia inhibitory factor (LIF) is celular comunication mediator that shows a very wide range of biologic activities that include the cell differentiation, cell growth and proliferation, cell trophic and anti-apoptotic effect, cell protection of different cells and tissue types, regulating energetic and bone metabolism, neural development, embryogenesis, reparation and remodelation tissue, and modulation of inflammation. Due to its pleiotrophic activities, LIF is central in the pathologic ev...

  5. Inflammation and cancer: macrophage migration inhibitory factor (MIF)--the potential missing link.

    LENUS (Irish Health Repository)

    Conroy, H

    2010-11-01

    Macrophage migration inhibitory factor (MIF) was the original cytokine, described almost 50 years ago and has since been revealed to be an important player in pro-inflammatory diseases. Recent work using MIF mouse models has revealed new roles for MIF. In this review, we present an increasing body of evidence implicating the key pro-inflammatory cytokine MIF in specific biological activities related directly to cancer growth or contributing towards a microenvironment favouring cancer progression.

  6. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    , equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  7. Radioactive EGFR Antibody Cetuximab in Multimodal Cancer Treatment: Stability and Synergistic Effects With Radiotherapy

    International Nuclear Information System (INIS)

    Rades, Dirk; Wolff, Christian; Nadrowitz, Roger; Breunig, Christian; Schild, Steven E.; Baehre, Manfred; Meller, Birgit

    2009-01-01

    Purpose: Systemic therapies when added to whole brain radiotherapy have failed to improve the survival of patients with multiple brain metastases. The epidermal growth factor receptor antibody cetuximab is an attractive option, if it is able to cross the blood-brain barrier. This might be proven with molecular imaging if the radiolabeled antibody is stable long enough to be effective. This study investigated the stability of radiolabeled cetuximab (Erbitux) ( 131 I-Erbi) and potential synergistic effects with radiotherapy in vitro. Methods and Materials: Two cell lines were investigated, A431 with numerous epidermal growth factor receptors, and JIMT without epidermal growth factor receptors. We labeled 0.4 mg cetuximab with 50 MBq of [ 131 I] iodide. Stability was determined for 72 h. The cell cultures were incubated with 131 I-Erbi or cold cetuximab for 72 h. Uptake and cell proliferation were measured every 24 h after no radiotherapy or irradiation with 2, 4, or 10 Gy. Results: The radiolabeling yield of 131 I-Erbi was always >80%. The radiochemical purity was still 93.6% after 72 h. A431 cells showed a 131 I-Erbi uptake about 100-fold greater than the JIMT controls. After 48 h, the A431 cultures showed significantly decreased proliferation. At 72 h after irradiation, 131 I-Erbi resulted in more pronounced inhibition of cell proliferation than the cold antibody in all radiation dose groups. Conclusion: 131 I-Erbi was stable for ≤72 h. Radiotherapy led to increased tumor cell uptake of 131 I-Erbi. Radiotherapy and 131 I-Erbi synergistically inhibited tumor cell proliferation. These results provide the prerequisite data for a planned in vivo study of whole brain radiotherapy plus cetuximab for brain metastases.

  8. Lovastatin inhibits VEGFR and AKT activation: synergistic cytotoxicity in combination with VEGFR inhibitors.

    Directory of Open Access Journals (Sweden)

    Tong T Zhao

    Full Text Available BACKGROUND: In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR. Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR and EGFR share similar activation, internalization and downstream signaling characteristics. METHODOLOGY/PRINCIPAL FINDINGS: The VEGFRs, particularly VEGFR-2 (KDR, Flt-1, play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM, also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses. CONCLUSIONS/SIGNIFICANCE: These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors.

  9. Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling.

    Science.gov (United States)

    Pansters, N A; Langen, R C; Wouters, E F; Schols, A M

    2013-05-01

    Muscle wasting is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Exercise stimulates muscle recovery, but its efficacy is variable, depending on the clinical condition and medical treatment. Systemic glucocorticoids, commonly administered in high doses during acute disease exacerbations or as maintenance treatment in end-stage disease, are known to contribute to muscle wasting. As muscle mass recovery involves insulin-like growth factor (IGF)-I signaling, which can be stimulated by anabolic steroids, the impact of glucocorticoids and the effect of simultaneous IGF-I stimulation by anabolic steroids on muscle recovery and growth were investigated. The effects of, and interactions between, glucocorticoid and IGF-I signaling on skeletal muscle growth were assessed in differentiating C2C12 myocytes. As proof of principle, we performed a post hoc analysis stratifying patients by glucocorticoid use of a clinical trial investigating the efficacy of anabolic steroid supplementation on muscle recovery in muscle-wasted patients with COPD. Glucocorticoids strongly impaired protein synthesis signaling, myotube formation, and muscle-specific protein expression. In contrast, in the presence of glucocorticoids, IGF-I synergistically stimulated myotube fusion and myofibrillar protein expression, which corresponded with restored protein synthesis signaling by IGF-I and increased transcriptional activation of muscle-specific genes by glucocorticoids. In COPD patients on maintenance glucocorticoid treatment, the clinical trial also revealed an enhanced effect of anabolic steroids on muscle mass and respiratory muscle strength. In conclusion, synergistic effects of anabolic steroids and glucocorticoids on muscle recovery may be caused by relief of the glucocorticoid-imposed blockade on protein synthesis signaling, allowing effective translation of glucocorticoid-induced accumulation of muscle-specific gene transcripts.

  10. Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis.

    Science.gov (United States)

    Hikima, Tomohiro; Ohsumi, Shinya; Shirouzu, Kenta; Tojo, Kakuji

    2009-05-01

    The mechanism of skin penetration enhancement by ultrasound under sonophoresis (US) or by an electrical field under iontophoresis (IP) was investigated using hairless mouse skin in vitro. The seven model chemicals with different molecular weights (122-1485) were dissolved in a hydrophilic gel. Donor gel with the chemicals was loaded on the skin surface and then the skin was treated with US (300 kHz, 5.2 W/cm(2), 5.4% duty-cycle) and IP (0.32+/-0.03 mA/cm(2)) individually or with US and IP in combination (US+IP). The penetration profiles of the chemicals with a molecular weight of less than 500 were influenced by the presence of an electric charge, the profiles of ionized chemicals for US+IP were the same as profiles for IP, while the penetration flux of a non-ionized chemical synergistically increased with US+IP compared with the individual flux of US and IP. The chemicals with molecular weight of more than 1000 showed synergistic effects with US+IP. The mathematical simulation assuming a bilayer skin model revealed that the synergistic effects were mainly influenced by electroosmosis in the stratum corneum (SC). Therefore the synergistic effects of US+IP was mainly caused by the SC diffusivity of chemicals increased by US and the electroosmotic water flow by IP application.

  11. Inhibitive and Synergistic Properties of Ethanolic Extract of ...

    African Journals Online (AJOL)

    It was also noted that only KCl was synergistic to the ethanol extract of Anogeissus leiocarpus, while other halides tested were antagonistic. All the data acquired reveal that the ethanolic extract of Anogeissus leiocarpus act as an inhibitor in the acid environment due to the phytochemicals: saponin, tannins, flavonoid, ...

  12. Synergistic Effect of Trehalose and Saccharose Pretreatment on ...

    African Journals Online (AJOL)

    2). Osmotic fragility is an important factor in the maintenance of RBC integrity and normal functions [23]. Trehalose and saccharose pretreatment synergistically decreased lyophilization-rehydration-induced damage on. RBC osmotic fragility by reducing the osmotic fragility (Fig. 3). PS is only distributed in the internal side of ...

  13. Synergistic therapy of enalapril and Cordyceps sinensis in the ...

    African Journals Online (AJOL)

    Chronic allograft nephropathy (CAN) still remains an important factor that affects the long-term survival of renal recipients. The aim of the study was to investigate synergistic effect of enalapril (an angiotensin converting enzyme inhibitor, ACEI) and Cordyceps sinensis (Bailing capsule, fermented agent of C. sinensis) on ...

  14. Synergistic Effect of Trehalose and Saccharose Pretreatment on ...

    African Journals Online (AJOL)

    Purpose: To investigate the synergistic effect of trehalose and saccharose pretreatment on maintenance of lyophilized human red blood cell (RBC) quality. Methods: RBCs were pre-treated with trehalose and saccharose, and then lyophilized and re-hydrated. Prior to lyophilization and after re hydration, RBC parameters, ...

  15. Synergistic antibacterial effect of stem bark extracts of Faidherbia ...

    African Journals Online (AJOL)

    The study was aimed at screening the stem bark extracts of Faidherbia albida and Psidium guajava for synergistic antibacterial effect against methicillin resistant Staphylococcus aureus (MRSA). The powdered plant materials were extracted with methanol using cold maceration technique and the extracts were screened for ...

  16. Hybrid Nanotechnologies for Detection and Synergistic Therapies for Breast Cancer

    Science.gov (United States)

    2012-10-01

    diagnostic nanosystems for therapeutic and theranostic targeting of breast cancers . 15. SUBJECT TERMS anti-angiogenesis, phage display, tumor homing...Therapies for Breast Cancer PRINCIPAL INVESTIGATOR: Erkki Ruoslahti, M.D., Ph.D...for Detection and Synergistic Therapies for Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-09-1-0698 5c. PROGRAM ELEMENT NUMBER

  17. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  18. Synergistic effects of ethanolic plant extract mixtures against food ...

    African Journals Online (AJOL)

    Synergistic effects were observed when mixtures of ethanolic plant extract against food-borne pathogen bacteria were used, so this may be a better way to design alternative pathogen control methodologies for food-borne pathogen bacteria. Keywords: Larrea tridentate, Flourensia cernua, Opuntia ficus-indica, ethanolic ...

  19. Synergistic Effect of Poultry Manure and Sawdust on Changes in ...

    African Journals Online (AJOL)

    Synergistic Effect of Poultry Manure and Sawdust on Changes in Soil Structural Indices of a Sandy-Clay Loam Ultisol. ... Decreases in bulk density occurred as a result of increase in amendment applied, the trend was 8t>4t>2t for all the amendments. However, only the application of 8t/ha of poultry manure decrease bulk ...

  20. Synergistic effects of squalene and polyunsaturated fatty acid ...

    African Journals Online (AJOL)

    We have studied the synergistic effects of squalene and polyunsaturated fatty acids (PUFA concentrate) on isoprenaline-induced infarction in rats with respect to changes in the levels of plasma diagnostic marker enzymes and myocardial antioxidant defense system. Intraperitoneal injection of isoprenaline caused a ...

  1. Synergistic interaction between two linear inhibitors on a single ...

    African Journals Online (AJOL)

    ). vanadate (Van) and L-phenylalanine (L-phe) were studied using a modification of the common Yonetani-Theorell procedure proposed for studying synergistic inhibition. The modes of inhibition of ALP by Van and L-phe as analysed using the ...

  2. Synergistic extraction of thorium in presence of neutral donors

    International Nuclear Information System (INIS)

    Biswas, S.; Basu, S.

    1999-01-01

    The effects of neutral organophosphorous compounds on the extraction of thorium by β-hydroxy naphthaldoxime in xylene are reported. Enhancement of extraction is explained in terms of formation of a complex adduct in organic phase. Synergistic coefficients and apparent formation constants of complex adducts are calculated. (author)

  3. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  4. Synergistic effect of Murraya koenigii and Telfairia occidentalis ...

    African Journals Online (AJOL)

    Larger zones of inhibition were observed for M. Koenigii extract than T. occidentalis extract, and larger zones of inhibition were observed by their synergy than on their separate use. Synergistic antibacterial activity of the extract ranged from 0 mm to 20.0 ± 0.03 mm, zone of inhibition of M. koenigii extract ranged from 0 mm ...

  5. Tungstate as a synergist to phosphonate-based formulation for ...

    Indian Academy of Sciences (India)

    Administrator

    Tungstate as a synergist to phosphonate based formulation for corrosion control of carbon steel. 641. IEp (%) = 100 [1 – (i′corr/icorr)],. (2) where icorr and i′corr are the corrosion current densi- ties in case of the control and inhibitor solutions respectively. Impedance spectra in the form of Nyquist plots were recorded at ...

  6. Synergistic Activity of Methanolic Extract of Adenium obesum ...

    African Journals Online (AJOL)

    Synergistic Activity of Methanolic Extract of Adenium obesum (Apocynaceae) Stem-Bark and Oxytetracycline against Some Clinical Bacterial Isolates. ... Phytochemical examination of the extract revealed the presence of alkaloids, steroids, saponins, glycosides, anthraquinones, tannins and flavonoids. This result indicated ...

  7. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes.

    Science.gov (United States)

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.

  8. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta.

    Science.gov (United States)

    Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing

    2014-03-06

    Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.

  9. Synergistic linkage between remote sensing and biophysical models for estimating plant ecophysiological and ecosystem processes

    International Nuclear Information System (INIS)

    Inoue, Y.; Olioso, A.

    2004-01-01

    Abstract Information on the ecological and physiological status of crops is essential for growth diagnostics and yield prediction. Within-field or between-field spatial information is required, especially with the recent trend toward precision agriculture, which seeks the efficient use of agrochemicals, water, and energy. The study of carbon and nitrogen cycles as well as environmental management on local and regional scales requires assessment of the spatial variability of biophysical and ecophysiological variables, scaling up of which is also needed for scientific and decision-making purposes. Remote sensing has great potential for these applications because it enables wide-area non-destructive, and real-time acquisition of information about ecophysiological conditions of vegetation. With recent advances in sensor technology, a variety of electromagnetic signatures, such as hyperspectral reflectance, thermal-infrared temperature, and microwave backscattering coefficients, can be acquired for both plants and ecosystems using ground-based, airborne, and satellite platforms. Their spatial and temporal resolutions have both recently been improved. This article reviews the state of the art in the remote sensing of plant ecophysiological data, with special emphasis on the synergy between remote sensing signatures and biophysical and ecophysiological process models. Several case studies for the optical, thermal, and microwave domains have demonstrated the potential of this synergistic linkage. Remote sensing and process modeling methods complement each other when combined synergistically. Further research on this approach is needed f or a wide range of ecophysiological and ecosystem studies, as well as for practical crop management

  10. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    Directory of Open Access Journals (Sweden)

    Takahiro Eitsuka

    2016-09-01

    Full Text Available Tocotrienol (T3, unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc. Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib or dietary components (e.g., polyphenols, sesamin, and ferulic acid exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.

  11. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF.

    Science.gov (United States)

    Suzuki, Keisuke; Mizushima, Hiroto; Abe, Hiroyuki; Iwamoto, Ryo; Nakamura, Haruki; Mekada, Eisuke

    2015-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a ligand of EGF receptor, is involved in the growth and malignant progression of cancers. Cross-reacting material 197, CRM197, a non-toxic mutant of diphtheria toxin (DT), specifically binds to the EGF-like domain of HB-EGF and inhibits its mitogenic activity, thus CRM197 is currently under evaluation in clinical trials for cancer therapy. To develop more potent DT mutants than CRM197, we screened various mutant proteins of R domain of DT, the binding site for HB-EGF. A variety of R-domain mutant proteins fused with maltose-binding protein were produced and their inhibitory activity was evaluated in vitro. We found four R domain mutants that showed much higher inhibitory activity against HB-EGF than wild-type (WT) R domain. These R domain mutants suppressed HB-EGF-dependent cell proliferation more effectively than WT R domain. Surface plasmon resonance revealed their higher affinity to HB-EGF than WT R domain. CRM197(R460H) carrying the newly identified mutation showed increased cell proliferation inhibitory activity and affinity to HB-EGF. These results suggest that CRM197(R460H) or other recombinant proteins carrying newly identified mutation(s) in the R domain are potential therapeutics targeting HB-EGF. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp strains

    Directory of Open Access Journals (Sweden)

    Lívia Viganor da Silva

    2011-02-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA and coagulase-negative Staphylococcus spp (CNS are the most common pathogens that cause serious long term infections in patients. Despite the existence of new antimicrobial agents, such as linezolid, vancomycin (VAN remains the standard therapy for the treatment of infections caused by these multidrug-resistant strains. However, the use of VAN has been associated with a high frequency of therapeutic failures in some clinical scenarios, mainly with decreasing concentration of VAN. This work aims to evaluate the synergic potential of VAN plus sulfamethoxazole/trimethoprim (SXT, VAN plus rifampin (RIF and VAN plus imipenem (IPM in sub-minimum inhibitory concentrations against 22 clinical strains of MRSA and CNS. The checkerboard method showed synergism of VAN/RIF and VAN/SXT against two and three of the 22 strains, respectively. The combination of VAN with IPM showed synergistic effects against 21 out of 22 strains by the E-test method. Four strains were analyzed by the time-kill curve method and synergistic activity was observed with VAN/SXT, VAN/RIF and especially VAN/IPM in sub-inhibitory concentrations. It would be interesting to determine if synergy occurs in vivo. Evidence of in vivo synergy could lead to a reduction of the standard VAN dosage or treatment time.

  13. Combating against methicillin-resistant Staphylococcus aureus - two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin.

    Science.gov (United States)

    Chan, Ben C L; Han, X Q; Lui, Sau Lai; Wong, C W; Wang, Tina B Y; Cheung, David W S; Cheng, Sau Wan; Ip, Margaret; Han, Simon Q B; Yang, Xiao-Sheng; Jolivalt, Claude; Lau, Clara B S; Leung, Ping Chung; Fung, Kwok Pui

    2015-01-01

    The aims of this study were to identify the active ingredients from Portulaca oleracea L. (PO) that could provide synergism with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) and their possible mechanisms of resistance inhibition. High-speed counter-current chromatography (HSCCC) coupled with gas chromatography-mass spectrometry and a panel of laboratory MRSA strains were used for checkerboard and efflux inhibitory assays. Linoleic and oleic acids were identified from HSCCC fraction 18 of PO with synergistic antibacterial activity when combined with erythromycin against RN4220/pUL5054. Ethidium bromide efflux inhibitory studies revealed that linoleic and oleic acids may interfere the activity of MsrA pump. By comparing among a panel of linoleic and oleic acids analogues, unsaturated fatty acids in salt form with cis configuration and an increase in number of double bonds were found to further increase the antibacterial activity when used alone or in combination with antibiotics. This study reported for the first time that two active ingredients, namely linoleic and oleic acids, were identified from PO with synergistic antibacterial activity when combined with erythromycin against MRSA RN4220/pUL5054 and possibly act by inhibiting the efflux pumps of the bacteria cells. © 2014 Royal Pharmaceutical Society.

  14. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1975-01-01

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  15. Are a healthy diet and physical activity synergistically associated with cognitive functioning in older adults?

    NARCIS (Netherlands)

    Nijholt, W.; Jager-Wittenaar, H.; Visser, M.; Van der Schans, C. P.; Hobbelen, J. S. M.

    Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and being

  16. Comparison of Heuristics for Inhibitory Rule Optimization

    KAUST Repository

    Alsolami, Fawaz

    2014-09-13

    Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  17. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria

    Directory of Open Access Journals (Sweden)

    Ji-Hoon Kim

    2017-06-01

    Full Text Available The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin. In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control. Chitosan-caffeic acid conjugate (CCA showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL. Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  18. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria.

    Science.gov (United States)

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-06-08

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes , Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa . Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  19. Synergistic activity of mecillinam in combination with the beta-lactamase inhibitors clavulanic acid and sulbactam.

    OpenAIRE

    Neu, H C

    1982-01-01

    The beta-lactamase inhibitors clavulanic acid and sulbactam were combined with mecillinam. beta-Lactamase-containing Escherichia coli resistant to mecillinam was synergistically inhibited by both clavulanic acid and sulbactam. beta-Lactamase-containing Enterobacter was synergistically inhibited, but strains lacking beta-lactamases were not synergistically inhibited. Synergistic inhibition was noted for beta-lactamase-containing, mecillinam-resistant Klebsiella, Citrobacter, Serratia, and Salm...

  20. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi.

    Science.gov (United States)

    Mellon, J E; Dowd, M K; Beltz, S B

    2013-07-01

    To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus. The compounds were tested at a concentration of 100 μg ml(-1) in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein-supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti-aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein-amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti-aflatoxigenic activity in the YES medium. Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol-related compounds against aflatoxigenic fungi. Studies utilizing gossypol-related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins. Published [2013]. This article is a

  1. Combinations of β-Lactam or Aminoglycoside Antibiotics with Plectasin Are Synergistic against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Hu, Yanmin; Liu, Alexander; Vaudrey, James; Vaiciunaite, Brigita; Moigboi, Christiana; McTavish, Sharla M.; Kearns, Angela; Coates, Anthony

    2015-01-01

    Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87–89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We

  2. <