WorldWideScience

Sample records for synergistic drug combinations

  1. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives.

    Science.gov (United States)

    Zhang, Rui Xue; Wong, Ho Lun; Xue, Hui Yi; Eoh, June Young; Wu, Xiao Yu

    2016-10-28

    Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Moving Synergistically Acting Drug Combinations to the Clinic by Comparing Sequential versus Simultaneous Drug Administrations.

    Science.gov (United States)

    Dinavahi, Saketh S; Noory, Mohammad A; Gowda, Raghavendra; Drabick, Joseph J; Berg, Arthur; Neves, Rogerio I; Robertson, Gavin P

    2018-03-01

    Drug combinations acting synergistically to kill cancer cells have become increasingly important in melanoma as an approach to manage the recurrent resistant disease. Protein kinase B (AKT) is a major target in this disease but its inhibitors are not effective clinically, which is a major concern. Targeting AKT in combination with WEE1 (mitotic inhibitor kinase) seems to have potential to make AKT-based therapeutics effective clinically. Since agents targeting AKT and WEE1 have been tested individually in the clinic, the quickest way to move the drug combination to patients would be to combine these agents sequentially, enabling the use of existing phase I clinical trial toxicity data. Therefore, a rapid preclinical approach is needed to evaluate whether simultaneous or sequential drug treatment has maximal therapeutic efficacy, which is based on a mechanistic rationale. To develop this approach, melanoma cell lines were treated with AKT inhibitor AZD5363 [4-amino- N -[(1 S )-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7 H -pyrrolo[2,3- d ]pyrimidin-4-yl)piperidine-4-carboxamide] and WEE1 inhibitor AZD1775 [2-allyl-1-(6-(2-hydroxypropan-2-yl)pyridin-2-yl)-6-((4-(4-methylpiperazin-1-yl)phenyl)amino)-1 H -pyrazolo[3,4- d ]pyrimidin-3(2 H )-one] using simultaneous and sequential dosing schedules. Simultaneous treatment synergistically reduced melanoma cell survival and tumor growth. In contrast, sequential treatment was antagonistic and had a minimal tumor inhibitory effect compared with individual agents. Mechanistically, simultaneous targeting of AKT and WEE1 enhanced deregulation of the cell cycle and DNA damage repair pathways by modulating transcription factors p53 and forkhead box M1, which was not observed with sequential treatment. Thus, this study identifies a rapid approach to assess the drug combinations with a mechanistic basis for selection, which suggests that combining AKT and WEE1 inhibitors is needed for maximal efficacy. Copyright © 2018 by The American

  3. Polymyxin B in Combination with Enrofloxacin Exerts Synergistic Killing against Extensively Drug-Resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Lin, Yu-Wei; Yu, Heidi H; Zhao, Jinxin; Han, Mei-Ling; Zhu, Yan; Akter, Jesmin; Wickremasinghe, Hasini; Walpola, Hasini; Wirth, Veronika; Rao, Gauri G; Forrest, Alan; Velkov, Tony; Li, Jian

    2018-06-01

    Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa , with ≥2 to 4 log 10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations. Copyright © 2018 American Society for Microbiology.

  4. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    Science.gov (United States)

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  5. Selective Targeting of CTNBB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs.

    Directory of Open Access Journals (Sweden)

    Joost C M Uitdehaag

    Full Text Available The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin, KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines

  6. Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs

    Science.gov (United States)

    Uitdehaag, Joost C. M.; de Roos, Jeroen A. D. M.; van Doornmalen, Antoon M.; Prinsen, Martine B. W.; Spijkers-Hagelstein, Jill A. P.; de Vetter, Judith R. F.; de Man, Jos; Buijsman, Rogier C.; Zaman, Guido J. R.

    2015-01-01

    The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification

  7. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  8. Preclinical demonstration of synergistic Active Nutrients/Drug (AND combination as a potential treatment for malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Viviana Volta

    Full Text Available Malignant pleural mesothelioma (MPM is a poor prognosis disease lacking adequate therapy. We have previously shown that ascorbic acid administration is toxic to MPM cells. Here we evaluated a new combined therapy consisting of ascorbate/epigallocatechin-3-gallate/gemcitabine mixture (called AND, for Active Nutrients/Drug. In vitro effects of AND therapy on various MPM cell lines revealed a synergistic cytotoxic mechanism. In vivo experiments on a xenograft mouse model for MPM, obtained by REN cells injection in immunocompromised mice, showed that AND strongly reduced the size of primary tumor as well as the number and size of metastases, and prevented abdominal hemorrhage. Kaplan Meier curves and the log-rank test indicated a marked increase in the survival of AND-treated animals. Histochemical analysis of dissected tumors showed that AND induced a shift from cell proliferation to apoptosis in cancer cells. Lysates of tumors from AND-treated mice, analyzed with an antibody array, revealed decreased TIMP-1 and -2 expressions and no effects on angiogenesis regulating factors. Multiplex analysis for signaling protein phosphorylation exhibited inactivation of cell proliferation pathways. The complex of data showed that the AND treatment is synergistic in vitro on MPM cells, and blocks in vivo tumor progression and metastasization in REN-based xenografts. Hence, the AND combination is proposed as a new treatment for MPM.

  9. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  10. Self-Delivery Nanoparticles of Amphiphilic Methotrexate-Gemcitabine Prodrug for Synergistic Combination Chemotherapy via Effect of Deoxyribonucleotide Pools.

    Science.gov (United States)

    Wang, Yao; Huang, Ping; Hu, Minxi; Huang, Wei; Zhu, Xinyuan; Yan, Deyue

    2016-11-16

    The distinct and complementary biochemical mechanisms of folic acid analog methotrexate (MTX) and cytidine analog gemcitabine (GEM) make their synergistic combination effective. Unfortunately, such a combination faces severe pharmacokinetic problems and several transportation barriers. To overcome these problems, a new strategy of amphiphilic small molecule prodrug (ASMP) is developed to improve their synergistic combination effect. The ASMP was prepared by the amidation of the hydrophilic GEM with the hydrophobic MTX at a fixed ratio. Owing to its inherent amphiphilicity, the MTX-GEM ASMP self-assembled into stable nanoparticles (ASMP-NPs) with high drug loading capacity (100%), in which the MTX and GEM could self-deliver without any carriers and release synchronously in cancer cells. In vitro studies showed that the MTX-GEM ASMP-NPs could greatly improve the synergistic combination effects by the reason of arresting more S phase of the cell cycle and reducing levels of deoxythymidine triphosphate (dTTP), deoxyadenosine triphosphate (dATP), and deoxycytidine triphosphate (dCTP). The stronger synergistic effects caused the higher cell cytotoxicity and apoptotic ratio, and circumvented the multidrug resistance (MDR) of tumor cells. Additionally, MTX-GEM ASMP-NPs could achieve the same anticancer effect with the greatly reduced dosage compared with the free drugs according to the dose-reduction index (DRI) values of MTX and GEM in MTX-GEM ASMP-NPs, which may be beneficial for reducing the side effects.

  11. Combination of Tramadol with Minocycline Exerted Synergistic Effects on a Rat Model of Nerve Injury-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Mei

    2012-09-01

    Full Text Available Neuropathic pain is a refractory clinical problem. Certain drugs, such as tramadol, proved useful for the treatment of neuropathic pain by inhibiting the activity of nociceptive neurons. Moreover, studies indicated that suppression or modulation of glial activation could prevent or reverse neuropathic pain, for example with the microglia inhibitor minocycline. However, few present clinical therapeutics focused on both neuronal and glial participation when treating neuropathic pain. Therefore, the present study hypothesized that combination of tramadol with minocycline as neuronal and glial activation inhibitor may exert some synergistic effects on spinal nerve ligation (SNL-induced neuropathic pain. Intrathecal tramadol or minocycline relieved SNL-induced mechanical allodynia in a dose-dependent manner. SNL-induced spinal dorsal horn Fos or OX42 expression was downregulated by intrathecal tramadol or minocycline. Combination of tramadol with minocycline exerted powerful and synergistic effects on SNL-induced neuropathic pain also in a dose-dependent manner. Moreover, the drug combination enhanced the suppression effects on SNL-induced spinal dorsal horn Fos and OX42 expression, compared to either drug administered alone. These results indicated that combination of tramadol with minocycline could exert synergistic effects on peripheral nerve injury-induced neuropathic pain; thus, a new strategy for treating neuropathic pain by breaking the interaction between neurons and glia bilaterally was also proposed.

  12. In vitro synergistic effect of fluoroquinolone analogues in combination with artemisinin against Plasmodium falciparum; their antiplasmodial action in rodent malaria model.

    Science.gov (United States)

    Agarwal, Drishti; Sharma, Manish; Dixit, Sandeep K; Dutta, Roshan K; Singh, Ashok K; Gupta, Rinkoo D; Awasthi, Satish K

    2015-02-05

    Emergence of drug-resistant parasite strains has surfaced as a major obstacle in attempts to ameliorate malaria. Current treatment regimen of malaria relies on the concept of artemisinin-based combination therapy (ACT). Fluoroquinolone analogues, compounds 10, 12 and 18 were investigated for their anti-malarial interaction in combination with artemisinin in vitro, against Plasmodium falciparum 3D7 strain, employing fixed-ratio combination isobologram method. In addition, the efficacy of these compounds was evaluated intraperitoneally in BALB/c mice infected with chloroquine-resistant Plasmodium berghei ANKA strain in the Peters' four-day suppressive test. Promising results were obtained in the form of synergistic or additive interactions. Compounds 10 and 12 were found to have highly synergistic interactions with artemisinin. Antiplasmodial effect was further verified by the convincing ED50 values of these compounds, which ranged between 2.31 and 3.09 (mg/kg BW). In vivo studies substantiated the potential of the fluoroquinolone derivatives to be developed as synergistic partners for anti-malarial drug combinations.

  13. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of combinations of marketed human anthelmintic drugs against Trichuris muris in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Keiser Jennifer

    2012-12-01

    Full Text Available Abstract Background Soil-transmitted helminth (STH infections are responsible for a huge public health burden, however treatment options are limited. The discovery and development of novel efficacious drugs or drug combinations for the treatment of STH infections therefore has a high research priority. Methods We studied drug combination effects using the main standard anthelmintics, albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin in the Trichuris muris model. Drug combinations were first tested in vitro and additive and synergistic combinations investigated further in vivo in female mice using ratios based on the ED50 of the respective drugs. Results In vitro all 10 combinations of the standard anthelmintics tested against T. muris revealed synergistic behavior. We identified three drug combinations in vivo as strongly synergistic, namely mebendazole-ivermectin (Combination index (CI=0.16, mebendazole-levamisole (CI=0.17 and albendazole-mebendazole (CI=0.23. For albendazole-ivermectin, moderate synergism was observed (CI=0.81 and for albendazole-levamisole a nearly additive effect was documented (CI=0.93 in vivo. Five combinations (albendazole-pyrantel pamoate, mebendazole-pyrantel pamoate, levamisole-pyrantel pamoate, levamisole-ivermectin and pyrantel pamoate-ivermectin were antagonistic in vivo. Conclusion Our results strengthen the evidence that combination chemotherapy might play a role in the treatment of Trichuris infections. Albendazole-mebendazole should be studied in greater detail in preclinical studies.

  15. Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin.

    Science.gov (United States)

    Wenande, Emily; Tam, Joshua; Bhayana, Brijesh; Schlosser, Steven Kyle; Ishak, Emily; Farinelli, William A; Chlopik, Agata; Hoang, Mai P; Pinkhasov, Omar R; Caravan, Peter; Rox Anderson, R; Haedersdal, Merete

    2018-04-10

    The effectiveness of topical drugs for treatment of non-melanoma skin cancer is greatly reduced by insufficient penetration to deep skin layers. Ablative fractional lasers (AFLs) are known to enhance topical drug uptake by generating narrow microchannels through the skin, but information on AFL-drug delivery in in vivo conditions is limited. In this study, we examined pharmacokinetics, biodistribution and toxicity of two synergistic chemotherapy agents, cisplatin and 5-fluorouracil (5-FU), following AFL-assisted delivery alone or in combination in in vivo porcine skin. Detected at 0-120 h using mass spectrometry techniques, we demonstrated that fractional CO 2 laser pretreatment (196 microchannels/cm 2 , 852 μm ablation depth) leads to rapid drug uptake in 1500 μm deep skin layers, with a sixfold enhancement in peak cisplatin concentrations versus non-laser-treated controls (5 h, P = 0.005). Similarly, maximum 5-FU deposition was measured within an hour of AFL-delivery, and exceeded peak deposition in non-laser-exposed skin that had undergone topical drug exposure for 5 days. Overall, this accelerated and deeper cutaneous drug uptake resulted in significantly increased inflammatory and histopathological effects. Based on clinical scores and transepidermal water loss measurement, AFL intensified local toxic responses to drugs delivered alone and in combination, while systemic drug exposure remained undetectable. Quantitative histopathologic analyses correspondingly revealed significantly reduced epidermal proliferation and greater cellular apoptosis after AFL-drug delivery; particularly after combined cisplatin + 5-FU exposure. In sum, by overcoming the primary limitation of topical drug penetration and providing accelerated, enhanced and deeper delivery, AFL-assisted combination chemotherapy may represent a promising treatment strategy for non-melanoma skin cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment

    Science.gov (United States)

    Chen, Chao-Yu; Cheng, Yun-Chien; Cheng, Yi-Jing

    2018-04-01

    Chemotherapy is an important treatment method for metastatic cancer, but the drug-uptake efficiency of cancer cells needs to be enhanced in order to diminish the side effects of chemotherapeutic drugs and improve survival. The use of a nonequilibrium low-temperature atmospheric-pressure plasma jet (APPJ) has been demonstrated to exert selective effects in cancer therapy and to be able to enhance the uptake of molecules by cells, which makes an APPJ a good candidate adjuvant in combination chemotherapy. This study estimated the effects of direct helium-based APPJ (He-APPJ) exposure (DE) and He-APPJ-activated RPMI medium (PAM) on cell viability and migration. Both of these treatments decreased cell viability and inhibited cell migration, but to different degrees in different cell types. The use of PAM as a culture medium resulted in the dialkylcarbocyanine (DiI) fluorescent dye entering the cells more efficiently. PAM was combined with the anticancer drug doxorubicin (Doxo) to treat human heptocellular carcinoma HepG2 cells and human adenocarcinomic alveolar basal epithelial A549 cells. The results showed that the synergistic effects of combined PAM and Doxo treatment resulted in stronger lethality in cancer cells than did PAM or Doxo treatment alone. To sum up, PAM has potential as an adjuvant in combination with other drugs to improve curative cancer therapies.

  18. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian; Liu, Chang; Wang, Shengyu; Jiao, Jian; Di, Donghua; Jiang, Tongying; Zhao, Qinfu, E-mail: zqf021110505@163.com; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2017-02-01

    In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy. - Highlights: • Poly(acrylic acid) was grafted on hollow mesoporous carbon (HMC) via disulfide bonds. • The grafted PAA could increase the biocompatibility and stability of HMC. • The DOX-loaded DOX/HMC-SS-PAA had a high drug loading efficiency up to 51.9%. • DOX/HMC-SS-PAA showed redox/pH dual-responsive and NIR-triggered drug release. • DOX/HMC-SS-PAA showed a chemo/photothermal synergistic therapy effect.

  19. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy

    International Nuclear Information System (INIS)

    Li, Xian; Liu, Chang; Wang, Shengyu; Jiao, Jian; Di, Donghua; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-01-01

    In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy. - Highlights: • Poly(acrylic acid) was grafted on hollow mesoporous carbon (HMC) via disulfide bonds. • The grafted PAA could increase the biocompatibility and stability of HMC. • The DOX-loaded DOX/HMC-SS-PAA had a high drug loading efficiency up to 51.9%. • DOX/HMC-SS-PAA showed redox/pH dual-responsive and NIR-triggered drug release. • DOX/HMC-SS-PAA showed a chemo/photothermal synergistic therapy effect.

  20. Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C

    International Nuclear Information System (INIS)

    Ferir, Geoffrey; Palmer, Kenneth E.; Schols, Dominique

    2011-01-01

    Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4 + MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC 95 level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.

  1. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    International Nuclear Information System (INIS)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook; Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung

    2004-01-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth

  2. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook [Korea Institute of Radilolgical and Medical Science, Seoul (Korea, Republic of); Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung [AngioLab, Seoul (Korea, Republic of)

    2004-07-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth.

  3. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells.

    Science.gov (United States)

    Klaus, Christine R; Iwanowicz, Dorothy; Johnston, Danielle; Campbell, Carly A; Smith, Jesse J; Moyer, Mikel P; Copeland, Robert A; Olhava, Edward J; Scott, Margaret Porter; Pollock, Roy M; Daigle, Scott R; Raimondi, Alejandra

    2014-09-01

    EPZ-5676 [(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-((((1r,3S)-3-(2-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)ethyl)cyclobutyl)(isopropyl)amino)methyl)tetrahydrofuran-3,4-diol], a small-molecule inhibitor of the protein methyltransferase DOT1L, is currently under clinical investigation for acute leukemias bearing MLL-rearrangements (MLL-r). In this study, we evaluated EPZ-5676 in combination with standard of care (SOC) agents for acute leukemias as well as other chromatin-modifying drugs in cellular assays with three human acute leukemia cell lines: MOLM-13 (MLL-AF9), MV4-11 (MLL-AF4), and SKM-1 (non-MLL-r). Studies were performed to evaluate the antiproliferative effects of EPZ-5676 combinations in a cotreatment model in which the second agent was added simultaneously with EPZ-5676 at the beginning of the assay, or in a pretreatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. EPZ-5676 was found to act synergistically with the acute myeloid leukemia (AML) SOC agents cytarabine or daunorubicin in MOLM-13 and MV4-11 MLL-r cell lines. EPZ-5676 is selective for MLL-r cell lines as demonstrated by its lack of effect either alone or in combination in the nonrearranged SKM-1 cell line. In MLL-r cells, the combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the chemotherapeutic agents, suggesting that EPZ-5676 sets up a durable, altered chromatin state that enhances the chemotherapeutic effects. Our evaluation of EPZ-5676 in conjunction with other chromatin-modifying drugs also revealed a consistent combination benefit, including synergy with DNA hypomethylating agents. These results indicate that EPZ-5676 is highly efficacious as a single agent and synergistically acts with other chemotherapeutics, including AML SOC drugs and DNA hypomethylating agents in MLL-r cells. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery.

    Science.gov (United States)

    Liu, Yuxiao; Shao, Changmin; Bian, Feika; Yu, Yunru; Wang, Huan; Zhao, Yuanjin

    2018-05-23

    Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.

  5. Activity of oxantel pamoate monotherapy and combination chemotherapy against Trichuris muris and hookworms: revival of an old drug.

    Directory of Open Access Journals (Sweden)

    Jennifer Keiser

    Full Text Available BACKGROUND: It is widely recognized that only a handful of drugs are available against soil-transmitted helminthiasis, all of which are characterized by a low efficacy against Trichuris trichiura, when administered as single doses. The re-evaluation of old, forgotten drugs is a promising strategy to identify alternative anthelminthic drug candidates or drug combinations. METHODOLOGY: We studied the activity of the veterinary drug oxantel pamoate against Trichuris muris, Ancylostoma ceylanicum and Necator americanus in vitro and in vivo. In addition, the dose-effect of oxantel pamoate combined with albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin was studied against T. muris in vitro and additive or synergistic combinations were followed up in vivo. PRINCIPAL FINDINGS: We calculated an ED50 of 4.7 mg/kg for oxantel pamoate against T. muris in mice. Combinations of oxantel pamoate with pyrantel pamoate behaved antagonistically in vitro (combination index (CI = 2.53. Oxantel pamoate combined with levamisole, albendazole or ivermectin using ratios based on their ED50s revealed antagonistic effects in vivo (CI = 1.27, 1.90 and 1.27, respectively. A highly synergistic effect (CI = 0.15 was observed when oxantel pamoate-mebendazole was administered to T. muris-infected mice. Oxantel pamoate (10 mg/kg lacked activity against Ancylostoma ceylanicum and Necator americanus in vivo. CONCLUSION/SIGNIFICANCE: Our study confirms the excellent trichuricidal properties of oxantel pamoate. Since the drug lacks activity against hookworms it is necessary to combine oxantel pamoate with a partner drug with anti-hookworm properties. Synergistic effects were observed for oxantel pamoate-mebendazole, hence this combination should be studied in more detail. Since, of the standard drugs, albendazole has the highest efficacy against hookworms, additional investigations on the combination effect of oxantel pamoate-albendazole should be

  6. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hai-Shan Peng

    Full Text Available OBJECTIVES: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS: Hepatoma cell lines (BEL-7402 and SK-Hep1 were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS: Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS: We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression

  7. Synergistic Enhancement of Cancer Therapy Using a Combination of Ceramide and Docetaxel

    Directory of Open Access Journals (Sweden)

    Li-Xia Feng

    2014-03-01

    Full Text Available Ceramide (CE-based combination therapy (CE combination as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX (CE + DTX and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and combination index (CI assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31 and human breast carcinoma cell (MCF-7, CI = 0.48. The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01. The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.

  8. Cutaneous synergistic analgesia of bupivacaine in combination with dopamine in rats.

    Science.gov (United States)

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-05-04

    The main goal of the study was to investigate the interaction between bupivacaine and dopamine on local analgesia. After the blockade of the cutaneous trunci muscle reflex (CTMR) responses, which occurred following the drugs were subcutaneously injected in rats, the cutaneous analgesic effect of dopamine in a dosage-dependent fashion was compared to that of bupivacaine. Drug-drug interactions were evaluated by isobolographic methods. We showed the dose-dependent effects of dopamine on infiltrative cutaneous analgesia. On the 50% effective dose (ED50) basis, the rank of drug potency was bupivacaine (1.99 [1.92-2.09] μmol/kg) greater than dopamine (190 [181-203] μmol/kg) (Pbupivacaine. The addition of dopamine to the bupivacaine solution exhibited a synergistic effect. Our pre-clinical data showed that dopamine produced a dose-dependent effect in producing cutaneous analgesia. When compared with bupivacaine, dopamine produced a lesser potency with a similar duration of cutaneous analgesia. Dopamine added to the bupivacaine preparation resulted in a synergistic analgesic effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains.

    Science.gov (United States)

    Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn

    In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Synergistic In Vitro Antimalarial Activity of Omeprazole and Quinine

    OpenAIRE

    Skinner-Adams, T.; Davis, T. M. E.

    1999-01-01

    Previous studies have shown that the proton pump inhibitor omeprazole has antimalarial activity in vitro. The interactions of omeprazole with commonly used antimalarial drugs were assessed in vitro. Omeprazole and quinine combinations were synergistic; however, chloroquine and omeprazole combinations were antagonistic. Artemisinin drugs had additive antimalarial activities with omeprazole.

  11. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections.

    Science.gov (United States)

    Wang, Yao; Ding, Xiali; Chen, Yuan; Guo, Mingquan; Zhang, Yan; Guo, Xiaokui; Gu, Hongchen

    2016-09-01

    Drug-resistant bacterial infections have become one of the most serious risks in public health as they make the conventional antibiotics less efficient. There is an urgent need for developing new generations of antibacterial agents in this field. In this work, a nanoplatform of LEVO-loaded and silver core-embedded mesoporous silica nanovehicles (Ag@MSNs@LEVO) is demonstrated as a synergistic antibacterial agent for the treatment of drug-resistant infections both in vitro and in vivo. The combination of the inner Ag core and the loaded antibiotic drug in mesopores endows the single-particle nanoplatform with a synergistic effect on killing the drug-resistant bacteria. The nanoplatform of Ag@MSNs@LEVO exhibits superior antibacterial activity to LEVO-loaded MSNs (MSNs@LEVO) and silver core-embedded MSNs (Ag@MSNs) in vitro. In the in vivo acute peritonitis model, the infected drug-resistant Escherichia coli GN102 in peritoneal cavity of the mice is reduced by nearly three orders of magnitude and the aberrant pathological feature of spleen and peritoneum disappears after treatment with Ag@MSNs@LEVO. Importantly, this nanopaltform renders no obvious toxic side effect to the mice during the tested time. There is no doubt that this study strongly indicates a promising potential of Ag@MSNs@LEVO as a synergistic and safety therapy tool for the clinical drug-resistant infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  13. Synergistic gene and drug tumor therapy using a chimeric peptide.

    Science.gov (United States)

    Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-06-01

    Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma.

    Science.gov (United States)

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G 2 /M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for

  15. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Wu X

    2017-03-01

    Full Text Available Xiaozhe Wu,1 Zhan Li,1 Xiaolu Li,2,3 Yaomei Tian,1 Yingzi Fan,1 Chaoheng Yu,1 Bailing Zhou,1 Yi Liu,4 Rong Xiang,5 Li Yang1 1State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 2International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 3Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 4Department of Microbial Examination, Sichuan Center for Disease Control and Prevention, Chengdu, 5Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001 and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L. When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus

  16. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  17. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin A Nacev

    Full Text Available Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA, an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50 dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  18. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Science.gov (United States)

    Nacev, Benjamin A; Liu, Jun O

    2011-01-01

    Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  19. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C.

    Science.gov (United States)

    Pelicano, H; Carew, J S; McQueen, T J; Andreeff, M; Plunkett, W; Keating, M J; Huang, P

    2006-04-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

  20. Two drugs are better than one. A short history of combined therapy of ovarian cancer.

    Science.gov (United States)

    Bukowska, Barbara; Gajek, Arkadiusz; Marczak, Agnieszka

    2015-01-01

    Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer.

  1. Co-delivery of chemotherapeutics and proteins for synergistic therapy.

    Science.gov (United States)

    He, Chaoliang; Tang, Zhaohui; Tian, Huayu; Chen, Xuesi

    2016-03-01

    Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian

    2015-01-01

    As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations......, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild......-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses...

  3. Epigenetic polypharmacology: from combination therapy to multitargeted drugs.

    Science.gov (United States)

    de Lera, Angel R; Ganesan, A

    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.

  4. Synergistic combination therapy of antitumor agents, membrane modification agents and irradiation

    International Nuclear Information System (INIS)

    Watarai, Jiro; Itagaki, Takatomo; Akutsu, Thoru; Yamaguchi, Kouichi; Kato, Isao

    1983-01-01

    Larygeal cancer were treated with synergistic combination therapy of Futraful in suppository, vitamin A, cepharanthin and irradiation from April 1981 to June 1982. This combination therapy resulted in high percentage of the tumor regression in the case of the invading laryngeal cancer and negligible complication. (author)

  5. Combined SEP and anti-PD-L1 antibody produces a synergistic antitumor effect in B16-F10 melanoma-bearing mice.

    Science.gov (United States)

    Hu, Zhengping; Ye, Liang; Xing, Yingying; Hu, Jinhang; Xi, Tao

    2018-01-09

    The increased PD-L1 induces poorer prognosis in melanoma. The treatment with PD-1/PD-L1 antibodies have a low response rate. The combination immunotherapies are the encouraging drug development strategy to receive maximal therapeutic benefit. In this study, we investigated the enhanced antitumor and immunomodulatory activity of combined SEP and αPD-L1 in B16-F10 melanoma-bearing mice. The results shown that combined SEP and αPD-L1 presented significant synergistic antitumor effects, increased the frequency of CD8 + and CD4 + T cells in spleen and tumor, cytotoxic activity of CTL in spleen, and IL-2 and IFN-γ levels in splenocytes and tumor. The combination treatment also produced synergistic increase in P-ERK1/2 level in spleen. Immunohistochemistry shown that SEP induced the PD-L1 expression in melanoma tissue possibly by promoting IFN-γ excretion, which led to the synergistic anti-tumor effects of aPD-L1 and SEP. Furthermore, in the purified T lymphocyte from the naive mice, the combination of SEP and αPD-L1 had more potent than SEP or αPD-L1 in promoting T lymphocyte proliferation and cytokines secretion including IL-2 and IFN-γ, at least partially by activating MEK/ERK pathway. Our study provides the scientific basis for a clinical trial that would involve combination of anti-PD-L1 mAb and SEP for sustained melanoma control.

  6. Application of Combination High-Throughput Phenotypic Screening and Target Identification Methods for the Discovery of Natural Product-Based Combination Drugs.

    Science.gov (United States)

    Isgut, Monica; Rao, Mukkavilli; Yang, Chunhua; Subrahmanyam, Vangala; Rida, Padmashree C G; Aneja, Ritu

    2018-03-01

    Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery. Natural products consist of a multitude of constituents that can act on a variety of targets in the body to induce pharmacodynamic responses that may together culminate in an additive or synergistic therapeutic effect. Although natural products cannot be patented, they can be used as starting points in the discovery of potent combination therapeutics. The optimal mix of bioactive ingredients in natural products can be determined via phenotypic screening. The targets and molecular mechanisms of action of these active ingredients can then be determined using chemical proteomics, and by implementing a reverse pharmacokinetics approach. This review article provides evidence supporting the potential benefits of natural product-based combination drugs, and summarizes drug discovery methods that can be applied to this class of drugs. © 2017 Wiley Periodicals, Inc.

  7. Synergistic anti-glioma effect of a coloaded nano-drug delivery system

    Directory of Open Access Journals (Sweden)

    Xu H

    2016-12-01

    Full Text Available Huae Xu,1,* Feng Jia,2,* Pankaj Kumar Singh,3 Shu Ruan,4 Hao Zhang,5,* Xiaolin Li5 1Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 2Department of Neurosurgery, Yancheng City No 1 People’s Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, People’s Republic of China; 3Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Department of Endocrinology, Yancheng Third Hospital, The Affiliated Hospital of Southeast University Medical College, Yancheng, 5Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: The anti-glioma effect of temozolomide (Tem is sometimes undermined by the emerging resistance. Recently, resveratrol (Res, herbal medicine extracted from grape seeds, has been demonstrated for its potential use in chemosensitization. In the current study, both these drugs were loaded simultaneously into nanoparticles with methoxy poly(ethylene glycol-poly epsilon caprolactone (mPEG-PCL as drug carriers in order to achieve better antitumor efficiency. Tem/Res-coloaded mPEG-PCL nanoparticles were constructed, characterized, and tested for antitumor effect on glioma cells by using in vitro and xenograft model system. The nanoparticle constructs were satisfactory with drug loading content (Res =~12.4%; Tem =~9.3% and encapsulation capacity of >85% for both the drugs. In addition, the coencapsulation led to better in vitro stability of the nanoparticles than Tem-loaded nanoparticles. An in vitro uptake study demonstrated a high uptake efficiency of the nanoparticles by glioma cells. The synergistic antitumor effect against glioma cells was observed in the combinational treatment of Res and Tem. Tem/Res-coloaded nanoparticles induced higher apoptosis in U87 glioma cells as

  8. Antibacterial activity of combined medicinal plants extract against multiple drug resistant strains

    Directory of Open Access Journals (Sweden)

    Rafiqul Islam

    2015-06-01

    Full Text Available Objective: To find out the combined antibacterial efficacy of Aegle marmelos, Aphanamixis polystachya, Cuscuta reflexa and Aesclynomene indica against bacterial pathogens. Methods: Antibacterial potency of combined plant extracts has been tested against Bacillus subtilis IFO 3026, Sarcina lutea IFO 3232, Xanthomonas campestris IAM 1671, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Proteus vulgaris MTCC 321 and Pseudomonas denitrificans KACC 32026 by disc diffusion assay. Commercially available standard antibiotic discs were also used to find out antibiotic resistance pattern of test organisms. Results: Among the test organisms, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae and Proteus denitrificans showed resistance against multiple commercially available antibiotics. On the other hand, these multiple drug resistant organisms showed susceptibility against combined plant extracts. Conclusions: These combined plants extracts showed synergistic antibacterial activity and could lead to new antibacterial drug designing.

  9. Response of maize to reduced urea application combined with compound nitrogen fertilizer synergists

    International Nuclear Information System (INIS)

    Tian Xiuying; WANG Zhengyin

    2006-01-01

    Pot and field experiments were conducted to study the response to application rate of urea labeled with 15 N combined with compound nitrogen fertilizer synergists in the growth, yield, uptake and utilization rate of urea of maize. In pot experiment, the standard urea application rate is 120 mg/perpot; in field experiment, the standard urea application rate is 157.5 kg/hm 2 . Maize with 15 N-urea. The results showed that the growth of maize seedling was obviously promoted with appropriate dosage of compound nitrogen fertilizer synergists (20%-60% of N). The treatments of urea application rate reduced by 5%-15% and added compound nitrogen fertilizer synergists, the growth and nitrogen content of maize were not significant changed, and the total 15 N uptake and nitrogen uptake by maize were the same as CK 2 or increased a little. Nitrogen use efficiency of other treatments increased by 5.6%-7.3% comparing with CK, except the treatment of urea application rate reduced by 30%. The apparent utilization rate of nitrogen was enhanced by 7.7%-17.0%. Under the field condition, maize yield, total uptake, net uptake, physiological rate and agronomic use efficiency of nitrogen were the same as CK or increased. The apparent utilization rate of nitrogen was enhanced by 14.8%-15.2% treated with urea reduced by 5%-15% (7.8-23.7 kg/hm 2 ) and added with compound nitrogen fertilizer synergists. It was not helpful for the growth and nitrogen utilization rate of maize when urea reduced by 30% and combined with compound nitrogen fertilizer synergists. As a result, treated with urea decreased by 15% and combined with appropriate dosage of compound nitrogen fertilizer synergists (20% of urea), the growth and yield of maize had litter effect and higher the uptake and utilization of nitrogen. (authors)

  10. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  11. Synergistic analgesia of duloxetine and celecoxib in the mouse formalin test: a combination analysis.

    Directory of Open Access Journals (Sweden)

    Yong-Hai Sun

    Full Text Available Duloxetine, a serotonin and noradrenaline reuptake inhibitor, and celecoxib, a non-steroidal anti-inflammatory drug, are commonly used analgesics for persistent pain, however with moderate gastrointestinal side effects or analgesia tolerance. One promising analgesic strategy is to give a combined prescription, allowing the maximal or equal efficacy with fewer side effects. In the current study, the efficacy and side effects of combined administration of duloxetine and celecoxib were tested in the mouse formalin pain model. The subcutaneous (s.c. injection of formalin into the left hindpaw induced significant somatic and emotional pain evaluated by the biphasic spontaneous flinching of the injected hindpaw and interphase ultrasonic vocalizations (USVs during the 1 h after formalin injection, respectively. Pretreatment with intraperitoneal (i.p. injection of duloxetine or celecoxib at 1 h before formalin injection induced the dose-dependent inhibition on the second but not first phase pain responses. Combined administration of duloxetine and celecoxib showed significant analgesia for the second phase pain responses. Combination analgesia on the first phase was observed only with higher dose combination. A statistical difference between the theoretical and experimental ED50 for the second phase pain responses was observed, which indicated synergistic interaction of the two drugs. Concerning the emotional pain responses revealed with USVs, we assumed that the antinociceptive effects were almost completely derived from duloxetine, since celecoxib was ineffective when administered alone or reduced the dosage of duloxetine when given in combination. Based on the above findings, acute concomitant administration of duloxetine and celecoxib showed synergism on the somatic pain behavior but not emotional pain behaviors.

  12. Synergistic effect of intervention of glypican-3 gene transcription combined with antitumor drugs in inhibiting hepatoma cell proliferation

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2016-12-01

    .20 μmol/L, 7.85±2.00 nmol/L, and 18.36±0.56 μmol/L, respectively, and their combination with shRNA1 had an HepG2 cell inhibition rate of 95.11%. ConclusionIntervention of GPC3 gene transcription with specific shRNA can inhibit hepatoma cell proliferation, migration and movement, and invasion ability, induce hepatoma cell apoptosis, and inhibit hepatoma cell proliferation when combined with antitumor drugs in a synergistic manner. This suggests that GPC3 may be an effective therapeutic target for liver cancer and that combined targeted therapy can provide better strategies for the treatment of liver cancer.

  13. Combined treatment of xenon and hypothermia in newborn rats--additive or synergistic effect?

    Directory of Open Access Journals (Sweden)

    Hemmen Sabir

    Full Text Available Breathing the inert gas Xenon (Xe enhances hypothermic (HT neuroprotection after hypoxia-ischemia (HI in small and large newborn animal models. The underlying mechanism of the enhancement is not yet fully understood, but the combined effect of Xe and HT could either be synergistic (larger than the two effects added or simply additive. A previously published study, using unilateral carotid ligation followed by hypoxia in seven day old (P7 rats, showed that the combination of mild HT (35°C and low Xe concentration (20%, both not being neuroprotective alone, had a synergistic effect and was neuroprotective when both were started with a 4 h delay after a moderate HI insult. To examine whether another laboratory could confirm this finding, we repeated key aspects of the study.After the HI-insult 120 pups were exposed to different post-insult treatments: three temperatures (normothermia (NT NT37°C, HT35°C, HT32°C or Xe concentrations (0%, 20% or 50% starting either immediately or with a 4 h delay. To assess the synergistic potency of Xe-HT, a second set (n = 101 of P7 pups were exposed to either HT35°C+Xe0%, NT+Xe20% or a combination of HT35°C+Xe20% starting with a 4 h delay after the insult. Brain damage was analyzed using relative hemispheric (ligated side/unligated side brain tissue area loss after seven day survival.Immediate HT32°C (p = 0.042, but not HT35°C significantly reduced brain injury compared to NT37°C. As previously shown, adding immediate Xe50% to HT32°C increased protection. Neither 4 h-delayed Xe20%, nor Xe50% at 37°C significantly reduced brain injury (p>0.050. In addition, neither 4 h-delayed HT35°C alone, nor HT35°C+Xe20% reduced brain injury. We found no synergistic effect of the combined treatments in this experimental model.Combining two treatments that individually were ineffective (delayed HT35°C and delayed Xe20% did not exert neuroprotection when combined, and therefore did not show a synergistic

  14. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Science.gov (United States)

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that

  15. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Morgan A Wambaugh

    2017-06-01

    Full Text Available Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M. O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT. We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional

  16. In vitro testing of drug combinations employing nilotinib and alkylating agents with regard to pretransplant conditioning treatment of advanced-phase chronic myeloid leukemia.

    Science.gov (United States)

    Radujkovic, Aleksandar; Luft, Thomas; Dreger, Peter; Ho, Anthony D; Jens Zeller, W; Fruehauf, Stefan; Topaly, Julian

    2014-08-01

    The prognosis of patients with advanced-phase chronic myeloid leukemia (CML) remains dismal despite the availability of targeted therapies and allogeneic stem cell transplantation (allo-SCT). Increasing the antileukemic efficacy of the pretransplant conditioning regimen may be a strategy to increase remission rates and duration. We therefore investigated the antiproliferative effects of nilotinib in combination with drugs that are usually used for conditioning: the alkylating agents mafosfamide, treosulfan, and busulfan. Drug combinations were tested in vitro in different imatinib-sensitive and imatinib-resistant BCR-ABL-positive cell lines. A tetrazolium-based MTT assay was used for the assessment and quantification of growth inhibition after exposure to alkylating agents alone or to combinations with nilotinib. Drug interaction was analyzed using the median-effect method of Chou and Talalay, and combination index (CI) values were calculated according to the classic isobologram equation. Treatment of imatinib-sensitive, BCR-ABL-positive K562 and LAMA84 cells with nilotinib in combination with mafosfamide, treosulfan, or busulfan resulted in synergistic (CI 1) effects, respectively. In imatinib-resistant K562-R and LAMA84-R cells, all applied drug combinations were synergistic (CI conditioning regimens for allo-SCT in advanced-phase CML.

  17. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria

    Science.gov (United States)

    Yin, Meili; Li, Zhenhua; Zhou, Li; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Recently, antibiotic drug-resistant therapies have become very important due to the emergence of antibiotic-resistant bacterial strains. The development of novel antibacterial materials has received significant attention. Here, quaternized chitosan hydrogels incorporated with NaYF4:Er/Yb/Mn@photosensitizer-doped silica (UCNPs/MB) were synthesized for effective killing of both gram-positive oxacillin-resistant S. aureus (DR-S. aureus) and gram-negative kanamyclin-resistant E. coli (DR-E. coli) bacteria upon near-infrared (NIR) laser irradiation. In this system, the cationic macroporous nature of the hydrogel acts as a molecular ‘anion sponge’, which sucks the outer part of the anionic microbe membrane into the gel interior voids and causes microbe membrane disruption. By incorporating UCNPs/MB-doped silica into the hydrogel, we have combined photodynamic therapy (PDT) with quaternized chitosan to obtain a high therapeutic index via a synergistic effect. In vitro experiments have demonstrated that our system had excellent antibacterial efficiency to both DR-S. aureus and DR-E. coli bacteria. More importantly, our new synergistic treatment modality provided an excellent therapy platform for drug-resistant bacteria, which could improve antimicrobial efficiency.

  18. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria

    International Nuclear Information System (INIS)

    Yin, Meili; Li, Zhenhua; Zhou, Li; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2016-01-01

    Recently, antibiotic drug-resistant therapies have become very important due to the emergence of antibiotic-resistant bacterial strains. The development of novel antibacterial materials has received significant attention. Here, quaternized chitosan hydrogels incorporated with NaYF 4 :Er/Yb/Mn@photosensitizer-doped silica (UCNPs/MB) were synthesized for effective killing of both gram-positive oxacillin-resistant S. aureus (DR-S. aureus) and gram-negative kanamyclin-resistant E. coli (DR-E. coli) bacteria upon near-infrared (NIR) laser irradiation. In this system, the cationic macroporous nature of the hydrogel acts as a molecular ‘anion sponge’, which sucks the outer part of the anionic microbe membrane into the gel interior voids and causes microbe membrane disruption. By incorporating UCNPs/MB-doped silica into the hydrogel, we have combined photodynamic therapy (PDT) with quaternized chitosan to obtain a high therapeutic index via a synergistic effect. In vitro experiments have demonstrated that our system had excellent antibacterial efficiency to both DR-S. aureus and DR-E. coli bacteria. More importantly, our new synergistic treatment modality provided an excellent therapy platform for drug-resistant bacteria, which could improve antimicrobial efficiency. (paper)

  19. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yun-feng Lou

    Full Text Available Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor synergized with gefitinib (an EGFR inhibitor to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1 which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon

  20. Physicochemical Mechanisms of Synergistic Biological Action of Combinations of Aromatic Heterocyclic Compounds

    OpenAIRE

    Evstigneev, Maxim P.

    2013-01-01

    The mechanisms of synergistic biological effects observed in the simultaneous use of aromatic heterocyclic compounds in combination are reviewed, and the specific biological role of heteroassociation of aromatic molecules is discussed.

  1. Combined photothermo-chemotherapy using gold nanoshells on drug-loaded micelles for colorectal cancer treatment

    Science.gov (United States)

    Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Combined photothermo-chemotherapy is a new strategy for cancer treatment which improves the therapeutic outcome by synergistic effects of both therapies. Here, we presented a multifunctional gold nanoshell that exhibited excellent photothermal conversion and delivered the hydrophobic chemotherapy drug, SN-38. The positively charged SN-38-loaded PDMA-PCL micelles were decorated with a gold layer by in situ reduction of chloroauric acid on the surface of micelles. Scanning and transmission electron microscopy images proved micelles were successfully decorated and the resulting gold nanoshells had a spherical morphology with a narrow size distribution. The synthesized gold nanoshells displayed a broad surface plasmon resonance peak in the near-infrared wavelength region and a great photothermal conversion ability. After pegylation, gold nanoshells were stable in biological media and appeared highly biocompatible in the absence of laser irradiation. Upon near-infrared laser irradiation, incident energy was converted into heat by gold nanoshells on SN-38-loaded micelles (SN-38@pGNS), which causes local temperature increase and triggers the release of encapsulated drug. Compared to SN-38, SN-38-loaded micelles, or laser with drug-free gold nanoshells alone, combined photothermo-chemotherapy using SN-38@pGNS with laser irradiation killed colorectal cancer cells with higher efficacy in vitro and demonstrated significant tumor suppression in vivo, suggesting that gold nanoshells on drug-loaded micelles delivered SN-38 and photothermal therapy in synergistic actions and might be a potential candidate for future colorectal cancer therapy.

  2. Combined inhibition of monoacylglycerol lipase and cyclooxygenases synergistically reduces neuropathic pain in mice

    Science.gov (United States)

    Crowe, Molly S; Leishman, Emma; Banks, Matthew L; Gujjar, Ramesh; Mahadevan, Anu; Bradshaw, Heather B; Kinsey, Steven G

    2015-01-01

    Background and Purpose Neuropathic pain is commonly treated with GABA analogues, steroids or non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit one or more COX isozymes but chronic COX inhibition paradoxically increases gastrointestinal inflammation and risk of unwanted cardiovascular events. The cannabinoids also have analgesic and anti-inflammatory properties and reduce neuropathic pain in animal models. The present study investigated the analgesic effects of inhibiting both monoacylglycerol lipase (MAGL) and COX enzymes, using low doses of both inhibitors. Experimental Approach Mice subjected to chronic constriction injury (CCI) were tested for mechanical and cold allodynia after administration of the MAGL inhibitor, JZL184, or the non-selective COX inhibitor diclofenac. Then, both drugs were co-administered at fixed dose proportions of 1:3, 1:1 and 3:1, based on their ED50 values. PGs, endocannabinoids and related lipids were quantified in lumbar spinal cord. Key Results Combining low doses of JZL184 and diclofenac synergistically attenuated mechanical allodynia and additively reduced cold allodynia. The cannabinoid CB1 receptor antagonist, rimonabant, but not the CB2 receptor antagonist, SR144528, blocked the analgesic effects of the JZL184 and diclofenac combination on mechanical allodynia, implying that CB1 receptors were primarily responsible for the anti-allodynia. Diclofenac alone and with JZL184 significantly reduced PGE2 and PGF2α in lumbar spinal cord tissue, whereas JZL184 alone caused significant increases in the endocannabinoid metabolite, N-arachidonoyl glycine. Conclusions and Implications Combining COX and MAGL inhibition is a promising therapeutic approach for reducing neuropathic pain with minimal side effects. PMID:25393148

  3. Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa.

    Science.gov (United States)

    Asokkumar, K; Sen, Saikat; Umamaheswari, M; Sivashanmugam, A T; Subhadradevi, V

    2014-08-01

    Antioxidant supplements with existing drugs may confer better therapeutic efficacy in oxidative stress related diseases. The purpose of the present work was to characterize the interaction and investigate the protective effect of H2 blocker famotidine and gallic acid in combination against experimentally induced peptic ulcer. Preventive effect of gallic acid and famotidine in different combinations was investigated against aspirin plus pyloric ligation induced ulcer in rat. Ulcer index, gastric juice volume, pH, other biochemical parameters of gastric juice and antioxidant activity using stomach tissue were estimated. Pretreatment with gallic acid and famotidine in combinations for 7 days, protected the gastric mucosa significantly (pacidity, total protein, pepsin and DNA content, and increase in pH, carbohydrates concentration in gastric juice. Combination treatment increases levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase and glucose-6-phosphate dehydrogenase, and decreases lipid peroxidation, myloperoxidase in stomach tissue. Along with higher dose combination, lower dose combinations like gallic acid (50mg/kg) plus famotidine (10mg/kg) also offered better antiulcer activity than their individual effect. Histopathological studies confirmed their antiulcer activity. Combination treatments confer synergistic protective effect against peptic ulcer in rats, which was related to the gastroprotective, antisecratory and antioxidant activity of combination treatment. Results proved that use of gallic acid with existing antiulcer drug will be more useful in the prevention/management of peptic ulcer. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Jeannot V

    2016-11-01

    Full Text Available Victor Jeannot,1,2 Benoit Busser,1–3 Laetitia Vanwonterghem,1,2 Sophie Michallet,1,2 Sana Ferroudj,1,2 Murat Cokol,4 Jean-Luc Coll,1,2 Mehmet Ozturk,1,2,5 Amandine Hurbin1,2 1INSERM U1209, Department Cancer Targets and Experimental Therapeutics, Grenoble, France; 2University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France; 3Department of Biochemistry, Toxicology and Pharmacology, Grenoble University Hospital, Grenoble, France; 4Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; 5Faculty of Medicine, Dokuz Eyul University, Izmir Biomedicine and Genome Center, Izmir, Turkey Abstract: Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR-tyrosine kinase inhibitor (gefitinib or a multi-targeted kinase inhibitor (sorafenib in combination with a histone deacetylase inhibitor (vorinostat on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G2/M cell cycle arrest without

  5. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma

    International Nuclear Information System (INIS)

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-01-01

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities

  6. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma.

    Science.gov (United States)

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-05-15

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities.

  7. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    2010-11-01

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  8. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    Science.gov (United States)

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2016-02-15

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. Copyright © 2016 Leggett et al.

  9. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    Science.gov (United States)

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  10. Identifying Natural syNergist from Pongamia pinnata Using High-Speed Counter-Current Chromatography Combined with Isobolographic Analysis

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2017-03-01

    Full Text Available For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...

  11. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Directory of Open Access Journals (Sweden)

    Xiaojing Wan

    Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  12. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Science.gov (United States)

    Wan, Xiaojing; Meng, Jia; Dai, Yingnan; Zhang, Yina; Yan, Shuang

    2014-01-01

    Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  13. Synergistic mechanism of combinative application of bensulfuron and urea

    International Nuclear Information System (INIS)

    Yu Liuqing; Huang Shiwen; Zhou Hongjie; Ye Guibiao

    1998-01-01

    Nutrient culture study was initiated to examine the synergistic mechanism of combinative application of bensulfuron and urea for weed control. The absorption of 14 C-bensulfuron and their distribution in Lindernia procumbens (Krock.) Philcox were also investigated to determine the variation between two methods (combinative use of 14 C-bensulfuron plus urea and 14 C-bensulfuron alone). One hour after combinative application of 14 C-bensulfuron plus urea, the highest amount of 14 C-activity in L. procumbens were obtained. However, when 14 C-bensulfuron applied alone, total absorption of 14 C-activity was much lower in the 1st hour and then it slowly increased with time. The distribution of 14 C-bensulfuron in root of L. procumbens plant was the highest and that in leaves was the lowest

  14. In vitro testing of chemotherapeutic drug combinations in acute myelocytic leukaemia using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Larsson, R; Fridborg, H; Kristensen, J; Sundström, C; Nygren, P

    1993-05-01

    The fluorometric microculture cytotoxicity assay (FMCA) was employed for analysing the effect of different chemotherapeutic drug combinations and their single constituents in 44 cases of acute myelocytic leukaemia (AML). A large heterogeneity with respect to cell kill was observed for all combinations tested, the interactions ranging from antagonistic to synergistic in terms of the multiplicative concept for drug interactions. However, an 'additive' model provided a significantly better fit of the data compared to the effect of the most active single agent of the combination (Dmax) for several common antileukaemic drug combinations. When the two interaction models were related to treatment outcome 38% of the non-responders showed preference for the additive model whereas the corresponding figure for responders was 80%. Overall, in 248 of 290 (85%) tests performed with drug combinations, there was an agreement between the effect of the combination and that of the most active single component. Direct comparison of Dmax and the combination for correlation with clinical outcome demonstrated only minor differences in the ability to predict drug resistance. The results show that FMCA appear to report drug interactions in samples from patients with AML in accordance with clinical experience. Furthermore, testing single agents as a substitute for drug combinations may be adequate for detection of clinical drug resistance to combination therapy in AML.

  15. Synergistic antioxidant activity of green tea with some herbs

    Directory of Open Access Journals (Sweden)

    Dheeraj P Jain

    2011-01-01

    Full Text Available Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.

  16. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers.

    Science.gov (United States)

    Kim, Bomi; Seo, Bohyung; Park, Sanghyun; Lee, Changkyu; Kim, Jong Oh; Oh, Kyung Taek; Lee, Eun Seong; Choi, Han-Gon; Youn, Yu Seok

    2017-10-01

    Albumin nanoparticles are well-known as effective drug carriers used to deliver hydrophobic chemotherapeutic agents. Albumin nanoparticles encapsulating curcumin and doxorubicin were fabricated using slightly modified nanoparticle albumin-bound (nab™) technology, and the synergistic effects of these two drugs were examined. Albumin nanoparticles encapsulating curcumin, doxorubicin, and both curcumin and doxorubicin were prepared using a high pressure homogenizer. The sizes of albumin nanoparticles were ∼130nm, which was considered to be suitable for the EPR (enhanced permeability and retention) effect. Albumin nanoparticles gradually released drugs over a period of 24h without burst effect. To confirm the synergistic effect of two drugs, in vitro cytotoxicity assay was performed using B16F10 melanoma cells. The cytotoxic effect on B16F10 melanoma cells was highest when co-treated with both curcumin and doxorubicin compared to single treatment of either curcumin and doxorubicin. The combined index calculated by medium-effect equation was 0.6069, indicating a synergistic effect. Results of confocal laser scanning microscopy and fluorescence-activated cell sorting corresponded to results from an in vitro cytotoxicity assay, indicating synergistic cytotoxicity induced by both drugs. A C57BL/6 mouse model induced by B16F10 lung metastasis was used to study in vivo therapeutic effects. When curcumin and doxorubicin were simultaneously treated, the metastatic melanoma mass in the lungs macroscopically decreased compared to curcumin or doxorubicin alone. Albumin nanoparticles encapsulating two anticancer drugs were shown to have an effective therapeutic result and would be an excellent way to treat resistant lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  18. Mechanisms of Acquired Drug Resistance to the HDAC6 Selective Inhibitor Ricolinostat Reveals Rational Drug-Drug Combination with Ibrutinib.

    Science.gov (United States)

    Amengual, Jennifer E; Prabhu, Sathyen A; Lombardo, Maximilian; Zullo, Kelly; Johannet, Paul M; Gonzalez, Yulissa; Scotto, Luigi; Serrano, Xavier Jirau; Wei, Ying; Duong, Jimmy; Nandakumar, Renu; Cremers, Serge; Verma, Akanksha; Elemento, Olivier; O'Connor, Owen A

    2017-06-15

    Purpose: Pan-class I/II histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. ACY-1215 (ricolinostat) is a first-in-class selective HDAC6 inhibitor. To better understand the discrete function of HDAC6 and its role in lymphoma, we developed a lymphoma cell line resistant to ACY-1215. Experimental Design: The diffuse large B-cell lymphoma cell line OCI-Ly10 was exposed to increasing concentrations of ACY-1215 over an extended period of time, leading to the development of a resistant cell line. Gene expression profiling (GEP) was performed to investigate differentially expressed genes. Combination studies of ACY-1215 and ibrutinib were performed in cell lines, primary human lymphoma tissue, and a xenograft mouse model. Results: Systematic incremental increases in drug exposure led to the development of distinct resistant cell lines with IC 50 values 10- to 20-fold greater than that for parental lines. GEP revealed upregulation of MAPK10, HELIOS, HDAC9, and FYN, as well as downregulation of SH3BP5 and LCK. Gene-set enrichment analysis (GSEA) revealed modulation of the BTK pathway. Ibrutinib was found to be synergistic with ACY-1215 in cell lines as well as in 3 primary patient samples of lymphoma. In vivo confirmation of antitumor synergy was demonstrated with a xenograft of DLBCL. Conclusions: The development of this ACY-1215-resistant cell line has provided valuable insights into the mechanistic role of HDAC6 in lymphoma and offered a novel method to identify rational synergistic drug combinations. Translation of these findings to the clinic is underway. Clin Cancer Res; 23(12); 3084-96. ©2016 AACR . ©2016 American Association for Cancer Research.

  19. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    Science.gov (United States)

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  20. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines.

    Science.gov (United States)

    Balça-Silva, Joana; Matias, Diana; do Carmo, Anália; Girão, Henrique; Moura-Neto, Vivaldo; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste

    2015-04-01

    Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Li Jian

    2011-04-01

    Full Text Available Abstract Background Extensive drug resistance of Acinetobacter baumannii is a serious problem in the clinical setting. It is therefore important to find active antibiotic combinations that could be effective in the treatment of infections caused by this problematic 'superbug'. In this study, we analyzed the in vitro activities of three colistin-based combinations and a minocycline-based combination against clinically isolated extensive drug resistant Acinetobacter baumannii (XDR-AB strains. Methods Fourteen XDR-AB clinical isolates were collected. The clonotypes were determined by polymerase chain reaction-based fingerprinting. Susceptibility testing was carried out according to the standards of the Clinical and Laboratory Standards Institute. Activities of drug combinations were investigated against four selected strains and analyzed by mean survival time over 12 hours (MST12 h in a time-kill study. Results The time-kill studies indicated that the minimum inhibitory concentration (MIC of colistin (0.5 or 0.25 μg/mL completely killed all strains at 2 to 4 hours, but 0.5×MIC colistin showed no bactericidal activity. Meropenem (8 μg/mL, minocycline (1 μg/mL or rifampicin (0.06 μg/mL did not show bactericidal activity. However, combinations of colistin at 0.5×MIC (0.25 or 0.125 μg/mL with each of the above were synergistic and shown bactericidal activities against all test isolates. A combination of meropenem (16 μg/mL with minocycline (0.5×MIC, 4 or 2 μg/mL was synergitic to all test isolates, but neither showed bactericidal activity alone. The MST12 h values of drug combinations (either colistin- or minocycline-based combinations were significantly shorter than those of the single drugs (p Conclusions This study indicates that combinations of colistin/meropenem, colistin/rifampicin, colistin/minocycline and minocycline/meropenem are synergistic in vitro against XDR-AB strains.

  2. Synergistic methane formation on pyrolytic graphite due to combined H+ ion and H0 atom impact

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.; Auciello, O.; Strangeby, P.C.; Vietzke, E.; Flaskamp, K.; Philipps, V.

    1986-06-01

    Exposure of graphite to multispecies hydrogenic impact, as is the case in tokamaks, could lead to synergistic mechanisms resulting in an enhancement of methane formation, and consequently in increased carbon erosion. We present results obtained in controlled experiments in our laboratories in Toronto and Juelich for the synergistic methane production due to combined sub-eV H 0 atoms and energetic H + ion impact on pyrolytic graphite. Flux densities were 10 14 -2x10 16 H 0 /cm 2 s for the sub-eV H 0 atoms and 6x10 12 -5x10 15 H + /cm 2 for H + ions of 300 eV to 2.5 keV energy. Synergistic factors (defined as the ratio of methane formation rate due to combined H 0 and H + fluxes to the sum of the formation rates due to separate species impact) ranged from about 1.5-15 for the experimental parameters used. In addition, a spectrum of formed hydrocarbons in the synergistic reaction of H + and H 0 on graphite is presented

  3. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  4. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Heegaard, Anne-Marie

    2016-01-01

    dose combinations and investigate whether co-administration leads to synergistic effects in a preclinical model of postoperative pain. The pharmacodynamic effects of morphine (1, 3 and 7 mg/kg), gabapentin (10, 30 and 100 mg/kg) or their combination (9 combinations in total) were evaluated in the rat...... plantar incision model using an electronic von Frey device. The percentage of maximum possible effect (%MPE) and the area under the response curve (AUC) were used for evaluation of the antihyperalgesic effects of the drugs. Identification of synergistic interactions was based on Loewe additivity response...... surface analyses. The combination of morphine and gabapentin resulted in synergistic antihyperalgesic effects in a preclinical model of postoperative pain. The synergistic interactions were found to be dose dependent and the increase in observed response compared to the theoretical additive response...

  5. Synergistic activity of antibiotics combined with ivermectin to kill body lice.

    Science.gov (United States)

    Sangaré, Abdoul Karim; Rolain, Jean Marc; Gaudart, Jean; Weber, Pascal; Raoult, Didier

    2016-03-01

    Ivermectin and doxycycline have been found to be independently effective in killing body lice. In this study, 450 body lice were artificially fed on a Parafilm™ membrane with human blood associated with antibiotics (doxycycline, erythromycin, rifampicin and azithromycin) alone and in combination with ivermectin. Fluorescence in situ hybridisation and spectral deconvolution were performed to evaluate bacterial transcriptional activity following antibiotic intake by the lice. In the first series, a lethal effect of antibiotics on lice was observed compared with the control group at 18 days (log-rank test, P≤10(-3)), with a significant difference between groups in the production of nits (P=0.019, Kruskal-Wallis test). A high lethal effect of ivermectin alone (50ng/mL) was observed compared with the control group (log-rank test, P≤10(-3)). Fluorescence of bacteriocytes in lice treated with 20μg/mL doxycycline was lower than in untreated lice (PKruskal-Wallis test). In the second series with antibiotic-ivermectin combinations, a synergistic lethal effect on treated lice (log-rank test, PKruskal-Wallis test). Additionally, survival of lice in the combination treatment groups compared with ivermectin alone was significant (log-rank test, P=0.0008). These data demonstrate that the synergistic effect of combinations of antibiotics and ivermectin could be used to achieve complete eradication of lice and to avoid selection of a resistant louse population. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  6. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  7. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-01-01

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis

  8. Inactivation of nuclear factor κB by MIP-based drug combinations augments cell death of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Subramaniam M

    2018-05-01

    Full Text Available Menaga Subramaniam,1 Su Ki Liew,1 Lionel LA In,2 Khalijah Awang,3,4 Niyaz Ahmed,5 Noor Hasima Nagoor1,6 1Institute of Biological Science (Genetics & Molecular Biology, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia; 3Centre for Natural Product Research and Drug Discovery (CENAR, University of Malaya, Kuala Lumpur, Malaysia; 4Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 5Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India; 6Centre for Research in Biotechnology for Agriculture (CEBAR, University of Malaya, Kuala Lumpur, Malaysia Background: Drug combination therapy to treat cancer is a strategic approach to increase successful treatment rate. Optimizing combination regimens is vital to increase therapeutic efficacy with minimal side effects. Materials and methods: In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1'S-1'-acetoxychavicol acetate (ACA, Mycobacterium indicus pranii (MIP and cisplatin (CDDP against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression Results: All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation. Conclusion: Double and triple

  9. Synergistic anticonvulsant effects of pregabalin and amlodipine on acute seizure model of epilepsy in mice.

    Science.gov (United States)

    Qureshi, Itefaq Hussain; Riaz, Azra; Khan, Rafeeq Alam; Siddiqui, Afaq Ahmed

    2017-08-01

    Status epilepticus is a life threatening neurological medical emergency. It may cause serious damage to the brain and even death in many cases if not treated properly. There is limited choice of drugs for the short term and long term management of status epilepticus and the dugs recommended for status epilepticus possess various side effects. The present study was designed to investigate synergistic anticonvulsant effects of pregabalin with amlodipine on acute seizure model of epilepsy in mice. Pentylenetetrazole was used to induce acute seizures which mimic status epilepticus. Pregabalin and amlodipine were used in combination to evaluate synergistic anti-seizure effects on acute seizure model of epilepsy in mice. Diazepam and valproate were used as reference dugs. The acute anti-convulsive activity of pregabalin with amlodipine was evaluated in vivo by the chemical induced seizures and their anti-seizure effects were compared with pentylenetetrazole, reference drugs and to their individual effects. The anti-seizure effects of tested drugs were recorded in seconds on seizure characteristics such as latency of onset of threshold seizures, rearing and fallings and Hind limbs tonic extensions. The seizure protection and mortality to the animals exhibited by the drugs were recorded in percentage. Combination regimen of pregabalin with amlodipine exhibited dose dependent significant synergistic anticonvulsant effects on acute seizures which were superior to their individual effects and equivalent to reference drugs.

  10. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  11. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-01-01

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy

  12. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  13. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.

    Science.gov (United States)

    Chua, Huey Eng; Bhowmick, Sourav S; Tucker-Kellogg, Lisa

    2017-10-01

    Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Synergistic combination of fluoro chalcone and doxorubicin on HeLa cervical cancer cells by inducing apoptosis

    Science.gov (United States)

    Arianingrum, Retno; Arty, Indyah Sulistyo; Atun, Sri

    2017-03-01

    Doxorubicin (Dox), a primary chemotherapeutic agent used for cancer treatment is known to have various side effect included multidrug resistance (MDR) phenomenon. Combination chemotherapy is one of some approaches to reduce Dox side effect. Chalcones have been reported to reduce the proliferation of many cancer cells. The research were conducted to investigate the cytotoxic activity and apoptosis induction of a chalcone derivate which is containing fluoro substituent [1 - (4" - fluorophenyl) -3 - (4' - hydroxy - 3' - methoxyphenyl) - 2 - propene - 1 -on] (FHM) and its combination with Dox on HeLa cells line. The observation of the cytotoxic activity was conducted using MTT [3 - (4, 5 - dimethyl thiazol - 2 - y1) - 2.5 - diphenyltetrazolium bromide] assay. Apoptosis induction was determined by flow cytometric. The changes of cell morphology were observed using phase contrast microscopy. The combination index (CI) was used to determine the effect of the combination. The study showed that FHM inhibited the HeLa cell growth with IC50 of 34 μM, while the IC50 of Dox was 1 μM. The combination had a higher inhibitory effect on cell growth compare to the single treatment of FHM and Dox. All of the combination doses under IC50 of FHM and Dox gave synergistic (CI: - 0.7) up to strong synergistic effect (CI: 0.l - 0.3). The synergistic effects of the combination were due to their ability to induce apoptosis in the HeLa cells. According to the result, FHM was potential to be developed as a co-chemotherapeutic agent with Dox for cervical cancer.

  15. Dosage and dose schedule screening of drug combinations in agent-based models reveals hidden synergies

    Directory of Open Access Journals (Sweden)

    Lisa Corina Barros de Andrade e Sousa1

    2016-01-01

    Full Text Available The fungus Candida albicans is the most common causative agent of human fungal infections and better drugs or drug combination strategies are urgently needed. Here, we present an agent-based model of the interplay of C. albicans with the host immune system and with the microflora of the host. We took into account the morphological change of C. albicans from the yeast to hyphae form and its dynamics during infection. The model allowed us to follow the dynamics of fungal growth and morphology, of the immune cells and of microflora in different perturbing situations. We specifically focused on the consequences of microflora reduction following antibiotic treatment. Using the agent-based model, different drug types have been tested for their effectiveness, namely drugs that inhibit cell division and drugs that constrain the yeast-to-hyphae transition. Applied individually, the division drug turned out to successfully decrease hyphae while the transition drug leads to a burst in hyphae after the end of the treatment. To evaluate the effect of different drug combinations, doses, and schedules, we introduced a measure for the return to a healthy state, the infection score. Using this measure, we found that the addition of a transition drug to a division drug treatment can improve the treatment reliability while minimizing treatment duration and drug dosage. In this work we present a theoretical study. Although our model has not been calibrated to quantitative experimental data, the technique of computationally identifying synergistic treatment combinations in an agent based model exemplifies the importance of computational techniques in translational research.

  16. Hazards and Benefits of Drug Interaction

    Science.gov (United States)

    Labianca, Dominick A.

    1978-01-01

    Most cases of drug toxicity are direct consequences of drug misuse--either intentional or inadvertent. Discusses two types of drug interaction--synergistic and antagonistic. The former produces a combined effect greater than the sum of the effects of the individual drugs concerned; the latter is produced when the desired action of one drug is…

  17. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Takayuki Kondo

    2017-11-01

    Full Text Available In the process of drug development, in vitro studies do not always adequately predict human-specific drug responsiveness in clinical trials. Here, we applied the advantage of human iPSC-derived neurons, which offer human-specific drug responsiveness, to screen and evaluate therapeutic candidates for Alzheimer’s disease (AD. Using AD patient neurons with nearly 100% purity from iPSCs, we established a robust and reproducible assay for amyloid β peptide (Aβ, a pathogenic molecule in AD, and screened a pharmaceutical compound library. We acquired 27 Aβ-lowering screen hits, prioritized hits by chemical structure-based clustering, and selected 6 leading compounds. Next, to maximize the anti-Aβ effect, we selected a synergistic combination of bromocriptine, cromolyn, and topiramate as an anti-Aβ cocktail. Finally, using neurons from familial and sporadic AD patients, we found that the cocktail showed a significant and potent anti-Aβ effect on patient cells. This human iPSC-based platform promises to be useful for AD drug development.

  18. Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine

    Directory of Open Access Journals (Sweden)

    Wise Phyllis M

    2001-03-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV infection continues to increase at alarming rates in drug abusers, especially in women. Drugs of abuse can cause long-lasting damage to the brain and HIV infection frequently leads to a dementing illness.To determine how these drugs interact with HIV to cause CNS damage, we used an in vitro human neuronal culture characterized for the presence of dopaminergic receptors, transporters and estrogen receptors. We determined the combined effects of dopaminergic drugs, methamphetamine, or cocaine with neurotoxic HIV proteins, gp120 and Tat. Results Acute exposure to these substances resulted in synergistic neurotoxic responses as measured by changes in mitochondrial membrane potential and neuronal cell death. Neurotoxicity occurred in a sub-population of neurons. Importantly, the presence of 17beta-estradiol prevented these synergistic neurotoxicities and the neuroprotective effects were partly mediated by estrogen receptors. Conclusion Our observations suggest that methamphetamine and cocaine may affect the course of HIV dementia, and additionally suggest that estrogens modify the HIV-drug interactions.

  19. Synergistic interactions between paracetamol and oxcarbazepine in somatic and visceral pain models in rodents.

    Science.gov (United States)

    Tomić, Maja A; Vucković, Sonja M; Stepanović-Petrović, Radica M; Ugresić, Nenad D; Prostran, Milica S; Bosković, Bogdan

    2010-04-01

    Combination therapy is a valid approach in pain treatment, in which a reduction of doses could reduce side effects and still achieve optimal analgesia. We examined the effects of coadministered paracetamol, a widely used non-opioid analgesic, and oxcarbazepine, a relatively novel anticonvulsant with analgesic properties, in a rat model of paw inflammatory hyperalgesia and in a mice model of visceral pain and determined the type of interaction between components. The effects of paracetamol, oxcarbazepine, and their combinations were examined in carrageenan-induced (0.1 mL, 1%) paw inflammatory hyperalgesia in rats and in an acetic acid-induced (10 mg/kg, 0.75%) writhing test in mice. In both models, drugs were coadministered in fixed-dose fractions of the 50% effective dose (ED(50)), and type of interaction was determined by isobolographic analysis. Paracetamol (50-200 mg/kg peroral), oxcarbazepine (40-160 mg/kg peroral), and their combination (1/8, 1/4, 1/3, and 1/2 of a single drug ED(50)) produced a significant, dose-dependent antihyperalgesia in carrageenan-injected rats. In the writhing test in mice, paracetamol (60-180 mg/kg peroral), oxcarbazepine (20-80 mg/kg peroral), and their combination (1/16, 1/8, 1/4, and 1/2 of a single drug ED(50)) significantly and dose dependently reduced the number of writhes. In both models, isobolographic analysis revealed a significant synergistic interaction between paracetamol and oxcarbazepine, with a >4-fold reduction of doses of both drugs in combination, compared with single drugs ED(50). The synergistic interaction between paracetamol and oxcarbazepine provides new information about combination pain treatment and should be explored further in patients, especially with somatic and/or visceral pain.

  20. PEGylated lipid bilayer-wrapped nano-graphene oxides for synergistic co-delivery of doxorubicin and rapamycin to prevent drug resistance in cancers

    Science.gov (United States)

    Thapa, Raj Kumar; Byeon, Jeong Hoon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-07-01

    Nano-graphene oxide (nGO) is a carbon allotrope studied for its potential as carrier for chemotherapeutic delivery and its photoablation effects. However, interaction of nGO with blood components and the subsequent toxicities warrant a hybrid system for effective cancer drug delivery. Combination chemotherapy aids in effective cancer treatment and prevention of drug resistance. Therefore, in this study, we attempted to prepare polyethylene glycosylated (PEGylated) lipid bilayer-wrapped nGO co-loaded with doxorubicin (DOX) and rapamycin (RAPA), GOLDR, for the prevention and treatment of resistant cancers. Our results revealed a stable GOLDR formulation with appropriate particle size (∼170 nm), polydispersity (∼0.19) and drug loading. Free drug combination (DOX and RAPA) presented synergistic anticancer effects in MDA-MB-231, MCF-7, and BT474 cells. Treatment with GOLDR formulation maintained this synergism in treated cancer cells, which was further enhanced by the near infrared (NIR) laser irradiation-induced photothermal effects of nGO. Higher chromatin condensation and apoptotic body formation, and enhanced protein expression of apoptosis-related markers (Bax, p53, p21, and c-caspase 3) following GOLDR treatment in the presence of NIR laser treatment clearly suggests its superiority in effective chemo-photothermal therapy of resistant cancers. The hybrid nanosystem that we developed provides a basis for the effective use of GOLDR treatment in the prevention and treatment of resistant cancer types.

  1. Synergistic efficacy of a novel combination therapy controls growth of Bcl-x(L) bountiful neuroblastoma cells by increasing differentiation and apoptosis.

    Science.gov (United States)

    Mohan, Nishant; Banik, Naren L; Ray, Swapan K

    2011-11-01

    Neuroblastoma is the most prevalent extracranial solid tumor mainly in pediatric patients. We explored the efficacy of the combination of 2[(3-[2,3-dichlorophenoxy]propyl)amino]ethanol (2,3-DCPE, a small molecule inhibitor of the anti-apoptotic protein Bcl-x(L)) and N-(4-hydroxyphenyl) retinamide (4-HPR, a synthetic retinoid) in inducing differentiation and apoptosis in human malignant neuroblastoma cells. Immunofluorescence confocal microscopy and flow cytometry showed that the highest level of Bcl-x(L) expression occurred in SK-N-DZ cells followed by SH-SY5Y and IMR-32 cells. Combination of 20 μM 2,3-DCPE and 1 μM 4-HPR acted synergistically in decreasing viability of SK-N-DZ and SH-SY5Y cells. In situ methylene blue staining and protein gel blotting showed the efficacy of this combination of drugs in inducing neuronal differentiation morphologically and also biochemically with upregulation of the neuronal markers such as neurofilament protein (NFP) and neuron specific enolase (NSE) and downregulation of the differentiation inhibiting molecules such as N-Myc and Notch-1 in SK-N-DZ and SH-SY5Y cells. Annexin V-FITC/PI staining showed the synergistic action of this combination therapy in increasing apoptosis in both cell lines. Protein gel blotting manifested that combination therapy increased apoptosis with downregulation of the anti-apoptotic proteins Bcl-x(L), Bcl-2 and Mcl-1 and upregulation of the pro-apoptotic proteins Bax, p53, Puma (p53 upregulated modulator of apoptosis), and Noxa, ultimately causing activation of caspase-3. In conclusion, our results appeared highly encouraging in advocating the use of 2,3-DCPE and 4-HPR as a novel combination therapy for increasing both differentiation and apoptosis in human malignant neuroblastoma cells having Bcl-x(L) overexpression.

  2. Drug ratio-dependent antagonism: a new category of multidrug resistance and strategies for its circumvention.

    Science.gov (United States)

    Harasym, Troy O; Liboiron, Barry D; Mayer, Lawrence D

    2010-01-01

    A newly identified form of multidrug resistance (MDR) in tumor cells is presented, pertaining to the commonly encountered resistance of cancer cells to anticancer drug combinations at discrete drug:drug ratios. In vitro studies have revealed that whether anticancer drug combinations interact synergistically or antagonistically can depend on the ratio of the combined agents. Failure to control drug ratios in vivo due to uncoordinated pharmacokinetics could therefore lead to drug resistance if tumor cells are exposed to antagonistic drug ratios. Consequently, the most efficacious drug combination may not occur at the typically employed maximum tolerated doses of the combined drugs if this leads to antagonistic ratios in vivo after administration and resistance to therapeutic effects of the drug combination. Our approach to systematically screen a wide range of drug ratios and concentrations and encapsulate the drug combination in a liposomal delivery vehicle at identified synergistic ratios represents a means to mitigate this drug ratio-dependent MDR mechanism. The in vivo efficacy of the improved agents (CombiPlex formulations) is demonstrated and contrasted with the decreased efficacy when drug combinations are exposed to tumor cells in vivo at antagonistic ratios.

  3. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  4. In vitro synergistic activity of lidocaine and miconazole against Candida albicans

    Directory of Open Access Journals (Sweden)

    Maria da Conceição dos Santos Oliveira Cunha

    2017-08-01

    Full Text Available Candida albicans is the main yeast isolated from vulvovaginal candidiasis(VVC and a major antifungal used to treat VVC is miconazole (MZ, it shows local toxic effects, such as irritation and burns. The lidocaine (LD is a local anesthetic. The aim of this study was to evaluate the synergistic activity of LD/MZ against 19 strains of C. albicans isolated from vaginal secretion. 78.9% of the strains were susceptible to the combination LD/MZ, demonstrating synergism of drugs. These drugs can be used to produce vaginal creams to treat VVC, especially drug resistant.

  5. Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect.

    Science.gov (United States)

    Panáček, Aleš; Smékalová, Monika; Kilianová, Martina; Prucek, Robert; Bogdanová, Kateřina; Večeřová, Renata; Kolář, Milan; Havrdová, Markéta; Płaza, Grażyna Anna; Chojniak, Joanna; Zbořil, Radek; Kvítek, Libor

    2015-12-28

    The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.

  6. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib

    Science.gov (United States)

    Xia, Hongping; Lee, Kee Wah; Chen, Jianxiang; Kong, Shik Nie; Sekar, Karthik; Deivasigamani, Amudha; Seshachalam, Veerabrahma Pratap; Goh, Brian Kim Poh; Ooi, London Lucien; Hui, Kam M

    2017-01-01

    Sorafenib is currently the only US Food and Drug Administration (FDA)-approved molecular inhibitor for the systemic therapy of advanced hepatocellular carcinoma (HCC). Aspirin has been studied extensively as an anti-inflammation, cancer preventive and therapeutic agent. However, the potential synergistic therapeutic effects of sorafenib and aspirin on advanced HCC treatment have not been well studied. Drug combination studies and their synergy quantification were performed using the combination index method of Chou-Talalay. The synergistic therapeutic effects of sorafenib and aspirin were evaluated using an orthotopic mouse model of HCC and comprehensive gene profiling analyses were conducted to identify key factors mediating the synergistic therapeutic effects of sorafenib and aspirin. Sorafenib was determined to act synergistically on HCC cells with aspirin in vitro. Using Hep3B and HuH7 HCC cells, it was demonstrated that sorafenib and aspirin acted synergistically to induce apoptosis. Mechanistic studies demonstrated that combining sorafenib and aspirin yielded significant synergistically anti-tumor effects by simultaneously silencing ACSL4 and the induction of GADD45B expression in HCC cells both in vitro and in the orthotopic HCC xenograft mouse model. Importantly, clinical evidence has independently corroborated that survival of HCC patients expressing ACSL4highGADD45Blow was significantly poorer compared to patients with ACSL4lowGADD45Bhigh, thus demonstrating the potential clinical value of combining aspirin and sorafenib for HCC patients expressing ACSL4highGADD45Blow. In conclusion, sorafenib and aspirin provide synergistic therapeutic effects on HCC cells that are achieved through simultaneous silencing of ACSL4 and induction of GADD45B expression. Targeting HCC with ACSL4highGADD45Blow expression with aspirin and sorafenib could provide potential synergistic therapeutic benefits. PMID:28900541

  7. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains.

    Science.gov (United States)

    Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A

    2017-10-01

    The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.

  8. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  9. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells.

    Science.gov (United States)

    Qu, Ding; Ma, Yihua; Sun, Wenjie; Chen, Yan; Zhou, Jing; Liu, Congyan; Huang, Mengmeng

    2015-01-01

    A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer.

  10. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research

    Directory of Open Access Journals (Sweden)

    Xian Zhou

    2016-07-01

    Full Text Available Traditional Chinese medicine is an important part of primary health care in Asian countries that has utilised complex herbal formulations (consisting 2 or more medicinal herbs for treating diseases over thousands of years. There seems to be a general assumption that the synergistic therapeutic effects of Chinese herbal medicine derive from the complex interactions between the multiple bioactive components within the herbs and/or herbal formulations. However, evidence to support these synergistic effects remains weak and controversial due to several reasons, including the very complex nature of Chinese herbal medicine, misconceptions about synergy, methodological challenges to study design. In this review, we clarify the definition of synergy, identify common errors in synergy research and describe current methodological approaches to test for synergistic interaction. We discuss the strengthen and weakness of these models in the context of Chinese herbal medicine and summarise the current status of synergy research in CHM. Despite the availability of some scientific data to support the synergistic effects of multi-herbal and/or herb-drug combinations, the level of evidence remains low and the clinical relevancy of most of these findings is undetermined. There remain significant challenges in the development of suitable methods for synergistic studies of complex herbal combinations.

  11. OSU-2S/sorafenib synergistic antitumor combination against hepatocellular carcinoma: The role of PKCδ/p53

    Directory of Open Access Journals (Sweden)

    Hany A Omar

    2016-11-01

    Full Text Available Background: Sorafenib (Nexavar® is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC. However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices < 1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusions: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity towards both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.

  12. Investigation of antioxidant interactions between Radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The medicinal plants of Huang-qi (Radix Astragali and Sheng-ma (Cimicifuga foetida demonstrate significantly better antioxidant effects when used in combination than when used alone. However, the bioactive components and interactional mechanism underlying this synergistic action are still not well understood. In the present study, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay was employed to investigate the antioxidant capacity of single herbs and their combination with the purpose of screening synergistic antioxidant compounds from them. Chromatographic isolation was performed on silica gel, Sephadex LH-20 columns and HPLC, and consequently to yield formononetin, calycosin, ferulic acid and isoferulic acid, which were identified by their retention time, UV λmax, MS and MS/MS data. The combination of isoferulic acid and calycosin at a dose ratio of 1∶1 resulted in significant synergy in scavenging DPPH radicals and ferric reducing antioxidant power (FRAP assay. Furthermore, the protective effects of these four potential synergistic compounds were examined using H2O2-induced HepG2 Cells bioassay. Results revealed that the similar synergy was observed in the combination of isoferulic acid and calycosin. These findings might provide some theoretical basis for the purported synergistic efficiency of Huang-qi and Sheng-ma as functional foods, dietary supplements and medicinal drugs.

  13. Combined effects of irritants and allergens. Synergistic effects of nickel and sodium lauryl sulfate in nickel- sensitized individuals

    DEFF Research Database (Denmark)

    Agner, Tove; Johansen, Jeanne Duus; Overgaard, Lene

    2002-01-01

    (nickel chloride) and sodium lauryl sulfate (SLS) alone and in combination. Evaluation of skin reactions was performed by colorimetry, measurement of transepidermal water loss and clinical evaluation, and the data were analyzed by logistic dose-response models. A synergistic effect was found of combined...

  14. Synergistic effects of acarbose and an Oroxylum indicum seed extract in streptozotocin and high-fat-diet induced prediabetic mice.

    Science.gov (United States)

    Sun, Wenlong; Sang, Yuanbin; Zhang, Bowei; Yu, Xiaoxia; Xu, Qinmin; Xiu, Zhilong; Dong, Yuesheng

    2017-03-01

    Prediabetes is defined as blood glucose levels above normal but below diabetes thresholds, and up to 70% of individuals with prediabetes will eventually develop diabetes if left untreated. Acarbose, the first FDA approved anti-prediabetes agent, has some disadvantages, such as reducing the risk of diabetes by only 36%, side effects and limited effects on complications. The aim of this study is to develop a new agent to treat prediabetes and to investigate the anti-prediabetes effects and mechanisms of acarbose and an Oroxylum indicum seed extract (OISE) in prediabetic mice. The combined drugs can reduce the dose of acarbose by 80% and reduce the risk of diabetes by 75%, which is one fold higher than acarbose monotherapy. The combined drugs showed synergistic anti-prediabetes effects and could be effective in preventing the complications of prediabetes. The combined drugs could improve glucose tolerance, improve lipid metabolism and reduce oxidative stress and tissue damage. For the mechanisms, the combined drugs can reduce synergistically postprandial hyperglycaemia by inhibiting α-glucosidase. Furthermore, baicalein in OISE was demonstrated to be a major component in reducing oxidative stress and chrysin was the primary compound that activated PPARγ. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Is the Combination of Insecticide and Mating Disruption Synergistic or Additive in Lightbrown Apple Moth, Epiphyas postvittana?

    Science.gov (United States)

    Suckling, David M; Baker, Greg; Salehi, Latif; Woods, Bill

    2016-01-01

    Pest suppression from combinations of tactics is fundamental to pest management and eradication. Interactions may occur among tactical combinations and affect suppression. The best case is synergistic, where suppression from a combination is greater than the sum of effects from single tactics (AB > A+B). We explored how mating disruption and insecticide interacted at field scale, additively or synergistically. Use of a pheromone delivery formulation (SPLAT™) as either a mating disruption treatment (i.e. a two-component pheromone alone) or as a lure and kill treatment (i.e. the two-component pheromone plus a permethrin insecticide) was compared for efficacy against the lightbrown apple moth Epiphyas postvittana. Next, four point-source densities of the SPLAT™ formulations were compared for communication disruption. Finally, the mating disruption and lure and kill treatments were applied with a broadcast insecticide. Population assessment used virgin female traps and synthetic pheromone in replicated 9-ha vineyard plots compared with untreated controls and insecticide-treated plots, to investigate interactions. Lure and kill and mating disruption provided equivalent suppression; no additional benefit accrued from including permethrin with the pheromone suggesting lack of contact. The highest point-source density tested (625/ha) was most effective. The insect growth regulator methoxyfenoxide applied by broadcast application lowered pest prevalence by 70% for the first ten weeks compared to pre-trial. Pheromone addition suppressed the pest further by an estimated 92.5%, for overall suppression of 97.7% from the treatment combination of insecticide plus mating disruption. This was close to that expected for an additive model of interactivity between insecticide and mating disruption (AB = A+B) estimated from plots with single tactics as 98% suppression in a combination. The results indicate the need to examine other tactical combinations to achieve the potential

  16. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Mu, Qingxin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Revia, Richard [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Wang, Kui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Zhou, Xuezhe [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Pauzauskie, Peter J. [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhou, Shuiqin [Department of Chemistry, The College of Staten Island, City University of New York, Staten Island NY 10314 USA; Zhang, Miqin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-01-25

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drug carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.

  17. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    Science.gov (United States)

    2017-09-30

    other provision of law, no person shall be subject to any penalty for fai ling to comply with a collection of information if it does not display a...to Composite Damage and Fai lure Analysis Combining Synergistic Damage Mechanics and Peridynamics Sb. GRANT NUMBER NOOO 14-16-1-2173 Sc. PROGRAM

  18. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.

    Science.gov (United States)

    Liu, Ruifeng; AbdulHameed, Mohamed Diwan M; Kumar, Kamal; Yu, Xueping; Wallqvist, Anders; Reifman, Jaques

    2017-06-08

    The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects. We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles. We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs

  19. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  1. Synergistic effects of arsenic trioxide combined with ascorbic acid in human osteosarcoma MG-63 cells: a systems biology analysis.

    Science.gov (United States)

    Huang, X C; Maimaiti, X Y M; Huang, C W; Zhang, L; Li, Z B; Chen, Z G; Gao, X; Chen, T Y

    2014-01-01

    To further understand the synergistic mechanism of As2O3 and asscorbic acid (AA) in human osteosarcoma MG-63 cells by systems biology analysis. Human osteosarcoma MG-63 cells were treated by As2O3 (1 µmol/L), AA (62.5 µmol/L) and combined drugs (1 µmol/L As2O3 plus 62.5 µmol/L AA). Dynamic morphological characteristics were recorded by Cell-IQ system, and growth rate was calculated. Illumina beadchip assay was used to analyze the differential expression genes in different groups. Synergic effects on differential expression genes (DEGs) were analyzed by mixture linear model and singular value decomposition model. KEGG pathway annotations and GO enrichment analysis were performed to figure out the pathways involved in the synergic effects. We captured 1987 differential expression genes in combined therapy MG-63 cells. FAT1 gene was significantly upregulated in all three groups, which is a promising drug target as an important tumor suppressor analogue; meanwhile, HIST1H2BD gene was markedly downregulated in the As2O3 monotherapy group and the combined therapy group, which was found to be upregulated in prostatic cancer. These two genes might play critical roles in synergetic effects of AA and As2O3, although the exact mechanism needs further investigation. KEGG pathway analysis showed many DEGs were related with tight junction, and GO analysis also indicated that DEGs in the combined therapy cells gathered in occluding junction, apical junction complex, cell junction, and tight junction. AA potentiates the efficacy of As2O3 in MG-63 cells. Systems biology analysis showed the synergic effect on the DEGs.

  2. Synergistic activity of troxacitabine (Troxatyl™ and gemcitabine in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Leblond Lorraine

    2007-07-01

    Full Text Available Abstract Background Gemcitabine, a deoxycytidine nucleoside analog, is the current standard chemotherapy used as first-line treatment for patients with locally advanced or metastatic cancer of the pancreas, and extends life survival by 5.7 months. Advanced pancreatic cancer thus remains a highly unmet medical need and new therapeutic agents are required for this patient population. Troxacitabine (Troxatyl™ is the first unnatural L-nucleoside analog to show potent preclinical antitumor activity and is currently under clinical investigation. Troxacitabine was recently evaluated as a first-line therapy in 54 patients with advanced adenocarcinoma of the pancreas and gave comparable overall results to those reported with gemcitabine in recently published randomized trials. Methods The human pancreatic adenocarcinoma cell lines, AsPC-1, Capan-2, MIA PaCa-2 and Panc-1, were exposed to troxacitabine or gemcitabine alone or in combination, for 72 h, and the effects on cell growth were determined by electronic particle counting. Synergistic efficacy was determined by the isobologram and combination-index methods of Chou and Talalay. Mechanistic studies addressed incorporation of troxacitabine into DNA and intracellular levels of troxacitabine and gemcitabine metabolites. For in vivo studies, we evaluated the effect of both drugs, alone and in combination, on the growth of established human pancreatic (AsPC-1 tumors implanted subcutaneously in nude mice. Statistical analysis was calculated by a one-way ANOVA with Dunnett as a post-test and the two-tailed unpaired t test using GraphPad prism software. Results Synergy, evaluated using the CalcuSyn Software, was observed in all four cell-lines at multiple drug concentrations resulting in combination indices under 0.7 at Fa of 0.5 (50% reduction of cell growth. The effects of drug exposures on troxacitabine and gemcitabine nucleotide pools were analyzed, and although gemcitabine reduced phosphorylation of

  3. Synergistic activity of troxacitabine (Troxatyl™) and gemcitabine in pancreatic cancer

    International Nuclear Information System (INIS)

    Damaraju, Vijaya L; Bouffard, David Y; Wong, Clarence KW; Clarke, Marilyn L; Mackey, John R; Leblond, Lorraine; Cass, Carol E; Grey, Mike; Gourdeau, Henriette

    2007-01-01

    Gemcitabine, a deoxycytidine nucleoside analog, is the current standard chemotherapy used as first-line treatment for patients with locally advanced or metastatic cancer of the pancreas, and extends life survival by 5.7 months. Advanced pancreatic cancer thus remains a highly unmet medical need and new therapeutic agents are required for this patient population. Troxacitabine (Troxatyl™) is the first unnatural L-nucleoside analog to show potent preclinical antitumor activity and is currently under clinical investigation. Troxacitabine was recently evaluated as a first-line therapy in 54 patients with advanced adenocarcinoma of the pancreas and gave comparable overall results to those reported with gemcitabine in recently published randomized trials. The human pancreatic adenocarcinoma cell lines, AsPC-1, Capan-2, MIA PaCa-2 and Panc-1, were exposed to troxacitabine or gemcitabine alone or in combination, for 72 h, and the effects on cell growth were determined by electronic particle counting. Synergistic efficacy was determined by the isobologram and combination-index methods of Chou and Talalay. Mechanistic studies addressed incorporation of troxacitabine into DNA and intracellular levels of troxacitabine and gemcitabine metabolites. For in vivo studies, we evaluated the effect of both drugs, alone and in combination, on the growth of established human pancreatic (AsPC-1) tumors implanted subcutaneously in nude mice. Statistical analysis was calculated by a one-way ANOVA with Dunnett as a post-test and the two-tailed unpaired t test using GraphPad prism software. Synergy, evaluated using the CalcuSyn Software, was observed in all four cell-lines at multiple drug concentrations resulting in combination indices under 0.7 at Fa of 0.5 (50% reduction of cell growth). The effects of drug exposures on troxacitabine and gemcitabine nucleotide pools were analyzed, and although gemcitabine reduced phosphorylation of troxacitabine when cells were exposed at equal drug

  4. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities.

    Science.gov (United States)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B; Papamarkou, Theodore; Huber, Kilian V M; Mutz, Cornelia; Toretsky, Jeffrey A; Bennett, Keiryn L; Olsen, Jesper V; Brunak, Søren; Kovar, Heinrich; Superti-Furga, Giulio

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong synergistic propensity in Ewing sarcoma, revealing its targets in critical Ewing sarcoma signaling routes. Using a multilevel experimental approach including quantitative phosphoproteomics, we analyzed the molecular rationale behind the disease-specific synergistic effect of simultaneous application of PKC412 and IGF1R inhibitors. The mechanism of the drug synergy between these inhibitors is different from the sum of the mechanisms of the single agents. The combination effectively inhibited pathway crosstalk and averted feedback loop repression, in EWS-FLI1-dependent manner. Mol Cancer Ther; 16(1); 88-101. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.

    Science.gov (United States)

    Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K

    2015-06-28

    ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full

  6. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy

    Science.gov (United States)

    Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.

  7. pH-Responsive Magnetic Mesoporous Silica-Based Nanoplatform for Synergistic Photodynamic Therapy/Chemotherapy.

    Science.gov (United States)

    Tang, Xiang-Long; Jing, Feng; Lin, Ben-Lan; Cui, Sheng; Yu, Ru-Tong; Shen, Xiao-Dong; Wang, Ting-Wei

    2018-05-02

    By overcoming drug resistance and subsequently enhancing the treatment, the combination therapy of photodynamic therapy (PDT) and chemotherapy has promising potential for cancer treatment. However, the major challenge is how to establish an advanced nanoplatform that can be efficiently guided to tumor sites and can then stably release both chemotherapy drugs and a photosensitizer simultaneously and precisely. In this study, which considered the possibility and targeting efficiency of a magnetic targeting strategy, a novel Fe 3 O 4 @mSiO 2 (DOX)@HSA(Ce6) nanoplatform was successfully built; this platform could be employed as an efficient synergistic antitumor nanoplatform with magnetic guidance for highly specific targeting and retention. Doxorubicin (DOX) molecules were loaded into mesoporous silica with high loading capability, and the mesoporous channels were blocked by a polydopamine coating. Human serum albumin (HSA) was conjugated to the outer surface to increase the biocompatibility and blood circulation time, as well as to provide a vehicle for loading photosensitizer chlorin e6 (Ce6). The sustained release of DOX under acidic conditions and the PDT induced by red light exerted a synergistic inhibitory effect on glioma cells. Our experiments demonstrated that the pH-responsive Fe 3 O 4 @mSiO 2 (DOX)@HSA(Ce6) nanoplatform was guided to the tumor region by magnetic targeting and that the nanoplatform suppressed glioma tumor growth efficiently, implying that the system is a highly promising photodynamic therapy/chemotherapy combination nanoplatform with synergistic effects for cancer treatment.

  8. Screening for synergistic activity of antimicrobial combinations against carbapenem-resistant Enterobacteriaceae using inkjet printer-based technology.

    Science.gov (United States)

    Brennan-Krohn, Thea; Truelson, Katherine A; Smith, Kenneth P; Kirby, James E

    2017-10-01

    Synergistic combination antimicrobial therapy may provide new options for treatment of MDR infections. However, comprehensive in vitro synergy data are limited and facile methods to perform synergy testing in a clinically actionable time frame are unavailable. To systematically investigate a broad range of antibiotic combinations for evidence of synergistic activity against a collection of carbapenem-resistant Enterobacteriaceae (CRE) isolates. We made use of an automated method for chequerboard array synergy testing based on inkjet printer technology in the HP D300 digital dispenser to test 56 pairwise antimicrobial combinations of meropenem, aztreonam, cefepime, colistin, gentamicin, levofloxacin, chloramphenicol, fosfomycin, trimethoprim/sulfamethoxazole, minocycline and rifampicin, as well as the double carbapenem combination of meropenem and ertapenem. In a screening procedure, we tested these combinations against four CRE strains and identified nine antibiotic combinations that showed potential clinically relevant synergy. In confirmatory testing using 10 CRE strains, six combinations demonstrated clinically relevant synergy with both antimicrobials at the minimum fractional inhibitory concentration (FICI-MIN) in the susceptible or intermediate range in at least one trial. These included two novel combinations: minocycline plus colistin and minocycline plus meropenem. In 80% of strains at least one combination demonstrated clinically relevant synergy, but the combinations that demonstrated synergy varied from strain to strain. This work establishes the foundation for future systematic, broad-range investigations into antibiotic synergy for CRE, emphasizes the need for individualized synergy testing and demonstrates the utility of inkjet printer-based technology for the performance of automated antimicrobial synergy assays. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights

  9. COMBINATION OF MORPHINE AND GABAPENTIN LEADS TO SYNERGISTIC EFFECTS IN A RAT MODEL OF POSTOPERATIVE PAIN

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Heegaard, Anne-Marie

    Postoperative pain is a complex clinical condition that is still inadequately managed. Opioids remain the first line agents for the management of postoperative pain despite their side effects. Combination treatment with non-opioid agents that act at different sites within the central and peripheral...... of hindpaw withdrawal thresholds, after subcutaneous administration of morphine (0, 1, 3 and 7 mg/kg), gabapentin (0, 10, 30 and 100 mg/kg) or their combination (9 combinations of the above doses) were obtained using an electronic von Frey device. Surface of synergistic interaction (SSI) analysis was used...

  10. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination

    Science.gov (United States)

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2015-01-01

    The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf), cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity –guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative) of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50) and antioxidant (CI : 0.79) activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 – 0.917) as well as antioxidant capacity (R2 = 0.828) was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69%) and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was identified

  11. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination.

    Directory of Open Access Journals (Sweden)

    Anwesa Bag

    Full Text Available The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf, cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity -guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50 and antioxidant (CI : 0.79 activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 - 0.917 as well as antioxidant capacity (R2 = 0.828 was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69% and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was

  12. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2013-12-01

    Full Text Available Lynne Braidwood,1 Sheila V Graham,2 Alex Graham,1 Joe Conner11Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK; 2MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UKAbstract: Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF], is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report

  13. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    Science.gov (United States)

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer

  14. Artificial intelligence in drug combination therapy.

    Science.gov (United States)

    Tsigelny, Igor F

    2018-02-09

    Currently, the development of medicines for complex diseases requires the development of combination drug therapies. It is necessary because in many cases, one drug cannot target all necessary points of intervention. For example, in cancer therapy, a physician often meets a patient having a genomic profile including more than five molecular aberrations. Drug combination therapy has been an area of interest for a while, for example the classical work of Loewe devoted to the synergism of drugs was published in 1928-and it is still used in calculations for optimal drug combinations. More recently, over the past several years, there has been an explosion in the available information related to the properties of drugs and the biomedical parameters of patients. For the drugs, hundreds of 2D and 3D molecular descriptors for medicines are now available, while for patients, large data sets related to genetic/proteomic and metabolomics profiles of the patients are now available, as well as the more traditional data relating to the histology, history of treatments, pretreatment state of the organism, etc. Moreover, during disease progression, the genetic profile can change. Thus, the ability to optimize drug combinations for each patient is rapidly moving beyond the comprehension and capabilities of an individual physician. This is the reason, that biomedical informatics methods have been developed and one of the more promising directions in this field is the application of artificial intelligence (AI). In this review, we discuss several AI methods that have been successfully implemented in several instances of combination drug therapy from HIV, hypertension, infectious diseases to cancer. The data clearly show that the combination of rule-based expert systems with machine learning algorithms may be promising direction in this field. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  16. Overview of synergistic aging effects

    International Nuclear Information System (INIS)

    Steigelmann, W.; Farber, M.

    1982-01-01

    Proper, technically defensible qualification of materials and equipment for nuclear power facilities requires that the effects of combined environment exposures be addressed. The full significance of synergistic effects resulting from combined stresses still remains largely an unknown to be provided for by use of conservatisms, allowing a sizeable margin in test programs and analyses to account for possible combined effects. However, these margins, when applied to sequential aging tests, may under- or over-estimate the qualified life of the material or equipment. Experimentation with radiation dose-rate effects, simultaneous vs. sequential ordered exposures, and other combined environment testing are highlighted in this paper to provide an overview of the current state-of-knowledge concerning synergistic effects and their significance to qualification programs

  17. Sequential Exposure of Bortezomib and Vorinostat is Synergistic in Multiple Myeloma Cells

    Science.gov (United States)

    Nanavati, Charvi; Mager, Donald E.

    2018-01-01

    Purpose To examine the combination of bortezomib and vorinostat in multiple myeloma cells (U266) and xenografts, and to assess the nature of their potential interactions with semi-mechanistic pharmacodynamic models and biomarkers. Methods U266 proliferation was examined for a range of bortezomib and vorinostat exposure times and concentrations (alone and in combination). A non-competitive interaction model was used with interaction parameters that reflect the nature of drug interactions after simultaneous and sequential exposures. p21 and cleaved PARP were measured using immunoblotting to assess critical biomarker dynamics. For xenografts, data were extracted from literature and modeled with a PK/PD model with an interaction parameter. Results Estimated model parameters for simultaneous in vitro and xenograft treatments suggested additive drug effects. The sequence of bortezomib preincubation for 24 hours, followed by vorinostat for 24 hours, resulted in an estimated interaction term significantly less than 1, suggesting synergistic effects. p21 and cleaved PARP were also up-regulated the most in this sequence. Conclusions Semi-mechanistic pharmacodynamic modeling suggests synergistic pharmacodynamic interactions for the sequential administration of bortezomib followed by vorinostat. Increased p21 and cleaved PARP expression can potentially explain mechanisms of their enhanced effects, which require further PK/PD systems analysis to suggest an optimal dosing regimen. PMID:28101809

  18. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-yan; Zhang, Yu [Nanchang University, College of Chemistry (China); Chen, Xiang-yu [Xiangya No.2 Hospital of Central South University, Department of Radiology (China); Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2017-04-15

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsO{sub x}) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  19. The danger of fixed drug combinations.

    Science.gov (United States)

    Herxheimer, H

    1975-07-01

    After the second world war a number of pharmaceutical firms which were not able to create new therapeutic substances by their own research, put a great number of fixed drug combinations on the market. Their number quickly increased, as the efficiency of these compounds required no legal proof and as, with appropriate propaganda, large profits could be earned. The number of firms doing this sort of production also increased, and in West Germany, for instance, more than 3/4 of all drugs on the official list are now fixed combinations. Our task is, therefore, to ask for regulations which limit fixed combinations to such preparation the efficiency of which has been shown and whose advantages more than outweigh their disadvantages. The advantages of these preparations are convenience to the patient, avoidance of potential mistakes made possible by too many drugs given on the same day and, perhaps, lower prices. The disadvantages are: 1. The individual optimum dose for a patient cannot be achieved, because in case of a change of dosis all components are changed. 2. Different components may have different duration of action. 3. Different components may have a different bioavailability. 4. Different components may interact. 5. Some components may create tolerance, others not. In many cases fixed combinations have been used to make drugs with poor efficiency financially viable by combining them with very efficient drugs. The existence of thousands of fixed combinations makes the drug market indiscernible and useless. They obscure the relatively few essential drugs and make it difficult for the doctor to find his way amongst the mass of offered medicaments. Few fixed combinations are justifiable. These are well known and they should be permitted as before. All others should be banned until it has been shown that their advantages are greater than their disadvantages.

  20. Synergistic effect of ultrasonic pre-treatment combined with UV irradiation for secondary effluent disinfection.

    Science.gov (United States)

    Jin, Xin; Li, Zifu; Xie, Lanlan; Zhao, Yuan; Wang, Tingting

    2013-11-01

    The ultraviolet (UV) disinfection efficiency is often affected by suspended solids (SS). Given their high concentration or large particle size, SS can scatter UV light and provide shielding for bacteria. Thus, ultrasound is often employed as a pre-treatment process to improve UV disinfection. This work investigated the synergistic effect of ultrasound combined with UV for secondary effluent disinfection. Bench-scale experiments were conducted in using samples obtained from secondary sedimentation tanks. These tanks belonged to three wastewater treatment plants in Beijing that use different kinds of biological treatment methods. Several parameters may contribute to the changes in the efficiency of ultrasound and UV disinfection. Thus, the frequency and energy density of ultrasound, as well as the SS, were investigated. Results demonstrated that samples which have relatively higher SS concentrations or higher percentages of larger particles have less disinfection efficiency using UV disinfection alone. However, the presence of ultrasound could improve the disinfection efficiency because it has synergistic effect. Changes in the particle size distribution and SS concentration notably affected the efficiency of UV disinfection. The efficiency of Escherichia coli elimination can be decreased by 1.2 log units as the SS concentration increases from 16.9 mg/l to 25.4 mg/l at a UV energy density of 40 mJ/cm(2). UV disinfection alone reduced the E. coli population by 3.4 log units. However, the synergistic disinfection of ultrasound and UV could reach 5.4 log units during the reduction of E. coli at a 40 kHz frequency and an energy density of 2.64 kJ/l. The additional synergistic effect is 1.1 log units. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Bliss and Loewe interaction analyses of clinically relevant drug combinations in human colon cancer cell lines reveal complex patterns of synergy and antagonism.

    Science.gov (United States)

    Kashif, Muhammad; Andersson, Claes; Mansoori, Sharmineh; Larsson, Rolf; Nygren, Peter; Gustafsson, Mats G

    2017-11-28

    We analyzed survival effects for 15 different pairs of clinically relevant anti-cancer drugs in three iso-genic pairs of human colorectal cancer carcinoma cell lines, by applying for the first time our novel software (R package) called COMBIA. In our experiments iso-genic pairs of cell lines were used, differing only with respect to a single clinically important KRAS or BRAF mutation. Frequently, concentration dependent but mutation independent joint Bliss and Loewe synergy/antagonism was found statistically significant. Four combinations were found synergistic/antagonistic specifically to the parental (harboring KRAS or BRAF mutation) cell line of the corresponding iso-genic cell lines pair. COMBIA offers considerable improvements over established software for synergy analysis such as MacSynergy™ II as it includes both Bliss (independence) and Loewe (additivity) analyses, together with a tailored non-parametric statistical analysis employing heteroscedasticity, controlled resampling, and global (omnibus) testing. In many cases Loewe analyses found significant synergistic as well as antagonistic effects in a cell line at different concentrations of a tested drug combination. By contrast, Bliss analysis found only one type of significant effect per cell line. In conclusion, the integrated Bliss and Loewe interaction analysis based on non-parametric statistics may provide more robust interaction analyses and reveal complex patterns of synergy and antagonism.

  2. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  3. Glycemic control: a combination of lifestyle management and the use of drugs.

    Science.gov (United States)

    Standl, Eberhard; Erbach, Michael; Schnell, Oliver

    2013-06-01

    Some 30% of contemporary cardiology patients have coexisting known diabetes, and another 40% have either undiagnosed diabetes or prediabetes. There is still no final conclusive evidence of cardiovascular benefit by good glycemic control in type 2 diabetes, although studies like the United Kingdom Prospective Diabetes Study (UKPDS) and the Prospective Pioglitazone Clinical Trial in Macrovascular Events, and meta-analyses based on these and other randomized controlled trials of blood glucose-lowering therapies have been encouraging. On the other hand, microvascular disease is clearly reduced by good glycemic control. Structured education has remained a mandatory prerequisite of any successful treatment. Not only is appropriate weight management by diet and exercise able to revert new onset diabetes to normal, but it is also the foundation of any successful pharmacotherapy of diabetes. Aiming at normal fasting plasma glucose concentrations of 5.3 mmol/L or 95 mg/dL appears to be safe since publication of the long-term outcome results of the Outcome Reduction with an Initial Glargine INtervention trial. Individualized target glycosylated hemoglobin levels as near to normal as safely possible (i.e., type 2 diabetes, also in terms of preventing cardiovascular complications. An alternate first-line option in some parts of the world, especially Asian countries, is the class of alpha-glucosidase inhibitors. In most patients, combination therapies with two or three classes of drugs are warranted. Early combination are the golden strategy as type 2 diabetes is a multi-causal disease; the various classes of drugs have distinct and synergistic modes of action, and the blood glucose-lowering efficacy of these drugs is more or less fully maintained in combination. The recent joint American Diabetes Association/European Association for the Study of Diabetes position statement mentions five options as step two of the treatment algorithm for combination with metformin

  4. Advancing Drug Discovery and Development from Active Constituents of Yinchenhao Tang, a Famous Traditional Chinese Medicine Formula

    Directory of Open Access Journals (Sweden)

    Aihua Zhang

    2013-01-01

    Full Text Available Traditional Chinese medicine (TCM formula has been playing a very important role in health protection and disease control for thousands of years. Guided by TCM syndrome theories, formula are designed to contain a combination of various kinds of crude drugs that, when combined, will achieve synergistic efficacy. However, the precise mechanism of synergistic action remains poorly understood. One example is a famous TCM formula Yinchenhao Tang (YCHT, whose efficacy in treating hepatic injury (HI and Jaundice syndrome, has recently been well established as a case study. We also conducted a systematic analysis of synergistic effects of the principal compound using biochemistry, pharmacokinetics and systems biology, to explore the key molecular mechanisms. We had found that the three component (6,7-dimethylesculetin (D, geniposide (G, and rhein (R combination exerts a more robust synergistic effect than any one or two of the three individual compounds by hitting multiple targets. They can regulate molecular networks through activating both intrinsic and extrinsic pathways to synergistically cause intensified therapeutic effects. This paper provides an overview of the recent and potential developments of chemical fingerprinting coupled with systems biology advancing drug discovery towards more agile development of targeted combination therapies for the YCHT.

  5. Possibilities of the combined use of non-steroidal anti-inflammatory drugs and sulfhydryl compounds in radioprotection

    International Nuclear Information System (INIS)

    Kozubik, A.; Pospisil, M.; Netikova, J.

    1991-01-01

    The combined preirradiation administration of indomethacin and cystamine was found to enhance synergistically the recovery of hemopoiesis in sublethally gamma-irradiated mice. This effect can be explained by a common operation of two mechanisms of radioprotection, i.e. of an increased survival of hemopoietic stem cells due to cystamine action and of stimulatory effects of indomethacin on the proliferation of surviving cells, mediated by the inhibition of prostaglandin synthesis. Attempts to prove such enhancement of protective effects on irradiated mice in terms of postirradiation lethality were unsuccessful. The reason seems to be the influence of toxic effects of the indomethacin-cystamine combination on the gastrointestinal tract. When using the less toxic combination, i.e. diclofenac and WR-2721, the additivity of protective effects is manifested even in the survival of lethally irradiated mice. The results suggest that under suitable conditions avoiding the unfavourable toxic effects, non-steroidal anti-inflammatory drugs can be successfully used with the aim to enhance the efficiency of sulfhydryl radioprotectors. (orig.) [de

  6. Effects of dual combinations of antifolates with atovaquone or dapsone on nucleotide levels in Plasmodium falciparum.

    Science.gov (United States)

    Yeo, A E; Seymour, K K; Rieckmann, K H; Christopherson, R I

    1997-04-04

    The triazine antifolates, cycloguanil and 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[(2,4,5-trichlorophenoxy)propy loxy]-1,3,5-triazine hydrobromide (WR99210), and their parent biguanide compounds, proguanil and N-[3-(2,4,5-trichlorophenoxy)propyloxy]-n-(1-methylethyl)-imido dicarbonimidic-diamine hydrochloride (PS-15), were tested in combination with a series of antimalarial drugs for synergism against Plasmodium falciparum growing in erythrocytic culture. Four synergistic combinations were found: cycloguanil dapsone, WR99210-dapsone, proguanil-atovaquone, and PS-15-atovaquone. Cycloguanil-dapsone or WR99210-dapsone had a profound suppressive effect on the concentration of dTTP in parasites while that of dATP increased. Depletion of dTTP is consistent with cycloguanil or WR99210 inhibiting dihydrofolate reductase and dapsone inhibiting dihydropteroate synthase. For the combinations proguanil-atovaquone and PS-15-atovaquone, the levels of nucleoside triphosphates (NTPs) and dNTPs were generally suppressed, suggesting that inhibition is not through nucleotide pathways but probably through another metabolic mechanism(s). Combinations of two synergistic pairs of antimalarial drugs, (proguanil-atovaquone)-(cycloguanil-dapsone) and (PS-15-atovaquone)-(WR99210-dapsone), were tested, and it was found that NTPs and dNTPs decreased much more than for a single synergistic combination. Dual synergistic combinations could play an important role in the therapy of multidrug-resistant malaria, just as combination chemotherapy is used to treat cancer.

  7. When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The Smile-Frown Transition

    OpenAIRE

    Pena-Miller, Rafael; Laehnemann, David; Jansen, Gunther; Fuentes-Hernandez, Ayari; Rosenstiel, Philip; Schulenburg, Hinrich; Beardmore, Robert

    2013-01-01

    Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in...

  8. Analysis of the antinociceptive interactions in two-drug combinations of gabapentin, oxcarbazepine and amitriptyline in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Tomić, Maja A; Vucković, Sonja M; Stepanović-Petrović, Radica M; Micov, Ana M; Ugresić, Nenad D; Prostran, Milica S; Bosković, Bogdan

    2010-02-25

    Antiepileptic and antidepressant drugs are the primary treatments for pain relief in diabetic neuropathy. Combination therapy is a valid approach in pain treatment, where a reduction of doses could reduce side effects and still achieve optimal analgesia. We examined the effects of two-drug combinations of gabapentin, oxcarbazepine, and amitriptyline on nociception in diabetic mice and aimed to determine the type of interaction between components. The nociceptive responses in normal and diabetic mice were assessed by the tail-flick test. The testing was performed before and three weeks after the diabetes induction with streptozotocin (150mg/kg; i.p.), when the antinociceptive effects of gabapentin, oxcarbazepine, amitriptyline and their two-drug combinations were examined. Gabapentin (10-40mg/kg; p.o.) and oxcarbazepine (20-80mg/kg; p.o.) produced a significant, dose-dependent antinociception in diabetic mice while amitriptyline (5-60mg/kg; p.o.) produced weak antinociceptive effect. In normal mice, neither of the drugs produced antinociception. Gabapentin and oxcarbazepine, co-administered in fixed-dose fractions of the ED(50) to diabetic mice, induced significant, dose-dependent antinociception. Isobolographic analysis revealed synergistic interaction. Oxcarbazepine (10-60mg/kg; p.o.)+amitriptyline (5mg/kg; p.o.) and gabapentin (10-30mg/kg; p.o.)+amitriptyline (5mg/kg; p.o.) combinations significantly and dose-dependently reduced nociception in diabetic mice. Analysis of the log dose-response curves for oxcarbazepine or gabapentin in a presence of amitriptyline and oxcarbazepine or gabapentin applied alone, revealed a synergism in oxcarbazepine-amitriptyline and additivity in gabapentin-amitriptyline combination. These findings provide new information about the combination therapy of painful diabetic neuropathy and should be explored further in patients with diabetic neuropathy.

  9. Large-scale exploration and analysis of drug combinations.

    Science.gov (United States)

    Li, Peng; Huang, Chao; Fu, Yingxue; Wang, Jinan; Wu, Ziyin; Ru, Jinlong; Zheng, Chunli; Guo, Zihu; Chen, Xuetong; Zhou, Wei; Zhang, Wenjuan; Li, Yan; Chen, Jianxin; Lu, Aiping; Wang, Yonghua

    2015-06-15

    Drug combinations are a promising strategy for combating complex diseases by improving the efficacy and reducing corresponding side effects. Currently, a widely studied problem in pharmacology is to predict effective drug combinations, either through empirically screening in clinic or pure experimental trials. However, the large-scale prediction of drug combination by a systems method is rarely considered. We report a systems pharmacology framework to predict drug combinations (PreDCs) on a computational model, termed probability ensemble approach (PEA), for analysis of both the efficacy and adverse effects of drug combinations. First, a Bayesian network integrating with a similarity algorithm is developed to model the combinations from drug molecular and pharmacological phenotypes, and the predictions are then assessed with both clinical efficacy and adverse effects. It is illustrated that PEA can predict the combination efficacy of drugs spanning different therapeutic classes with high specificity and sensitivity (AUC = 0.90), which was further validated by independent data or new experimental assays. PEA also evaluates the adverse effects (AUC = 0.95) quantitatively and detects the therapeutic indications for drug combinations. Finally, the PreDC database includes 1571 known and 3269 predicted optimal combinations as well as their potential side effects and therapeutic indications. The PreDC database is available at http://sm.nwsuaf.edu.cn/lsp/predc.php. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.; Cooper, P.C.; Vandenburg, A.J.; Musselman, H.D.; Lowe, H.N.; Florida Inst. of Tech., Melbourne; Army Facilities Engineering Support Agency, Fort Belvoir, Va.

    1975-01-01

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.) [de

  11. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika

    2014-01-01

    the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance......Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability...

  12. An In Vitro Synergistic Interaction of Combinations of Thymus glabrescens Essential Oil and Its Main Constituents with Chloramphenicol

    Directory of Open Access Journals (Sweden)

    Budimir S. Ilić

    2014-01-01

    Full Text Available The chemical composition and antibacterial activity of Thymus glabrescens Willd. (Lamiaceae essential oil were examined, as well as the association between it and chloramphenicol. The antibacterial activities of geraniol and thymol, the main constituents of T. glabrescens oil, individually and in combination with chloramphenicol, were also determined. The interactions of the essential oil, geraniol, and thymol with chloramphenicol toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods. Oxygenated monoterpenes were the most abundant compound class in the oil, with geraniol (22.33% as the major compound. The essential oil exhibited in vitro antibacterial activity against all tested bacterial strains, but the activities were lower than those of the standard antibiotic and thymol. A combination of  T. glabrescens oil and chloramphenicol produced a strong synergistic interaction (FIC indices in the range 0.21–0.87 and a substantial reduction of the MIC value of chloramphenicol, thus minimizing its adverse side effects. The combinations geraniol-chloramphenicol and thymol-chloramphenicol produced synergistic interaction to a greater extent, compared with essential oil-chloramphenicol association, which may indicate that the activity of the thyme oil could be attributed to the presence of significant concentrations of geraniol and thymol.

  13. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  14. Synergistic Effect of Combined Hollow Viscus Injuries on Intra-Abdominal Abscess Formation.

    Science.gov (United States)

    Paulus, Elena M; Croce, Martin A; Shahan, Charles P; Zarzaur, Ben L; Sharpe, John P; Dileepan, Amirtha; Boyd, Brandon S; Fabian, Timothy C

    2015-07-01

    The strong association between penetrating colon injuries and intra-abdominal abscess (IAA) formation is well established and attributed to high colon bacterial counts. Since trauma patients are rarely fasting at injury, stomach and small bowel colony counts are also elevated. We hypothesized that there is a synergistic effect of increased IAA formation with concomitant stomach and/or colon injuries when compared to small bowel injuries alone. Consecutive patients at a level one trauma center with penetrating small bowel (SB), stomach (S), and/or colon (C) injuries from 1996 to 2012 were reviewed. Logistic regression determined associations with IAA, adjusting for age, gender, Injury Severity Score (ISS), admission Glasgow Coma Score, transfusions, and concurrent pancreas or liver injury. A total of 1518 patients (91% male, ISS = 15.9 ± 8.4) were identified: 496 (33%) SB, 231 (15%) S, 288 (19%) C, 40 (3%) S + SB, 69 (5%) S + C, 338 (22%) C + SB, and 56 (4%) S + C + SB. 148 (10%) patients developed IAA: 4 per cent SB, 9 per cent S, 10 per cent C, 5 per cent S + SB, 22 per cent S + C, 13 per cent C + SB, and 25 per cent S + C + SB. Multiple logistic regression demonstrated that ISS, 24 hour blood transfusions, and concomitant pancreatic or liver injuries were associated with IAA. Compared with reference SB, S or S + SB injuries were no more likely to develop IAA. However, S + C, SB + C, and S + C + SB injuries were significantly more likely to have IAA. In conclusion, combined stomach + colon, small bowel + colon, and stomach, colon, + small bowel injuries have a synergistic effect leading to increased IAA formation after penetrating injuries. Heightened clinical suspicion for IAA formation is necessary in these combined hollow viscus injury patients.

  15. Biophysical aspects of the integrated combination of cytostatic drugs with radiotherapy. Pt. 2

    International Nuclear Information System (INIS)

    Ulmer, W.

    1991-01-01

    Dose-effect relations have been evaluated by the treatment of cell cultures (9L glioma cells of rat as monolayers and tumor spheroids, L 1210 cells of mice) with activated isophosphamide, adriamycin, epirubicin and 6 MeV electrons. The magnitude of synergistic effects obtained by combined treatment modalities is strictly pH-dependent, but even for tumor spheroids it appears that thers exists an optimum time-interval between drug administration and consecutive irradiation. The determination of the intracellular pH value with the help of pH sensor microelectrodes and 31 P NMR spectroscopy indicates that 31 P spectroscopy only provides the global pH of the complete culture (average value), whereas the local pH can only be determined by sensors. The ATP-concentration before and after irradiation depends significantly on the glucose supply of culture medium. (orig.) [de

  16. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  17. Synergistic effect of certain insecticides combined with Bacillus thuringiensis on mosquito larvae

    Directory of Open Access Journals (Sweden)

    C.P. Narkhede

    2017-04-01

    Full Text Available For effective vector control it is essential to formulate new preparations having multiple action against the vector pest. Developing combined formulation of biopesticide and chemical pesticide is one of the novel concept to fight against the vectors with new weapons; however, compatibility of biopesticide i.e. Bacillus thuringiensis (Bt and chemical pesticide is a real hurdle. In this investigation, local isolate Bacillus thuringiensis SV2 (BtSV2 was tested for its compatibility with various available mosquito larvicides. Temephos was most compatible with BtSV2 than with other tested pesticides. These two compatible agents were tested for larvicidal potential. Our study revealed that the synergistic effect of both agents reduces LC50 value by 30.68 and 22.36% against the Ae. aegypti and An. stephensi, respectively. The larvicidal potential increased when compared to individual pesticides. It was also observed a biochemical change in larvae after the TBT (Temephos + Bacillus thuringiensis combination treatment; it involves decreased level of alpha esterase, acetylcholine esterase and protein while level of beta esterase and acid phosphatase was unchanged and alkaline phosphatase activity was increased. Increased potential of combined formulation may be due to altered physiological condition.

  18. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Simona [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Ranzato, Elia, E-mail: ranzato@unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Parodi, Monica [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); DI.ME.S., Università degli Studi di Genova, Via L. Alberti 2, 16132 Genova (Italy); Vitale, Massimo [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Burlando, Bruno [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy)

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  19. Synergistic Cytotoxic Effect of L-Asparaginase Combined with Decitabine as a Demethylating Agent in Pediatric T-ALL, with Specific Epigenetic Signature

    Directory of Open Access Journals (Sweden)

    Salvatore Serravalle

    2016-01-01

    Full Text Available T-Acute Lymphoblastic Leukemia (T-ALL remains a subgroup of pediatric ALL, with a lower response to standard chemotherapy. Some recent studies established the fundamental role of epigenetic aberrations such as DNA hypermethylation, to influence patients’ outcome and response to chemotherapy. Moreover, L-asparaginase is an important chemotherapeutic agent for treatment of ALL and resistance to this drug has been linked to ASNS expression, which can be silenced through methylation. Therefore, we tested whether the sensitivity of T-ALL cell lines towards L-asparaginase is correlated to the epigenetic status of ASNS gene and whether the sensitivity can be modified by concurrent demethylating treatment. Hence we treated different T-ALL cell lines with L-asparaginase and correlated different responses to the treatment with ASNS expression. Then we demonstrated that the ASNS expression was dependent on the methylation status of the promoter. Finally we showed that, despite the demethylating effect on the ASNS gene expression, the combined treatment with the demethylating agent Decitabine could synergistically improve the L-asparaginase sensitivity in those T-ALL cell lines characterized by hypermethylation of the ASNS gene. In conclusion, this preclinical study identified an unexpected synergistic activity of L-asparaginase and Decitabine in the subgroup of T-ALL with low ASNS expression due to hypermethylation of the ASNS promoter, while it did not restore sensitivity in the resistant cell lines characterized by higher ASNS expression.

  20. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil.

    Science.gov (United States)

    Lima Oliveira, Priscila Dinah; de Oliveira, Kataryne Árabe Rimá; Vieira, Willie Anderson Dos Santos; Câmara, Marcos Paz Saraiva; de Souza, Evandro Leite

    2018-02-02

    This study assessed the efficacy of chitosan (Chi) and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil (CCEO) combinations to control the mycelial growth of five pathogenic Colletotrichum species (C. asianum, C. siamense, C. fructicola, C. tropicale and C. karstii) in vitro, as well as the anthracnose development in guava (Psidium guajava L.) cv. Paluma, mango (Mangifera indica L.) cv. Tommy Atkins and papaya (Carica papaya L.) cv. Papaya artificially inoculated with these species. Combinations of Chi (2.5, 5 or 7.5mg/mL) and CCEO (0.15, 0.3, 0.6 or 1.25μL/mL) inhibited the mycelial growth of all tested fungal species in vitro. Examined Chi-CCEO combinations showed additive or synergistic interactions to inhibit the target Colletotrichum species based on the Abbott index. Coatings formed by synergistic Chi (5mg/mL) and CCEO (0.15, 0.3 or 0.6μL/mL) combinations decreased anthracnose lesion development in guava, mango and papaya inoculated with any of the tested Colleotrichum species during storage. Overall, anthracnose lesion development inhibition in fruit coated with synergistic Chi-CCEO combinations was higher than that observed in fruit treated with synthetic fungicides. These results show that the application of coatings formed by Chi-CCEO synergistic combinations could be effective to control postharvest anthracnose development in fruit. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles

    Science.gov (United States)

    Li, Ping; Li, Juan; Wu, Changzhu; Wu, Qingsheng; Li, Jian

    2005-09-01

    The bactericidal action of silver (0) nanoparticles and amoxicillin on Escherichia coli is studied, respectively. Increasing concentration of both amoxicillin (0-0.525 mg ml-1) and silver nanoparticles (0-40 µg ml-1) showed a higher antibacterial effect in Luria-Bertani (LB) medium. Escherichia coli cells have different bactericidal sensitivity to them. When amoxicillin and silver nanoparticles are combined, it results in greater bactericidal efficiency on Escherichia coli cells than when they were applied separately. Dynamic tests on bacterial growth indicated that exponential and stationary phases are greatly decreased and delayed in the synergistic effect of amoxicillin and silver nanoparticles. In addition, the effect induced by a preincubation with silver nanoparticles is examined. The results show that solutions with more silver nanoparticles have better antimicrobial effects. One hypothesized mechanism is proposed to explain this phenomenon.

  2. Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Young-Sun Kim

    Full Text Available The antifungal activity of allicin and its synergistic effects with the antifungal agents flucytosine and amphotericin B (AmB were investigated in Candida albicans (C. albicans. C. albicans was treated with different conditions of compounds alone and in combination (allicin, AmB, flucytosine, allicin + AmB, allicin + flucytosine, allicin + AmB + flucytosine. After a 24-hour treatment, cells were examined by scanning electron microscopy (SEM and atomic force microscopy (AFM to measure morphological and biophysical properties associated with cell death. The clearing assay was conducted to confirm the effects of allicin. The viability of C. albicans treated by allicin alone or with one antifungal drug (AmB, flucytosine in addition was more than 40% after a 24-hr treatment, but the viability of groups treated with combinations of more than two drugs was less than 32%. When the cells were treated with allicin alone or one type of drug, the morphology of the cells did not change noticeably, but when cells were treated with combinations of drugs, there were noticeable morphological changes. In particular, cells treated with allicin + AmB had significant membrane damage (burst or collapsed membranes. Classification of cells according to their cell death phase (CDP allowed us to determine the relationship between cell viability and treatment conditions in detail. The adhesive force was decreased by the treatment in all groups compare to the control. Cells treated with AmB + allicin had a greater adhesive force than cells treated with AmB alone because of the secretion of molecules due to collapsed membranes. All cells treated with allicin or drugs were softer than the control cells. These results suggest that allicin can reduce MIC of AmB while keeping the same efficacy.

  3. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors.

    Directory of Open Access Journals (Sweden)

    Margaret Pain

    Full Text Available Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing.

  4. Drug-Drug and Herb-Drug Interaction-A Comment | Esimone ...

    African Journals Online (AJOL)

    Clinically relevant drug-drug interactions may be pharmacodynamic or pharmacokinetic. And herbal medicinal products are becoming increasingly popular. Drug interactions can be in vivo or in vitro. Pharmacodynamic outcomes take such forms as Additive, Synergistic, Antagonistic or Indifferent. The paper reviews and ...

  5. cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma

    Science.gov (United States)

    Zhong, Ping; Qiu, Min; Zhang, Jian; Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Zhong, Zhiyuan

    2017-07-01

    Combinatorial chemotherapy, which has emerged as a promising treatment modality for intractable cancers, is challenged by a lack of tumor-targeting, robust and ratiometric dual drug release systems. Here, docetaxel-loaded cRGD peptide-decorated redox-activable micellar mertansine prodrug (DTX-cRGD-MMP) was developed for targeted and synergistic treatment of B16F10 melanoma-bearing C57BL/6 mice. DTX-cRGD-MMP exhibited a small size of ca. 49 nm, high DTX and DM1 loading, low drug leakage under physiological conditions, with rapid release of both DTX and DM1 under a cytoplasmic reductive environment. Notably, MTT and flow cytometry assays showed that DTX-cRGD-MMP brought about a synergistic antitumor effect to B16F10 cancer cells, with a combination index of 0.37 and an IC50 over 3- and 13-fold lower than cRGD-MMP (w/o DTX) and DTX-cRGD-Ms (w/o DM1) controls, respectively. In vivo studies revealed that DTX-cRGD-MMP had a long circulation time and a markedly improved accumulation in the B16F10 tumor compared with the non-targeting DTX-MMP control (9.15 versus 3.13% ID/g at 12 h post-injection). Interestingly, mice treated with DTX-cRGD-MMP showed almost complete growth inhibition of B16F10 melanoma, with tumor inhibition efficacy following an order of DTX-cRGD-MMP > DTX-MMP (w/o cRGD) > cRGD-MMP (w/o DTX) > DTX-cRGD-Ms (w/o DM1) > free DTX. Consequently, DTX-cRGD-MMP significantly improved the survival rates of B16F10 melanoma-bearing mice. Importantly, DTX-cRGD-MMP caused little adverse effects as revealed by mice body weights and histological analyses. The combination of two mitotic inhibitors, DTX and DM1, appears to be an interesting approach for effective cancer therapy.

  6. The synergistic antinociceptive effect of lornoxicam in combination with tramadol

    Directory of Open Access Journals (Sweden)

    Amela Saračević

    2013-12-01

    Full Text Available Introduction: One of the most important priorities in therapy is pain control. Therefore, many different groups of drugs are being used for this purpose, primarily opioid analgesics and non-steroidal anti-inflammatory drugs (NSAIDs. Opioid analgesic tramadol, by binding to specific receptors, modulates the perception and response to painful stimuli and inhibits transmitting and further processing of pain impulses. Lornoxicam, which belongs to the oxicam class of NSAIDs, is a non-selective cyclooxygenase inhibitor with strong analgesic and anti-inflammatory effects, and better tolerance profile. Preliminary research, which requires further verification, suggests that lornoxicam may be a better alternative or adjunctive therapy to opioid analgesics in the treatment of moderate to severe pain. The aim of this study was to investigate antinociceptive effects of lornoxicam, as well as the combination of lornoxicam with tramadol.Methods: Analgesic effect of combination of lornoxicam and tramadol or lornoxicam applied alone was examined on female albino mice, using a hot plate method. Measurements were made 30, 60, 90 and 120 minutes after intraperitoneal and subcutaneous administration, in dose of 10 mg/kg.Results: Combination of lornoxicam and tramadol, applied intraperitoneally, increases the threshold of sensitivity to painful stimuli, which was not the case with subcutaneous administration.Conclusions: Lornoxicam significantly increases analgesic effect when applied intraperitoneally in combination with tramadol. On the other hand, lornoxicam in combination with tramadol, did not increase the threshold of sensitivity to painful stimuli with significant difference, after subcutaneous administration

  7. Activity of Colistin in Combination with Meropenem, Tigecycline, Fosfomycin, Fusidic Acid, Rifampin or Sulbactam against Extensively Drug-Resistant Acinetobacter baumannii in a Murine Thigh-Infection Model.

    Directory of Open Access Journals (Sweden)

    Bing Fan

    Full Text Available Few effective therapeutic options are available for treating severe infections caused by extensively drug-resistant Acinetobacter baumannii (XDR-AB. Using a murine thigh-infection model, we examined the in vivo efficacy of colistin in combination with meropenem, tigecycline, fosfomycin, fusidic acid, rifampin, or sulbactam against 12 XDR-AB strains. Colistin, tigecycline, rifampin, and sulbactam monotherapy significantly decreased bacterial counts in murine thigh infections compared with those observed in control mice receiving no treatment. Colistin was the most effective agent tested, displaying bactericidal activity against 91.7% of strains at 48 h post-treatment. With strains showing a relatively low minimum inhibitory concentration (MIC for meropenem (MIC ≤ 32 mg/L, combination therapy with colistin plus meropenem caused synergistic inhibition at both 24 h and 48 h post-treatment. However, when the meropenem MIC was ≥64 mg/L, meropenem did not significantly alter the efficacy of colistin. The addition of rifampin and fusidic acid significantly improved the efficacy of colistin, showing a synergistic effect in 100% and 58.3% of strains after 24 h of treatment, respectively, while the addition of tigecycline, fosfomycin, or sulbactam did not show obvious synergistic activity. No clear differences in activities were observed between colistin-rifampin and colistin-fusidic acid combination therapy with most strains. Overall, our in vivo study showed that administering colistin in combination with rifampin or fusidic acid is more efficacious in treating XDR-AB infections than other combinations. The colistin-meropenem combination may be another appropriate option if the MIC is ≤32 mg/L. Further clinical studies are urgently needed to confirm the relevance of these findings.

  8. Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis.

    Science.gov (United States)

    Chen, Jiaquan; Du, Yingxiang; Sun, Xiaodong

    2017-12-01

    The combined use of chiral ionic liquids (ILs) and chiral selectors in capillary electrophoresis (CE) to establish a synergistic system has proven to be an effective approach for enantioseparation. In this article, tetramethylammonium-L-arginine, a kind of amino acid chiral IL, was applied to investigate its potential synergistic effect with maltodextrin in CE enantioseparation. The established maltodextrin-based synergistic system showed markedly improved enantioseparations compared with the single maltodextrin system. Parameters such as the chiral IL concentration, maltodextrin concentration, buffer pH, applied voltage, and capillary temperature were optimized. Satisfactory enantioseparation of the five studied drugs, including nefopam, duloxetine, ketoconazole, cetirizine, and citalopram was achieved in 50 mM Tris-H 3 PO 4 buffer solution (pH 3.0) containing 7.0% (m/v) maltodextrin and 60 mM tetramethylammonium-L-arginine. In addition, the chiral configuration of tetramethylammonium-L-arginine was also investigated to demonstrate the existence of a synergistic effect between chiral ILs and maltodextrin. © 2017 Wiley Periodicals, Inc.

  9. Development and validation of a general approach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks.

    Science.gov (United States)

    Pivetta, Tiziana; Isaia, Francesco; Trudu, Federica; Pani, Alessandra; Manca, Matteo; Perra, Daniela; Amato, Filippo; Havel, Josef

    2013-10-15

    The combination of two or more drugs using multidrug mixtures is a trend in the treatment of cancer. The goal is to search for a synergistic effect and thereby reduce the required dose and inhibit the development of resistance. An advanced model-free approach for data exploration and analysis, based on artificial neural networks (ANN) and experimental design is proposed to predict and quantify the synergism of drugs. The proposed method non-linearly correlates the concentrations of drugs with the cytotoxicity of the mixture, providing the possibility of choosing the optimal drug combination that gives the maximum synergism. The use of ANN allows for the prediction of the cytotoxicity of each combination of drugs in the chosen concentration interval. The method was validated by preparing and experimentally testing the combinations with the predicted highest synergistic effect. In all cases, the data predicted by the network were experimentally confirmed. The method was applied to several binary mixtures of cisplatin and [Cu(1,10-orthophenanthroline)2(H2O)](ClO4)2, Cu(1,10-orthophenanthroline)(H2O)2(ClO4)2 or [Cu(1,10-orthophenanthroline)2(imidazolidine-2-thione)](ClO4)2. The cytotoxicity of the two drugs, alone and in combination, was determined against human acute T-lymphoblastic leukemia cells (CCRF-CEM). For all systems, a synergistic effect was found for selected combinations. © 2013 Elsevier B.V. All rights reserved.

  10. Successful treatment of methicillin-resistant Staphylococcus aureus osteomyelitis with combination therapy using linezolid and rifampicin under therapeutic drug monitoring.

    Science.gov (United States)

    Ashizawa, Nobuyuki; Tsuji, Yasuhiro; Kawago, Koyomi; Higashi, Yoshitsugu; Tashiro, Masato; Nogami, Makiko; Gejo, Ryuichi; Narukawa, Munetoshi; Kimura, Tomoatsu; Yamamoto, Yoshihiro

    2016-05-01

    Linezolid is an effective antibiotic against most gram-positive bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus. Although linezolid therapy is known to result in thrombocytopenia, dosage adjustment or therapeutic drug monitoring of linezolid is not generally necessary. In this report, however, we describe the case of a 79-year-old woman with recurrent methicillin-resistant S. aureus osteomyelitis that was successfully treated via surgery and combination therapy using linezolid and rifampicin under therapeutic drug monitoring for maintaining an appropriate serum linezolid concentration. The patient underwent surgery for the removal of the artificial left knee joint and placement of vancomycin-impregnated bone cement beads against methicillin-resistant S. aureus after total left knee implant arthroplasty for osteoarthritis. We also initiated linezolid administration at a conventional dose of 600 mg/h at 12-h intervals, but reduced it to 300 mg/h at 12-h intervals on day 9 because of a decrease in platelet count and an increase in serum linezolid trough concentration. However, when the infection exacerbated, we again increased the linezolid dose to 600 mg/h at 12-h intervals and performed combination therapy with rifampicin, considering their synergistic effects and the control of serum linezolid trough concentration via drug interaction. Methicillin-resistant S. aureus infection improved without reducing the dose of or discontinuing linezolid. The findings in the present case suggest that therapeutic drug monitoring could be useful for ensuring the therapeutic efficacy and safety of combination therapy even in patients with osteomyelitis who require long-term antibiotic administration. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. In vitro synergistic effects of fisetin and norfloxacin against aquatic isolates of Serratia marcescens.

    Science.gov (United States)

    Dong, Jing; Ruan, Jing; Xu, Ning; Yang, Yibin; Ai, Xiaohui

    2016-01-01

    Serratia marcescens is a common pathogenic bacterium that can cause infections in both humans and animals. It can cause a range of diseases, from slight wound infections to life-threatening bacteraemia and pneumonia. The emergence of antimicrobial resistance has limited the treatment of the diseases caused by the bacterium to a great extent. Consequently, there is an urgent need to develop novel antimicrobial strategies against this pathogen. Synergistic strategy is a new approach to treat the infections caused by drug-resistant bacteria. In this paper, we isolated and identified the first multi-resistant pathogenic Serratia marcescens strain from diseased soft-shelled turtles (Pelodiscus sinensis) in China. We then performed a checkerboard assay; the results showed that out of 10 tested natural products fisetin had synergistic effects against S. marcescens when combined with norfloxacin. The time-kill curve assay further confirmed the results of the checkerboard assay. We found that this novel synergistic effect could significantly reduce the dosage of norfloxacin against S. marcescens. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy

    Science.gov (United States)

    You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Gao, Zhiguo; Zhang, Xiangyang; Sun, Baiwang

    2018-01-01

    Polymeric biomaterials that can be smartly disassembled through the cleavage of the covalent bonds in a controllable way upon an environmental stimulus such as pH change, redox, special enzymes, temperature, or ultrasound, as well as light irradiation, but are otherwise stable under normal physiological conditions have attracted great attention in recent decades. The 2-(4-aminophenyl) benzothiazole molecule (CJM-126), as one of the benzothiazole derivatives, has exhibited a synergistic effect with cisplatin (CDDP) and restrains the bioactivities of a series of human breast cancer cell lines. In our study, novel NIR-responsive targeted binary-drug-loaded nanoparticles encapsulating indocyanine green (ICG) dye were prepared as a new co-delivery and combined therapeutic vehicle. The prepared drug-loaded polymeric nanoparticles (TNPs/CDDP-ICG) are stable under normal physiological conditions, while burst drugs release upon NIR laser irradiation in a mild acidic environment. The results further confirmed that the designed co-delivery platform showed higher cytotoxicity than the single free CDDP due to the synergistic treatment of CJM-126 and CDDP in vitro. Taken together, the work might provide a promising approach for effective site-specific antitumor therapy.

  13. Intratumor heterogeneity alters most effective drugs in designed combinations.

    Science.gov (United States)

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2014-07-22

    The substantial spatial and temporal heterogeneity observed in patient tumors poses considerable challenges for the design of effective drug combinations with predictable outcomes. Currently, the implications of tissue heterogeneity and sampling bias during diagnosis are unclear for selection and subsequent performance of potential combination therapies. Here, we apply a multiobjective computational optimization approach integrated with empirical information on efficacy and toxicity for individual drugs with respect to a spectrum of genetic perturbations, enabling derivation of optimal drug combinations for heterogeneous tumors comprising distributions of subpopulations possessing these perturbations. Analysis across probabilistic samplings from the spectrum of various possible distributions reveals that the most beneficial (considering both efficacy and toxicity) set of drugs changes as the complexity of genetic heterogeneity increases. Importantly, a significant likelihood arises that a drug selected as the most beneficial single agent with respect to the predominant subpopulation in fact does not reside within the most broadly useful drug combinations for heterogeneous tumors. The underlying explanation appears to be that heterogeneity essentially homogenizes the benefit of drug combinations, reducing the special advantage of a particular drug on a specific subpopulation. Thus, this study underscores the importance of considering heterogeneity in choosing drug combinations and offers a principled approach toward designing the most likely beneficial set, even if the subpopulation distribution is not precisely known.

  14. A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug.

    Science.gov (United States)

    Li, Jingwen; Lyv, Zhonglin; Li, Yanli; Liu, Huan; Wang, Jinkui; Zhan, Wenjun; Chen, Hong; Chen, Huabing; Li, Xinming

    2015-05-01

    Due to their high NIR-optical absorption and high specific surface area, graphene oxide and graphene oxide-based nanocomposites have great potential in both drug delivery and photothermal therapy. In the work reported herein we successfully integrate a Pt(IV) complex (c,c,t-[Pt(NH3)2Cl2(OH)2]), PEGylated nano-graphene oxide (PEG-NGO), and a cell apoptosis sensor into a single platform to generate a multifunctional nanocomposite (PEG-NGO-Pt) which shows potential for targeted drug delivery and combined photothermal-chemotherapy under near infrared laser irradiation (NIR), and real-time monitoring of its therapeutic efficacy. Non-invasive imaging using a fluorescent probe immobilized on the GO shows an enhanced therapeutic effect of PEG-NGO-Pt in cancer treatment via apoptosis and cell death. Due to the enhanced cytotoxicity of cisplatin and the highly specific tumor targeting of PEG-NGO-Pt at elevated temperatures, this nanocomposite displays a synergistic effect in improving the therapeutic efficacy of the Pt drug with complete destruction of tumors, no tumor recurrence and minimal systemic toxicity in comparison with chemotherapy or photothermal treatment alone, highlighting the advantageous effects of integrating Pt(IV) with GO for anticancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Combination Drug Delivery Approaches in Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jun H. Lee

    2012-01-01

    Full Text Available Disseminated metastatic breast cancer needs aggressive treatment due to its reduced response to anticancer treatment and hence low survival and quality of life. Although in theory a combination drug therapy has advantages over single-agent therapy, no appreciable survival enhancement is generally reported whereas increased toxicity is frequently seen in combination treatment especially in chemotherapy. Currently used combination treatments in metastatic breast cancer will be discussed with their challenges leading to the introduction of novel combination anticancer drug delivery systems that aim to overcome these challenges. Widely studied drug delivery systems such as liposomes, dendrimers, polymeric nanoparticles, and water-soluble polymers can concurrently carry multiple anticancer drugs in one platform. These carriers can provide improved target specificity achieved by passive and/or active targeting mechanisms.

  16. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts.

    Directory of Open Access Journals (Sweden)

    Barbara Szymanska

    Full Text Available Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL, or for re-induction post relapse, use a combination of vincristine (VCR, a glucocorticoid, and L-asparaginase (ASP with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX and ASP (VXL against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.

  17. Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma.

    Directory of Open Access Journals (Sweden)

    Karianne Risberg

    Full Text Available In cancer, combinations of drugs targeting different cellular functions is well accepted to improve tumor control. We studied the effects of a Pseudomonas exotoxin A (PE-based immunotoxin, the 9.2.27PE, and the BH-3 mimetic compound ABT-737 in a panel of melanoma cell lines. The drug combination resulted in synergistic cytotoxicity, and the cell death observed was associated with apoptosis, as activation of caspase-3, inactivation of Poly (ADP-ribose polymerase (PARP and increased DNA fragmentation could be prevented by pre-treatment with caspase and cathepsin inhibitors. We further show that ABT-737 caused endoplasmic reticulum (ER stress with increased GRP78 and phosphorylated eIF2α protein levels. Moreover, treatment with ABT-737 increased the intracellular calcium levels, an effect which was enhanced by 9.2.27PE, which as a single entity drug had minimal effect on calcium release from the ER. In addition, silencing of Mcl-1 by short hairpin RNA (shRNA enhanced the intracellular calcium levels and cytotoxicity caused by ABT-737. Notably, the combination of 9.2.27PE and ABT-737 caused growth delay in a human melanoma xenograft mice model, supporting further investigations of this particular drug combination.

  18. A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC.

    Science.gov (United States)

    Seebacher, Nicole A; Richardson, Des R; Jansson, Patric J

    2016-12-01

    The intracellular distribution of a drug can cause significant variability in both activity and selectivity. Herein, we investigate the mechanism by which the anti-cancer agents, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and the clinically trialed, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), re-instate the efficacy of doxorubicin (DOX), in drug-resistant P-glycoprotein (Pgp)-expressing cells. Both Dp44mT and DpC potently target and kill Pgp-expressing tumors, while DOX effectively kills non-Pgp-expressing cancers. Thus, the combination of these agents should be considered as an effective rationalized therapy for potently treating advanced and resistant tumors that are often heterogeneous in terms of Pgp-expression. These studies demonstrate that both Dp44mT and DpC are transported into lysosomes via Pgp transport activity, where they induce lysosomal-membrane permeabilization to release DOX trapped within lysosomes. This novel strategy of loading lysosomes with DOX, followed by permeabilization with Dp44mT or DpC, results in the relocalization of stored DOX from its lysosomal 'safe house' to its nuclear targets, markedly enhancing cellular toxicity against resistant tumor cells. Notably, the combination of Dp44mT or DpC with DOX showed a very high level of synergism in multiple Pgp-expressing cell types, for example, cervical, breast and colorectal cancer cells. These studies revealed that the level of drug synergy was proportional to Pgp activity. Interestingly, synergism was ablated by inhibiting Pgp using the pharmacological inhibitor, Elacridar, or by inhibiting Pgp-expression using Pgp-silencing, demonstrating the importance of Pgp in the synergistic interaction. Furthermore, lysosomal-membrane stabilization inhibited the relocalization of DOX from lysosomes to the nucleus upon combination with Dp44mT or DpC, preventing synergism. This latter observation demonstrated the importance of lysosomal

  19. Synergistic bactericidal effect by combined exposure to Ag nanoparticles and UVA

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoxu; Toyooka, Tatsushi; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2013-08-01

    Broad and strong antimicrobial properties of silver (Ag) have been used for biomedical applications, water treatment, etc. In this study, a synergistic antibacterial effect between Ag nanoparticles (AgNPs) and ultraviolet (UV) light was examined. AgNPs (< 0.1 μm) with subsequent exposure to UVA (320–400 nm) showed pronounced toxicity in Escherichia coli, but micro-sized Ag particles (> 1 μm) with UVA and AgNPs with UVB (280–325 nm) did not. As significant bactericidal activity was also exhibited by hydrogen peroxide-treated AgNPs, the surface oxidation of AgNPs caused by UVA irradiation was considered to contribute to the enhanced antibacterial effect. Although no difference in NP-incorporation rates was observed with or without the surface oxidation of AgNPs, a particle size of less than 0.1 μm was a factor for AgNPs uptake and an essential requirement for the antimicrobial function of Ag particles. Incorporated AgNPs oxidized by UVA irradiation released larger amounts of Ag ion inside cells than reduced AgNPs, which reacted with intercellular molecules having –SH groups such as glutathione. The synergistic use of AgNPs and UVA could become a powerful tool with broad antimicrobial applications. Highlights: • Combined treatment with AgNPs and UV achieved a remarkable antibacterial effect in E. coli. • For the antibacterial effect, it is necessary to satisfy the following requirements: • 1) Translocation of nano-sized Ag particles inside E. coli. • 2) Oxidation of AgNPs by UVA, and extensive and persistent release of Ag{sup +} inside E. coli. • Ag{sup +} released inside cells reacted with intercellular molecules having –SH groups such as GSH.

  20. Synergistic antiviral effect in vitro of azidothymidine and amphotericin B methyl ester in combination on HIV infection

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Svenningsen, A

    1992-01-01

    The nucleoside analogue azidothymidine (AZT) and the methyl ester of amphotericin B (AME) were assayed for antiviral effect on HIV infection singly and in combination. Both compounds were effective in inhibiting HIV infection of MT-4 cells. At concentrations where either compound alone had no sig...... synergistic antiviral properties. Amphotericin B itself significantly reduced HIV infectivity in vitro and should not be used as an antifungal agent in cultures intended to propagate HIV....

  1. Combination of Antioxidants from Different Sources Could Offer Synergistic Benefits: A Case Study of Tea and Ginger Blend.

    Science.gov (United States)

    Makanjuola, Solomon A; Enujiugha, Victor N; Omoba, Olufunmilayo S; Sanni, David M

    2015-11-01

    Tea and ginger are plants with high antioxidant potential. Combinations of antioxidants from different sources could also produce synergistic antioxidant effects. This study investigated the influence of solvent on antioxidant content of tea, ginger, and tea + ginger blends. Under the investigated extraction conditions, water was the most effective extraction solvent to maximise peroxide scavenging and iron chelating activity of tea, ginger, and their blends. Aqueous ethanol was the most effective solvent to maximise ABTS radical scavenging activity and ethanol was the best solvent to maximise DPPH radical scavenging activity. A good multivariate regression model that explains the relationship between the total flavonoid content of the extracts and their antioxidant activities was obtained (R2 and Q2 of 0.93 and 0.83, respectively). Extracts of tea-ginger blends exhibited synergistic effects in their ABTS and DPPH radical scavenging activity.

  2. Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

    Science.gov (United States)

    Dang, Nhung T T; Sivakumaran, Haran; Harrich, David; Shaw, Paul N; Davis-Poynter, Nicholas; Coombes, Allan G A

    2014-10-01

    Polycaprolactone (PCL) matrices were simultaneously loaded with the antiviral agents, tenofovir (TFV) and nevirapine (NVP), in combination to provide synergistic activity in the prevention of HIV transmission through the vaginal route. TFV and NVP were incorporated in PCL matrices at theoretical loadings of 10%TFV-10% NVP, 5%TFV-5%NVP and 5%TFV-10%NVP, measured with respect to the PCL content of the matrices. Actual TFV loadings ranged from 2.1% to 4.2% equating to loading efficiencies of about 41-42%. The actual loadings of NVP were around half those of TFV (1.2-1.9%), resulting in loading efficiencies ranging from 17.2% to 23.5%. Approximately 80% of the initial content of TFV was released from the PCL matrices into simulated vaginal fluid (SVF) over a period of 30 days, which was almost double the cumulative release of NVP (40-45%). The release kinetics of both antivirals over 30 days were found to be described most satisfactorily by the Higuchi model. In vitro assay of release media containing combinations of TFV and NVP released from PCL matrices confirmed a potential synergistic/additive effect of the released antivirals on HIV-1 infection of HeLa cells. These findings indicate that PCL matrices loaded with combinations of TFV and NVP provide an effective strategy for the sustained vaginal delivery of antivirals with synergistic/additive activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synergistic effects of leflunomide and benazepril in streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Jin, Hua; Piao, Shang Guo; Jin, Ji Zhe; Jin, Ying Shun; Cui, Zhen Hua; Jin, Hai Feng; Zheng, Hai Lan; Li, Jin Ji; Jiang, Yu Ji; Yang, Chul Woo; Li, Can

    2014-01-01

    Leflunomide (LEF) and benazepril have renoprotective effects on diabetic nephropathy (DN) through their anti-inflammatory and anti-fibrotic activities. This study investigated whether combined treatment using LEF and benazepril affords superior protection compared with the respective monotherapies. Diabetes was induced with streptozotocin (STZ, 65 mg/kg) by intraperitoneal injection in male Wistar rats. Two weeks after STZ injection, diabetic rats were treated daily for 12 weeks with LEF (10 mg/kg), benazepril (10 mg/kg), or a combination of both. Basic parameters (body weight, fasting blood glucose level, and 24 h urinary protein excretion), histopathology, inflammatory [inflammatory cell infiltration (ED-1), monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor-2 (TLR-2)] and glomerulosclerotic factors [transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF)], and oxidative stress (8-hydroxy-2'-deoxyguanosine, 8-OHdG) were studied. Benazepril or LEF treatment significantly prevented body weight loss and 24 h urinary protein excretion induced by diabetes; combined treatment with LEF and benazepril further improved these parameters compared with giving each drug alone (all p benazepril and was further reduced by the combined administration of the two drugs (p benazepril provides synergistic effects in preventing DN. 2014 S. Karger AG, Basel

  4. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1975-01-01

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  5. Synergistic shortening of the bleeding time by desmopressin and ethamsylate in patients with various constitutional bleeding disorders.

    Science.gov (United States)

    Kobrinsky, N L; Israels, E D; Bickis, M G

    1991-01-01

    Desmopressin and ethamsylate were evaluated for possible synergistic effects on the bleeding time. The drugs were administered individually and together to 12 patients with markedly prolonged bleeding times known to be relatively or absolutely unresponsive to desmopressin alone. The bleeding disorders studied included Glanzmann's thrombasthenia (one), other disorders of platelet function (four), pseudo-von Willebrand disease (one), and von Willebrand disease type I (three), type II (two), and type III (one). Desmopressin alone shortened the bleeding time from 23.9 +/- 1.5 to 19.5 +/- 2.3 min (p = 0.03). Ethamsylate alone was without effect. Desmopressin and ethamsylate together shortened the bleeding time to 11.2 +/- 1.4 min (p less than 0.01 compared to baseline, p = 0.02 compared to desmopressin alone). The combination was ineffective in three patients, with Glanzmann's thrombasthenia (one), and von Willebrand disease type I (one) and type III (one). Toxic effects of the drugs were not observed. Five patients received desmopressin and ethamsylate prior to dental work with mandibular block (one), heart surgery requiring cardiopulmonary bypass (two), and adenotonsillectomy surgery (two). Normal hemostasis was achieved in each case. A synergistic shortening of the bleeding time was observed with the combination of desmopressin and ethamsylate in a wide range of bleeding disorders.

  6. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  7. In Silico-Based High-Throughput Screen for Discovery of Novel Combinations for Tuberculosis Treatment

    Science.gov (United States)

    Singh, Ragini; Ramachandran, Vasanthi; Shandil, Radha; Sharma, Sreevalli; Khandelwal, Swati; Karmarkar, Malancha; Kumar, Naveen; Solapure, Suresh; Saralaya, Ramanatha; Nanduri, Robert; Panduga, Vijender; Reddy, Jitendar; Prabhakar, K. R.; Rajagopalan, Swaminathan; Rao, Narasimha; Narayanan, Shridhar; Anandkumar, Anand; Datta, Santanu

    2015-01-01

    There are currently 18 drug classes for the treatment of tuberculosis, including those in the development pipeline. An in silico simulation enabled combing the innumerably large search space to derive multidrug combinations. Through the use of ordinary differential equations (ODE), we constructed an in silico kinetic platform in which the major metabolic pathways in Mycobacterium tuberculosis and the mechanisms of the antituberculosis drugs were integrated into a virtual proteome. The optimized model was used to evaluate 816 triplets from the set of 18 drugs. The experimentally derived cumulative fractional inhibitory concentration (∑FIC) value was within twofold of the model prediction. Bacterial enumeration revealed that a significant number of combinations that were synergistic for growth inhibition were also synergistic for bactericidal effect. The in silico-based screen provided new starting points for testing in a mouse model of tuberculosis, in which two novel triplets and five novel quartets were significantly superior to the reference drug triplet of isoniazid, rifampin, and ethambutol (HRE) or the quartet of HRE plus pyrazinamide (HREZ). PMID:26149995

  8. Risk of drug interaction: combination of antidepressants and other drugs

    Directory of Open Access Journals (Sweden)

    Miyasaka Lincoln Sakiara

    2003-01-01

    Full Text Available OBJECTIVE: To assess the frequency of combination of antidepressants with other drugs and risk of drug interactions in the setting public hospital units in Brazil. METHODS: Prescriptions of all patients admitted to a public hospital from November 1996 to February 1997 were surveyed from the hospital's data processing center in São Paulo, Brazil. A manual search of case notes of all patients admitted to the psychiatric unit from January 1993 to December 1995 and all patients registered in the affective disorders outpatient clinic in December 1996 was carried out. Patients taking any antidepressant were identified and concomitant use of drugs was checked. By means of a software program (Micromedex® drug interactions were identified. RESULTS: Out of 6,844 patients admitted to the hospital, 63 (0.9% used antidepressants and 16 (25.3% were at risk of drug interaction. Out of 311 patients in the psychiatric unit, 63 (20.2% used antidepressants and 13 of them (20.6% were at risk. Out of 87 patients in the affective disorders outpatient clinic, 43 (49.4% took antidepressants and 7 (16.2% were at risk. In general, the use of antidepressants was recorded in 169 patients and 36 (21.3% were at risk of drug interactions. Twenty different forms of combinations at risk of drug interactions were identified: four were classified as mild, 15 moderate and one severe interaction. CONCLUSION: In the hospital general units the number of drug interactions per patient was higher than in the psychiatric unit; and prescription for depression was lower than expected.

  9. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  10. The Goldilocks contract: The synergistic benefits of combining structure and autonomy for persistence, creativity, and cooperation.

    Science.gov (United States)

    Chou, Eileen Y; Halevy, Nir; Galinsky, Adam D; Murnighan, J Keith

    2017-09-01

    Contracts are commonly used to regulate a wide range of interactions and relationships. Yet relying on contracts as a mechanism of control often comes at a cost to motivation. Integrating theoretical perspectives from psychology, economics, and organizational theory, we explore this control-motivation dilemma inherent in contracts and present the Contract-Autonomy-Motivation-Performance-Structure (CAMPS) model, which highlights the synergistic benefits of combining structure and autonomy. The model proposes that subtle reductions in the specificity of a contract's language can boost autonomy, which increases intrinsic motivation and improves a range of desirable behaviors. Nine field and laboratory experiments found that less specific contracts increased task persistence, creativity, and cooperation, both immediately and longitudinally, because they boosted autonomy and intrinsic motivation. These positive effects, however, only occurred when contracts provided sufficient structure. Furthermore, the effects were limited to control-oriented clauses (i.e., legal clauses), and did not extend to coordination-oriented clauses (i.e., technical clauses). That is, there were synergistic benefits when a contract served as a scaffold that combined structure with general clauses. Overall, the current model and experiments identify a low-cost solution to the common problem of regulating social relationships: finding the right amount of contract specificity promotes desirable outcomes, including behaviors that are notoriously difficult to contract. The CAMPS model and the current set of empirical findings explain why, when, and how contracts can be used as an effective motivational tool. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Combination studies of platinum(II)-based metallointercalators with buthionine-S,R-sulfoximine, 3-bromopyruvate, cisplatin or carboplatin.

    Science.gov (United States)

    Garbutcheon-Singh, K Benjamin; Harper, Benjamin W J; Myers, Simon; Aldrich-Wright, Janice R

    2014-01-01

    With current chemotherapeutic treatment regimes often limited by adverse side effects, the synergistic combination of complexes with anticancer activity appears to offer a promising strategy for effective cancer treatment. This work investigates the anti-proliferative activity using a combination therapy approach where metallointercalators of the type [Pt(IL)(AL)](2+) (where IL is the intercalating ligand and AL is the ancillary ligand) are used in combination with currently approved anticancer drugs cisplatin and carboplatin and organic molecules buthionine-S,R-sulfoximine and 3-bromopyruvate. Synergistic relationships were observed, indicating a potential to decrease dose-dependent toxicity and improve therapeutic efficacy.

  12. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  13. Investigation of bioequivalence of a new fixed-dose combination of nifedipine and candesartan with the corresponding loose combination as well as the drug-drug interaction potential between both drugs under fasting conditions.

    Science.gov (United States)

    Brendel, Erich; Weimann, Boris; Dietrich, Hartmut; Froede, Christoph; Thomas, Dirk

    2013-09-01

    To determine the bioequivalence of a nifedipine and candesartan fixed-dose combination (FDC) with the corresponding loose combination, and to investigate the pharmacokinetic drug-drug interaction potential between both drugs. 49 healthy, white, male subjects received: 60 mg nifedipine and 32 mg candesartan FDC, the loose combination of 60 mg nifedipine GITS and 32 mg candesartan, 60 mg nifedipine GITS alone, or 32 mg candesartan alone in a randomized, non-blinded, 4-period, 4-way crossover design with each dosing following overnight fasting. Treatment periods were separated by washout periods of ≥ 5 days. Plasma samples were collected for 48 hours after dosing and assayed using a validated LC-MS/MS method. Bioequivalence between the FDC and the loose combination as well as the impact of combined treatment with both drugs on candesartan pharmacokinetics was evaluated in 47 subjects, while the corresponding impact of treatment with both drugs on nifedipine pharmacokinetics was assessed in 46 patients. For AUC(0-tlast) and Cmax the 90% confidence intervals (CIs) for the ratios of the FDC vs. the corresponding loose combination were within the acceptance range for bioequivalence of 80 - 125%. When comparing AUC(0-tlast) and Cmax of nifedipine and candesartan after dosing with the loose combination vs. each drug alone, the 90% CIs remained within the range of 80 - 125% indicating the absence of a clinically relevant pharmacokinetic drug-drug interaction. Nifedipine and candesartan as well as the combinations were well tolerated. The FDC containing 60 mg nifedipine and 32 mg candesartan was bioequivalent to the corresponding loose combination following single oral doses under fasting conditions. No clinically relevant pharmacokinetic drug-drug interaction between nifedipine and candesartan was observed.

  14. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Parth; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com [National Institute of Pharmaceutical Education and Research (NIPER), Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology (India)

    2015-01-15

    The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose.

  15. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy

    International Nuclear Information System (INIS)

    Soni, Parth; Kaur, Jasmine; Tikoo, Kulbhushan

    2015-01-01

    The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose

  16. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Jiri Ruzicka

    2018-01-01

    Full Text Available Systematic inflammatory response after spinal cord injury (SCI is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB open-field locomotor test, flat beam test. Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43. Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.

  17. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?

    Science.gov (United States)

    Ruzicka, Jiri; Urdzikova, Lucia Machova; Svobodova, Barbora; Amin, Anubhav G; Karova, Kristyna; Dubisova, Jana; Zaviskova, Kristyna; Kubinova, Sarka; Schmidt, Meic; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2018-01-01

    Systematic inflammatory response after spinal cord injury (SCI) is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG) are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg)] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg)] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test, flat beam test). Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining) and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43). Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES) were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf) related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.

  18. Drug-device combination products: regulatory landscape and market growth.

    Science.gov (United States)

    Bayarri, L

    2015-08-01

    Combination products are therapeutic and diagnostic products that combine drugs, devices and/or biological products, leading to safer and more effective treatments thanks to careful and precise drug targeting, local administration and individualized therapy. These technologies can especially benefit patients suffering from serious diseases and conditions such as cancer, heart disease, multiple sclerosis and diabetes, among others. On the other hand, drug-device combination products have also introduced a new dynamic in medical product development, regulatory approval and corporate interaction. Due to the increasing integration of drugs and devices observed in the latest generation of combination products, regulatory agencies have developed specific competences and regulations over the last decade. Manufacturers are required to fully understand the specific requirements in each country in order to ensure timely and accurate market access of new combination products, and the development of combination products involves a very specific pattern of interactions between manufacturers and regulatory agencies. The increased sophistication of the products brought to market over the last couple of decades has accentuated the need to develop drugs and devices collaboratively using resources from both industries, fostering the need of business partnering and technology licensing. This review will provide a global overview of the market trends, as well as (in the last section) an analysis of the drug-device combination products approved by the FDA during the latest 5 years. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  19. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells.

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V

    2015-02-01

    We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gallium and silicon synergistically promote osseointegration of dental implant in patients with osteoporosis.

    Science.gov (United States)

    Liu, Jinsong; Wu, Zuosu; He, Hongli; Cai, Kaiyong; Zhang, Hualin; Xu, Lihua

    2017-06-01

    Over the last few decades, a wide variety of dental implants have been successfully placed in jaw bones to restore tooth function. But major challenges still remain in patients with osteoporosis involving compromised osseointegration, and the therapeutic methods is far from optimism. Gallium can directly inhibit bone osteolysis, prevent bone calcium release and augment bone mass, which makes Ga unique among the potential antiresorptive drugs. Silicon, as an indispensable modulator in bone formation, presents its bone anabolic effects, while reduces, at least doesn't increase, bone resorption. We hypothesize that the combination of bone anabolic effects of Si and antiresorptive effects of Ga will result in synergistic effects on the improvement of osteointegration under osteoporotic condition. In our strategy, in order to maximize the efficacy while minimize the side effects of ions, a novel titania mesoporous layer fabricated by electrochemical anodization on the surface of titanium implant will be employed as a promising local drug delivery system. The synergistic effects of Ga and Si on improving osseointegration will be verified by animal experiments, and be furthered by clinical trials. Our hypothesis could help to create an option to improve success rate of dental implants in osteoporotic patients. Copyright © 2017. Published by Elsevier Ltd.

  1. Long-lasting insecticidal nets are synergistic with mass drug administration for interruption of lymphatic filariasis transmission in Nigeria.

    Directory of Open Access Journals (Sweden)

    Abel Eigege

    Full Text Available In central Nigeria Anopheles mosquitoes transmit malaria and lymphatic filariasis (LF. The strategy used for interrupting LF transmission in this area is annual mass drug administration (MDA with albendazole and ivermectin, but after 8 years of MDA, entomological evaluations in sentinel villages showed continued low-grade mosquito infection rates of 0.32%. After long-lasting insecticidal net (LLIN distribution by the national malaria program in late 2010, however, we were no longer able to detect infected vectors over a 24-month period. This is evidence that LLINs are synergistic with MDA in interrupting LF transmission.

  2. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition.

    Science.gov (United States)

    Pena-Miller, Rafael; Laehnemann, David; Jansen, Gunther; Fuentes-Hernandez, Ayari; Rosenstiel, Philip; Schulenburg, Hinrich; Beardmore, Robert

    2013-01-01

    Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.

  3. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition.

    Directory of Open Access Journals (Sweden)

    Rafael Pena-Miller

    Full Text Available Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.

  4. Interactions of DB75, a Novel Antimalarial Agent, with Other Antimalarial Drugs In Vitro▿

    OpenAIRE

    Purfield, Anne E.; Tidwell, Richard R.; Meshnick, Steven R.

    2008-01-01

    Pafuramidine is a novel orally active antimalarial. To identify a combination partner, we measured the in vitro antimalarial activities of the active metabolite, DB75, with amodiaquine, artemisinin, atovaquone, azithromycin, chloroquine, clindamycin, mefloquine, piperaquine, pyronaridine, tafenoquine, and tetracycline. None of the drugs tested demonstrated antagonistic or synergistic activity in combination with pafuramidine.

  5. The Vitamin E Analog Gamma-Tocotrienol (GT3 and Statins Synergistically Up-Regulate Endothelial Thrombomodulin (TM

    Directory of Open Access Journals (Sweden)

    Rupak Pathak

    2016-11-01

    Full Text Available Statins; a class of routinely prescribed cholesterol-lowering drugs; inhibit 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR and strongly induce endothelial thrombomodulin (TM; which is known to have anti-inflammatory; anti-coagulation; anti-oxidant; and radioprotective properties. However; high-dose toxicity limits the clinical use of statins. The vitamin E family member gamma-tocotrienol (GT3 also suppresses HMGCR activity and induces TM expression without causing significant adverse side effects; even at high concentrations. To investigate the synergistic effect of statins and GT3 on TM; a low dose of atorvastatin and GT3 was used to treat human primary endothelial cells. Protein-level TM expression was measured by flow cytometry. TM functional activity was determined by activated protein C (APC generation assay. Expression of Kruppel-like factor 2 (KLF2, one of the key transcription factors of TM, was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. TM expression increased in a dose-dependent manner after both atorvastatin and GT3 treatment. A combined treatment of a low-dose of atorvastatin and GT3 synergistically up-regulated TM expression and functional activity. Finally; atorvastatin and GT3 synergistically increased KLF2 expression. These findings suggest that combined treatment of statins with GT3 may provide significant health benefits in treating a number of pathophysiological conditions; including inflammatory and cardiovascular diseases.

  6. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    Science.gov (United States)

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  7. Intravenous microemulsion of docetaxel containing an anti-tumor synergistic ingredient (Brucea javanica oil: formulation and pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ma S

    2013-10-01

    Full Text Available Shilin Ma,1 Fen Chen,1 Xiaohui Ye,2 Yingjie Dong,2 Yingna Xue,1 Heming Xu,1 Wenji Zhang,1 Shuangshuang Song,1 Li Ai,2 Naixian Zhang,2 Weisan Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Liaoning Institute of Pharmaceutical Industry, Liaoning, The People's Republic of China Abstract: The purpose of this study was to develop a docetaxel microemulsion containing an anti-tumor synergistic ingredient (Brucea javanica oil and to investigate the characteristics of the microemulsion. Brucea javanica oil contains oleic acid and linoleic acids that have been shown by animal and human studies to inhibit tumor formation. The microemulsion containing Brucea javanica oil, medium-chain triglyceride, soybean lecithin, Solutol®HS 15, PEG 400, and water was developed for docetaxel intravenous administration. A formulation with higher drug content, lower viscosity, and smaller particle size was developed. The droplet size distribution of the dispersed phase of the optimized microemulsion was 13.5 nm, determined using a dynamic light scattering technique. The small droplet size enabled the microemulsion droplets to escape from uptake and phagocytosis by the reticuloendothelial system and increased the circulation time of the drug. The zeta potential was -41.3 mV. The optimized microemulsion was pale yellow, transparent, and non-opalescent in appearance. The value of the combination index was 0.58, showing that there was a synergistic effect when docetaxel was combined with Brucea javanica oil. After a single intravenous infusion dose (10 mg/kg in male Sprague Dawley rats, the area under the curve of the microemulsion was higher and the half-time was longer compared with that of docetaxel solution alone, and showed superior pharmacokinetic characteristics. These results indicate that this preparation of docetaxel in emulsion is likely to provide an excellent prospect for clinical tumor treatment. Keywords: microemulsion, docetaxel

  8. Multifunctionalized polyethyleneimine-based nanocarriers for gene and chemotherapeutic drug combination therapy through one-step assembly strategy

    Directory of Open Access Journals (Sweden)

    Jiang D

    2017-12-01

    Dox group (P<0.05 and the murine PCT group (P<0.05. These results indicated that the TRAIL + Dox synergistic antitumor effect could be achieved by PDT, which paves the way to gene–drug combination therapy for cancer. Keywords: multifunctional, gene therapy, chemotherapy, TRAIL, one-step assembly strategy, CAIR theory

  9. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  10. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria

    Science.gov (United States)

    Talei, Gholam-Reza; Mohammadi, Mohsen; Bahmani, Mahmoud; Kopaei, Mahmoud Rafieian

    2017-01-01

    Background: Infectious diseases have always been an important health issue in human communities. In the recent years, much research has been conducted on antimicrobial effects of nature-based compounds because of increased prevalence of antibiotic resistance. The present study was conducted to investigate synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Materials and Methods: In this experimental study, the synergistic effects of C. copticum and M. piperita essential oils with antibiotics on Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Staphylococcus epidermidis (ATCC 14990), and Listeria monocytogenes (ATCC 7644) were studied according to broth microdilution and the MIC and fractional inhibitory concentration (FIC) of these two essential oils determined. Results: C. copticum essential oil at 30 μg/ml could inhibit S. aureus, and in combination with vancomycin, decreased MIC from 0.5 to 0.12 μg/ml. Moreover, the FIC was derived 0.24 μg/ml which represents a potent synergistic effect with vancomycin against S. aureus growth. C. copticum essential oil alone or combined with other antibiotics is effective in treating bacterial infections. Conclusions: In addition, C. copticum essential oil can strengthen the activities of certain antibiotics, which makes it possible to use this essential oil, especially in drug resistance or to lower dosage or toxicity of the drugs. PMID:28929050

  11. Tretinoin-loaded lipid-core nanocapsules overcome the triple-negative breast cancer cell resistance to tretinoin and show synergistic effect on cytotoxicity induced by doxorubicin and 5-fluororacil.

    Science.gov (United States)

    Schultze, Eduarda; Buss, Julieti; Coradini, Karine; Begnini, Karine Rech; Guterres, Silvia S; Collares, Tiago; Beck, Ruy Carlos Ruver; Pohlmann, Adriana R; Seixas, Fabiana Kömmling

    2017-12-01

    Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1μM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Synergistic Efficacy of Aedes aegypti Antimicrobial Peptide Cecropin A2 and Tetracycline against Pseudomonas aeruginosa

    Science.gov (United States)

    Zheng, Zhaojun; Tharmalingam, Nagendran; Liu, Qingzhong; Kim, Wooseong; Fuchs, Beth Burgwyn; Zhang, Rijun; Vilcinskas, Andreas

    2017-01-01

    ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections. PMID:28483966

  13. Synergistic effect of aqueous extract of Telfaria occidentalis on the ...

    African Journals Online (AJOL)

    Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of ... Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan. 2. ... development of resistance to most of the earlier drugs.

  14. [Exploration and demonstration study on drug combination from clinical real world].

    Science.gov (United States)

    Xie, Yan-ming; Wang, Lian-xin; Wang, Yong-yan

    2014-09-01

    Drug combination is extensive in the clinical real world,which is an important part and the inherent requirements of the post-marketing evaluation of traditional Chinese medicine (TCM). The key issues and technology include multi-domain and multi-disciplinary such as the rationality, efficacy and safety evaluation of combination drug starting from clinical real world, study on component in vivo and mechanism of combination drug, the risk/benefit assessment and cost-benefit evaluation of combination drug and so on. The topic has been studied as clinical demonstration on combination therapy of variety of diseases such as coronary heart disease, stroke, insomnia, depression, hepatitis, herpes zoster, psoriasis and ectopic pregnancy. Meanwhile, multi-disciplinary dynamic innovation alliance of clinical drug combination has been presented, which can promote the academic development and improving service ability and level of TCM.

  15. Spin-labeled 1-alkyl-1-nitrosourea synergists of antitumor antibiotics.

    Science.gov (United States)

    Gadjeva, V; Koldamova, R

    2001-01-01

    A new method for synthesis of four spin-labeled structural analogues of the antitumor drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), using ethyl nitrite for nitrosation of the intermediate spin-labeled ureas has been described. In vitro synergistic effects of 1-ethyl-3-[4-(2,2,6,6-tetramethylpiperidine-1-oxyl)]-1-nitrosourea (3b) on the cytotoxicity of bleomycin and farmorubicin were found in human lymphoid leukemia tumor cells. We measured the tissue distribution of 3b in organ homogenates of C57BL mice by an electron paramagnetic resonance method. The spin-labeled nitrosourea was mainly localized in the lungs. Our results strongly support the development and validation of a new approach for synthesis of less toxic nitrosourea derivatives as potential synergists of antitumor drugs.

  16. Combination chemoprevention with grape antioxidants.

    Science.gov (United States)

    Singh, Chandra K; Siddiqui, Imtiaz A; El-Abd, Sabah; Mukhtar, Hasan; Ahmad, Nihal

    2016-06-01

    Antioxidant ingredients present in grape have been extensively investigated for their cancer chemopreventive effects. However, much of the work has been done on individual ingredients, especially focusing on resveratrol and quercetin. Phytochemically, whole grape represents a combination of numerous phytonutrients. Limited research has been done on the possible synergistic/additive/antagonistic interactions among the grape constituents. Among these phytochemical constituents of grapes, resveratrol, quercetin, kaempferol, catechin, epicatechin, and anthocyanins (cyanidin and malvidin) constitute more than 70% of the grape polyphenols. Therefore, these have been relatively well studied for their chemopreventive effects against a variety of cancers. While a wealth of information is available individually on cancer chemopreventive/anti-proliferative effects of resveratrol and quercetin, limited information is available regarding the other major constituents of grape. Studies have also suggested that multiple grape antioxidants, when used in combination, alone or with other agents/drugs show synergistic or additive anti-proliferative response. Based on strong rationale emanating from published studies, it seems probable that a combination of multiple grape ingredients alone or together with other agents could impart 'additive synergism' against cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lee, Young-Seob; Kang, Ok-Hwa; Choi, Jang-Gi; Oh, You-Chang; Chae, Hee-Sung; Kim, Jong Hak; Park, Hyun; Sohn, Dong Hwan; Wang, Zheng-Tao; Kwon, Dong-Yeul

    2008-06-01

    The antimicrobial killing activity toward methicillin-resistant Staphylococcus aureus (MRSA) has been a serious emerging global issue. New effective antimicrobials and/or new approaches to settle this issue are urgently needed. The oriental herb, Alpinia officinarum, has been used in Korea for several hundreds of years to treat various infectious diseases. As it is well known, one of the active constituents of Alpinia officinarum is galangin. Against the 17 strains, the minimum inhibitory concentrations (MICs) of galangin (GAL) were in the range of 62.5 ~ 125 microg/ml, and the MICs of gentamicin (GEN) ranged from 1.9 microg/ml to 2,000 microg/ml. The fractional inhibitory concentrations (FICs) of GAL, in combination with GEN, against 3 test strains were 0.4, 3.9, and 250 microg/ml, and were all 15.62 microg/ml in GEN. The FIC index showed marked synergism in the value range of 0.19 to 0.25. By determining time-kill curves, also confirmed the low synergism of the GAL and GEN combination against 4 h, 8 h, 12 h, and 24 h cultured MRSA. The time-kill study results indicated a low synergistic effect against 3 test strains. Thus, the mixture of GAL and GEN could lead to the development of new combination antibiotics against MRSA infection.

  18. Lessons from innovation in drug-device combination products.

    Science.gov (United States)

    Couto, Daniela S; Perez-Breva, Luis; Saraiva, Pedro; Cooney, Charles L

    2012-01-01

    Drug-device combination products introduced a new dynamic on medical product development, regulatory approval, and corporate interaction that provide valuable lessons for the development of new generations of combination products. This paper examines the case studies of drug-eluting stents and transdermal patches to facilitate a detailed understanding of the challenges and opportunities introduced by combination products when compared to previous generations of traditional medical or drug delivery devices. Our analysis indicates that the largest barrier to introduce a new kind of combination products is the determination of the regulatory center that is to oversee its approval. The first product of a new class of combination products offers a learning opportunity for the regulator and the sponsor. Once that first product is approved, the leading regulatory center is determined, and the uncertainty about the entire class of combination products is drastically reduced. The sponsor pioneering a new class of combination products assumes a central role in reducing this uncertainty by advising the decision on the primary function of the combination product. Our analysis also suggests that this decision influences the nature (pharmaceutical, biotechnology, or medical devices) of the companies that will lead the introduction of these products into the market, and guide the structure of corporate interaction thereon. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  20. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.

    1980-01-01

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  1. Synergistic effect of the combined treatment with gamma irradiation and sodium dichloroisocyanurate to control gray mold (Botrytis cinerea) on paprika

    International Nuclear Information System (INIS)

    Yoon, Minchul; Jung, Koo; Lee, Kwang-Youll; Jeong, Je-Yong; Lee, Ju-Woon; Park, Hae-Jun

    2014-01-01

    Gray mold (Botrytis cinerea) is one of the most major fungal pathogens in paprika. Generally, gamma irradiation over 1 kGy is effective for the control of fungal pathogens; however, a significant change in fruit quality (physical properties) on paprika was shown from gamma irradiation at over 0.6 kGy (p<0.05). Therefore, in this study, the synergistic disinfection effect of the combined treatment with gamma irradiation and sodium dichloroisocyanurate (NaDCC) was investigated to reduce the gamma irradiation dose. In an artificial inoculation experiment of B. cinerea isolated from naturally-infected postharvest paprika, fungal symptoms were observed in the stem and exocarp of paprika after conidial inoculation. From the sensitivity of gamma irradiation and NaDCC, B. cinerea conidia were fully inactivated by 4 kGy of gamma irradiation (D 10 value 0.99 kGy), and were fully inactivated by 50 ppm NaDCC treatment. The fungal symptoms were not detected by the dose-dependent gamma irradiation (>4 kGy) and NaDCC (>50 ppm). As a result of the combined treatment of gamma irradiation and NaDCC, the D 10 value was significantly reduced by 1.06, 0.88, 0.77, and 0.58 kGy (p<0.05). Moreover, fungal symptoms were more significantly reduced in combined treatment groups (gamma irradiation and NaDCC) than single treatment groups (gamma irradiation or NaDCC). These results suggest that combined treatment with irradiation and NaDCC treatment can be applied to preserve quality of postharvest paprika or other fruits. - Highlights: • Paprikas were treated with irradiation and NaDCC to control gray mold. • We confirmed that the combined treatment was synergistically affected. • The treatment can contribute to a reduction of postharvest losses caused by fungi. • This combined treatment can also reduce the doses of irradiation

  2. Intravenous microemulsion of docetaxel containing an anti-tumor synergistic ingredient (Brucea javanica oil): formulation and pharmacokinetics.

    Science.gov (United States)

    Ma, Shilin; Chen, Fen; Ye, Xiaohui; Dong, Yingjie; Xue, Yingna; Xu, Heming; Zhang, Wenji; Song, Shuangshuang; Ai, Li; Zhang, Naixian; Pan, Weisan

    2013-01-01

    The purpose of this study was to develop a docetaxel microemulsion containing an anti-tumor synergistic ingredient (Brucea javanica oil) and to investigate the characteristics of the microemulsion. Brucea javanica oil contains oleic acid and linoleic acids that have been shown by animal and human studies to inhibit tumor formation. The microemulsion containing Brucea javanica oil, medium-chain triglyceride, soybean lecithin, Solutol®HS 15, PEG 400, and water was developed for docetaxel intravenous administration. A formulation with higher drug content, lower viscosity, and smaller particle size was developed. The droplet size distribution of the dispersed phase of the optimized microemulsion was 13.5 nm, determined using a dynamic light scattering technique. The small droplet size enabled the microemulsion droplets to escape from uptake and phagocytosis by the reticuloendothelial system and increased the circulation time of the drug. The zeta potential was -41.3 mV. The optimized microemulsion was pale yellow, transparent, and non-opalescent in appearance. The value of the combination index was 0.58, showing that there was a synergistic effect when docetaxel was combined with Brucea javanica oil. After a single intravenous infusion dose (10 mg/kg) in male Sprague Dawley rats, the area under the curve of the microemulsion was higher and the half-time was longer compared with that of docetaxel solution alone, and showed superior pharmacokinetic characteristics. These results indicate that this preparation of docetaxel in emulsion is likely to provide an excellent prospect for clinical tumor treatment.

  3. Combined antiretroviral and anti- tuberculosis drug resistance ...

    African Journals Online (AJOL)

    these epidemics, many challenges remain.[3] Antiretroviral and anti-TB drug resistance pose considerable threats to the control of these epidemics.[4,5]. The breakdown in HIV/TB control within prisons is another emerging threat.[6,7] We describe one of the first reports of combined antiretroviral and anti-TB drug resistance ...

  4. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid–polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment. PMID:28331310

  5. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid-polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment.

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid-polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)- S - S -hexadecyl (mPEG- S - S -C 16 ), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment.

  6. Synergistic Combinations of a Pyrethroid Insecticide and an Emulsifiable Oil Formulation of Beauveria bassiana to Overcome Insecticide Resistance in Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M

    2017-08-01

    The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model

    DEFF Research Database (Denmark)

    Christensen, Louise; van Gennip, Maria; Jakobsen, Tim H

    2012-01-01

    Quorum sensing (QS)-deficient Pseudomonas aeruginosa biofilms formed in vitro are more susceptible to tobramycin than QS-proficient P. aeruginosa biofilms, and combination treatment with a QS inhibitor (QSI) and tobramycin shows synergistic effects on the killing of in vitro biofilms. We extended...

  8. PP22. PROGRESSING RADIOTHERAPY-DRUG COMBINATIONS TOWARDS EARLY PHASE CLINICAL TRIALS

    Science.gov (United States)

    Jones, Dr Hazel; Stock, Dr Julie; Chalmers, Prof Anthony

    2017-01-01

    Abstract The Radiotherapy-Drug Combinations consortium (RaDCom) works with UK-based investigators to design and deliver high quality preclinical projects evaluating specific radiotherapy-drug combinations. We have several collaborations with industry, from in vitro projects to understand the novel agent in the context of radiobiology, through to preclinical studies that will generate data to support the development of radiotherapy combination trials. RaDCom facilitates the coordination of industry interactions, triage new proposals, monitor active projects, and engages with the radiotherapy community to promote collaboration and networking (via a capability map). The CRUK New Agents Committee Preclinical Combination Grant scheme provides one of the funding options for these studies, with the potential to feed into early phase clinical trials via the ECMC Combinations Alliance. RaDCom also supports broader radiotherapy research initiatives, by working to improve preclinical quality assurance and identifying a route to registration for radiotherapy-drug treatments. These activities will place the UK at the forefront of radiotherapy-drug preclinical research and provide a significant incentive for pharmaceutical companies to invest in this area and utilise the RaDCom network. Further information can be found on our webpage: http://ctrad.ncri.org.uk/research-support/radiation-drug-combinations-radcom Successful projects from RaDCom can then move into early phase combinations trials within the Combinations Alliance. The Combinations Alliance supports early phase combination studies in the UK via the ECMC (Experimental Cancer Medicine Centres) network. It focuses on translational research, and enables clinical project teams to work with disease experts to set up investigator led trials. The CRUK Centre of Drug Development (CDD) supports these studies with further management and coordination ensuring more robust timelines and delivery. The Combinations Alliance framework

  9. In Vitro Synergistic Effects of Double and Triple Combinations of β-Lactams, Vancomycin, and Netilmicin against Methicillin-Resistant Staphylococcus aureus Strains

    Science.gov (United States)

    Rochon-Edouard, Stéphanie; Pestel-Caron, Martine; Lemeland, Jean-François; Caron, François

    2000-01-01

    Several studies have previously reported synergistic effects between vancomycin and a given β-lactam or a given aminoglycoside against methicillin-resistant Staphylococcus aureus (MRSA) strains. The aim of our study was to exhaustively compare the effects of different combinations of a β-lactam, vancomycin, and/or an aminoglycoside against 32 clinical MRSA strains with different aminoglycoside susceptibility patterns. The effects of 26 different β-lactam–vancomycin and 8 different aminoglycoside-vancomycin combinations were first studied using a disk diffusion screening method. The best interactions with vancomycin were observed with either imipenem, cefazolin, or netilmicin. By checkerboard studies, imipenem-vancomycin and cefazolin-vancomycin each provided a synergistic bacteriostatic effect against 22 strains; the mean fractional inhibitory concentration (FIC) indexes were 0.35 and 0.46 for imipenem-vancomycin and cefazolin-vancomycin, respectively. The vancomycin-netilmicin combination provided an indifferent effect against all of the 32 strains tested; the mean of FIC index was 1.096. The mean concentrations of imipenem, cefazolin, netilmicin, and vancomycin at which FIC indexes were calculated were clinically achievable. Killing experiments were then performed using imipenem, cefazolin, netilmicin, and vancomycin at one-half of the MIC, alone and in different combinations, against 10 strains. The vancomycin-netilmicin regimen was rarely bactericidal, even against strains susceptible to netilmicin. The imipenem-vancomycin and cefazolin-vancomycin combinations were strongly bactericidal against six and five strains, respectively. The addition of netilmicin markedly enhanced the killing activity of the combination of cefazolin or imipenem plus vancomycin, but only for the MRSA strains against which the β-lactam–vancomycin combinations had no bactericidal effect. It is noteworthy that the latter strains were both susceptible to netilmicin and

  10. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  11. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    Science.gov (United States)

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-03-01

    Full Text Available Bo Wu,1,2,* Shu-Ting Lu,1,* Liu-Jie Zhang,2 Ren-Xi Zhuo,2 Hai-Bo Xu,1 Shi-Wen Huang2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid–polymer hybrid nanoparticles (LPNPs drug delivery system composed of monomethoxy-poly(ethylene glycol-S-S-hexadecyl (mPEG-S-S-C16, soybean lecithin, and poly(d,l-lactide-co-glycolide (PLGA was used for codelivery of doxorubicin (DOX and a Chinese herb extract triptolide (TPL. Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs exhibited a high level of synergistic activation with low combination index (CI in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells. Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment. Keywords: triptolide, codelivery, reduction sensitive, synergistic effect

  13. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-04-01

    Full Text Available Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are used in medicinal products for prevention and treatment of many disorders. Considering that the golden aim of the pharmaceutical industries is using the most effective compounds with lower concentrations, determination of the best combination of the compounds with synergistic effects is important. In the present study, synergistic antioxidant effects of four phenolic compounds including caffeic acid, gallic acid, rosmarinic acid, chlorogenic acid and two flavonoids,  rutin and quercetin, have been investigated by FRAP (Ferric Reducing Antioxidant Power method. The synergistic effect was assessed by comparing the experimental antioxidant activity of the mixtures with calculated theoretical values and the interactions of the compounds were determined. The results showed that combination of gallic acid and caffeic acid demonstrated considerable synergistic effects (137.8% while other combinations were less potent. Among examined substances, rutin was the only one which had no effect on the other compounds. The results of ternary combinations of compounds demonstrated antagonistic effects in some cases. This was more considerable in mixture of rutin, caffeic acid, rosmarinic acid (-21.8%, chlorogenic acid, caffeic acid, rosmarinic acid (-20%, rutin, rosmarinic acid, gallic acid (-18.5% and rutin, chlorogenic acid, caffeic acid (-15.8%, while, combination of quercetin, gallic acid, caffeic acid (59.4% and quercetin, gallic acid, rutin (55.2% showed the most synergistic effects. It was concluded that binary and ternary combination of quercetin, rutin, caffeic acid

  14. Combinations of drugs in the Treatment of Obesity

    Directory of Open Access Journals (Sweden)

    Marcio C. Mancini

    2010-07-01

    Full Text Available Obesity is a chronic disease associated with excess morbidity and mortality. Clinical treatment, however, currently offers disappointing results, with very high rates of weight loss failure or weight regain cycles, and only two drugs (orlistat and sibutramine approved for long-term use. Drugs combinations can be an option for its treatment but, although widely used in clinical practice, very few data are available in literature for its validation. Our review focuses on the rationale for their use, with advantages and disadvantages; on combinations often used, with or without studies; and on new perspectives of combinations being studied mainly by the pharmaceutical industry.

  15. Enhancing effect of negative polypropylene electret on in vitro transdermal delivery of cyclosporine A solution and its synergistic effect with ethyl oleate

    International Nuclear Information System (INIS)

    Cui, L L; Liu, H Y; Ma, L; Liang, Y Y; Guo, X; Jiang, J

    2013-01-01

    In this study, the corona charged electrets at voltages of −500 V, −1000 V and −2000 V were made from polypropylene (PP) film. The cyclosporine A (CsA) and 10% ethyl oleate were chosen as the model drug and chemical enhancer, respectively. The charge storage stability of the electrets and the in vitro transdermal behaviour of the model drug in solution under different conditions were studied. The results indicate that the external electrostatic field of the negative PP electrets could penetrate through the rat skin and enhance the transdermal delivery of cyclosporine A. A synergistic effect on enhancing the transdermal delivery of cyclosporine A was observed by combining different surface potential negative PP electrets with 10% ethyl oleate, and the amount of transdermal delivery of CsA was greatly increased comparing with only application of electrets. Therefore, the combination application of electret and chemical enhancer could be a feasible strategy in enhancing transdermal delivery of small peptide drugs or some large molecular drugs.

  16. Theoretical Approach to Synergistic Interaction of Ionizing Radiation with Other Factors

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Petinb, Vladislav G.

    2005-01-01

    Living objects including men are never exposed to merely one harmful agent. Many physical, chemical, biological and social factors may simultaneously exert their deleterious influence to man and the environment. Risk assessment is generally performed with the simplest assumption that the factor under consideration acts largely independently of others. However, the combined exposure to two harmful agents could result in a higher effect than would be expected from the addition of the separate exposures to individual agents. Hence, there is a possibility that, at least at high exposures, the combined effect of ionizing radiation with other environmental factors can be resulted in a greater overall risk. The problem is not so clear for low intensity and there is no possibility of testing all conceivable combinations of agents. For further insight into the mode of synergistic interaction, discussed are a common feature of synergistic interaction display and a theoretical model to describe, optimize and predict the synergistic effects

  17. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement.

    Science.gov (United States)

    Dragicevic, Nina; Maibach, Howard

    2018-02-06

    Dermal and transdermal drug delivery (due to its non-invasiveness, avoidance of the first-pass metabolism, controlling the rate of drug input over a prolonged time, etc.) have gained significant acceptance. Several methods are employed to overcome the permeability barrier of the skin, improving drug penetration into/through skin. Among chemical penetration enhancement methods, nanocarriers have been extensively studied. When applied alone, nanocarriers mostly deliver drugs to skin and can be used to treat skin diseases. To achieve effective transdermal drug delivery, nanocarriers should be applied with physical methods, as they act synergistically in enhancing drug penetration. This review describes combined use of frequently used nanocarriers (liposomes, novel elastic vesicles, lipid-based and polymer-based nanoparticles and dendrimers) with the most efficient physical methods (microneedles, iontophoresis, ultrasound and electroporation) and demonstrates superiority of the combined use of nanocarriers and physical methods in drug penetration enhancement compared to their single use. Copyright © 2018. Published by Elsevier B.V.

  18. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  19. Neostigmine interactions with non steroidal anti-inflammatory drugs.

    Science.gov (United States)

    Miranda, Hugo F; Sierralta, Fernando; Pinardi, Gianni

    2002-04-01

    1. The common mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of the enzyme cyclo-oxygenase (COX), however, this inhibition is not enough to completely account for the efficacy of these agents in several models of acute pain. 2. It has been demonstrated that cholinergic agents can induce antinociception, but the nature of the interaction between these agents and NSAIDs drugs has not been studied. The present work evaluates, by isobolographic analysis, the interactions between the cholinergic indirect agonist neostigmine (NEO) and NSAIDs drugs, using a chemical algesiometric test. 3. Intraperitoneal (i.p.) or intrathecal (i.t.) administration of NEO and of the different NSAIDs produced dose-dependent antinociception in the acetic acid writhing test of the mouse. 4. The i.p. or i.t. co-administration of fixed ratios of ED(50) fractions of NSAIDs and NEO, resulted to be synergistic or supra-additive for the combinations ketoprofen (KETO) and NEO, paracetamol (PARA) and NEO) and diclofenac (DICLO) and NEO administered i.p. However, the same combinations administered i.t. were only additive. In addition, the combinations meloxicam (MELO) and NEO and piroxicam (PIRO) and NEO, administered either i.p. or i.t., were additive. 5. The results suggest that the co-administration of NEO with some NSAIDs (e.g. KETO, PARA or DICLO) resulted in a synergistic interaction, which may provide evidence of supraspinal antinociception modulation by the increased acetylcholine concentration in the synaptic cleft of cholinergic interneurons. The interaction obtained between neostigmine and the NSAIDs could carry important clinical implications.

  20. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  1. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    Science.gov (United States)

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  2. Mitochondrial genetic damage induced in yeast by a photoactivated furocoumarin in combination with ethidium bromide or ultraviolet light

    International Nuclear Information System (INIS)

    Juliani, M.H.; Hixon, S.; Moustacchi, E.

    1976-01-01

    Ethidium bromide (EB) and ultraviolet light (UV) in combination are known to produce a synergistic induction of 'petite' mutants in yeast. Two other agents were combined with EB, 3-Carbethoxypsoralene (3 CPs) activated by 365 nm light or γ rays. EB in combination with 3 CPs also resulted in an enhanced production of 'petite' mutants. After the photoaddition of 3 CPs in exponential phase cells, recovery of the 'petite' mutation during dark liquid holding was inhibited by the presence of EB producing an enhanced number of 'petite' mutants. The behavior of mitochondrial antibiotic resistance markers after individual and combined treatments with EB and 3 CPs indicates a random loss of markers after EB and a preferential loss of a certain region for the 3 CPs photoaddition. The combination of the two agents leads to an additivity of total drug marker losses rather than a synergistic loss. The combination of EB with γ rays produced no enhancement in 'petite' induction. A combination of UV and 3 CPs showed a synergistic interaction for 'petite' induction. These results indicate that the three agents, EB, UV and 3 CPs photoaddition may share a common repair step for mitochondrial lesions. (orig.) [de

  3. Selenium and sulindac are synergistic to inhibit intestinal tumorigenesis in Apc/p21 mice

    Directory of Open Access Journals (Sweden)

    Bi Xiuli

    2013-01-01

    Full Text Available Abstract Background Both selenium and non-steroidal anti-inflammatory drug (NSAID sulindac are effective in cancer prevention, but their effects are affected by several factors including epigenetic alterations and gene expression. The current study was designed to determine the effects of the combination of selenium and sulindac on tumor inhibition and the underlying mechanisms. Results We fed the intestinal tumor model Apc/p21 mice with selenium- and sulindac-supplemented diet for 24 weeks, and found that the combination of selenium and sulindac significantly inhibited intestinal tumorigenesis, in terms of reducing tumor incidence by 52% and tumor multiplicities by 80% (p Conclusions The selenium is synergistic with sulindac to exert maximal effects on tumor inhibition. This finding provides an important chemopreventive strategy using combination of anti-cancer agents, which has a great impact on cancer prevention and has a promising translational potential.

  4. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    Science.gov (United States)

    2017-12-31

    Composite Damage and Failure Analysis Combinin Synergistic Damage Mechanics and Peridynamics 6. AUTHOR(S) 5b. GRANT NUMBER N00014-16-1-2173 5c...NUMBER 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 College...1.3 related to Synergistic Damage Mechanics and Tasks 2.2 and 2.4 related to Peridynamics, as described in the project proposal. The activities

  5. Tolerability of continuous subcutaneous octreotide used in combination with other drugs.

    Science.gov (United States)

    Mercadante, S

    1995-01-01

    Continuous subcutaneous infusion of octreotide combined with other drugs has proved to be useful in some circumstances in palliative care setting when theoral route is no longer available. Forty-four patients were administered octreotide alone or in combination with other drugs in the same syringe driver for symptom control in advanced cancer patients. Good tolerability and compatibility were observed without visual drug precipitation for a period of 48 hours at room temperature, the standard clinical situation in patients' homes. Such a combination of drugs administered by the subcutaneous route makes possible the adequate control of symptoms in the final days of life.

  6. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.

    Science.gov (United States)

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-12-10

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana.

    Science.gov (United States)

    Freitas, Rosa; Almeida, Ângela; Calisto, Vânia; Velez, Cátia; Moreira, Anthony; Schneider, Rudolf J; Esteves, Valdemar I; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2016-01-15

    Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clam Scrobicularia plana. For this, a long-term exposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs.

  9. Determining animal drug combinations based on efficacy and safety.

    Science.gov (United States)

    Kratzer, D D; Geng, S

    1986-08-01

    A procedure for deriving drug combinations for animal health is used to derive an optimal combination of 200 mg of novobiocin and 650,000 IU of penicillin for nonlactating cow mastitis treatment. The procedure starts with an estimated second order polynomial response surface equation. That surface is translated into a probability surface with contours called isoprobs. The isoprobs show drug amounts that have equal probability to produce maximal efficacy. Safety factors are incorporated into the probability surface via a noncentrality parameter that causes the isoprobs to expand as safety decreases, resulting in lower amounts of drug being used.

  10. Synergistic attenuation of myocardial fibrosis in spontaneously hypertensive rats by joint treatment with benazepril and candesartan.

    Science.gov (United States)

    Meng, Guoliang; Wu, Feng; Yang, Liyun; Zhu, Hongyan; Gu, Jinhua; He, Min; Xu, Jiliang

    2009-07-01

    Benazepril, an angiotensin-converting enzyme inhibitor, and candesartan, an angiotensin receptor blocker, are common drugs for treating hypertension. This study aimed to investigate the enhanced attenuation of myocardial fibrosis in spontaneously hypertensive rats (SHRs) possibly induced by joint treatment with benazepril and candesartan and the possible involvement of transforming growth factor beta1 (TGF-beta1)-Smad signaling pathway. SHRs were treated with benazepril at 10 mg.kg.d, candesartan at 4 mg.kg.d, and a combination of 2 drugs at half dose, respectively, for 12 weeks. Echocardiography and histology indicated that joint treatment with 2 drugs more significantly inhibited myocardial fibrosis in SHRs than either monotherapy, as evidenced by the changes in cardiac structural parameters, ultrasonic integrated backscatters, collagen volume fraction, and perivascular collagen area. The collagen analyses further revealed that significant decreases in total collagen concentration, the ratio of collagen type I to type III, and collagen cross-linking were found after the enhanced attenuation of myocardial fibrosis. Western blot analysis showed that the protein expression of TGF-beta1 and Smad3 was significantly decreased after joint treatment with 2 drugs. We conclude that synergistic attenuation of myocardial fibrosis in SHRs is produced by combined use of benazepril and candesartan possibly through the modulation of TGF-beta/Smad signaling proteins.

  11. Intravenous microemulsion of docetaxel containing an anti-tumor synergistic ingredient (Brucea javanica oil): formulation and pharmacokinetics

    Science.gov (United States)

    Ma, Shilin; Chen, Fen; Ye, Xiaohui; Dong, Yingjie; Xue, Yingna; Xu, Heming; Zhang, Wenji; Song, Shuangshuang; Ai, Li; Zhang, Naixian; Pan, Weisan

    2013-01-01

    The purpose of this study was to develop a docetaxel microemulsion containing an anti-tumor synergistic ingredient (Brucea javanica oil) and to investigate the characteristics of the microemulsion. Brucea javanica oil contains oleic acid and linoleic acids that have been shown by animal and human studies to inhibit tumor formation. The microemulsion containing Brucea javanica oil, medium-chain triglyceride, soybean lecithin, Solutol®HS 15, PEG 400, and water was developed for docetaxel intravenous administration. A formulation with higher drug content, lower viscosity, and smaller particle size was developed. The droplet size distribution of the dispersed phase of the optimized microemulsion was 13.5 nm, determined using a dynamic light scattering technique. The small droplet size enabled the microemulsion droplets to escape from uptake and phagocytosis by the reticuloendothelial system and increased the circulation time of the drug. The zeta potential was −41.3 mV. The optimized microemulsion was pale yellow, transparent, and non-opalescent in appearance. The value of the combination index was 0.58, showing that there was a synergistic effect when docetaxel was combined with Brucea javanica oil. After a single intravenous infusion dose (10 mg/kg) in male Sprague Dawley rats, the area under the curve of the microemulsion was higher and the half-time was longer compared with that of docetaxel solution alone, and showed superior pharmacokinetic characteristics. These results indicate that this preparation of docetaxel in emulsion is likely to provide an excellent prospect for clinical tumor treatment. PMID:24179332

  12. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  13. Comparison between oral and intra-articular antinociceptive effect of dexketoprofen and tramadol combination in monosodium iodoacetate-induced osteoarthritis in rats.

    Science.gov (United States)

    Cialdai, Cecilia; Giuliani, Sandro; Valenti, Claudio; Tramontana, Manuela; Maggi, Carlo Alberto

    2013-08-15

    Dexketoprofen and tramadol, alone or in combination, were evaluated after oral or intra-articular administration on knee osteoarthritis nociception induced by intra-articular (i.ar.) monosodium iodoacetate (MIA, 1 mg/25 µl) in the rat right knee while the left knee received saline (25 µl). Seven days after MIA treatment, dexketoprofen, tramadol, their combination or the vehicle were administered. Nociception was evaluated as alteration in hind limb weight distribution with Incapacitance tester at different time-points after drug administration. Oral dexketoprofen (0.1-1 mg/kg) or tramadol (0.5-5 mg/kg) induced maximal antinociception at 1 and 5 mg/kg, respectively. Their combination dose-dependently increased the intensity and duration of antinociception, that was additive and lasted up to 3 days. Also the intra-articular administration of dexketoprofen or tramadol (10-100 µg/25 µl) inhibited MIA-induced nociception, and the combination of the lower doses (10 µg/25 µl) produced a long lasting more than additive antinociceptive effect indicating a synergistic interaction between the two drugs. This effect was significantly reduced by naloxone (10 μg/25 μl, i.ar.) co-administered with both compounds. The intra-articular administration of both drugs at 10 µg/25 µl in the contralateral control knee joint provoked a marked synergistic antinociceptive effect indicating significant systemic diffusion through synovial membrane. The oral or intra-articular combination of dexketoprofen and tramadol produced additive or synergistic antinociceptive effects, respectively, in the model of MIA-induced osteoarthritis in rats, that might allow to obtain therapeutic advantages with lower side effects. © 2013 Elsevier B.V. All rights reserved.

  14. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Synergistic cytotoxic action of vitamin C and vitamin K3.

    Science.gov (United States)

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  16. The cytotoxic effects of regorafenib in combination with protein kinase D inhibition in human colorectal cancer cells

    Science.gov (United States)

    Wei, Ning; Chu, Edward; Wu, Shao-yu; Wipf, Peter; Schmitz, John C.

    2015-01-01

    Metastatic colorectal cancer (mCRC) remains a major public health problem, and diagnosis of metastatic disease is usually associated with poor prognosis. The multi-kinase inhibitor regorafenib was approved in 2013 in the U.S. for the treatment of mCRC patients who progressed after standard therapies. However, the clinical efficacy of regorafenib is quite limited. One potential strategy to improve mCRC therapy is to combine agents that target key cellular signaling pathways, which may lead to synergistic enhancement of antitumor efficacy and overcome cellular drug resistance. Protein kinase D (PKD), a family of serine/threonine kinases, mediates key signaling pathways implicated in multiple cellular processes. Herein, we evaluated the combination of regorafenib with a PKD inhibitor in several human CRC cells. Using the Chou-Talalay model, the combination index values for this combination treatment demonstrated synergistic effects on inhibition of cell proliferation and clonal formation. This drug combination resulted in induction of apoptosis as determined by flow cytometry, increased PARP cleavage, and decreased activation of the anti-apoptotic protein HSP27. This combination also yielded enhanced inhibition of ERK, AKT, and NF-κB signaling. Taken together, PKD inhibition in combination with regorafenib appears to be a promising strategy for the treatment of mCRC. PMID:25544765

  17. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle.

    Science.gov (United States)

    Jiang, Cuiping; Zhao, Yi; Yang, Yun; He, Jianhua; Zhang, Wenli; Liu, Jianping

    2018-03-05

    Recombinant high-density lipoprotein (rHDL) displays a similar anti-atherosclerotic effect with native HDL and could also be served as a carrier of cardiovascular drug for atherosclerotic plaque targeting. In our previous studies, rHDL has shown a more potent anti-atherosclerotic efficacy as compared to the other conventional nanoparticles with a payload of lovastatin (LS). Therefore, we hypothesized that a synergistic anti-atherosclerotic effect of the rHDL carrier and the encapsulated LS might exist. In this study, the dose-effect relationships and the combined effect of the rHDL and LS were quantitatively evaluated in RAW 264.7 macrophage cells using the median-effect analysis, in which the rHDL carrier was regarded as a drug combined. Median-effect analysis suggested that rHDL and LS exerted a desirable synergistic inhibition on the oxLDL internalization at a ratio of 6:1 ( D m,LS : D m,rHDL ) in RAW 264.7 macrophage cells. About 50% of the reduction on the intracellular lipid contents was found when RAW264.7 cells were treated with LS-loaded rHDLs at their respective median-effect dose ( D m ) concentrations and a synergistic effect on the mediating cholesterol efflux was also observed, which verified the accuracy of the results obtained from the median-effect analysis. The mechanism underlying the synergistic effect of the rHDL carrier and the drug might be attributed to their potent inhibitory effects on SR-A expression. In conclusion, the median-effect analysis was proven to be a feasible method to quantitatively evaluate the synergistic effect of the biofunctional carrier and the drug encapsulated.

  18. [Combination drug therapy in patients with BPH].

    Science.gov (United States)

    Kuzmenko, A V; Kuzmenko, V V; Gyaurgiev, T A

    2018-03-01

    Introuction. One of the risk factors for LUTS is an infravesical obstruction, which is most often caused by benign prostatic hyperplasia (BPH). BPH symptoms are formed due to three components: static (mechanical), dynamic, and impaired functional capacity of the bladder. Medical treatment with 1-blockers decreases the outflow obstruction. 5-alpha reductase inhibitors are used to inhibit the static component of BPH. To investigate the effectiveness of various modifications of medical therapy of BPH using -blockers and 5-reductase inhibitors and combinations thereof. The study comprised 90 BPH patients who were divided into three groups, with each group containing 30 people. Patients of group I, II and III received monotherapy with -blockers, a combination of 5-reductase and -blockers, and fixed-dose combination drug Duodart, respectively. Evaluation of the treatment effectiveness included filling out voiding diaries, completing the I-PSS and QL questionnaires, uroflowmetry, transrectal ultrasonography of the prostate and estimation of the incidence of adverse effects. Also, compliance with the treatment was evaluated, and the number of patients who had episodes of acute urinary retention and required surgical treatment during the 12 month treatment course was registered. Compared to monotherapy, combination therapy with -blockers and 5-reductase inhibitors more effectively reduces the LUTS, increases Qmax and prevents the disease progression, which manifests in a lower incidence of AUR and fewer surgical interventions in groups II and III. However, the combination therapy can be associated with some side effects. Patients who received fixed-dose combination drug Duodart had a greater compliance rate than patients on the combination of drugs, which, in our opinion, is associated with fewer cases of AUR and surgical interventions. The use of Duodart in patients with BPH effectively alleviates LUTS and reduces the risk of the disease progression, which manifests itself

  19. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells

    Directory of Open Access Journals (Sweden)

    Wu C

    2017-10-01

    Full Text Available Chao Wu, Jie Xu, Yanna Hao, Ying Zhao, Yang Qiu, Jie Jiang, Tong Yu, Peng Ji, Ying Liu Pharmacy School, Jinzhou Medical University, Jinzhou, China Abstract: In this study, we developed a lipid-coated hollow calcium phosphate (LCP nanoparticle for the combined application of two chemotherapeutic drugs to human lung cancer A549 cells. Hydrophilic doxorubicin (DOX was incorporated into the hollow structure of hollow calcium phosphate (HCP, and a lipid bilayer containing hydrophobic paclitaxel (PTX was subsequently coated on the surface of HCP. The study on combinational effects demonstrated that the combination of DOX and PTX at a mass ratio of 12:1 showed a synergistic effect against A549 cells. The particle size, zeta potential, and encapsulation efficiency were measured to obtain optimal values: particle size was 335.0 3.2 nm, zeta potential -41.1 mV, and encapsulation efficiency 80.40%±2.24%. An in vitro release study indicated that LCP produced a sustained drug release. A549 cells had a better uptake of LCP with good biocompatibility. Furthermore, in vitro cytotoxicity experiment, apoptosis analysis, in vivo anti-tumor efficacy and protein expression analysis of Bax, Bcl-2, and Caspase-3 demonstrated that the co-delivery system based on LCP had significant synergistic anti-tumor activity. All conclusions suggested that LCP is a promising platform for co-delivery of multiple anti-tumor drugs. Keywords: doxorubicin, paclitaxel, co-delivery, lipid, hollow calcium phosphate, lung cancer cell

  20. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acetaminophen and non-steroidal anti-inflammatory drugs interact with morphine and tramadol analgesia for the treatment of neuropathic pain in rats.

    Science.gov (United States)

    Shinozaki, Tomonari; Yamada, Toshihiko; Nonaka, Takahiro; Yamamoto, Tatsuo

    2015-06-01

    Although non-steroidal anti-inflammatory drugs and acetaminophen have no proven efficacy against neuropathic pain, they are frequently prescribed for neuropathic pain patients. We examined whether the combination of opioids (tramadol and morphine) with indomethacin or acetaminophen produce favorable effects on neuropathic pain and compared the efficacy for neuropathic pain with that for inflammatory pain. The carrageenan model was used as the inflammatory pain model while the tibial neuroma transposition (TNT) model was used as the neuropathic pain model. The tibial nerve is transected in the TNT model, with the tibial nerve stump then transpositioned to the lateral aspect of the hindlimb. Neuropathic pain (mechanical allodynia and neuroma pain) is observed after TNT injury. Drugs were administered orally. In the carrageenan model, all drugs produced anti-allodynic effects and all drug combinations, but not tramadol + indomethacin combination, produced synergistic anti-allodynic effects. In the TNT model, tramadol and morphine, but not acetaminophen and indomethacin, produced anti-neuropathic pain effects. In the combination, with the exception of morphine + acetaminophen combination, both acetaminophen and indomethacin reduced the 50% effective dose (ED50) of tramadol and morphine as compared with the ED50s for the single drug study in the TNT model. The ED50s of tramadol and morphine in the carrageenan combination test were not statistically significantly different from the ED50s in the TNT model combination study. The combination of opioids with indomethacin or acetaminophen produced a synergistic analgesic effect both in inflammatory and neuropathic pain with some exceptions. The efficacy of these combinations for neuropathic pain was not different from that for inflammatory pain.

  2. Evaluation of the cytotoxicity of the Bithionol-paclitaxel combination in a panel of human ovarian cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi N Ayyagari

    Full Text Available Previously, Bithionol (BT was shown to enhance the chemosensitivity of ovarian cancer cell lines to cisplatin treatment. In the present study, we focused on the anti-tumor potential of the BT-paclitaxel combination when added to a panel of ovarian cancer cell lines. This in vitro study aimed to 1 determine the optimum schedule for combination of BT and paclitaxel and 2 assess the nature and mechanism(s underlying BT-paclitaxel interactions. The cytotoxic effects of both drugs either alone or in combination were assessed by presto-blue cell viability assay using six human ovarian cancer cell lines. Inhibitory concentrations to achieve 50% cell death (IC50 were determined for BT and paclitaxel in each cell line. Changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27 were determined via immunoblot. Luminescent and colorimetric assays were used to determine caspases 3/7 and autotaxin (ATX activity. Cellular reactive oxygen species (ROS were measured by flow cytometry. Our results show that the efficacy of the BT-paclitaxel combination depends upon the concentrations and sequence of addition of paclitaxel and BT. Pretreatment with BT followed by paclitaxel resulted in antagonistic interactions whereas synergistic interactions were observed when both drugs were added simultaneously or when cells were pretreated with paclitaxel followed by BT. Synergistic interactions between BT and paclitaxel were attributed to increased ROS generation and enhanced apoptosis. Decreased expression of pro-survival factors (XIAP, bcl-2, bcl-xL and increased expression of pro-apoptotic factors (caspases 3/7, PARP cleavage was observed. Additionally, increased expression of key cell cycle regulators p21 and p27 was observed. These results show that BT and paclitaxel interacted synergistically at most drug ratios which, however, was highly dependent on the sequence of the addition of drugs. Our results suggest that BT-paclitaxel combination therapy may be

  3. PHARMACOECONOMIC ANALYSIS OF ANTIHYPERTENSIVE DRUG COMBINATIONS USE

    Directory of Open Access Journals (Sweden)

    E. I. Tarlovskaya

    2015-09-01

    Full Text Available Aim. To pursue pharmacoeconomic analysis of two drug combinations of ACE inhibitor (enalapril and diuretic.Material and methods. Patients with arterial hypertension degree 2 and diabetes mellitus type 2 without ischemic heart disease (n=56 were included into the study. Blood pressure (BP dynamics and cost/effectiveness ratio were evaluated.Results. In group A (fixed combination of original enalapril/hydrochlorothiazide 61% of patients achieved target BP level with initial dose, and the rest 39% of patients – with double dose. In group B (non-fixed combination of generic enalapril/indapamide 60% of patients achieved the target BP with initial dose of drugs, 33% - with double dose of ACE inhibitor, and 7% - with additional amlodipine administration. In patients of group A systolic BP (SBP reduction was 45.82±1.23 mm Hg by the 12th week vs. 40.0±0.81 mm Hg in patients of group B; diastolic BP (DBP reduction was 22.47±1.05 mm Hg and 18.76±0.70 mm Hg, respectively, by the 12th week of treatment. In the first month of treatment costs of target BP achievement was 298.62 rubles per patient in group A, and 299.50 rubles – in group B; by the 12th week of treatment – 629.45 and 631.22 rubles, respectively. Costs of SBP and DBP reduction by 1 mm Hg during 12 weeks of therapy were 13 and 27 rubles per patient, respectively, in group A, and 16 and 34 rubles per patient, respectively, in group B.Conclusion. The original fixed combination (enalapril+hydrochlorothiazide proved to be more clinically effective and more cost effective in the treatment of hypertensive patients in comparison with the non-fixed combination of generic drugs (enalapril+indapamide.

  4. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Combination of Albendazole and 2-Methoxyestradiol significantly improves the survival of HCT-116 tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Ehteda, Anahid; Galettis, Peter; Pillai, Krishna; Morris, David L

    2013-01-01

    Albendazole (ABZ) is a microtubule-targeting anthelmintic with a remarkable activity against a variety of human cancer cells. In this study, we examined if the antitumor activity of ABZ could be enhanced by its combination with other microtubule-binding agents. The interactions between ABZ and microtubule-binding agents, paclitaxel, vinblastine, colchicine, and 2-methoxyestradiol were characterized using median effect analysis method in HCT-116 colorectal cancer cells and DU145 prostate cancer cell line. The mechanism underlying the synergistic interaction related to tubulin polymerization and apoptosis was then investigated. Finally, the effect of the combination therapy on the survival of HCT-116 tumor-bearing nude mice was evaluated. Among the tested drugs, a synergistic anti-proliferative effect was observed with the combination of low concentrations of ABZ plus colchicine and ABZ plus 2-methoxyestradiol (2ME). Exploring the mechanism of the interaction between ABZ and 2ME revealed that the combination therapy synergistically activated the extrinsic pathway of apoptosis. Consistent with in vitro results, the combination of low concentration of ABZ with 2ME prolonged the survival of mice-bearing HCT-116 tumors. High concentration of ABZ in combination with 2ME, however, proved to be less effective than ABZ alone. The combination of low doses of ABZ and 2ME has shown promising results in our pre-clinical model. Additionally, the finding that the combination of two microtubule-binding agents that share the same binding site can act synergistically may lead to the development of new therapeutic strategies in cancer treatment

  6. Synergy of irofulven in combination with other DNA damaging agents: synergistic interaction with altretamine, alkylating, and platinum-derived agents in the MV522 lung tumor model.

    Science.gov (United States)

    Kelner, Michael J; McMorris, Trevor C; Rojas, Rafael J; Estes, Leita A; Suthipinijtham, Pharnuk

    2008-12-01

    Irofulven (MGI 114, NSC 683863) is a semisynthetic derivative of illudin S, a natural product present in the Omphalotus illudins (Jack O'Lantern) mushroom. This novel agent produces DNA damage, that in contrast to other agents, is predominately ignored by the global genome repair pathway of the nucleotide excision repair (NER)(2) system. The aim of this study was to determine the antitumor activity of irofulven when administered in combination with 44 different DNA damaging agents, whose damage is in general detected and repaired by the genome repair pathway. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with different DNA damaging agents. Two main classes of DNA damaging agents, platinum-derived agents, and select bifunctional alkylating agents, demonstrated in vivo synergistic or super-additive interaction with irofulven. DNA helicase inhibiting agents also demonstrated synergy in vitro, but an enhanced interaction with irofulven could not be demonstrated in vivo. There was no detectable synergistic activity between irofulven and agents capable of inducing DNA cleavage or intercalating into DNA. These results indicate that the antitumor activity of irofulven is enhanced when combined with platinum-derived agents, altretamine, and select alkylating agents such as melphalan or chlorambucil. A common factor between these agents appears to be the production of intrastrand DNA crosslinks. The synergistic interaction between irofulven and other agents may stem from the nucleotide excision repair system being selectively overwhelmed at two distinct points in the pathway, resulting in prolonged stalling of transcription forks, and subsequent initiation of apoptosis.

  7. JS-K, an arylating nitric oxide (NO) donor, has synergistic anti-leukemic activity with cytarabine (ARA-C).

    Science.gov (United States)

    Shami, Paul J; Maciag, Anna E; Eddington, Jordan K; Udupi, Vidya; Kosak, Ken M; Saavedra, Joseph E; Keefer, Larry K

    2009-11-01

    We have designed prodrugs that release nitric oxide (NO) on metabolism by glutathione S-transferases (GST). This design exploits the upregulation of GST in acute myeloid leukemia (AML) cells. O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-leukemic activity. HL-60 myeloid leukemia cells were used for in vitro studies of the combination of JS-K with daunorubicin (DAUNO), cytarabine (ARA-C) or etoposide (ETOP) using the median effect method to determine synergistic, antagonistic, or additive effects. Combinations of JS-K added simultaneously, 2h before or 2h after the other compounds were used. JS-K and DAUNO were antagonistic in all three drug sequences. JS-K and ETOP were also antagonistic but to a lesser degree. JS-K and ARA-C showed strong synergy. The combination index at the 50% fraction affected was 0.37+/-0.23, 0.24+/-0.27, and 0.15+/-0.11 for simultaneous, JS-K first and ARA-C first additions, respectively. JS-K by itself induced DNA strand breaks at relatively high concentrations. However, at submicromolar concentrations, it significantly augmented ARA-C-induced DNA strand breaks. NMR spectroscopy revealed no evidence of chemical interaction between JS-K and the other chemotherapeutic agents. We conclude that ARA-C and JS-K have synergistic anti-leukemic activity and warrant further exploration in combination.

  8. Predicting the Toxicity of Adjuvant Breast Cancer Drug Combination Therapy

    Science.gov (United States)

    2013-03-01

    Neratinib Versus Lapatinib Plus Capecitabine For ErbB2 Positive Advanced Breast Cancer Active, not recruiting No Results Available YES neratinib -9...Drug: Neratinib |Drug: Lapatinib|Drug: Capecitabine Efficacy and Safety of BMS-690514 in Combination With Letrozole to Treat Metastatic Breast Cancer

  9. Cancer treatment: the combination of vaccination with other therapies

    DEFF Research Database (Denmark)

    Andersen, M.H.; Sorensen, R.B.; Schrama, D.

    2008-01-01

    approach to fight cancer, the combination with additional therapy could create a number of synergistic effects. Herein we discuss the possibilities and prospects of vaccination when combined with other treatments. In this regard, cell death upon drug exposure may be immunogenic or non-immunogenic depending...... and endothelial cells. The efficacy of therapeutic vaccination against cancer will over the next few years be studied in settings taking advantage of strategies in which vaccination is combined with other treatment modalities. These combinations should be based on current knowledge not only regarding the biology...... of the cancer cell per se, but also considering how treatment may influence the malignant cell population as well as the immune system Udgivelsesdato: 2008/11...

  10. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.

    Science.gov (United States)

    Yonucu, Sirin; Yιlmaz, Defne; Phipps, Colin; Unlu, Mehmet Burcin; Kohandel, Mohammad

    2017-09-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor.

  11. THE ANTIBACTERIAL EFFECT OF SOME MEDICINAL PLANTS (INULA VISCOSA, ANACYCLUS VALENTINUS AND THEIR SYNERGISTIC INTERACTION WITH ANTIBIOTIC DRUGS

    Directory of Open Access Journals (Sweden)

    K. Side Larbi

    2016-05-01

    Full Text Available With the emergence of multidrug-resistant organisms, combining medicinal plants with synthetic medicines against resistant bacteria becomes necessary. In this study, Synergism between plant extracts (methanolic extract and essential oils of Inula viscosa and Anacyclus valentinus and two commonly used antibiotics (gentamycin, oxacillin were investigated on three bacterian strains (E. coli, Bacillus subtilis, Staphylococcus aureus. In the first time, the antibacterial effect of extracts alone was tested against 7 strains by disc diffusion and microdilution methods. The minimum inhibitory concentrations of methanolic extracts ranged between 6.25 and 50mg/ml while that of the essential oils varied between 12.5 and 100µL/mL. Interactions extracts /antibiotics and extracts/extracts by checkboard. The results show that the synergistic effect of combinations plant extracts/antibiotics was more important than extracts/extracts.

  12. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    Science.gov (United States)

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-02

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  13. Combination of Ibrutinib and ABT-199 in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma.

    Science.gov (United States)

    Kuo, Hsu-Ping; Ezell, Scott A; Schweighofer, Karl J; Cheung, Leo W K; Hsieh, Sidney; Apatira, Mutiah; Sirisawad, Mint; Eckert, Karl; Hsu, Ssucheng J; Chen, Chun-Te; Beaupre, Darrin M; Versele, Matthias; Chang, Betty Y

    2017-07-01

    Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma are the most prevalent B-lymphocyte neoplasms in which abnormal activation of the Bruton tyrosine kinase (BTK)-mediated B-cell receptor signaling pathway contributes to pathogenesis. Ibrutinib is an oral covalent BTK inhibitor that has shown some efficacy in both indications. To improve ibrutinib efficacy through combination therapy, we first investigated differential gene expression in parental and ibrutinib-resistant cell lines to better understand the mechanisms of resistance. Ibrutinib-resistant TMD8 cells had higher BCL2 gene expression and increased sensitivity to ABT-199, a BCL-2 inhibitor. Consistently, clinical samples from ABC-DLBCL patients who experienced poorer response to ibrutinib had higher BCL2 gene expression. We further demonstrated synergistic growth suppression by ibrutinib and ABT-199 in multiple ABC-DLBCL, GCB-DLBCL, and follicular lymphoma cell lines. The combination of both drugs also reduced colony formation, increased apoptosis, and inhibited tumor growth in a TMD8 xenograft model. A synergistic combination effect was also found in ibrutinib-resistant cells generated by either genetic mutation or drug treatment. Together, these findings suggest a potential clinical benefit from ibrutinib and ABT-199 combination therapy. Mol Cancer Ther; 16(7); 1246-56. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm.

    Science.gov (United States)

    Bai, Li-Yue; Dai, Hao; Xu, Qin; Junaid, Muhammad; Peng, Shao-Liang; Zhu, Xiaolei; Xiong, Yi; Wei, Dong-Qing

    2018-02-05

    Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters) were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.

  15. Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm

    Directory of Open Access Journals (Sweden)

    Li-Yue Bai

    2018-02-01

    Full Text Available Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.

  16. Synergistic neurotrophic effects of piracetam and thiotriazoline

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  17. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  18. Drug synergy drives conserved pathways to increase fission yeast lifespan.

    Directory of Open Access Journals (Sweden)

    Xinhe Huang

    Full Text Available Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker's yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1 protein kinase, the protein kinase A (PKA and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK. These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms.

  19. Biophysical aspects of the integrated combination of cytostatic drugs with radiotherapy. Pt. 3

    International Nuclear Information System (INIS)

    Ulmer, W.

    1991-01-01

    Radiobiological data referring to in vitro cell cultures proved to be adequate for the determination of an optimum sequence between drug incubation and consecutive, irradiation, if the intracellular pH was subjected to accurate controls. An extension of the comparative study to the in vivo model of murine C3H mammary adenocarcinoma yielded synergistic effects, if the animals were treated with 10 MeV electrons and one of the drugs: Cis-platinum, adriamycin, epirubicin, activated cyclophosphamide, activated isophosphamide. For comparative purpose the survey of the therapeutic results during and after finishing of the schedules was performed with 31 P-NMR spectroscopy, radiometry ( 3 H-thymidine) and a scanning system using 100 pH sensor microelectrodes. Although most extensive with regard to measurement technique, the latter method provided an accurate local pH distribution of a tumor tissue, while 31 P only yielded the global pH-value (average). (orig.) [de

  20. Synergistic Effect of Pleuromutilins with Other Antimicrobial Agents against Staphylococcus aureus In Vitro and in an Experimental Galleria mellonella Model

    Science.gov (United States)

    Dong, Chun-Liu; Li, Lin-Xiong; Cui, Ze-Hua; Chen, Shu-Wen; Xiong, Yan Q.; Lu, Jia-Qi; Liao, Xiao-Ping; Gao, Yuan; Sun, Jian; Liu, Ya-Hong

    2017-01-01

    Invasive infections due to Staphylococcus aureus, including methicillin-resistant S. aureus are prevalent and life-threatening. Combinations of antibiotic therapy have been employed in many clinical settings for improving therapeutic efficacy, reducing side effects of drugs, and development of antibiotic resistance. Pleuromutilins have a potential to be developed as a new class of antibiotics for systemic use in humans. In the current study, we investigated the relationship between pleuromutilins, including valnemulin, tiamulin, and retapamulin, and 13 other antibiotics representing different mechanisms of action, against methicillin-susceptible and -resistant S. aureus both in vitro and in an experimental Galleria mellonella model. In vitro synergistic effects were observed in combination of all three study pleuromutilins with tetracycline (TET) by standard checkerboard and/or time-kill assays. In addition, the combination of pleuromutilins with ciprofloxacin or enrofloxacin showed antagonistic effects, while the rest combinations presented indifferent effects. Importantly, all study pleuromutilins in combination with TET significantly enhanced survival rates as compared to the single drug treatment in the G. mellonella model caused by S. aureus strains. Taken together, these results demonstrated synergy effects between pleuromutilins and TET against S. aureus both in vitro and in vivo. PMID:28874907

  1. Synergistic Effect of Pleuromutilins with Other Antimicrobial Agents against Staphylococcus aureus In Vitro and in an Experimental Galleria mellonella Model

    Directory of Open Access Journals (Sweden)

    Chun-Liu Dong

    2017-08-01

    Full Text Available Invasive infections due to Staphylococcus aureus, including methicillin-resistant S. aureus are prevalent and life-threatening. Combinations of antibiotic therapy have been employed in many clinical settings for improving therapeutic efficacy, reducing side effects of drugs, and development of antibiotic resistance. Pleuromutilins have a potential to be developed as a new class of antibiotics for systemic use in humans. In the current study, we investigated the relationship between pleuromutilins, including valnemulin, tiamulin, and retapamulin, and 13 other antibiotics representing different mechanisms of action, against methicillin-susceptible and -resistant S. aureus both in vitro and in an experimental Galleria mellonella model. In vitro synergistic effects were observed in combination of all three study pleuromutilins with tetracycline (TET by standard checkerboard and/or time-kill assays. In addition, the combination of pleuromutilins with ciprofloxacin or enrofloxacin showed antagonistic effects, while the rest combinations presented indifferent effects. Importantly, all study pleuromutilins in combination with TET significantly enhanced survival rates as compared to the single drug treatment in the G. mellonella model caused by S. aureus strains. Taken together, these results demonstrated synergy effects between pleuromutilins and TET against S. aureus both in vitro and in vivo.

  2. New in vitro system to predict chemotherapeutic efficacy of drug combinations in fresh tumor samples

    Directory of Open Access Journals (Sweden)

    Frank Christian Kischkel

    2017-03-01

    Full Text Available Background To find the best individual chemotherapy for cancer patients, the efficacy of different chemotherapeutic drugs can be predicted by pretesting tumor samples in vitro via the chemotherapy-resistance (CTR-Test®. Although drug combinations are widely used among cancer therapy, so far only single drugs are tested by this and other tests. However, several first line chemotherapies are combining two or more chemotherapeutics, leading to the necessity of drug combination testing methods. Methods We established a system to measure and predict the efficacy of chemotherapeutic drug combinations with the help of the Loewe additivity concept in combination with the CTR-test. A combination is measured by using half of the monotherapy’s concentration of both drugs simultaneously. With this method, the efficacy of a combination can also be calculated based on single drug measurements. Results The established system was tested on a data set of ovarian carcinoma samples using the combination carboplatin and paclitaxel and confirmed by using other tumor species and chemotherapeutics. Comparing the measured and the calculated values of the combination testings revealed a high correlation. Additionally, in 70% of the cases the measured and the calculated values lead to the same chemotherapeutic resistance category of the tumor. Conclusion Our data suggest that the best drug combination consists of the most efficient single drugs and the worst drug combination of the least efficient single drugs. Our results showed that single measurements are sufficient to predict combinations in specific cases but there are exceptions in which it is necessary to measure combinations, which is possible with the presented system.

  3. Fixed-dose combinations of drugs versus single-drug formulations for treating pulmonary tuberculosis

    Science.gov (United States)

    Gallardo, Carmen R; Rigau Comas, David; Valderrama Rodríguez, Angélica; Roqué i Figuls, Marta; Parker, Lucy Anne; Caylà, Joan; Bonfill Cosp, Xavier

    2016-01-01

    Background People who are newly diagnosed with pulmonary tuberculosis (TB) typically receive a standard first-line treatment regimen that consists of two months of isoniazid, rifampicin, pyrazinamide, and ethambutol followed by four months of isoniazid and rifampicin. Fixed-dose combinations (FDCs) of these drugs are widely recommended. Objectives To compare the efficacy, safety, and acceptability of anti-tuberculosis regimens given as fixed-dose combinations compared to single-drug formulations for treating people with newly diagnosed pulmonary tuberculosis. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL, published in the Cochrane Library, Issue 11 2015); MEDLINE (1966 to 20 November 2015); EMBASE (1980 to 20 November 2015); LILACS (1982 to 20 November 2015); the metaRegister of Controlled Trials; and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), without language restrictions, up to 20 November 2015. Selection criteria Randomized controlled trials that compared the use of FDCs with single-drug formulations in adults (aged 15 years or more) newly diagnosed with pulmonary TB. Data collection and analysis Two review authors independently assessed studies for inclusion, and assessed the risk of bias and extracted data from the included trials. We used risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data with 95% confidence intervals (CIs). We attempted to assess the effect of treatment for time-to-event measures with hazard ratios and their 95% CIs. We used the Cochrane 'Risk of bias' assessment tool to determine the risk of bias in included trials. We used the fixed-effect model when there was little heterogeneity and the random-effects model with moderate heterogeneity. We used an I² statistic value of 75% or greater to denote significant heterogeneity, in which case we did not perform a

  4. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-induced Round Bodies of Borrelia burgdorferi Persisters from an FDA Drug Library

    Directory of Open Access Journals (Sweden)

    Jie eFeng

    2016-05-01

    Full Text Available Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that are not killed by current Lyme antibiotics. To identify more effective drugs that are active against the round bodies of B. burgdorferi, we established a round body persister model induced by amoxicillin and screened the Food and Drug Administration (FDA drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide (PI viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven of these scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. While some drug candidates such as daptomycin and clofazimine overlapped with a previous screen against stationary phase B. burgdorferi persisters, additional drug candidates active against round bodies we identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi persisters in vitro, even if pre-treated with amoxicillin. These findings may have implications for improved treatment of Lyme disease.

  5. Synergistic effect of sevoflurane and isoflurane on inhibition of the adult-type muscle nicotinic acetylcholine receptor by rocuronium.

    Science.gov (United States)

    Liu, Li; Li, Wei; Wei, Ke; Cao, Jun; Luo, Jie; Wang, Bin; Min, Su

    2013-06-01

    Inhaled anesthetics increase the incidence of postoperative residual neuromuscular blockade, and the mechanism is still unclear. We have investigated the synergistic effect of low-concentration inhaled anesthetics and rocuronium on inhibition of the inward current of the adult-type muscle nicotinic acetylcholine receptor (ε-nAChR). Adult-type mouse muscle ε-nAChR was expressed in HEK293 cells by liposome transfection. The inward current of the ε-nAChR was activated by use of 10 μmol/L acetylcholine alone or in combination with different concentrations of sevoflurane, isoflurane, or rocuronium. The concentration-response curves of five cells were constructed, and the data yielded the 5, 25, and 50 % inhibitory concentrations (IC5, IC25, and IC50, respectively) for single-drug application. Subsequently, the functional channels were perfused by adding 0.5 IC5 of either sevoflurane or isoflurane (aqueous concentrations 140 and 100 μmol/L, respectively) to the solution, followed by addition of IC5, IC25, or IC50 rocuronium. The amount of inhibition was calculated to quantify their synergistic effect. The inhibitory effect of rocuronium was enhanced by sevoflurane or isoflurane in a concentration-dependent manner. Sevoflurane or isoflurane (0.5 IC5) with rocuronium at IC5, IC25, and IC50 synergistically inhibited the current amplitude of adult-type muscle ε-nAChR. When the IC5 of rocuronium was used, isoflurane had a stronger synergistic effect than sevoflurane (p rocuronium was applied at higher concentrations (IC25 and IC50), sevoflurane had an effect similar to that of isoflurane. For both inhaled anesthetics, the synergistic effect was more intense for rocuronium at IC5 than for rocuronium at IC25 or IC50. Residual-concentration sevoflurane or isoflurane has a strong synergistic effect with rocuronium at clinically relevant residual concentrations. A lower rocuronium concentration resulted in a stronger synergistic effect.

  6. Trigeminal neuralgia: successful antiepileptic drug combination therapy in three refractory cases

    Directory of Open Access Journals (Sweden)

    Prisco L

    2011-08-01

    Full Text Available Lara Prisco1, Mario Ganau2, Federica Bigotto1, Francesca Zornada11Department of Anaesthesiology, Intensive Care and Emergency Medicine, University Hospital of Cattinara, 2Graduate School of Nanotechnology, University of Trieste, ItalyAbstract: Antiepileptic drug combination therapy remains an empirical second-line treatment approach in trigeminal neuralgia, after treatment with one antiepileptic drug or other nonantiepileptic drugs have failed. The results in three patients followed in our clinic are not sufficient to draw definitive conclusions, but suggest the possibility of developing this type of therapeutic approach further.Keywords: trigeminal neuralgia, antiepileptic drugs, combination therapy

  7. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    Science.gov (United States)

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug

  8. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate.

    Science.gov (United States)

    Tomasetti, M; Strafella, E; Staffolani, S; Santarelli, L; Neuzil, J; Guerrieri, R

    2010-04-13

    A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H(2)O(2) that promoted cell death. The redox-silent vitamin E analogue alpha-tocopheryl succinate (alpha-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Prostate cancer cells were sensitive to alpha-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3-AA, whereas alpha-TOS-VK3 and alpha-TOS-AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA-VK3 combination combined with a sub-toxic dose of alpha-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal-mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.

  9. SynergyFinder: a web application for analyzing drug combination dose-response matrix data.

    Science.gov (United States)

    Ianevski, Aleksandr; He, Liye; Aittokallio, Tero; Tang, Jing

    2017-08-01

    Rational design of drug combinations has become a promising strategy to tackle the drug sensitivity and resistance problem in cancer treatment. To systematically evaluate the pre-clinical significance of pairwise drug combinations, functional screening assays that probe combination effects in a dose-response matrix assay are commonly used. To facilitate the analysis of such drug combination experiments, we implemented a web application that uses key functions of R-package SynergyFinder, and provides not only the flexibility of using multiple synergy scoring models, but also a user-friendly interface for visualizing the drug combination landscapes in an interactive manner. The SynergyFinder web application is freely accessible at https://synergyfinder.fimm.fi ; The R-package and its source-code are freely available at http://bioconductor.org/packages/release/bioc/html/synergyfinder.html . jing.tang@helsinki.fi. © The Author(s) 2017. Published by Oxford University Press.

  10. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  11. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  12. Comprehension of synergistic mechanisms for uranium extraction from phosphate ores

    International Nuclear Information System (INIS)

    Pecheur, Olivia

    2014-01-01

    Uranium VI is commonly extracted from phosphoric ores by a well-known process exploiting the synergistic mixture of two extractant molecules: HDEHP and TOPO. In the field of liquid-liquid extraction, synergistic combinations are common but the mechanisms at the origin of the synergy are not well understood. A multi-scale approach has been used to describe these mechanisms, combining two different descriptions: the molecular scale focuses on the ion point of view, while the supramolecular scale focuses on extractants' aggregation. These two approaches have been rationalized by molecular dynamics computations. The results allow describing the synergy through the structure of the complexes and aggregates. With the same approach, some bifunctional compounds, combining the two extracting sites in one molecule, have been studied and compared to the HDEHP/TOPO system in order to identify the origin of their increased capacities in extraction and selectivity. (author) [fr

  13. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals.

    Science.gov (United States)

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; Kadis, Ethan; Cao, Yuhe; Julson, James; Gu, Zhengrong

    2016-06-25

    Bio-oil can be upgraded through hydrodeoxygenation (HDO). Low-cost and effective catalysts are crucial for the HDO process. In this study, four inexpensive combinations of Ni based activated carbon synergistic catalysts including Ni/AC, Ni-Fe/AC, Ni-Mo/AC and Ni-Cu/AC were evaluated for HDO of prairie cordgrass (PCG) bio-oil. The tests were carried out in the autoclave under mild operating conditions with 500psig of H2 pressure and 350°C temperature. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscope (TEM). The results show that all synergistic catalysts had significant improvements on the physicochemical properties (water content, pH, oxygen content, higher heating value and chemical compositions) of the upgraded PCG bio-oil. The higher heating value of the upgraded bio-oil (ranging from 29.65MJ/kg to 31.61MJ/kg) improved significantly in comparison with the raw bio-oil (11.33MJ/kg), while the oxygen content reduced to only 21.70-25.88% from 68.81% of the raw bio-oil. Compared to raw bio-oil (8.78% hydrocarbons and no alkyl-phenols), the Ni/AC catalysts produced the highest content of gasoline range hydrocarbons (C6-C12) at 32.63% in the upgraded bio-oil, while Ni-Mo/AC generated the upgraded bio-oil with the highest content of gasoline blending alkyl-phenols at 38.41%. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mono- and combination drug therapies in hospitalized patients with bipolar depression. Data from the European drug surveillance program AMSP

    Directory of Open Access Journals (Sweden)

    Haeberle Anne

    2012-09-01

    Full Text Available Abstract Background For the pharmacological treatment of bipolar depression several guidelines exist. It is largely unknown, to what extent the prescriptions in daily clinical routine correspond to these evidence based recommendations and which combinations of psychotropic drugs are frequently used. Methods The prescriptions of psychotropic drugs were investigated of all in-patients with bipolar depression (n = 2246; time period 1994–2009 from hospitals participating in the drug surveillance program AMSP. For the drug use in 2010, 221 cases were analysed additionally. Results From 1994 to 2009, 85% of all patients received more than one class of psychotropic substances: 74% received antidepressants in combination therapy, 55% antipsychotics, 48% anticonvulsants and 33% lithium. When given in combination, lithium is the most often prescribed substance for bipolar depression (33%, followed by valproic acid (23%, mirtazapine and venlafaxine (16% each, quetiapine (15%, lamotrigine (14% and olanzapine (13%. Both, lithium and valproic acid are often combined with selective serotonin reuptake inhibitors (SSRI, but also with mirtazapine und venlafaxine. Combinations of more than one antidepressant occur quite often, whereby combinations with bupropion, paroxetine, fluoxetine or fluvoxamine are very rare. In 2010, quetiapine (alone and combined was the most frequently prescribed drug (39%; aripiprazole was administered in 10%. Conclusion Combinations of antidepressants (SSRI, mirtazapine, venlafaxine with mood stabilizers (lithium, valproic acid, lamotrigine and / or atypical antipsychotics (quetiapine, olanzapine are common. Of most of those combinations the efficacy has not been studied. The use of aripiprazole and the concomitant use of two or three antidepressants contrast the guidelines.

  15. Combining Drugs to Treat Ovarian Cancer - Annual Plan

    Science.gov (United States)

    Approximately 70 percent of women diagnosed with ovarian cancer will die from the disease. Read about the NCI-funded combination drug trial that has successfully treated Betsy Brauser's recurrent cancer.

  16. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis.

    Science.gov (United States)

    Chong, Dianlong; Ma, Linyan; Liu, Fang; Zhang, Zhirui; Zhao, Surong; Huo, Qiang; Zhang, Pei; Zheng, Hailun; Liu, Hao

    2017-09-01

    3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.

  17. Combined microfluidization and ultrasonication: a synergistic protocol for high-efficient processing of SWCNT dispersions with high quality

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sida, E-mail: s.luo@buaa.edu.cn [Beihang University, School of Mechanical Engineering and Automation (China); Liu, Tao, E-mail: tliu@fsu.edu [Florida State University, High-Performance Materials Institute (United States); Wang, Yong; Li, Liuhe [Beihang University, School of Mechanical Engineering and Automation (China); Wang, Guantao; Luo, Yun [China University of Geosciences, Center of Safety Research, School of Engineering and Technology (China)

    2016-08-15

    High-efficient and large-scale production of high-quality CNT dispersions is necessary for meeting the future needs to develop various CNT-based electronic devices. Herein, we have designed novel processing protocols by combining conventional ultrasonication process with a new microfluidization technique to produce high-quality SWCNT dispersions with improved processing efficiency. To judge the quality of SWCNT dispersions, one critical factor is the degree of exfoliation, which could be quantified by both geometrical dimension of the exfoliated nanotubes and percentage of individual tubes in a given dispersion. In this paper, the synergistic effect of the combined protocols was systematically investigated through evaluating SWCNT dispersions with newly developed characterization techniques, namely preparative ultracentrifuge method (PUM) and simultaneous Raman scattering and photoluminescence spectroscopy (SRSPL). The results of both techniques draw similar conclusions that as compared with either of the processes operated separately, a low-pass microfluidization followed by a reasonable duration of ultrasonication could substantially improve the processing efficiency to produce high-quality SWCNT dispersions with averaged particle length and diameter as small as ~600 and ~2 nm, respectively.Graphical abstract.

  18. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    Science.gov (United States)

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  19. Isobolographic analysis of the mechanisms of action of anticonvulsants from a combination effect.

    Science.gov (United States)

    Matsumura, Nobuko; Nakaki, Toshio

    2014-10-15

    The nature of the pharmacodynamic interactions of drugs is influenced by the drugs׳ mechanisms of action. It has been hypothesized that drugs with different mechanisms are likely to interact synergistically, whereas those with similar mechanisms seem to produce additive interactions. In this review, we describe an extensive investigation of the published literature on drug combinations of anticonvulsants, the nature of the interaction of which has been evaluated by type I and II isobolographic analyses and the subthreshold method. The molecular targets of antiepileptic drugs (AEDs) include Na(+) and Ca(2+) channels, GABA type-A receptor, and glutamate receptors such as NMDA and AMPA/kainate receptors. The results of this review indicate that the nature of interactions evaluated by type I isobolographic analyses but not by the two other methods seems to be consistent with the above hypothesis. Type I isobolographic analyses may be used not only for evaluating drug combinations but also for predicting the targets of new drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Science.gov (United States)

    El Hajj, Hiba; Ali, Jihane; Ghantous, Akram; Hodroj, Dana; Daher, Ahmad; Zibara, Kazem; Journo, Chloé; Otrock, Zaher; Zaatari, Ghazi; Mahieux, Renaud; El Sabban, Marwan; Bazarbachi, Ali; Abou Merhi, Raghida

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  1. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPARα agonist WY14643 in rat hepatocytes

    International Nuclear Information System (INIS)

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-01-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPARα agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPARα agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPARα agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPARα-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPARα ligands. The synergism of the PPARα agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  2. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates

    Directory of Open Access Journals (Sweden)

    Laura Bedin Denardi

    2015-03-01

    Full Text Available In vitro interaction between tacrolimus (FK506 and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%, followed by that of the combination with ketoconazole (37%, against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata, a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%, itraconazole (73%, voriconazole (63% and fluconazole (60%. The synergisms that we observed in vitro, notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  3. Does mechanism of drug action matter to inform rational polytherapy in epilepsy?

    Science.gov (United States)

    Giussani, Giorgia; Beghi, Ettore

    2013-05-01

    When monotherapy for epilepsy fails, add-on therapy is an alternative option. There are several possible antiepileptic drug combinations based on their different and multiple mechanisms of action and pharmacokinetic interactions. However, only when benefits of drug combinations outweigh the harms, polytherapy can be defined as "rational". In the past 20 years, second generation AEDs have been marketed, some of which have better defined mechanisms of action and better pharmacokinetic profile. The mechanisms of action of AEDs involve, among others, blockade of voltage-gated sodium channels, blockade of voltage-gated calcium channel, activation of the ionotropic GABAA receptor and increase of GABA levels at the synaptic cleft, blockade of glutamate receptors, binding to synaptic vesicle protein 2A, and opening of KCNQ (Kv7) potassium channels. Aim of this review was to examine published reports on AEDs combinations in animal models and humans focusing on mechanisms of action and pharmacokinetic interactions. Studies in animals have shown that AED combinations are more effective when using drugs with different mechanisms of action. The most effective combination was found using a drug with a single mechanism of action and another with multiple mechanisms of action. In humans some combinations between a blocker of voltage-gated sodium channels and a drug with multiple mechanisms of action may be synergistic. Future studies are necessary to better define rational combinations and complementary mechanisms of action, considering also pharmacokinetic interactions and measures of toxicity and not only drug efficacy.

  4. EGFR targeting monoclonal antibody combines with an mTOR inhibitor and potentiates tumor inhibition by acting on complementary signaling hubs

    International Nuclear Information System (INIS)

    James, Roshan; Vishwakarma, Siddharth; Chivukula, Indira V; Basavaraj, Chetana; Melarkode, Ramakrishnan; Montero, Enrique; Nair, Pradip

    2012-01-01

    Nimotuzumab, an anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody, has been used extensively in many solid tumors and confers significant survival advantage. The antibody has limited skin toxicity and is generally well tolerated. Similar to other anti-EGFR therapies, patients may relapse a few months after treatment. In this study we show for the first time, the use of Nimotuzumab along with Sirolimus has synergistic effect on tumor inhibition as compared with the drugs used individually, in Nimotuzumab responsive and nonresponsive cell lines. In vitro studies prove that while Sirolimus (25 nmol/L) affects the signal downstream to mammalian target of rapamycin (mTOR), Nimotuzumab (83 nmol/L) downregulates pTYR, pMAPK and pSTAT3 by 40%, 20% and 30%, respectively. The combination, targeting these two different signaling hubs, may be associated with the synergistic inhibition observed. In vivo, the use of half human therapeutic equivalent doses for both the drugs substantially reduces tumors established in nude as well as severe combined immunodeficiency (SCID) mice by EGFR overexpressing A-431 cells. The drug combination reduces cell proliferation and the expression of signal transduction molecules. Treated tumors are better differentiated as compared with those established in the control mice. Tumor microarray demonstrates that Nimotuzumab and the combination groups segregate independently to the Sirolimus and the control treatment. The combination uniquely downregulated 55% of the altered tumor genes, extending beyond the typical pathways associated with Nimotuzumab and Sirolimus downstream pathways inhibition. These results would suggest that this nontoxic drug combination improves therapeutic benefit even in patients with low-EGFR expression and severely immunocompromised because of their current medication

  5. Circumvention of inherent or acquired cytotoxic drug resistance in vitro using combinations of modulating agents.

    Science.gov (United States)

    Cadagan, David; Merry, Stephen

    2013-10-01

    Modulating agents are used to circumvent drug resistance in the clinical setting. However achievable serum concentrations are often lower than those which are optimal in vitro. Combination of modulating agents with non-overlapping toxicities may overcome this obstacle. We have investigated combinations of three modulating agents (quinine, verapamil, and cinnarizine) to circumvent inherent or acquired resistance to the cytotoxic drugs doxorubicin, vincristine and paclitaxel. Dose-response curves to cytotoxic drugs in the presence/absence of modulating agents were determined using colony formation and cell proliferation assays. Doxorubicin accumulation into cell monolayers was measured by fluorescence spectrophotometry. Greater (1.9-fold) sensitisation to particular cytotoxic drugs was observed for certain combinations of modulating agents compared to individual effects. The most effective combination was quinine-plus-verapamil with the cytotoxic drug doxorubicin. This increase in sensitivity was associated with increased doxorubicin accumulation. Such enhanced activity was, however, not observed for all combinations of modulating agents or for all studied cytotoxic drugs. The findings of the present study suggest certain combinations of modulating agents to have a clinical role in circumventing drug resistance. Particular combinations of modulating agents must be carefully chosen to suit particular cytotoxic drug treatments.

  6. Evaluation of the cytotoxicity of the Bithionol - cisplatin combination in a panel of human ovarian cancer cell lines.

    Science.gov (United States)

    Ayyagari, Vijayalakshmi N; Hsieh, Tsung-Han Jeff; Diaz-Sylvester, Paula L; Brard, Laurent

    2017-01-13

    Combination drug therapy appears a promising approach to overcome drug resistance and reduce drug-related toxicities in ovarian cancer treatments. In this in vitro study, we evaluated the antitumor efficacy of cisplatin in combination with Bithionol (BT) against a panel of ovarian cancer cell lines with special focus on cisplatin-sensitive and cisplatin-resistant cell lines. The primary objectives of this study are to determine the nature of the interactions between BT and cisplatin and to understand the mechanism(s) of action of BT-cisplatin combination. The cytotoxic effects of drugs either alone or in combination were evaluated using presto-blue assay. Cellular reactive oxygen species were measured by flow cytometry. Immunoblot analysis was carried out to investigate changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27. Luminescent and colorimetric assays were used to test caspases 3/7 and ATX activity. The efficacy of the BT-cisplatin combination depends upon the cell type and concentrations of cisplatin and BT. In cisplatin-sensitive cell lines, BT and cisplatin were mostly antagonistic except when used at low concentrations, where synergy was observed. In contrast, in cisplatin-resistant cells, BT-cisplatin combination treatment displayed synergistic effects at most of the drug ratios/concentrations. Our results further revealed that the synergistic interaction was linked to increased reactive oxygen species generation and apoptosis. Enhanced apoptosis was correlated with loss of pro-survival factors (XIAP, bcl-2, bcl-xL), expression of pro-apoptotic markers (caspases 3/7, PARP cleavage) and enhanced cell cycle regulators p21 and p27. In cisplatin-resistant cell lines, BT potentiated cisplatin-induced cytotoxicity at most drug ratios via enhanced ROS generation and modulation of key regulators of apoptosis. Low doses of BT and cisplatin enhanced efficiency of cisplatin treatment in all the ovarian cancer cell lines tested. Our results suggest

  7. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity.

    Directory of Open Access Journals (Sweden)

    Jia Meng

    Full Text Available With the trend of an increasing aged population worldwide, Alzheimer's disease (AD, an age-related neurodegenerative disorder, as one of the major causes of dementia in elderly people is of growing concern. Despite the many hard efforts attempted during the past several decades in trying to elucidate the pathological mechanisms underlying AD and putting forward potential therapeutic strategies, there is still a lack of effective treatments for AD. The efficacy of many potential therapeutic drugs for AD is of main concern in clinical practice. For example, large bodies of evidence show that the anti-tumor histone deacetylase (HDAC inhibitor, suberoylanilidehydroxamic acid (SAHA, may be of benefit for the treatment of AD; however, its extensive inhibition of HDACs makes it a poor therapeutic. Moreover, the natural flavonoid, curcumin, may also have a potential therapeutic benefit against AD; however, it is plagued by low bioavailability. Therefore, the integrative effects of SAHA and curcumin were investigated as a protection against amyloid-beta neurotoxicity in vitro. We hypothesized that at low doses their synergistic effect would improve therapeutic selectivity, based on experiments that showed that at low concentrations SAHA and curcumin could provide comprehensive protection against Aβ25-35-induced neuronal damage in PC12 cells, strongly implying potent synergism. Furthermore, network analysis suggested that the possible mechanism underlying their synergistic action might be derived from restoration of the damaged functional link between Akt and the CBP/p300 pathway, which plays a crucial role in the pathological development of AD. Thus, our findings provided a feasible avenue for the application of a synergistic drug combination, SAHA and curcumin, in the treatment of AD.

  8. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  9. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    Science.gov (United States)

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  11. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  12. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  13. Combination cancer chemotherapy with one compound: pluripotent bradykinin antagonists.

    Science.gov (United States)

    Stewart, John M; Gera, Lajos; Chan, Daniel C; York, Eunice J; Simkeviciene, Vitalija; Bunn, Paul A; Taraseviciene-Stewart, Laimute

    2005-08-01

    Lung and prostate cancers are major health problems worldwide. Treatments with standard chemotherapy agents are relatively ineffective. Combination chemotherapy gives better treatment than a single agent because the drugs can inhibit the cancer in different pathways, but new therapeutic agents are needed for the treatment of both tumor types. Bradykinin (BK) antagonists offer advantages of combination therapy in one compound. These promising multitargeted anti-cancer compounds selectively stimulate apoptosis in cancers and also inhibit both angiogenesis and matrix metalloprotease (MMP) action in treated lung and prostate tumors in nude mice. The highly potent, metabolism-resistant bradykinin antagonist peptide dimer, B-9870 [SUIM-(DArg-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-Arg)2] (SUIM=suberimidyl; Hyp=4-hydroxyproline; Igl=alpha-(2-indanyl)glycine; Oic=octahydroindole-2-carboxylic acid) and its non-peptide mimetic, BKM-570 [2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-L-tyrosine-N-(4-amino-2,2,6,6-tetramethylpiperidyl)amide] are superior to the widely used but toxic chemotherapeutic drugs cisplatin and taxotere. In certain combinations, they act synergistically with standard anti-cancer drugs. Due to its structure and biological activity, BKM-570 is an attractive lead compound for derivatization and evaluation for lung and prostate cancer drugs.

  14. Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus types 1 and 2.

    Science.gov (United States)

    Vilhelmova, N; Jacquet, R; Quideau, S; Stoyanova, A; Galabov, A S

    2011-02-01

    The effects of combinations of three nonahydroxyterphenoyl-bearing C-glucosidic ellagitannins (castalagin, vescalagin and grandinin) with acyclovir (ACV) on the replication of type-1 and type-2 herpes simplex viruses in MDBK cells were tested by the focus-forming units reduction test. Ellagitannins included in these combinations possess a high individual antiviral activity: selectivity index of castalagin and vescalagin versus HSV-1 was similar to that of ACV, and relatively lower against HSV-2. The three-dimensional analytical approach of Prichard and Shipman was used to evaluate the impact of drug-drug interactions. The combination effects of ellagitannins with acyclovir were markedly synergistic. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Search algorithms as a framework for the optimization of drug combinations.

    Directory of Open Access Journals (Sweden)

    Diego Calzolari

    2008-12-01

    Full Text Available Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms -- originally developed for digital communication -- modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.

  16. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1 chemical interaction between drugs, (2 protein interactions between drugs’ targets, and (3 target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

  17. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  18. Morphine and clonidine combination therapy improves therapeutic window in mice: synergy in antinociceptive but not in sedative or cardiovascular effects.

    Directory of Open Access Journals (Sweden)

    Laura S Stone

    Full Text Available Opioids are used to manage all types of pain including acute, cancer, chronic neuropathic and inflammatory pain. Unfortunately, opioid-related adverse effects such as respiratory depression, tolerance, physical dependence and addiction have led to an underutilization of these compounds for adequate pain relief. One strategy to improve the therapeutic utility of opioids is to co-administer them with other analgesic agents such as agonists acting at α2-adrenergic receptors (α2ARs. Analgesics acting at α2ARs and opioid receptors (ORs frequently synergize when co-administered in vivo. Multimodal analgesic techniques offer advantages over single drug treatments as synergistic combination therapies produce analgesia at lower doses, thus reducing undesired side effects. This inference presumes, however, that the synergistic interaction is limited to the analgesic effects. In order to test this hypothesis, we examined the effects of α2AR/OR combination therapy in acute antinociception and in the often-undesired side effects of sedation and cardiovascular depression in awake unrestrained mice. Morphine, clonidine or their combination was administered by spinal or systemic injection in awake mice. Antinociception was determined using the warm water tail flick assay (52.5°C. Sedation/motor impairment was evaluated using the accelerating rotarod assay and cardiovascular function was monitored by pulse oximetry. Data were converted to percent maximum possible effect and isobolographic analysis was performed to determine if an interaction was subadditive, additive or synergistic. Synergistic interactions between morphine and clonidine were observed in the antinociceptive but not in the sedative/motor or cardiovascular effects. As a result, the therapeutic window was improved ∼200-fold and antinociception was achieved at non-sedating doses with little to no cardiovascular depression. In addition, combination therapy resulted in greater maximum analgesic

  19. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Directory of Open Access Journals (Sweden)

    Hiba El Hajj

    Full Text Available BACKGROUND: Kaposi sarcoma-associated herpesvirus (KSHV is the etiologic agent of primary effusion lymphomas (PEL. PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. METHODOLOGY/PRINCIPAL FINDINGS: Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. CONCLUSION/SIGNIFICANCE: These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  20. Involvement of nitric oxide and ATP-sensitive potassium channels in the peripheral antinoceptive action of a tramadol-dexketoprofen combination in the formalin test.

    Science.gov (United States)

    Isiordia-Espinoza, Mario A; Pozos-Guillén, Amaury; Pérez-Urizar, José; Chavarría-Bolaños, Daniel

    2014-11-01

    Systemic coadministration of tramadol and dexketoprofen can produce antinociceptive synergism in animals. There has been only limited evaluation of this drug combination in the peripheral nervous system in terms of the antinociceptive interaction and its mechanisms. The aim of the present study was to evaluate the peripheral antinociceptive interaction between tramadol and dexketoprofen in the formalin test and the involvement of the nitric oxide (NO)-cyclic guanosine monophosphate pathway and ATP-sensitive K(+) channels. Different doses of tramadol or dexketoprofen were administered locally to the formalin-injured mouse paw and the antinociceptive effect evaluated. ED50 values were calculated for both drugs alone and in combination. Coadministration of tramadol and dexketoprofen produced an antinociceptive synergistic interaction during the second phase of the formalin test. Pretreatment with NO antagonists, including l-NG-nitroarginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, or the ATP-sensitive K(+) channel antagonist glibenclamide reversed the antinociceptive synergistic effect of the tramadol-dexketoprofen combination, suggesting that NO and ATP-sensitive K(+) channels were involved. © 2014 Wiley Periodicals, Inc.

  1. Combination effect of cisplatin and radiation in murine solid tumors

    International Nuclear Information System (INIS)

    Egawa, Shin; Lee, Kan-ei; Ishibashi, Akira; Komiyama, Hiroki; Umezawa, Iwao.

    1986-01-01

    The combination effect of cisplatin and radiation was studied using the two different murine systems of sarcoma 180 and Ehrlich solid tumors. In sarcoma 180 solid tumor the minimal effective doses (MED) of cisplatin and radiation were 19.5 mg/kg and 10375 rad respectively whereas these doses did not show any effective antitumor activity practically. Administration of cisplatin with a doses of 9 mg/kg given 24 hours before radiation (1000 rad), however, showed synergistic antitumor activity. In Ehrlich solid tumor the MED of cisplatin and radiation were 13.8 mg/kg and 2892 rad respectively. Treatment with cisplatin, 3, 6 or 9 mg/kg, given 24 hours before radiation (1000 rad) showed also synergistic antitumor activity also. Sodium thiosulfate (STS) rescue was effective in reducing toxicity of cisplatin on combined use of the drug with radiation. Cell kinetics of sarcoma 180 solid tumor in vivo after the combined treatment was analyzed by computer aided flowcytometry. Accumulation of cells in the radiosensitive G 2 + M phase was observed 18 to 42 hours after a single intraperitoneal administration of 9 mg/kg of cisplatin. It is strongly suggested that this synchronization is one of the mechanisms of the synergism in the combination therapy. (author)

  2. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring.

    Science.gov (United States)

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant'Ana, Estela

    2018-01-01

    Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus ® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Twenty healthy women aged 20-40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group ( P <0.05) and in the buttocks ( P <0.05) and the posterior thigh areas ( P <0.05) in the G2. All the treated areas in both groups showed reduction in cellulite degree in the buttocks, G1 ( P <0.05) and G2 ( P <0.05), and in posterior thigh areas, G1 ( P <0.05) and G2 ( P <0.05). Optimal improvement of skin firmness (G1, P <0.0001; G2, P =0.0034) in the treated areas was observed in both groups. We conclude that the synergistic effects of the Combined Therapy (nonfocused ultrasound plus Aussie current) might be a good option with noninvasive body contouring treatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results.

  3. Mathematical description of synergistic interaction between radon and smoking

    International Nuclear Information System (INIS)

    Jin Kyu Kim; Petin, V.G.; Belkina, S.V.

    2007-01-01

    Complete text of publication follows. Background: A certain level of background exposure to ionizing radiation and natural or man-made chemicals is always present in the environment. Radon and its short-lived decay products are considered as important sources of public exposure to the natural radioactivity. It is well known from epidemiological and toxicological studies that synergistic interaction between smoking and radon occurs, which is especially important for high natural background areas. Objective: This study has been done to suggest a mathematical model to describe the synergistic interaction of radon with tobacco smoking, and to demonstrate the ability of the model to describe carcinogenic effects of the combined action. Methods: A simple mathematical model was formulated to describe and predict the synergistic interaction of radon with smoking. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arisen from the interaction of sublesions induced by the two factors under consideration. Results: The predictions of the model were verified by comparison with experimental data published by other researchers. The model appears to be appropriate and the predictions are valid. Conclusions: : The suggested mathematical model predicts the greatest level of synergistic effect and condition under which the maximum synergy is attained. The synergistic effect appeared to decline with any deviation from the optimal value of the ratio of carcinogenic effective damages produced by each agent alone.

  4. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy.

    Science.gov (United States)

    Palmer, Adam C; Sorger, Peter K

    2017-12-14

    Combination cancer therapies aim to improve the probability and magnitude of therapeutic responses and reduce the likelihood of acquired resistance in an individual patient. However, drugs are tested in clinical trials on genetically diverse patient populations. We show here that patient-to-patient variability and independent drug action are sufficient to explain the superiority of many FDA-approved drug combinations in the absence of drug synergy or additivity. This is also true for combinations tested in patient-derived tumor xenografts. In a combination exhibiting independent drug action, each patient benefits solely from the drug to which his or her tumor is most sensitive, with no added benefit from other drugs. Even when drug combinations exhibit additivity or synergy in pre-clinical models, patient-to-patient variability and low cross-resistance make independent action the dominant mechanism in clinical populations. This insight represents a different way to interpret trial data and a different way to design combination therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library.

    Science.gov (United States)

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  6. Identification of drug combinations administered by continuous subcutaneous infusion that require analysis for compatibility and stability.

    Science.gov (United States)

    Dickman, Andrew; Bickerstaff, Matthew; Jackson, Richard; Schneider, Jennifer; Mason, Stephen; Ellershaw, John

    2017-03-23

    A continuous subcutaneous infusion (CSCI) delivered via syringe pump is a method of drug administration used to maintain symptom control when a patient is no longer able to tolerate oral medication. Several classes of drugs, such as opioids, antiemetics, anticholinergics, antipsychotics and benzodiazepines are routinely administered by CSCI alone or in combinations. Previous studies attempting to identify the most-common CSCI combinations are now several years old and no longer reflect current clinical practice. The aim of this work was to review current clinical practice and identify CSCI drug combinations requiring analysis for chemical compatibility and stability. UK pharmacy professionals involved in the delivery of care to palliative patients in hospitals and hospices were invited to enter CSCI combinations comprised of two or more drugs onto an electronic database over a 12-month period. In addition, a separate Delphi study with a panel of 15 expert healthcare professionals was completed to identify a maximum of five combinations of drugs used to treat more complex, but less commonly encountered symptoms unlikely to be identified by the national survey. A total of 57 individuals representing 33 separate palliative care services entered 1,945 drug combinations suitable for analysis, with 278 discrete combinations identified. The top 40 drug combinations represented nearly two-thirds of combinations recorded. A total of 23 different drugs were administered in combination and the median number of drugs in a combination was three. The Delphi study identified five combinations for the relief of complex or refractory symptoms. This study represents the first step towards developing authoritative national guidance on the administration of drugs by CSCI. Further work will ensure healthcare practitioners have the knowledge and confidence that a prescribed combination will be both safe and efficacious.

  7. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2015-01-01

    The objective of the study described in this article was, first, to investigate the effect of the simultaneous application of near-infrared (NIR) heating and UV irradiation on inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham and as well as its effect on product quality and, second, to elucidate the underlying mechanisms of the synergistic bactericidal action of NIR heating and UV irradiation. With the inoculation amounts used, simultaneous NIR-UV combined treatment for 70 s achieved 3.62, 4.17, and 3.43 log CFU reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. For all three pathogens, the simultaneous application of both technologies resulted in an additional log unit reduction as a result of their synergism compared to the sum of the reductions obtained after the individual treatments. To investigate the mechanisms of NIR-UV synergistic injury for a particular microorganism in a food base, we evaluated the effect of four types of metabolic inhibitors using the overlay method and confirmed that damage to cellular membranes and the inability of cells to repair these structures due to ribosomal damage were the primary factors related to the synergistic lethal effect. Additionally, NIR-UV combined treatment for a maximum of 70 s did not alter the color values or texture parameters of ham slices significantly (P > 0.05). These results suggest that a NIR-UV combined process could be an innovative antimicrobial intervention for RTE meat products. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    Science.gov (United States)

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  9. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation.

    Science.gov (United States)

    Macedo, E M A; Santos, W C; Sousa, B P; Lopes, E M; Piauilino, C A; Cunha, F V M; Sousa, D P; Oliveira, F A; Almeida, F R C

    2016-06-20

    Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL) is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF) (3.125 and 1.25 mg/kg po, respectively) presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment) and chronic (10 days) inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA) in the right hind paw of female Wistar rats (170-230 g, n=6-8). The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this association.

  10. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation

    Directory of Open Access Journals (Sweden)

    E.M.A. Macedo

    2016-01-01

    Full Text Available Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs. These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF (3.125 and 1.25 mg/kg po, respectively presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment and chronic (10 days inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA in the right hind paw of female Wistar rats (170-230 g, n=6-8. The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this

  11. Impact of Tamsulosin, Tolterodine and drug-combination on the ...

    African Journals Online (AJOL)

    Impact of Tamsulosin, Tolterodine and drug-combination on the outcomes of lower urinary tract symptoms secondary to post-ureteroscopy ureteral stent: A prospective randomized controlled clinical study.

  12. Drug combination may be highly effective in recurrent ovarian cancer

    Science.gov (United States)

    Significant improvement with the use of a combination drug therapy for recurrent ovarian cancer was reported at the annual meeting of the American Society of Clinical Oncology meeting in Chicago. The trial compared the activity of a combination of the dru

  13. Tyrosine kinase receptor inhibitor-targeted combined chemotherapy for metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Chia-Lun Wu

    2012-04-01

    Full Text Available Overexpression of hypoxia-inducible factor-1 alpha is noted during the invasive and metastatic process of transitional cell carcinoma. It will upregulate vascular endothelial growth factor (VEGF and drive proliferation, invasiveness, metastasis, and antiapoptotic ability of cancer cells. We proposed that tyrosine kinase receptor inhibitor, sunitinib malate—(Sutent; Pfizer Inc., Taiwan, combined with chemotherapeutic drug may present synergistic cytotoxic enhancement to transitional cell carcinoma cells with subsequent inhibition of their cellular behaviors, including proliferation, invasiveness, and metastatic activity. The contents of VEGF-A in mouse bladder tumor cells (MBT-2 and culture medium were detected by quantification-polymerase chain reaction and Western blot individually. The inhibitory concentrations of various chemotherapeutic drugs, sunitinib, and their combination treatment in MBT-2 were determined by 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay. Microchamber transmembrane migration assay was applied in evaluation of the inhibitory effects of different dosages of sunitinib and combination treatment on tumor cells. The cell cycle and apoptosis were analyzed after combination therapy by flow cytometry. Variation in apoptotic pathway was elucidated by Western blot using specific antibodies with cleaved PARP and caspase-3. Metastatic animal model mimicked by tail vein injection of MBT-2 cells was used to evaluate the treatment efficiency in tumor weight and survival rate. The mRNA and protein level of VEGF-A in MBT-2 cells increased by 70% at 48 hours interval under hypoxia stress condition. In MTT assay, MBT-2 cells had shown the highest sensitivity to epirubicin. Sunitinib combined with epirubicin had shown a synergistic cytotoxic effect to MBT-2 cells. Sunitinib and its combination with epirubicin showed significant inhibition on MBT-2 cells migration in microchambers. G2/M phase arrest and

  14. Synergistic pretreatment of waste activated sludge using CaO_2 in combination with microwave irradiation to enhance methane production during anaerobic digestion

    International Nuclear Information System (INIS)

    Wang, Jie; Li, Yongmei

    2016-01-01

    Highlights: • CaO_2/MW pretreatment synergistically enhanced WAS solubilization and CH_4 production. • MW irradiation facilitated more "·OH generation from CaO_2. • The optimal pretreatment condition for methane production was determined. • The growths of both hydrogenotrophic and acetate-utilizing methanogens were promoted. • The dewaterability of WAS was improved considerably by CaO_2/MW treatment. - Abstract: To investigate the effects of combined calcium peroxide (CaO_2) and microwave pretreatment on anaerobic digestion of waste activated sludge, lab-scale experiments were conducted to measure the solubilization, biodegradation, and dewaterability of the waste activated sludge. Additionally, the synergistic effects between CaO_2 and microwave were studied, and the microbial activity and methanogenic archaea community structure were analyzed. Combined pretreatment considerably facilitated the solubilization and subsequent anaerobic digestion of the waste activated sludge. The optimal pretreatment condition was CaO_2 (0.1 g/gVSS)/microwave (480 W, 2 min) for methane production during the subsequent anaerobic digestion process. Under this condition, 80.2% higher CH_4 accumulation yield was achieved after 16 d of anaerobic digestion when compared with the control. The synergistic effects of CaO_2/microwave pretreatment resulted from the different mechanisms of CaO_2 and microwave treatments. Further, microwave irradiation increased "·OH generation from CaO_2 and significantly alleviated the inhibitory effect of CaO_2 on methanogens. The activities of hydrolytic enzymes and acid-forming enzymes in the waste activated sludge were improved after CaO_2 (0.1 g/gVSS)/microwave (480 W, 2 min) pretreatment. Methanogenesis enzyme activity was also higher after CaO_2 treatment (0.1 g/gVSS)/microwave (480 W, 2 min) following a lag period. Illumina MiSeq sequencing analysis indicated that acetate-utilizing methanogen (Methanosaeta sp.) and H_2/CO_2-utilizing

  15. Tuberculosis drug issues: prices, fixed-dose combination products and second-line drugs.

    Science.gov (United States)

    Laing, R O; McGoldrick, K M

    2000-12-01

    Access to tuberculosis drugs depends on multiple factors. Selection of a standard list of TB drugs to procure is the first step. This paper reviews the advantages and disadvantages of procuring and using fixed-dose combination (FDC) products for both the intensive and continuation phases of treatment. The major advantages are to prevent the emergence of resistance, to simplify logistic management and to reduce costs. The major disadvantage is the need for the manufacturers to assure the quality of these FDCs by bioavailability testing. The paper reports on the inclusion of second-line TB drugs in the 1999 WHO Essential Drug List (EDL). The need to ensure that these drugs are used within established DOTS-Plus programs is stressed. The price of TB drugs is determined by many factors, including producer prices, local taxes and duties as well as mark-ups and fees. TB drug prices for both the public and private sectors from industrialized and developing countries are reported. Price trends over time are also reported. The key findings of this study are that TB drug prices have generally declined in developing countries while they have increased in developed countries, both for the public and private sectors. Prices vary between countries, with the US paying as much as 95 times the price paid in a specific developing country. The prices of public sector first-line TB drugs vary little between countries, although differences do exist due to the procurement methods used. The price of tuberculin, a diagnostic agent, has increased dramatically in the US, with substantial inter-country variations in price. The paper suggests that further research is necessary to identify the reasons for the price disparities and changes over time, and suggests methods which can be used by National Tuberculosis Programme managers to ensure availability of quality assured TB drugs at low prices.

  16. Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations

    Science.gov (United States)

    Laird, Gregory M.; Bullen, C. Korin; Rosenbloom, Daniel I.S.; Martin, Alyssa R.; Hill, Alison L.; Durand, Christine M.; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    Reversal of HIV-1 latency by small molecules is a potential cure strategy. This approach will likely require effective drug combinations to achieve high levels of latency reversal. Using resting CD4+ T cells (rCD4s) from infected individuals, we developed an experimental and theoretical framework to identify effective latency-reversing agent (LRA) combinations. Utilizing ex vivo assays for intracellular HIV-1 mRNA and virion production, we compared 2-drug combinations of leading candidate LRAs and identified multiple combinations that effectively reverse latency. We showed that protein kinase C agonists in combination with bromodomain inhibitor JQ1 or histone deacetylase inhibitors robustly induce HIV-1 transcription and virus production when directly compared with maximum reactivation by T cell activation. Using the Bliss independence model to quantitate combined drug effects, we demonstrated that these combinations synergize to induce HIV-1 transcription. This robust latency reversal occurred without release of proinflammatory cytokines by rCD4s. To extend the clinical utility of our findings, we applied a mathematical model that estimates in vivo changes in plasma HIV-1 RNA from ex vivo measurements of virus production. Our study reconciles diverse findings from previous studies, establishes a quantitative experimental approach to evaluate combinatorial LRA efficacy, and presents a model to predict in vivo responses to LRAs. PMID:25822022

  17. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    OpenAIRE

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the inc...

  18. Combining casein phosphopeptide-amorphous calcium phosphate with fluoride: synergistic remineralization potential of artificially demineralized enamel or not?

    Science.gov (United States)

    Elsayad, Iman; Sakr, Amal; Badr, Yahia

    2009-07-01

    Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The remineralizing potential of CPP-ACP per se, or when combined with 0.22% Fl gel on artificially demineralized enamel using laser florescence, is investigated. Mesial surfaces of 15 sound human molars are tested using a He-Cd laser beam at 441.5 nm with 18-mW power as an excitation source on a suitable setup based on a Spex 750-M monochromator provided with a photomultiplier tube (PMT) for detection of collected autofluorescence from sound enamel. Mesial surfaces are subjected to demineralization for ten days. The spectra from demineralized enamel are measured. Teeth are divided into three groups according to the remineralizing regimen: group 1 Recaldent per se, group 2 Recaldent combined with fluoride gel and ACP, and group 3 artificial saliva as a positive control. After following these protocols for three weeks, the spectra from the remineralized enamel are measured. The spectra of enamel autofluorescence are recorded and normalized to peak intensity at about 540 nm to compare spectra from sound, demineralized, and remineralized enamel surfaces. A slight red shift occurred in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group 2 shows the highest remineralizing potential. Combining fluoride and ACP with CPP-ACP can give a synergistic effect on enamel remineralization.

  19. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

    Science.gov (United States)

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag(+) ions using D. bulbifera tuber extract. Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag(+) ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO(3) solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. This is the first report on

  20. AtriplaR/anti-TB combination in TB/HIV patients. Drug in focus

    Directory of Open Access Journals (Sweden)

    Semvua Hadija H

    2011-11-01

    Full Text Available Abstract Background Co-administration of anti-tuberculosis and antiretroviral therapy is often inevitable in high-burden countries where tuberculosis is the most common opportunistic infection associated with HIV/AIDS. Concurrent use of rifampicin and several antiretroviral drugs is complicated by pharmacokinetic drug-drug interaction. Method Pubmed and Google search following the key words tuberculosis, HIV, emtricitabine, tenofovir efavirenz, interaction were used to find relevant information on each drug of the fixed dose combination AtriplaR Results Information on generic name, trade name, pharmacokinetic parameter, metabolism and the pharmacokinetic interaction with Anti-TB drugs of emtricitabine, tenofovir, and efavirenz was obtained. Conclusion Fixed dose combination of emtricitabine/tenofovir/efavirenz (ATRIPLAR which has been approved by Food and Drug Administration shows promising results as far as safety and efficacy is concerned in TB/HIV co-infection patients, hence can be considered effective and safe antiretroviral drug in TB/HIV management for adult and children above 3 years of age.

  1. Synergistic Effect of Combining Plutella xylostella Granulovirus and Bacillus thuringiensis at Sublethal Dosages on Controlling of Diamondback Moth (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Han, Guangjie; Li, Chuanming; Liu, Qin; Xu, Jian

    2015-10-01

    Plutella xylostella granulovirus (PxGV) and Bacillus thuringiensis (Bt) are both entomo-pathogens to the diamondback moth, Plutella xylostella (L.). The purpose of the present study was to measure the effect of the combination of PxGV and Bt at sublethal dosages on the development and mortality of diamondback moth in a laboratory setting. Bt and PxGV exhibited synergistic effect on diamondback moth larval mortality and effectively controlled diamondback moth populations with low dose combination treatment. The combination of three parts per million Bt and 1.3 × 10(3) occlusion bodies per milliliter of PxGV revealed a higher larval mortality compared with the treatment of Bt or PxGV alone. Combination of Bt and PxGV at sublethal concentrations also increased larval duration, reduced oviposition and decreased adult longevity remarkably, resulting in the lowest population trend index among the treatments. The results suggested that the combination of Bt and PxGV at sublethal dosages might provide a valuable way to improve the control efficacy of diamondback moth compared with treatment of Bt or PxGV alone. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right.

    Science.gov (United States)

    Audie, J; Boyd, C

    2010-01-01

    The case for peptide-based drugs is compelling. Due to their chemical, physical and conformational diversity, and relatively unproblematic toxicity and immunogenicity, peptides represent excellent starting material for drug discovery. Nature has solved many physiological and pharmacological problems through the use of peptides, polypeptides and proteins. If nature could solve such a diversity of challenging biological problems through the use of peptides, it seems reasonable to infer that human ingenuity will prove even more successful. And this, indeed, appears to be the case, as a number of scientific and methodological advances are making peptides and peptide-based compounds ever more promising pharmacological agents. Chief among these advances are powerful chemical and biological screening technologies for lead identification and optimization, methods for enhancing peptide in vivo stability, bioavailability and cell-permeability, and new delivery technologies. Other advances include the development and experimental validation of robust computational methods for peptide lead identification and optimization. Finally, scientific analysis, biology and chemistry indicate the prospect of designing relatively small peptides to therapeutically modulate so-called 'undruggable' protein-protein interactions. Taken together a clear picture is emerging: through the synergistic use of the scientific imagination and the computational, chemical and biological methods that are currently available, effective peptide therapeutics for novel targets can be designed that surpass even the proven peptidic designs of nature.

  3. The combination of chemotherapy and radiotherapy towards more efficient drug delivery.

    Science.gov (United States)

    Cao, Wei; Gu, Yuwei; Meineck, Myriam; Xu, Huaping

    2014-01-01

    Research on anticancer therapies has advanced significantly in recent years. New therapeutic platforms that can further improve the health of patients are still highly demanded. We propose the idea of combining regular chemotherapy with radiation therapy to minimize side effects as well as increase drug-delivery efficiency. In this Focus Review, we seek to provide an overview of recent advances that can combine chemotherapy and radiotherapy. We begin by reviewing the current state of systems that can combine chemotherapy and gamma radiation. Among them, diselenide-containing polymers are highlighted as sensitive drug-delivery vehicles that can disassemble under gamma radiation. Then X-ray responsive materials as promising alternative systems are summarized, including X-ray responsive drug-delivery vehicles, prodrugs that can be activated by X-rays, and radiation-site-targeting systems. Finally, we describe strategies that involve phototherapies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Early safety and efficacy of the combination of bedaquiline and delamanid for the treatment of patients with drug-resistant tuberculosis in Armenia, India, and South Africa: a retrospective cohort study.

    Science.gov (United States)

    Ferlazzo, Gabriella; Mohr, Erika; Laxmeshwar, Chinmay; Hewison, Catherine; Hughes, Jennifer; Jonckheere, Sylvie; Khachatryan, Naira; De Avezedo, Virginia; Egazaryan, Lusine; Shroufi, Amir; Kalon, Stobdan; Cox, Helen; Furin, Jennifer; Isaakidis, Petros

    2018-05-01

    Bedaquiline and delamanid have been approved for treatment of multidrug-resistant (MDR) tuberculosis in the past 5 years. Because of theoretical safety concerns, patients have been unable to access the two drugs in combination. Médecins Sans Frontières has supported the use of combination bedaquiline and delamanid for people with few treatment options since 2016. We describe early safety and efficacy of regimens containing the bedaquiline and delamanid combination in patients with drug-resistant tuberculosis in Yerevan, Armenia; Mumbai, India; and Khayelitsha, South Africa. We retrospectively analysed a cohort of all patients who received 6-12 months of oral bedaquiline and delamanid in combination (400 mg bedaquiline once per day for 2 weeks, then 200 mg bedaquiline three times per week and 100 mg delamanid twice per day) in MSF-supported projects. We report serious adverse events, QTc corrected using the Fridericia formula (QTcF) interval data, and culture conversion data during the first 6 months of treatment. Between Jan 1, 2016, and Aug 31, 2016, 28 patients (median age 32·5 years [IQR 28·5-40·5], 17 men) were included in the analysis. 11 (39%) of 28 patients were HIV-positive. 24 patients (86%) had isolates resistant to fluoroquinolones; 14 patients (50%) had extensively drug-resistant tuberculosis. No patient had an increase of more than 500 ms in their QTcF interval. Four patients (14%) had six instances of QTcF increase of more than 60 ms from baseline but none permanently discontinued the drugs. 16 serious adverse events were reported in seven patients. Of 23 individuals with positive baseline cultures, 17 (74%) converted to negative by month 6 of treatment. Use of the bedaquiline and delamanid combination appears to reveal no additive or synergistic QTcF-prolonging effects. Access to bedaquiline and delamanid in combination should be expanded for people with few treatment options while awaiting the results of formal clinical trials. Médecins Sans

  5. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    Science.gov (United States)

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  6. Synergistic effects of heat and irradiation treatment (thermoradiation) in the sterilization of medical products

    International Nuclear Information System (INIS)

    Trauth, C.A. Jr.; Sivinski, H.D.

    1975-01-01

    This paper describes a generic class of sterilization processes is which properly chosen combinations of radiation and heat synergistically inactivate many bacteria and viruses. Treatments with optimal combinations are shown to offer the possibility of using lower total doses and lower temperatures than would be required separately for sterilization. This results from easier elimination of heat-labile, radioresistant organisms and radiolabile, heat-resistant organisms, and from synergistic inactivation of organisms which are both radioresistant and heat resistant. These processes depend upon temperature, dose-rate, and time in fairly complex ways; therefore, an analytical framework in which they can be defined is also presented. (author)

  7. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Mara A. Bonelli

    2017-08-01

    Full Text Available Malignant pleural mesothelioma (MPM is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991, a highly selective inhibitor of cyclin-dependent kinase (CDK 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM.

  8. Approaches to modernize the combination drug development paradigm

    Directory of Open Access Journals (Sweden)

    Daphne Day

    2016-10-01

    Full Text Available Abstract Recent advances in genomic sequencing and omics-based capabilities are uncovering tremendous therapeutic opportunities and rapidly transforming the field of cancer medicine. Molecularly targeted agents aim to exploit key tumor-specific vulnerabilities such as oncogenic or non-oncogenic addiction and synthetic lethality. Additionally, immunotherapies targeting the host immune system are proving to be another promising and complementary approach. Owing to substantial tumor genomic and immunologic complexities, combination strategies are likely to be required to adequately disrupt intricate molecular interactions and provide meaningful long-term benefit to patients. To optimize the therapeutic success and application of combination therapies, systematic scientific discovery will need to be coupled with novel and efficient clinical trial approaches. Indeed, a paradigm shift is required to drive precision medicine forward, from the traditional “drug-centric” model of clinical development in pursuit of small incremental benefits in large heterogeneous groups of patients, to a “strategy-centric” model to provide customized transformative treatments in molecularly stratified subsets of patients or even in individual patients. Crucially, to combat the numerous challenges facing combination drug development—including our growing but incomplete understanding of tumor biology, technical and informatics limitations, and escalating financial costs—aligned goals and multidisciplinary collaboration are imperative to collectively harness knowledge and fuel continual innovation.

  9. Modification of concomitant drug release from oil vehicles using drug-prodrug combinations to achieve sustained balanced analgesia after joint installation

    DEFF Research Database (Denmark)

    Thing, Mette; Jensen, Sabrine Smedegaard; Larsen, Claus Selch

    2012-01-01

    Intra-articular injection of two drugs in a sustained drug delivery system combining the use of lipophilic solution with the prodrug approach may provide efficient and prolonged postoperative pain treatment after arthroscopic procedures. In the present study, the concomitant release of N...... using buffer. In both release models, the use of ropivacaine-prodrug combination provided concomitant release from the oil into synovial fluid with ropivacaine being released faster than naproxen. The use of lipophilic prodrugs that are converted fast to the parent drug in synovial fluid seems...

  10. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms.

    Science.gov (United States)

    Lara, Humberto H; Guisbiers, Gregory; Mendoza, Jonathan; Mimun, Lawrence C; Vincent, Brandy A; Lopez-Ribot, Jose L; Nash, Kelly L

    2018-01-01

    Candida albicans is a major opportunistic fungal pathogen. One of the most important virulence factors that contribute to the pathogenesis of candidiasis is its ability to form biofilms. A key characteristic of Candida biofilms is their resistance to antifungal agents. Due to significant morbidity and mortality rates related to biofilm-associated drug resistance, there is an urgency to develop novel nanotechnology-based approaches preventing biofilm-related infections. In this study, we report, for the first time, the synthesis of selenium nanoparticles by irradiating selenium pellets by nanosecond pulsed laser ablation in liquid chitosan as a capping agent. Synergy of the fungicidal effect of selenium nanoparticles and chitosan was quantified by the combination index theorem of Chou-Talalay. This drug combination resulted in a potent fungicidal effect against a preformed C. albicans biofilm in a dose-response manner. By advanced electron microscopy techniques, we documented the adhesive and permeabilizing properties of chitosan, therefore allowing selenium nanoparticles to enter as the cell wall of the yeast became disrupted and distorted. Most importantly, we demonstrated a potent quantitative synergistic effect when compounds such as selenium and chitosan are combined. These chitosan-stabilized selenium nanoparticles could be used for ex vivo applications such as sterilizers for surfaces and biomedical devices.

  11. Post-operative analgesic effects of paracetamol, NSAIDs, glucocorticoids, gabapentinoids and their combinations

    DEFF Research Database (Denmark)

    Dahl, Jørgen Berg; Nielsen, Rasmus; Wetterslev, Jørn

    2014-01-01

    , and no well-documented 'gold standards' exist. The aim of the present topical, narrative review is to provide an update of the evidence for post-operative analgesic efficacy with the most commonly used, systemic non-opioid drugs, paracetamol, non-steroidal anti-inflammatory drugs (NSAIDs)/COX-2 antagonists......, glucocorticoids, gabapentinoids, and combinations of these. The review is based on data from previous systematic reviews with meta-analyses, investigating effects of non-opioid analgesics on pain, opioid-requirements, and opioid-related adverse effects. Paracetamol, NSAIDs, COX-2 antagonists, and gabapentin....... Trials of pregabalin > 300 mg/day indicated a morphine-sparing effect of 13.4 (4, 22.8) mg morphine/24 h. Notably, though, the available evidence for additive or synergistic effects of most combination regimens was sparse or lacking. Paracetamol, NSAIDs, selective COX-2 antagonists, and gabapentin all...

  12. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  13. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bhone Myint Kyaw

    2012-09-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore. Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections.

  14. Culture and neuroscience: additive or synergistic?

    Science.gov (United States)

    Dapretto, Mirella; Iacoboni, Marco

    2010-01-01

    The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings. PMID:20083533

  15. Mathematical description and prognosis of Synergistic interaction of radon and tobacco smoking

    International Nuclear Information System (INIS)

    Kim, J. K.; Belkina, S. A.; Petin, V. G.

    2007-01-01

    : Radon and its short-lived decay products are considered as the important sources of public exposure to natural radioactivity. The synergistic interaction between tobacco smoking and radon is known to be an actual problem. This study has provided a mathematical description and prognosis of the carcinogenic effects after combined action of radon with smoking. Materials and Methods: A simple mathematical model was adjusted for the optimization and prognosis of the synergistic interaction of radon with smoking. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arising from the interaction of sub lesions induced by the two agents under consideration. Results: The predictions of the model were verified by comparison with experimental data published by other researchers. The model appears to be appropriate and the predictions valid. Conclusion: The suggested mathematical model predicts the greatest level of synergistic effect and condition under which this level is reached. The synergistic effect appeared to decline with any deviation from the optimal value of the ratio of carcinogenic effective damages produced by each agent alone

  16. Radiotherapy and 'new' drugs-new side effects?

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Maihoefer, Cornelius; Krause, Mechthild; Rödel, Claus; Budach, Wilfried; Belka, Claus

    2011-01-01

    Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments. Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms. Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported. The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity

  17. A Fresh Shine onCystic Fibrosis Inhalation Therapy: Antimicrobial Synergy of Polymyxin B in Combination with Silver Nanoparticles.

    Science.gov (United States)

    Jasim, Raad; Schneider, Elena K; Han, Meiling; Azad, Mohammad A K; Hussein, Maytham; Nowell, Cameron; Baker, Mark A; Wang, Jiping; Li, Jian; Velkov, Tony

    2017-04-01

    This in vitro study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with 2 nm silver nanoparticles (NPs) against Gram-negative pathogens commonly isolated from the cystic fibrosis (CF) lung. The in vitro synergistic activity of polymyxin B with silver NPs was assessed using the checkerboard assay against polymyxinsusceptible and polymyxin-resistant Pseudomonas aeruginosa isolates from the lungs of CF patients. The combination was also examined against the Gram-negative species Haemophilus influenzae, Burkholderia cepacia, Burkholderia pseudomallei, Stenotrophomonas maltophilia, Klebsiella pneumoniae and Acinetobacter baumannii that are less common in the CF lung. The killing kinetics of the polymyxin B-silver NPs combinations was assessed against P. aeruginosa by static time-kill assays over 24 h. Polymyxin B and silver NPs alone were not active against polymyxin-resistant (MIC ≥4 mg/L) P. aeruginosa. Whereas, the combination of a clinically-relevant concentration of polymyxin B (2 mg/L) with silver NPs (4 mg/L) successfully inhibited the growth of polymyxin-resistant P. aeruginosa isolates from CF patients as demonstrated by ≥2 log10 decrease in bacterial count (CFU/mL) after 24 h. Treatment of P. aeruginosa cells with the combination induced cytosolic GFP release and an increase of cellular reactive oxygen species. In the nitrocefin assay, the combination displayed a membrane permeabilizing activity superior to each of the drugs alone. The combination of polymyxin B and silver NPs displays excellent synergistic activity against highly polymyxin-resistant P. aeruginosa and is potentially of considerable clinical utility for the treatment of problematic CF lung infections.

  18. Bioequivalence of fixed-dose combination RIN®-150 to each reference drug in loose combination.

    Science.gov (United States)

    Wang, H F; Wang, R; O'Gorman, M; Crownover, P; Damle, B

    2015-03-01

    RIN(®)-150 is a fixed-dose combination (FDC) tablet containing rifampicin (RMP, 150 mg) and isoniazid (INH, 75 mg) developed for the treatment of tuberculosis. This study was conducted at a single center: the Pfizer Clinical Research Unit in Singapore. To demonstrate bioequivalence of each drug component between RIN-150 and individual products in a loose combination. This was a randomized, open-label, single-dose, two-way crossover study. Subjects received single doses of RIN-150 or two individual reference products under fasting conditions in a crossover fashion, with at least 7 days washout between doses. The primary measures for comparison were peak plasma concentration (Cmax) and the area under plasma concentration-time curve (AUC). Of 28 subjects enrolled, 26 completed the study. The adjusted geometric mean ratios of Cmax and AUClast between the FDC and single-drug references and 90% confidence intervals were respectively 91.63% (90%CI 83.13-101.01) and 95.45% (90%CI 92.07-98.94) for RMP, and 107.58% (90%CI 96.07-120.47) and 103.45% (90%CI 99.33-107.75) for INH. Both formulations were generally well tolerated in this study. The RIN-150 FDC tablet formulation is bioequivalent to the two single-drug references for RMP and INH at equivalent doses.

  19. Combined inhibition of β-catenin and Bcr–Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-01-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte–macrophage progenitors, and highest among a novel CD34+CD38+CD123hiTim-3hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5T315I and TKI-resistant primary BC-CML cells with or without BCR–ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR–ABLT315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR–ABLT315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr–Abl inhibition to prevent or overcome Bcr–Abl kinase-dependent or -independent TKI resistance in BC-CML. PMID:28321124

  20. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo.

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-10-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte-macrophage progenitors, and highest among a novel CD34 + CD38 + CD123 hi Tim-3 hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5 T315I and TKI-resistant primary BC-CML cells with or without BCR-ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR-ABL T315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR-ABL T315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr-Abl inhibition to prevent or overcome Bcr-Abl kinase-dependent or -independent TKI resistance in BC-CML.

  1. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Sun, Ding [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Department of Hepatobiliary Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Zhu, Qing-Feng [The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD, 21205 (United States); Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 (China); Yang, Xin-Rong [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Gao, Ya-Bo [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032 (China); Tang, Wei-Guo [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Fan, Jia [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 (China); Maitra, Anirban [The Sol Goldman Pancreatic Cancer Research Center, Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States); and others

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • NanoCurcumin and

  2. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hu, Bo; Sun, Ding; Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang; Zhu, Qing-Feng; Yang, Xin-Rong; Gao, Ya-Bo; Tang, Wei-Guo; Fan, Jia; Maitra, Anirban

    2015-01-01

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • NanoCurcumin and

  3. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine.

    Science.gov (United States)

    Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Lourido, Lucía; Rocha, Beatriz; Fernández-Costa, Carolina; Montell, Eulalia; Vergés, Josep; Ruiz-Romero, Cristina; Blanco, Francisco J

    2014-06-10

    Osteoarthritis (OA) is the most common age-related rheumatic disease. Chondrocytes play a primary role in mediating cartilage destruction and extracellular matrix (ECM) breakdown, which are main features of the OA joint. Quantitative proteomics technologies are demonstrating a very interesting power for studying the molecular effects of some drugs currently used to treat OA patients, such as chondroitin sulfate (CS) and glucosamine (GlcN). In this work, we employed the iTRAQ (isobaric tags for relative and absolute quantitation) technique to assess the effect of CS and GlcN, both alone and in combination, in modifying cartilage ECM metabolism by the analysis of OA chondrocytes secretome. 186 different proteins secreted by the treated OA chondrocytes were identified. 36 of them presented statistically significant differences (p ≤ 0.05) between untreated and treated samples: 32 were increased and 4 decreased. The synergistic chondroprotective effect of CS and GlcN, firstly reported by our group at the intracellular level, is now demonstrated also at the extracellular level.

  4. Synergistic effect of DHT and IGF-1 hyperstimulation in human peripheral blood lymphocytes.

    Science.gov (United States)

    Imperlini, Esther; Spaziani, Sara; Mancini, Annamaria; Caterino, Marianna; Buono, Pasqualina; Orrù, Stefania

    2015-06-01

    The abuse of mixed or combined performance-enhancing drugs is widespread among athletes and amateurs, adults and adolescents. Clinical studies demonstrated that misuse of these doping agents is associated with serious adverse effects to many organs in human. Previously, we demonstrated in human peripheral blood lymphocytes that high doses of anabolic androgenic steroids, such as dihydrotestosterone (DHT) and growth factors, such as insulin-like growth factor-1 (IGF-1), have effects at gene and protein levels. Supraphysiological treatments of DHT and IGF-1 affected the expression of genes involved in skeletal muscle disorders as well as in cell-mediated immunological response. At protein level, DHT hyperdosage affects cell motility and apoptosis; IGF-1 hyperstimulation triggers an active cytoskeletal reorganization and an overproduction of immune response- and inflammation-related cytokines. In this study, we investigate the combined effects of DHT and IGF-1 hyperdosage in peripheral blood lymphocytes using a differential proteomic approach. DHT and IGF-1 combined treatment affects cell adhesion, migration, and survival through modulation of expression levels of cytokines and paxillin-signaling-related proteins, and activation of several pathways downstream focal adhesion kinase. Our results indicate a synergistic effect of DHT and IGF-1 which has potential implications for health risk factors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide.

    Science.gov (United States)

    Sepúlveda-Crespo, Daniel; Lorente, Raquel; Leal, Manuel; Gómez, Rafael; De la Mata, Francisco J; Jiménez, José Luis; Muñoz-Fernández, M Ángeles

    2014-04-01

    Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides. © 2014.

  6. Synergistic in-vitro effects of combining an antiglycolytic, 3-bromopyruvate, and a bromodomain-4 inhibitor on U937 myeloid leukemia cells.

    Science.gov (United States)

    Kapp, Nicolette; Stander, Xiao X; Stander, Barend A

    2018-06-01

    This project investigated the in-vitro effects of a glycolytic inhibitor, 3-bromopyruvate (3-BrP), in combination with and a new in silico-designed inhibitor of the bromodomain-4 (BRD-4) protein, ITH-47, on the U937 acute myeloid leukemia cell line. 3-BrP is an agent that targets the altered metabolism of cancer cells by interfering with glucose metabolism in the glycolytic pathway. ITH-47 is an acetyl-lysine inhibitor that displaces bromdomain 4 proteins from chromatin by competitively binding to the acetyl-lysine recognition pocket of this bromodomain and extraterminal (BET) BRD protein, thereby preventing transcription of cancer-associated genes and further cell growth. Cell growth studies determined the IC50 after 48 h exposure for 3-BrP and ITH-47 to be 6 and 2 μmol/l, respectively. When combined, 2.4 and 1 μmol/l of 3-BrP and ITH-47, respectively, inhibited 50% of the cell population, yielding a synergistic combination index of 0.9. Subsequent mechanistic studies showed that the IC50 concentrations of ITH-47 and 3-BrP and the combination increased observable apoptotic bodies and cell shrinkage in U937 cells treated for 48 h. Cell cycle analysis showed an increase in the sub-G1 fraction in all treated cells, suggesting that cell death was increased in the treated samples. Annexin-V-FITC apoptosis analysis showed a statistically significant increase in the number of cells in early and late apoptosis, indicating that cell death occurred through apoptosis and not necrosis. Only U937 cells exposed to ITH-47 showed a decrease in mitochondrial membrane potential compared with the vehicle control. Reactive oxygen species production was decreased in all treated samples. ITH-47-exposed cells showed a decrease in c-Myc, Bcl-2, and p53 gene expressions. 3-BrP-treated cells showed an increase in c-myc and p53 gene expressions. The combination of ITH-47 and 3-BrP lead to downregulation of c-myc and Bcl-2 genes. ITH-47 exposure conditions yielded a marked decrease

  7. Antipityrosporum Ovale Activity Of A Herbal Drug Combination Of Wrightia Tinctoria And Hisbiscus Rosasinensis

    Directory of Open Access Journals (Sweden)

    Kirshnamoorthy J R

    2000-01-01

    Full Text Available Antipityosporum activity of a herbal drug combination of Wrighria tinctoria and Hibiscus rosasinensis was tested in vitro against the isolates of Pityrosporum ovale recovered from dandruff. The drug combination exhibited fungicidal activity at a concentration ranging between 500 to1000 pg/ml.

  8. Combination Therapy with Losartan and Pioglitazone Additively Reduces Renal Oxidative and Nitrative Stress Induced by Chronic High Fat, Sucrose, and Sodium Intake

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2012-01-01

    Full Text Available We recently showed that combination therapy with losartan and pioglitazone provided synergistic effects compared with monotherapy in improving lesions of renal structure and function in Sprague-Dawley rats fed with a high-fat, high-sodium diet and 20% sucrose solution. This study was designed to explore the underlying mechanisms of additive renoprotection provided by combination therapy. Losartan, pioglitazone, and their combination were orally administered for 8 weeks. The increased level of renal malondialdehyde and expression of nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox and nitrotyrosine as well as the decreased total superoxide dismutase activity and copper, zinc-superoxide dismutase expression were tangible evidence for the presence of oxidative and nitrative stress in the kidney of model rats. Treatment with both drugs, individually and in combination, improved these abnormal changes. Combination therapy showed synergistic effects in reducing malondialdehyde level, p47phox, and nitrotyrosine expression to almost the normal level compared with monotherapy. All these results suggest that the additive renoprotection provided by combination therapy might be attributed to a further reduction of oxidative and nitrative stress.

  9. Synergistic Cytotoxicity Effect by Combination Treatment of Polyketide Derivatives from Annona muricata Linn Leaves and Doxorubicin as Potential Anticancer Material on Raji Cell Line

    Science.gov (United States)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.

    2018-03-01

    Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.

  10. Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?

    Science.gov (United States)

    Gelfuso, Guilherme M; Barros, M Angélica de Oliveira; Delgado-Charro, M Begoña; Guy, Richard H; Lopez, Renata F V

    2015-10-01

    The feasibility of targeting drugs to hair follicles by a combination of microencapsulation and iontophoresis has been evaluated. Minoxidil sulphate (MXS), which is used in the treatment of alopecia, was selected as a relevant drug with respect to follicular penetration. The skin permeation and disposition of MXS encapsulated in chitosan microparticles (MXS-MP) was evaluated in vitro after passive and iontophoretic delivery. Uptake of MXS was quantified at different exposure times in the stratum corneum (SC) and hair follicles. Microencapsulation resulted in increased (6-fold) drug accumulation in the hair follicles relative to delivery from a simple MXS solution. Application of iontophoresis enhanced follicular delivery for both the solution and the microparticle formulations. It appears, therefore, that microencapsulation and iontophoresis can act synergistically to enhance topical drug targeting to hair follicles. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pharmacokinetics of combined treatment with praziquantel and albendazole in neurocysticercosis

    Science.gov (United States)

    Garcia, Hector H; Lescano, Andres G; Lanchote, Vera L; Pretell, E Javier; Gonzales, Isidro; Bustos, Javier A; Takayanagui, Osvaldo M; Bonato, Pierina S; Horton, John; Saavedra, Herbert; Gonzalez, Armando E; Gilman, Robert H

    2011-01-01

    AIMS Neurocysticercosis is the most common cause of acquired epilepsy in the world. Antiparasitic treatment of viable brain cysts is of clinical benefit, but current antiparasitic regimes provide incomplete parasiticidal efficacy. Combined use of two antiparasitic drugs may improve clearance of brain parasites. Albendazole (ABZ) has been used together with praziquantel (PZQ) before for geohelminths, echinococcosis and cysticercosis, but their combined use is not yet formally recommended and only scarce, discrepant data exist on their pharmacokinetics when given together. We assessed the pharmacokinetics of their combined use for the treatment of neurocysticercosis. METHODS A randomized, double-blind, placebo-controlled phase II evaluation of the pharmacokinetics of ABZ and PZQ in 32 patients with neurocysticercosis was carried out. Patients received their usual concomitant medications including an antiepileptic drug, dexamethasone, and ranitidine. Randomization was stratified by antiepileptic drug (phenytoin or carbamazepine). Subjects had sequential blood samples taken after the first dose of antiparasitic drugs and again after 9 days of treatment, and were followed for 3 months after dosing. RESULTS Twenty-one men and 11 women, aged 16 to 55 (mean age 28) years were included. Albendazole sulfoxide concentrations were increased in the combination group compared with the ABZ alone group, both in patients taking phenytoin and patients taking carbamazepine. PZQ concentrations were also increased by the end of therapy. There were no significant side effects in this study group. CONCLUSIONS Combined ABZ + PZQ is associated with increased albendazole sulfoxide plasma concentrations. These increased concentrations could independently contribute to increased cysticidal efficacy by themselves or in addition to a possible synergistic effect. PMID:21332573

  12. Therapeutic Effect of Supercritical CO2 Extracts of Curcuma Species with Cancer Drugs in Rhabdomyosarcoma Cell Lines.

    Science.gov (United States)

    Ramachandran, Cheppail; Quirin, Karl-W; Escalon, Enrique A; Lollett, Ivonne V; Melnick, Steven J

    2015-08-01

    Synergistic effect of supercritical CO2 extracts of Curcuma species with conventional chemotherapeutic drugs was investigated in human alveolar (SJRH30) and embryonal (RD) rhabdomyosarcoma cell lines. The Curcuma amada (mango ginger) (CA) extract showed the highest levels of cytotoxicity with inhibitory concentration IC50 values of 7.133 µg/ml and 7.501 µg/ml for SJRH30 and RD cell lines, respectively, as compared with Curcuma longa (turmeric) and Curcuma xanthorrhiza (Javanese turmeric) extracts. CA showed synergistic cytotoxic effects with vinblastine (VBL) and cyclophosphamide (CP) as indicated by the combination index values of <1 for VBL + CA, CP + CA, and VBL + CP + CA combinations in both embryonal and alveolar rhabdomyosarcomas. When lower doses of CA (0.1-0.2 µg/ml) were combined with cancer drugs like CP and VBL, caspase-3 activity increased significantly compared with individual agents and correlated with the percentage of apoptotic cells. CA in combination with VBL and CP induced a higher percentage of apoptosis than single agents in both cell lines. CA also modulated the expression of genes associated with intrinsic pathway of apoptosis (Bcl-2, Bax, Bak, and p53) and also inhibited the expression of genes associated with inflammation such as COX-2 and NF-κB. Xenograft studies with SJRH30 tumors in nude mice showed that CA treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly. These results suggest that CA can be evaluated further as an adjuvant with cancer drugs for the treatment of rhabdomyosarcoma patients. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.

    Directory of Open Access Journals (Sweden)

    Daniel Radiloff

    Full Text Available Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.

  14. Combination of Proteasomal Inhibitors Lactacystin and MG132 Induced Synergistic Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Robert B. Shirley

    2005-12-01

    Full Text Available The proteasome inhibitor Velcade (bortezomib/PS-341 has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego, CA and MG132 (Biomol International, Plymouth Meeting, PA may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKα, IKKβ, and IKKγ proteins and NFκB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFκB axis.

  15. Impact of Tamsulosin, Tolterodine and drug-combination on the ...

    African Journals Online (AJOL)

    Objectives: To compare the role of alpha-blocker (Tamsulosin) monotherapy, anticholinergic (Tolterodine) monotherapy or combination of both drugs versus analgesics in improving post-ureteroscopy (URS) lower urinary tract symptoms related to double-J ureteral stent. Patients and methods: Between January 2009 and ...

  16. In Vivo Study on the Pharmacological Interactions between a Chinese Herbal Formula ELP and Antiresorptive Drugs to Counteract Osteoporosis

    Directory of Open Access Journals (Sweden)

    Chun-Hay Ko

    2012-01-01

    Full Text Available Antiresorptive drugs, alendronate and raloxifene, are effective in lowering bone mineral density (BMD loss in postmenopausal women. However, long-term treatment may be associated with serious side effects. Our research group has recently discovered that a Chinese herbal formula, ELP, could significantly reduce BMD loss in animal and human studies. Therefore, the present study aimed to investigate the potential synergistic bone-protective effects of different herb-drug combinations using ovariectomized rats. To assess the efficacy of different combinations, the total BMD was monitored biweekly in the 8-week course of daily oral treatment. Bone microarchitecture, bone strength, and deoxypyridinoline level were also determined after 8 weeks. From our results, coadministration of ELP and raloxifene increased the total tibial BMD by 5.26% (2.5 mg/kg/day of raloxifene; P=0.014 and 5.94% (0.25 mg/kg/day of raloxifene; P=0.026 when compared with the respective dosage groups with raloxifene alone. Similar synergistic effects were also observed in BMD increase at distal femur (0.25 mg/kg/day; P=0.001 and reduction in urinary deoxypyridinoline crosslink excretion (2.5 and 0.25 mg/kg/day; both P=0.02. However, such interactions could not be observed in all alendronate-treated groups. Our data provide first evidence that ELP could synergistically enhance the therapeutic effects of raloxifene, so that the clinical dosage of raloxifene could be reduced.

  17. An In Vivo Platform for Rapid High-Throughput Antitubercular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Kevin Takaki

    2012-07-01

    Full Text Available Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model’s utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.

  18. An emerging integration between ionic liquids and nanotechnology: general uses and future prospects in drug delivery.

    Science.gov (United States)

    de Almeida, Tânia Santos; Júlio, Ana; Mota, Joana Portugal; Rijo, Patrícia; Reis, Catarina Pinto

    2017-06-01

    There is a growing need to develop drug-delivery systems that overcome drawbacks such as poor drug solubility/loading/release, systemic side effects and limited stability. Ionic liquids (ILs) offer many advantages and their tailoring represents a valuable tuning tool. Nano-based systems are also prized materials that prevent drug degradation, enhance their transport/distribution and extend their release. Consequently, structures containing ILs and nanoparticles (NPs) have been developed to attain synergistic effects. This overview on the properties of ILs, NPs and of their combined structures, reveals the recent advances in these areas through a review of pertinent literature. The IL-NP structures present enhanced properties and the subsequent performance upgrade proves to be useful in drug delivery, although much is yet to be done.

  19. Synergistic effect of baicalein, wogonin and oroxylin A mixture: multistep inhibition of the NF-κB signalling pathway contributes to an anti-inflammatory effect of Scutellaria root flavonoids.

    Science.gov (United States)

    Shimizu, Tomofumi; Shibuya, Nobuhiko; Narukawa, Yuji; Oshima, Naohiro; Hada, Noriyasu; Kiuchi, Fumiyuki

    2018-01-01

    Scutellaria root, the root of Scutellaria baicalensis Georgi, is a crude drug used for inflammatory diseases. In our previous report, the combination of flavonoids contained in Scutellaria root have been found to inhibit PGE 2 production more strongly than individual flavonoids. Here, to investigate the mechanism of the synergistic effect, we examined the effects of an equimolar mixture (F-mix) of baicalein (1), wogonin (2) and oroxylin A (3) on the production of PGE 2 in LPS-treated J774.1 cells. Although 1 and 3 inhibited COX-2 activity, the F-mix showed no synergistic effect on COX-2 inhibition. Therefore, we investigated the steps leading to the activation of COX-2 protein. Compounds 1-3 and F-mix inhibited the expression of COX-2 protein. However, only 2 inhibited the expression of COX-2 mRNA among the flavonoids, and the F-mix showed no synergistic effect. Only 1 inhibited NF-κB translocation into the nucleus, and the F-mix showed no synergistic effect. Although 2 did not affect NF-κB translocation, it strongly inhibited NF-κB-dependent transcriptional activity, and the F-mix inhibited the activity slightly more than 2. Compounds 1-3 also inhibited NO production, and the F-mix showed a synergistic effect. However, the effects of each flavonoid on the expression of iNOS mRNA were not consistent with those on COX-2 mRNA. Because the flavonoids inhibit different steps in the production of PGE 2 and NO, and their mixture did not show apparent synergistic effects in each step, we conclude that the synergistic effect of the flavonoid mixture reflects the total effect of the flavonoids inhibiting different steps in the NF-κB signalling pathway.

  20. Human harvest, climate change and their synergistic effects drove the Chinese Crested Tern to the brink of extinction

    Directory of Open Access Journals (Sweden)

    Shuihua Chen

    2015-07-01

    Full Text Available Synergistic effect refers to simultaneous actions of separate factors which have a greater total effect than the sum of the individual factor effects. However, there has been a limited knowledge on how synergistic effects occur and individual roles of different drivers are not often considered. Therefore, it becomes quite challenging to manage multiple threatening processes simultaneously in order to mitigate biodiversity loss. In this regard, our hypothesis is, if the traits actually play different roles in the synergistic interaction, conservation efforts could be made more effectively. To understand the synergistic effect and test our hypothesis, we examined the processes associated with the endangerment of critically endangered Chinese Crested Tern (Thalasseus bernsteini, whose total population number was estimated no more than 50. Through monitoring of breeding colonies and investigations into causative factors, combined with other data on human activities, we found that widespread human harvest of seabird eggs and increasing frequency of typhoons are the major factors that threatened the Chinese Crested Tern. Furthermore, 28 percent of breeding failures were due to the synergistic effects in which egg harvest-induced renestings suffered the higher frequent typhoons. In such combined interactions, the egg harvest has clearly served as a proximal factor for the population decline, and the superimposition of enhanced typhoon activity further accelerated the species toward imminent extinction. Our findings suggest that species endangerment, on one hand, should be treated as a synergistic process, while conservation efforts, on the other hand, should focus principally on combatting the threat that triggers synergistic effects.

  1. Synergy against extensively drug-resistant Acinetobacter baumannii in vitro by two old antibiotics: colistin and chloramphenicol.

    Science.gov (United States)

    Wei, Wen-Juan; Yang, Hai-Fei

    2017-03-01

    Combination antimicrobial therapy is an important option in the fight against Gram-negative 'superbugs'. This study systematically investigated the synergistic effect of colistin (CST) and chloramphenicol (CHL) in combination against extensively drug-resistant Acinetobacter baumannii (XDR-AB). The microtitre plate chequerboard assay was used to test synergy against 50 XDR-AB clinical strains. Then, three XDR-AB clinical isolates and the type strain A. baumannii ATCC 19606 were chosen for further synergy studies using time-kill assay, mutant prevention concentration (MPC) assay and real-time population analysis profile (PAP) assay. In the chequerboard assays, synergistic or additive effects [defined as a fractional inhibitory concentration index (FICI) of ≤0.5 and 0.5 synergy testing, the results of time-kill assays indicated that CST monotherapy produced rapid bacterial killing followed by rapid re-growth, with the emergence of CST resistance; CHL monotherapy was largely ineffective. The combination CST/CHL, however, showed a synergistic effect and enhanced bacterial killing in the four tested strains. It also significantly delayed re-growth and suppressed the emergence of CST resistance. In the MPC assay, a decrease in MPCs for CST was observed in the two CST-susceptible strains. PAP assay showed that both CST-resistant strains were heteroresistant. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. Assessment of combinations of antiandrogenic compounds vinclozolin and flutamide in a yeast based reporter assay.

    Science.gov (United States)

    Kolle, Susanne N; Melching-Kollmuss, Stephanie; Krennrich, Gerhard; Landsiedel, Robert; van Ravenzwaay, Bennard

    2011-08-01

    Humans are exposed to a combination of various substances such as cosmetic ingredients, drugs, biocides, pesticides and natural-occurring substances in food. The combined toxicological effects of two or more substances can simply be additive on the basis of response-addition, or it can be greater (synergistic) or smaller (antagonistic) than this. The need to assess combined effects of compounds with endocrine activity is currently discussed for regulatory risk assessment. We have used a well described yeast based androgen receptor transactivation assay YAS to assess the combinatorial effects of vinclozolin and flutamide; both mediating antiandrogenicity via the androgen receptor. Both vinclozolin and flutamide were antiandrogens of similar potency in the YAS assay. In the concentration range tested the two antiandrogens vinclozolin and flutamide did not act synergistically. Concentration additivity was observed in the linear, non-receptor-saturated concentration range. At high concentrations of one of the two substances tested the contribution of the second at lower concentration levels was less than additive. The combined response of both compounds at high concentration levels was also less than additive (saturation effect). At concentration levels which did not elicit a response of the individual compounds, the combination of these compounds also did not elicit a response. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Synergistic anticandidal activity of menthol in combination with itraconazole and nystatin against clinical Candida glabrata and Candida krusei isolates.

    Science.gov (United States)

    Sharifzadeh, Aghil; Khosravi, Ali Reza; Shokri, Hojjatollah; Tari, Paria Samadi

    2017-06-01

    Candida glabrata (C. glabrata) and C. krusei are now emerging as serious hospital acquired infections in immunocompromised patients. Menthol, a terpenic compound, has been reported to have antifungal activity. The aim of this study was to investigate the effect of menthol in combination with itraconazole or nystatin against C. glabrata and C. krusei isolates. The effects of menthol along with itraconazole and nystatin, were evaluated by the Clinical Laboratory Standards Institute (CLSI) M44-A and CLSI M27-A3 methods. The fractional inhibitory concentration index (FICI) was determined for menthol plus itraconazole and nystatin combinations using the checkerboard method. The mean of minimum inhibitory concentration (MIC) values of menthol, nystatin and itraconazole were 53.2, 2.30 and 1.50 μg/ml for C. glabrata isolates and 121, 1.08 and 0.38 μg/ml for C. krusei isolates, respectively. Menthol in combination with itraconazole or nystatin exhibited the synergistic effects against all species of Candida tested. FICI values for menthol plus itraconazole and nystatin combinations ranged from 0.250 to 0.561 and 0.139 to 0.623 for C. glabrata isolates, and 0.182 to 0.750 and 0.188 to 0.760 for C. krusei, respectively. These results support the potential use of menthol as an anticandidal agent, and it can be used complementarily with other conventional antifungal agents. Copyright © 2017. Published by Elsevier Ltd.

  4. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  5. Targeting the NF-κB Pathway as a Combination Therapy for Advanced Thyroid Cancer.

    Directory of Open Access Journals (Sweden)

    Nikita Pozdeyev

    Full Text Available NF-κB signaling plays an important role in tumor cell proliferation, cell survival, angiogenesis, invasion, metastasis and drug/radiation resistance. Combination therapy involving NF-κB pathway inhibition is an attractive strategy for the treatment of advanced forms of thyroid cancer. This study was designed to test the efficacy of NF-κB pathway inhibition in combination with cytotoxic chemotherapy, using docetaxel and ionizing radiation in in vitro models of thyroid cancer. We found that while both docetaxel and ionizing radiation activated NF-κB signaling in thyroid cancer cells, there was no synergistic effect on cell proliferation and/or programmed cell death with either genetic (transduction of a dominant negative mutant form of IκBα or pharmacologic (proteasome inhibitor bortezomib and IKKβ inhibitor GO-Y030 inhibition of the NF-κB pathway in thyroid cancer cell lines BCPAP, 8505C, THJ16T and SW1736. Docetaxel plus bortezomib synergistically decreased in vitro invasion of 8505C cells, but not in the other cell lines. Screening of a panel of clinically relevant targeted therapies for synergy with genetic NF-κB inhibition in a proliferation/cytotoxicity assay identified the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA as a potential candidate. However, the synergistic effect was confirmed only in the BCPAP cells. These results indicate that NF-κB inhibitors are unlikely to be beneficial as combination therapy with taxane cytotoxic chemotherapy, external radiation therapy or radioiodine therapy. There may be unique circumstances where NF-κB inhibitors may be considered in combination with docetaxel to reduce tumor invasion or in combination with HDAC inhibitors to reduce tumor growth, but this does not appear to be a combination therapy that could be broadly applied to patients with advanced thyroid cancer. Further research may identify which subsets of patients/tumors may respond to this therapeutic

  6. Position-aware deep multi-task learning for drug-drug interaction extraction.

    Science.gov (United States)

    Zhou, Deyu; Miao, Lei; He, Yulan

    2018-05-01

    A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework. The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases.

    Science.gov (United States)

    Civallero, Monica; Cosenza, Maria; Pozzi, Samantha; Sacchi, Stefano

    2017-11-28

    JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.

  8. In vitro activity of flomoxef and cefazolin in combination with vancomycin.

    Science.gov (United States)

    Simon, C; Simon, M

    1991-01-01

    207 clinical isolates from strains of patients from the University Children's Hospital of Kiel were investigated for their in vitro activity with the agar dilution method against flomoxef and cefazolin (alone and partially in combination with vancomycin). Staphylococci were also tested with other cephalosporins (cefoxitin, cefamandole, cefotaxime, cefotetan and latamoxef). Flomoxef and cefazolin always acted more vigorously on staphylococci than the other cephalosporins. Resistance of Staphylococcus aureus strains against flomoxef and cefazolin did not occur but was found in 15 and 5 of 98 Staphylococcus epidermidis strains, respectively. Enterococcus faecalis strains were always resistant against both drugs; Streptococcus faecium strains were only moderately sensitive. Combined testing of flomoxef or cefazolin with vancomycin showed synergism in almost all staphylococcal strains. Synergism was stronger when S. epidermidis strains were only weakly sensitive to or resistant against flomoxef and cefazolin in comparison to highly sensitive strains. Flomoxef (or cefazolin) acted synergistically in combination with vancomycin on E. faecalis and S. faecium with the exception of two strains of E. faecalis which showed an additive effect of both drugs.

  9. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity.

    Science.gov (United States)

    Penrod, Nadia M; Greene, Casey S; Moore, Jason H

    2014-01-01

    Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination

  10. Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations.

    Directory of Open Access Journals (Sweden)

    Sinjan Choudhary

    Full Text Available We report here interesting synergistic effects of proline and sorbitol, two well-known chemical chaperones, in the inhibition of fibrillation of two proteins, insulin and lysozyme. A combination of many biophysical techniques has been used to understand the structural morphology and modes of interaction of the chaperones with the proteins during fibrillation. Both the chaperones establish stronger polar interactions in the elongation and saturation stages of fibrillation compared to that in the native stage. However, when presented as a mixture, we also see contribution of hydrophobic interactions. Thus, a co-operative adjustment of polar and hydrophobic interactions between the chaperones and the protein surface seems to drive the synergistic effects in the fibrillation process. In insulin, this synergy is quantitatively similar in all the stages of the fibrillation process. These observations would have significant implications for understanding protein folding concepts, in general, and for designing combination therapies against protein fibrillation, in particular.

  11. Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations.

    Science.gov (United States)

    Choudhary, Sinjan; Save, Shreyada N; Kishore, Nand; Hosur, Ramakrishna V

    2016-01-01

    We report here interesting synergistic effects of proline and sorbitol, two well-known chemical chaperones, in the inhibition of fibrillation of two proteins, insulin and lysozyme. A combination of many biophysical techniques has been used to understand the structural morphology and modes of interaction of the chaperones with the proteins during fibrillation. Both the chaperones establish stronger polar interactions in the elongation and saturation stages of fibrillation compared to that in the native stage. However, when presented as a mixture, we also see contribution of hydrophobic interactions. Thus, a co-operative adjustment of polar and hydrophobic interactions between the chaperones and the protein surface seems to drive the synergistic effects in the fibrillation process. In insulin, this synergy is quantitatively similar in all the stages of the fibrillation process. These observations would have significant implications for understanding protein folding concepts, in general, and for designing combination therapies against protein fibrillation, in particular.

  12. Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2018-01-01

    Full Text Available Abstract Background Bacterial infections have become more challenging to treat due to the emergence of multidrug-resistant pathogenic bacteria. Combined antibiotics prove to be a relatively effective method to control such resistant strains. This study aim to investigate synergistic activity of eugenol combined with colistin against a collection of clinical isolated Escherichia coli (E.coli strains, and to evaluate potential interaction. Methods Antimicrobial susceptibility, minimum inhibitory concentration (MIC and fractional inhibitory concentration index (FICI of the bacteria were determined by disk diffusion assay, broth microdilution method and checkerboard assay, respectively. The mcr-1 mRNA expression was measured by Real-time PCR. To predict possible interactions between eugenol and MCR-1, molecular docking assay was taken. Results For total fourteen strains including eight colistin-resistant strains, eugenol was determined with MIC values of 4 to 8 μg/mL. Checkerboard dilution test suggested that eugenol exhibited synergistic activity when combined with colistin (FICI ranging from 0.375 to 0.625. Comparison analysis of Real-time PCR showed that synergy could significantly down-regulate expression of mcr-1 gene. A metal ion coordination bond with catalytic zinc atom and a hydrogen bond with crucial amino acid residue Ser284 of MCR-1 were observed after molecular docking, indicating antibacterial activity and direct molecular interactions of eugenol with MCR-1 protein. Conclusions Our results demonstrated that eugenol exhibited synergistic effect with colistin and enhanced its antimicrobial activity. This might further contribute to the antibacterial actions against colistin-resistant E.coli strains. Graphical abstract Synergistic effect of eugenol with colistin against colistin-resistant Escherichia coli isolates.

  13. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain.

    Science.gov (United States)

    Zhang, Jin; Wu, Dan; Xie, Cheng; Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.

  14. [Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells].

    Science.gov (United States)

    Yasutake, H; Tsuchiya, H; Sugihara, M; Tomita, K; Ueda, Y; Tanaka, M; Sasaki, T

    1989-05-01

    Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells was studied. Synergistic inhibition of the cell growth was observed when caffeine (2 mM) was added continuously after one hour exposure of cisplatin. On the other hand, when caffeine was added before one hour exposure of cisplatin or one hour simultaneous exposure with cisplatin, synergistic effect was not shown. In the analysis of DNA histogram obtained from flow cytometry, S and G2/M accumulation was observed by the treatment of cisplatin and that accumulation was reduced by the combination of cisplatin and caffeine. From this findings, it was suggested that caffeine would inhibit DNA repair process. Furthermore, according to morphological studies with hematoxylin-eosin stain and Fontana-Masson stain, the addition of caffeine alone resulted in mild swelling of melanoma cells and the decrease of nuclear-cytoplasmic ratio. The combination of cisplatin and caffeine caused marked swelling of melanoma cells and remarkable increase of dendrite-like processes. Melanogenesis was also enhanced by the addition of these two drugs. Many matured melanosomes, increases of mitochondria, Golgi's apparatus and endoplasmic reticula were observed by the use of electron microscope. These findings implied that the combination of cisplatin and caffeine induced a differentiation of murine melanoma cells.

  15. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Saleha B Vuyyuri

    Full Text Available Ascorbic acid (AA exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3-PO on the viability of three non-small cell lung cancer (NSCLC cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with

  16. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.

    Science.gov (United States)

    Zacchino, Susana A; Butassi, Estefanía; Cordisco, Estefanía; Svetaz, Laura A

    2017-12-15

    Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two

  17. Synergistic Radioprotection by Gamma-Tocotrienol and Pentoxifylline: Role of cAMP Signaling

    International Nuclear Information System (INIS)

    Kulkarni, Shilpa; Chakraborty, Kushal; Kumar, K. Sree; Kao, Tzu-Cheg; Hauer-Jensen, Martin; Ghosh, Sanchita P.

    2013-01-01

    Purpose. This study was designed to determine the efficacy and mechanisms of radioprotection by the combination of gamma-tocotrienol (GT3) and pentoxifylline (PTX) against acute radiation injury. Materials and Methods. Post-irradiation survival was monitored to determine the most efficacious dose and time of administration of PTX. Dose reduction factor (DRF) was calculated to compare the radioprotective efficacy of the combination. To determine the mechanism of synergistic radioprotection by the combination, mevalonate or calmodulin were coadministered with the GT3-PTX combination. Mevalonate was used to reverse the inhibitory effect of GT3 on 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and calmodulin was used to reverse the inhibition of phosphodiesterase (PDE) by PTX. Results. The combination was most effective when 200 mg/kg of PTX was administered 15 min before irradiation along with 200 mg/kg of GT3 (−24 h) and resulted in a DRF of 1.5. White blood cells and neutrophil counts showed accelerated recovery in GT3-PTX-treated groups compared to GT3. Mevalonate had no effect on the radioprotection of GT3-PTX; calmodulin abrogated the synergistic radioprotection by GT3-PTX. Conclusion. The mechanism of radioprotection by GT3-PTX may involve PDE inhibition

  18. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines.

    Science.gov (United States)

    Mohammadian, Mahshid; Zeynali, Shima; Azarbaijani, Anahita Fathi; Khadem Ansari, Mohammad Hassan; Kheradmand, Fatemeh

    2017-12-01

    The use of heat shock protein 90 inhibitors like 17-allylamino-17-demethoxy-geldanamycin (17-AAG) has been recently introduced as an attractive anticancer therapy. It has been shown that 17-AAG may potentiate the inhibitory effects of some classical anticolorectal cancer (CRC) agents. In this study, two panels of colorectal carcinoma cell lines were used to evaluate the effects of 17-AAG in combination with capecitabine and oxaliplatin as double and triple combination therapies on the proliferation of CRC cell lines. HT-29 and all HCT-116 cell lines were seeded in culture media in the presence of different doses of the mentioned drugs in single, double, and triple combinations. Water-soluble tetrazolium-1 (WST-1) assay was used to investigate cell proliferation 24 h after treatments. Then, dose-response curves were plotted using WST-1outputs, and IC 50 values were determined. For double and triple combinations respectively 0.5 × IC 50 and 0.25 × IC 50 were used. Data was analyzed with the software CompuSyn. Drug interactions were analyzed using Chou-Talalay method to calculate the combination index (CI).The data revealed that 17-AAG shows a potent synergistic interaction (CI 1) in HT-29 and a synergistic effect (CI AAG with oxaliplatin or capecitabine might be effective against HCT-116 and HT-29 cell lines. However, in triple combinations, positive results were seen only against HCT-116. Further investigation is suggested to confirm the effectiveness of these combinations in clinical trials.

  19. Bioequivalence of fixed-dose combination Myrin®-P Forte and reference drugs in loose combination.

    Science.gov (United States)

    Wang, H F; Wang, R; O'Gorman, M; Crownover, P; Naqvi, A; Jafri, I

    2013-12-01

    Myrin®-P Forte is a fixed-dose combination (FDC) tablet containing rifampicin (RMP, 150 mg), isoniazid (INH, 75 mg), ethambutol (EMB) hydrochloride (275 mg) and pyrazinamide (PZA, 400 mg) developed for the treatment of tuberculosis (TB). This study was conducted at a single centre--the Pfizer Clinical Research Unit in Singapore. To demonstrate the bioequivalence of each drug component of the Myrin-P Forte FDC and the individual product in loose combination. In a randomized, open-label, single-dose, two-way, crossover study, subjects received single doses of Myrin-P Forte or four individual products under fasting conditions in a crossover fashion with at least 7 days washout between doses. The primary measures for comparison were peak plasma concentration (C(max)) and the area under plasma concentration-time curve (AUC). Of 36 subjects enrolled, 35 completed the study. The adjusted geometric mean ratios and 90% confidence intervals for C(max) and AUC values were completely contained within bioequivalence limits (80%, 125%) for all four drugs in both formulations. Both treatments were generally well tolerated in the study. The Myrin-P Forte FDC tablet formulation is bioequivalent to the four single-drug references for RMP, INH, EMB hydrochloride and PZA at equivalent doses.

  20. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices.

    Science.gov (United States)

    Espina, Laura; García-Gonzalo, Diego; Laglaoui, Amin; Mackey, Bernard M; Pagán, Rafael

    2013-01-15

    This work addresses the inactivation achieved with Escherichia coli O157:H7 and Listeria monocytogenes EGD-e by combined processes of high hydrostatic pressure (HHP) and essential oils (EOs) or their chemical constituents (CCs). HHP treatments (175-400 MPa for 20 min) were combined with 200 μL/L of each EO (Citrus sinensis L., Citrus lemon L., Citrus reticulata L., Thymus algeriensis L., Eucalyptus globulus L., Rosmarinus officinalis L., Mentha pulegium L., Juniperus phoenicea L., and Cyperus longus L.) or each CC ((+)-limonene, α-pinene, β-pinene, p-cymene, thymol, carvacrol, borneol, linalool, terpinen-4-ol, 1,8-cineole, α-terpinyl acetate, camphor, and (+)-pulegone) in buffer of pH 4.0 or 7.0. The tested combinations achieved different degrees of inactivation, the most effective being (+)-limonene, carvacrol, C. reticulata L. EO, T. algeriensis L. EO and C. sinensis L. EO which were capable of inactivating about 4-5 log(10) cycles of the initial cell populations in combination with HHP, and therefore showed outstanding synergistic effects. (+)-Limonene was also capable of inactivating 5 log(10) cycles of the initial E. coli O157:H7 population in combination with HHP (300 MPa for 20 min) in orange and apple juices, and a direct relationship was established between the inactivation degree caused by the combined process with (+)-limonene and the occurrence of sublethal injury after the HHP treatment. This work shows the potential of EOs and CCs in the inactivation of foodborne pathogens in combined treatments with HHP, and proposes their possible use in liquid food such as fruit juices. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    Science.gov (United States)

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin.

    Science.gov (United States)

    Atef, Eman; Altuwaijri, Njoud

    2018-01-01

    The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.

  3. Synergy against drug-resistant HIV-1 with the microbicide antiretrovirals, dapivirine and tenofovir, in combination.

    Science.gov (United States)

    Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A

    2011-08-24

    To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.

  4. Systems modeling of anti-apoptotic pathways in prostate cancer: psychological stress triggers a synergism pattern switch in drug combination therapy.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    Full Text Available Prostate cancer patients often have increased levels of psychological stress or anxiety, but the molecular mechanisms underlying the interaction between psychological stress and prostate cancer as well as therapy resistance have been rarely studied and remain poorly understood. Recent reports show that stress inhibits apoptosis in prostate cancer cells via epinephrine/beta2 adrenergic receptor/PKA/BAD pathway. In this study, we used experimental data on the signaling pathways that control BAD phosphorylation to build a dynamic network model of apoptosis regulation in prostate cancer cells. We then compared the predictive power of two different models with or without the role of Mcl-1, which justified the role of Mcl-1 stabilization in anti-apoptotic effects of emotional stress. Based on the selected model, we examined and quantitatively evaluated the induction of apoptosis by drug combination therapies. We predicted that the combination of PI3K inhibitor LY294002 and inhibition of BAD phosphorylation at S112 would produce the best synergistic effect among 8 interventions examined. Experimental validation confirmed the effectiveness of our predictive model. Moreover, we found that epinephrine signaling changes the synergism pattern and decreases efficacy of combination therapy. The molecular mechanisms responsible for therapeutic resistance and the switch in synergism were explored by analyzing a network model of signaling pathways affected by psychological stress. These results provide insights into the mechanisms of psychological stress signaling in therapy-resistant cancer, and indicate the potential benefit of reducing psychological stress in designing more effective therapies for prostate cancer patients.

  5. Antiproliferative and proapoptotic effects of topotecan in combination with thymoquinone on acute myelogenous leukemia.

    Science.gov (United States)

    Khalife, Rana; El-Hayek, Stephany; Stephany, El-Hayek; Tarras, Omayr; Hodroj, Mohammad Hassan; Rizk, Sandra

    2014-09-01

    Topotecan has shown promising antineoplastic activity in solid tumors and acute leukemia. Because of the primary dose-limiting toxicity of topotecan, it is necessary to identify other agents that can work synergistically with topotecan, potentially increasing its efficacy while limiting its toxicity. Many studies showed synergism in combination of topotecan with gemcitabine and bortezomib. Other studies report the increase in growth inhibition of gemcitabine or oxaliplatin when cells were preexposed to naturally occurring drugs such as thymoquinone. The aim of this project was to study the mode of action of topotecan along with thymoquinone, on survival and apoptosis pathways in acute myelogenous leukemia (AML) cell lines, and to investigate the potential synergistic effect of thymoquinone on topotecan. U937 cells were incubated with different topotecan and thymoquinone concentrations for 24 and 48 hours, separately and in combination. Cell proliferation was determined using WST-1 (Roche) reagent. The effect of the compounds on protein expression of Bax, Bcl2, p53, caspase-9, -8, and -3 was determined using Western blot analysis. Cell cycle analysis was performed in addition to annexin/propidium iodide staining. Thymoquinone and topotecan exhibited antiproliferative effects on U937 cells when applied separately. In combination, the reduction in proliferation was extremely significant with a major increase in the expression levels of Bax/Bcl2, p53, and caspase-3 and -9. Preexposure with thymoquinone resulted in an increase in cell growth inhibition compared with topotecan treatment. Thymoquinone, when combined with topotecan in noncytotoxic doses, produced synergistic antiproliferative and proapoptotic effects in AML cells. Preexposure to thymoquinone seems to be more effective than simultaneous application with topotecan. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Synergistic effects of concurrent blockade of PI3K and MEK pathways in pancreatic cancer preclinical models.

    Directory of Open Access Journals (Sweden)

    Hua Zhong

    Full Text Available Patients with pancreatic cancer have dismal prognoses, and novel therapies are urgently needed. Mutations of the KRAS oncogene occur frequently in pancreatic cancer and represent an attractive target. Direct targeting of the predominant KRAS pathways have been challenging and research into therapeutic strategies have been now refocused on pathways downstream of KRAS, phosphoinositide 3-kinase (PI3K and mitogen-activated protein kinase (MAPK [MEK]. We hypothesized that concurrent inhibition of the PI3K and MEK pathways would result in synergistic antitumor activity, as it would circumvent the compensatory feedback loop between the two pathways. We investigated the combined effect of the PI3K inhibitor, GDC0941, and the MEK inhibitor, AZD6244, on cell viability, apoptosis and cell signaling in a panel of pancreatic cancer cell lines. An in vivo analysis was conducted on pancreatic cancer xenografts. While BxPC-3 (KRAS wild type and MIA PaCa-2 (KRAS mutated cell lines were sensitive to GDC0941 and AZD6244 as single agents, synergistic inhibition of tumor cell growth and induction of apoptosis were observed in both cell lines when the two drugs were combined. Interestingly, phosphorylation of the cap-dependent translational components, 4E-binding protein (p-4E-BP1 and S6 was found to be closely associated with sensitivity to GDC0941 and AZD6244. In BxPC-3 cell xenografts, survival differences were observed between the control and the AZD6244, GDC0941, and combination groups. Our study provides the rationale for concurrent targeting of the PI3K and MEK pathways, regardless of KRAS status, and suggests that phosphorylation of 4E-BP1and S6 can serve as a predictive biomarker for response to treatment.

  7. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-02-15

    A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

  8. Synergistic action of fatty acids, sulphides and stilbene against acaricide-resistant Rhipicephalus microplus ticks.

    Science.gov (United States)

    Arceo-Medina, G N; Rosado-Aguilar, J A; Rodríguez-Vivas, R I; Borges-Argaez, R

    2016-09-15

    Six compounds in a methanolic extract of Petiveria alliacea stem (cis-stilbene; benzyl disulphide; benzyl trisulphide; and methyl esters of hexadecanoic acid, octadecadienoic acid and octadecenoic acid) are known to exercise acaricide activity against cattle tick Rhipicephalus microplus larvae and adults. The synergistic effect of 57 combinations of these six compounds on acaricide activity against R. microplus was evaluated. Larvae immersion tests produced the lethal concentrations needed to kill 50% (LC 50 ) and 99% (LC 99 ) of the population. Adult immersion tests produced rates (%) for mortality, oviposition inhibition and eclosion inhibition. Individually, none of the compounds (1% concentration) exhibited acaricide activity (mortality ≤2.3%). When combined, however, nine mixtures exhibited a synergistic increase in activity, with high mortality rates (≥92%) in larvae. Values for LC 50 ranged from 0.07 to 0.51% and those for LC 99 from 0.66 to 5.16%. Thirty six compound mixtures had no significant activity (mortality ≤30%) against larvae. Two mixtures exhibited synergism against adults, with high rates (≥92%) of oviposition inhibition. The mixtures based on the benzyl disulphide+benzyl trisulphide pairing produced a synergistic effect against acaricide-resistant R. microplus larva and adults, and are therefore the most promising combination for controlling this ubiquitous ectoparasite. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy

    Directory of Open Access Journals (Sweden)

    Fu X

    2017-05-01

    Full Text Available Xudong Fu,1 Xinjun Wang,1 Shaolong Zhou,1 Yanyan Zhang2 1The Fifth Affiliated Hospital of Zhengzhou University, 2School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Despite advances in controlled drug delivery, drug delivery systems (DDSs with controlled activated drug release and high spatial and temporal resolution are still required. Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. In this study, a near-infrared light-controlled “off–on” DDS with magnetic resonance imaging and magnetic targeting properties was developed using a hybrid nanoplatform (carbon nanotubes [CNTs]-iron oxide nanoparticle. Doxorubicin (DOX and distearoyl-sn-glycero-3-phosphoethanolamine-PEG were adsorbed onto CNTs-iron oxide nanoparticle, and then to avoid the unexpected drug release during circulation, 1-myristyl alcohol was used to encapsulate the CNTs–drug complex. Herein, multifunctional DOX-loaded nanoparticles (NPs with “off–on” state were developed. DOX-NPs showed an obvious “off–on” effect (temperature increase, drug release controlled by near-infrared light in vitro and in vivo. In the in vivo and in vitro studies, DOX-NPs exhibited excellent magnetic resonance imaging ability, magnetic targeting property, high biosafety, and high antitumor combined therapeutic efficacy (hyperthermia combined with chemotherapy. These results highlight the great potential of DOX-NPs in the treatment of cancer. Keywords: controlled drug release, magnetic targeting, MRI, combination therapy

  10. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats.

    Science.gov (United States)

    Gao, Jin-Hang; Wen, Shi-Lei; Feng, Shi; Yang, Wen-Juan; Lu, Yao-Yao; Tong, Huan; Liu, Rui; Tang, Shi-Hang; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Xie, Hui-Qi; Tang, Cheng-Wei

    2016-10-01

    Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)-hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK-HIF-1α-VEGF signaling pathway.

  11. Drug induced xerostomia in elderly individuals: An institutional study

    Directory of Open Access Journals (Sweden)

    Shishir Ram Shetty

    2012-01-01

    Full Text Available Introduction : With better health care facilities and nutritional levels the average life expectancy of Indian population has been on the rise over the years. Most of the geriatric population is under long-term medication. Aim : The aim of this study was to evaluate the synergistic effect of multiple xerostomia drugs. Materials and Methods : Unstimulated saliva was measured in 60 geriatric patients, and xerostomia questionnaire and quality-of-life scale were also administered. Results : There was a very highly significant reduction in the salivary flow rates of patients under multiple xerostomia-inducing drugs. Conclusion : The synergistic effect of the xerostomia inducing medication could be the possible factor responsible for reduced salivary flow in elderly individuals using such drugs

  12. Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Noor [Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Qayum, Arem; Kumar, Ashok [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Khare, Vaibhav [Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Sharma, Parduman Raj [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Andotra, Samar Singh [Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Singh, Shashank K. [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Koul, Surinder, E-mail: skoul@iiim.ac.in [Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Gupta, Prem N., E-mail: pngupta10@gmail.com [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India)

    2016-11-01

    Cisplatin is widely used for the treatment of various cancers including cervical, ovarian, lung and head and neck, however, its clinical success is limited owing to the dose-dependent adverse effects, mainly nephrotoxicity and neurotoxicity. In order to address this limitation, the present study was undertaken to investigate growth inhibitory effect of cisplatin in combination with a triterpenediol (3a, 24-dihydroxyurs-12-ene and 3a, 24-dihydroxyolean-12-ene, TPD) on human ovarian cancer cell line. Poly(dl-lactic-co-glycolic) acid nanoparticles loaded with TPD (TPD-PLGA-NPs) were successfully developed by emulsion solvent evaporation method. The TPD-PLGA-NPs were characterized for size distribution and zeta potential which was in order of 152.56 ± 3.01 nm and − 17.36 ± 0.37 mV respectively. The morphological evaluation was carried out by transmission electron microscopy and the formulation was also characterized using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The drug loading of the optimized formulation was 51.03 ± 1.52 μg/mg and the formulation exhibited sustained drug release profile. The in vitro cellular uptake study of coumarin-6 loaded PLGA nanoparticles in OVCAR-5 cells demonstrated a time dependent increase in uptake efficiency. Further, growth inhibitory effect of cisplatin was investigated in combination with TPD-PLGA-NPs. The combination index (CI) was < 1, indicating a synergistic interaction. Further, at 75% of cell growth inhibition (ED{sub 75}) the dose of cisplatin was reduced to 3.8 folds using this combination. The results indicated the potential of cisplatin and TPD-PLGA-NPs combination in order to reduce to dose limiting toxicities of the former. - Highlights: • TPD nanoparticles showed a time dependent increase in cellular uptake efficiency. • TPD nanoparticles showed synergistic interaction between cisplatin. • The dose of cisplatin was reduced to 3.8 folds using this combination

  13. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    Science.gov (United States)

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-03-01

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  14. Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp strains

    Directory of Open Access Journals (Sweden)

    Lívia Viganor da Silva

    2011-02-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA and coagulase-negative Staphylococcus spp (CNS are the most common pathogens that cause serious long term infections in patients. Despite the existence of new antimicrobial agents, such as linezolid, vancomycin (VAN remains the standard therapy for the treatment of infections caused by these multidrug-resistant strains. However, the use of VAN has been associated with a high frequency of therapeutic failures in some clinical scenarios, mainly with decreasing concentration of VAN. This work aims to evaluate the synergic potential of VAN plus sulfamethoxazole/trimethoprim (SXT, VAN plus rifampin (RIF and VAN plus imipenem (IPM in sub-minimum inhibitory concentrations against 22 clinical strains of MRSA and CNS. The checkerboard method showed synergism of VAN/RIF and VAN/SXT against two and three of the 22 strains, respectively. The combination of VAN with IPM showed synergistic effects against 21 out of 22 strains by the E-test method. Four strains were analyzed by the time-kill curve method and synergistic activity was observed with VAN/SXT, VAN/RIF and especially VAN/IPM in sub-inhibitory concentrations. It would be interesting to determine if synergy occurs in vivo. Evidence of in vivo synergy could lead to a reduction of the standard VAN dosage or treatment time.

  15. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    International Nuclear Information System (INIS)

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu

    2007-01-01

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor β (TGFβ) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGFβ treatment, or co-treatment with TGFβ inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGFβ signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGFβ signaling pathway in breast cancer cells

  16. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  17. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Science.gov (United States)

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  18. Anti-plaque effect of a synergistic combination of green tea and Salvadora persica L. against primary colonizers of dental plaque.

    Science.gov (United States)

    Abdulbaqi, Hayder Raad; Himratul-Aznita, Wan Harun; Baharuddin, Nor Adinar

    2016-10-01

    Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study. Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria. Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (pplaque activity, and could be used as a useful active agent to produce oral health care products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synergistic antitumor activity of histamine plus melphalan in isolated limb perfusion: preclinical studies.

    Science.gov (United States)

    Brunstein, Flavia; Hoving, Saske; Seynhaeve, Ann L B; van Tiel, Sandra T; Guetens, Gunther; de Bruijn, Ernst A; Eggermont, Alexander M M; ten Hagen, Timo L M

    2004-11-03

    We have previously shown how tumor response of isolated limb perfusion (ILP) with melphalan was improved when tumor necrosis factor alpha (TNF-alpha) was added. Taking into account that other vasoactive drugs could also improve tumor response to ILP, we evaluated histamine (Hi) as an alternative to TNF-alpha. We used a rat ILP model to assess the combined effects of Hi and melphalan (n = 6) on tumor regression, melphalan uptake (n = 6), and tissue histology (n = 2) compared with Hi or melphalan alone. We also evaluated the growth of BN-175 tumor cells as well as apoptosis, necrosis, cell morphology, and paracellular permeability of human umbilical vein endothelial cells (HUVECs) after Hi treatment alone and in combination with melphalan. The antitumor effect of the combination of Hi and melphalan in vivo was synergistic, and Hi-dependent reduction in tumor volume was blocked by H1 and H2 receptor inhibitors. Tumor regression was observed in 66% of the animals treated with Hi and melphalan, compared with 17% after treatment with Hi or melphalan alone. Tumor melphalan uptake increased and vascular integrity in the surrounding tissue was reduced after ILP treatment with Hi and melphalan compared with melphalan alone. In vitro results paralleled in vivo results. BN-175 tumor cells were more sensitive to the cytotoxicity of combined treatment than HUVECs, and Hi treatment increased the permeability of HUVECs. Hi in combination with melphalan in ILP improved response to that of melphalan alone through direct and indirect mechanisms. These results warrant further evaluation in the clinical ILP setting and, importantly, in organ perfusion.

  20. Determining lower threshold concentrations for synergistic effects

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas

    2017-01-01

    which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus...... on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test...... of immobile organisms increased more than two-fold above what was predicted by independent action (vertical assessment). All three tests confirmed the hypothesis of the existence of a lower azole threshold concentration below which no synergistic interaction was observed. The lower threshold concentration...

  1. THE SYNERGISTIC SYLLABUS FOR TEACHING READING IN 32 TOURISM VOCATIONAL HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Ahlis Qoidah Noor

    2017-12-01

    Full Text Available The new Syllabus at 2013 Curriculum for vocational high school created many problems to apply in the class. Based on the Need Analysis, the writer develops a Synergistic Syllabus for teaching Reading in vocational high school. It contains the syllabus combined from Task- Based Learning, Situational Syllabus, Program of International Student Assessment ( PISA item test and Character Building. It is a R and D research uses three phases of Observation, Developing and Try Out. It is in a True Experimental Research. The main findings are Reading Skill cannot be taught effectively for some reasons. There is no appropriate syllabus for teaching Reading; most teachers need some models in a syllabus. The results are the Synergistic Syllabus for teaching Reading, a set of Reading Material for Teaching Reading and a set of the lesson plan for one semester at Grade X of Tourism VHS. It is measured through mean, median and t- Test. To Sum up Synergistic Syllabus can develop many aspects, the systematic and meaningful activities in the class, motivation and good attitude. The standardized item of assignment, and a sense of competition in Reading activities and the Synergistic Syllabus assist teachers in teaching Reading using 2013 curriculum in the class effectively.

  2. Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin.

    Science.gov (United States)

    Cheng, Jing-Jy; Chang, Chia-Chuan; Chao, Chi-Hsein; Lu, Mei-Kuang

    2012-09-01

    Sulfated polysaccharides (SPSs) from two edible fungal species, including two strains of Antrodia cinnamomea and Poria cocos, were isolated. Fucose, glucosamine, galactose, glucose, and mannose were the major sugars in the SPSs, and these SPSs had a high sulfate content. The area percentage of low-molecular-weight SPSs (1-100 kDa) covered almost half of the SPS mixture of the A. cinnamomea strains. In contrast, high-molecular-weight SPSs (>1000 kDa) of P. cocos covered a large proportion of the area at 30.06%. SPSs from A. cinnamomea B86 showed stronger inhibition of endothelial cell (EC) tube formation in an in vitro assay of angiogenesis, than did A. cinnamomea 35396 or P. cocos. The degree of sulfation paralleled their antiangiogenic activity. When tumor cells were concurrently exposed to doxorubicin (DOX) and fungal SPSs, SPSs synergistically increased the cytotoxicity of DOX to different degree up to 50-fold. Fungal SPSs may offer new applications for combinational-therapy drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib.

    Science.gov (United States)

    Chakraborty, Ashok K; Zerillo, Cynthia; DiGiovanna, Michael P

    2015-08-01

    The insulin-like growth factor I receptor (IGF1R) has been linked to resistance to HER2-directed therapy with trastuzumab (Herceptin). We examined the anti-tumor activity of figitumumab (CP-751,871), a human monoclonal antibody that blocks IGF1R ligand binding, alone and in combination with the therapeutic anti-HER2 antibody trastuzumab and the pan-HER family tyrosine kinase inhibitor neratinib, using in vitro and in vivo breast cancer model systems. In vitro assays of proliferation, apoptosis, and signaling, and in vivo anti-tumor experiments were conducted in HER2-overexpressing (BT474) and HER2-normal (MCF7) models. We find single-agent activity of the HER2-targeting drugs but not figitumumab in the BT474 model, while the reverse is true in the MCF7 model. However, in both models, combining figitumumab with HER2-targeting drugs shows synergistic anti-proliferative and apoptosis-inducing effects, and optimum inhibition of downstream signaling. In murine xenograft models, synergistic anti-tumor effects were observed in the HER2-normal MCF7 model for the combination of figitumumab with trastuzumab, and, in the HER2-overexpressing BT474 model, enhanced anti-tumor effects were observed for the combination of figitumumab with either trastuzumab or neratinib. Analysis of tumor extracts from the in vivo experiments showed evidence of the most optimal inhibition of downstream signaling for the drug combinations over the single-agent therapies. These results suggest promise for such combinations in treating patients with breast cancer, and that, unlike the case for single-agent therapy, the therapeutic effects of such combinations may be independent of expression levels of the individual receptors or the single-agent activity profile.

  4. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum and Psidium guajav on hepatic and intestinal drug metabolizing enzymes in rats

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2016-12-01

    Full Text Available Aims/Background: Present study investigated the synergistic effect of polyherbal formulations (PHF of Allium sativum L Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn and Psidium guajava L. in the inhibition/induction of hepatic and intestinal CYPs and Phase-II conjugated drug metabolizing enzymes. Consumption of these herbal remedy has been extensively documented for diabetes treatment in Auyureda. Methodology: PHF of these five herbs was prepared and different doses were orally administered to Sprague Dawley rats of different groups except control group. Expression of mRNA and activity of drug metabolizing enzymes were examined by RT-PCR and HPLC in isolated liver and intestine microsomes in PHF pretreated rats. Results: Activities of hepatic and intestinal Phase-II enzyme levels increased along with mRNA levels except CYP3A mRNA level. PHF administration increases the activity of hepatic and intestinal UDPGT and GST in response to dose and time; however, activity of hepatic SULT increased at higher doses. Conclusions: CYPs and Phase-II conjugated enzymes levels can be modulated in dose and time dependent manner. Observations suggest that poly herbal formulation might be a possible cause of herb-drug interaction, due to changes in pharmacokinetic of crucial CYPs and Phase-II substrate drug. [J Complement Med Res 2016; 5(4.000: 372-382

  5. Granulocyte Colony-Stimulating Factor Combined with Methylprednisolone Improves Functional Outcomes in Rats with Experimental Acute Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    William Gemio Jacobsen Teixeira

    2018-02-01

    Full Text Available OBJECTIVES: To evaluate the effects of combined treatment with granulocyte colony-stimulating factor (G-CSF and methylprednisolone in rats subjected to experimental spinal cord injury. METHODS: Forty Wistar rats received a moderate spinal cord injury and were divided into four groups: control (no treatment; G-CSF (G-CSF at the time of injury and daily over the next five days; methylprednisolone (methylprednisolone for 24 h; and G-CSF/Methylprednisolone (methylprednisolone for 24 h and G-CSF at the time of injury and daily over the next five days. Functional evaluation was performed using the Basso, Beattie and Bresnahan score on days 2, 7, 14, 21, 28, 35 and 42 following injury. Motor-evoked potentials were evaluated. Histological examination of the spinal cord lesion was performed immediately after euthanasia on day 42. RESULTS: Eight animals were excluded (2 from each group due to infection, a normal Basso, Beattie and Bresnahan score at their first evaluation, or autophagy, and 32 were evaluated. The combination of methylprednisolone and G-CSF promoted greater functional improvement than methylprednisolone or G-CSF alone (p<0.001. This combination also exhibited a synergistic effect, with improvements in hyperemia and cellular infiltration at the injury site (p<0.001. The groups displayed no neurophysiological differences (latency p=0.85; amplitude p=0.75. CONCLUSION: Methylprednisolone plus G-CSF promotes functional and histological improvements superior to those achieved by either of these drugs alone when treating spinal cord contusion injuries in rats. Combining the two drugs did have a synergistic effect.

  6. Synergistic action between inhibition of P2Y12/P2Y1 and P2Y12/thrombin in ADP- and thrombin-induced human platelet activation

    Science.gov (United States)

    Nylander, Sven; Mattsson, Christer; Ramström, Sofia; Lindahl, Tomas L

    2004-01-01

    The objective of this study was to investigate if there is a synergistic effect of a combination of P2Y12 and P2Y1 inhibition and P2Y12 and thrombin inhibition, on ADP- and thrombin-induced platelet activation, respectively. The rationale being that these combinations will cause a concurrent inhibition of both Gαq and Gαi signalling.Blood from healthy volunteers was preincubated with AR-C69931MX, a reversible P2Y12 antagonist; MRS2179, a reversible P2Y1 antagonist; or melagatran, a direct reversible thrombin inhibitor; alone or in various combinations prior to activation with ADP or thrombin. Platelet function in whole blood was assessed by flow cytometry using the antibody PAC-1 to estimate the expression of active αIIbβ3 (the fibrinogen receptor GPIIb/IIIa). A synergistic effect was evaluated by comparing the concentrations in the different combinations with those of corresponding equipotent concentrations of each single inhibitor alone. The equipotent single concentrations were experimentally obtained from concentration response curves performed in parallel.A synergistic effect regarding inhibition of ADP-induced platelet activation (10 μM) was obtained with different combinations of AR-C69931MX and MRS2179.Inhibition of thrombin-induced platelet activation (2 nM) with combinations of AR-C69931MX and the thrombin inhibitor melagatran did also result in a strong synergistic effect.To our knowledge, this is the first time that data supporting a synergistic effect has been published for the inhibitor combinations described.Whether this synergistic effect in vitro also results in an improved antithrombotic effect in vivo with or without an increased risk of bleeding remains to be studied in well-conducted clinical studies. PMID:15265806

  7. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-12-01

    Full Text Available Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and totally drug resistant tuberculosis (TDR-TB has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.

  8. Combination therapy with vemurafenib (PLX4032/RG7204 and metformin in melanoma cell lines with distinct driver mutations

    Directory of Open Access Journals (Sweden)

    Recio Juan A

    2011-05-01

    Full Text Available Abstract Background A molecular linkage between the MAPK and the LKB1-AMPK energy sensor pathways suggests that combined MAPK oncogene inhibition and metabolic modulation of AMPK would be more effective than either manipulation alone in melanoma cell lines. Materials and methods The combination of the BRAF inhibitor vemurafenib (formerly PLX4032 and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis. Signaling molecules in the MAPK, PI3K-AKT and LKB1-AMPK pathways were studied by Western blot. Results Single agent metformin inhibited proliferation in 12 out of 19 cell lines irrespective of the BRAF mutation status, but in one NRASQ61K mutant cell line it powerfully stimulated cell growth. Synergistic anti-proliferative effects of the combination of metformin with vemurafenib were observed in 6 out of 11 BRAFV600E mutants, including highly synergistic effects in two BRAFV600E mutant melanoma cell lines. Antagonistic effects were noted in some cell lines, in particular in BRAFV600E mutant cell lines resistant to single agent vemurafenib. Seven out of 8 BRAF wild type cell lines showed marginally synergistic anti-proliferative effects with the combination, and one cell line had highly antagonistic effects with the combination. The differential effects were not dependent on the sensitivity to each drug alone, effects on cell cycle or signaling pathways. Conclusions The combination of vemurafenib and metformin tended to have stronger anti-proliferative effects on BRAFV600E mutant cell lines. However, determinants of vemurafenib and metformin synergism or antagonism need to be understood with greater detail before any potential clinical utility of this combination.

  9. Drugs influencing orthodontic tooth movement: An overall review

    Directory of Open Access Journals (Sweden)

    Kamatchi Diravidamani

    2012-01-01

    Full Text Available Orthodontic treatment is based on the premise that when force is delivered to a tooth and thereby transmitted to the adjacent investing tissues, certain mechanical, chemical, and cellular events take place within these tissues, which allow for structural alterations and contribute to the movement of that tooth. Molecules present in drugs and nutrients consumed regularly by patients can reach the mechanically stressed paradental tissues through the circulation and interact with local target cells. The combined effect of mechanical forces and one or more of these agents may be inhibitory, additive, or synergistic. Current orthodontic research aims to develop methods of increasing the tissue concentration of molecules promoting tooth movement, while simultaneously decreasing the concentration of unwanted elements which can produce harmful side effects. This article discusses in detail the various possible drugs that can bring about alterations in the desired orthodontic tooth movement.

  10. Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis.

    Science.gov (United States)

    Jeong, Nari; Kim, Jin-Young; Park, Seong-Cheol; Lee, Jong-Kook; Gopal, Ramamourthy; Yoo, Suyeon; Son, Byoung Kwan; Hahm, Joon Soo; Park, Yoonkyung; Hahm, Kyung-Soo

    2010-09-03

    Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5xMIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Traditional Chinese Medicine-Based Network Pharmacology Could Lead to New Multicompound Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Current strategies for drug discovery have reached a bottleneck where the paradigm is generally “one gene, one drug, one disease.” However, using holistic and systemic views, network pharmacology may be the next paradigm in drug discovery. Based on network pharmacology, a combinational drug with two or more compounds could offer beneficial synergistic effects for complex diseases. Interestingly, traditional chinese medicine (TCM has been practicing holistic views for over 3,000 years, and its distinguished feature is using herbal formulas to treat diseases based on the unique pattern classification. Though TCM herbal formulas are acknowledged as a great source for drug discovery, no drug discovery strategies compatible with the multidimensional complexities of TCM herbal formulas have been developed. In this paper, we highlighted some novel paradigms in TCM-based network pharmacology and new drug discovery. A multiple compound drug can be discovered by merging herbal formula-based pharmacological networks with TCM pattern-based disease molecular networks. Herbal formulas would be a source for multiple compound drug candidates, and the TCM pattern in the disease would be an indication for a new drug.

  12. Synergistic immunosuppressive effects of the mTOR inhibitor sirolimus and the phytochemical curcumin.

    Science.gov (United States)

    Deters, M; Hütten, H; Kaever, V

    2013-01-15

    The immunosuppressant sirolimus and curcumin, the main principle of the turmeric spice, have shown antiproliferative effects on many human and not-human cell lines. Whereas the antiproliferative effect of sirolimus is mainly mediated by inhibition of mTOR, curcumin is described to affect many molecular targets which makes it unpredictable to appraise if the effects of these both substances on cell proliferation and especially on immunosuppression are additive or synergistic. To answer this question we investigated the interaction of both these substances on OKT3-induced human peripheral blood mononuclear cell (PBMC) proliferation. OKT3-induced human PBMC proliferation was determined by measuring (3)H-thymidine incorporation. Influence of curcumin on interleukin-2 (IL-2) release and IκB-phosphorylation in PBMC was determined by ELISA and western blot, respectively. Curcumin-induced apoptosis and necrosis was analyzed by FACS analysis. Whereas curcumin completely inhibited OKT3-induced PBMC proliferation in a dose-dependent manner with an IC(50) of 2.8 μM, sirolimus could reduce PBMC proliferation dose-dependently only to a minimum of 28% at a concentration of 5 ng/ml (IC(50) 1.1 ng/ml). When curcumin was combined at concentrations of 1.25-2.5 μM with sirolimus at concentrations from 0.63 to 1.25 ng/ml the effects were synergistic. Combination of curcumin (1.25-2.5 μM) with sirolimus (5 ng/ml) showed additive effects. The effects after combination of curcumin at 5 μM with each sirolimus concentration and sirolimus at 10 ng/ml with each curcumin concentration were presumably antagonistic. We conclude that the immunosuppressive effects of curcumin and sirolimus in low concentrations are synergistic in OKT3-activated PBMC. Whether curcumin and sirolimus have also synergistic antiproliferative effects in tumor cells has to be shown in further experiments including animal models. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. The effect of resveratrol in combination with irradiation and chemotherapy. Study using Merkel cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Heiduschka, G.; Lill, C.; Brunner, M.; Thurnher, D.; Seemann, R.; Schmid, R.; Houben, R.; Bigenzahn, J.

    2014-01-01

    Merkel cell carcinoma (MCC) is a rare, but highly malignant tumor of the skin. In case of systemic disease, possible therapeutic options include irradiation or chemotherapy. The aim of this study was to evaluate whether the flavonoid resveratrol enhances the effect of radiotherapy or chemotherapy in MCC cell lines. The two MCC cell lines MCC13 and MCC26 were treated with increasing doses of resveratrol. Combination experiments were conducted with cisplatin and etoposide. Colony forming assays were performed after sequential irradiation with 1, 2, 3, 4, 6, and 8 Gy and apoptosis was assessed with flow cytometry. Expression of cancer drug targets was analyzed by real-time PCR array. Resveratrol is cytotoxic in MCC cell lines. Cell growth is inhibited by induction of apoptosis. The combination with cisplatin and etoposide resulted in a partially synergistic inhibition of cell proliferation. Resveratrol and irradiation led to a synergistic reduction in colony formation compared to irradiation alone. Evaluation of gene expression did not show significant difference between the cell lines. Due to its radiosensitizing effect, resveratrol seems to be a promising agent in combination with radiation therapy. The amount of chemosensitizing depends on the cell lines tested. (orig.) [de

  14. Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama.

    Science.gov (United States)

    Wang, Ruoyu; Kalin, Latif

    2018-02-01

    This study investigated potential changes in flow, total suspended solid (TSS) and nutrient (nitrogen and phosphorous) loadings under future climate change, land use/cover (LULC) change and combined change scenarios in the Wolf Bay watershed, southern Alabama, USA. Four Global Circulation Models (GCMs) under three Special Report Emission Scenarios (SRES) of greenhouse gas were used to assess the future climate change (2016-2040). Three projected LULC maps (2030) were employed to reflect different extents of urbanization in future. The individual, combined and synergistic impacts of LULC and climate change on water quantity/quality were analyzed by the Soil and Water Assessment Tool (SWAT). Under the "climate change only" scenario, monthly distribution and projected variation of TSS are expected to follow a pattern similar to streamflow. Nutrients are influenced both by flow and management practices. The variation of Total Nitrogen (TN) and Total Phosphorous (TP) generally follow the flow trend as well. No evident difference in the N:P ratio was projected. Under the "LULC change only" scenario, TN was projected to decrease, mainly due to the shrinkage of croplands. TP will increase in fall and winter. The N:P ratio shows a strong decreasing potential. Under the "combined change" scenario, LULC and climate change effect were considered simultaneously. Results indicate that if future loadings are expected to increase/decrease under any individual scenario, then the combined change will intensify that trend. Conversely, if their effects are in opposite directions, an offsetting effect occurs. Science-based management practices are needed to reduce nutrient loadings to the Bay. Copyright © 2017. Published by Elsevier B.V.

  15. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  16. The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs.

    Science.gov (United States)

    Bax, Hannelore I; Bakker-Woudenberg, Irma A J M; de Vogel, Corné P; van der Meijden, Aart; Verbon, Annelies; de Steenwinkel, Jurriaan E M

    2017-07-01

    Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis.

    Directory of Open Access Journals (Sweden)

    George L Drusano

    Full Text Available Tuberculosis remains a worldwide problem, particularly with the advent of multi-drug resistance. Shortening therapy duration for Mycobacterium tuberculosis is a major goal, requiring generation of optimal kill rate and resistance-suppression. Combination therapy is required to attain the goal of shorter therapy.Our objective was to identify a method for identifying optimal combination chemotherapy. We developed a mathematical model for attaining this end. This is accomplished by identifying drug effect interaction (synergy, additivity, antagonism for susceptible organisms and subpopulations resistant to each drug in the combination.We studied the combination of linezolid plus rifampin in our hollow fiber infection model. We generated a fully parametric drug effect interaction mathematical model. The results were subjected to Monte Carlo simulation to extend the findings to a population of patients by accounting for between-patient variability in drug pharmacokinetics.All monotherapy allowed emergence of resistance over the first two weeks of the experiment. In combination, the interaction was additive for each population (susceptible and resistant. For a 600 mg/600 mg daily regimen of linezolid plus rifampin, we demonstrated that >50% of simulated subjects had eradicated the susceptible population by day 27 with the remaining organisms resistant to one or the other drug. Only 4% of patients had complete organism eradication by experiment end.These data strongly suggest that in order to achieve the goal of shortening therapy, the original regimen may need to be changed at one month to a regimen of two completely new agents with resistance mechanisms independent of the initial regimen. This hypothesis which arose from the analysis is immediately testable in a clinical trial.

  18. Combined Effect of Ambient Temperature with Radiofrequency Electromagnetic Radiation in Rabbit

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Choi, Dae Seong; Komarova, Ludmila N.; Petin, Vladislav G.

    2010-01-01

    There has been an increasing interest in synergistic effects observed after combined action of various agents. Many studies have shown that numerous physical and chemical agents combined with hyperthermia can interact in a synergistic manner when the effect produced by both agents used in combination exceeded the expected results from simple summation of the every effect produced by heat and the particular agent. I t was found that ambient temperature had a profound effect on the thermoregulatory responses to radiofrequency electromagnetic radiation (RFR) in various animals and humans. An extensive quantitative investigation of synergistic interaction of ambient temperature and microwaves has been published for rabbit heating. I t would be of interest to estimate whether or not the general features of the combined action revealed with unicellular organisms can be expressed for animals exposed to microwave power combined with a higher environmental temperature.

  19. Effect of combined treatments of pepleomycin with x-ray in cultured cells of a mouse squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yokota, Masahiko; Wakamatsu, Yoshiko; Sairenji, Eiko; Ohara, Hirosi.

    1986-01-01

    Cultured SQ-1979 cells of C3H mouse squamous cell carcinomas in logarithmic growth phase were treated with either pepleomycin (PEP) or bleomycin (BLM), alone or in combination with X-rays. The lethal effect of PEP on the SQ cells was greater than that of BLM. The survival curves of the cells were biphasic at concentrations examined (5 to 60 μg/ml) of PEP. The survival depended on the concentration and treatment time up to 3 hr. The cells treated with BLM showed biphasic survival curves also. Regarding combined effects of either PEP or BLM and X-rays, there was no significant difference in the survival curves between the group with X-rays and the group with X-rays and drug. When a drug was given 4 hr after exposure to X-rays rather than before that, synergistic action of the drug and X-rays was attained. This was marked for PEP. (Namekawa, K.)

  20. Synergistic effects of some essential oils against fungal spoilage on pear fruit.

    Science.gov (United States)

    Nikkhah, Mehdi; Hashemi, Maryam; Habibi Najafi, Mohammad B; Farhoosh, Reza

    2017-09-18

    The development of natural protective agents as alternatives to chemical fungicides is currently in the spotlight. In the present investigation, chemical composition and antifungal activities of thyme, cinnamon, rosemary and marjoram essential oils (EO), as well as synergism of their possible double and triple combinations were investigated. The compositions of the oils were determined by GC/MS. For determination of antifungal activity against Penicillium expansum and Botrytis cinerea, a broth microdilution method was used. The possible interactions of some essential oil combinations were performed by the two and three-dimensional checkerboard assay and isobologram construction. An in vivo antifungal assay was performed by artificial wounding of pear fruits. The maximum antifungal activity was demonstrated by thyme and cinnamon oils which displayed lower MIC values whereas rosemary and marjoram oils with MIC range between 2500 and 10,000μg/mL exhibited weak antifungal activities against tested fungi. In synergy testing, some double combinations (thyme/cinnamon, thyme/rosemary, cinnamon/rosemary) were found to be synergistic (FICi≤0.5). The triple combination of thyme, cinnamon and rosemary was synergistic for B. cinerea and P. expansum (FICi values of 0.5 and 0.375, respectively); while combination of cinnamon, marjoram and thyme exhibited additive and synergistic effect against P. expansum (FIC=0.625) and B. cinerea (FIC=0.375) respectively. The usage of a mathematical Gompertz model in relation to fungal kinetics, showed that the model could be used to predict growth curves (R 2 =0.993±0.05). For B. cinerea, Gompertz parameters for double and triple combination treatments showed significant increase in lag phase (1.92 and 2.92days, respectively) compared to single treatments. Increase lag time up to 2.82days (P<0.05) also observed in P. expansum treated by triple combination of EOs. Base on the results, the lowest maximum growth rate (0.37mm/day) was observed

  1. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737

    Science.gov (United States)

    Zhang, Chong; Shi, Jing; Mao, Shi-ying; Xu, Ya-si; Zhang, Dan; Feng, Lin-yi; Zhang, Bo; Yan, You-you; Wang, Si-cong; Pan, Jian-ping; Yang, You-ping; Lin, Neng-ming

    2015-01-01

    Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy. PMID:25388762

  2. Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Bruckbauer A

    2013-02-01

    Full Text Available Antje Bruckbauer,1 Michael B Zemel1,21NuSirt Sciences Inc, 2Department of Nutrition, University of Tennessee, Knoxville, TN, USABackground: The purpose of this study was to determine whether a mixture of the polyphenol, resveratrol, and the leucine metabolite, hydroxymethylbutyrate (HMB, acts synergistically with low doses of metformin to impact insulin sensitivity and AMP-activated protein kinase-dependent outcomes in cell culture and in diabetic mice.Methods: C2C12 skeletal myotubes and 3T3-L1 adipocytes were treated with resveratrol 0.2 µM, HMB 5 µM, and metformin 0.1 mM alone or in combination. db/db mice were treated for 2 weeks with high (1.5 g/kg diet, low (0.75 g/kg diet, or very low (0.25 g/kg diet doses of metformin alone or in combination with a diet containing resveratrol 12.5 mg and CaHMB 2 g/kg.Results: The combination of metformin-resveratrol-HMB significantly increased fat oxidation, AMP-activated protein kinase, and Sirt1 activity in muscle cells compared with metformin or resveratrol-HMB alone. A similar trend was found in 3T3L1 adipocytes. In mice, the two lower doses of metformin exerted no independent effect but, when combined with resveratrol-HMB, both low-dose and very low-dose metformin improved insulin sensitivity (HOMAIR, plasma insulin levels, and insulin tolerance test response to a level comparable with that found for high-dose metformin. In addition, the metformin-resveratrol-HMB combination decreased visceral fat and liver weight in mice.Conclusion: Resveratrol-HMB combined with metformin may act synergistically on AMP-activated protein kinase-dependent pathways, leading to increased insulin sensitivity, which may reduce the therapeutic doses of metformin necessary in the treatment of diabetes.Keywords: diabetes, AMP-activated protein kinase, Sirt1, fat oxidation

  3. In vitro and in vivo susceptibility of two-drug and three-drug combinations of terbinafine, itraconazole, caspofungin, ibuprofen and fluvastatin against Pythium insidiosum.

    Science.gov (United States)

    Argenta, Juliana S; Alves, Sydney H; Silveira, Flávio; Maboni, Grazieli; Zanette, Régis A; Cavalheiro, Ayrton S; Pereira, Patrique L; Pereira, Daniela I B; Sallis, Elisa S V; Pötter, Luciana; Santurio, Janio M; Ferreiro, Laerte

    2012-05-25

    The present study investigated the in vitro inhibitory activity of terbinafine, itraconazole, caspofungin, fluvastatin and ibuprofen against 15 isolates of Pythium insidiosum in double and triple combinations and determined in vivo correlations using rabbits with experimental pythiosis. The minimal inhibitory concentration (MIC) was determined in accordance with the Clinical and Laboratory Standards Institute M 38-A2 protocol (2008), and the in vitro interactions were evaluated using a checkerboard microdilution method. For the in vivo study, 20 rabbits inoculated with P. insidiosum zoospores were divided into four groups: group 1 was treated with terbinafine and itraconazole; group 2 was treated with terbinafine, itraconazole and fluvastatin; group 3 was treated with terbinafine and caspofungin; and group 4 was the control group. Combinations of terbinafine with caspofungin or ibuprofen were synergistic for 47% of the isolates, and antagonism was not observed in any of the double combinations. The triple combinations were mostly indifferent, but synergism and antagonism were also observed. In the in vivo study, the histological aspect of the lesions was similar among the groups, but group 2 showed the lowest amount of hyphae and differed significantly from the other groups. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.

    Science.gov (United States)

    Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing

    2016-11-01

    Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synergistic Antimicrobial Effect of Tribulus terrestris and Bitter Almond Extracts

    Directory of Open Access Journals (Sweden)

    Hamid Abtahi

    2014-12-01

    Full Text Available Background: The antimicrobial effects of the extracts of different kinds of plants have been demonstrated in several studies. However, no study has been conducted so far on the synergistic effects of two herbal extracts on their germicidal effects. In this study, in addition to antibacterial effects of the aqueous, methanol or ethanol extracts of Tribulus terrestris and bitter almond on some bacteria, the synergistic effects of the extracts of these two plants were also evaluated. Materials and Methods: In this experimental study, water, methanol and ethanol extracts of seeds were screened against some bacterial strains. Seeds were extracted by percolation method. Aliquots of the extracts at variable concentrations were then incubated with different bacterial strains, and the antimicrobial activities of the extracts from seeds were determined by MIC. Three antibiotics were used as reference compounds for antibacterial activities. Seeds extract inhibited significantly the growth of the tested bacterial strains. Results: The greatest synergistic effect of T. terrestris and bitter almond extracts is detected in methanol and aqueous extracts. Among the bacterial strains tested, Staphylococcus aureus was most susceptibility. Conclusion: The results showed the highest antibacterial effect in the combination of methanol extract of T. terrestris and the aqueous extract of the bitter almond.

  6. [Combination drug therapy in leprosy].

    Science.gov (United States)

    Terencio de las Aguas, J

    1983-01-01

    The importance of polichemotherapy in multibacilar leprosy (LL and LD) in patients without any previous therapy as in those diagnosticated and under monotherapy most of all in the resistance patients is presented. Sulphones, clofazimine and rifampicine are selected as first rate drugs and protionamide-etionamide as second rate drugs. The therapy plans with the association of two and three drugs and the convenience of continuing indefinitely with at least one of the drugs are presented insisting on the advantages of the clofazimine-sulphones and rifampicine-sulphones associations. The necessity of immunotherapy for recover of celular immunity against the bacilus, is the only form of preventing relapses and drug resistance.

  7. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and

  8. Synergistic effect of pyrazoles derivatives and doxorubicin in claudin-low breast cancer subtype.

    Science.gov (United States)

    Saueressig, Silvia; Tessmann, Josiane; Mastelari, Rosiane; da Silva, Liziane Pereira; Buss, Julieti; Segatto, Natalia Vieira; Begnini, Karine Rech; Pacheco, Bruna; de Pereira, Cláudio Martin Pereira; Collares, Tiago; Seixas, Fabiana Kömmling

    2018-02-01

    Breast cancer is a global public health problem. For some subtypes, such as Claudin-low, the prognosis is poorer and the treatment is still a challenge. Pyrazoles are an important class of heterocyclic compounds and are promising anticancer agents based on their chemical properties. The present study was aimed not only at testing pyrazoles previously prepared by our research group in two breast cancer cell lines characterized by intermediated response to conventional chemotherapy but also at analyzing the possible synergistic effect of these pyrazoles associated with doxorubicin. Four 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H pyrazoles were tested for the first time in MCF-7 and MDA-MB-231 culture cells. The pyrazoles with best results in cytotoxicity were used in combination with doxorubicin and compared with this drug alone as standard. The synergic effect was analyzed using Combination Index method. In addition, cell death and apoptosis assays were carried out. Two pyrazoles with cytotoxic effect in MCF-7 and especially in MDA-MB-231 were identified. This activity was markedly higher in pyrazoles containing bromine and chlorine substituents. The combination of these pyrazoles with doxorubicin had a significant synergic effect in both cells tested and mainly in MDA-MB-231. These data were confirmed with apoptosis and cell death analysis. The synergic effect observed with combination of these pyrazoles and doxorubicin deserves special attention in Claudin-low breast cancer subtype. This should be explored in order to improve treatment results and minimize side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells.

    Science.gov (United States)

    Alizadeh Zarei, M; Takhshid, M A; Behzad Behbahani, A; Hosseini, S Y; Okhovat, M A; Rafiee Dehbidi, Gh R; Mosleh Shirazi, M A

    2017-09-01

    Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to explore the potential synergistic effects of N-Myc Downstream-Regulated Gene 2 (NDRG2) overexpression, a newly identified candidate tumor suppressor gene, with radiotherapy against proliferation of prostate LNCaP cell line. In this study, LNCaP cells were exposed to X-ray radiation in the presence or absence of NDRG2 overexpression using plasmid PSES- pAdenoVator-PSA-NDRG2-IRES-GFP. The effects of NDRG2 overexpression, X-ray radiation or combination of both on the cell proliferation and apoptosis of LNCaP cells were then analyzed using MTT assay and flow cytometery, respectively. Results of MTT assay showed that NDRG2 overexpression and X-ray radiation had a synergistic effect against proliferation of LNCaP cells. Moreover, NDRG2 overexpression increased apoptotic effect of X-ray radiation in LNCaP cells synergistically. Our findings suggested that NDRG2 overexpression in combination with radiotherapy may be an effective therapeutic option against prostate cancer.

  10. In vitro synergistic activities of cefazolin and nisin A against mastitis pathogens.

    Science.gov (United States)

    Kitazaki, Kohei; Koga, Shoko; Nagatoshi, Kohei; Kuwano, Koichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji; Ano, Hitoshi; Katamoto, Hiromu

    2017-09-12

    First-generation cephalosporins such as cefazolin (CEZ) have been widely used for mastitis treatment in dairy cattle. However, the use of antibiotics results in the presence of antibiotic residues in milk, which is used for human consumption. Nisin A, a bacteriocin produced by Lactococcus lactis, has been used as a broad-spectrum food preservative for over 50 years. Therefore, a combination of CEZ and nisin A might provide an extended activity spectrum against mastitis pathogens and reduce the antibiotic dose for mastitis treatment. This study aimed to evaluate the combined effect of CEZ and nisin A against mastitis pathogens using the checkerboard and time-kill assays. In the checkerboard assay, the CEZ-nisin A combination exhibited a synergistic effect against Staphylococcus aureus (n=20/20) and Enterococcus faecalis (n=13/18), and meanwhile exhibited a mostly additive effect against Staphylococcus intermedius (n=12/20), Streptococcus agalactiae (n=10/10), Streptococcus dysgalactiae (n=18/18), and Escherichia coli (n=14/18). There were no indifferent or antagonistic effects between CEZ and nisin A. In the time-kill assay, the CEZ-nisin A combination at 0.5 × or 1 × minimum inhibitory concentration exhibited synergistic reduction of bacterial growth by over 3 log 10 colony forming units per ml relative to that observed with either antimicrobial substance alone. These results suggest that the CEZ-nisin A combination can be used for developing an intramammary infusion for mastitis treatment, with lower antibiotic concentrations than normal.

  11. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains

    Directory of Open Access Journals (Sweden)

    Sara eScandorieiro

    2016-05-01

    Full Text Available Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare essential oil (OEO and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP, produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all seventeen strains tested, with minimal inhibitory concentrations (MIC ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min, while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA cells exposed to three different treatments (OEO, bio-AgNP and combination of the two, which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds

  12. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    Science.gov (United States)

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  13. Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. and Larrea nitida Cav. extracts in clinical isolates of Candida albicans and Candida glabrata.

    Science.gov (United States)

    Butassi, Estefanía; Svetaz, Laura A; Ivancovich, Juan J; Feresin, Gabriela E; Tapia, Alejandro; Zacchino, Susana A

    2015-06-01

    Zuccagnia punctata Cav. (Fabaceae) and Larrea nitida Cav. (Zygophyllaceae) are indistinctly or jointly used in traditional medicine for the treatment of fungal-related infections. Although their dichloromethane (DCM) extract have demonstrated moderate antifungal activities when tested on their own, antifungal properties of combinations of both plants have not been assessed previously. The aim of this study was to establish with statistical rigor whether Z. punctata (ZpE) and L. nitida DCM extract (LnE) interact synergistically against the clinically important fungi Candida albicans and Candida glabrata and to characterize the most synergistic combinations. For synergism assessment, the statistical-based Boik's design was applied. Eight ZpE-LnE fixed-ratio mixtures were prepared from four different months of 1 year and tested against Candida strains. Lϕ (Loewe index) of each mixture at different fractions affected (ϕ) allowed for the finding of the most synergistic combinations, which were characterized by HPLC fingerprint and by the quantitation of the selected marker compounds. Lϕ and confidence intervals were determined in vitro with the MixLow method, once the estimated parameters from the dose-response curves of independent extracts and mixtures, were obtained. Markers (four flavonoids for ZpE and three lignans for LnE) were quantified in each extract and their combinations, with a valid HPLC-UV method. The 3D-HPLC profiles of the most synergistic mixtures were obtained by HPLC-DAD. Three over four IC50ZpE/IC50LnE fixed-ratio mixtures displayed synergistic interactions at effect levels ϕ > 0.5 against C. albicans. The dosis of the most synergistic (Lϕ = 0.62) mixture was 65.96 µg/ml (ZpE = 28%; LnE = 72%) containing 8 and 36% of flavonoids and lignans respectively. On the other hand, one over four IC50ZpE/IC50LnE mixtures displays synergistic interactions at ϕ > 0.5 against C. glabrata. The dosis of the most synergistic (Lϕ = 0.67) mixture was 168

  14. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro.

    Science.gov (United States)

    Prescott, Matthew; Mitchell, James; Totti, Stella; Lee, Judy; Velliou, Eirini; Bussemaker, Madeleine

    2018-01-01

    The presence of ultrasound-induced cavitation in sonodynamic therapy (SDT) treatments has previously enhanced the activity and delivery of certain sonosensitisers in biological systems. The purpose of this work was to investigate the potential for two novel anti-cancer agents from natural derivatives, sanguinarine and ginger root extract (GRE), as sonosensitisers in an SDT treatment with in vitro PANC-1 cells. Both anti-cancer compounds had a dose-dependent cytotoxicity in the presence of PANC-1 cells. A range of six discreet ultrasound power-frequency configurations were tested and it was found that the cell death caused directly by ultrasound was likely due to the sonomechanical effects of cavitation. Combined treatment used dosages of 100μM sanguinarine or 1mM of GRE with 15s sonication at 500kHz and 10W. The sanguinarine-SDT and GRE-SDT treatments showed a 6% and 17% synergistic increase in observed cell death, respectively. Therefore both sanguinarine and GRE were found to be effective sonosensitisers and warrant further development for SDT, with a view to maximising the magnitude of synergistic increase in toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Ghosh S

    2012-02-01

    -positive bacteria. Beta-lactam (piperacillin and macrolide (erythromycin antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles.Conclusion: This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.Keywords: Dioscorea bulbifera tuber extract, silver nanoparticles, antimicrobial synergy

  16. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  17. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    Khan, M.A.; Smego Jr, R.A.; Razi, S.T.; Beg, M.A.

    2004-01-01

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  18. In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Stanojeic, D.; Comic, L.; Stefanovic, O.; Solujic Sukdolak, S.

    2010-07-01

    The aim of this study was to investigate the antibacterial activity of aqueous, ethanol and ethyl acetate extracts of the species Melissa officinalis L. and their in vitro synergistic action with preservatives, namely: sodium nitrite, sodium benzoate and potassium sorbate against selected food spoiling bacteria, for a potential use in food industry. Synergistic action was noticed in almost every combination between plant extracts and preservatives. This work showed that the active compounds from ethanol, ethyl acetate and aqueous extracts of Melissa officinalis L. significantly enhanced the effectiveness of tested preservatives. Synergism was established at plant extract and preservative concentrations corresponding to 1/4 and 1/8 minimal inhibitory concentration values, which indicated the possibility of avoiding the use of higher concentrations of tested preservatives. (Author) 25 refs.

  19. MoS_2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-01-01

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS_2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS_2. Moreover, both Ag nanoparticles and the edge of the MoS_2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS_2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS_2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. - Highlights: • MoS_2/Ag nanohybrid was applied as a novel matrix in negative-ion MALDI-TOF MS. • The MoS_2/Ag nanohybrid exerted synergistic effect on the detection of small molecules. • The MoS_2/Ag nanohybrid showed good signal reproducibility and low background interferences comparing to organic matrices. • MoS_2/Ag allows simultaneous analysis of multiple drugs and quantification of acetylsalicylic acid in spiked serum samples.

  20. Prevalence of Different Combinations of Antiepileptic Drugs and CNS Drugs in Elderly Home Care Service and Nursing Home Patients in Norway.

    Science.gov (United States)

    Halvorsen, Kjell H; Johannessen Landmark, Cecilie; Granas, Anne Gerd

    2016-01-01

    Introduction. Antiepileptic drugs (AEDs) are used to treat different conditions in elderly patients and are among the drug classes most susceptible to be involved in drug-drug interactions (DDI). The aim of the study was to describe and compare use of AEDs between home care service and nursing home patients, as these patients are not included in nationwide databases of drug utilization. In the combined population, we investigate DDI of AEDs with other central nervous system- (CNS-) active drugs and DDIs involving AEDs in general. Materials and Methods. Point-prevalence study of Norwegian patients in home care services and nursing homes in 2009. At the patient level, we screened for different DDIs involving AEDs. Results. In total, 882 patients (7.8%) of 11,254 patients used AEDs and number of users did not differ between home care services and nursing homes (8.2% versus 7.7%). In the combined population, we identified 436 potential DDIs in 45% of the patients. Conclusions. In a large population of elderly, home care service and nursing home patients do not differ with respect to exposure of AEDs but use more AEDs as compared to the general population of similar age. The risk of DDIs with AEDs and other CNS-active drugs should be taken into consideration and individual clinical evaluations are assessed in this population.

  1. HSA-based multi-target combination therapy: regulating drugs' release from HSA and overcoming single drug resistance in a breast cancer model.

    Science.gov (United States)

    Gou, Yi; Zhang, Zhenlei; Li, Dongyang; Zhao, Lei; Cai, Meiling; Sun, Zhewen; Li, Yongping; Zhang, Yao; Khan, Hamid; Sun, Hongbing; Wang, Tao; Liang, Hong; Yang, Feng

    2018-11-01

    Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.

  2. Synergistic potential of dillapiole-rich essential oil with synthetic pyrethroid insecticides against fall armyworm

    Directory of Open Access Journals (Sweden)

    Murilo Fazolin

    2016-03-01

    Full Text Available ABSTRACT: The objective of this study was to evaluate the synergy and response homogeneity of the Spodoptera frugiperda larvae population to the Piper aduncum essential oil in combination with pyrethroid insecticides (alpha-cypermethrin, beta-cypermethrin, fenpropathrin, and gamma-cyhalothrin compared to piperonylbutoxide (PBO as positive control. Synergism (SF comparisons were obtained using lethal concentration (LC50 and lethal dose (LD50 ratios of insecticides individually and in their respective synergistic combinations with essential oil and PBO. Dose/concentration-mortality slope curves were used to establish relative toxicity increase promoted by synergism. They also determined homogeneity response. Residual contact revealed significant potentiation for commercial insecticides formulated with beta-cypermethrin (SF=9.05-0.5 and fenpropathrin (SF=34.05-49.77 when combined with the P. aduncum essential oil. For topical contact, significant potentiation occurred only for alpha-cypermethrin (SF=7.55-3.68, fenpropathrin (SF=3.37-1.21, and gamma-cyhalothrin (SF=5.79-10.48 insecticides when combined with essential oil. With the exception of fenpropathrin and gamma-cyhalothrin, insecticides synergistic combinations presented homogeneous response by topical as well as residual contact at least with essential oil. The SF significance values ​​of the P. aduncum essential oil combined with alpha-cypermethrin, beta-cypermethrin, fenpropathrin, and gamma-cyhalothrin insecticides indicated potential for this oil to be used as an alternative to PBO.

  3. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy.

    Science.gov (United States)

    Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing

    2016-01-01

    Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.

  4. A multi-functional nanoplatform for tumor synergistic phototherapy

    Science.gov (United States)

    Zhang, Huijuan; Jiao, Xiaojing; Chen, Qianqian; Ji, Yandan; Zhang, Xiaoge; Zhu, Xing; Zhang, Zhenzhong

    2016-02-01

    Phototherapy, which mainly includes photothermal treatment (PTT) and photodynamic treatment (PDT), is a photo-initiated, noninvasive and effective approach for cancer treatment. The high accumulation of photosensitizers (PSs) in a targeted tumor is still a major challenge for efficient light conversion, to generate reactive oxygen species (ROS) and local hyperthermia. In this study, a simple and efficient hyaluronic acid (HA)-modified nanoplatform (HA-TiO2@MWCNTs) with high tumor-targeting ability, excellent phototherapy efficiency, low light-associated side effects and good water solubility was developed. It could be an effective carrier to load hematoporphyrin monomethyl ether (HMME), owing to the tubular conjugate structure. Apart from this, the as-prepared TiO2@MWCNTs nanocomposites could also be used as PSs for tumor PTT and PDT. Those results in vitro and in vivo showed that the anti-tumor effect of this system-mediated PTT/PDT were significantly better than those of single treatment manner. In addition, this drug delivery system could realize high ratio of drug loading, sustained drug release, prolonged circulation in vivo and active targeted accumulation in tumor. These results suggest that HA-TiO2@MWCNTs/HMME has high potential for tumor synergistic phototherapy as a smart theranostic nanoplatform.

  5. A multi-functional nanoplatform for tumor synergistic phototherapy

    International Nuclear Information System (INIS)

    Zhang, Huijuan; Jiao, Xiaojing; Chen, Qianqian; Ji, Yandan; Zhang, Xiaoge; Zhu, Xing; Zhang, Zhenzhong

    2016-01-01

    Phototherapy, which mainly includes photothermal treatment (PTT) and photodynamic treatment (PDT), is a photo-initiated, noninvasive and effective approach for cancer treatment. The high accumulation of photosensitizers (PSs) in a targeted tumor is still a major challenge for efficient light conversion, to generate reactive oxygen species (ROS) and local hyperthermia. In this study, a simple and efficient hyaluronic acid (HA)-modified nanoplatform (HA-TiO 2 @MWCNTs) with high tumor-targeting ability, excellent phototherapy efficiency, low light-associated side effects and good water solubility was developed. It could be an effective carrier to load hematoporphyrin monomethyl ether (HMME), owing to the tubular conjugate structure. Apart from this, the as-prepared TiO 2 @MWCNTs nanocomposites could also be used as PSs for tumor PTT and PDT. Those results in vitro and in vivo showed that the anti-tumor effect of this system-mediated PTT/PDT were significantly better than those of single treatment manner. In addition, this drug delivery system could realize high ratio of drug loading, sustained drug release, prolonged circulation in vivo and active targeted accumulation in tumor. These results suggest that HA-TiO 2 @MWCNTs/HMME has high potential for tumor synergistic phototherapy as a smart theranostic nanoplatform. (paper)

  6. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  7. Combined use of bile acids and aminoacids to improve permeation properties of acyclovir.

    Science.gov (United States)

    Cirri, M; Maestrelli, F; Mennini, N; Mura, P

    2015-07-25

    The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of l-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-l-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent.

    Science.gov (United States)

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2007-01-01

    Anethole shows synergistic effects on the antifungal activities of phytochemicals including polygodial and (2E)-undecenal against Saccharomyces cerevisiae and Candida albicans. It was found that a fungistatic dodecanol combined with a sublethal amount of anethole showed a fungicidal activity against S. cerevisiae. The MIC of dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control, indicating that the effect of dodecanol on this yeast was classified as sublethal damage. On the other hand, anethole completely restricted the recovery of cell viability. Therefore the expression of the synergistic effect was probably due to a blockade of the recovery process from dodecanol-induced stress.

  9. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells.

    Science.gov (United States)

    Yoshida, Toru; Kondo, Takashi; Ogawa, Ryohei; Feril, Loreto B; Zhao, Qing-Li; Watanabe, Akihiko; Tsukada, Kazuhiro

    2008-04-01

    Potential clinical use of ultrasound (US) in enhancing the effects of anticancer drugs in the treatment of cancers has been highlighted in previous reports. Increased uptake of drugs by the cancer cells due to US has been suggested as a mechanism. However, the precise mechanism of the enhancement has not yet been elucidated. Here, the combined effects of low-intensity pulsed US and doxorubicin (DOX) on cell killing and apoptosis induction of U937 cells, and mechanisms involved were investigated. Human myelomonocytic lymphoma U937 cells were used for the experiments. Experiments were conducted in 4 groups: (1) non-treated, (2) DOX treated (DOX), (3) US treated (US), and (4) combined (DOX + US). In DOX +US, cells were exposed to 5 microM DOX for 30 min and sonicated by 1 MHz pulsed US (PRF 100 Hz, DF 10%) at intensities of 0.2-0.5 W/cm(2) for 60 s. The cells were washed and incubated for 6 h. The viability was evaluated by Trypan blue dye exclusion test and apoptosis and incorporation of DOX was assessed by flow cytometry. Involvement of sonoporation in molecular incorporation was evaluated using FITC-dextran, hydroxyl radical formation was measured by electron paramagnetic resonance-spin trapping, membrane alteration including lipid peroxidation and membrane fluidity by DOX was evaluated using cis-parinaric acid and perylene fluorescence polarization method, respectively. Synergistic enhancement in cell killing and additive enhancement in induction of apoptosis were observed at and above 0.3 W/cm(2). No enhancement was observed at 0.2 W/cm(2) in cell killing and induction of apoptosis. Hydroxyl radicals formation was detected at and above 0.3 W/cm(2). The radicals were produced more in the DOX + US than US alone. Incorporation of DOX was increased 13% in DOX + US (vs. DOX) at 0.5 W/cm(2). Involvement of sonoporation for increase of drug uptake was suggested by experiment using FITC-labeled dextran. We made the hypothesis that DOX treatment made the cells weaken

  10. EFFECT OF LINEZOLID ALONE AND IN COMBINATION WITH OTHER ANTIBIOTICS, ON METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS.

    Science.gov (United States)

    Yehia, Hoda; El Said, Manal; Azmy, Magda; Badawy, Moushira; Mansy, Soheir; Gohar, Hamida; Madany, Nadia

    2016-04-01

    The prevalence of methicillin-resistant Staphyloccoccus aureus (MRSA) strains has presented a new challenge in antimicrobial medication. Linezolid is a new drug with potent activity on Gram-positive pathogens such as MRSA. The aim of the study was to investigate the in vitro activity of linezolid alone and in combination with imipenem, vancomycin or rifampicin to determine the most active therapy against MRSA strains. Twenty clinical MRSA strains were isolated from patients admitted to inpatient departments and outpatient clinics of Theodor Bilharz Research Institute. Standard strain MRSA ATCC 43300 was included as a control. The MICs of MRSA strains to linezolid, vancomycin, imipenem and rifampicin were evaluated using E test. Time-kill curve were used to assess the in vitro activity of linezolid (at 8x MIC) alone and in combination with imipenem (at 32x MIC), vancomycin or rifampicin (at 8x MIC). Scanning and transmission electron microscopy were performed to compare bacterial morphological alterations owing to the different combi- nations. Time-kill studies showed synergistic effect when linezolid combined with imipenem was tested against all the MRSA strains. Linezolid plus vancomycin or rifampicin combinations did not display any synergism or antagonism. Scanning and transmission electron microscopy observations confirmed the interactions observed in time kill experiments. Linezolid in combination with subinhibitory concentrations of imipenem can be bactericidal against MRSA strains and appears to be a promising combination for the treatment of MRSA infections. No synergistic activity was seen when the linezolid and vancomycin or rifampicin were combined. Linezolid could prevent the emergence of mutants resistant to rifampicin

  11. Driving Change – On the possibilities to combine TQM and BPR synergistically

    DEFF Research Database (Denmark)

    Tønnesen, Tor

    The thesis departs from James March’s theory on the balancing of Exploitation and Exploration. Exploitation is about refining existing practices. Exploration is about searching for new opportunities and innovation. March’s approach to the balancing of Exploitation and Exploration is mostly...... synergistically is challenging, but promising. Leadership and company-­‐wide employee participation seem to be important enablers for this to be true. The thesis is based on Tor’s research in two Norwegian action research programs – “Enterprise Development 2000” and “Value Creation 2010”. The research was done...... at the International Research Institute of Stavanger (IRIS) where Tor held a position as Senior Vice President “Innovation and Business Development”. Currently Tor is employed at Statoil, where he is heading the company’s specialist center “Organizational Capabilities and Change”....

  12. Immuno-oncology combinations: raising the tail of the survival curve

    International Nuclear Information System (INIS)

    Harris, Samuel J.; Brown, Jessica; Lopez, Juanita; Yap, Timothy A.

    2016-01-01

    There have been exponential gains in immuno-oncology in recent times through the development of immune checkpoint inhibitors. Already approved by the U.S. Food and Drug Administration for advanced melanoma and non-small cell lung cancer, immune checkpoint inhibitors also appear to have significant antitumor activity in multiple other tumor types. An exciting component of immunotherapy is the durability of antitumor responses observed, with some patients achieving disease control for many years. Nevertheless, not all patients benefit, and efforts should thus now focus on improving the efficacy of immunotherapy through the use of combination approaches and predictive biomarkers of response and resistance. There are multiple potential rational combinations using an immunotherapy backbone, including existing treatments such as radiotherapy, chemotherapy or molecularly targeted agents, as well as other immunotherapeutics. The aim of such antitumor strategies will be to raise the tail on the survival curve by increasing the number of long term survivors, while managing any additive or synergistic toxicities that may arise with immunotherapy combinations. Rational trial designs based on a clear understanding of tumor biology and drug pharmacology remain paramount. This article reviews the biology underpinning immuno-oncology, discusses existing and novel immunotherapeutic combinations currently in development, the challenges of predictive biomarkers of response and resistance and the impact of immuno-oncology on early phase clinical trial design

  13. Potentiation of antimalarial activity of arteether in combination with Vetiver root extract.

    Science.gov (United States)

    Dhawan, Sangeeta; Gunjan, Sarika; Pal, Anirban; Tripathi, Renu

    2016-05-01

    In malaria, development of resistance towards artemisinin derivatives has urged the need for new drugs or new drug combinations to tackle the drug resistant malaria. We studied the fresh root extract of Vetiver zizanioides (Linn.) Nash (VET) with a CDRI-CIMAP antimalarial α/β arteether (ART) together for their antimalarial potential. Our results showed additive to synergistic antimalarial activity of VET and ART with sum fractional inhibitory concentrations Σ FICs 1.02 ± 0.24 and 1.12 ± 0.32 for chloroquine sensitive (CQS) and chloroquine resistant (CQR) strain of Plasmodium falciparum (William H. Welch), respectively. Further, these combinations were explored against multidrug resistant rodent malaria parasite i.e. P. yoelii nigeriensis. Analysis of in vivo interaction of ART and VET showed that 10 mg/kg x 5 days of ART with 1000 mg/kg of VET x 5 days cured 100% mice infected with MDR parasite, while the same dose of ART could produce only up to 30% cure and VET fraction was not curative at all. Synergism/additiveness, found between VET and ART is reported for the first time. The curative dose of ART in the combination was reduced to its one fourth, and thus limits the side effects, if any. Although antimalarial potential of ART was enhanced by VET, action mechanism of later needs to be elucidated in detail.

  14. Synergistic effect of the interaction between curcumin and diclofenac on the formalin test in rats.

    Science.gov (United States)

    De Paz-Campos, Marco A; Ortiz, Mario I; Chávez Piña, Aracely E; Zazueta-Beltrán, Liliana; Castañeda-Hernández, Gilberto

    2014-10-15

    The association of non-steroidal anti-inflammatory drugs with certain plant extracts can increase antinociceptive activity, permitting the use of lower doses and thus limiting side effects. Therefore, the aim objective of the current study was to examine the effects of curcumin on the nociception and pharmacokinetics of diclofenac in rats. Antinociception was assessed using the formalin test. Diluted formalin was injected subcutaneously into the dorsal surface of the right hind paw. Nociceptive behavior was quantified as the number of flinches of the injected paw during 60 min after injection, and a reduction in formalin-induced flinching was interpreted as an antinociceptive response. Rats were treated with oral diclofenac (1-31 mg/kg), curcumin (3.1-100 mg/kg) or the diclofenac-curcumin combination (2.4-38.4 mg/kg). To determine the possibility of a pharmacokinetic interaction, the oral bioavailability of diclofenac (10 mg/kg) was studied in presence and the absence of curcumin (31 mg/kg). Diclofenac, curcumin, or diclofenac-curcumin combination produced an antinociceptive effect on the formalin test. ED30 values were estimated for the individual drugs, and an isobologram was constructed. The derived theoretical ED30 for the antinociceptive effect (19.2 mg/kg) was significantly different from the observed experimental ED30 value (9.8 mg/kg); hence, the interaction between diclofenac and curcumin that mediates the antinociceptive effect was synergistic. Notwithstanding, the interaction does not appear to involve pharmacokinetic mechanisms, as oral curcumin failed to produce any significant alteration in oral diclofenac bioavailability. Data suggest that the diclofenac-curcumin combination can interact at the systemic level and may have therapeutic advantages for the clinical treatment of inflammatory pain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  16. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J

    2015-11-01

    Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Comparing models of the combined-stimulation advantage for speech recognition.

    Science.gov (United States)

    Micheyl, Christophe; Oxenham, Andrew J

    2012-05-01

    The "combined-stimulation advantage" refers to an improvement in speech recognition when cochlear-implant or vocoded stimulation is supplemented by low-frequency acoustic information. Previous studies have been interpreted as evidence for "super-additive" or "synergistic" effects in the combination of low-frequency and electric or vocoded speech information by human listeners. However, this conclusion was based on predictions of performance obtained using a suboptimal high-threshold model of information combination. The present study shows that a different model, based on Gaussian signal detection theory, can predict surprisingly large combined-stimulation advantages, even when performance with either information source alone is close to chance, without involving any synergistic interaction. A reanalysis of published data using this model reveals that previous results, which have been interpreted as evidence for super-additive effects in perception of combined speech stimuli, are actually consistent with a more parsimonious explanation, according to which the combined-stimulation advantage reflects an optimal combination of two independent sources of information. The present results do not rule out the possible existence of synergistic effects in combined stimulation; however, they emphasize the possibility that the combined-stimulation advantages observed in some studies can be explained simply by non-interactive combination of two information sources.

  18. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy

    Science.gov (United States)

    Liu, Bei; Zhang, Xinyang; Li, Chunxia; He, Fei; Chen, Yinyin; Huang, Shanshan; Jin, Dayong; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2016-06-01

    The combination of multi-theranostic modes in a controlled fashion has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, we have synthesized a smart magnetically targeted nanocarrier system, Cu9S5@mSiO2@Fe3O4-PEG (labelled as CMF), which integrates NIR triggered photothermal therapy, pH/NIR-responsive chemotherapy and MR imaging into one nanoplatform to enhance the therapeutic efficacy. This new multifunctional paradigm has a uniform and monodisperse sesame ball-like structure by decorating tiny Fe3O4 nanoparticles on the surface of Cu9S5@mSiO2 before a further PEG modification to improve its hydrophilicity and biocompatibility. With doxorubicin (DOX) payload, the as-obtained CMF-DOX composites can simultaneously provide an intense heating effect and enhanced DOX release upon 980 nm NIR light exposure, achieving a combined chemo/photothermal therapy. Under the influence of an external magnetic field, the magnetically targeted synergistic therapeutic effect of CMF-DOX can lead to highly superior inhibition of animal H22 tumor in vivo when compared to any of the single approaches alone. The results revealed that this Cu9S5 based magnetically targeted chemo/photothermal synergistic nanocarrier system has great promise in future MR imaging assisted tumor targeted therapy of cancer.

  19. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    Science.gov (United States)

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The synergistic effect of complex ligands for radioactive metal salts decontamination in supercritical CO2

    International Nuclear Information System (INIS)

    Go, M. S.; Park, K. H.; Kim, H. W.; Kim, H. D.

    2004-01-01

    The organophosphorus and dithiocarbamate ligands were used to extract five metal ions (Cd 2+ , Co 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) in supercritical CO 2 so as to decontaminate the radioactive contaminants. The experiments confirmed that the ligands mixed together in a variety of the mixing ratios efficiently extracted all metal ions by more than 90% due to its synergistic effect. The UV-Vis spectrometer installed in a high-pressurized cell showed that the NaDDC was decomposed in supercritical CO 2 containing the water. It also proved that the synergistic effect improved the deprotonation of the organophosphorus ligand when NaDDC was used together with. In addition, we mixed organophosphorus ligand together with diethylamine, the decomposed NaDDC, to obtain the same extraction result of more than 90% as with NaDDC. The enhanced extraction efficiency shows the synergistic effect that is produced by combining two ligands together

  1. Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human Cholangiocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Tae Won Kwak

    2013-01-01

    Full Text Available The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.

  2. Preclinical Data on Efficacy of 10 Drug-Radiation Combinations: Evaluations, Concerns, and Recommendations

    Directory of Open Access Journals (Sweden)

    Helen B. Stone

    2016-02-01

    Full Text Available BACKGROUND: Clinical testing of new therapeutic interventions requires comprehensive, high-quality preclinical data. Concerns regarding quality of preclinical data have been raised in recent reports. This report examines the data on the interaction of 10 drugs with radiation and provides recommendations for improving the quality, reproducibility, and utility of future studies. The drugs were AZD6244, bortezomib, 17-DMAG, erlotinib, gefitinib, lapatinib, oxaliplatin/Lipoxal, sunitinib (Pfizer, Corporate headquarters, New York, NY, thalidomide, and vorinostat. METHODS: In vitro and in vivo data were tabulated from 125 published papers, including methods, radiation and drug doses, schedules of administration, assays, measures of interaction, presentation and interpretation of data, dosimetry, and conclusions. RESULTS: In many instances, the studies contained inadequate or unclear information that would hamper efforts to replicate or intercompare the studies, and that weakened the evidence for designing and conducting clinical trials. The published reports on these drugs showed mixed results on enhancement of radiation response, except for sunitinib, which was ineffective. CONCLUSIONS: There is a need for improved experimental design, execution, and reporting of preclinical testing of agents that are candidates for clinical use in combination with radiation. A checklist is provided for authors and reviewers to ensure that preclinical studies of drug-radiation combinations meet standards of design, execution, and interpretation, and report necessary information to ensure high quality and reproducibility of studies. Improved design, execution, common measures of enhancement, and consistent interpretation of preclinical studies of drug-radiation interactions will provide rational guidance for prioritizing drugs for clinical radiotherapy trials and for the design of such trials.

  3. Synergy of drug combinations in treating multidrug-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Rizvi, Meher; Ahmad, Junaid; Khan, Fatima; Shukla, Indu; Malik, Abida; Sami, Hiba

    2015-01-01

    With the emergence of metallo-betalactamases (MBL) in Pseudomonas aeruginosa (P. aeruginosa), the value of carbapenem, the drug of last resort, is being severely compromised. Curtailing the use of carbapenems becomes paramount if resistance is to be reined in. To study the role of synergy between combinations of drugs as an alternative treatment choice for P. aeruginosa. Synergy was studied between combinations of levofloxacin with piperacillin-tazobactam and levofloxacin with cefoperazone-sulbactam by time-kill and chequerboard techniques. P. aeruginosa were tested for antibiotic susceptibility by the disc diffusion assay (260 isolates) and E-test (60 isolates). Synergy testing by chequerboard and time-kill assays was performed with combinations of piperacillin-tazobactam with levofloxacin (11 isolates) and cefoperazone-sulbactam with levofloxacin (10 isolates). Nearly all isolates were susceptible to piperacillin-tazobactam (96.1 per cent), followed by piperacillin (78.5 per cent). Seventy-one isolates (27.3 per cent) were found to be multidrug resistant and 19.6 per cent were ESBL producers. MIC50 of amikacin was 32μg/ml and MIC90 was 64μg/ml. MIC50 and MIC90 of cefoperazone-sulbactam was 32μg/ml and 64μg/ml, and for levofloxacin it was 10μg/ml and 240μg/ml, respectively. Piperacillin-tazobactam had MIC50 and MIC90 of 5μg/ml and 10μg/ml, respectively. Synergy was noted in 72.7 per cent isolates for levofloxacin and piperacillin-tazobactam combination, the remaining 27.3 per cent isolates showed addition by both chequerboard and time-kill assay. For levofloxacin and cefoperazone-sulbactam, only 30 per cent isolates had synergy, 40 per cent showed addition, 20 per cent indifference, and 10 per cent were antagonistic by the chequerboard method. The combination of levofloxacin and piperacillin-tazobactam is a good choice for treatment of such strains.

  4. Abuse of antiretroviral drugs combined with addictive drugs by ...

    African Journals Online (AJOL)

    Reports of the use of antiretroviral drugs (ARVs) to produce a highly addictive drug called nyaope or whoonga are of major concern as ARVs are easily accessible in sub-Saharan Africa, including to pregnant women. Use of illicit drugs by pregnant women may result in serious adverse effects in their infants. We have ...

  5. In vitro activity of daptomycin combined with dalbavancin and linezolid, and dalbavancin with linezolid against MRSA strains.

    Science.gov (United States)

    Aktas, Gulseren; Derbentli, Sengul

    2017-02-01

    Combination therapies have a distinct advantage over monotherapies in terms of their broad spectrum, synergistic effect and prevention of the emergence of drug resistance. In the present study, the in vitro antibacterial activity of daptomycin combinations with linezolid and dalbavancin, and dalbavancin with linezolid were evaluated against 30 clinical MRSA strains. The MICs of all antibiotics were determined using microbroth dilution as described by the CLSI. The in vitro activities of antibiotics in combination were assessed by using a microbroth 'chequerboard' assay. The MIC values of all antibiotics determined were evaluated in accordance with the recommendations of the CLSI for daptomycin and linezolid, and the FDA for dalbavancin. All strains (100%) were found to be susceptible to daptomycin, dalbavancin and linezolid. The MIC 50 , MIC 90 and MIC range values of these antibiotics were determined to be 1, 1 and 0.5-1 mg/L, 0.12, 0.12 and 0.03-0.12 mg/L, and 1, 2 and 1-2 mg/L, respectively. The rates of synergistic effects were 67% for daptomycin combined with dalbavancin and with linezolid, and 60% for dalbavancin combined with linezolid. The results of this study show that in vitro combinations of these new antimicrobials will be effective in the therapy of MRSA infections. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  7. Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening.

    Science.gov (United States)

    Regueira, M S; Tintino, Saulo Relison; da Silva, Ana Raquel Pereira; Costa, Maria do Socorro; Boligon, Aline Augusti; Matias, Edinardo F F; de Queiroz Balbino, Valdir; Menezes, Irwin R A; Melo Coutinho, Henrique Douglas

    2017-09-01

    The aim of this study was to investigate the effect of the dry and rainy season on the antibacterial activity and chemical composition of the Brazilian red propolis. The samples were collected in rainy (RP-PER) and dry (RP-PED) seasons and analyzed by HPLC-DAD. The extracts were tested alone and in association with antibiotics against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The HPLC analysis identified luteolin and quercetin as the main compounds. Seasonal variation was observed according to concentrations of the compounds. The MIC values against E. coli ranged from 128 μg/mL to 512 μg/mL (EC 06 and EC ATCC). The red propolis showed MIC values of 512 μg/mL against both strains of P. aeruginosa used in our study (PA03 and PA24) and against strains of Gram-positive bacteria S. aureus the MICs ranged from 64 μg/mL to ≥1024 μg/mL (SA10). A synergistic effect was observed when we combined the RP-PED with gentamicin against all the strains tested. When we combined the RP-PED with Imipenem, we only observed synergistic effect against P. aeruginosa. According to our synergistic activity results, the utilization of red propolis collected in the drier periods can be used as an adjuvant against multiresistant bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synergistic Use of Geniposide and Ginsenoside Rg1 Balance Microglial TNF-α and TGF-β1 following Oxygen-Glucose Deprivation In Vitro: A Genome-Wide Survey

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available Ischemia-activated microglia are like a double-edged sword, characterized by both neurotoxic and neuroprotective effects. The aim of this study was to reveal the synergistic effect of geniposide and ginsenoside Rg1 based on tumor necrosis factor- (TNF- α and transforming growth factor- (TGF- β1 balance of microglia. BV2 microglial cells were divided into 5 groups: control, model (oxygen-glucose deprivation (OGD, geniposide-treated, ginsenoside-Rg1-treated, and combination-treated. A series of assays were used to detect on (i cell viability; (ii NO content; (iii expression (content of TNF-α and TGF-β1; and (iv gene expression profiles. The results showed that integrated use of geniposide and ginsenoside Rg1 significantly inhibited NO level and protected cell viability, improved the content and expression of TGF-β1, and reduced the content and expression of TNF-α. Separated use of geniposide or ginsenoside Rg1 showed different effects at different emphases. Next-generation sequencing showed that Fcγ-receptor-mediated phagocytosis pathway played a key regulatory role in the balance of TNF-α and TGF-β1 when cotreated with geniposide and ginsenoside Rg1. These findings suggest that synergistic drug combination of geniposide and ginsenoside Rg1 in the treatment of stroke is a feasible avenue for the application.

  9. Synergistic Cytotoxicity from Drugs and Cytokines In Vitro as an Approach to Classify Drugs According to Their Potential to Cause Idiosyncratic Hepatotoxicity: A Proof-of-Concept Study.

    Science.gov (United States)

    Maiuri, Ashley R; Wassink, Bronlyn; Turkus, Jonathan D; Breier, Anna B; Lansdell, Theresa; Kaur, Gurpreet; Hession, Sarah L; Ganey, Patricia E; Roth, Robert A

    2017-09-01

    Idiosyncratic drug-induced liver injury (IDILI) typically occurs in a small fraction of patients and has resulted in removal of otherwise efficacious drugs from the market. Current preclinical testing methods are ineffective in predicting which drug candidates have IDILI liability. Recent results suggest that immune mediators such as tumor necrosis factor- α (TNF) and interferon- γ (IFN) interact with drugs that cause IDILI to kill hepatocytes. This proof-of-concept study was designed to test the hypothesis that drugs can be classified according to their ability to cause IDILI in humans using classification modeling with covariates derived from concentration-response relationships that describe cytotoxic interaction with cytokines. Human hepatoma (HepG2) cells were treated with drugs associated with IDILI or with drugs lacking IDILI liability and cotreated with TNF and/or IFN. Detailed concentration-response relationships were determined for calculation of parameters such as the maximal cytotoxic effect, slope, and EC 50 for use as covariates for classification modeling using logistic regression. These parameters were incorporated into multiple classification models to identify combinations of covariates that most accurately classified the drugs according to their association with human IDILI. Of 14 drugs associated with IDILI, almost all synergized with TNF to kill HepG2 cells and were successfully classified by statistical modeling. IFN enhanced the toxicity mediated by some IDILI-associated drugs in the presence of TNF. In contrast, of 10 drugs with little or no IDILI liability, none synergized with inflammatory cytokines to kill HepG2 cells and were classified accordingly. The resulting optimal model classified the drugs with extraordinary selectivity and specificity. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. MoS{sub 2}/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaju, E-mail: daisy19900911@hotmail.com [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Deng, Guoqing, E-mail: denggqq@sina.com [Department of Polymer Science and Engineering, Nanjing University, Nanjing, 210023 (China); Liu, Xiaohui, E-mail: lcswyh@126.com [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Sun, Liang, E-mail: sunliang@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Li, Hui, E-mail: lihui@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Cheng, Quan, E-mail: quan.cheng@ucr.edu [Department of Chemistry, University of California, Riverside, CA, 92521 (United States); Xi, Kai, E-mail: xikai@nju.edu.cn [Department of Polymer Science and Engineering, Nanjing University, Nanjing, 210023 (China); Xu, Danke, E-mail: xudanke@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China)

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS{sub 2}/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS{sub 2}. Moreover, both Ag nanoparticles and the edge of the MoS{sub 2} layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS{sub 2}/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS{sub 2}/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. - Highlights: • MoS{sub 2}/Ag nanohybrid was applied as a novel matrix in negative-ion MALDI-TOF MS. • The MoS{sub 2}/Ag nanohybrid exerted synergistic effect on the detection of small molecules. • The MoS{sub 2}/Ag nanohybrid showed good signal reproducibility and low background interferences comparing to organic matrices. • MoS{sub 2}/Ag allows simultaneous analysis of multiple drugs and quantification of

  11. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu, E-mail: liuyan@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Chen; Shanchao, Yang; Xiaoming, Jin [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); Chaohui, He [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-09-21

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  12. Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride-Containing Simulated Cooling Water

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Abdul; Felhosi, Ilona [Hungarian Academy of Sciences, Budapest (Hungary); Vastag, Gyongyi [University of Novi Sad, Novi Sad (Serbia)

    2017-06-15

    The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite (NaNO{sub 2}) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance (R{sub p}) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained R{sub p} values and the inhibition efficiency improved by increasing the inhibitor concentration.

  13. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees.

    Science.gov (United States)

    Tosi, Simone; Nieh, James C; Sgolastra, Fabio; Cabbri, Riccardo; Medrzycki, Piotr

    2017-12-20

    The honey bee is a major pollinator whose health is of global concern. Declines in bee health are related to multiple factors, including resource quality and pesticide contamination. Intensive agricultural areas with crop monocultures potentially reduce the quality and quantity of available nutrients and expose bee foragers to pesticides. However, there is, to date, no evidence for synergistic effects between pesticides and nutritional stress in animals. The neonicotinoids clothianidin (CLO) and thiamethoxam (TMX) are common systemic pesticides that are used worldwide and found in nectar and pollen. We therefore tested if nutritional stress (limited access to nectar and access to nectar with low-sugar concentrations) and sublethal, field-realistic acute exposures to two neonicotinoids (CLO and TMX at 1/5 and 1/25 of LD 50 ) could alter bee survival, food consumption and haemolymph sugar levels. Bee survival was synergistically reduced by the combination of poor nutrition and pesticide exposure (-50%). Nutritional and pesticide stressors reduced also food consumption (-48%) and haemolymph levels of glucose (-60%) and trehalose (-27%). Our results provide the first demonstration that field-realistic nutritional stress and pesticide exposure can synergistically interact and cause significant harm to animal survival. These findings have implications for current pesticide risk assessment and pollinator protection. © 2017 The Author(s).

  14. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.

    Directory of Open Access Journals (Sweden)

    Michal Yalon

    Full Text Available Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR. However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi, become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi. Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG-a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.

  15. Combined Effects of Acamprosate and Escitalopram on Ethanol Consumption in Mice.

    Science.gov (United States)

    Ho, Ada Man-Choi; Qiu, Yanyan; Jia, Yun-Fang; Aguiar, Felipe S; Hinton, David J; Karpyak, Victor M; Weinshilboum, Richard M; Choi, Doo-Sup

    2016-07-01

    Major depression is one of the most prevalent psychiatry comorbidities of alcohol use disorders (AUD). As negative emotions can trigger craving and increase the risk of relapse, treatments that target both conditions simultaneously may augment treatment success. Previous studies showed a potential synergistic effect of Food and Drug Administration approved medication for AUD acamprosate and the antidepressant escitalopram. In this study, we investigated the effects of combining acamprosate and escitalopram on ethanol (EtOH) consumption in stress-induced depressed mice. Forty singly housed C57BL/6J male mice were subjected to chronic unpredictable stress. In parallel, 40 group-housed male mice were subjected to normal husbandry. After 3 weeks, depressive- and anxiety-like behaviors and EtOH consumption were assessed. For the next 7 days, mice were injected with saline, acamprosate (200 mg/kg; twice/d), escitalopram (5 mg/kg; twice/d), or their combination (n = 9 to 11/drug group/stress group). Two-bottle choice limited-access drinking of 15% EtOH and tap water was performed 3 hours into dark phase immediately after the daily dark phase injection. EtOH drinking was monitored for another 7 days without drug administration. Mice subjected to the chronic unpredictable stress paradigm for 3 weeks showed apparent depression- and anxiety-like behaviors compared to their nonstressed counterparts including longer immobility time in the forced swim test and lower sucrose preference. Stressed mice also displayed higher EtOH consumption and preference in a 2-bottle choice drinking test. During the drug administration period, the escitalopram-only and combined drug groups showed significant reduction in EtOH consumption in nonstressed mice, while only the combined drug group showed significantly reduced consumption in stressed mice. However, such reduction did not persist into the postdrug administration period. The combination of acamprosate and escitalopram suppressed

  16. Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells

    Directory of Open Access Journals (Sweden)

    Y. Linda Wu

    2017-04-01

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.

  17. Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro.

    Science.gov (United States)

    Tezcan, Gulcin; Taskapilioglu, Mevlut Ozgur; Tunca, Berrin; Bekar, Ahmet; Demirci, Hilal; Kocaeli, Hasan; Aksoy, Secil Ak; Egeli, Unal; Cecener, Gulsah; Tolunay, Sahsine

    2017-06-01

    Patients with glioblastoma multiforme (GBM) that are cancer stem-cell-positive (GSC [+]) essentially cannot benefit from anti-angiogenic or anti-invasive therapy. In the present study, the potential anti-angiogenic and anti-invasive effects of Olea europaea (olive) leaf extract (OLE) were tested using GSC (+) tumours. OLE (2mg/mL) caused a significant reduction in tumour weight, vascularisation, invasiveness and migration (p=0.0001, p<0.001, p=0.004; respectively) that was associated with reducing the expression of VEGFA, MMP-2 and MMP-9. This effect was synergistically increased in combination with bevacizumab. Therefore, our current findings may contribute to research on drugs that inhibit the invasiveness of GBM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    Science.gov (United States)

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  19. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  20. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2017-01-01

    Full Text Available The present study emphasizes on synthesis of bimetallic silver–gold nanoparticles from cell free supernatant of Pseudomonas veronii strain AS41G inhabiting Annona squamosa L. The synthesized nanoparticles were characterized using hyphenated techniques with UV–Visible spectra ascertained absorbance peak between 400 and 800 nm. Possible interaction of biomolecules in mediating and stabilization of nanoparticles was depicted with Fourier transform infrared spectroscopy (FTIR. X-ray diffraction (XRD displayed Bragg’s peak conferring the 100, 111, 200, and 220 facets of the face centered cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. Size and shape of the nanoparticles were determined using Transmission electron microscopy (TEM microgram with size ranging from 5 to 50 nm forming myriad shapes. Antibacterial activity of nanoparticles against significant human pathogens was conferred with well diffusion assay and its synergistic effect with standard antibiotics revealed 87.5% fold increased activity with antibiotic “bacitracin” against bacitracin resistant strains Bacillus subtilis, Escherichia coli and Klebsiella pneumoniae followed by kanamycin with 18.5%, gentamicin with 11.15%, streptomycin with 10%, erythromycin with 9.7% and chloramphenicol with 9.4%. Thus the study concludes with biogenic and ecofriendly route for synthesizing nanoparticles with antibacterial activity against drug resistant pathogens and attributes growing interest on endophytes as an emerging source for synthesis of nanoparticles.